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INTRODUCTION



Local spline refinement

Problem: Classical tensor-product B-splines do not allow local refinement.

Task: Knot refinement in Resulting mesh for How can we achieve a
the marked areas. B-splines. mesh like this?
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Existing constructions

T-splines (Sederberg et al. 2003):
tensor-product B-splines defined on a mesh with T-junctions

PHT-splines (Falai Chen, Jiansong Deng 2008):
algebraically complete basis for splines on a mesh with T-junctions

HB-splines, THB-splines (Kraft 1997, Giannelli et al. 2012):
obtained by selecting B-splines from different levels in a hierarchy

LR-splines (Dokken et al. 2010):
constructed by repeatedly splitting tensor-product B-splines

This talk focuses on HB-splines.
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A HIERARCHICAL B-SPLINE BASIS



Hierarchical B-splines

Consider a finite sequence of

W nested spline spaces, V° C V! C ... C V¥, with V¢ = spanB*,
B corresponding nested domains, @ =Q° 2> Q! D ... D QV.

The index ¢ is called level.

[T 1]

A hierarchical mesh and the domains Q° (green), Q! (blue) and Q2 (red).
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Kraft’s selection mechanism

suppf = {x : f(x) # 0 and x € Q°}
Recursive construction of HB-splines

1) Initialization: H® = {3 € B° : supp8 # 0}
2) Recursion: H*™' = H{MP U HEH  for € =0,..., N — 1, with

Hi™ = {6 € H :suppp "'},

and
Hi"' = {p € B™" :suppp C Q1"}

3) H=H"
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Hierarchical B-splines

1) Initialization: H° = BO
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Hierarchical B-splines

Qlcqo
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Hierarchical B-splines

2a) Recursion: H, = {8 € HY = B? : suppB € Q'}
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Hierarchical B-splines

Selected B-splines of level 0

B-splines B! on Q°
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Hierarchical B-splines

Selected B-splines of level 0

2b) Recursion: Hy = {8 € B! : supps C 1}
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Hierarchical B-splines

Selected B-splines of level 0

Selected B-splines of level 1

13

3) Resulting hierarchical B-splines H = H}{ U H}
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TRUNCATION



Restoring partition of unity

HB-splines: no partition of unity — solution: truncation mechanism

(cf. Giannelli et al. 2012)

Refinement relation: For f € V* we have f =3,z 5™ ()8

Truncation:

0+1p 041
trunc " f = Z cg (f)B-
BeEBt! supppZ i+l
Truncated hierarchical B-spline basis:

1) Initialization: 7° = H°
2) Recursion: T = T4 U TS for £ =0,..., N — 1, with

T = {trunc™'7 : 7 € T and suppr € Q“*'}, and TH"!

y1T=1"

JXU
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Comparing THB- and HB-splines

THB-splines
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Comparing THB- and HB-splines

000000
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THB-splines

HB-splines
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PROPERTIES



Properties of (T)HB-splines

HB-splines:

B non-negativity
Bl linear independence
B under certain assumptions:
spanH = H = {h: Q° = R 1 hlgo\ger1 € SY(M*)}
Additionally for THB-splines:

B spanH = spanT

B preservation of coefficients

W partition of unity

B strongly stable under supremum norm
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Quasi-interpolant for (T)HB-splines
References: Speleers et al. 2015, Speleers 2016
A one-level quasi-interpolant 11° : V(Q°) — V*
ng
If => " M(f)B, €£=0,...,N.
=1

X is supported on AL if £, e =0 = A{(f) = 0. Foracell Q° in Q°\ ¢+
define
Age = conv ( U AfU Q[> .
(i,Z):supprHQk#w

Hierarchical quasi-interpolant 11 : V(Q°) — H

where 7f = trunc?¥ (truncN*1 e
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Quasi-interpolant for (T)HB-splines

Representation in terms of HB-splines (using telescoping argument):

Theorem: II¢ and II as defined before. If II¢s = s for all s € V¢ then

N
nf=>% v,
£=0
with
D DR A e SR € e e A L8
BYeH BfeH

Error estimate:

1D (f = TUf) |2 iqey < CRG ™ Flis(a0)-
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SUMMARY



Summary

B Selection mechanism for hierarchical B-splines

B Restoring partition of unity with truncation mechanism

B (T)HB-splines have nice mathematical properties

B (T)HB-splines are a basis for the hierarchical spline space

B Quasi-interpolant and local approximation estimate
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INTRODUCTION



Motivation

I
I
I
I

refinement in x-direction refinement in y-direction

Independent refinement strategies ~» cannot be achieved with HB-splines
~ hierarchical refinement leads to redundant dof
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Motivation

State of the art: Hierarchical B-splines that use sequences of nested spline
spaces, VO C VI C...Cc VPV,

Limitation: Independent refinement strategies are not possible.

