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Motivation

Given a parametrisation of the physical domain Ω by a regular
tensor product B-Spline (or NURBS) function

F : Ω̂ −→ Ω

we consider the weak formulation an elliptic equation as a model
problem:
Find u ∈ H1

0 (Ω), such that

a(u, v) = (f , v)0,Ω ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫
Ω
∇xu(x) · (A(x)∇xv(x)) + cu(x)v(x)dx .



Motivation

We consider the 2D-case with Ω̂ = [0, 1]2, A ≡ I and c ≡ 1.
As the discrete space of functions on the parametric domain we
choose a tensor spline space

Sp(Ξ) = Sp1(Ξ1)⊗ Sp2(Ξ2)

with the B-spline basis

B̂i ,p(ξ) = B̂i1,p1(ξ1)B̂i2,p2(ξ2)

and set the discrete space of functions on the physical domain to
be (up to the boundary conditions)

Vh := span{B̂i ◦ F−1} = span{Bi}.



Motivation
Computing the L2-product of the basis elements we get the entries
of the mass matrix:

Mij =

∫
Ω

Bi (x)Bj(x)dx

=

∫
Ω̂
| det∇ξF (ξ)|B̂i (ξ)B̂j(ξ)dξ

=

∫ 1

0

∫ 1

0
ω(ξ)B̂i1(ξ1)B̂j1(ξ1)B̂i2(ξ2)B̂j2(ξ2)dξ1dξ2,

where ω(ξ) = det∇ξF (ξ). Analogously we get for the stiffness
matrix

Sij =

∫
Ω
∇xBi · ∇xBjdx

=
2∑

p,q=1

∫ 1

0

∫ 1

0
Kpq(ξ)

∂

∂ξp
B̂i

∂

∂ξq
B̂jdξ,

where K (ξ) = (det∇ξF )(∇ξF )−1(∇ξF )−T .



Motivation

The complexity of computing the bivariate integrals in Sij and Mij

by Gauss quadrature is in O(n2p6) (if n = n1 = n2 and p1 = p2).
We want to decompose the functions ω(ξ) and Kpq(ξ) into
products of univariate functions so we only need to compute
univariate integrals where the complexity is O(np3).



Singular value decomposition of a function

Any bivariate continuous function f ∈ C ([0, 1]× [0, 1]) has a
singular value decomposition

f (ξ1, ξ2) =
∞∑
r=1

σrur (ξ1)vr (ξ2),

where σ1 ≥ σ2 ≥ . . . ≥ 0 and {ur}r≥1 and {vr}r≥1 are
L2((0, 1))-orthonormal systems of continuous functions. The sum
converges in L2((0, 1)× (0, 1)).
The rank R-approximation

fR(ξ1, ξ2) =
R∑

r=1

σrur (ξ1)vr (ξ2)

is the best approximation of f by a rank R function in the L2-norm.



Singular value decomposition of a function

Lemma
If f ∈ Hs((0, 1)× (0, 1)), then

(i) the singular values decay like

σr . r−s .

(ii) the approximation error fulfils

‖f − fR‖L2 =

√√√√ ∞∑
r=R+1

σ2
r . R

1
2
−s

Proof.
Griebel, 2011. [4]



Discrete singular value decomposition

A low rank approximation of the functions ω and Kpq is computed
as follows:

1. Project the function ω or Kpq into a suitable spline space.

2. Decompose the coefficient tensor using matrix SVD.

3. Choose the rank R such that the overall approximation error
is lower than a given constant ε, for example the discretisation
error.



Projection into a spline space

The function ω = det∇F is a tensor product spline function of
higher polynomial degrees qd = 2pd − 1 and lower smoothness
than F . We can thus represent it exactly with respect to a
B-Spline basis {B̄i}i≤(m1,m2).

ω(ξ) = Πω(ξ) =

m1∑
i1=1

m2∑
i2=1

ωi1i2B̄i1(ξ1)B̄i2(ξ2).

For the functions Kpq we choose a sufficiently refined spline space
span{B̄i} such that

||Kpq − ΠKpq||L2(Ω̂) = ||Kpq −
m1∑
i1=1

m2∑
i2=1

(Kpq)i1i2B̄i1B̄i2 ||L2(Ω̂) ≤ εΠ.



