JOHANNES KEPLER UNIVERSITAT LINZ

An Automatic Mesh Generator
using Geometric Rules
for Two and Three Space Dimensions

Joachim Schoberl

Department of Mathematics
Johannes Kepler University, A-4040 Linz, Austria

Technical Report No 95-3 August 1995

INSTITUT FUR MATHEMATIK
Arbeitsgruppe Numerische Mathematik und Optimierung

A-4040 LINZ, Altenbergerstrafle 69, Austria

Abstract
A kind of moving front technique mesh generator is presented. A given boundary
mesh is extended into the domain in two or three dimensional space. The user can
specify rules which describe the generation of the interior elements for a given boundary
image.

1 Introduction

A lot of engineering disciplines require a partial differential equation modeling. Two of
the most popular methods to treat these p.d.e.s numerically are the finite element method
and the finite volume method. Both require a partitioning of the domain of interest into
a set of simple domains, called (interior) elements. All elements together form the mesh.
In the plane triangles and quadrilaterals are used, in three dimensional space tetrahedrons,
hexahedrons and pentahedrons are the most popular elements. It is a desirable goal to
do this partitioning automatically. There are several approaches which work quiet well in
the plane but make a lot of difficulties in three dimensions. In [1] a wide bandwidth of
algorithms is presented.

One of them is the moving front technique. The method requires that the boundary of
the domain is given by a set of boundary elements. The method puts one layer of interior
elements onto the boundary elements. So a smaller domain is received, which is reduced
by the same principle until nothing is left to do. This reduction can be done for a whole
layer at once. In [5] a description of this technique is given. In this paper a local variant is
described. One step of the algorithm cuts off one (or a few) elements from the remaining
domain.

An advancing front mesher has to decide which interior elements should be created for
a given boundary image. This tests may be coded into a programme, but I guess this
will be a long and error vulnerable programme, especially for the three dimensional case.
The suggestion is to split the whole task into rules, which describe what to do in a certain
situation and into a part of code, which has to apply these rules. The rules may be specified
in a simple programming language or graphical tools can be implemented to edit the rules.
It is described what these rules have to contain.

A full automatic three dimensional mesh generator must only use geometric information
to build the mesh. In section 2 a few possibilities to geometric modeling are given. The first
non trivial problem is to find special points of the solid. It should be a general method which
can be applied to different geometric models. In section 3 a combination of bisection and
Newtons method is presented. Starting at the special points the edges have to be detected.
This task is shortly mentioned in 4. The main part of the paper deals with free meshing,
which is used for surfaces and volume.

2 Geometric Modeling

The first step in mesh generation is to describe the solid in a mathematical way. Solid
modeling is a wide area in research over the last decade and still very active. There are a
lot of different approaches to describe a solid. We give two possibilities:

2.1 Algebraic Modeling
A lot of solids can be described by algebraic inequalities. E. g. the inequality
()’ + () +(z—c,) <7’

1

describes a sphere with center (c,, ¢, ¢,) and radius r. Also a cylinder with infinite length
can be described by a second order algebraic inequality. A halfspace, e. g. x > 0, is given by
a linear inequality. These solids, which are given by a simple inequality are called primitives.
Out from these more complicated solids can be formed by the Boolean operations union,
section and subtraction. A cylinder of finite length is the result of the section of a cylinder
of infinite length with two halfspaces:

cyl = {y2 +22< 1}
hy = {z>0}

hy = {x <10}

all = cylNhyNhy

In a computer a solid is represented by a binary tree. The leaves are the primitives. It is
simple to build solids from these primitives, but the usage is very restricted. It is difficult
to plot these solids. Finding edges is to find the nullset of two algebraic equations in three
variables. It is simple to check if a given point is inside or outside the solid.

2.2 Spline Modeling

Bezier splines and B - splines are widely used in Computer Aided Geometric Design (CAGD),
e. g. for designing aircraft wings or bodyworks. A curve or a surface is locally approximated
by a polynomial. As basis functions for Bezier splines Bernstein polynomials are used. The
coefficients, called Bezier points for Bezier splines or d’Boor points for B - splines, are points
in the space which have a geometric meaning. Also rational functions are used. With the
help of them spheres and cylinders can be represented exactly. Because the surfaces are
given explicitly, it is simple to plot them. But it is difficult to work with solids bounded by
spline patches and implement an is-in - test. To implement operations on such solids two
facts are important:

e The convexr hull property: The spline surface (curve) is contained in the convex
hull of the surrounding Bezier respectively. d’Boor points. So a simpler (and worse)
approximation is given by a polyeder.

e zoom in: It is possible to dissect a patch in a few smaller patches of the same degree.
So the approximation of the Bezier or d’'Boor points becomes better.

