
High order FEM vs. IgA
by J.A.Evans, T.J.Hughes and A.Reali, 2014

Rainer Schneckenleitner

JKU Linz

rainer.schneckenleitner@gmx.at

Jan 20, 2017

Rainer Schneckenleitner (SS16) Isogeometric Analysis Jan 20, 2017 1 / 58



Overview

1 Introduction

2 The Elliptic eigenvalue problem

3 The Elliptic boundary value problem

4 The Parabolic initial-value problem

5 The Hyperbolic initial-value problem

6 Own results

Rainer Schneckenleitner (SS16) Isogeometric Analysis Jan 20, 2017 2 / 58



Introduction

Rainer Schneckenleitner (SS16) Isogeometric Analysis Jan 20, 2017 3 / 58



Introduction

Spectral approximation properties of FE and B-splines

Investigation of eigenvalue approximation in former papers
→ Good approximation quality of B-spline
→ FE approximation diverged with p
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Introduction

What are the e�ects of this results to BVP and IVP?

This question will be answered throughout this presentation
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Introduction

Need approximations from a global perspective

�Pythagorean eigenvalue error theorem� pertains to all modes
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Introduction

Only the Laplace operator is considered

Domain Ω ⊂ Rd is bounded and connected

∂Ω is Lipschitz

Hm(Ω) := {f ∈ L2|Dαf ∈ L2,∀|α| ≤ m}
V ⊆ (Hm(Ω))n closed

Functions in V satisfy appropriate boundary conditions

d ,m, n ∈ N
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Introduction

(·, ·) and a(·, ·) are symmetric, bilinear with

1 a(v ,w) ≤ ‖v‖
E
‖w‖

E

2 ‖w‖2
E

= a(w ,w)
3 (v ,w) ≤ ‖v‖‖w‖
4 ‖w‖2 = (w ,w)

where ‖·‖E is the energy norm which is equivalent to the (Hm(Ω))n

norm on V , ‖·‖ is the L2(Ω)n norm, v , w ∈ V
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The Elliptic eigenvalue problem
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The Elliptic eigenvalue problem

Continuous eigenvalue problem formulation

Find eigenvalues λ` ∈ R+ and eigenfunctions u` ∈ V for ` ∈ N, s.t., for all
w ∈ V

λ`(w , u`) = a(w , u`)

→ 0 < λ1 ≤ λ2 ≤ . . . and (uk , u`) = δk`

⇒ ‖u`‖2E = a(u`, u`) = λ` and a(uk , u`) = 0, ` 6= k
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The Elliptic eigenvalue problem

Discrete eigenvalue problem formulation

Find eigenvalues λh` ∈ R+ and eigenfunctions uh` ∈ V h, s.t., for all wh ∈ V h

λh` (wh, uh` ) = a(wh, uh` )

→ 0 < λh
1
≤ λh

2
≤ · · · ≤ λhN where dim(V h) = N and (uhk , u

h
` ) = δk`

⇒ ‖uh` ‖
2

E
= a(uh` , u

h
` ) = λh` and a(uhk , u

h
` ) = 0, ` 6= k
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The Elliptic eigenvalue problem

Comparison of {λh` , uh` } to {λ`, u`} for ` = 1, . . . ,N is important

Based on �Pythagorean eigenvalue error theorem� as introduced by G.
Strang and G. Fix

λh` − λ`
λ`

+ ‖uh` − u`‖2 =
‖uh` − u`‖2E

λ`
, ∀` = 1, . . . ,N

Figure: Graphical representation of the Pythagorean eigenvalue error theorem
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The Elliptic eigenvalue problem

Variational model problem

λ`(w , u`) = a(w , u`)

where

a(w , u`) =

∫
1

0

∂w

∂x

∂u`
∂x

dx

(w , u`) =

∫
1

0

wu`dx

and with homogeneous Dirichlet boundary conditions and Ω = (0, 1)
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The Elliptic eigenvalue problem

For ` ∈ N,
Eigenvalues are λ` = π2`2

Eigenfunctions are u` =
√
2sin(`πx)
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The Elliptic eigenvalue problem

