Guaranteed and sharp a posteriori error estimates in isogeometric analysis (following the paper [Kleiss \&Tomar 2015])

Endtmayer Bernhard

Johannes Kepler University Linz

January 19, 2017

Overview

(1) References
(2) The Model Problem
(3) An Error Estimate
(4) Local Error Estimator 1
(5) Global Minimization Strategy
(6) Local Error Estimator 2
(7) Conclusions

References

Q Sergey Repin (2008)
A Posteriori Estimates for Partial Differential Equations Radon Series on Computational and Applied Mathematics 4. Walter de Gruyter GmbH \& Co. KG, 10785 Berlin, Germany.

围 Kleiss, Stefan K. and Tomar, Satyendra K.
Guaranteed and Sharp a Posteriori Error Estimates in Isogeometric Analysis
Computers \& Mathematics with Applications, Volume 70, Issue 3,
August 2015, Pages 167190
http://dx.doi.org/10.1016/j.camwa.2015.04.011
The second reference is denoted by [Kleiss \&Tomar 2015].

The Model Problem

For $\Omega \subset \mathbb{R}^{2}$ the Model Problem is given by:
Find $u \in V_{g}$ such that

$$
a(u, v)=\langle F, v\rangle \quad \forall v \in V_{0}
$$

where $V_{0}:=H_{0}^{1}(\Omega)$ and $V_{g}:=g+V_{0}$. Here

$$
a(u, v):=\int_{\Omega}(A(x) \cdot \nabla u(x)) \cdot \nabla v(x) \mathrm{d} x
$$

and

$$
\langle F, v\rangle:=\int_{\Omega} f(x) v(x) \mathrm{d} \boldsymbol{x}
$$

where $A(x)$ is positive definite, bounded, symmetric and has a bounded inverse $A^{-1}(x)$ for all $x \in \Omega$ and $f \in L^{2}(\Omega)$.

Therefore we can define the norms

$$
\|u\|_{A}:=\sqrt{\int_{\Omega}(A(x) \cdot u(x)) \cdot u(x) \mathrm{d} \boldsymbol{x}}
$$

and

$$
\|u\|_{A^{-1}}:=\sqrt{\int_{\Omega}\left(A^{-1}(x) \cdot u(x)\right) \cdot u(x) \mathrm{d} x}
$$

for a vector valued function u, which are equivalent to the norm in $L^{2}(\Omega)$. It obviously holds

$$
\|u\|_{A}=\|A u\|_{A^{-1}}
$$

An Error Estimate

Theorem

Let $u \in V_{g}$ be the exact solution of the model problem and let $u_{h} \in V_{h}$ be an approximate solution. Furthermore let C_{Ω} be the constant from the "Friedrichs' like inequality" $\|v\|_{L^{2}(\Omega)} \leq C_{\Omega}\|\nabla v\|_{A}$ for all $v \in V_{0}$. Then it holds

$$
\left\|\nabla u-\nabla u_{h}\right\|_{A} \leq\left\|A \nabla u_{h}-y\right\|_{A^{-1}}+C_{\Omega}\|f+\operatorname{div}(y)\|_{L^{2}(\Omega)} \quad \forall y \in H(\operatorname{div}, \Omega) .
$$

For the proof see
S Sergey Repin (2008)
A Posteriori Estimates for Partial Differential Equations
Radon Series on Computational and Applied Mathematics 4.
Walter de Gruyter GmbH \& Co. KG, 10785 Berlin, Germany.
Hint for Proof: Take a look at the problem $a(w, v)=\langle f+\operatorname{div}(y), v\rangle$.

Local Error Estimator 1

If we choose y as $A \nabla u_{h}$ it follows immediately that

$$
\left\|\nabla u-\nabla u_{h}\right\|_{A} \leq C_{\Omega}\|f+\operatorname{div}(y)\|_{L^{2}(\Omega)},
$$

and therefore we can choose our local error estimators for a cell Q as

$$
\eta_{Q}:=\|\operatorname{div}(y)+f\|_{L^{2}(Q)} .
$$

Now can use some marking strategy which marks all cell Q which fulfill that

$$
\eta_{Q}>\Theta
$$

where Θ is some bound as for example choosen in such a way that at least 20\% are marked. However a numerical example in [Kleiss \&Tomar 2015] showed that this error estimator overestimates the error and even has a lower convergence rate as the exact error.