A textbook about spline modeling is e. g. [4].

2.3 Operations on Solids

The mesh generator should be independent of the kind of surface representation used. There-
fore the allowed operations are very limited. We will use a combination of global bisection
algorithms and local Newton type algorithms. For the bisection algorithms one needs tests
like ” is a given box inside a solid 7 * The possible answers are " no ', ” yes * or 'maybe’.
The answer 'maybe’ is always correct, but it is only allowed if the distance of the box to the
boundary is of the order of the diameter of the box. This can be decided easily for algebraic
primitives (e. g. if the distance from the center of the box to the center of a sphere is less
than the radius of the sphere minus the half diameter of the box, than it is sure that the box
is inside the sphere). For spline surfaces the test can be done for the d’Boor polyeder after
a local zoom until the accuracy is of the demanded dimension. The result of the Boolean
operations are the following:

3

G

Figure 1: Examples for Crosspoints

‘ N H no ‘ yes ‘ maybe ‘
no no no no
yes no yes maybe

maybe || no | maybe | maybe

‘ U H no ‘ yes ‘ maybe ‘
no no yes | maybe
yes yes | yes | yes

maybe || maybe | yes | maybe

LN 1

no yes

yes no
maybe || maybe

The bisection type algorithms assures global convergence, but they are slow if one is inter-
ested in exact coordinates of crosspoints. If one is near to a crosspoint, it can be calculated
fast and precise by Newton’s method. The thing one has to check if one has a start point
in the convergence area of Newton’s method. This can be decided by the surface curvature
and by the angles between the surfaces to intersect. For Newton’s method one needs the
normal vector to the surface and for the convergence test the curvature. These information
are available for algebraic surfaces and are locally available for spline patches.

3 Special Points

The mesh generator meshes volumes from its boundary, the surfaces, it meshes surfaces
from their boundaries, the edges and meshes edges from their boundaries, points, which we
call special points. There are different types of special points. The most common are the
points, where three surfaces intersect (see fig. 1). These points we call crosspoints. Their
computation is explained in section 3.1. There are edges without natural start and endpoint
(see fig. 2). To get unique defined points on these curves one can choose these with extremal
x, y or z coordinates. They are called extremalpoints and their computation is shown in
section 3.2. There are still more types of special points which came from degeneration in
some sense. They are discussed in 3.3. In common with the special points tangents to the
edges are calculated.

Figure 2: Examples for Extremalpoints

3.1 Crosspoints

Crosspoints are isolated points, where three surfaces intersect. For implicit given surfaces
these are the isolated roots of the system

filwy.2) =
fo(z,y,2) = (1)
fa(z,y,2) =
For parametric surfaces the crosspoints are given by the system

Xi(s1,t1) = Xy (s2,t2)

Xi(s1,t1) = Xs(ss,13)

Yi(si,t1) = Ya(sa,t2) (2)

Yi(si,t1) = Yz(s3,ts)

Z (31) tl) = 7y (52, t2)

Zi(s1,t1) = Z3(s3,ts)

For a combination of different types also equations can be specified. These are polynomial
equations with three respectively six unknowns and as many equations. One has to find all
roots. There are algebraic (see [6]) and also numerical (see [8]) algorithms for doing this,
but they are complicated and computationally expensive.

Our approach uses more geometric information. We consider a box in which the whole
solid is contained. Then we subdivide this box into eight boxes of the half size and so on
for each new box. In each box we examine the corresponding part of the solid. We need a
criterion to decide, whether there is a crosspoint in the box or not. If there is no crosspoint
in it we can stop this branch of the recursive algorithm. If the tests are sharp enough this
method finds all crosspoints with an arbitrary precision. But it is slow if one is interested in
precise coordinates. It needs at least eight tests to get one more binary digit in the solution.
If one is close to a solution and has information about the distance to the surfaces and
normals to the surfaces one can start Newton’s method to solve the equations above. To
assure one is in the convergence area of Newton’s method one needs information about the
curvature of the surfaces.