Figure: Pythagorean eigenvalue error theorem budget and L2-eigenfunction error
for quadratic elements. (a) C 1-continuous B-splines; (b) C 0 continuous �nite
elements, N = 99
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The Elliptic eigenvalue problem

Figure: Pythagorean eigenvalue error theorem budget and L2-eigenfunction error
for cubic elements. (a) C 2-continuous B-splines; (b) C 0 continuous �nite
elements, N = 99
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The Elliptic eigenvalue problem

Figure: Pythagorean eigenvalue error theorem budget for quartic elements. (a)
C 3-continuous B-splines; (b) C 0 continuous �nite elements, N = 99
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The Elliptic eigenvalue problem

Results of this section

An accurate eigenvalue does not imply an accurate eigenfunction

The higher the eigenvalue the greater the eigenfunction error is false

B-splines yield better approximations

�outlier� modes at the end of the spectrum

�outlier� modes do not spoil the accuracy in the interior
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The Elliptic boundary value problem
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The Elliptic boundary value problem

Let f ∈ (L2(Ω))n

Continuous variational problem

Find u ∈ V such that for all w ∈ V

a(w , u) = (w , f )

Discrete variational problem

Find uh ∈ V h such that for all wh ∈ V h

a(wh, uh) = (wh, f )
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The Elliptic boundary value problem

Approximation of the continuous problem by the discrete one

Eigenfunction expansion

u =
∞∑
`=1

d`u` and uh =
N∑
`=1

dh
` u

h
`

where d` and dh
` denote the Fourier-coe�cients of the continuous and

the discrete solutions, respectively
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The Elliptic boundary value problem

λ`d` = f`
def .
= (u`, f )

λh`d
h
` = f h`

def .
= (uh` , f )

⇒ u(x) =
∑∞

`=1

f`
λ`
u`(x) and uh(x) =

∑N
`=1

f h`
λh`
uh` (x)
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The Elliptic boundary value problem

The error in the solution is

e(x) = uh(x)− u(x) = e(x) + e ′(x)

with

e(x) =
N∑
`=1

e`(x) =
N∑
`=1

(
f h`
λh`

uh` (x)− f`

λ`
u`(x)

)

e ′(x) =
N∑
`=1

e ′`(x) =
∞∑

`=N+1

(
− f`

λ`
u`(x)

)
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The Elliptic boundary value problem

For a speci�c ` ∈ 1, . . . ,N

‖e`‖ ≤ 2
‖f ‖
λ`

(
‖e`‖E
λ
1/2
`

(
1 +

1

2

‖e`‖E
λ
1/2
`

)(
1 +
‖e`‖2E
λ`

)
+

1

2

‖e`‖2E
λ`

)

‖e`‖E ≤ 2
‖f ‖‖e`‖E

λ`

(
1 +
‖e`‖E
λ
1/2
`

(
1 +
‖e`‖E
λ
1/2
`

+
1

2

‖e`‖2E
λ`

))

where e` = uh` − u`
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The Elliptic boundary value problem

Discrete solution can be large in error

Elliptic boundary-value problems are usually forgiving
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The Parabolic initial-value problem
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The Parabolic initial-value problem

Let f ∈ L2((0,T ); (L2(Ω))n) and U ∈ (L2(Ω))n) and T ∈ R+

Continuous variational problem

Find u ∈ VT such that for all w ∈ V and almost all t ∈ (0,T )

〈w , ∂u
∂t

(t)〉+ a(w , u(t)) = (w , f (t))

(w , u(0)) = (w ,U)

where VT := {v ∈ L2((0,T );V ) : ∂v∂t ∈ L2((0,T );V ∗)}
and 〈·, ·〉 is the duality pairing
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The Parabolic initial-value problem

Semi-discrete variational problem

Find uh ∈ V h
T such that for all wh ∈ V h and almost all t ∈ (0,T )

〈wh,
∂uh

∂t
(t)〉+ a(wh, uh(t)) = (wh, f (t))