Possible application of independent refinement strategies:
B Modeling: designing objects with creases or similar features.

B IGA: using different refinement techniques (e.g., h- and p-refinement) in
different parts of the domain.

Goal: Generalization of the selection mechanism for hierarchical B-splines to
obtain sequences of partially nested hierarchical spline spaces, that use
spline spaces suchas VY C vt g V2 C V3. ..
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Preliminaries

We consider:
B A finite sequence of bivariate tensor-product spline spaces:

VZ:spanBZ7 {=1,...,N.

O Note: V¢ not necessarily subspace of V¢+1
O For simplicity: d = 2, uniform degrees, maximum smoothness

B An associated sequence of open sets

' C(0,1)%, ¢=1,...,N.

O The sets are called patches.

O We assume that they are mutually disjoint, i.e., 7 N7k £ 0 = (= k.

JXU
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Preliminaries

R RE

Patches and associated spline spaces.
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The patchwork spline space

Collecting all patches results in the domain Q, i.e.,

N

Q= int( U ﬁ) C (0,1)°.

=1

Now we define the patchwork spline space :

P={feC(Q):fleecV]V=1,...

with maximal order of smoothness

s=p—1.

JXU
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The patchwork spline space

Definition: P ={| fec*(Q)|:| fl.e € V'], |VE=1,...,N}

|f€V1|,,||
— -

2 3
@ e reri]

|f€V2|,r2|

(1) I C*-smooth functions I
2) I patch restriction belongs to assoc. spline space |

JXU
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BASIS FUNCTIONS



Constraining boundaries

The constraining boundary of a patch

-1
. -
"= Uﬂ'km’ﬂ'l,
k=1

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of 7!

J z U 23/45



Constraining boundaries
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Constraining boundaries

The constraining boundary of a patch

-1
. -
"= Uﬂ'km’ﬂ'l,
k=1

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of 7*
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Constraining boundaries

The constraining boundary of a patch

-1
. -
"= Uﬂ'km’ﬂ'l,
k=1

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of 7°
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Selection mechanism

We generalize Kraft's selection mechanism:

K'={p'eB :8%,+#0 and B =0}

Definition: The patchwork B-splines (PB-splines) are obtained by forming
the union over all levels,

KZ

C=

K =
4

Il
—
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Selection mechanism

K'={'eB":8,.#0 and p|r. =0}

supports of iy
selected > o g
B-splines ™ supports of
v e non-selected
B-splines

N L /|

The selection mechanism for PB-splines (k < £).
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Shadow

We define the shadow of a patch = as the union of all supports of the
selected basis functions,

#' = suppK* = U suppf’.
BéeKl
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Example: Shadows and meshes

The knot lines of the spline space V* define a mesh M* of level ¢.

A patchwork mesh. Shadow and selected basis functions for two levels.
(points: selected B-splines, shadow: hatched area)
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CHARACTERIZING THE SPLINE SPACE



Shadow Compatibility Assumption (SCA)

Assumption If the shadow #¢ of the patch of level ¢ intersects another patch
7* of a different level k, then the first level precedes the second one,

#na* 40 = ¢<k and VCV"

SCA not satisfied. SCA satisfied.

J¥U 31/45



Shadow Compatibility Assumption (SCA)

Assumption If the shadow #¢ of the patch of level ¢ intersects another patch
7* of a different level k, then the first level precedes the second one,

#na* 40 = ¢<k and VCV"

SCA not satisfied. SCA satisfied.

Theorem: SCA implies linear independence of PB-splines.
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Constraining Boundary Alignment (CBA)

Assumption For each level ¢, the constraining boundary I'¢ of the patch =* is
aligned with the knot lines of the spline space V*.

CBA not satisfied. CBA satisfied.
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Space characterization

Theorem The PB-splines span the patchwork spline space P if both SCA
and CBA are satisfied.