3.1.1 Localization

To apply the above method one has to know the shape of the solid restricted to a box. Of
course one could represent the local shape by the original solid tree, but this does not lead
to a simple local model. The simple local model model should be of the type 'empty’, full’,
or 'solid’. The localization can be done recursive:

e For a primitive the local model is ’empty’ if the whole box is outside the primitive,
it is 'full’, if the whole box is included in the primitive, and it is ’solid’, i. e. the
primitive, if the box intersects the boundary or if we cannot decide.

e For the Boolean operations the localization can be expressed by the localization of the

operands:
‘ N H empty ‘ full ‘ solid 1 ‘
empty || empty | empty empty
full empty | full solid 1
solid 2 || empty | solid 2 | solid 1 N solid 2
‘ U H empty ‘ full ‘ solid 1 ‘
empty | empty | full solid 1
full full | full full

solid 2 || solid 1 | full | solid 1 U solid 2
VT |

empty full
full empty
solid || \ solid

If the box - in - solid tests fulfill Proposition 7?7 and the solid fulfills 7?7 than the local
models of the successively refined boxes converge to the local model of the limit point.

3.1.2 Crosspoint - in - Box - Test

A necessary condition to have a crosspoint in a box is that their are at least three surfaces
in the local model. If all existing crosspoints are regular in the following sense, then the
number of boxes in each refinement level are limited by a constant. A crosspoint is regular,
if the matrix J formed by the normal vectors to three intersecting surfaces is regular. E.
g. the matrix is singular if two surfaces have the same normals. The upper bound for the
number of boxes per level grows with the condition of this matrix. The computational cost
of the bisection algorithm for regular crosspoints is not too bad, because each digit more in
precision costs the same price. Some examples for the number of boxes per level are given in
section 3.4. If a crosspoint is singular, the number of boxes fulfilling the necessary condition
grows exponential with the refinement level. This inefficiency is due to the ill posedness
of the equation. An arbitrary small perturbation in one of the functions can change the
structure of the solution: It may disappear or it may split up into two crosspoints. A
mathematical correction to this problem is to solve the equations f; = f; = detJ = 0
instead of the original system, where the indices ¢ and j correspond to two surfaces with
not colinear normals. This system is well conditioned if the degeneration is of first order.
But this system is much more complicated and does not fit into our concept. The bisection
algorithm works optimal if there are more than three cutting surfaces and the rank of the
matrix consisting of the normal vectors is three. So we make the user responsible to do the
geometric modeling in a stable way. If the condition of the Matrix J gets bad we expect
that the root of the system has algebraic dimension one and will not calculate it.

3.1.3 Speed up by Newton’s Method

If we are close to a root of the system (1) and if we have information about the derivatives
of the functions f; we can use the fast convergent Newton method. With the writing
F(z) = (fi (z,y,2), fa(x,y,2), f3(x,y,2)) and the starting point z° in the center of the
box we can do the iteration for £k =0,1,2,.. .

=t (7 () P ()

The Newton method has an intuitive geometric interpretation. In the limit the components
of F' measure the distance to the corresponding surface and the columns of the matrix F’
are colinear to the normals. The new point ¢! is the projection onto the crosspoint of
three plains given by the normals and the distance to z*. The iteration is well defined if the
matrices F’ are regular. This is again the case if the crosspoint is regular. By continuity
arguments the regularity of F’ in an environment of the crosspoint follows.

If one deals with spline patches it is in general difficult to calculate the nearest point
on the surface to a given point. If one is close to the surface in comparison with the
curvature radius the distance function is convex over the parameter domain and can easily
be minimized. With the help of the bisection algorithm we must come close enough to the
surface. Then we can do Newton’s method. The components of F' are the distances of the
point to the corresponding surface and the columns of F' are the normalized vectors from
z* to the point on the surface, which are equal to the normal vectors.

Before starting Newton’s method one has to check whether it converges to a unique
solution. This test is given in Kantorovich’ theorem:

Theorem 1 (Kantorovich) Let F: D — Y, D C Xopen, F is differentiable on D and F'
18 Lipschitz continuous in D with

I1F"(y) = F' (@) <~lly =2l Vo,yeD

For a given 2° € D let F' (z°) be reqular and

17 (%)) < 8
and :
I () F () <
If
1
o= fyn < 3
and
B (a:”,t*) cD
with .
t*:6—7(1ﬂ/1f2a)

then Newton’s method with starting point 2° is well defined and z* converges against a root
of F in B (2°,1,).