(wh, uh(0)) = (wh,U)

where V h
T := {v ∈ L2((0,T );V h) : ∂v∂t ∈ L2((0,T );V h∗)}

and 〈·, ·〉 is the duality pairing

Rainer Schneckenleitner (SS16) Isogeometric Analysis Jan 20, 2017 28 / 58



The Parabolic initial-value problem

u(t) =
∞∑
`=1

d`(t)u` and uh(t) =
N∑
`=1

dh
` (t)uh`

yield

d ′`(t) + λ`d`(t) = f`(t)
def
= (u`, f (t))

d`(0) = U`
def
= (u`,U)

and

d ′h` (t) + λh`d
h
` (t) = f h` (t)

def
= (uh` , f (t))

dh
` (0) = Uh

`
def
= (uh` ,U)
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The Parabolic initial-value problem

Solving the ordinary di�erential equations yield

d`(t) = U`exp(−λ`t) +

∫ t

0

exp(−λ`(t − τ))f`(τ)dτ

and

dh
` (t) = Uh

` exp(−λh` t) +

∫ t

0

exp(−λh` (t − τ))f h` (τ)dτ
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The Parabolic initial-value problem

From the Fourier-coe�cients, we obtain

u(x , t) =
∞∑
`=1

(
U`exp(−λ`t) +

∫ t

0

exp(−λ`(t − τ))f`(τ)dτ

)
u`(x)

and

uh(x , t) =
N∑
`=1

(
Uh
` exp(−λh` t) +

∫ t

0

exp(−λh` (t − τ))f h` (τ)dτ

)
uh` (x)

The error is e(x , t) = uh(x , t)− u(x , t) = e(x , t) + e ′(x , t)
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The Parabolic initial-value problem

e(x , t) is caused by eigenvalue and eigenfunction errors

Errors in decay rates are only due to eigenvalue errors

Initial error is due to projection error

Important are times up to t = O(λ−1` )

Similar for f

‖e`‖ → 0 as − λ`t → −∞
‖e`‖E → 0 as − λ`t → −∞
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The Hyperbolic initial-value problem
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The Hyperbolic initial-value problem

Let f ∈ L2((0,T ); (L2(Ω))n), U0 ∈ (L2(Ω))n), U1 ∈ V ∗ and T ∈ R+

Continuous variational problem

Find u ∈ VT such that for all w ∈ V and almost all t ∈ (0,T )

〈w , ∂
2u

∂t2
(t)〉+ a(w , u(t)) = (w , f (t))

(w , u(0)) = (w ,U0)

〈w , ∂u
∂t

(0)〉 = 〈w ,U1〉

where VT := {v ∈ L2((0,T );V ) : ∂v∂t ∈ L2
(
(0,T ); (L2(Ω))n

)
and

∂2v
∂t2
∈ L2((0,T );V ∗)} and 〈·, ·〉 is the duality pairing
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The Hyperbolic initial-value problem

Semi-discrete variational problem

Find uh ∈ V h
T such that for all wh ∈ V h and almost all t ∈ (0,T )

〈wh,
∂2uh

∂t2
(t)〉+ a(wh, uh(t)) = (wh, f (t))

(wh, uh(0)) = (wh,U0)

〈wh,
∂uh

∂t
(0)〉 = 〈wh,U1〉

where V h
T := {v ∈ L2((0,T );V h) : ∂v∂t ∈ L2

(
(0,T );V h

)
and

∂2v
∂t2
∈ L2((0,T );V h∗)} and 〈·, ·〉 is the duality pairing
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The Hyperbolic initial-value problem

Proceeding as in the previous chapter yield

d ′′` (t) + λ`d`(t) = f`(t)
def
= (u`, f (t))

d`(0) = U0`
def
= (u`,U0)

d ′`(0) = U1`
def
= 〈u`,U1〉

and

d ′′h` (t) + λh`d
h
` (t) = f h` (t)

def
= (uh` , f (t))

dh
` (0) = Uh

0`
def
= (uh` ,U0)

d ′h` (0) = Uh
1`

def
= 〈uh` ,U1〉
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The Hyperbolic initial-value problem

