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:

Motivation

In 2D, using vertex primal variables works quite well.

In 3D, condition number grows with H/h(1 + logH/h)2.

2D 3D

#dofs H/h κ It. #dofs H/h κ It.

3350 11 11.4 23 3100 3 29.9 28

9614 19 14.5 25 7228 6 75.8 38

31742 35 18.1 27 23680 12 161 45

114398 67 22.2 28 106168 25 370 64

433310 131 26.6 30

Using continuous edge/face averages gives (1 + log(H/h))2.

Implementation gets a bit more tricky.

Present method for arbitrary linear primal variables.

Pechstein, C. (2012). Finite and boundary element tearing and interconnecting

solvers for multiscale problems (Vol. 90). Springer Science & Business Media.
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:

Problem formulation - cG setting

Find uh ∈ VD,h:

a(uh, vh) = 〈F, vh〉 ∀vh ∈ VD,h,

where VD,h is a conforming discrete subspaces of VD, e.g.

a(u, v) =

∫
Ω
α∇u∇v dx, 〈F, v〉 =

∫
Ω
fv dx+

∫
ΓN

gNv ds

VD = {u ∈ H1 : γ0u = 0 on ΓD},

VD,h =
∏
k

span{N (k)
i,p } ∩H

1(Ω).

The variational equation is equivalent to Ku = f .
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IETI-DP :

IETI-DP

Given K(k) and f (k), we can reformulate

Ku = f ↔
[
Ke BT

B 0

] [
u
λ

]
=

[
fe
0

]
,

where Ke = diag(K(k)) and fe = [f (k)].

Since Ke is not invertible, we need additional primal variables
incorporated in Ke  K̃, B̃, f̃ :

continuous vertex values

continuous edge/face averages
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IETI-DP :

IETI-DP

Find (u,λ) [
K̃ B̃T

B̃ 0

] [
u
λ

]
=

[
f̃e
0

]
.

K̃ is SPD, hence, we can define:

F := B̃K̃−1B̃T d := B̃K̃−1f̃

The saddle point system is equivalent to solving:

find λ ∈ U : Fλ = d.

Using the preconditioner M−1
sD , we obtain:

κ(M−1
sDF|ker(B̃T )

) ≤ C max
1≤k≤N

(
1 + log

(
Hk

hk

))2

,
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IETI-DP :

A bit more on primal variables

W (k) := V
(k)
h , W :=

∏
k

W (k), Ŵ := Vh.

Intermediate space W̃ : Ŵ ⊂ W̃ ⊂W , K̃ := K|W̃ is SPD.

Let Ψ ⊂ V ∗h be a set of linearly independent primal variables,

W̃ := {w ∈W : ∀ψ ∈ Ψ : ψ(wi) = ψ(wj)}

W∆ :=

n∏
k=0

W
(k)
∆ where W

(k)
∆ := {w ∈W (k) : ∀ψ ∈ Ψ : ψ(wk) = 0}

W̃ = WΠ ⊕W∆, WΠ ⊂ Ŵ (there are many choices for WΠ)

If W̃ ∩ ker(K) = {0}, then K̃ is invertible.

Hofer, Mitter JKU Linz 7 / 24



IETI-DP :

A bit more on primal variables

W (k) := V
(k)
h , W :=

∏
k

W (k), Ŵ := Vh.
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IETI-DP :

Typical examples of Ψ and ψ

Choices for ψ:

Vertex evaluation: ψV(v) = v(V)

Edge averages: ψE(v) = 1
|E|
∫
E v ds

Face averages: ψF (v) = 1
|F|
∫
F v ds

Choices for Ψ:

Algorithm A: Ψ = {ψV}
Algorithm B: Ψ = {ψV} ∪ {ψE} ∪ {ψF}
Algorithm C: Ψ = {ψV} ∪ {ψE}
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IETI-DP :

Since W̃ ⊂W , there is a natural embedding Ĩ : W̃ →W .
We can define:

B̃ := BĨ : W̃ → U∗,

B̃T = ĨTBT : U → W̃ ∗,

f̃ := ĨT f ∈ W̃ ∗

As before, we can write our saddle point problem as:
Find (u,λ) ∈ W̃ × U :[

K̃ B̃T

B̃ 0

] [
u
λ

]
=

[
f̃
0

]
,
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Implementation of primal variables :
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Implementation of primal variables :