Global Minimization Strategy

From
$\left\|\nabla u-\nabla u_{h}\right\|_{A} \leq\left\|A \nabla u_{h}-y\right\|_{A^{-1}}+C_{\Omega}\|f+\operatorname{div}(y)\|_{L^{2}(\Omega)} \quad \forall y \in H(\operatorname{div}, \Omega)$,
it follows that

$$
\left\|\nabla u-\nabla u_{h}\right\|_{A}^{2} \leq \underbrace{\underbrace{(1+\beta)}_{:=a_{1}} \underbrace{\left\|A \nabla u_{h}-y\right\|_{A^{-1}}^{2}}_{:=B_{1}}+\underbrace{\left(1+\frac{1}{\beta}\right) C_{\Omega}^{2}}_{:=a_{2}} \underbrace{\|f+\operatorname{div}(y)\|_{L^{2}(\Omega)}^{2}}_{:=B_{2}}}_{:=M_{\oplus}^{2}(\beta, y)},
$$

holds for all $\beta>0$ and $y \in H(\operatorname{div}, \Omega)$. Obviously our majorant $M_{\oplus}(\beta, y)$ fulfills

$$
M_{\oplus}^{2}(\beta, y)=a_{1} B_{1}+a_{2} B_{2}
$$

But how sharp is this estimate?

Definition

We say a sequence of finite dimensional subspaces $\left\{Y_{j}\right\}_{j=1}^{\infty}$ of a Banachspace Y is limit dense if for all $\varepsilon>0$ holds that there exists an index j_{ε} such that for all $k \geq j_{\varepsilon}$ and for all $y \in Y$ there exists a $p_{k} \in Y_{k}$ such that

$$
\left\|y-p_{k}\right\|_{Y}<\varepsilon .
$$

Theorem

Let $\left\{Y_{j}\right\}_{j=1}^{\infty}$ be limit dense in $H(\operatorname{div}, \Omega)$ then

$$
\lim _{j \rightarrow \infty} \inf _{y \in Y_{j}, \beta>0} M_{\oplus}^{2}(\beta, y)=\left\|\nabla u-\nabla u_{h}\right\|_{A}^{2}
$$

One can even show that $a_{1} B_{1} \rightarrow\left\|\nabla u-\nabla u_{h}\right\|_{A}^{2}$ and $a_{2} B_{2} \rightarrow 0$.

Minimizing $M_{\oplus}^{2}(\beta, y)$

To approximate the $\inf _{y \in Y_{h}, \beta>0} M_{\oplus}^{2}(\beta, y)$ we iterate the following two steps

- Step1: minimizing over $y_{h} \in Y_{h}$.
- Step2: minimizing over $\beta>0$.

Step 1: Minimizing over $y_{h} \in Y_{h}$

Since it is easier we minimize $M_{\oplus}^{2}(\beta, y)$ instead of $M_{\oplus}(\beta, y)$. This is done by computing the Gateaux derivative $\left(M_{\oplus}^{2}(y)\right)^{\prime}(\tilde{y})$ for some arbitrary function $\tilde{y} \in H(\operatorname{div}, \Omega)$ and find y such that

$$
\left(M_{\oplus}^{2}(y)\right)^{\prime}(\tilde{y})=0 \quad \forall \tilde{y} \in Y
$$

By using this we end up in
$a_{1} \int_{\Omega}\left(A^{-1} y\right) \cdot \tilde{y} \mathrm{~d} \boldsymbol{x}+a_{2} \int_{\Omega} \operatorname{div}(y) \operatorname{div}(\tilde{y}) \mathrm{d} \boldsymbol{x}=a_{1} \int_{\Omega} \nabla u_{h} \cdot \tilde{y} \mathrm{~d} \boldsymbol{x}+a_{2} \int_{\Omega} f \cdot \operatorname{div}(\tilde{y}) \mathrm{d} \boldsymbol{x}$ for all $\tilde{y} \in Y$.

If we approximate this solution in a finite dimensional subspace Y_{h} we end up in a linear system

$$
L_{h} y_{h}=r_{h},
$$

where L_{h} can be written as

$$
L_{h}=a_{1} L_{h}^{1}+a_{2} L_{h}^{2}
$$

and r_{h} as

$$
r_{h}=a_{1} r_{h}^{1}+a_{h}^{2} .
$$

If we use this property we do not have to assemble r_{h} and L_{h} in every step since we can just compute this linear combination. However this step is very costly.

Step 2: Minimizing over $\beta>0$

In this case we can simply use minimization for real numbers. This leads to the choice of β as

$$
\beta=C_{\Omega} \sqrt{\frac{B_{1}}{B_{2}}} .
$$

The evaluation of B_{1} and B_{2} is cheap, since they are integral evaluations, Step 2 is rather cheap compared which the costs of Step 1.