Thus, we have two different characterizations of the patchwork spline
space:
P={feC(Q): floe €V ]wVt=1,.. N}

(“implicit” definition: space defined by properties of functions)
N
P = span U{ﬂ[ eB :p8,c#0 and Bl =0}
=1

(“constructive” definition: space defined as linear hull of basis functions)
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Restoring partition of unity

Truncation mechanism
Recall: Hierarchical B-splines — Truncated Hierarchical B-splines

The recipe:
Truncated function: "original function minus contribution of selected basis
functions from higher levels"

Is there a generalization to truncated PB-splines?
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Restoring partition of unity

Truncation mechanism
Recall: Hierarchical B-splines — Truncated Hierarchical B-splines

The recipe:
Truncated function: "original function minus contribution of selected basis
functions from higher levels"

Is there a generalization to truncated PB-splines? Yes!

Truncated PB-splines
B are linearly independent,
B form a partition of unity,
B are non-negative and

B span the patchwork spline space.
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PB-SPLINES IN SURFACE APPROXIMATION



Surface approximation problem

B Given: data set (f;,x:),: =0,...,m,
O coordinates of data points f; € R3,
0O associated parameters x; € [0, 1]2.

B Choose a setting that generates the PB-splines K:

O patches 7!, ..., 7N and
O spline spaces V1,..., VN,

B Compute the least squares approximation f = ZHEK cgf, which
minimizes

> = Fxa)l
=0

How to choose the patches and corresponding spline spaces?

B Manual construction
B Automatic refinement process

JXU
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Example |

We want to approximate the following function:

Function for approximation.
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Manual mesh generation

TP

(T)HB

(T)PB

The meshes used for defining the approximating spline functions.

no. ofdof % ofdof max. error  average error
tensor-product B-splines 2916 100% 3.08e-3 1.5e-4
HB-splines 2468 85 % 3.08e-3 1.02e-4
PB-splines 1572 54 % 1.03e-3 6.94e-5

Numerical results of the least-squares approximation.

JxU
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Automatic mesh refinement

B |Initial setting defining Ko
O patches 7!, ..., 7o and
O spline spaces V..., V0.

B Compute least squares approximation for K

B Marking process:
O Identify those x; with || f; — f(x:)| > e,
O find the patches that contain x;,
O mark them for refinement.

B Refinement process:
O n-adic subdivision of the marked patches,
O (poss. new marking process),
O knot refinement in the corresponding spline spaces,
O ensure that all assumptions are satisfied.
O Challenge: Determine the direction of the refinement

JXU
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Determining the refinement direction

Determining the refinement direction with a local fitting-based method:

W Perform local fitting on patches =*.

B Try different refinement strategies, e.g., uniform knot refinement in z- vs.
in y-direction.

B The strategy that performs better, i.e., produces less error, determines
the refinement direction.

Advantages:

B No assumptions on data,

B simple.
Disadvantages:

B Could become slow if too many strategies are tested.

J z U 39/45



Automatic mesh refinement - results
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PB-spline mesh after 4 steps of adaptive refinement and resulting surface.

max. error average error

% of dof

no. of dof

1.42e-4
1.31e-4

3.08e-3

100 %
59 %

1860
1106

1.12e-3

HB-splines

PB-splines
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Automatic mesh refinement - results

HB-spline mesh after 3 steps of adaptive refinement and resulting surface.
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no. ofdof % ofdof max. error  average error
HB-splines 1860 100 % 3.08e-3 1.42e-4
PB-splines 1106 59 % 1.12e-3 1.31e-4
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Example Il

IIEE a2

PB-spline mesh after 4 steps of adaptive refinement and resulting surface.

no. ofdof % ofdof max. error  average error
HB-splines 2688 100 % 1.01e-3 1.56e-4
PB-splines 1169 43 % 1.06e-3 1.47e-4
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Example Il

HB-spline mesh after 3 steps of adaptive refinement and resulting surface.

no. ofdof % ofdof max. error  average error
HB-splines 2688 100 % 1.01e-3 1.56e-4
PB-splines 1169 43 % 1.06e-3 1.47e-4
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Summary

B Generalization of the Kraft selection mechanism from hierarchical
B-splines to PB-splines

Characterization of the spline space spanned by the PB-splines
Introduction of a truncation mechanism — partition of unity
Application of PB-splines to surface approximation

Automatic refinement algorithm for PB-spline meshes

PB-splines enable the use of independent refinement strategies

PB-splines need fewer degrees of freedom than HB-splines

J ! U 44/45



Current work and outlook

B Generalizing the completeness result from HB-splines to PB-splines

B Generalizing the approximation error estimates from HB-splines to
PB-splines

B Implementation of the truncation mechanism

B Development of further automatic mesh refinement strategies

B Application in industry

O Fitting of structural components like airfoils — periodic fitting
O Lofting

J z U 45/45
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