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Abstract. Fluid-structure interaction problems arise in many applica-
tion fields such as flows around elastic structures or blood flow problems
in arteries. The method presented in this paper for solving such a prob-
lem is based on a reduction to an equation at the interface, involving the
so-called Steklov-Poincaré operators. This interface equation is solved by
a Newton-like iteration. One step of the Newton-like iteration requires
the solution of several decoupled linear sub-problems in the structure
and the fluid domains. These sub-problems are spatially discretized by a
finite element method on hybrid meshes. For the time discretization the
implicit Euler method is used. The discretized equations are solved by
algebraic multigrid methods.

1 Problem setting of the fluid-structure interaction

1.1 Geometrical description and the ALE mapping

Let Ω0 denote the initial domain at a time t = 0 consisting of the structure and
fluid sub-domains Ωs

0 and Ωf
0, respectively. The domain Ω(t) at a time t is com-

posed of the deformable structure sub-domain Ωs(t) and the fluid sub-domain
Ωf(t). The corresponding interface Γ (t) is evolving from the initial interface Γ0.
The evolution of Ω(t) is obtained by an injective mapping, the so-called ALE
mapping (Fig. 1.):

x : Ω0 × R+ → R3. (1)

The position of a point x0 ∈ Ωs
0 at a time t is given by the mapping for the

structure domain

xs
t : Ωs

0 → Ωs(t), (2)
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Fig. 1. ALE mapping

given by xs
t(x0) ≡ xs(x0, t) = x(x0, t) = x0+ds(x0, t) for x0 ∈ Ωs

0, where ds(x0, t)
denotes the displacement ds(x0, t) of the structure domain at a time t.

Correspondingly, the position of any point x0 ∈ Ωf
0 at a time t is given by

the mapping for the fluid domain

xf
t : Ωf

0 → Ωf(t) (3)

given by xf
t(x0) ≡ xf(x0, t) = x(x0, t) = x0 +df(x0, t) for x0 ∈ Ωf

0, where df(x0, t)
denotes the displacement in fluid domain. It is defined as an extension of the
structure displacement ds at the interface Γ0:

df = Ext(ds|Γ0
), (4)

e.g. the harmonic extension, given by:











−∆df = 0 in Ωf
0,

df = ds on Γ0,

df = 0 on Γin(t) ∪ Γout(t).

(5)

Furthermore, we introduce the domain velocities by

ws(x0, t) :=
∂ds

∂t
(x0, t) =

∂xs

∂t
(x0, t)

and

wf(x0, t) :=
∂df

∂t
(x0, t) =

∂xf

∂t
(x0, t)

for the structure and the fluid domain respectively.

1.2 The physical model in strong form

We describe the interface conditions which have to be satisfied for this coupled
problem.



Interface conditions. At the interface between the structure and the fluid
domain we assume no-slip conditions:

df
∣

∣

Γ0

= ds|Γ0
(6)

and the equilibrium of normal stresses:

(σfnf) ◦ xf
t + σsns = 0, (7)

where σs is the first Piola-Kirchoff stress tensor, σf is the Cauchy stress tensor,
nf and ns are the outward normals of Ωf(t) and Ωs

0, respectively.

Structure and fluid sub-problems. With prescribed Dirichlet data λ for the
displacement at the interface Γ0, we compute the Neumann data σsns at the
interface Γ0 by solving the structure problem



























ρs
∂2ds

∂t2
− div(σs(d

s)) = 0 in Ωs
0,

σs(d
s)ns = 0 on Γ n

0 ,

ds = 0 on Γ d
0 ,

ds = λ on Γ0,

(8)

where ρs is the density. We will concentrate on a linear Saint-Venant Kirchoff

elastic model, i.e. σs(d
s) = 2µlε(ds) + λldiv(ds)I with ε(ds) = ∇ds+(∇ds)T

2 and
the Lamé constants λl, µl.

We introduce Ss as the Dirichlet-to-Neumann mapping

Ss : H1/2(Γ0) → H−1/2(Γ0), (9)

given by Ss(λ) = σs(d
s)ns, with an appropriate function space H1/2(Γ0) and its

dual space H−1/2(Γ0).
Let u(x, t) denote the Eulerian velocity of the fluid. The ALE time derivative

of u(x, t) is introduced in order to overcome the difficulty for evaluating the time
derivative of velocity u(x, t) under the Eulerian framework in a moving domain.

