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Introduction

@ Spectral approximation properties of FE and B-splines

@ Investigation of eigenvalue approximation in former papers
— Good approximation quality of B-spline
— FE approximation diverged with p
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Introduction

What are the effects of this results to BVP and IVP?

@ This question will be answered throughout this presentation
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Introduction

@ Need approximations from a global perspective

@ "Pythagorean eigenvalue error theorem” pertains to all modes
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Introduction

@ Only the Laplace operator is considered

e Domain Q C R is bounded and connected

@ 02 is Lipschitz

e H™(Q) := {f € [?|D*f € L2 V|a| < m}

e VC (H™(Q))" closed

@ Functions in V satisfy appropriate boundary conditions
ed mneN
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Introduction

@ (-,-) and a(-,-) are symmetric, bilinear with

Q a(v,w) <|vlglwle
Q |wlg = a(w,w)

Q (v,w) <|lv[|w]

Q [wl” = (w,w)

where ||-|| ¢ is the energy norm which is equivalent to the (H™(£2))"
norm on V, ||-|| is the L2(Q)" norm, v, w € V
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The Elliptic eigenvalue problem
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The Elliptic eigenvalue problem

Continuous eigenvalue problem formulation

Find eigenvalues )\, € RT and eigenfunctions u; € V for £ € N, s.t., for all
weV

Ae(w, up) = a(w, uy)

—0< A <X<...and (uk,Ug):(skg

= |Jugl|% = a(ug, ug) = ¢ and a(uy, ug) = 0,€ # k
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The Elliptic eigenvalue problem

Discrete eigenvalue problem formulation

Find eigenvalues )\2’ € RT and eigenfunctions ué’ e Vh st forall wh e vh

M (w", uf) = a(w", up)

— 0 <M <A <. < A\B where dim(V) = N and (ul, ul') = 64

2
= ||ul|lz = a(ul, uf) = M and a(uf, ul) = 0,0 # k
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The Elliptic eigenvalue problem

o Comparison of {\, ul'} to {\s,us} for £=1,..., N is important

@ Based on "Pythagorean eigenvalue error theorem” as introduced by G.
Strang and G. Fix

M-
A

h 2
u, —u
+||u£'ug||2:HZ)\ KL‘E, Ve=1,....N
4

lluf = ]

Figure: Graphical representation of the Pythagorean eigenvalue error theorem
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The Elliptic eigenvalue problem

Variational model problem

Ae(w, up) = a(w, uy)
where

o O,
0 Ox Ox x

1
(w, up) :/ wupdx
0

a(w, u) =

and with homogeneous Dirichlet boundary conditions and Q2 = (0,1)
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The Elliptic eigenvalue problem

For ¢ € N,

o Eigenvalues are \; = m2¢?

o Eigenfunctions are uy = v/2sin({rx)
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The Elliptic eigenvalue problem

\function error function error

function error unction error

e, 1 !
= HrE
0.8] 0.8]
0.6] 0.6) B
o)
04 04 03
o
02| 0.2} o3
o
02 04 06 08 1 02 04 06 08
YN YN ) 5 6 3
(a) (b) b

Figure: Pythagorean eigenvalue error theorem budget and L?-eigenfunction error
for quadratic elements. (a) C!-continuous B-splines; (b) C° continuous finite
elements, N = 99
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The Elliptic eigenvalue problem

— L*(0.1)-norm eigenfunction error — L*(0.1)-norm eigenfunction error
envalue
—norm eigenfunction error — Energy-norm eigenfunction error
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Figure: Pythagorean eigenvalue error theorem budget and L?-eigenfunction error

for cubic elements. (a) C2-continuous B-splines; (b) C° continuous finite

elements, N = 99
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The Elliptic eigenvalue problem

cigenfunction error

enfunction error

nfunction error

function error

h h 2
! P = |
h 2 1 E
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Figure: Pythagorean eigenvalue error theorem budget for quartic elements. (a)

C3-continuous B-splines; (b) C° continuous finite elements, N = 99
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The Elliptic eigenvalue problem

Results of this section

@ An accurate eigenvalue does not imply an accurate eigenfunction

The higher the eigenvalue the greater the eigenfunction error is false
B-splines yield better approximations

"outlier’” modes at the end of the spectrum

"outlier” modes do not spoil the accuracy in the interior
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The Elliptic boundary value problem
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The Elliptic boundary value problem

o Let f € (L2(Q))"

