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Abstract This work is concerned with the numerical solution to elastoplastic problems.
Since the whole class of all possible elastoplastic problems is far too large for a common
treatment, we restrict ourselves to the investigation of problems which are geometrically
linear (strain and displacements are related linearly) and which are quasistatic. Further,
the isotropic and homogeneous material should obey the Prandtl-Reuß flow, and a linear
isotropic hardening principle.
In the first part of this work the pseudo time variable is discretized and a minimization
problem in the so called primal formulation is derived. After elimination of the stresses, the
only unknown variables are the displacements, plastic strain, and hardening parameters.
Both the plastic strain and hardening parameters may be determined exactly and pointwise
in dependence on the displacement field. These dependencies, as well as the minimization
functional itself, are not differentiable. Surprisingly, after substitution of the exact minimiz-
ers (with respect to the plastic strain and the hardening parameters), a new minimization
functional, depending now smoothly on the displacement, is obtained. The first derivative
of the (strictly convex) functional is known explicitly, thus the solution to the problem is
given by the root of this first derivative.
This can be achieved by a Newton or Newton-like method. It turns out, that the second
derivative of the minimization functional does not exist. However, the recently developed
concept of slant differentiability serves as a remedy, and the local super-linear convergence
rate of the slant Newton method can be rigorously shown under certain assumptions. These
assumptions are not needed in the spatially discrete case. In other words, the spatially
discrete version of the slant Newton iterates converges locally super-linear without any
extra assumptions.
The second part of this work is devoted to specially adapted choices of the spatial dis-
cretization, which is accomplished by the widely known Finite Element Method (FEM) of
low and high order (hp-FEM). While low order FEM is used in regions where the solution
has low regularity, the use of high order FEM speeds up the convergence in regions where
the solution has high regularity. Several strategies for determining the corresponding re-
gions (for using low or high order FEM) are discussed. Particularly a very new strategy,
the boundary concentrated FEM (BC-FEM), or more precisely, a zone concentrated FEM
(ZC-FEM), is applied to elastoplastic problems.
The elastoplastic solver, in combination with several adaptive hp-FEM strategies, has been
developed within the software framework NETGEN/NGSolve. Numerous experiments af-
firm the theoretical results of this work, and provide an extent overview regarding the
several techniques for spatial discretization.
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Zusammenfassung Diese Arbeit beschäftigt sich mit der numerischen Lösung von elasto-
plastischen Problemen. Da die gesamte Klasse aller möglichen elastoplastischer Probleme
viel zu groß für eine einheitliche Untersuchung ist, beschränken wir uns auf die Betrach-
tung von quasistatischen Problemen. Die Verzerrung soll ferner linear von der Verschiebung
abhängen (man spricht hierbei von geometrisch linearen Problemen), und das isotrope und
homogene Material soll die Prandtl-Reuß Fließregel, sowie eine lineare isotrope Verfesti-
gung aufweisen.
Im ersten Teil dieser Arbeit wird bezüglich der Pseudozeit diskretisiert und ein Mini-
mierungsproblem in sogenannter primaler Formulierung modelliert. Hier treten nach Eli-
minierung der Spannungen nur mehr Verschiebung, plastische Verzerrung und Verfesti-
gungsparameter als gesuchte Größen auf.
Sowohl die plastische Verzerrung als auch der Verfestigungsparameter können abhängig
von den Verschiebungen exakt und punktweise minimiert werden. Diese Abhängigkeiten,
sowie das Minimierungsfunktional sind nicht differenzierbar. Umso überraschender ist, dass
nach Substitution der exakten Minimierer (bezüglich plastischer Verzerrung und Verfesti-
gungsparameter) ein Funktional zu minimieren bleibt, welches allein von den Verschiebun-
gen abhängt und differenzierbar ist. Die erste Ableitung des (strikt konvexen) Funktionals
ist explizit bekannt, wodurch die Lösung des Problems durch das Finden der Nullstelle
derselben gegeben ist.
Dazu eignet sich ein Newton, oder Newton-ähnliches Verfahren. Es zeigt sich, dass die
zweite Ableitung des Minimierungsfunktionals nicht existiert. Allerdings kann hier das
erst kürzlich entwickelte Konzept von sogenannten schiefen Ableitungen zur Anwendung
kommen, und die lokale superlineare Konvergenz des “schiefen” Newtonverfahrens unter
bestimmten Voraussetzungen bewiesen werden. Diese Voraussetzungen sind aber nur im
räumlich kontinuierlichen Minimierungsproblem, nicht aber im Fall einer fixen räumlichen
Diskretisierung erforderlich.
Der zweite Teil dieser Arbeit beschäftigt sich mit der speziellen Wahl der räumlichen
Diskretisierungen. Dies geschieht mittels Finiter Elemente Methode (FEM) niedriger
oder hoher Ordnung (hp-FEM). In Bereichen wo die Regularität der Lösung niedrig ist,
diskretisiert man mittels FEM niedriger Ordnung. Ist die Regularität der Lösung aber
hoch, so kann durch Anwendung einer FEM höherer Ordnung eine schnelle Konvergenz
erzielt werden. Es werden mehrere adaptive Strategien einander gegenüber gestellt. Im
speziellen wird eine erst kürzlich entwickelte Strategie, die Randkonzentrierte FEM (engl.
Boundary Concentrated FEM, BC-FEM), oder präziser, eine Zonenkonzentrierte FEM
(ZC-FEM), auf elastoplastische Probleme angewandt.
Der elastoplastische Löser wurde in Kombination mit einigen adaptiven FEM-Strategien im
Software-Framework NETGEN/NGSolve entwickelt. Durch zahlreiche numerische Experi-
mente werden schließlich die theoretischen Resultate dieser Arbeit belegt und ein Überblick
zu den verschiedenen Methoden der räumlichen Diskretisierung gegeben.

viii



Chapter 1

Introduction

History and Basics of Elastoplasticity: Elastoplasticity is a branch of solid and
structural mechanics, where the deformation of solid bodies under load is studied. In
difference to the well known theory of elasticity, it is assumed in elastoplasticity, that the
body may stay in a deformed state when the load is released. In other words, a permanent
(and also irreversible) deformation of the body is allowed. In order to be able to store the
information of such a permanent deformation, H. E. Tresca [105] suggested to additively
split the strain into two additive and symmetric parts. One part should correspond to
the elastic amount of deformation. This part is called the elastic strain, which enters the
constitutive equations of the theory of elasticity, e.g., Hooke’s law. The other part is called
the plastic strain, an internal variable, in which the permanent deformation of the material
can be stored (at each time step). However, since by this splitting of the strain the number
of unknowns is increased, some more mathematical relations are needed in order to keep
the problem uniquely solvable.

One relation is obtained by the observation, that a permanent deformation occurs
wherever the stresses are (in some sense) too high during the load history. Mathematically,
this issue is formulated in the so called yield criterion, which was originally stated by
H. E. Tresca, and later modified by R. v. Mises [74]. It says, that only those stresses are
admissible, which are contained in a certain convex set around zero. The size of this set is
governed by a material depending constant called the yield stress.

Another relation addresses the time increment of the plastic strain. L. Prandtl [85, 86]
formulated this relation for the 2D-case, by which the principal axes of the plastic strain
increment are forced to coincide with the principal axes of the stress tensor. This relation
was extended to the 3D-case by A. Reuß [88], and later generalized to fit into the scope
of non-smooth yield surfaces by W. T. Koiter [66]. His formulation is today known as the
Prandtl-Reuß normality law or the Prandtl-Reuß flow law.