The Minimization Algorithm

Input: f, u_{h}, C_{Ω}

Output: M_{\oplus}

- $\beta=$ initial guess
- Assemble $L_{h}^{1}, L_{h}^{2}, r_{h}^{1}, r_{h}^{2}$
- while convergence criteria is not fulfilled (and Iter < MaxIter)
- Step 1:
- $L_{h}=(1+\beta) L_{h}^{1}+\left(1+\frac{1}{\beta}\right) C_{\Omega}^{2} L_{h}^{2}$
- $r_{h}=(1+\beta) r_{h}^{1}+\left(1+\frac{1}{\beta}\right) C_{\Omega}^{2} r_{h}^{2}$
- Solve: $L_{h} y_{h}=r_{h}$ to obtain y_{h}
- Step 2:
- $B_{1}=\left\|A u_{h}-y_{h}\right\|_{A^{-1}}^{2}$
- $B_{2}=\left\|\operatorname{div}\left(y_{h}\right)+f\right\|_{L^{2}(\Omega)}^{2}$
- $\beta=C_{\Omega} \sqrt{\frac{B_{1}}{B_{2}}}$
- end while
- $M_{\oplus}=\sqrt{(1+\beta) B_{1}+\left(1+\frac{1}{\beta}\right) C_{\Omega}^{2} B_{2}}$

Local Error Estimator 2

Since we know that $a_{1} B_{1} \rightarrow\left\|\nabla u-\nabla u_{h}\right\|_{A}^{2}$ and $a_{2} B_{2} \rightarrow 0$ we use the local error estimate

$$
\eta_{Q}^{2}:=\int_{Q}\left(\nabla u_{h}-A^{-1} y_{h}\right) \cdot\left(A \nabla u_{h}-y_{h}\right) \mathrm{d} \boldsymbol{x}
$$

to estimate the local error in the cell Q. Now we can again mark the cells with biggest error and refine them afterwards. The error distribution of this estimator is captured correctly if

$$
a_{1} B_{1}>C_{\oplus} a_{2} B_{2}
$$

for some $C_{\oplus}>1$. Numerical examples showed that the error indicator $l_{\text {eff }}:=\frac{\sqrt{a_{1} B_{1}}}{\left\|\nabla u-\nabla u_{h}\right\|_{A}}$ has a similar behaviour as $\sqrt{1+\frac{1}{C_{\oplus}}}$.

Numerical examples

Example 1: In this example we consider $\Omega=(0,1)^{2}$ and let f, g_{D} be chosen such that

$$
u(x, y)=\sin (6 \pi x) \sin (3 \pi y)
$$

Here we use the Spline space $V_{h}:=\mathcal{S}_{h}^{2,2}$

Comparison of different spaces Y_{h}

For the example we will consider the following three options for the choice of $Y_{h}=\hat{Y}_{h} \circ G^{-1}$ where G denotes the geometric transformation.

- Case 0: $\hat{Y}_{h}=\mathcal{S}_{h}^{p+1, p} \otimes \mathcal{S}_{h}^{p, p+1}$ (here Y_{h} is defined via the Piola transform)
- Case 1: $\hat{Y}_{h}=\mathcal{S}_{h}^{p+1, p+1} \otimes \mathcal{S}_{h}^{p+1, p+1}$
- Case 2: $\hat{Y}_{K h}=\mathcal{S}_{K h}^{p+K, p+K} \otimes \mathcal{S}_{K h}^{p+K, p+K}$ for $K=2$
- Case 3: $\hat{Y_{K h}}=\mathcal{S}_{K h}^{p+K, p+K} \otimes \mathcal{S}_{K h}^{p+K, p+K}$ for $K=4$

Example 1, Case 0

Table 1

Efficiency index and components of the majorant in Example 1, Case $0, \hat{V}_{h}=$ $s_{h}^{2,2}, \hat{Y}_{h}=s_{h}^{3,2} \otimes s_{h}^{2,3}$.

