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Motivation: Stokes Equation

We study the Stokes Equation in one of its simplest forms:

—Au—Vp=Hf,
V.-u=0,

where u is the velocity field, p is the (negative) pressure and f is
the volume forces.
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We study the Stokes Equation in one of its simplest forms:

—Au—Vp=Hf,
V.-u=0,

where u is the velocity field, p is the (negative) pressure and f is
the volume forces.

The Stokes problem is a mathematical model problem for saddle
point problem and physical model equation for fluid dynamic.

We will consider the mathematical aspect of the problem.



The Stokes problem

Strong formulation:
Given f(x) and g(x), find u(x) and p(x) such that the following
holds,

—Au—-Vp=f, VxeQ,
V-u=0, VxeQ,
u=g, Vxel.

Where 2 is the domain and I = 9% is the boundary.



The Stokes problem

Strong formulation:
Given f(x) and g(x), find u(x) and p(x) such that the following
holds,
—Au—-Vp=f, VxeQ,
V-u=0, VxeqQ,
u=g, Vxel.
Where Q is the domain and ' = 992 is the boundary.

Weak formulation:
Find (u, p) € Hg (Q) x L3 (), such that

(VU, VV)LZ(Q) + (p, V. V)Lz(Q) = (f, V)Lz(Q) s
(V-u,q)2(0) =0

V (v,q) € H} x L3(9).



The Stokes problem

More abstractly written we have:

Find (u,p) € V x Q, such that

a(u,v)+b(p,v) = (f,v)2(q), VveEV
b(q,u)=0 VgeQ,

where,

a(u,v) = (Vu,Vv) 2y and b(q,v) = (q,V V) 2(q)-



The Stokes problem

More abstractly written we have:

Find (u,p) € V x Q, such that

a(u,v)+b(p,v) = (f,v)2(q), VveEV
b(q,u)=0 VgeQ,

where,
a(u,v) = (Vu,Vv) 2y and b(q,v) = (q,V V) 2(q)-

We can also write it as

(5 %)G)-G)



Brezzi's conditions:

Boundedness of a(-, -):
a(uv) < GlullvIvly Yuve V. (1)
Boundedness of b(-,-):
b(q,v) < Gldllelvllv V(g,v) e @x V. (2)
Coercivity of a(-,-):
a(u,u) > Glully VYueV. (3)
Coercivity of b(+,-) (inf-sup):

b
sup (g,v)
vev |IVllv

> Gllalle Ve @ (4)
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The weak problem has a unique solution (u, p) € Hg () x L2(Q).
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If we use conforming discretization; that is, V), C V and Q, C Q
then the three first conditions holds in the discrate case.
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Discrete conditions:

If we use conforming discretization; that is, V), C V and Q, C Q
then the three first conditions holds in the discrate case.

If the discretization spaces are V, =S x S x Sand Q, = S, for
some spline space S, then the discrate inf-sup condition does not

hold:

q 7v *Vp
sup MZCM%HQ;, Van € Qp.
VLE V) th”vh

We need a discretization that is satisfy the discrete inf-sup
condition!



IGA discretization

Let M}, be the parametric mech, @ an element in M,

Tensor product B—spline basis function:

ki,ka,k3 .__ pki ko ks
Bil,i27i3 T Bfl ® Bi2 ® Bi4 :

Tensor product B-spline space

ny,nz,n3

k1,ko,ks o ki,k2,k3 e

Sa3)05,03 (Mp) = Bil,iz,i3 L
i1,i2,i3=1



IGA discretization

Let M}, be the parametric mech, @ an element in M,

Tensor product B—spline basis function:

ki,ka,k3 .__ pki ko ks
Bil,i27i3 T Bfl ® Bi2 ® Bi4 :

Tensor product B-spline space

Skukaks (Af,) = {Bkhkz,ka}nl’nz’n?’

1,002,003 i1,i2,i3 i iz=1
Assume Q) can be exactly parametrized by a geometrical mapping:
F(X): Q—Q,

Kh={K:K€eF(Q),QeMp}, hg:=]|DF|=q)ho-



Discrete Spaces: TH and RT spaces

We define the Taylor-Hood spaces as

PTH ._ ckit+1l,ka+1,ks+1 ki+1,ka+1,k3+1 ki+1,ko+1,k3+1

Vh = Sai,(zz,(zzg e X Sai,uz,uzg i X S(y;.az.(yza 3 3

ATH ._ ckiko,k

Q"= Sallazian
This discretization is stable, proved by Dr. Bressan. Note that the splines in V" are
not of maximum continuity.
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This discretization is stable, proved by Dr. Bressan. Note that the splines in 17,7”" are
not of maximum continuity.
We define the generalized Raviart-Thomas spaces as in Buffa et al. [2011], Evans
and Hughes [2013a,b,c]
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We define the Taylor-Hood spaces as
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Qh i 5@1-,(122-,0?3'
This discretization is stable, proved by Dr. Bressan. Note that the splines in V" are
not of maximum continuity.
We define the generalized Raviart-Thomas spaces as in Buffa et al. [2011], Evans
and Hughes [2013a,b,c]
PRT . ghkitlka.ks k,ko+1,k3 k.k2,ks+1
Vh = $a1+1.a2.a3 X 501.02+1,a3 x Sal,az,aa+1’
ORT ._ cki ko k
Qh = Gkika ks

a1,02,03°

We constrain RT spaces as
175; = {VeﬁfT:V~ﬁ:00n Bﬁ},
OFT = {ae OFT . /ﬁdﬁ:o}.
: JQ

The RT spaces and it's constraind spaces form a bounded discrete cochain complex
with the divergence operator:

GRT div, 3RT GRT div. 3RT
Vi — Q' and Vg — Qpp



Properties of RT spaces

The discrete inf-sup condition holds for 9(5,7,— and @g};.
Blackboard! Braess [2007] O




Properties of RT spaces

The discrete inf-sup condition holds for 95,7,— and @g};.
Blackboard! Braess [2007] O

Ifvy, € V(th satisfies

(V-9 Gh)i2y =0 Ve OFh

then V 'Vh =0.