The combination of the yield criterion, together with the Prandtl-Reuß normality law,
and the classical formulation of elasticity for the elastic strain, form the system of equations,
which is today known as the classical formulation of perfect plasticity. Additionally, many
materials show another property, which is called hardening. The meaning of hardening is
as follows: A material shows hardening effects, if its hardness increases at points, where
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plastic deformation has occurred. Vice versa (and this holds for every material) the harder
a material is, the less likely it deforms plastically. This is due to the fact, that the hardness
of a material is proportional to the yield stress. Since steel, and many other materials in
industry show hardening behavior, this effect cannot be neglected. L. Prandtl [86] was the
first one to consider hardening effects among elastoplastic problems.

Other variations of elastoplasticity, such as for example the counterpart of hardening,
which is called softening, or the multiplicative splitting of the strain into elastic and plastic
parts, or the concepts of Drucker-Prager plasticity [84, 34], or the Cosserat model (see,
e. g., [79]), are not considered in this thesis. Anyway, the interested reader is referred to
the monograph [110] for a more complete overview on the history of elastoplasticity.

State of the Art: By combining the equilibrium of forces with the Prandtl-Reuß flow
law [85, 86, 88], a time-dependent variational inequality can be formulated. The existence
of a unique solution to such problems has been proved by C. Johnson in [59, 58, 60],
utilizing general results by G. Duvaut and J. L. Lions for variational inequalities [37].
Let us mention, that similar results were obtained by J. J. Moreau [76], but from a more
geometric point of view.

The traditional numerical methods for solving the time dependent variational inequal-
ity are based on a backward Euler time-discretization. In doing so, one mixed variational
problem is obtained per time step, where the so called generalized stress serves as the pri-
mal variable. In this case the application of implicit return mapping algorithms, developed
by J. C. Simo et al. [99, 97, 98, 95, 94, 96], turned out to be fruitful for calculations. Al-
ternatively, by the application of a duality argument from convex analysis, one variational
problem of the second kind is obtained per time step. Here, the primal variables are the
displacement u and the plastic strain p. Surprisingly, the original variational formulation
is today called the dual formulation, whereas the dual one is called the primal formulation.

Finite Element approximations and analysis for the dual formulation have been investi-
gated in many works of the 80s. Here, we only refer to I. Hlavác̆ek [53], and the monographs
V. Korneev and U. Langer [67], and I. Hlavác̆ek, J. Haslinger, J. Nec̆as, and J. Liv́ı̆sek [54].

Until the mid 90s, there were no numerical solvers based on the primal formulation,
which is considered in this thesis. Various schemes of Finite Element approximation for the
primal formulation were first discussed by W. Han and D. Reddy [49, 50]. They provide
an extended discussion of both, the primal and the dual, formulations, based on convex
analysis. Since then, many authors, particularly C. Carstensen, have paid attention to the
primal formulation [20, 21, 5, 6].

Motivated by the regularity properties of the solution - which is, roughly speaking,
analytical in elastic zones, and twice weakly differentiable in plastic zones of the computa-
tional domain - the spatial discretization by an adaptive combination the low order Finite
Element Method (h-FEM) and the high order Finite Element Method (p-FEM) is a natural
choice.

In h-FEM [28, 101, 27], the accuracy of the approximate solution is increased by de-
creasing the mesh size h, while the polynomial degree p of the shape functions is kept
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constant. Conversely, in the p-FEM [10], the mesh size is kept constant, and the polyno-
mial degree p of the shape functions is increased in order to obtain a better approximation.
The p-method yields a fast convergence, assumed that the solution has a high regularity.
The combination of both methods for different regions of the domain is called hp-FEM.

Another way of adaptive refinement, the so called rp-FEM strategies, are not considered
in this thesis The key of these methods is to adaptively move mesh nodes in such a way,
that a high resolution is obtained in zones, where the solution has low regularity. In
other zones (as in hp-FEM) the polynomial degree of the shape functions is increased. As
A. Düster, V. Nübel and E. Rank demonstrate in [81, 80], such strategies may even result
in an exponential convergence rate of the FE-approximation in case of the deformation
theory of plasticity. The main drawback of the rp-FEM is, that it is hard to be realized in
a standard Finite Element software, where mesh-operations are mostly limited to just the
adaptive marking and refinement.

Let us turn back to the construction of adaptive strategies for hp-FEM, which generally
involves three main instances: The first instance is the development of a sharp (reliable and
efficient) a-posteriori error estimator. It is used as a stopping criterion to terminate the
adaptive algorithm, if a desired level of accuracy has been reached. The second instance
is the definition of an appropriate refinement indicator. It is responsible for marking
elements, whether the degree of freedoms should be enriched in h- or p-FEM manner. Let
be mentioned, that often a localized a-posteriori error estimator is used as such refinement
indicator. The third instance is then to apply a certain prescription of how to apply
mesh-refinement, or how much the polynomial degree should be increased.

For certain linear problems (apart from elastoplasticity), a proper adaptive strategy
in hp-FEM may lead even to an exponential convergence rate [7] of the Finite Element
approximation to the solution. Let be mentioned, that both h- and p-FEM asymptoti-
cally yield a polynomial convergence rate. Such exponential convergence, however, is only
guaranteed for problems, where the solution is analytic almost everywhere. To be precise,
the set, where the solution is not analytic, has to be of measure zero with respect to the
domain’s boundary dimension [93, 102]. This property cannot be guaranteed for elasto-
plastic problems with hardening in general. Nevertheless, a fast polynomial convergence
rate, faster than the convergence of uniform h- or p-FEM can be expected, due to regularity
properties of the solution.

Since the elastic and plastic zones are not known in advance, the use of clever hp-
adaptive strategies in elastoplasticity is particularly important. Here, we shall remark
one problem concerning error estimators in elastoplasticity: On the one hand, there exist
a-posteriori error estimators for elastoplasticity with hardening which are efficient and
reliable. Particularly popular are averaging error estimators like the well known ZZ error
estimator, see [29]. However, for all those error estimators there holds, that either the
efficiency or the reliability constant are crucially depending on the modulus of hardening,
as C. Carstensen clearly pointed out in [23]. Up to the authors best knowledge, there is
no efficient and reliable error estimator known up to now, which could be seriously used
for “small” hardening, i. e., in the vicinity of perfect plasticity.

As mentioned before, the first two instances of a classical hp-adaptive algorithm in-
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volve the knowledge of a sharp error estimator. First (globally) to terminate the adaptive
algorithm, and second (locally) to decide whether an element has to be refined or if the
polynomial degree of the shape functions should be enriched. Apart from materials which
significantly show hardening effects, the choice of an appropriate refinement indicator is
crucial.

There is a technique, which represents more than just a remedy for the gap between
reliability and efficiency of error estimators in elastoplasticity (which is the case for small
hardening). It was invented by C. Mavriplis [71] for the spectral element method, and
later proposed for the hp-Finite Element Method by P. Houston, B. Senior, and E. Süli
[56, 57]. This technique is to estimate the regularity of the solution on the element by
measuring the slope of the coefficients with respect to an L2-orthogonal expansion of the
finite element approximation (with Legendre polynomials). If the slope of these coefficients
is falling fast enough (on a logarithmic scale) then the solution is assumed to be analytic
on the element. T. Eibner and M. Melenk [38] extended this method for meshes consisting
of triangles (in 2D) or tetrahedrons (in 3D), whereas the theory of Houston, Senior, and
Süli was developed for elements with tensor product structure only.

