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X

Motivation

m In 2D, using vertex primal variables works quite well.
= In 3D, condition number grows with H/h(1 + log H/h)?.

2D 3D
#dofs | H/h | & It. #dofs | H/h | &k It.
3350 | 11 | 11.4 23 3100 3 29.9 28
9614 19 145 25 7228 6 75.8 38
31742 35 18.1 27 23680 12 161 45
114398 67 22.2 28 || 106168 25 370 64
433310 | 131 | 26.6 30
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X

Motivation

m In 2D, using vertex primal variables works quite well.
m In 3D, condition number grows with H/h(1 + log H/h)?.

m Using continuous edge/face averages gives (1 + log(H/h))?.

2D 3D
#dofs | H/h | &k It. #dofs | H/h | & It.
3350 | 11 | 11.4 23 3100 | 3 | 299 28
9614 19 145 25 7228 6 75.8 38
31742 35 18.1 27 23680 12 161 45
114398 | 67 | 22.2 28 || 106168 25 370 64
433310 | 131 | 26.6 30

m Implementation gets a bit more tricky.

m Present method for arbitrary linear primal variables.

B Pechstein, C. (2012). Finite and boundary element tearing and interconnecting

solvers for multiscale problems (Vol. 90). Springer Science & Business Media.
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X

Problem formulation - cG setting

Find uy, € VD’hZ
a(up,v) = (F,vp) Yo, € Vpa,

where Vp 3, is a conforming discrete subspaces of Vp, e.g.

a(u,v):/aVqudaj, (F,v)z/fvdx+/ gnvds
Q Q INY
Vp={uec H' :ypu=00nTp},

Vbh = Hspan{Ni(”;)} NHY(Q).
k

The variational equation is equivalent to Ku = f.

:
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EZIETI—DP:

Overview

1 IETI-DP

| |
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EzIETI—DP:

IETI-DP

Given K®) and f*), we can reformulate

SR FRAINR ]

where K, = diag(K®)) and f, = [f(k)]-
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XIETI-DP:

IETI-DP

Given K®) and f*), we can reformulate

K., BT [u fe
wess o [ SR [6)
where K, = diag(K®*)) and f. = [f®¥)].

Since K. is not invertible, we need additional primal variables
incorporated in K, ~~ K B f

m continuous vertex values

m continuous edge/face averages

:
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XIETI-DP:

IETI-DP

Find (u, \)
K BT

B 0

3= 15

F:=BK 'BT d:= El?_lf

K is SPD, hence, we can define:

The saddle point system is equivalent to solving:
findAeU: FA=d.

Using the preconditioner M, D, we obtain:

H 2
1 k
K(M,p Flenr)) < € max <1+10g(hk>> :

:
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EzIETI—DP:

A bit more on primal variables

w® =y we=T[w®, W=,

Intermediate space W: WcWcW, K:=K is SPD.

W
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XIETI-DP:

A bit more on primal variables
w® =y we=T[w®, W=,
k

Intermediate space W WcWcw, K:= KIW is SPD.
Let ¥ C V)" be a set of linearly independent primal variables,

W= {weW VeV :y(w;) =P(w;)}

n
Wa = H Wék) where Wék) = {weW® vy e W p(wy) =0}
k=0
W = Wn e Wa, WpcC W (there are many choices for Wry)

If Wn ker(K) = {0}, then K is invertible.

:
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EEIETI—DP:

Typical examples of ¥ and v

Choices for 1:

m Vertex evaluation: 1Y (v) = v(V)

m Edge averages: ¢ (v) = %f vds

m Face averages: ¢7 (v) = 7 JFvds
Choices for ¥:

m Algorithm A: ¥ = {4V}

m Algorithm B: ¥ = {9V} U {¢} U {v7}

m Algorithm C: ¥ = {V} U {4*}
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EzIETI—DP:

Since W C W, there is a natural embedding I:W—oW.
We can define:

m B:=BI: W—>U*,
s BT = [TBT . U—)W*,
mf=1Tf eW*
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XIETI-DP:

Since W C W, there is a natural embedding I:W—>W.
We can define:

mB:=Bl: W Ur,
n BT =1TBT:. U - W=,
[ f = ITf cw*
As before, we can write our saddle point problem as:

Find (u,A) € W x U :
5 ) =[]

B

: :
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Ezlmplementation of primal variables :

Overview

T Implementation of primal variables
1. Choosing WH and constructing the basis
2. Application of K1
3. Application of the preconditioner
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Ezlmplementation of primal variables :
:

CG Algorithm

The equation FA = d, is solved via the PCG algorithm:

Ao given
T'OZd—FAO, k‘ZO, ,8_120
repeat

Sk = M_Dlrk

_ _ (Tkssk)
i1 = (Pk—1,5k—1)
pE = SIE + ,B)k—lpk—l
— Tk,Sk

Ak+1 = Tk + kP
Tht1 = Tk — g E'py
k=k+1

until stopping criterion fulfilled

| |
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Ezlmplementation of primal variables :
: :

Required realizations

In order to use the CG-algorithm, we need
m Application of F := BK1B7
m Application of M_, := BpS.B},

| |
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leplementation of primal variables :
:

Required realizations

In order to use the CG-algorithm, we need
m Application of F := BK1B7
m Application of M_, := BpS.B},

Representation of w:
R KWW KL W oW
s W=Te [[W
m representation of w € W as {awry, {wgk)}k}
m representation of f € W* as {fu, {fgﬂ)}k}
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Ezlmplementation of primal variables :
: :

Required realizations

W:WH@HWXC)

m Construction of the primal space Wy and its basis.
m We choose the so called energy minimizing primal subspaces.

m The basis should be at least local and nodal.
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leplementation of primal variables :
:

Required realizations

W:WH@HWXC)

Construction of the primal space Wi and its basis.
We choose the so called energy minimizing primal subspaces.

The basis should be at least local and nodal.
2 possibilities to realize the dual space Wa:
m Transformation of basis: construction of basis, such that the
primal variables vanishes.

m Realization with local constraints: constraints are added to the
matrix to enforce vanishing of primal variables.
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Ezlmplementation of primal variables :
: :

Required realizations

In any case, a block LDL™ factorization yields:
~ | K KHA]
K *

[KAH Kana ()

7ol I 0] [Sy' 0 1[I —KnaKxx
~K AKan I)| 0 KxillO I ’

where St = K — KHAKglAKAH.
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leplementation of primal variables :
:

Required realizations

In any case, a block LDL™ factorization yields:

~ Kmmn KHA]
K= *
[KAH Kana ()

k—lz[ I (W[Sﬁl 0 ][I —AhAKzg]
I )

~KAKan I)| 0 KxillO

where St = K — KHAKglAKAH.

m In order to apply K1, one needs a realization of the

individual subcomponents.

m If only continuous vertex values are use, one obtains (x) just

by reordering. (as in the previous talk)

:
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EZImplementation of primal variables : Choosing WH and constructing the basis

Overview

(1 Implementation of primal variables
1. Choosing Wi and constructing the basis
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Ezlmplementation of primal variables : Choosing WH and constructing the basis
: :

A nice subspace Wiy and its basis

m energy minimizing primal subspaces: Wy := WALK
m ~ Wy is K-orthogonal to Wh, i.e.

(Kwip,wa) =0 Ywr € Wi,wa € Wa.
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Ezlmplementation of primal variables : Choosing WH and constructing the basis
: :

A nice subspace Wiy and its basis

m energy minimizing primal subspaces: Wy := WALK
m ~ Wy is K-orthogonal to Wh, i.e.

(Kwip,wa) =0 Ywr € Wi,wa € Wa.

~ [K I 0

> K ! O

-1
Kxa
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Ezlmplementation of primal variables : Choosing WH and constructing the basis
: :

Choosing WH and constructing the basis

Nodal basis ¢ : ¢;($;) = 0; ;.
For each patch k& we define:
c®) k) _ prurk
(CWv), = Yy (v) Yo e WH v

| |
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leplementation of primal variables : Choosing WH and constructing the basis
:

Choosing W1t and constructing the basis
Nodal basis ¢ : ¢;(¢;) = ;..
For each patch k& we define:
(j(k) . L@/(k) — Egank

(CPv) =g (v) Yo e WH Wi

The basis functions {agk)}ﬁn’k are the solution of:

7j=1
K® o™ 1601 o
| I

c®k 0

For each patch the LU factorization is computed and stored.

