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AbstractA kind of moving front technique mesh generator is presented. A given boundarymesh is extended into the domain in two or three dimensional space. The user canspecify rules which describe the generation of the interior elements for a given boundaryimage.1 IntroductionA lot of engineering disciplines require a partial di�erential equation modeling. Two ofthe most popular methods to treat these p.d.e.s numerically are the �nite element methodand the �nite volume method. Both require a partitioning of the domain of interest intoa set of simple domains, called (interior) elements. All elements together form the mesh.In the plane triangles and quadrilaterals are used, in three dimensional space tetrahedrons,hexahedrons and pentahedrons are the most popular elements. It is a desirable goal todo this partitioning automatically. There are several approaches which work quiet well inthe plane but make a lot of di�culties in three dimensions. In [1] a wide bandwidth ofalgorithms is presented.One of them is the moving front technique. The method requires that the boundary ofthe domain is given by a set of boundary elements. The method puts one layer of interiorelements onto the boundary elements. So a smaller domain is received, which is reducedby the same principle until nothing is left to do. This reduction can be done for a wholelayer at once. In [5] a description of this technique is given. In this paper a local variant isdescribed. One step of the algorithm cuts o� one (or a few) elements from the remainingdomain.An advancing front mesher has to decide which interior elements should be created fora given boundary image. This tests may be coded into a programme, but I guess thiswill be a long and error vulnerable programme, especially for the three dimensional case.The suggestion is to split the whole task into rules, which describe what to do in a certainsituation and into a part of code, which has to apply these rules. The rules may be speci�edin a simple programming language or graphical tools can be implemented to edit the rules.It is described what these rules have to contain.A full automatic three dimensional mesh generator must only use geometric informationto build the mesh. In section 2 a few possibilities to geometric modeling are given. The �rstnon trivial problem is to �nd special points of the solid. It should be a general method whichcan be applied to di�erent geometric models. In section 3 a combination of bisection andNewtons method is presented. Starting at the special points the edges have to be detected.This task is shortly mentioned in 4. The main part of the paper deals with free meshing,which is used for surfaces and volume.2 Geometric ModelingThe �rst step in mesh generation is to describe the solid in a mathematical way. Solidmodeling is a wide area in research over the last decade and still very active. There are alot of di�erent approaches to describe a solid. We give two possibilities:2.1 Algebraic ModelingA lot of solids can be described by algebraic inequalities. E. g. the inequality(x� cx)2 + (y � cy)2 + (z � cz)2 � r21



describes a sphere with center (cx; cy; cz) and radius r. Also a cylinder with in�nite lengthcan be described by a second order algebraic inequality. A halfspace, e. g. x � 0, is given bya linear inequality. These solids, which are given by a simple inequality are called primitives.Out from these more complicated solids can be formed by the Boolean operations union,section and subtraction. A cylinder of �nite length is the result of the section of a cylinderof in�nite length with two halfspaces:cyl = ny2 + z2 � 1oh1 = fx � 0gh2 = fx � 10gall = cyl \ h1 \ h2In a computer a solid is represented by a binary tree. The leaves are the primitives. It issimple to build solids from these primitives, but the usage is very restricted. It is di�cultto plot these solids. Finding edges is to �nd the nullset of two algebraic equations in threevariables. It is simple to check if a given point is inside or outside the solid.2.2 Spline ModelingBezier splines and B - splines are widely used in Computer Aided Geometric Design (CAGD),e. g. for designing aircraft wings or bodyworks. A curve or a surface is locally approximatedby a polynomial. As basis functions for Bezier splines Bernstein polynomials are used. Thecoe�cients, called Bezier points for Bezier splines or d'Boor points for B - splines, are pointsin the space which have a geometric meaning. Also rational functions are used. With thehelp of them spheres and cylinders can be represented exactly. Because the surfaces aregiven explicitly, it is simple to plot them. But it is di�cult to work with solids bounded byspline patches and implement an is-in - test. To implement operations on such solids twofacts are important:� The convex hull property: The spline surface (curve) is contained in the convexhull of the surrounding Bezier respectively. d'Boor points. So a simpler (and worse)approximation is given by a polyeder.� zoom in: It is possible to dissect a patch in a few smaller patches of the same degree.So the approximation of the Bezier or d'Boor points becomes better.A textbook about spline modeling is e. g. [4].2.3 Operations on SolidsThe mesh generator should be independent of the kind of surface representation used. There-fore the allowed operations are very limited. We will use a combination of global bisectionalgorithms and local Newton type algorithms. For the bisection algorithms one needs testslike ' is a given box inside a solid ? ' The possible answers are ' no ', ' yes ' or 'maybe'.The answer 'maybe' is always correct, but it is only allowed if the distance of the box to theboundary is of the order of the diameter of the box. This can be decided easily for algebraicprimitives (e. g. if the distance from the center of the box to the center of a sphere is lessthan the radius of the sphere minus the half diameter of the box, than it is sure that the boxis inside the sphere). For spline surfaces the test can be done for the d'Boor polyeder aftera local zoom until the accuracy is of the demanded dimension. The result of the Booleanoperations are the following: 2