Another approach for adaptive refinement is the so called Zone Concentrated FEM (ZC-
FEM), which is based on the Boundary Concentrated FEM, introduced by B. N. Khorom-
skij and J. M. Melenk [62]. The BC-FEM is an optimal strategy of adaptive refinement for
problems, where the solution is known to be smooth in the interior of the computational
domain, and rough in a neighborhood of the boundary. This strategy is defined by using a
geometric mesh and a polynomial degree vector. These are combined in a way, that, in the
2D-case, the convergence of the FE-approximation to the solution is inverse proportional
to the degrees of freedom, whereas a uniform h-refined approximation converges inverse
proportional to the square root of the degrees of freedom. In this sense, the BC-FEM shows
a convergence rate which can be compared to the Boundary Element Method (BEM), and
has the advantage, that mass and stiffness matrices are still sparse. ZC-FEM represents
the adaption of BC-FEM to problems, where the solution is rough at the boundary and
on (small but positive-measured) subsets of the domain, and smooth in the rest of the
domain. The part of the domain, where the solution is known to be rough, is uniformly
h-refined, and BC-FEM is applied for the rest of the domain. Although the superb asymp-
totical convergence rate of the BC-FEM cannot be preserved in this way, the ZC-FEM is
nevertheless worth to be applied to elastoplastic problems, where the solution is known to
be rough in plastic zones (and on the boundary), whereas, under appropriate assumptions
on the data, it is known to be analytic in the interior of elastic zones.

On this Work: This PhD-Thesis is devoted to the numerical solution of special elasto-
plastic problems. We consider a quasi-static initial-boundary value problem for elastopla-
sticity with hardening. Throughout the work, only the geometrically linearized theory,
i. e., a linearized strain, as well as a linear and isotropic hardening law are considered.
The extension of this work’s theoretical approach to geometrical nonlinearity, structural
mechanics [41] and nonlinear hardening is promising. However, an extension to the linear
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kinematic hardening laws is straightforward, whereas softening laws definitely require dif-
ferent analysis tools. Several computation techniques for solving the elastoplastic problem
with various kinds of hardening can be found, e. g., in [67, 19, 16, 96, 5, 36, 64, 63, 25].
However, the analysis in this work is inherently bound to the fact that the material shows
hardening effects along with its plastification. This is not only due to the more realis-
tic modeling concerning many materials in industry, but also because of the more stable
numerical treatment: The weak formulation in Sobolev spaces results in positive definite
tangential stiffness matrices if hardening effects are considered, whereas the tangential
stiffness matrices would be semi-definite in case of perfect plasticity. Let us mention, that
in perfect plasticity spaces of bounded deformation BD(Ω) are used instead of Sobolev
spaces, see [104]. For the efficient solution of problems without hardening, i. e., perfect
Prandtl-Reuß plasticity, we refer to [103, 108, 109]. Also, we consider the case, that the ma-
terial plastifies according to just one yield criterion. The case of multi-yield elastoplasticity
has been studied, e. g., in [107, 17, 18, 45].

In this work, as mentioned above, we concentrate on the primal variational formulation,
which, after backward Euler time discretization, results in a variational inequality of the
second kind [49]. At each time step, the variational inequality is equivalent [42] to a
minimization problem with a convex but non-smooth energy functional,

J̄(u, p) → min .

However, a multiplicative additive Schwartz method [21] and a (damped) Newton-like
scheme [5] converge globally and linearly. A super-linear convergence was observed, but
not proved in the latter article ([5, Remark 7.5]).

The main theoretical contribution of this work is collected in Chapter 4 and published
in [47, 48]. Here we use two tools: the Theorem of Moreau and the concept of slant
differentiability. It is possible to prove the observed local super-linear convergence in the
following way: The minimization with respect to the plastic strain can be calculated locally
by using an explicitly known dependence [5] of the plastic strain on the total strain, i. e.,
p = p̃(ε(u)). Thus, the equivalent energy minimization problem for the displacement u
only,

J(u) := J̄(u, p̃(ε(u)) → min ,

can be defined. Since the dependencies of the energy functional on the second argument,
and of the minimizer p̃ on the total strain ε(u) are not smooth, the Fréchet derivative DJ(u)
seems, at the first glance, not to exist. Nevertheless, we can show that the structure of
the energy functional J(u) satisfies the assumptions of Moreau’s theorem, known from
convex analysis, and therefore, the energy functional J(u) is Fréchet differentiable with
the explicitly computable Fréchet derivative DJ(u). However, the second derivative of the
energy functional, D2J(u), does not exist because of the non-differentiability of the plastic
strain minimizer p̃ on the elastoplastic interface, which separates the deformed continuum
in elastically and plastically deformed parts. By the concept of slant differentiability,
introduced by X. Chen, Z. Nashed and L. Qi in [26], we define a Newton-like method using
slanting functions instead of the usual derivative. We call such method a slant Newton
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method for short. One of the main results in [26] is, that a slant Newton method converges
locally super-linear under the same assumptions as the classical Newton method. The
main task is to find a slanting function for the mapping max{0, ·}, which occurs within
the formula of the plastic minimizer p̃ and causes its non-differentiability. Such slanting
functions are easy to find in the spatially discrete case, e. g., after the FEM discretization.
In this case, Proposition 4.2 provides the explanation to the mentioned open question
formulated in [5, Remark 7.5] concerning the super-linear convergence.

The spatially continuous case is more complicated and requires some extra integrability
assumptions for the trial stress in each slant Newton step. To the best knowledge of the
author, there are no theoretical results yet known, which would guarantee the required in-
tegrability properties. Already existing results, such as in [40, 12], concern the integrability
of the stress and displacement fields which solve the elastoplastic one-time-step problem,
but not of the trial stresses during a slant Newton iteration.

Let us mention that iteration techniques were successfully used to prove regularity
results for some smoothed initial boundary value problems of the plastic flow theory by
V. Korneev and U. Langer in [68] (see also [67]). Also a very recent work by R. Griesse
and C. Meyer [43] looks promising to help with solving the open integrability problem.

However, under weak assumptions on the given data, there are pleasing results concern-
ing the regularity of the solution: The displacement u (in the spatially continuous case) is
once weakly differentiable with respect to the time variable, and, away from the boundary,
locally twice weakly differentiable with respect to the space variable [46]. This very recent
result for Prandtl-Reuß plasticity with hardening was already obtained for Cosserat plas-
ticity by D. Knees and P. Neff [65], who used regularity results on general rate-independent
systems by A. Mielke [73]. Moreover, the solution is known to be analytic in open balls of
the domain, where the plastic strain vanishes almost everywhere (so called elastic zones),
if the volume forces and surface tractions are sufficiently smooth. This is a well known
result, and can be found in the monographs A. Bensoussan and J. Frehse [12], M. Fuchs
and G. Seregin [40].

This motivates the use of hp-FEM [7, 93] for elastoplastic problems with linear harden-
ing. As already mentioned, the term hp-FEM stands for the mixed use of low order Finite
Element Methods (h-FEM) and high order Finite Element Methods (p-FEM). High order
Finite Elements are preferred in regions, where the solution is very smooth, i. e., in elastic
zones, whereas in plastic zones low order Finite Elements are used. Although the necessary
regularity assumptions for exponential convergence are not fulfilled in elastoplasticity, a
much better convergence as in pure h-FEM or p-FEM can be expected.