Continuous variational problem

Find u € V such that for all w € V

a(w,u) = (w,f)

v

Discrete variational problem

Find u" € V" such that for all w" € Vv

a(w", uh) = (w", )
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The Elliptic boundary value problem

@ Approximation of the continuous problem by the discrete one

e Eigenfunction expansion

) N

— h _ h h

u= E deup and u” = E dj uy
=1 (=1

where d, and dé’ denote the Fourier-coefficients of the continuous and
the discrete solutions, respectively
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The Elliptic boundary value problem

o Ady = i  (uy, )
o Mdh = £ L (b f)

ulx) =322 12, ”1!( ) and u”(x) = Ze 1>\h”é(X)
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The Elliptic boundary value problem

@ The error in the solution is

with
N N
e(x) = €i(x) = fihhx—ﬁux
00 =) = 3 (o0 — 5 uo)
N e
"(x) = e(x) = fiux
(9 =3 elt) EJWH)
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The Elliptic boundary value problem

@ Foraspecifictel,...,N

_ If1] ( lleell e 1 [lellg ledz | 1ledz

<2— 1+ — 1 —

&l < ¢ )\}/z + 2 )\;/2 + Ao + 2 N\
_ I£]l]lecll £ lleell ¢ ledle | 1lledz
|ye[||E§2 1+ 1 1+ + =

/2 1/2
Ar >‘€ /\[ 2 N

where ¢ = ué’ — uy
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The Elliptic boundary value problem

@ Discrete solution can be large in error

e Elliptic boundary-value problems are usually forgiving
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The Parabolic initial-value problem
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The Parabolic initial-value problem

o Let £ € L2((0, T); (L?(R))") and U € (L?(2))") and T € R*

Continuous variational problem
Find u € V7 such that for all w € V and almost all t € (0, T)

(w, () + a(w, u(t)) = (w, (£)
(w, u(0)) = (w, U)

where V7 := {v € L2((0, T); V) : §% € L2((0, T); V*)}
and (-, -) is the duality pairing
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The Parabolic initial-value problem

Semi-discrete variational problem

Find u” € V# such that for all w” € V" and almost all t € (0, T)

h 8” O (O + alw, h(2) = (wh, £(2)

(w", u"(0)) = (w", V)

(w

where VA = {v € L2((0, T); V") : % € L2((0, T); VM)}
and (-, ) is the duality pairing
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The Parabolic initial-value problem

N
ng(t ug and u(¢) :Zd
(=1 (=1

yield
di(t) + Mede(t) = (1) E (ug, £(1)
dy(0) = Up & (uy, U)
and
d () + ApdP(t) = £(6) & (ul, £(2))
df(0) = Ul = (uh, V)
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The Parabolic initial-value problem

@ Solving the ordinary differential equations yield

dg(t) = UgeXp(—)\gt) + /Ot eXp(—)\g(t — T))fé(T)dT
and

b)) = Ulew(-\10) + [ ep(-rl(e = )P (r)or
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The Parabolic initial-value problem

@ From the Fourier-coefficients, we obtain

o0

uv¢)=§j<wam—wn+[;am—Ma—T»Mﬂdﬁuaw

(=1

and

N t
=3 (U0 [ e te = D) o)

/=1

o The error is e(x, t) = u(x, t) — u(x, t) = e(x, t) + €'(x, t)

Rainer Schneckenleitner (SS16) Isogeometric Analysis Jan 20, 2017 31 /58



The Parabolic initial-value problem

é(x, t) is caused by eigenvalue and eigenfunction errors
Errors in decay rates are only due to eigenvalue errors
Initial error is due to projection error

- -1
Important are times up to t = O()\, ")
Similar for f

llee|| = 0 as — A\t = —o0

lleellg = 0 as — A\t — —o0
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The Hyperbolic initial-value problem
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The Hyperbolic initial-value problem

o Let f € L2((0, T); (L2(Q))"), Uy € (L2(Q))"), Uy € V* and T € R*

Continuous variational problem

Find u € V1 such that for all w € V and almost all t € (0, T)

0%u
(w, 52 (t)) + a(w, u(t)) = (w, f(t))
(w, u(0)) = (w, Uo)

(w, 22(0)) = {w, th)

where V1 := {v € L2((0, T); V) : % € L2((0, T); (L3(2))") and
% € L2((0, T); V*)} and (-, -) is the duality pairing

Rainer Schneckenleitner (SS16) Isogeometric Analysis Jan 20, 2017 34 / 58



The Hyperbolic initial-value problem

Semi-discrete variational problem

Find u” € V2 such that for all w" € V" and almost all t € (0, T)