Figure 1: Examples for Crosspoints\ no yes maybeno no no noyes no yes maybemaybe no maybe maybe[ no yes maybeno no yes maybeyes yes yes yesmaybe maybe yes maybenno yesyes nomaybe maybeThe bisection type algorithms assures global convergence, but they are slow if one is inter-ested in exact coordinates of crosspoints. If one is near to a crosspoint, it can be calculatedfast and precise by Newton's method. The thing one has to check if one has a start pointin the convergence area of Newton's method. This can be decided by the surface curvatureand by the angles between the surfaces to intersect. For Newton's method one needs thenormal vector to the surface and for the convergence test the curvature. These informationare available for algebraic surfaces and are locally available for spline patches.3 Special PointsThe mesh generator meshes volumes from its boundary, the surfaces, it meshes surfacesfrom their boundaries, the edges and meshes edges from their boundaries, points, which wecall special points. There are di�erent types of special points. The most common are thepoints, where three surfaces intersect (see �g. 1). These points we call crosspoints. Theircomputation is explained in section 3.1. There are edges without natural start and endpoint(see �g. 2). To get unique de�ned points on these curves one can choose these with extremalx, y or z coordinates. They are called extremalpoints and their computation is shown insection 3.2. There are still more types of special points which came from degeneration insome sense. They are discussed in 3.3. In common with the special points tangents to theedges are calculated.
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Figure 2: Examples for Extremalpoints3.1 CrosspointsCrosspoints are isolated points, where three surfaces intersect. For implicit given surfacesthese are the isolated roots of the systemf1 (x; y; z) = 0f2 (x; y; z) = 0 (1)f3 (x; y; z) = 0For parametric surfaces the crosspoints are given by the systemX1 (s1; t1) = X2 (s2; t2)X1 (s1; t1) = X3 (s3; t3)Y1 (s1; t1) = Y2 (s2; t2) (2)Y1 (s1; t1) = Y3 (s3; t3)Z1 (s1; t1) = Z2 (s2; t2)Z1 (s1; t1) = Z3 (s3; t3)For a combination of di�erent types also equations can be speci�ed. These are polynomialequations with three respectively six unknowns and as many equations. One has to �nd allroots. There are algebraic (see [6]) and also numerical (see [8]) algorithms for doing this,but they are complicated and computationally expensive.Our approach uses more geometric information. We consider a box in which the wholesolid is contained. Then we subdivide this box into eight boxes of the half size and so onfor each new box. In each box we examine the corresponding part of the solid. We need acriterion to decide, whether there is a crosspoint in the box or not. If there is no crosspointin it we can stop this branch of the recursive algorithm. If the tests are sharp enough thismethod �nds all crosspoints with an arbitrary precision. But it is slow if one is interested inprecise coordinates. It needs at least eight tests to get one more binary digit in the solution.If one is close to a solution and has information about the distance to the surfaces andnormals to the surfaces one can start Newton's method to solve the equations above. Toassure one is in the convergence area of Newton's method one needs information about thecurvature of the surfaces. 4