Therefore, we investigate four strategies: The first one is a special way to estimate
the local Sobolev-regularity of the solution [38] as described above. This strategy works
fine asymptotically, but needs a lot of calculation time for coarse meshes. This is due
to the fact, that this method only works optimal, if the initial polynomial degree is high
enough (greater than 4) on each element. Therefore we proposed a second strategy, which
in addition to the regularity-estimation also marks an element for h-refinement, if the
Frobenius norm of the plastic strain is positive, i. e., if the element is deformed plastically.
In this way we avoid, that in plastic zones, where by the time most of the new elements
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are created, the polynomial degree is too high. The third strategy, which we discuss in this
PhD-Thesis is the Zone Concentrated FEM, based on the Boundary Concentrated FEM
by J. M. Melenk and B. N. Khoromskij [62]. Their strategy was designed for problems,
where one knows in advance, that the solution is analytic in the interior of the domain and
has low regularity at the boundary. The fourth strategy is an approach where solely the
ZZ error estimator [29] is used as a refinement indicator. Although this error estimator
is known (see [23]) to be efficient and reliable for elastoplastic problems with hardening
(for fixed positive hardening module, i. e., not for perfect plasticity), this strategy shows
a comparably slow convergence of the Finite Element approximation towards the solution
of the one-time step problem.

Numerical experiments in Chapter 6 conclude the paper. A lot of effort has been
put into the development of computer software to support the theoretical results of this
thesis by computational tests. Implementations have been performed in the frameworks of
MATLAB and NETGEN/NGSOLVE, which is highlighted in the first part of this chapter.
The second part is devoted to the illustration of the super-linear convergence of the slant
Newton method at each time step when using uniform h-refinement. In the third part
of this chapter we study the convergence of the Finite Element solution for each of the
presented adaptive hp-FEM strategies.

Those numerical experiments, as well as the theoretical contribution of this thesis, are
finally discussed in Chapter 7.

This PhD-Thesis is organized as follows: In Chapter 2 we fix the notation, and
recall a few well known results from convex analysis. With the help of these, we can model
the classical and variational formulations of the elastoplastic problems in Chapter 3. The
new analytical framework for solving these problems is contained in Chapter 4. Chapter 5
addresses the temporal and spatial discretization schemes. Numerical tests are documented
in Chapter 6, and the discussion of the theoretical and numerical results in Chapter 7
concludes this thesis.
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Chapter 2

Preliminaries

2.1 Notation

Let R be the set of real numbers, R = R ∪ {−∞,+∞} the set of extended real numbers,
R+ = {x ∈ R | x > 0} the set of positive real numbers, and R

+
0 = {x ∈ R | x ≥ 0} the set

of nonnegative real numbers. Throughout this work we deal with quantities which depend
on a space variable x = (x1, x2, x3) in the Euclidean vector space R3 and on a time variable
t in R

+
0 . Partial derivatives of such a quantity, say f(x, t), are denoted by

∂f

∂xi
(x, t) or

∂f

∂t
(x, t)

for i ∈ {1, 2, 3}. The temporal derivatives are often abbreviated by a dot, e. g.,

ḟ(x, t) =
∂f

∂t
(x, t) .

The gradient of f , on the other hand, collects the spatial derivatives, and is denoted by

∇f(x, t) =

[
∂f

∂x1

(x, t),
∂f

∂x2

(x, t),
∂f

∂x3

(x, t)

]T

.

The gradient of a vector valued function, e. g., f(x, t) = [f1(x, t), f2(x, t), f3(x, t)] is matrix
valued and defined by

∇f(x, t) =

⎛
⎜⎝

∂f1

∂x1
(x, t) ∂f1

∂x2
(x, t) ∂f1

∂x3
(x, t)

∂f2

∂x1
(x, t) ∂f2

∂x2
(x, t) ∂f2

∂x3
(x, t)

∂f3

∂x1
(x, t) ∂f3

∂x2
(x, t) ∂f3

∂x3
(x, t)

⎞
⎟⎠ .

The divergence of a vector valued function is defined

div f(x, t) =
∂f1

∂x1
(x, t) +

∂f2

∂x2
(x, t) +

∂f3

∂x3
(x, t) ,
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and the divergence of a matrix valued function

f(x, t) =

⎛
⎝f11(x, t) f12(x, t) f13(x, t)
f21(x, t) f22(x, t) f23(x, t)
f31(x, t) f32(x, t) f33(x, t)

⎞
⎠

in the space R
3×3 is defined by

div f(x, t) =

⎛
⎜⎝

∂f11

∂x1
(x, t) + ∂f12

∂x2
(x, t) + ∂f13

∂x3
(x, t)

∂f21

∂x1
(x, t) + ∂f22

∂x2
(x, t) + ∂f23

∂x3
(x, t)

∂f31

∂x1
(x, t) + ∂f32

∂x2
(x, t) + ∂f33

∂x3
(x, t)

⎞
⎟⎠ .

Throughout this thesis, stress and strain tensors are identified by symmetrical square
matrices. One frequently used operation in this regard is the so called Frobenius norm

‖A‖F = 〈A , A〉1/2
F ,

which is defined via the scalar product

〈A , B〉F =
m∑

i=1

n∑
j=1

aij bij

for the matrices A = (aij) ∈ Rm×n and B = (bij) ∈ Rm×n, where m and n are from the
set of natural numbers N. Notice, that the Euclidean norm and the related scalar product
– often referred to as the l2-scalar product – for vectors of the vector space R

3 can be
seen as a special case (m = 3 and n = 1) of the more general Frobenius norm and scalar
product. Hence, we shall denote the Euclidean norm and l2-scalar product for vectors of
the Euclidean space by the same symbols ‖·‖F and 〈· , ·〉F .

Moreover the following matrix operations are often used in this thesis: The deviator is
defined for a square matrix A ∈ Rn×n, with n ∈ N, by

devA = A− trA

tr I
I ,

where the trace of a square matrix is defined by

trA = 〈A , I〉F
with I denoting the identity in Rn×n.

2.2 Some Well Known Results from Convex Analysis

In this subsection, we summarize a few results from convex and functional analysis. Let
X be a Banach space and X∗ its dual space with the duality product 〈x∗ , x〉 for x∗ ∈ X∗

and x ∈ X, and the norm

‖x∗‖X∗ = sup
x∈X

〈x∗ , x〉
‖x‖ .

10



Definition 2.1 (convex set). A set K ⊂ X is said to be convex if, for every x and y in K,
we have

λ x+ (1 − λ) y ∈ K ∀λ ∈ [0, 1] .

Definition 2.2 (convex function). Let F be a mapping of X into R. F is said to be convex
if, for every x and y in X, we have

F (λ x+ (1 − λ) y) ≤ λF (x) + (1 − λ)F (y) ∀λ ∈ [0, 1] , (2.1)

whenever the right hand side is defined.

Definition 2.3 (strictly convex function). Let F be a mapping of X into R. F is said to
be strictly convex if it is convex and the strict inequality holds in (2.1) for all x, y ∈ X
with x �= y and for all λ ∈ ]0, 1[.

The connection between convex sets and convex functions is given by the epigraph of
a function:

Definition 2.4. The epigraph of a function F : X → R is the set

epiF = {(x, c) ∈ X × R | F (x) ≤ c} .

Theorem 2.1. A function F : X → R is convex if and only if its epigraph is convex.

Proof. See [39, Proposition 2.1].

Conversely, with the indicator function it is possible to treat convex sets in the frame-
work of convex functions:

Definition 2.5. Let K be a set in X. The function XK : X → R, defined by

XK(x) =

{
0 if x ∈ K ,

+∞ else ,
(2.2)

is said to be the indicator functional of K.

Lemma 2.1. A set K ⊂ X is convex if and only if its indicator functional XK is convex.