CG Algorithm

The equation Fλ = d, is solved via the PCG algorithm:

λ0 given
r0 = d− Fλ0, k = 0, β−1 = 0
repeat

sk = M−1
sD rk

βk−1 = (rk,sk)
(rk−1,sk−1)

pk = sk + βk−1pk−1

αk = (rk,sk)
(Fpk,pk)

λk+1 = rk + αkpk
rk+1 = rk − αkFpk
k = k + 1

until stopping criterion fulfilled
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Implementation of primal variables :

Required realizations

In order to use the CG-algorithm, we need

Application of F := B̃K̃−1B̃T

Application of M−1
sD := BDSeB

T
D

Representation of W̃ :

K̃ : W̃ → W̃ ∗, K̃−1 : W̃ ∗ → W̃

W̃ = WΠ ⊕
∏
W

(k)
∆

representation of w ∈ W̃ as {wΠ, {w(k)
∆ }k}

representation of f ∈ W̃ ∗ as {fΠ, {f
(k)
∆ }k}
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Implementation of primal variables :

Required realizations

W̃ = WΠ ⊕
∏
W

(k)
∆

Construction of the primal space WΠ and its basis.

We choose the so called energy minimizing primal subspaces.

The basis should be at least local and nodal.

2 possibilities to realize the dual space W∆:

Transformation of basis: construction of basis, such that the
primal variables vanishes.
Realization with local constraints: constraints are added to the
matrix to enforce vanishing of primal variables.
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Implementation of primal variables :

Required realizations

In any case, a block LDLT factorization yields:

K̃ =

[
KΠΠ KΠ∆

K∆Π K∆∆

]
(?)

K̃−1 =

[
I 0

−K−1
∆∆K∆Π I

] [
S−1

Π 0

0 K−1
∆∆

] [
I −KΠ∆K

−1
∆∆

0 I

]
,

where SΠ = KΠΠ −KΠ∆K
−1
∆∆K∆Π.

In order to apply K̃−1, one needs a realization of the
individual subcomponents.

If only continuous vertex values are use, one obtains (?) just
by reordering. (as in the previous talk)
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Implementation of primal variables : Choosing W̃Π and constructing the basis

A nice subspace WΠ and its basis

energy minimizing primal subspaces: WΠ := W⊥K
∆

 WΠ is K-orthogonal to W∆, i.e.

〈KwΠ, w∆〉 = 0 ∀wΠ ∈WΠ, w∆ ∈W∆.

K̃ =

[
KΠΠ 0

0 K∆∆

]
=⇒ K̃−1 =

[
K−1

ΠΠ 0

0 K−1
∆∆

]
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Implementation of primal variables : Choosing W̃Π and constructing the basis

Choosing W̃Π and constructing the basis

Nodal basis φ̃ : ψi(φ̃j) = δi,j .
For each patch k we define:

C(k) : W (k) → RnΠ,k

(C(k)v)l = ψi(k,l)(v) ∀v ∈W (k),∀l

The basis functions {φ̃(k)
j }

nΠ,k

j=1 are the solution of:[
K(k) C(k)T

C(k) 0

] [
φ̃(k)

µ̃(k)

]
=

[
0
I

]
For each patch the LU factorization is computed and stored.
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Implementation of primal variables : Application of K̃−1

Application of K̃

Given f := {fΠ, {f
(k)
∆ }} ∈ W̃ ∗,

Find w := {wΠ, {w(k)
∆ }} ∈ W̃ : w = K̃−1f

K̃−1 =

[
K−1

ΠΠ 0

0 K−1
∆∆

]
The application of K̃−1 reduces to

wΠ = K−1
ΠΠfΠ w

(k)
∆ = K

(k)
∆∆

−1
f

(k)
∆ ∀k = 0, . . . , n

Hofer, Mitter JKU Linz 16 / 24



Implementation of primal variables : Application of K̃−1

Application of K
(k)
∆∆

−1

The application of K
(k)
∆∆

−1
corresponds to

K(k)wk = f
(k)
∆

with the constraint C(k)wk = 0.
This is equivalent to:[

K(k) C(k)T

C(k) 0

] [
wk

·

]
=

[
f

(k)
∆

0

]
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Implementation of primal variables : Application of K̃−1

Application of K−1
ΠΠ

KΠΠ can be assembled from the patch local matrices K
(k)
ΠΠ.