Remark 1 The root is unique in
B (3:0, t**)
with

t = ﬁi (1+\/1 - 2a)

v

The proof of theorem 1 and remark 1 can be found in [9]. If F is smooth enough than the
Lipschitz constant v can be estimated by the norm of the second derivative of F', which
is a measure for the curvature of the surfaces. The norm of (F')"' is a measure of the
well posedness of the crosspoint. For all involved constants estimations from above can be
computed and therefore a test for Newton convergence can be implemented.

3.2 Extremalpoints

There are edges without crosspoint on them (see fig 777). One also needs uniquely defined
points on them. A possibility is to choose the points with maximal x coordinates. Finding
them is to solve a constraint optimization problem (f; and fy define the two intersecting
surfaces implicitly):

max =T
J1i=f2=0

The corresponding Lagrange functional is:
L(x,y,2, A\,) =2+ Aifi (2,y,2) + Aafo (2,9, 2)

Necessary conditions for extremalpoints are the Kuhn Tucker conditions of first order:

VgL =(1,0,0) + \Vfi + XV fy =

h =
fo =0
Eliminating the Lagrange multipliers we get the system:
fi =0
fo =0 (3)
ol PhOL _050h _
BT 0y 8z 9z Oy

When an edge is parallel to the y-z plane every point on it fulfills the necessary Kuhn -
Tucker conditions of first order. So we demand the sufficient Kuhn Tucker conditions of

second order:
Vs € C,s#0:s'VL(z,\)s >0 (4)

C is the tangential cone, which is in our case the one dimensional space spanned by V f; x
V fo. If we demand that the left side of (4) is greater than k||s||* we get only extremal points
with x - curvature greater than k. In practical computation one may set & to 1076,

3.2.1 Bisection Criteria

For extremalpoint calculation the first step is the bisection process again. A necessary
condition to have an extremalpoint in a box is that their are at least two surfaces in the
localization of the solid. This condition is fulfilled by O (d~") boxes, where d is the diameter
of the boxes. If one would only use this condition the number of boxes would double level
by level. One has to make use of the third equation in (3). Applying the average lemma in
the form

1f (@) = f) | < flw = 2| sup [l (€)

£€[v,z]

Figure 3: Two intersecting cylinders

to fs, substitute for x the center of the box and demand f (z*) = 0, write d for the diameter
of the box, calculate fj:

0 0
f=Vih| | ViR
_9f oy
oy dy
we get a third necessary condition:
d
I @) [< 5 (IF*ANIV L]+ VLIV AL (5)

This condition is always fulfilled if the = coordinate is constant on an edge, but then the
second Kuhn Tucker condition is violated, i. e. the x component of the curvature is 0. The
curvature may be approximated by the curvature of the curve through the center of the
box and specified by f; = const and fs = const. This is computable with the help of the
implicit function theorem. Condition (5) together with the check of the curvature ensures
that the number of boxes per level is bounded.

3.3 Degenerated Points

A further kind of special point is a degenerated point in the following sense:

fi =0
=0 (6)
Vf] =)\Vfg

with any A # 0. This means that the normals are colinear in a point of the common zeroset.

3.3.1 Tangents to degenerated points

To get information about the tangents to the degenerated point one has to consider second
derivatives. Therefore we define a local coordinate system (£,7,() s. t. (is colinear to the
common normals and & and 7 lie in the common tangential plane. In this coordinate system
both surfaces can be approximated by the graphs of two pure quadratic functions:

G o= (EnAEn)
¢ = (En)B(E&n)

8

Figure 4: Edges of Example 1

Level |12 3 | 4 D 6 7 8 9 10 11
Boxes || 1|7]19 |56 | 200 | 664 | 1712 | 1824 | 1896 | 1128 | 384

Table 1: Number of Boxes per Level for crosspoint bisection

Demanding (; = (, one gets the equation

EnCEn'=0 (7)

with C := A— B. This equation has no nontrivial solution if C' is definite, it has one solution
if C is semidefinite, namely the vector in the null space of the matrix. If C' is indefinite and
c11 7 0 one gets the quadratic equation