Proof. If the indicator function XK is convex, then

XK(λ x+ (1 − λ) y) ≤ λXK(x) + (1 − λ)XK(y) ∀x, y ∈ X ∀λ ∈ [0, 1] , (2.3)

which yields

XK(λ x+ (1 − λ) y) ≤ 0 = λXK(x) + (1 − λ)XK(y) ∀x, y ∈ K ∀λ ∈ [0, 1] . (2.4)

Due to the definition of the indicator function XK there holds

λ x+ (1 − λ) y ∈ K ∀x, y ∈ K ∀λ ∈ [0, 1] . (2.5)

Hence, K is convex. Conversely, let the set K be convex, that is, there holds (2.5), implying
(2.4). If x or y are in X \K, then due to the definition of the indicator function XK , the
right hand side in (2.4) is no more finite. Hence, there holds (2.3).
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Definition 2.6 (proper function, effective domain). Let F be a mapping of X into R. F
is said to be proper if there exists x ∈ X such that F (x) < +∞ and if F (y) > −∞ for all
y ∈ X. The set

domF = {x ∈ X | F (x) < +∞}
is said to be the effective domain of F .

Notice, that for a nonempty set K ∈ X the indicator functional XK is proper, and
there holds domXK = K.

Definition 2.7. For every functional F ofX into R the conjugate functional of F is defined
by

F ∗ : X∗ → R , x∗ �→ sup
x∈X

(〈x∗ , x〉 − F (x)) . (2.6)

Definition 2.8 (subdifferential). Let F be a mapping of X into R. F is said to be
subdifferentiable at the point x ∈ X if F (x) is finite, and there exists x∗ ∈ X∗ such that

F (y) ≥ F (x) + 〈x∗ , y − x〉 (2.7)

holds for all y ∈ X. We then call x∗ a subgradient, and the set of all subgradients in x is
said to be the subdifferential of F in x and denoted by ∂F (x) = {x∗ | (2.7)}.

Notice, that subgradients only exist at points, where a function is finite.

Definition 2.9 (normal cone). Let K be a nonempty subset of X. The set NK(x) ⊂ X∗

is said to be the normal cone of K at x ∈ K, and defined by

NK(x) = {x∗ ∈ X∗ | 〈x∗ , y − x〉 ≤ 0 for all y ∈ K} .
The normal cone is illustrated in Figure 2.1 for the case X = X∗ = R2. Notice, the

normal cone NK is only defined for x ∈ K. Moreover, there are two special cases:

• If x is on a smooth part of the boundary, then the normal cone is a one-dimensional
manifold spanned by the exterior unit normal.

• If x is in the interior of K (which is identical to K if K is open) or on a concave part
of the boundary (if K is not convex), then the normal cone consists of zero only.

The following Theorems 2.2 and 2.3 are of crucial importance in the modeling of elas-
toplasticity. These results are responsible for the connection of the so called primal and
dual formulations of an elastoplastic problem. Theorem 2.3 makes use of the notion, that
X is a reflexive Banach space, which is the case, if there exists an isometric isomorphism
between the double dual space X∗∗ and X, i. e., there exists a bijective mapping

I : X∗∗ → X , x∗∗ �→ x , (2.8)

with ‖x∗∗‖X∗∗ = ‖x‖X , such that

〈x∗∗ , x∗〉X∗∗×X∗ = 〈x∗ , x〉X∗×X ∀x∗ ∈ X∗ .

Both theorems are well known in the scope of convex analysis. Although their proofs can
be found in literature (e. g. in [39]), we add them for the completeness of the presentation.
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Figure 2.1: The normal cone NK(x) at various points x in a closed convex set K.

Theorem 2.2. Let K be a nonempty subset of X. Then there holds

[x ∈ K ∧ x∗ ∈ NK(x)] ⇔ x∗ ∈ ∂XK(x) . (2.9)

Proof. Let x ∈ K and x∗ ∈ NK(x), that is

〈x∗ , y − x〉 ≤ 0 ∀y ∈ K . (2.10)

Since XK(x) = 0 and XK(y) = 0 for y ∈ K, there holds

XK(y) ≥ XK(x) + 〈x∗ , y − x〉 ∀y ∈ K , (2.11)

and thus,

XK(y) ≥ XK(x) + 〈x∗ , y − x〉 ∀y ∈ X . (2.12)

Conversely, let x∗ ∈ ∂XK(x), that is, x ∈ K and there holds (2.12). Particularly for
y ∈ K ⊂ X we obtain (2.11), and since XK(x) = 0 and XK(y) = 0, the result is (2.10).
This finishes the proof, since x ∈ K and x∗ ∈ NK(x).

Theorem 2.3. Let X be a reflexive Banach space, F be a function of X into R, and F ∗

its conjugate function. Then there holds

x∗ ∈ ∂F (x) ⇔ x ∈ ∂F ∗(x∗) . (2.13)

Proof. We assume x∗ ∈ ∂F (x). Due to Definition 2.8 this is equivalent to

F (x) ≤ inf
x̄∈X

(F (x̄) − 〈x∗ , x̄〉) + 〈x∗ , x〉 .

Swapping the sign and adding the term 〈y∗ , x〉 for arbitrary y∗ ∈ X∗ yield

〈y∗ , x〉 − F (x) ≥ sup
x̄∈X

(〈x∗ , x̄〉 − F (x̄)) + 〈y∗ , x〉 − 〈x∗ , x〉 ∀y∗ ∈ X∗ ,
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which, due to the isomorphic property 〈x∗ , x〉X∗×X = 〈x∗∗ , x∗〉X∗∗×X∗ , is equivalent to

〈y∗ , x〉 − F (x) ≥ sup
x̄∈X

(〈x∗ , x̄〉 − F (x̄)) + 〈x∗∗ , y∗ − x∗〉 ∀y∗ ∈ X∗ .

Hence,

sup
ȳ∈X

(〈y∗ , y〉 − F (y)) ≥ sup
x̄∈X

(〈x∗ , x̄〉 − F (x̄)) + 〈x∗∗ , y∗ − x∗〉 ∀y∗ ∈ X∗ ,

which precisely says, that x is in ∂F ∗(x∗). The opposite direction x ∈ ∂F ∗(x∗) ⇒ x∗ ∈
∂F (x) can be shown analogously.

The following Theorem 2.4 summarizes three well known results from convex analysis
which will be frequently used in the following chapters.

Theorem 2.4. Let F : X → R be a convex function. Then the following two properties
hold:

a) F is continuous on X if and only if there exists a non-empty open subset U ⊂ X on
which F is bounded from above by a constant C ∈ R.

b) If F is continuous on X, then F is subdifferentiable on X.

c) If F is continuous and has a unique subgradient at y ∈ X, then F is Fréchet differ-
entiable at y and its derivative is identical to the subgradient.

Proof. See [39, Proposition 2.5, Proposition 5.2, and Proposition 5.3 of Chapter I].

Definition 2.10 (coercivity). Let F be a mapping of X into R. F is said to be coercive,
if for all c1 ∈ R there exists c2 ∈ R such that for all x ∈ X there holds

F (x) ≤ c1 ⇒ ‖x‖ ≤ c2 .

Definition 2.11 (lower semicontinuity). Let F be a mapping of X into R. F is said to
be lower semi continuous (l.s.c. for short) at x ∈ X if

lim
y→x

F (y) ≥ F (x) .

F is said to be l.s.c. in X if F is l.s.c. at all x ∈ X.