Due to our special construction of φ̃(k), we have(
K

(k)
ΠΠ

)
i,j

=
〈
K(k)φ̃

(k)
i , φ̃

(k)
j

〉
= −

〈
C(k)T µ̃

(k)
i , φ̃

(k)
j

〉
= −

〈
µ̃

(k)
i , C(k)φ̃

(k)
j

〉
= −

〈
µ̃

(k)
i , e

(k)
j

〉
= −µ̃(k)

i,j

Once KΠΠ is assembled, one can calculate its LU factorization.
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Implementation of primal variables : Application of K̃−1

Summary for application of F = B̃K−1B̃T

Given λ ∈ U :

1. Application of BT : {f (k)}nk=0 = BTλ

2. Application of ĨT : {fΠ, {f
(k)
∆ }nk=0} = ĨT

(
{f (k)}nk=0

)
3. Application of K̃−1 :

wΠ = K−1
ΠΠfΠ

w
(k)
∆ = K

(k)
∆∆

−1
f

(k)
∆ ∀k = 0, . . . , n

4. Application of Ĩ : {w(k)}nk=0 = Ĩ
(
{wΠ, {w(k)

∆ }nk=0}
)

5. Application of B : ν = B
(
{w(k)}nk=0

)
It remains to investigate Ĩ and ĨT .
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Implementation of primal variables : Application of K̃−1

Application of Ĩ and ĨT

embedding operator: Ĩ : W̃ →W

{wΠ, {w(k)
∆ }k} 7→ ΦATwΠ + w∆

partial assembling operator: ĨT : W ∗ → W̃ ∗

f 7→ {AΦT f, {(I − CTΦT )f}k}

Φ. . . basis of WΠ (block version)
C. . . matrix representation of primal variables WΠ (block version)
A. . . assembling operator
AT . . . distribution operator
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Implementation of primal variables : Application of the preconditioner

Application of M−1
sD

The application of the preconditioner M−1
sD = BDSB

T
D is basically

the application of S:

S = diag(S(k))

S(k) = K
(k)
BB −K

(k)
BI (K

(k)
II )−1K

(k)
IB

The calculation of v(k) = S(k)w(k) consists of 2 steps:

1. Solve: K
(k)
II x

(k) = −K(k)
IBw

(k) (Dirichlet problem)

2. v(k) = K
(k)
BBw

(k) +K
(k)
BI x

(k)

Again, a LU factorization of K
(k)
II can be computed and stored.
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Numerical examples :
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Numerical examples :

Example with α ≡ 1, p = 4

2D 3D

V V
#dofs H/h κ It. #dofs H/h κ It.

3350 11 11.4 23 3100 3 29.9 28

9614 19 14.5 25 7228 6 75.8 38

31742 35 18.1 27 23680 12 161 45

114398 67 22.2 28 106168 25 370 64

433310 131 26.6 30

V + E V + E + F
3350 11 2.02 13 3100 3 3.1 16

9614 19 2.39 14 7228 6 4.0 18

31742 35 2.85 16 23680 12 5.0 21

114398 67 3.37 17 106168 25 6.4 23

433310 131 3.95 18
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Numerical examples :

p-dependence: 2D + 3D & different multiplicity

keeping multiplicity & increasing smoothness (- - - -)

increasing multiplicity & keeping smoothness (——)

2 3 4 5 6 7 8 9 10

degree - p

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

c
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n
 n
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e
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- 
κ

cG - dependence on p (2D)

increase mult.

keep mult.

2 3 4 5 6 7

degree - p
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n
 n
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- 
κ

cG - dependence on p (3D)

increase mult.

keep mult.

Hofer, Mitter JKU Linz 23 / 24



Conclusion :

Overview

� IETI-DP

� Implementation of primal variables

1. Choosing W̃Π and constructing the basis

2. Application of K̃−1

3. Application of the preconditioner

� Numerical examples

� Conclusion

Hofer, Mitter JKU Linz 23 / 24



Conclusion :

Conclusion and Extensions

Also other primal variables can be realized in an efficient way.

Provides application of IETI-DP to 3D problems.

With suitable scaling  robustness wrt. jumping coefficients.

Method can be combined with dG-formulation.

Parallelization wrt. patches (distributed memory setting).

Instead of LU-factorization, one can use Multigrid (inexact
IETI).

Extension to nonlinear problems

Apply IETI to linearized equation
Apply IETI to non-linear equation and use Newton on each
subdomain.
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