3.1.1 LocalizationTo apply the above method one has to know the shape of the solid restricted to a box. Ofcourse one could represent the local shape by the original solid tree, but this does not leadto a simple local model. The simple local model model should be of the type 'empty', full',or 'solid'. The localization can be done recursive:� For a primitive the local model is 'empty' if the whole box is outside the primitive,it is 'full', if the whole box is included in the primitive, and it is 'solid', i. e. theprimitive, if the box intersects the boundary or if we cannot decide.� For the Boolean operations the localization can be expressed by the localization of theoperands:\ empty full solid 1empty empty empty emptyfull empty full solid 1solid 2 empty solid 2 solid 1 \ solid 2[ empty full solid 1empty empty full solid 1full full full fullsolid 2 solid 1 full solid 1 [ solid 2nempty fullfull emptysolid n solidIf the box - in - solid tests ful�ll Proposition ??? and the solid ful�lls ??? than the localmodels of the successively re�ned boxes converge to the local model of the limit point.3.1.2 Crosspoint - in - Box - TestA necessary condition to have a crosspoint in a box is that their are at least three surfacesin the local model. If all existing crosspoints are regular in the following sense, then thenumber of boxes in each re�nement level are limited by a constant. A crosspoint is regular,if the matrix J formed by the normal vectors to three intersecting surfaces is regular. E.g. the matrix is singular if two surfaces have the same normals. The upper bound for thenumber of boxes per level grows with the condition of this matrix. The computational costof the bisection algorithm for regular crosspoints is not too bad, because each digit more inprecision costs the same price. Some examples for the number of boxes per level are given insection 3.4. If a crosspoint is singular, the number of boxes ful�lling the necessary conditiongrows exponential with the re�nement level. This ine�ciency is due to the ill posednessof the equation. An arbitrary small perturbation in one of the functions can change thestructure of the solution: It may disappear or it may split up into two crosspoints. Amathematical correction to this problem is to solve the equations fi = fj = detJ = 0instead of the original system, where the indices i and j correspond to two surfaces withnot colinear normals. This system is well conditioned if the degeneration is of �rst order.But this system is much more complicated and does not �t into our concept. The bisectionalgorithm works optimal if there are more than three cutting surfaces and the rank of thematrix consisting of the normal vectors is three. So we make the user responsible to do thegeometric modeling in a stable way. If the condition of the Matrix J gets bad we expectthat the root of the system has algebraic dimension one and will not calculate it.5



3.1.3 Speed up by Newton's MethodIf we are close to a root of the system (1) and if we have information about the derivativesof the functions fi we can use the fast convergent Newton method. With the writingF (x) = (f1 (x; y; z) ; f2 (x; y; z) ; f3 (x; y; z)) and the starting point x0 in the center of thebox we can do the iteration for k = 0; 1; 2; : : ::xk+1 = xk � �F 0 �xk���1 F �xk�The Newton method has an intuitive geometric interpretation. In the limit the componentsof F measure the distance to the corresponding surface and the columns of the matrix F 0are colinear to the normals. The new point xk+1 is the projection onto the crosspoint ofthree plains given by the normals and the distance to xk. The iteration is well de�ned if thematrices F 0 are regular. This is again the case if the crosspoint is regular. By continuityarguments the regularity of F 0 in an environment of the crosspoint follows.If one deals with spline patches it is in general di�cult to calculate the nearest pointon the surface to a given point. If one is close to the surface in comparison with thecurvature radius the distance function is convex over the parameter domain and can easilybe minimized. With the help of the bisection algorithm we must come close enough to thesurface. Then we can do Newton's method. The components of F are the distances of thepoint to the corresponding surface and the columns of F 0 are the normalized vectors fromxk to the point on the surface, which are equal to the normal vectors.Before starting Newton's method one has to check whether it converges to a uniquesolution. This test is given in Kantorovich' theorem:Theorem 1 (Kantorovich) Let F : D ! Y;D � Xopen, F is di�erentiable on D and F 0is Lipschitz continuous in D withkF 0 (y)� F 0 (x) k � 
ky � xk 8x; y 2 DFor a given x0 2 D let F 0 (x0) be regular andkF 0 �x0��1 k � �and kF 0 �x0��1 F �x0� k � �If � := �
� < 12and B �x0; t�� � Dwith t� = 1�
 �1�p1� 2��then Newton's method with starting point x0 is well de�ned and xk converges against a rootof F in B (x0; t�).Remark 1 The root is unique in B �x0; t���with t�� = 1�
 �1 +p1� 2��6