Theorem 2.5. Let F : X → R be l.s.c., proper, convex and coercive. Then there exists
x̂ ∈ X such that F (x̂) = infx∈X F (x). If F is strictly convex, then x̂ is unique.

Proof. See [39, Proposition 1.2 of Chapter II].
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Chapter 3

Mathematical Modeling of
Elastoplasticity

3.1 The Classical Formulation

3.1.1 Perfect Plasticity

The theory of elastoplasticity is an extension of the theory of elasticity: The equilibrium
of forces as well as geometric considerations, such as the relation between the strain tensor
and the displacement, have to hold for both theories in the same way. The only difference
concerns the type constitutive equations. In elastoplasticity, the time increment of the
so-called plastic strain plays an important role in those constitutive relations. This is why,
even if we assume the acceleration to be small (ü ≈ 0) in the equilibrium of forces, a pseudo
time variable remains in the formulation of the problem, which, due to this fact, is called
a quasistatic problem.

Let Θ := ]0, T [ ⊂ R (for some given T ∈ R+) be the pseudo temporal interval, and let
Ω be a bounded Lipschitz domain in the Euclidean space R3. The equilibrium of forces in
the quasi-static case reads as follows:

− div(σ(x, t)) = f(x, t) for (x, t) ∈ Ω × Θ , (3.1)

where

σ(x, t) =

⎛
⎝σ11(x, t) σ12(x, t) σ13(x, t)
σ12(x, t) σ22(x, t) σ23(x, t)
σ13(x, t) σ23(x, t) σ33(x, t)

⎞
⎠ ∈ R

3×3
sym

is the symmetric Cauchy’s stress tensor and f(x, t) = [f1(x, t), f2(x, t), f3(x, t)]
T ∈ R3 is

the volume force density acting at the material point x ∈ Ω and the time t ∈ Θ. Let
u(x, t) = [u1(x, t), u2(x, t), u3(x, t)]

T ∈ R3 be the displacement of the body, and let

ε(u)(x, t) :=
1

2

(
∇u(x, t) + (∇u)T (x, t)

)
(3.2)
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denote the linearized Green-St. Venant strain tensor, or just the strain, for short. We
consider the (symmetric) strain ε to be additively split into two symmetric parts, an elastic
part e ∈ R3×3

sym and a plastic part p ∈ R3×3
sym , that is, at each material point x ∈ Ω and time

t ∈ Θ, we have
ε(x, t) = e(x, t) + p(x, t) . (3.3)

The relation between stress σ and the elastic part of the strain e is given by Hook’s law

σ = Ce, (3.4)

where, under the assumption that the material is homogeneous and isotropic, the fourth-
order stiffness tensor C = [Cijkl] ∈ R3×3×3×3 is defined by

Cijkl := λ δij δkl + μ (δik δjl + δil δjk) .

Here, λ > 0 and μ > 0 denote the Lamé constants, and δij is the Kronecker-symbol. In
case of an inhomogeneous material, the Lamé constants would depend on the space variable
x ∈ Ω.

Let the boundary of the domain Γ := ∂Ω be split into a Dirichlet-part ΓD and a
Neumann-part ΓN . We assume the Dirichlet (displacement) boundary condition

u = uD on ΓD , (3.5)

and the Neumann (traction) boundary condition

σ n = g on ΓN , (3.6)

where n(x, t) is the exterior unit normal, uD(x, t) ∈ R3 denotes a prescribed displacement,
and g(x, t) ∈ R3 is a prescribed surface traction. By neglecting the plastic term in (3.3),
i. e. p = 0, the system (3.1) - (3.6) describes the purely elastic behavior of the continuum
Ω.

The additive splitting (3.3) into two symmetric additive parts goes back to H. E. Tresca
[105]. We need two further relations, such that the unknown plastic strain p can be
determined.

The first additional relation in elastoplasticity is the so-called yield criterion, which was
originally stated by Tresca, and later modified by R. von Mises [74]. It reads as follows:

σ ∈ K , K := {τ ∈ R
3×3
sym | φ(τ) ≤ 0} , (3.7)

where the set of admissible stresses K and the yield functional φ are convex. Moreover,
the set K is closed. According to R. von Mises, the yield functional φ is defined by

φ(σ) = ‖dev σ‖F − σy . (3.8)

The yield stress σy is a positive real number and material dependent. Again, we consider
the material to be homogeneous with respect to the yield stress throughout this work.
Notice, that due to the algebraic relations (3.4), (3.2), and (3.3), there follows

σ = C(ε(u) − p) . (3.9)
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Hence, a condition for the stress σ can be equivalently seen as a condition for the plastic
strain p. This fact will lead to two equivalent classical formulations for elasticity, and it is
responsible for the use of two dual variational formulations in literature (see [50]).

The second additional relation in elastoplasticity addresses the time derivative ṗ of the
plastic strain. Originally, St. Venant [89] and M. Lévy [70] suggested, that the principal
axes of the plastic strain increment should coincide with the principal axes of the stress.
This suggestion was adapted by L. Prandtl [85, 86] (in 2D) and A. Reuß [88] (in 3D) and
later generalized to the case of nonsmooth yield surfaces by Koiter [66]. Nowadays, this
relation is known as the Prandtl-Reuß Normality Law

ṗ ∈ NK(σ) , with NK(σ) := {q ∈ R
3×3
sym | 〈q , τ − σ〉F ≤ 0 for all τ ∈ K} . (3.10)

Here, the set NK(σ) is the normal cone of the convex set K at the point σ ∈ K (see
Definition 2.9 and Figure 2.1). Together with the initial condition

p(x, 0) = p0(x) ∀x ∈ Ω , (3.11)

with given initial plastic strain p0, we finally arrive at the first classical formulation of the
perfect elastoplastic problem.

Classical Formulation I of Perfect Plasticity

Let f , g, uD, and p0 be given. Find u, p, and σ, which satisfy

− div σ(x, t) = f(x, t) (x, t) ∈ Ω × Θ ,

σ = C (ε(u) − p) ,

ε(u) = 1
2

(
∇u+ ∇uT

)
,

σ(x, t) ∈ K (x, t) ∈ Ω × Θ ,

ṗ(x, t) ∈ NK(σ) (x, t) ∈ Ω × Θ ,

u(x, t) = uD(x, t) (x, t) ∈ ΓD × Θ ,

σ(x, t)n(x, t) = g(x, t) (x, t) ∈ ΓN × Θ ,

p(x, 0) = p0(x) x ∈ Ω .

Here, the sets K and NK(σ) are defined in (3.7), (3.8), and (3.10).

(3.12)

The declaration of proper function spaces are omitted. This issue will later be discussed
for the variational formulation of (3.12) in Section 3.2.

3.1.2 The Duality Argument

The convex analysis results presented in Section 2.2 allow us to express the classical formu-
lation of (3.12) in an equivalent dual way. Let us mention, that throughout this subsection
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we shall use the abbreviations

p = p(x, t) ∈ R
3×3
sym , ṗ = ṗ(x, t) ∈ R

3×3
sym , σ = σ(x, t) ∈ R

3×3
sym , (3.13)

for some arbitrarily fixed x ∈ Ω and t ∈ Θ.
Let XK denote the indicator functional of the convex set K in (3.7), see Definition 2.5,

let XK
∗ denote its conjugate functional, see Definition 2.7, and let ∂XK and ∂XK

∗ denote
their subgradients, see Definition 2.8.

