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The Model Problem

For Ω ⊂ R2 the Model Problem is given by:
Find u ∈ Vg such that

a(u, v) = 〈F , v〉 ∀v ∈ V0,

where V0 := H1
0 (Ω) and Vg := g + V0. Here

a(u, v) :=

∫
Ω

(A(x).∇u(x)).∇v(x)dx ,

and

〈F , v〉 :=

∫
Ω
f (x)v(x)dx ,

where A(x) is positive definite, bounded, symmetric and has a bounded
inverse A−1(x) for all x ∈ Ω and f ∈ L2(Ω).
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Therefore we can define the norms

‖u‖A :=

√∫
Ω

(A(x).u(x)).u(x)dx ,

and

‖u‖A−1 :=

√∫
Ω

(A−1(x).u(x)).u(x)dx ,

for a vector valued function u, which are equivalent to the norm in L2(Ω).
It obviously holds

‖u‖A = ‖Au‖A−1 .

Endtmayer Bernhard (JKU) Granted & sharp a post. error est. for IGA January 19, 2017 5 / 27



An Error Estimate

Theorem

Let u ∈ Vg be the exact solution of the model problem and let uh ∈ Vh be
an approximate solution. Furthermore let CΩ be the constant from the
”Friedrichs’ like inequality” ‖v‖L2(Ω) ≤ CΩ‖∇v‖A for all v ∈ V0. Then it
holds

‖∇u−∇uh‖A ≤ ‖A∇uh − y‖A−1 + CΩ‖f + div(y)‖L2(Ω) ∀y ∈ H(div ,Ω).

For the proof see

Sergey Repin (2008)

A Posteriori Estimates for Partial Differential Equations

Radon Series on Computational and Applied Mathematics 4.

Walter de Gruyter GmbH & Co. KG, 10785 Berlin, Germany.
Hint for Proof: Take a look at the problem a(w , v) = 〈f + div(y), v〉.
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Local Error Estimator 1

If we choose y as A∇uh it follows immediately that

‖∇u −∇uh‖A ≤ CΩ‖f + div(y)‖L2(Ω),

and therefore we can choose our local error estimators for a cell Q as

ηQ := ‖div(y) + f ‖L2(Q).

Now can use some marking strategy which marks all cell Q which fulfill
that

ηQ > Θ,

where Θ is some bound as for example choosen in such a way that at least
20% are marked. However a numerical example in [Kleiss &Tomar 2015]
showed that this error estimator overestimates the error and even has a
lower convergence rate as the exact error.
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Global Minimization Strategy

From

‖∇u−∇uh‖A ≤ ‖A∇uh − y‖A−1 + CΩ‖f + div(y)‖L2(Ω) ∀y ∈ H(div ,Ω),

it follows that

‖∇u −∇uh‖2
A ≤ (1 + β)︸ ︷︷ ︸

:=a1

‖A∇uh − y‖2
A−1︸ ︷︷ ︸

:=B1

+ (1 +
1

β
)C 2

Ω︸ ︷︷ ︸
:=a2

‖f + div(y)‖2
L2(Ω)︸ ︷︷ ︸

:=B2︸ ︷︷ ︸
:=M2

⊕(β,y)

,

holds for all β > 0 and y ∈ H(div ,Ω). Obviously our majorant M⊕(β, y)
fulfills

M2
⊕(β, y) = a1B1 + a2B2.

But how sharp is this estimate?
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Definition

We say a sequence of finite dimensional subspaces {Yj}∞j=1 of a
Banachspace Y is limit dense if for all ε > 0 holds that there exists an
index jε such that for all k ≥ jε and for all y ∈ Y there exists a pk ∈ Yk

such that
‖y − pk‖Y < ε.

Theorem

Let {Yj}∞j=1 be limit dense in H(div ,Ω) then

lim
j→∞

inf
y∈Yj ,β>0

M2
⊕(β, y) = ‖∇u −∇uh‖2

A.

One can even show that a1B1 → ‖∇u −∇uh‖2
A and a2B2 → 0.
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Minimizing M2
⊕(β, y)

To approximate the infy∈Yh,β>0 M
2
⊕(β, y) we iterate the following two

steps

Step1: minimizing over yh ∈ Yh.

Step2: minimizing over β > 0.
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Step 1: Minimizing over yh ∈ Yh

Since it is easier we minimize M2
⊕(β, y) instead of M⊕(β, y). This is done

by computing the Gateaux derivative (M2
⊕(y))′(ỹ) for some arbitrary

function ỹ ∈ H(div ,Ω) and find y such that

(M2
⊕(y))′(ỹ) = 0 ∀ỹ ∈ Y .