The proof of theorem 1 and remark 1 can be found in [9]. If F is smooth enough than theLipschitz constant 
 can be estimated by the norm of the second derivative of F , whichis a measure for the curvature of the surfaces. The norm of (F 0)�1 is a measure of thewell posedness of the crosspoint. For all involved constants estimations from above can becomputed and therefore a test for Newton convergence can be implemented.3.2 ExtremalpointsThere are edges without crosspoint on them (see �g ???). One also needs uniquely de�nedpoints on them. A possibility is to choose the points with maximal x coordinates. Findingthem is to solve a constraint optimization problem (f1 and f2 de�ne the two intersectingsurfaces implicitly): maxf1=f2=0 xThe corresponding Lagrange functional is:L (x; y; z; �1; �2) = x + �1f1 (x; y; z) + �2f2 (x; y; z)Necessary conditions for extremalpoints are the Kuhn Tucker conditions of �rst order:r(x;y;z)L = (1; 0; 0)t + �1rf1 + �2rf2 = 0f1 = 0f2 = 0Eliminating the Lagrange multipliers we get the system:f1 = 0f2 = 0 (3)f3 := @f1@y @f2@z � @f1@z @f2@y = 0When an edge is parallel to the y-z plane every point on it ful�lls the necessary Kuhn -Tucker conditions of �rst order. So we demand the su�cient Kuhn Tucker conditions ofsecond order: 8s 2 C; s 6= 0 : str2L (x; �) s > 0 (4)C is the tangential cone, which is in our case the one dimensional space spanned by rf1 �rf2. If we demand that the left side of (4) is greater than kksk2 we get only extremal pointswith x - curvature greater than k. In practical computation one may set k to 10�6.3.2.1 Bisection CriteriaFor extremalpoint calculation the �rst step is the bisection process again. A necessarycondition to have an extremalpoint in a box is that their are at least two surfaces in thelocalization of the solid. This condition is ful�lled by O (d�1) boxes, where d is the diameterof the boxes. If one would only use this condition the number of boxes would double levelby level. One has to make use of the third equation in (3). Applying the average lemma inthe form kf (x)� f (x�) k � kx� x�k sup�2[x;x�] kf 0 (�) k7



Figure 3: Two intersecting cylindersto f3, substitute for x the center of the box and demand f (x�) = 0, write d for the diameterof the box, calculate f 03: f 03 = r2f10B@ 0@f2@z�@f2@y 1CA+r2f20B@ 0�@f2@z@f2@y 1CAwe get a third necessary condition:kf3 (x) k � d2 �kr2f1kkrf2k+ kr2f2kkrf1k� (5)This condition is always ful�lled if the x coordinate is constant on an edge, but then thesecond Kuhn Tucker condition is violated, i. e. the x component of the curvature is 0. Thecurvature may be approximated by the curvature of the curve through the center of thebox and speci�ed by f1 = const and f2 = const. This is computable with the help of theimplicit function theorem. Condition (5) together with the check of the curvature ensuresthat the number of boxes per level is bounded.3.3 Degenerated PointsA further kind of special point is a degenerated point in the following sense:f1 = 0f2 = 0 (6)rf1 = �rf2with any � 6= 0. This means that the normals are colinear in a point of the common zeroset.3.3.1 Tangents to degenerated pointsTo get information about the tangents to the degenerated point one has to consider secondderivatives. Therefore we de�ne a local coordinate system (�; �; �) s. t. � is colinear to thecommon normals and � and � lie in the common tangential plane. In this coordinate systemboth surfaces can be approximated by the graphs of two pure quadratic functions:�1 = (� �)A (� �)t�2 = (� �)B (� �)t8



Figure 4: Edges of Example 1Level 1 2 3 4 5 6 7 8 9 10 11Boxes 1 7 19 56 200 664 1712 1824 1896 1128 384Table 1: Number of Boxes per Level for crosspoint bisectionDemanding �1 = �2 one gets the equation(� �)C (� �)t = 0 (7)with C := A�B. This equation has no nontrivial solution if C is de�nite, it has one solutionif C is semide�nite, namely the vector in the null space of the matrix. If C is inde�nite andc11 6= 0 one gets the quadratic equation ��!2 + 2c12c11 �� + c22c11 = 0with two di�erent real solutions. If c11 = 0 and c22 6= 0 one can exchange the role of � and�. If both are zero the solution is (1 0)t and (0 1)t3.4 ExamplesA �rst example is a cube of edgelength 100, intersected with a sphere of radius 75 andthe inverse of a sphere of radius 60. All of them have the same center. The calculatededges are shown in �gure 4. There are 24 crosspoints (3 in each of the 8 corners) and 24extremalpoints (4 on each of the 6 circles). The number of boxes per level for crosspointand extremalpoint calculation are shown in table 1 and table 2 respectively.Level 1 2 3 4 5 6 7 8 9 10 11Boxes 1 7 19 56 200 688 2120 2880 3048 2928 2976Table 2: Number of Boxes per Level for extremalpoint bisection
9