Decomposition of the coefficient tensor

We compute the SVD of the m1 ×m2 matrix W = (ωi1i2), i.e.

W = UΣV T =

min(m1,m2)∑
r=1

σrurvT
r ,

where U is an orthogonal m1 ×m1-matrix with columns ur , V is
an orthogonal m2 ×m2-matrix with columns vr and
Σ = diag(σ1, . . . , σmin(m1,m2)). We assume σ1 ≥ . . . ≥ σmin(m1,m2).



Decomposition of the coefficient tensor

The rank-R approximation

WR =
R∑

r=1

σrurvT
r

is the best approximation of W by a matrix of rank R in the
Frobenius norm and fulfils

||W −WR ||F =

√√√√min(m1,m2)∑
r=R+1

σ2
r .



Decomposition of ω

We multiply the decomposed coefficient tensor with the basis of
the projection space to get the decomposition

Πω(ξ) =

min(m1,m2)∑
r=1

σr

 m1∑
i1=1

(ur )i1B̄i1(ξ1)

 m2∑
i2=1

(vr )i2B̄i2(ξ2)


=

min(m1,m2)∑
r=1

Ur (ξ1)Vr (ξ2)



Error estimate for the low rank approximation

Lemma
The rank R-approximation

ΛRω(ξ) =
R∑

r=1

Ur (ξ1)Vr (ξ2)

fulfils

||Πω − ΛRω||L∞(Ω̂) ≤ ||W −WR ||F =

√√√√min(m1,m2)∑
r=R+1

σ2
r .

Thus for a given accuracy εΛ we can choose the smallest rank R
such that the approximation error is below εΛ.



Assembly of the matrices

The entries of approximated mass matrix are

Mij ≈ M̄ij =
R∑

r=1

∫ 1

0
Ur (ξ1)B̂i1(ξ1)B̂j1(ξ1)dξ1·

∫ 1

0
Vr (ξ2)B̂i2(ξ2)B̂j2(ξ2)dξ2

and thus M̄ can be written in the Kronecker format

M̄ =
R∑

r=1

Xr ⊗ Yr

where each Xr is a n1 × n1 and Yr a n2 × n2-matrix containing the
univariate integrals.
For the stiffness matrix we can proceed in the same way.



Computational complexity

We assume n1 = n2 = n, m1 = m2 = m, p1 = p2 = p and
q1 = q2 = q.

I The complexity is bounded from below by the number of
non-zeros in the matrix, which is O(n2p2).

I The complexity of computing the matrix SVD up to rank R is
O(Rm2).

I For assembling the matrices Xr and Yr using univariate
element-wise Gauss quadrature the complexity is O(Rnp3)

I The complexity for computing the Kronecker sum∑R
r=1 Xr ⊗ Yr is O(Rn2p2).

Since generally n� p, the overall complexity is dominated by the
last step and is thus O(Rn2p2).



Numerical examples

For the method to be efficient we need to be able to choose the
rank low.

Table: Rank values for accuracy εΛ = εΠ = 10−8

n 2× 3 2× 3 5× 5 8× 8
p (1, 2) (1, 2) (4, 4) (7, 7)

rank(ω) 1 1 7 8

rank(K )

(
1 0
0 1

) (
2 1
1 1

) (
17 17
17 17

) (
14 18
18 15

)



Numerical examples
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(a) Quarter annulus, p = 2
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Figure: Comparison of computation times for the stiffness matrix using
the decomposition method and an element-wise Gauss method.



Numerical examples
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Figure: Comparison of the p-Dependence of the computation times for
the stiffness matrix using the decomposition method and an element-wise
Gauss method. Computed on the quarter annulus with
400× 400 = 160000 DOF.



Generalisation to arbitrary dimensions

I The tensor decomposition method can be generalised to
arbitrary dimensions since any d−tensor T ∈W(n1,...,nd )

possesses a canonical representation

T =
R∑

r=1

v r
1 ⊗ v r

2 ⊗ . . .⊗ v r
d ,

where v r
k ∈ Rnk .

I However, the truncation operator

ΛRT = argmin
rank(U)≤R

||T − U||2

leads to a non-linear optimisation problem.