That is, the discretization gives velocity fields which are pointwise
divergence-free.



Violation of the inf-sup condition

What happens if we strongly impose the full Dirichlet boudary condotions? That is,
we set the constraind spaces to be

%?I = {v€9ﬁT:V:00n BSAZ},

o7 = {aeéfT:[adizo}.
Q
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The mapping V,
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)

sup =
GheDRT ||Vh|||.|1( )”qhHLz( a)

that is; the inf-sup condition does not holds!



Violation of the inf-sup condition

What happens if we strongly impose the full Dirichlet boudary condotions? That is,
we set the constraind spaces to be

%?I = {v€9ﬁT:V:00n BSAZ},
off = {ac o [ qax—o}.
9

. SRT div. ART . _ . ~ _ =
The mapping V(f;,r = Qg]; is not surjective. Hence there exists a qj, € Qg]; such

that g;, # 0 and o
(V -V, Qh)Lz(ﬁ)

)

sup  — — =
aneorT [Vhll (@) anl 2
that is; the inf-sup condition does not holds!

We cannot strongly impose the full Dirichlet boudary conditions
with this methodology.



Divergence preserving transformation

For the pressure we use the standard IGA inverse composition

9=F(@=aoF ", vgel3(Q).
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where J is the jacobian. This is sometimes called the contravariant Piola
transformation. It has the important property that preserves the divergence.
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Divergence preserving transformation

For the pressure we use the standard IGA inverse composition
a=F@=70F" vgel3(Q).
For the velocity field we use the divergence preserving transformation

v=F @) =

de.iJvOiEil’ Vv € Hyp (JR/, ﬁ) ,
where J is the jacobian. This is sometimes called the contravariant Piola

transformation. It has the important property that preserves the divergence.
We get the following commuting diagram:

<d|v Q) —dv g2 (Q)

fl &

Ho (div; Q) —— 12(Q)

Voh = {v € Ho (div; Q) : FV(v) ! e 170,;,} and Qg p = {q cl2(Q):F(q) e Qo,h}



Inverse composition transformation

Parametric domain Physical domain



Divergence preserving transformation

]_‘div

Parametric domain Physical domain



Divergence preserving transformation

The divergence preserving transformation is much more
complicated to use:
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Divergence preserving transformation

The divergence preserving transformation is much more
complicated to use:
Standard inverse composition:

Divergence preserving transformation:

R J . =
v:]-'d"’(v):detJvoF_1

1
detJ

VdetJ

Vv = det )2 Jv

d
~ 1
~ T o
JVv) +detJI§_1VJV



Matrix properties

An 0 0 Bf
0 An 0 Bf
0 0 A Bf
Bi B, B3 0

System matrix when using
inverse composition
transformation. The zero
blocks comes from
component preserving
transformation.



Matrix properties

An 0 0 Bf
0 An 0 Bf
0 0 A3 Bf
Bi B B3 0

System matrix when using
inverse composition
transformation. The zero
blocks comes from
component preserving
transformation.

A A Az Bf
Ay An Az BJ
As1 A Asz BJ
Bi B, Bs 0

System matrix when using
divergence preserving
transformation. This
matrix is denser.



The Nitsche method

We need to weakly impose the tangential components of the Dirichlet boundary
conditions.

We use the Nitsche method to weakly impose the whole Dirichlet boundary
conditions.

We redefine the bilinear forms to
ap (up, up) = (Vup, Vvp)g — (n- Vup, vp)p — (n - Vg, up)r + ,

b (Phsvh) = (Pr, V - up)g — (VA - N, pp)r

and add correct term on the right hand side.



Nitsche penalty term

The pressure error asymptotically scales with the square root of Cy
[Evans and Hughes, 2013a]. So we need to put a good value for
Cpn. Evans suggests

Cy=5(k+1),

where k = min{kq, k2, k3 }.

Evans and Hughes [2013d] gives an explicit choice for Cy depending
on shape, size, polynomial degree, and the NURBS weighting.



Testing the Nitsche penalty with manufactured solutions

The test problem:

Q is an quarte annulus C {(x,y) € R?| x,y € (0,2)},
u=V x (sin®(mx/2)sin*(my/2)),

p = —sin(mx),

f=—-Au—-Vp,



Nitsche penalty parameter

3 refinements, k = 2, 3 refinements, k = 2,
Cn/he = 632, Cn/he = 120,
L2-error velocity: 0.0119, [2-error velocity: 0.0118,

L2-error pressure: 0.24123 L2-error pressure: 0.06309



Nitsche penalty parameter

5 refinements, k = 2, 5 refinements, k = 2,
Cn/he = 2297, Cn/he = 480,
L2-error velocity: 0.0001214, L-error velocity: 0.0001236,

L2-error pressure: 0.00315 L2-error pressure: 0.00080



[2-error: k = 2 (velocity and pressure)

| # Refined | 2 E [ 4 |5 | rate avg || rate |
Velocity 5.01e-02 | 1.18e-02 | 1.08e-03 | 1.24e-04 | 3.27 3.29
Pressure 2.08e-01 | 6.31e-02 | 6.44e-03 | 8.00e-04 || 3.04 3.16
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