4 Calculating EdgesThe second step after special point calculation is edge �nding. A special point is always ageometric point together with a tangent. There are always more special points within thesame geometric point. One has to choose a start point for the edge and has to follow it untilone reaches the corresponding end point. When one knows the total length of the edge itis subdivided into pieces of the length of about the demanded gridsize. Selecting start andend points is explained in section 4.1 and edge following in section 4.2.4.1 Selecting Start PointsOne can subdivide the special points into conditional and unconditional special points. Inunconditional ones mesh nodes must be. These are e.g. crosspoints. Conditional ones willonly be used if there are no unconditional special points on an edge. It is no need that amesh node is exactly in an unconditional special point. Extremalpoints are examples forthis kind.So one has to choose unconditional special points as start point as long there are someavailable. On following the edge on has to check if there lies a conditional point on it. Ifthere is one, it has to be deleted. The end of the edge is reached if there is a unconditionalspecial point with a tangent in the opposite direction on it. After �nishing the edge thestart and end point are deleted from the special point list. If there are only conditionalspecial points available one has to start from one of these. The other (conditional) specialpoints with the same coordinates must be changed into unconditional such that they willbe recognized as end points4.2 Following CurvesCurve following is mainly investigated for homotopy methods used for nonlinear equations.The principle is always to move a certain length forward into the direction of the tangentand come back onto the curve. Two questions are:� How far can one move without danger to loose the curve ?� How precise must one come back onto the curve ?For the �rst point there are step length control mechanism which compare the estimateddeviation from the curve with the actual. To come back to the curve one can use a fastNewton like method. But it is not necessary to do it within machine precision. It is enoughto stay within a certain environment of the curve. For these algorithms see [9].The points along the curve are stored in a list. After reaching the end point this ap-proximative curve is subdivided into the demanded gridsize as good as possible. The pointsgenerated now are projected to the edge with machine precision.5 Surface and Volume MeshingIn this chapter the common strategy for plane, surface and volume meshing is described.Whenever it is enough things are formulated for the plane case, generalization to the othercases are mentioned.Let us discuss how a thinking individual might precede in the following example. Aboundary mesh is given by a set of line segments. The goal is to �ll the area with nearlyequilateral triangles (see �gure 5). 10



Figure 5: Example meshing problem

Figure 6: some rulesOne might cut o� the corner on the left with one triangle. On the right one could �llin three triangles like it is sketched in the �gure. The new point could be chosen suchthat the shape of the triangles is optimal. But, how do we decide where to put a triangle?We recognize a speci�c image formed by the boundary elements and decide to cut o� oneor more triangles simultaneously. That is the task we have to teach the computer: If theboundary looks like that image, than cut o� these triangles and get that new boundary.This sequence may be described with the help of geometric rules. There are a few rulesshown in �gure 6. If there is a sharp corner of about 60 degree, it may be cut o� by atriangle. A bay of consisting of three line segments may be �lled by three triangles. A newpoint has to be inserted somewhere in the center. A very important rule is the third one.If three lines form a triangle, it may be �lled and nothing is left.5.1 AlgorithmNow we can discuss the whole algorithm. It is stated in �gure 7. The input to the mesherare the boundary elements. These are lines for plane and surface meshing and trianglesor quadrilaterals for volume meshing. They are stored in an array. For 3D meshing it is11