2
(é) +22§+(}£:0

n cini1n Cn

with two different real solutions. If ¢;; = 0 and ¢y5 # 0 one can exchange the role of £ and
n. If both are zero the solution is (1 0)" and (0 1)

3.4 Examples

A first example is a cube of edgelength 100, intersected with a sphere of radius 75 and
the inverse of a sphere of radius 60. All of them have the same center. The calculated
edges are shown in figure 4. There are 24 crosspoints (3 in each of the 8 corners) and 24
extremalpoints (4 on each of the 6 circles). The number of boxes per level for crosspoint
and extremalpoint calculation are shown in table 1 and table 2 respectively.

Level |1]2] 3 | 4 Y 6 7 8 9 10 11
Boxes || 1| 7|19 | 56 | 200 | 688 | 2120 | 2880 | 3048 | 2928 | 2976

Table 2: Number of Boxes per Level for extremalpoint bisection

4 Calculating r.dges

The second step after special point calculation is edge finding. A special point is always a
geometric point together with a tangent. There are always more special points within the
same geometric point. One has to choose a start point for the edge and has to follow it until
one reaches the corresponding end point. When one knows the total length of the edge it
is subdivided into pieces of the length of about the demanded gridsize. Selecting start and
end points is explained in section 4.1 and edge following in section 4.2.

4.1 Selecting Start Points

One can subdivide the special points into conditional and unconditional special points. In
unconditional ones mesh nodes must be. These are e.g. crosspoints. Conditional ones will
only be used if there are no unconditional special points on an edge. It is no need that a
mesh node is exactly in an unconditional special point. Extremalpoints are examples for
this kind.

So one has to choose unconditional special points as start point as long there are some
available. On following the edge on has to check if there lies a conditional point on it. If
there is one, it has to be deleted. The end of the edge is reached if there is a unconditional
special point with a tangent in the opposite direction on it. After finishing the edge the
start and end point are deleted from the special point list. If there are only conditional
special points available one has to start from one of these. The other (conditional) special
points with the same coordinates must be changed into unconditional such that they will
be recognized as end points

4.2 Following Curves

Curve following is mainly investigated for homotopy methods used for nonlinear equations.
The principle is always to move a certain length forward into the direction of the tangent
and come back onto the curve. Two questions are:

e How far can one move without danger to loose the curve ?
e How precise must one come back onto the curve ?

For the first point there are step length control mechanism which compare the estimated
deviation from the curve with the actual. To come back to the curve one can use a fast
Newton like method. But it is not necessary to do it within machine precision. It is enough
to stay within a certain environment of the curve. For these algorithms see [9].

The points along the curve are stored in a list. After reaching the end point this ap-
proximative curve is subdivided into the demanded gridsize as good as possible. The points
generated now are projected to the edge with machine precision.

5 Surface and Volume Meshing

In this chapter the common strategy for plane, surface and volume meshing is described.
Whenever it is enough things are formulated for the plane case, generalization to the other
cases are mentioned.

Let us discuss how a thinking individual might precede in the following example. A
boundary mesh is given by a set of line segments. The goal is to fill the area with nearly
equilateral triangles (see figure 5).

10

A

Figure 5: Example meshing problem

Lo — &
N o B

S T A

Figure 6: some rules

One might cut off the corner on the left with one triangle. On the right one could fill
in three triangles like it is sketched in the figure. The new point could be chosen such
that the shape of the triangles is optimal. But, how do we decide where to put a triangle?
We recognize a specific image formed by the boundary elements and decide to cut off one
or more triangles simultaneously. That is the task we have to teach the computer: If the
boundary looks like that image, than cut off these triangles and get that new boundary.
This sequence may be described with the help of geometric rules. There are a few rules
shown in figure 6. If there is a sharp corner of about 60 degree, it may be cut off by a
triangle. A bay of consisting of three line segments may be filled by three triangles. A new
point has to be inserted somewhere in the center. A very important rule is the third one.
If three lines form a triangle, it may be filled and nothing is left.