Mesh-size	$I_{\text {eff }}$	$a_{1} B_{1}$	$a_{2} B_{2}$	C_{\oplus}
8×8	3.43	$2.62 \mathrm{e}+01$	$1.17 \mathrm{e}+02$	0.2
16×16	1.92	$6.07 \mathrm{e}-01$	$6.19 \mathrm{e}-01$	1.0
32×32	1.41	$2.29 \mathrm{e}-02$	$9.71 \mathrm{e}-03$	2.4
64×64	1.20	$1.15 \mathrm{e}-03$	2.33e-04	4.9
128×128	1.10	$6.51 \mathrm{e}-05$	$6.54 \mathrm{e}-06$	10.0
256×256	1.05	$3.87 \mathrm{e}-06$	$1.95 \mathrm{e}-07$	19.8
512×512	1.03	$2.36 \mathrm{e}-07$	$5.94 \mathrm{e}-09$	39.7

Screenshot taken from the paper [Kleiss \&Tomar 2015]

Table 2
Number of DOF and timings in Example 1, Case $0, \hat{V}_{h}=s_{h}^{2,2}, \hat{Y}_{h}=s_{h}^{3,2} \otimes s_{h}^{2,3}$.

Mesh-size	\#DOF		Assembling-time			Solving-time			Sum		
	u_{h}	y_{h}	pde	est	$\frac{\text { est }}{\text { pde }}$	pde	est	$\frac{\text { est }}{\text { pde }}$	pde	est	$\frac{\text { est }}{\text { pde }}$
8×8	100	220	0.04	0.17	4.39	<0.01	<0.01	5.16	0.04	0.17	4.40
16×16	324	684	0.14	0.59	4.25	<0.01	0.01	5.39	0.14	0.60	4.26
32×32	1156	2380	0.46	2.17	4.70	0.01	0.03	4.71	0.47	2.20	4.70
64×64	4356	8844	1.82	8.51	4.68	0.03	0.20	6.15	1.85	8.70	4.70
128×128	16900	34060	7.38	34.19	4.63	0.15	0.87	5.70	7.54	35.06	4.65
256×256	66564	133644	33.30	149.78	4.50	0.84	5.66	6.78	34.14	155.44	4.55
512×512	264196	529420	191.11	766.10	4.01	3.77	33.92	9.00	194.88	800.03	4.11

(a) 16×16.

(b) 32×32.

(c) 64×64.

(d) 128×128.

Fig. 4. Cells marked by error estimator with $\psi=20 \%$ in Example 1, Case $0, \hat{V}_{h}=s_{h}^{2,2}, \hat{Y}_{h}=s_{h}^{3,2} \otimes s_{h}^{2,3}$.
Screenshot taken from the paper [Kleiss \&Tomar 2015]

Example 1 Case 1

Table 3
Efficiency index and components of the majorant in Example 1, Case 1,
$\hat{V}_{h}=f_{h}^{2,2}, \hat{Y}_{h}=f_{h}^{3,3} \otimes f_{h}^{3,3}$.

Mesh-size	$I_{\text {eff }}$	$a_{1} B_{1}$	$a_{2} B_{2}$	C_{\oplus}
8×8	2.77	$8.08 \mathrm{e}+01$	$1.24 \mathrm{e}+01$	6.5
16×16	1.71	$5.75 \mathrm{e}-01$	$3.96 \mathrm{e}-01$	1.5
32×32	1.32	$2.14 \mathrm{e}-02$	$7.05 \mathrm{e}-03$	3.0
64×64	1.16	$1.11 \mathrm{e}-03$	$1.78 \mathrm{e}-04$	6.2
128×128	1.08	$6.39 \mathrm{e}-05$	$5.08 \mathrm{e}-06$	12.6
256×256	1.04	$3.83 \mathrm{e}-06$	$1.53 \mathrm{e}-07$	25.0
512×512	1.02	$2.35 \mathrm{e}-07$	$4.69 \mathrm{e}-09$	50.1

Table 4
Number of DOF and timings in Example 1, Case 1, $\hat{V}_{h}=f_{h}^{2,2}, \hat{Y}_{h}=s_{h}^{3,3} \otimes f_{h}^{3,3}$.

Mesh-size	\#DOF		Assembling-time			Solving-time			Sum		
	u_{h}	y_{n}	pde	est	$\begin{array}{\|c} \hline \frac{e s t}{p d e} \\ \hline \end{array}$	pde	est	$\frac{\text { est }}{\text { pde }}$	pde	est	$\frac{\text { est }}{\text { pde }}$
8×8	100	242	0.04	0.11	2.78	<0.01	<0.01	1.51	0.04	0.11	2.76
16×16	324	722	0.12	0.34	2.86	<0.01	0.01	5.33	0.12	0.35	2.90
32×32	1156	2450	0.46	1.35	2.94	0.01	0.05	7.69	0.47	1.40	3.01
64×64	4356	8978	1.77	5.30	2.99	0.03	0.27	8.02	1.80	5.57	3.09
128×128	16900	34322	7.39	21.89	2.96	0.16	1.45	9.26	7.55	23.34	3.09
256×256	66564	134162	33.00	94.69	2.87	0.84	8.83	10.54	33.84	103.52	3.06
512×512	264196	530450	191.59	498.20	2.60	3.83	61.45	16.06	195.42	559.65	2.86