Let x ∈ Ωf(t) with x0 = xf
t
−1

(x), then the ALE time derivative is given by

∂u

∂t

∣

∣

∣

∣

x0

(x, t) =
d

dt

(

u(xf
t(x0), t)

)

. (10)

Analogously, with prescribed Dirichlet data ∂λ
∂t for the velocity at the inter-

face Γ0, we compute the Neumann data (σfnf)◦xf
t at the interface Γ0 by solving

the fluid problem














































ρf
∂u

∂t

∣

∣

∣

∣

x0

+ ρf

(

(u − wf) · ∇
)

u − 2µdivε(u) + ∇p = 0 in Ωf(t),

divu = 0 in Ωf(t),

σf(u, p)nf = gin on Γin(t),

σf(u, p)nf = 0 on Γout(t),

u ◦ xf
t =

∂λ

∂t
on Γ0,

(11)



where ρf is the density of the fluid, µ its dynamic viscosity, the stress tensor

σf(u, p) = −pI + 2µε(u), the pressure p, the strain tensor ε(u) = ∇u+(∇u)T

2 .
In a similar way as before, we introduce the Dirichlet to Neumann mapping

Sf : H1/2(Γ0) → H−1/2(Γ0), (12)

given by Sf(λ) = (σf(u, p)nf) ◦ xf
t.

With these notations the equilibrium condition (7) can be written as

S(λ) := Sf(λ) + Ss(λ) = 0, (13)

which is the so-called Steklov-Poincaré equation and will be solved by iterative
method in Section 2.

1.3 Weak formulations

For the weak formulation we need the function spaces V s = [H1(Ωs
0)]

3, V s
0 =

{vs ∈ V s|vs = 0 on Γ d
0

⋃

Γ0}, and V s
g = {vs ∈ V s|vs = λ(t) on Γ0} for the

structure. For the fluid, we define Df = [H1(Ωf
0)]

3, Df
0 = {d ∈ Df|d = 0 on Γ0},

Df
g(t) = {d ∈ Df|d = λ(t) on Γ0}, V f(t) = {vf|vf ◦ xf

t ∈ H1(Ωf
0)

3}, V f
0 (t) =

{vf ∈ V f(t)|vf ◦ xf
t = 0 on Γ0}, V f

g (t) = {vf ∈ V f
0 |v

f ◦ xf
t = wf ◦ xf

t on Γ0}, and

Qf(t) = {qf|qf ◦ xf
t ∈ L2(Ωf

0)}, where H1(Ωs
0) and H1(Ωf

0) denote the standard
Sobolev spaces.

Then we obtain:

The weak form of the structure problem: Find ds ∈ V s
g such that for all

vs ∈ V s
0 ,

a(ds, vs) = 0 (14)

with

a(ds, vs) =

∫

Ωs

0

ρs
∂2ds

∂t2
· vsdx0 +

∫

Ωs

0

[λldivdsdivvs + 2µlε(ds) : ε(vs)]dx0.

(15)

The weak form for the harmonic extension: Find df ∈ Df
g(t) such that for

all φ ∈ Df
0,

a(df, φ) = 0 (16)

with

a(df, φ) =

∫

Ωf

0

∇df : ∇φdx0. (17)

The computational fluid domain Ωf(t) is then given by

Ωf(t) = Ωf
0 + df. (18)



The weak form of the fluid problem: Find (u, p) ∈ V f
g (t)×Qf(t) such that

for all (vf, qf) ∈ V f
0 (t) × Qf(t),

{

a(u, vf) + b1(v
f, p) = 〈F f, vf〉,

b2(u, qf) − c(p, qf) = 〈Gf, qf〉,
(19)

where






















































a(u, vf) =
d

dt

∫

Ωf(t)

ρfu · vfdx −

∫

Ωf(t)

divwfρfu · vfdx

+

∫

Ωf(t)

ρf

(

(u − wf) · ∇
)

u · vfdx + 2µ

∫

Ωf(t)

ε(u) : ε(vf)dx,

b1(v
f, p) =b2(v

f, p) = −

∫

Ωf(t)

p divvfdx,

c(p, qf) =0, 〈F f, vf〉 =

∫

Γin(t)

gin · vfds, 〈Gf, qf〉 = 0.