Then, due to Theorem 2.2 and Theorem 2.3 there holds

[σ ∈ K ∧ ṗ ∈ NK(σ)] ⇔ σ ∈ ∂XK
∗(ṗ) . (3.14)

The set ∂XK
∗(ṗ) reads in expanded form

∂XK
∗(ṗ) = {τ ∈ R

3×3
sym | XK

∗(q) ≥ XK
∗(ṗ) + 〈τ , q − ṗ〉F ∀q ∈ R

3×3
sym } , (3.15)

where still the explicit form of the so called dissipation functional XK
∗ has to be determined.

We will return to this point later. Notice, that in the inequality (3.15) the test variable
q lives in the whole space, whereas in the normality law (3.10) the test variable τ had
to be an element in the convex set K. This difference is essential with regard to the
variational formulation of elastoplastic problems, see Section 3.2. Consequently, another
classical formulation is obtained, which is equivalent to the formulation in (3.12):

Classical Formulation II of Perfect Plasticity

Let f , g, uD, and p0 be given. Find u, p, and σ, which satisfy

− div σ(x, t) = f(x, t) (x, t) ∈ Ω × Θ ,

σ = C (ε(u) − p) ,

ε(u) = 1
2

(
∇u+ ∇uT

)
,

σ(x, t) ∈ ∂XK
∗(ṗ(x, t)) (x, t) ∈ Ω × Θ ,

u(x, t) = uD(x, t) (x, t) ∈ ΓD × Θ ,

σ(x, t)n(x, t) = g(x, t) (x, t) ∈ ΓN × Θ ,

p(x, 0) = p0(x) x ∈ Ω .

Here, the set ∂XK
∗(ṗ) is defined in (3.15).

(3.16)

It remains to calculate the explicit form of functional XK
∗:

Lemma 3.1. Let the functional XK
∗ : R

3×3
sym → R be defined according to Definition 2.5,

Definition 2.7, and let the convex set K be defined as in (3.7) by the yield functional φ in
(3.8) for a certain choice of σy ∈ R+.
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Then, the conjugate functional XK
∗ is given by the formula

XK
∗(ṗ) =

{
σy ‖ṗ‖F , if tr ṗ = 0 ,

+∞ , else .
(3.17)

Proof. The proof can be found in literature [50]. Nevertheless, we present the proof in de-
tail. It may be helpful in order to obtain a conjugate functional for other specific hardening
laws. The definition of the conjugate functional in Definition 2.7 yields

XK
∗(ṗ) = sup

σ∈R
3×3
sym

(〈ṗ , σ〉F − XK(σ)) ,

which, due to the definition of the indicator functional XK in Definition 2.5 is equivalent
to

XK
∗(ṗ) = sup

σ∈K
〈ṗ , σ〉F .

In the first instance we will show

XK
∗(ṗ) ≥

{
σy ‖ṗ‖F , if tr ṗ = 0 ,

+∞ , else ,
(3.18)

and then finally,
[tr ṗ = 0] ⇒ [XK

∗(ṗ) ≤ σy ‖ṗ‖F ] . (3.19)

Since σ = c I, with c ∈ R and I denoting the identity, is in K, there holds

XK
∗(ṗ) = sup

σ∈K
〈ṗ , σ〉F ≥ sup

c∈R

〈c ṗ , I〉F = sup
c∈R

(c tr ṗ) =

{
0 , if tr ṗ = 0 ,

+∞ , else .

Let tr ṗ = 0, which implies dev ṗ = ṗ. The choice σ = σy ṗ ‖ṗ‖−1
F is in K due to

‖dev
(
σy ṗ ‖ṗ‖−1

F

)
‖F = σy ‖dev ṗ‖F‖ṗ‖−1

F = σy .

This choice of σ yields
XK

∗(ṗ) = sup
σ∈K

〈ṗ , σ〉F ≥ σy ‖ṗ‖F .

Hence there holds (3.18). It remains to show (3.19). Let tr ṗ = 0, implying

〈ṗ , σ〉F = 〈dev ṗ , σ〉F = 〈ṗ , dev σ〉F

for all σ ∈ R3×3
sym . Thus, there holds

XK
∗(ṗ) = sup

σ∈K
〈ṗ , σ〉F ≤ sup

σ∈K
(‖ṗ‖F‖dev σ‖F ) = σy‖ṗ‖F ,

which completes the proof.
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3.1.3 Plasticity with Hardening

The elastoplastic problems in (3.12) and (3.16) were called problems of perfect plasticity.
Although, these problems already serve as a complete description of elastoplasticity, one
important property is not covered by those: the hardening of the material due to plastic
deformation.

Hardening is a process where the hardness of a material increases. The hardness of a
material at a point x is related to the yield stress σy(x). A harder material will have a
higher resistance to plastic deformation than a less hard metal, see the definition of the
yield criterion in (3.7) and the definition of the yield functional in (3.8). Vice versa, the
metal is hardening at locations where plastic deformation occurs, i. e., where the yield
criterion is active.

There are two good reasons for considering the effect of hardening within the scope of
elastoplastic problems: First, to increase the quality of the physical model regarding the
mathematical description of empirical observations. Second, to benefit from the fact, that
the global energy functional (see Chapter 4) will be strictly convex resulting in a positive
definite FEM stiffness matrix (see Chapter 5), whereas in case of perfect plasticity, i. e.,
when we do not consider hardening effects, the global energy functional is just convex,
resulting in a semi-definite stiffness matrix.

Already in 1828 R. v. Mises [75] took this effect into account. As can be observed from
experiments, the hardening procedure is different from material to material. Thus, a lot
of different models for hardening have been derived since that time. For a good overview
on this topic, see [78, 50].

Before we start to model the classical formulation of plasticity with hardening, let us
mention, that there is a contrary effect to hardening, which is called softening. This mate-
rial property occurs for large plastic deformations, which we do not consider in the scope
of this thesis. We concentrate on the so called linear isotropic hardening law. Extending
the analytical and conceptual results to other kinds of linear hardening is straight forward,
whereas the application of nonlinear hardening and softening laws requires a different
treatment. Also the case of multi-yield [107, 55] is not considered in this thesis.

In addition to the stress σ, we need another quantity, the so-called internal force, which
stores the information about the hardness of the material at the location x ∈ Ω and time
t ∈ Θ. In case of isotropic hardening, it is sufficient to store this information in a scalar
variable α(x, t) ∈ R. Dual to the internal force α, there is another quantity γ(x, t) ∈ R, a
so called internal variable.

The algebraic relation between the internal variable γ and the internal force α is simple:

α(x, t) = −γ(x, t) (x, t) ∈ Ω × Θ , (3.20)

a consequence of the second law of thermodynamics, which says that

σ =
∂ψ

∂e
, and α = −∂ψ

∂γ
,
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where e denotes the elastic strain of (3.3) and ψ denotes the free energy functional

ψ(e, γ) =
1

2

(
〈Ce , e〉F + γ2

)
.

For more details on this topic, the interested reader is referred to the monographs [50, 2].

Henceforth, the tuples

Σ = (σ, α) ∈ R
3×3
sym × R , and P = (p, γ) ∈ R

3×3
sym × R (3.21)

are called the generalized stress and the generalized plastic strain, respectively. Both ma-
terial laws (3.7) and (3.10) or the dual law (3.15) may be formulated also in the context
of generalized stresses and plastic strains.