By using this we end up in

a1

∫
Ω

(A−1y).ỹdx+a2

∫
Ω
div(y)div(ỹ)dx = a1

∫
Ω
∇uh.ỹdx+a2

∫
Ω
f .div(ỹ)dx ,

for all ỹ ∈ Y .
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If we approximate this solution in a finite dimensional subspace Yh we end
up in a linear system

Lhyh = rh,

where Lh can be written as

Lh = a1L
1
h + a2L

2
h,

and rh as
rh = a1r

1
h + a2

h.

If we use this property we do not have to assemble rh and Lh in every step
since we can just compute this linear combination. However this step is
very costly.
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Step 2: Minimizing over β > 0

In this case we can simply use minimization for real numbers. This leads
to the choice of β as

β = CΩ

√
B1

B2
.

The evaluation of B1 and B2 is cheap, since they are integral evaluations,
Step 2 is rather cheap compared which the costs of Step 1.
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The Minimization Algorithm

Input: f , uh,CΩ

Output:M⊕

β = initial guess

Assemble L1
h, L

2
h, r

1
h , r

2
h

while convergence criteria is not fulfilled (and Iter < MaxIter)
Step 1:

Lh = (1 + β)L1
h + (1 + 1

β
)C 2

ΩL
2
h

rh = (1 + β)r 1
h + (1 + 1

β
)C 2

Ωr
2
h

Solve: Lhyh = rh to obtain yh

Step 2:

B1 = ‖Auh − yh‖2
A−1

B2 = ‖div(yh) + f ‖2
L2(Ω)

β = CΩ

√
B1
B2

end while

M⊕ =
√

(1 + β)B1 + (1 + 1
β )C 2

ΩB2
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Local Error Estimator 2

Since we know that a1B1 → ‖∇u −∇uh‖2
A and a2B2 → 0 we use the local

error estimate

η2
Q :=

∫
Q

(∇uh − A−1yh).(A∇uh − yh)dx ,

to estimate the local error in the cell Q. Now we can again mark the cells
with biggest error and refine them afterwards. The error distribution of
this estimator is captured correctly if

a1B1 > C⊕a2B2

for some C⊕ > 1. Numerical examples showed that the error indicator

Ieff :=
√

a1B1
‖∇u−∇uh‖A

has a similar behaviour as
√

1 + 1
C⊕

.
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Numerical examples

Example 1: In this example we consider Ω = (0, 1)2 and let f , gD be
chosen such that

u(x , y) = sin(6πx)sin(3πy).

Here we use the Spline space Vh := S2,2
h
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Comparison of different spaces Yh

For the example we will consider the following three options for the choice
of Yh = Ŷh ◦ G−1 where G denotes the geometric transformation.

Case 0: Ŷh = Sp+1,p
h ⊗ Sp,p+1

h (here Yh is defined via the Piola
transform)

Case 1: Ŷh = Sp+1,p+1
h ⊗ Sp+1,p+1

h

Case 2: ˆYKh = Sp+K ,p+K
Kh ⊗ Sp+K ,p+K

Kh for K = 2

Case 3: ˆYKh = Sp+K ,p+K
Kh ⊗ Sp+K ,p+K

Kh for K = 4
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Example 1, Case 0

Screenshot taken from the paper [Kleiss &Tomar 2015]
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Screenshot taken from the paper [Kleiss &Tomar 2015]
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Example 1 Case 1

Screenshot taken from the paper [Kleiss &Tomar 2015]
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Example 1 Case 2

Screenshot taken from the paper [Kleiss &Tomar 2015]
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Screenshot taken from the paper [Kleiss &Tomar 2015]
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Example 6

In this example Ω = (0, 1)2 and let f and g be chosen such that the exact
solution is given by the function

u = (x2 − x)(y2 − y)e
−100‖(x ,y)−(0.8,0.05)‖2

`2
−100‖(x ,y)−(0.8,0.05)‖2

`2

Screenshot taken from the paper [Kleiss &Tomar 2015]
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Screenshot taken from the paper [Kleiss &Tomar 2015]
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Screenshot taken from the paper [Kleiss &Tomar 2015]
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Conclusions

We presented a local error estimator for isogeometric analysis with a
guaranteed upper bound.

This local error estimator captures the region for refinement similar
than the exact local error.

The increase of the polynomial degree in the space Yh does increase
the DOFs just slightly if we compare it to FEM.

Endtmayer Bernhard (JKU) Granted & sharp a post. error est. for IGA January 19, 2017 26 / 27



Thank you for your attention!
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