5.1 Algorithm

Now we can discuss the whole algorithm. It is stated in figure 7. The input to the mesher
are the boundary elements. These are lines for plane and surface meshing and triangles
or quadrilaterals for volume meshing. They are stored in an array. For 3D meshing it is

11

load boundary elements
set tolerance classes
while boundary is not empty

choose boundary element

get environment

transform to reference position
test for applicable rules

if an rule is applicable

store new nodes and interior elements
get new boundary

else

increase tolerance class for boundary element

Figure 7: overall algorithm

important that no linear ordering of the elements is assumed. The element data contains
the indices of the accompanying points. The points are stored in the point array. The state
of the preceding algorithm is always represented by the actual set of boundary elements.

Now go on as long as there are boundary elements available. Choose one of the elements.
It is important to know the local environment of this selected element. Because the elements
are stored in a unstructured set this is an geometric search process. Here the asymptotic
time complexity of the algorithm comes in. If one uses geometric search trees the search
can be done in logarithmic time, otherwise it takes time proportional to the number of
boundary elements. The rest of the loop has to be done for an in average constant number
of elements.

For plane and volume meshing it is advantageous to transform this local environment
to a local coordinate system, such that the base element is in reference position. This
transformation is cheap in comparison to the simplification of the following steps. The
generalization from plane to surface meshing is almost contained in this transformation.
The local system spans the tangential plane to the surface.

In reference position every one of the rules is tested for applicability. If there are more
applicable rules the one with the best produced elements will be chosen. The boundary data
structure is updated according to the rule. The new generated points and interior elements
are stored in the global point and element arrays.

If the test criteria for the rules are too sharp, a dead lock may appear. It may come
to a situation, where no rule may be applied. If the test is too sloppy, a lot of bad shaped
elements may be produced.

A possibility to make a compromise is the introduction of quality classes. Every boundary
element is initialised to the highest quality class. The higher this value is the sharper the
test done for a certain element will be. If there is no success, the quality class for this one
element will be decreased. So it is possible to apply a worse fitting rule later on.

5.2 Rule description

The rules are stored in data structures. This makes the mesher more flexible in comparison
to an algorithm where the rules are hardcoded in the program. To discuss the components

12

Free zone
/

—_—

Environment Line

BaseLine Tolerance Ellipse

Figure 8: two triangles in 120 degree, requirements

of an rule we have a look at the specific rule, which inserts two triangles into an about 120
degree corner:

A rule needs one or more lines, which must be connected in a given way. One specific
is the base line, which starts in the origin of the coordinate system and is parallel to the
x axis. The length is scaled by the wanted edgelength and will be about unit length, if
the boundary mesh is of the wanted edgelength. The second segment in our example must
have the same second node as the base line as first node. In addition to the topological
connection metric requirements have to been met. Every node has to be in a tolerance area,
which can be an arbitrary orientated ellipse. The ellipse is small for high quality classes and
increases for less quality.

An other requirement is that no additional point or element covers a region, called free
zone. This avoids overlapping when two fronts meet. The free zone is a polygon. It has
to be modified if the actual points differ from the exact points. This can be described by
means of a linear mapping, which assigns to a point deviation a correction to the free zone
corners. In three dimensions the polygon is replaced by the convex hull of an point set, or,
more general, the union of more convex hulls.

Figure 9 shows the action the rule above.

For some rules new points have to be inserted. To the point coordinates of the reference
position a displacement is added. This displacement is, like for the free zone points above,
a linear function of the point deviations of the existing points. To get the new front some
boundary elements are inserted. Some of the old ones are deleted, some other having just
the function of a catalyst. Front points are not deleted explicitly, they are removed when
there is no adjacent boundary element. The interior elements are appended to the element
list.

5.3 Examples

Our first example for three dimensional meshing is the union of a sphere and a cylinder.
The input to the mesher is the following geometry description file:

solid cyl = cylinder (100, 0, O; 0, 0, 0; 50);

13

New Point

New Triangle

Delete Lines —
Figure 9: two triangles in 120 degree, actions

solid ball = sphere (0, 0, 0; 70.71);

solid all = (cyl or ball)
and plain (100, 0, 0; 1, 0, 0)
and plain (-100, 0, 0; -1, 0, 0);

The result for h = 25 is given in figure 10. The first picture shows the calculated edges with
the special points and tangents, the second the surface mesh.