Screenshot taken from the paper [Kleiss \&Tomar 2015]

Example 1 Case 2

Table 5

Efficiency index and components of the majorant in Example 1, Case 2, $\hat{V}_{h}=s_{h}^{2,2}, \hat{Y}_{h}=f_{2 h}^{4,4} \otimes f_{2 h}^{4,4}$.

Mesh-size	$I_{\text {eff }}$	$a_{1} B_{1}$	$a_{2} B_{2}$	C_{\oplus}
8×8	14.19	$1.59 \mathrm{e}+03$	$8.53 \mathrm{e}+02$	1.9
16×16	8.49	$1.97 \mathrm{e}+01$	$4.32 \mathrm{e}+00$	4.6
32×32	1.82	$3.05 \mathrm{e}-02$	$2.41 \mathrm{e}-02$	1.3
------------------1.76				
64×64	1.16	$1.12 \mathrm{e}-03$	$1.76-04$	6.4
128×128	1.04	$6.14 \mathrm{e}-05$	$2.24 \mathrm{e}-06$	27.4
256×256	1.01	$3.72 \mathrm{e}-06$	$3.32 \mathrm{e}-08$	112.0
512×512	1.00	$2.31 \mathrm{e}-07$	$5.13 \mathrm{e}-10$	450.3

Screenshot taken from the paper [Kleiss \&Tomar 2015]

(a) 16×16.

(b) 32×32.

(c) 64×64.

(d) 128×128.

Fig. 6. Cells marked by error estimator with $\psi=20 \%$ in Example 1, Case $2, \hat{V}_{h}=s_{h}^{2,2}, \hat{Y}_{h}=s_{2 h}^{4,4} \otimes s_{2 h}^{4,4}$.
Table 6
Number of DOF and timings in Example 1, Case 2, $\hat{V}_{h}=s_{h}^{2,2}, \hat{Y}_{h}=s_{2 h}^{4,4} \otimes s_{2 h}^{4,4}$.

Mesh-size	\#DOF		Assembling-time			Solving-time			Sum		
	u_{h}	y_{h}	pde	est	$\frac{\text { est }}{p d e}$	pde	est	$\begin{aligned} & \frac{\text { est }}{p d e} \\ & \hline \end{aligned}$	pde	est	$\frac{e s t}{p d e}$
8×8	100	128	0.03	0.05	1.39	<0.01	<0.01	1.16	0.04	0.05	1.39
16×16	324	288	0.14	0.18	1.29	<0.01	<0.01	0.92	0.14	0.18	1.28
32×32	1156	800	0.54	0.59	1.10	0.01	0.02	2.32	0.55	0.61	1.11
64×64	4356	2592	1.91	2.33	1.22	0.04	0.08	2.09	1.95	2.40	1.23
128×128	16900	9248	7.46	9.54	1.28	0.19	0.51	2.75	7.64	10.05	1.32
256×256	66564	34848	33.93	39.02	1.15	0.90	2.59	2.88	34.82	41.60	1.19
512×512	264196	135200	196.23	177.98	0.91	4.08	15.91	3.90	200.31	193.89	0.97

Screenshot taken from the paper [Kleiss \&Tomar 2015]

Example 6

In this example $\Omega=(0,1)^{2}$ and let f and g be chosen such that the exact solution is given by the function

$$
u=\left(x^{2}-x\right)\left(y^{2}-y\right) e^{-100\|(x, y)-(0.8,0.05)\|_{\ell_{2}}^{2}-100\|(x, y)-(0.8,0.05)\|_{\ell_{2}}^{2}}
$$

Fig. 13. Exact solution, Example 6.
Screenshot taken from the paper [Kleiss \&Tomar 2015]

Screenshot taken from the paper [Kleiss \&Tomar 2015]

Screenshot taken from the paper [Kleiss \&Tomar 2015]

Conclusions

- We presented a local error estimator for isogeometric analysis with a guaranteed upper bound.
- This local error estimator captures the region for refinement similar than the exact local error.
- The increase of the polynomial degree in the space Y_{h} does increase the DOFs just slightly if we compare it to FEM.

Thank you for your attention!