(20)

The weak form of the equilibrium condition: Find λ(t) ∈ H1/2(Γ0) such
that, for all vf × vs ∈ V f(t) × V s such that

〈Sf(λ), vf〉Γ (t) + 〈Ss(λ), vs〉Γ0
= 0. (21)

where vf ◦ xf
t = vs on Γ0 and 〈., .〉 denotes the corresponding dual product.

1.4 Discretization

The spatial discretization was done by a finite element method on a hybrid mesh
consisting of tetrahedra, hexahedra, pyramids and prisms. These elements, see
the first line of Fig. 2, are splitted into pure tetrahedral elements by introducing
artificial points at the volume and face centers, see the second line of Fig. 2.
We then construct the finite elements based on pure tetrahedral meshes. The
introduced additional degrees of freedom are locally eliminated by the mean
value approximation, for details [5].

A fully implicit time discretization is used for the structure problem. The
fluid problem is discretized in time by a semi-implicit method.

2 Iterative methods for the interface equation

We apply a preconditioned Richardson method to (13): given λ0, for k ≥ 0,

λk+1 = λk + ωkP−1
k

(

−Ss(λ
k) − Sf(λ

k)
)

, (22)

with the relaxation parameter ωk and a proper preconditioner Pk.
The Newton algorithm applied to (13) is obtained by using iteration (22)

and choosing the preconditioner at step k (see [1]): Pk = S
′

s(λ
k) + S

′

f (λ
k). In
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Fig. 2. Splitting of hybrid elements into tetrahedral elements.

our computation, we instead use an approximation of the full tangent operators
P̂k ≈ S

′

s(λ
k) + S

′

f (λ
k) which includes the Fréchet derivative for the structure

operator Ss and the classical Fréchet derivative part which does not take into
account the shape change for the fluid operator Sf.

In each step of the iterative method a problem of the form

P̂kµk = −
(

Ss(λ
k) + Sf(λ

k)
)

(23)

has to solved. For this we used a preconditioned GMRES method with precon-
ditioner S

′

s(λ
k) (see [1]).

Summarizing, the method can be described as follows: for k ≥ 0

1. update the residual Ss(λ
k) + Sf(λ

k) by solving the structure and fluid sub-
problems,

2. solve the tangent problem (23) via GMRES method,
3. update the displacement λk+1, if not accurate enough, go to step 1.

Note that Step 1 can be parallelized due to the independence of the sub-
problems for given interface boundary conditions. Step 2 requires solving the
linearized structure and fluid problems several times during the GMRES itera-
tion, for details we refer to [5]. The algebraic multigrid method (AMG) is used
for the fluid and structure sub-problems, see [3] and [4].

3 Numerical results

We simulate a pressure wave in a cylinder of length 5 cm and radius 5 mm at
rest. The thickness of the structure is 0.5 mm. The structure is considered linear
and clamped at both the inlet and outlet. The fluid viscosity is set to µ = 0.035,
the Lamé constants to µl = 1.15 × 106 and λl = 1.73 × 106, the density to
ρf = 1.0 and ρs = 1.2. The fluid and structure are initially at rest and a pressure



(a) coarse mesh (b) fine mesh

Fig. 3. Fine and coarse meshes for simulations.

of 1.332×104 dyn/cm2 is set on the inlet for a time period of 3 ms. Two meshes
(Fig.3.) are used for simulations:

A relative error reduction by a factor of 10−5 is achieved in 2-3 outer itera-
tions. Each of these iterations requires 6-8 GMRES iterations for a relative error
reduction by a factor of 10−5. For solving the structure problem, about 10 pre-
conditioned conjugate gradient iterations with AMG preconditioning are needed
for a relative error reduction by a factor of 10−8, for the fluid problem about 5
AMG iterations for a relative error reduction by a factor of 10−8. Almost the
same numbers of iterations were observed for the coarse and the fine mesh.

For all simulations, we use a time step size of δt = 1 ms and run the simulation
until time t = 25 ms. For visualization purposes the deformation is amplified by
a factor of 12. Fig.4 shows the pressure wave propagation on the fine mesh at
different time levels.
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(a) t = 1 ms (b) t = 5 ms

(c) t = 10 ms (d) t = 15 ms

(e) t = 20 ms (f) t = 25 ms

Fig. 4. Simulation results at time t = 1 ms (upper left), t = 5 ms (upper right), t = 10
ms (middle left) and t = 15 ms (middle right), t = 20 ms (lower left) and t = 25 ms
(lower right).
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