:
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EZImplementation of primal variables : Application of Kt

Overview

(1 Implementation of primal variables

2. Application of K1
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Ezlmplementation of primal variables : Application of K1
: :

Application of K

Given f = {f, {f}} € W™,
Find w := {wy, {wgc)}} eEWwW: w= I?_lf

~ K=t 0
e )
0  Kxx

The application of K~ reduces to

—1
wi = Kyl fo w =Kk vk=0,...,n

| |
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Ezlmplementation of primal variables : Application of K1
: :

L (k) 1
Application of K\ A

. (k) —1
The application of K

corresponds to
K®y, = 70

with the constraint C*)wy, = 0.

| |
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Ezlmplementation of primal variables : Application of K1
: :

L (k) 1
Application of K\ A

—1
The application of KXC) corresponds to
K®y, = 70

with the constraint C*)wy, = 0.
This is equivalent to:

T
K®  c®T| Tw] _ £
(k) 0 ‘ 0
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leplementation of primal variables : Application of K1
:

Application of Kﬁrl[

K can be assembled from the patch local matrices Kl(fr)[
Due to our special construction of ¢(*¥), we have

(), = (e93037) = (033

T (0, oY) (39, o)

~(k
— —ﬂg,j)

Once Ky is assembled, one can calculate its LU factorization.

:
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leplementation of primal variables : Application of K1
:

Summary for application of F = BK BT

Given A € U:
1. Application of BT : {f(®)}n_ = BTX
2. Application of I7 = {f11, {f&) Vo) = I7 ({/¥}7_y)
3. Application of K-1:
B wi = Kﬁﬁfﬂl
n w0 = K8 vk=0,....n
4. Application of I : {wPyr_ = T({wn, {wgc)}zzo}>
5. Application of B: v = B ({w®}7_)

It remains to investigate I and I7.

:
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leplementation of primal variables : Application of K1
:

Application of I and I

m embedding operator: IW—oW
{wm, {w 1} — ®ATwi + wa
m partial assembling operator: T w* - W+

f {ARTf LI - CT®T) f}i}

®. .. basis of Wy (block version)

C'. .. matrix representation of primal variables Wi (block version)
A. .. assembling operator

AT, . distribution operator
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EZImplementation of primal variables : Application of the preconditioner

Overview

(1 Implementation of primal variables

3. Application of the preconditioner
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Ezlmplementation of primal variables : Application of the preconditioner
: :

Application of ]\4S_D1

The application of the preconditioner M;Dl = BDSBIT) is basically
the application of S

S = diag(S™)

k k k)\— k
R AR
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leplementation of primal variables : Application of the preconditioner
:

Application of M;Dl

The application of the preconditioner M;ljl = BDSBg is basically
the application of S

S = diag(S™)
S0 = el — K)o
The calculation of v(*¥) = §(*) (%) consists of 2 steps:
1. Solve: K\Ma®) = —k™w®) (Dirichlet problem)
2 k) — K(k) w® +K(’€):L.(k)

Again, a LU factorization of K} ) can be computed and stored.

: :
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EZNumerical examples :

Overview

[l Numerical examples
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2 Numerical examples :
:

Example with a =1, p =4

2D 3D
)% )%

#dofs | H/h | k  It. || #dofs | H/h | k It
3350 | 11 | 114 23 3100 | 3 |29.9 28
9614 | 19 | 145 25 7228 6 75.8 38

31742 | 35 | 18.1 27 23680 | 12 161 45

114398 | 67 | 222 28 | 106168 | 25 | 370 64
433310 | 131 | 26.6 30
V+E V+E+F
3350 | 11 | 2.02 13 3100 | 3 31 16
914 | 19 | 239 14 7228 6 40 18
31742 | 35 | 2.85 16 23680 | 12 50 21
114398 | 67 | 3.37 17 || 106168 | 25 | 6.4 23
433310 | 131 | 3.95 18
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EENumerical examples :

p-dependence: 2D + 3D & different multiplicity

m keeping multiplicity & increasing smoothness (- - - -)
m increasing multiplicity & keeping smoothness (——)
34 cG - on p (2D) 55 cG - on p (3D)
—+— increase mult. —+— increase mult.
32 | —e -keep mult. — & -keep mult. b
a3k
Tesf h
éz.s— o~ é
2 _e 2
Sear _e” 5
g o -
g22r -7 ]
8 o 8
2 Z o7
18677
1.6
2 3 4 6 7 8 9 10
degree - p degree - p
:
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EZConclusion :

Overview

(1 Conclusion
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\.Conclusion :

Conclusion and Extensions

Also other primal variables can be realized in an efficient way.
Provides application of IETI-DP to 3D problems.

With suitable scaling ~» robustness wrt. jumping coefficients.
Method can be combined with dG-formulation.

Parallelization wrt. patches (distributed memory setting).

Instead of LU-factorization, one can use Multigrid (inexact
[ETI).
m Extension to nonlinear problems

m Apply IETI to linearized equation
m Apply IETI to non-linear equation and use Newton on each
subdomain.

:
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