82 h
(wh, = (0) + a(w", u (1)) = (w", £(2))

where VE = {vel?(0,T); V") : % e 2((0, T); V) and
at2 € L2((0, T); VP*)} and (-,-) is the duality pairing
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The Hyperbolic initial-value problem

@ Proceeding as in the previous chapter yield
dy () + Medy(t) = fi(t) = (g, £(1))
dy(0) = Une w (ug, Ug)
dy(0) = Uyy =4 (ue, Ur)
and
def
d/"(t) + APdf (1) = £/(t) = (uf, f(1))
dp(0) = Uy = (uf Uy)
di"(0) = Ufy & (uf, Un)
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The Hyperbolic initial-value problem

@ The solutions of these ordinary differential equations are

t
de(t) = Upecos(wyt) + %sin(wt) + 1 / sin(we(t — 7)) fo(T)dT
(4 0

we
and
Uh 1 [t
df(t) = Ubycos(wft) + Aesin(whe) + - / sin(wh(t — 7))£A(r)dr
Wy Wy Jo

with wy = ()\@)1/2 and W? = (>‘?)1/2
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The Hyperbolic initial-value problem

Plug the Fourier-coefficients into eigenfunction expansion
e(x,t) = ul(x,t) — u(x, t) = &(x,t) + €'(x, t)

Modal error can be bounded by eigenfunctions and eigenvalue errors

Modal errors oscillate in time
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The Hyperbolic initial-value problem

Numerical investigation of hyperbolic approximations

For Up = sin(517mx), U1 = 0 and f = 0 the exact solution to the hyperbolic
initial-value problem is

u(x, t) = sin(51mx)cos(51nt)

with solution coefficients

{1/\/5 if (=51
Uoe =

. ,Uy=0and ,=0
0 otherwise

on Q=(0,1)
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The Hyperbolic initial-value problem

@ Approximation is given by

ul'(x, t) Z{Uogcos wht) —l— sm(we t)

+ w_é'/o sin(wé’(f — T))feh(T)dT}”g(X)

e C3-continuous quartic B-splines and C%-continuous quartic finite
elements
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The Hyperbolic initial-value problem

1 1
0.5 0.5
. .
IS
0| 0|
0% 20 40 . 60 80 100 3 20 40 . 60 80 100
C? quartic B-spline initial condition C? quartic finite element initial condition

Figure: Initial condition coefficients Ug, for C3-cont. quartic B-splines(left) and
CO-cont. quartic FE-solutions(right), N = 99

@ Single wave and composition of two different waves
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Hyperbolic initial-value problem
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Figure: Exact and numerical solutions for t
N =99
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Hyperbolic initial-value problem
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Figure: Exact and numerical
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solutions for t = 10,10.25/51,10.5/51,
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Own results
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Own results

@ Own tests with Laplace-eigenvalue problem

Figure: Eigenvalue error for polynomial degree 2 and with C-continuity, N = 100

v
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Own results

Figure: Eigenvalue error for polynomial degree 3 and with C* and C?-continuity,
respectively, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 3 and with C* and C?-continuity,
respectively, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 4 and with C* and C3-continuity,

respectively, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 4 and with C* and C3-continuity,

respectively, N = 100
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Own results

Figure: Eigenvalue error for polynomial degree 5 and with C* and C*-continuity,
respectively N = 50, 100
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Own results

Figure: Eigenvalue error for polynomial degree 5 and with C* and C*-continuity,
respectively, N = 50, 100
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Own results

Figure: Eigenvalue error for polynomial degree 6 and with C3 and C®-continuity,

respectively N = 50, 100
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Own results

Figure: Eigenvalue error for polynomial degree 6 and with C3 and C®-continuity,
respectively, N = 50, 100
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Own results

Figure: Eigenvalue error for polynomial degree 5 and 6 with C3 and
C*-continuity, respectively, N = 50
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Own results

Figure: Eigenvalue error for polynomial degree 5 and 6 with C3 and
C*-continuity, respectively, N = 75
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Own results

Figure: Eigenvalue error for polynomial degree 5 and 6 with C3 and
C*-continuity, respectively, N = 100
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@ First considered the elliptic eigenvalue problem
@ Then looked at corresponding BVP, parabolic IVP and hyperbolic IVP

Solution errors can be expressed in therms of eigenvalue and
eigenfunction errors

B-spline eigenvalue spectrum does not have optical branches
B-spline eigenfunction error is indistinguishable in L2-norm

B-spline approximations are much more accurate

Own results for eigenvalue error for different p and r
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