The solutions of these ordinary di�erential equations are

d`(t) = U0`cos(ω`t) +
U1`

ω`
sin(ω`t) +

1

ω`

∫ t

0

sin(ω`(t − τ))f`(τ)dτ

and

dh
` (t) = Uh

0`cos(ωh
` t) +

Uh
1`

ωh
`

sin(ωh
` t) +

1

ωh
`

∫ t

0

sin(ωh
` (t − τ))f h` (τ)dτ

with ω` = (λ`)
1/2 and ωh

` = (λh` )1/2
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The Hyperbolic initial-value problem

Plug the Fourier-coe�cients into eigenfunction expansion

e(x , t) = uh(x , t)− u(x , t) = e(x , t) + e ′(x , t)

Modal error can be bounded by eigenfunctions and eigenvalue errors

Modal errors oscillate in time
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The Hyperbolic initial-value problem

Numerical investigation of hyperbolic approximations

For U0 = sin(51πx), U1 = 0 and f = 0 the exact solution to the hyperbolic
initial-value problem is

u(x , t) = sin(51πx)cos(51πt)

with solution coe�cients

U0` =

{
1/
√
2 if ` = 51

0 otherwise
,U1` = 0 and f` = 0

on Ω = (0, 1)
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The Hyperbolic initial-value problem

Approximation is given by

uh(x , t) =
N∑
`=1

{Uh
0`cos(ωh

` t) +
Uh
1`

ωh
`

sin(ωh
` t)

+
1

ωh
`

∫ t

0

sin(ωh
` (t − τ))f h` (τ)dτ}uh` (x)

C 3-continuous quartic B-splines and C 0-continuous quartic �nite
elements
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The Hyperbolic initial-value problem

Figure: Initial condition coe�cients Uh

0` for C 3-cont. quartic B-splines(left) and
C 0-cont. quartic FE-solutions(right), N = 99

Single wave and composition of two di�erent waves
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The Hyperbolic initial-value problem

Figure: Exact and numerical solutions for t = 0, 0.25/51, 0.5/51, 0.75/51, 1/51,
N = 99
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The Hyperbolic initial-value problem

Figure: Exact and numerical solutions for t = 10, 10.25/51, 10.5/51,
10.75/51, 11/51, N = 99
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Own results
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Own results

Own tests with Laplace-eigenvalue problem

Figure: Eigenvalue error for polynomial degree 2 and with C 1-continuity, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 3 and with C 1 and C 2-continuity,
respectively, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 3 and with C 1 and C 2-continuity,
respectively, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 4 and with C 1 and C 3-continuity,
respectively, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 4 and with C 1 and C 3-continuity,
respectively, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 5 and with C 1 and C 4-continuity,
respectively N = 50, 100
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Own results

Figure: Eigenvalue error for polynomial degree 5 and with C 1 and C 4-continuity,
respectively, N = 50, 100
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Own results

Figure: Eigenvalue error for polynomial degree 6 and with C 3 and C 5-continuity,
respectively N = 50, 100
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Own results

Figure: Eigenvalue error for polynomial degree 6 and with C 3 and C 5-continuity,
respectively, N = 50, 100
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Own results

Figure: Eigenvalue error for polynomial degree 5 and 6 with C 3 and
C 4-continuity, respectively, N = 50
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Own results

Figure: Eigenvalue error for polynomial degree 5 and 6 with C 3 and
C 4-continuity, respectively, N = 75
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Own results

Figure: Eigenvalue error for polynomial degree 5 and 6 with C 3 and
C 4-continuity, respectively, N = 100
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Summary

First considered the elliptic eigenvalue problem

Then looked at corresponding BVP, parabolic IVP and hyperbolic IVP

Solution errors can be expressed in therms of eigenvalue and
eigenfunction errors

B-spline eigenvalue spectrum does not have optical branches

B-spline eigenfunction error is indistinguishable in L2-norm

B-spline approximations are much more accurate

Own results for eigenvalue error for di�erent p and r
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