load boundary elementsset tolerance classeswhile boundary is not emptychoose boundary elementget environmenttransform to reference positiontest for applicable rulesif an rule is applicablestore new nodes and interior elementsget new boundaryelse increase tolerance class for boundary elementFigure 7: overall algorithmimportant that no linear ordering of the elements is assumed. The element data containsthe indices of the accompanying points. The points are stored in the point array. The stateof the preceding algorithm is always represented by the actual set of boundary elements.Now go on as long as there are boundary elements available. Choose one of the elements.It is important to know the local environment of this selected element. Because the elementsare stored in a unstructured set this is an geometric search process. Here the asymptotictime complexity of the algorithm comes in. If one uses geometric search trees the searchcan be done in logarithmic time, otherwise it takes time proportional to the number ofboundary elements. The rest of the loop has to be done for an in average constant numberof elements.For plane and volume meshing it is advantageous to transform this local environmentto a local coordinate system, such that the base element is in reference position. Thistransformation is cheap in comparison to the simpli�cation of the following steps. Thegeneralization from plane to surface meshing is almost contained in this transformation.The local system spans the tangential plane to the surface.In reference position every one of the rules is tested for applicability. If there are moreapplicable rules the one with the best produced elements will be chosen. The boundary datastructure is updated according to the rule. The new generated points and interior elementsare stored in the global point and element arrays.If the test criteria for the rules are too sharp, a dead lock may appear. It may cometo a situation, where no rule may be applied. If the test is too sloppy, a lot of bad shapedelements may be produced.A possibility to make a compromise is the introduction of quality classes. Every boundaryelement is initialised to the highest quality class. The higher this value is the sharper thetest done for a certain element will be. If there is no success, the quality class for this oneelement will be decreased. So it is possible to apply a worse �tting rule later on.5.2 Rule descriptionThe rules are stored in data structures. This makes the mesher more 
exible in comparisonto an algorithm where the rules are hardcoded in the program. To discuss the components12
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Figure 8: two triangles in 120 degree, requirementsof an rule we have a look at the speci�c rule, which inserts two triangles into an about 120degree corner:A rule needs one or more lines, which must be connected in a given way. One speci�cis the base line, which starts in the origin of the coordinate system and is parallel to thex axis. The length is scaled by the wanted edgelength and will be about unit length, ifthe boundary mesh is of the wanted edgelength. The second segment in our example musthave the same second node as the base line as �rst node. In addition to the topologicalconnection metric requirements have to been met. Every node has to be in a tolerance area,which can be an arbitrary orientated ellipse. The ellipse is small for high quality classes andincreases for less quality.An other requirement is that no additional point or element covers a region, called freezone. This avoids overlapping when two fronts meet. The free zone is a polygon. It hasto be modi�ed if the actual points di�er from the exact points. This can be described bymeans of a linear mapping, which assigns to a point deviation a correction to the free zonecorners. In three dimensions the polygon is replaced by the convex hull of an point set, or,more general, the union of more convex hulls.Figure 9 shows the action the rule above.For some rules new points have to be inserted. To the point coordinates of the referenceposition a displacement is added. This displacement is, like for the free zone points above,a linear function of the point deviations of the existing points. To get the new front someboundary elements are inserted. Some of the old ones are deleted, some other having justthe function of a catalyst. Front points are not deleted explicitly, they are removed whenthere is no adjacent boundary element. The interior elements are appended to the elementlist.5.3 ExamplesOur �rst example for three dimensional meshing is the union of a sphere and a cylinder.The input to the mesher is the following geometry description �le:solid cyl = cylinder ( 100, 0, 0; 0, 0, 0; 50 );13
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Figure 9: two triangles in 120 degree, actionssolid ball = sphere (0, 0, 0; 70.71);solid all = (cyl or ball)and plain ( 100, 0, 0; 1, 0, 0)and plain ( -100, 0, 0; -1, 0, 0);The result for h = 25 is given in �gure 10. The �rst picture shows the calculated edges withthe special points and tangents, the second the surface mesh.The next example is also a union of a cylinder and a sphere, but with a 90� edge cut o�and a drilled hole. The input is the following:solid cyl = cylinder ( -100, 0, 0; 0, 0, 0; 50 ) andplain ( -100, 0, 0; -1, 0, 0 ) andplain ( 40, 0, 0; 1, 0, 0 ) ;solid s1 = ( cyl or sphere (50, 0, 0; 70.71067812) );solid s2 = plain (50, 0, 0; 1, 0, 0) orplain (50, 0, 0; 0, 1, 0);solid s3 = not cylinder ( 100, -50, 0; 50, 0, 100; 30);solid all = s1 and s2 and s3;The result for h = 20 is given in �gure 11.The third examples is the intersection of a cube with a sphere and the complement of asphere. The result with h = 8 is given in �gure 12.solid cube =plain (0, 0, 0; 0, 0, -1)and plain (0, 0, 0; 0, -1, 0)and plain (0, 0, 0; -1, 0, 0)and plain (100, 100, 100; 0, 0, 1)and plain (100, 100, 100; 0, 1, 0)and plain (100, 100, 100; 1, 0, 0);solid all = cubeand sphere (50, 50, 50; 75)and not sphere (50, 50, 50; 60);
14