The next example is also a union of a cylinder and a sphere, but with a 90° edge cut off
and a drilled hole. The input is the following:

solid cyl = cylinder (-100, 0, 0; 0, O, O0; 50) and
plain (-100, 0, 0; -1, 0, 0) and
plain (40, 0, 0; 1, 0, 0) ;

solid s1 = (cyl or sphere (50, 0, 0; 70.71067812));
solid s2 = plain (50, 0, 0; 1, 0, 0) or

plain (50, 0, 0; 0, 1, 0);
solid s3 = not cylinder (100, -50, 0; 50, 0, 100; 30);

solid all = s1 and s2 and s3;

The result for h = 20 is given in figure 11.
The third examples is the intersection of a cube with a sphere and the complement of a
sphere. The result with A = 8 is given in figure 12.

solid cube =
plain (0, 0, O; 0, 0, -1)
and plain (0, 0, O; 0, -1, 0)
and plain (0, 0, 0; -1, 0, 0)
and plain (100, 100, 100; 0, 0, 1)
and plain (100, 100, 100; 0, 1, 0)
and plain (100, 100, 100; 1, 0, 0);
solid all =
cube
and sphere (50, 50, 50; 75)
and not sphere (50, 50, 50; 60);

14

Figure 10: Union of cylinder and sphere

Figure 11: Abstract Tool

15

WAVAVAVAVAYYS
"' N\ =S

PRI
A4/ A/ AVANAVAY,
I, 5%@“?;‘7[A
1AN/2 IAVIAVAV/(7/ AVAVAVAL
P VAVAVA\ \\\VAVAVAYY
\W2 W rAVAVAV)A \ WAYA
B v

N
XSO

q

N \
AT \\;5_4‘&"‘
1> %LV

Figure 13: Crank Shaft

16

W=
NS =
RIS

N N\
SRR
AR RIS
AR NN
AR SIS IS NN
S AR SRR RN
A PRSI NN
nflieesvase’// aVaVav NRINNNNNIN
NSRS SIS ISR SRRRAN
OIS ORI
e ARSI R KR
R s ST
2/ VAVAVAYAAvay
AVAVAVAVAV%%AVA“AW“‘%%

[AR KOO Va)
A VA A A TAYAVA A A1
m‘"ﬂE’ﬁ@%@‘gﬁ%ﬂw&iwmﬂmw ~
ST e
SCS Aﬂﬂﬂﬂﬂﬂﬁfﬂﬂ!&}}gﬁ%
WipEsEeee

{

(I
0

y

L AYAVAVAVAY,,

08

WATNAAvAYa

A
7
\\

i\

A\
AV

SIS
YAVAVAVAN

<

VA
vava,
o

Fl
W
A

HW

VQVA

VAV
|7
AV,

o

\VAVAVAY

D

L
<A
>
(ﬁ'

%
<]
K
v
7

yaval

/)

\
\

1/
i

iz
W7
W04
g%
e
E}‘hi %)
W
v

L\

I,
i
o
VA
i
i

Figure 14: Sculpture in St. Gallen

17

NAVAVA
G
G X\ % %’5"‘
"%g'gvﬂmvmgggy

AVAVAVAVAYA s

Figure 15: Graded Mesh, example 1

6 Graded Meshes

To achieve a more precise result in FE computation with the same effort it is often useful
to vary the mesh parameter h over the domain. In this chapter a method to determine the
local parameter for two dimensional mesh generation is described.

The required input to plane meshing is the set of boundary segments. We assume we
have a boundary mesh with line segments of different length at hand. So we are given a
function h(x) on the boundary, namely the length of the according boundary element. The
job is to extend this function on the boundary to the interior. In [3] a suggestion is made:
One could calculate the Delaunay triangulation according to the boundary points and use
linear interpolation of the boundary function. Our approach is computational more costly
but delivers a smoother function: One could solve the Dirichlet problem for the Laplace
equation using boundary element method. BEM is explained in a lot of text books, e. g.
[7]. It is required to generate and solve a linear system with a dimension equal to the number
of boundary segments. To evaluate the function in one interior point one has to form a sum
over the calculated boundary values.

If the mesh parameter h varies slow across the domain it is enough to use a locally
constant h to apply one rule. If it changes fast (|gradh| > 0.3) one should do something
better: One could use a local orthogonal curvilinear coordinate system such that the unit
length in this system corresponds to h. Before the application of a rule the boundary image
is transformed to cartesian coordinates and afterwards back to the curvilinear system. This
gives a smooth change of the gridsize. Examples for graded meshes are given in figure 15
and figure 16.

7 Mesh Improvement

The quality of the generated mesh can be improved dramatically by two kind of mesh
improvers. The standard smoothing procedure is Laplacian smoothing. This method moves
every mesh node to the center of its neighbors in a cyclic way. This method is very similar
to the Gauss-Seidel iteration in equation solving. The counterpart to the GS iteration is the
Jacobi iteration. This method calculates the defect and after this it does a simultaneous
correction step. The Jacobi iteration can also be applied for mesh smoothing. The advantage
of this variant is, that one can work with the standard FE data structures and does not
need the neighbors to each node. An other approach to smoothing is to minimize an error

18

A‘
AVAY SAvAVA
EEA‘%" NP AAVAN

) AV%,
OO
\WAVAVA'S'S
VAYE

N

o
VAV

Figure 16: Graded Mesh, example 2

functional. For the graded examples the functional

circumference(7;)

e =2, area(T;)

T;

is used. For the three dimensional examples with constant h an additional term is added:

circumference(T;) h
errfz area(T}) +ZZ_+E

Ti €; ?

This function and also its gradient with respect to point coordinates can be calculated
element by element. The advantage of the first term is, that the value goes to infinity as
one triangle degenerates to a line.

An other method to mesh improvement is edge swapping. The optimal number of
triangles according to one node is six. If there is a surplus or a shortage on elements
the remaining elements cannot be well formed. Edge swapping detects such shortcomings
and tries to fix them by topological changes to the mesh. Criterion when to swap edges are
discussed in [2].

8 Further Goals

Now a basic meshing software is at hand, which can be extended into different directions:

e On the front size different geometric models will be implemented. This is important
to couple the mesh generator to existing CAD software.

e People from fluid mechanics prefer quadrilaterals and hexahedrons instead of triangles
and tetrahedrons. The rule application code will be extended to handle these elements,
and rules for these elements will be written. If it is not possible to produce only hexa-
hedrons, a mesh consisting of about 90 percent hexahedrons and the rest pentahedrons
and tetrahedrons can be created. By subdividing every hexahedron into eight smaller
ones, every pentahedron into six smaller hexahedrons and every tetrahedron into four
smaller hexahedrons a pure hexahedron mesh can be generated.

19

e Edge length control methods will be applied to three dimensional solids. Also opti-
mization algorithms for volume elements will be used.

e In structural mechanics it is important to couple one and two dimensional manifolds to
volume domains. The mesh generator will be extended to manage these requirements.

20

nererences

1]

2]

T. J. Baker. Developments ans trends in three-dimensional mesh generation. Appl.
Numer. Math., 5:275 304, 1989.

W. H. Frey and D. A. Field. Mesh relaxation: A new technique for improving triangu-
lations. Int. . numer. methods eng., 31:1121 1133, 1991.

P. L. George and E. Seveno. The advancing-front mesh generation method revisited.
Int. 3. numer. methods eng., 37:3605-3619, 1994.

Hoschek and Lasser. Grundlagen der geometrischen Datenverarbeitung.

B. P. Johnston and J. M. Sullivan. A normal offsetting technique for automatic mesh
generation in three dimensions. Int. 5. numer. methods eng., 36:1717 1734, 1993.

D. Manocha. Solving systems of polynomial equations. IEEE Comp. Graph. and Appl.,
March 1994.

S. Rjasanov. Vorkonditionierte iterative Auflosung von Randelementgleichungen fiir die
Dirichlet-Aufgabe. Technical report, TU - Chemnitz, 1990.

W. Zulehner. A simple homotopy method for determining all isolated solutions to poly-
nomial systems. Math. Comp., 50(181):167 177, January 1988.

W. Zulehner. Skriptum zur Vorlesung Numerik I (Gleichungen). Institut fiir Mathe-
matik, JKU Linz, 1991.

21

bisher erschnienene lechnical heports
der Arbeitsgruppe

Numerische Mathematik und Optimierung

1995

95-1 Hedwig Brandstetter.
Was ist neu in Fortran 907 March 1995

95-2 G.Haase, B.Heise, M.Kuhn and U.Langer.
Adaptive Domain Decomposition Methods for Finite and Boundary El-
ement Equations. August 1995

95-3 Joachim Schoberl.
An Automatic Mesh Generator using Geometric Rules for Two and
Three Space Dimensions. August 1995

22