Figure 10: Union of cylinder and sphere

Figure 11: Abstract Tool15



Figure 12: Cube and Spheres

Figure 13: Crank Shaft16



Figure 14: Sculpture in St. Gallen

17



Figure 15: Graded Mesh, example 16 Graded MeshesTo achieve a more precise result in FE computation with the same e�ort it is often usefulto vary the mesh parameter h over the domain. In this chapter a method to determine thelocal parameter for two dimensional mesh generation is described.The required input to plane meshing is the set of boundary segments. We assume wehave a boundary mesh with line segments of di�erent length at hand. So we are given afunction h(x) on the boundary, namely the length of the according boundary element. Thejob is to extend this function on the boundary to the interior. In [3] a suggestion is made:One could calculate the Delaunay triangulation according to the boundary points and uselinear interpolation of the boundary function. Our approach is computational more costlybut delivers a smoother function: One could solve the Dirichlet problem for the Laplaceequation using boundary element method. BEM is explained in a lot of text books, e. g.[7]. It is required to generate and solve a linear system with a dimension equal to the numberof boundary segments. To evaluate the function in one interior point one has to form a sumover the calculated boundary values.If the mesh parameter h varies slow across the domain it is enough to use a locallyconstant h to apply one rule. If it changes fast (jgradhj � 0:3) one should do somethingbetter: One could use a local orthogonal curvilinear coordinate system such that the unitlength in this system corresponds to h. Before the application of a rule the boundary imageis transformed to cartesian coordinates and afterwards back to the curvilinear system. Thisgives a smooth change of the gridsize. Examples for graded meshes are given in �gure 15and �gure 16.7 Mesh ImprovementThe quality of the generated mesh can be improved dramatically by two kind of meshimprovers. The standard smoothing procedure is Laplacian smoothing. This method movesevery mesh node to the center of its neighbors in a cyclic way. This method is very similarto the Gauss-Seidel iteration in equation solving. The counterpart to the GS iteration is theJacobi iteration. This method calculates the defect and after this it does a simultaneouscorrection step. The Jacobi iteration can also be applied for mesh smoothing. The advantageof this variant is, that one can work with the standard FE data structures and does notneed the neighbors to each node. An other approach to smoothing is to minimize an error18



Figure 16: Graded Mesh, example 2functional. For the graded examples the functionalerr =XTi circumference(Ti)area(Ti)is used. For the three dimensional examples with constant h an additional term is added:err =XTi circumference(Ti)area(Ti) +Xei hli + lihThis function and also its gradient with respect to point coordinates can be calculatedelement by element. The advantage of the �rst term is, that the value goes to in�nity asone triangle degenerates to a line.An other method to mesh improvement is edge swapping. The optimal number oftriangles according to one node is six. If there is a surplus or a shortage on elementsthe remaining elements cannot be well formed. Edge swapping detects such shortcomingsand tries to �x them by topological changes to the mesh. Criterion when to swap edges arediscussed in [2].8 Further GoalsNow a basic meshing software is at hand, which can be extended into di�erent directions:� On the front size di�erent geometric models will be implemented. This is importantto couple the mesh generator to existing CAD software.� People from 
uid mechanics prefer quadrilaterals and hexahedrons instead of trianglesand tetrahedrons. The rule application code will be extended to handle these elements,and rules for these elements will be written. If it is not possible to produce only hexa-hedrons, a mesh consisting of about 90 percent hexahedrons and the rest pentahedronsand tetrahedrons can be created. By subdividing every hexahedron into eight smallerones, every pentahedron into six smaller hexahedrons and every tetrahedron into foursmaller hexahedrons a pure hexahedron mesh can be generated.19



� Edge length control methods will be applied to three dimensional solids. Also opti-mization algorithms for volume elements will be used.� In structural mechanics it is important to couple one and two dimensional manifolds tovolume domains. The mesh generator will be extended to manage these requirements.
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