Let x ∈ Ω and t ∈ Θ be fixed arbitrarily. Again, let us use abbreviations as in (3.13).
Only generalized stresses Σ are admissible, which satisfy

Σ ∈ K = {T = (τ, β) ∈ R
3×3
sym × R | φ(T ) ≤ 0} , (3.22)

where the yield functional φ is defined (for Σ = (σ, α)) by

φ(Σ) = ‖dev σ‖F − σy(1 +H α) + X
R

+
0
(α) (3.23)

with the yield stress σy ∈ R+, and the modulus of hardening H ∈ R+, both depending on
the material. Notice, the last term X

R
+
0
(α), which indicates that a generalized stress Σ is

admissible, only if α is nonnegative. Negative α would induce isotropic softening, which
we neglect due to the reasons discussed above. Just as in the case of perfect plasticity (see
Section 3.1.1), the set of admissible stresses K and the yield functional φ are convex.

The generalized strain P , such as in the case of perfect plasticity, has to satisfy the
Prandtl-Reuß Normality Law

Ṗ ∈ NK(Σ) = {Q = (q, η) ∈ R
3×3
sym × R | 〈Q , T − Σ〉 ≤ 0 for all T ∈ K} . (3.24)

Here, the scalar product is defined (for Ṗ = (ṗ, γ̇) and Σ = (σ, α)) by

〈Ṗ , Σ〉 = 〈ṗ , σ〉F + γ̇ α ,

which, in the scope of elastoplasticity, is called the rate of dissipation. Again, the set
NK(Σ) is the normal cone of the convex set K at the point Σ ∈ K (see Definition 2.9 and
Figure 2.1). Together with the initial condition

P (x, 0) = P0(x) ∀x ∈ Ω , (3.25)

where P0(x) = (p0(x), γ0(x)) is given, we can formulate the classical formulation of the
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elastoplastic problem with hardening:

Classical Formulation I of Plasticity with Isotropic Hardening

Let f , g, uD, and P0 = (p0, γ0) be given. Find u, P = (p, γ), and
Σ = (σ, α), which satisfy

− div σ(x, t) = f(x, t) (x, t) ∈ Ω × Θ ,

σ = C (ε(u) − p) ,

α = −γ ,

ε(u) = 1
2

(
∇u+ ∇uT

)
,

Σ(x, t) ∈ K (x, t) ∈ Ω × Θ ,

Ṗ (x, t) ∈ NK(Σ) (x, t) ∈ Ω × Θ ,

u(x, t) = uD(x, t) (x, t) ∈ ΓD × Θ ,

σ(x, t)n(x, t) = g(x, t) (x, t) ∈ ΓN × Θ ,

P (x, 0) = P0(x) x ∈ Ω .

Here, the sets K and NK(σ) are defined in (3.22), (3.23), and (3.24).

(3.26)

According to what we learned in Subsection 3.1.2, due to Theorem 2.2 and Theorem 2.3
there holds for Σ = (σ, α) ∈ R3×3

sym × R and P = (p, γ) ∈ R3×3
sym × R

[
Σ ∈ K ∧ Ṗ ∈ NK(Σ)

]
⇔ Σ ∈ ∂XK

∗(Ṗ ) , (3.27)

where the set ∂XK
∗(Ṗ ) reads

∂XK
∗(Ṗ ) = {T ∈ R

3×3
sym ×R | XK

∗(Q) ≥ XK
∗(Ṗ )+ 〈T , Q− Ṗ 〉 ∀Q ∈ R

3×3
sym ×R} . (3.28)

The system (3.26) may thus be equivalently formulated in the following way:
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Classical Formulation of Plasticity II with Isotropic Hardening

Let f , g, uD, and P0 = (p0, γ0) be given. Find u, P = (p, γ), and
Σ = (σ, α), which satisfy

− div σ(x, t) = f(x, t) (x, t) ∈ Ω × Θ ,

σ = C (ε(u) − p) ,

α = −γ ,

ε(u) = 1
2

(
∇u+ ∇uT

)
,

Σ(x, t) ∈ ∂XK
∗(Ṗ ) (x, t) ∈ Ω × Θ ,

u(x, t) = uD(x, t) (x, t) ∈ ΓD × Θ ,

σ(x, t)n(x, t) = g(x, t) (x, t) ∈ ΓN × Θ ,

P (x, 0) = P0(x) x ∈ Ω .

Here, the set ∂XK
∗(Ṗ ) is defined in (3.28).

(3.29)

The explicit form of the dissipation functional XK
∗ is presented in the following Lemma:

Lemma 3.2. Let the functional XK
∗ : R3×3

sym ×R → R be defined according to Definition 2.5
and Definition 2.7, and let the convex set K be defined as in (3.22) by the yield functional
φ in (3.23) for a certain choice of σy ∈ R+ and H ∈ R+.

Then, there holds

XK
∗(Ṗ ) = XK

∗(ṗ, γ̇) =

{
σy ‖ṗ‖F , if [ tr ṗ = 0 ] ∧ [ γ̇ +H σy ‖ṗ‖F ≤ 0 ] ,

+∞ , else .
(3.30)

Proof. The proof is analogue to the proof of Lemma 3.1. The definition of the conjugate
functional in Definition 2.7 yields

XK
∗(Ṗ ) = sup

Σ∈R
3×3
sym ×R

(
〈Ṗ , Σ〉 − XK(Σ)

)
,

which, due to the definition of the indicator functional XK in Definition 2.5 is equivalent
to

XK
∗(Ṗ ) = sup

Σ∈K
〈Ṗ , Σ〉 .

In the first instance we will show

XK
∗(Ṗ ) = XK

∗(ṗ, γ̇) ≥
{
σy ‖ṗ‖F , if [ tr ṗ = 0 ] ∧ [ γ̇ +H σy ‖ṗ‖F ≤ 0 ] ,

+∞ , else ,
(3.31)
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and then finally,

[ tr ṗ = 0 ] ∧ [ γ̇ +H σy ‖ṗ‖F ≤ 0 ] ⇒ [ XK
∗(ṗ) ≤ σy ‖ṗ‖F ] . (3.32)

Since Σ = (σ, α) = (c I, 0), with c ∈ R and I denoting the identity, is in K, there holds

XK
∗(Ṗ ) = sup

Σ∈K
〈Ṗ , Σ〉 ≥ sup

c∈R

〈c ṗ , I〉F = sup
c∈R

(c tr ṗ) =

{
0 , if tr ṗ = 0 ,

+∞ , else .

Let ṗ be such, that tr ṗ = 0, which implies dev ṗ = ṗ. The specific choice of Σ̄ = (σ̄, ᾱ)
with σ̄ = σy (1 +H ᾱ) ṗ ‖ṗ‖−1

F and ᾱ ∈ R
+
0 is in K, since

‖dev σ̄‖F = σy (1 +H ᾱ) ‖dev ṗ‖F‖ṗ‖−1
F = σy (1 +H ᾱ) .

Moreover, if Ṗ = (ṗ, γ̇) is such, that γ̇ +H σy ‖ṗ‖F ≤ 0, the choice of Σ̄ yields

XK
∗(Ṗ ) = sup

(σ,α)∈K

(〈ṗ , σ〉F + γ̇ α) ≥ 〈ṗ , σ̄〉F+γ̇ ᾱ ≥ σy ‖ṗ‖F +(σy H ‖ṗ‖F + γ̇) ᾱ ≥ σy ‖ṗ‖F ,

whence there holds (3.31). It remains to show (3.32).
Let σy H ‖ṗ‖F + γ̇ ≤ 0 and ṗ such, that tr ṗ = 0, which implies

〈ṗ , σ〉F = 〈dev ṗ , σ〉F = 〈ṗ , dev σ〉F
for all σ ∈ R3×3

sym . Thus, there holds

XK
∗(Ṗ ) = sup

(σ,α)∈K

(〈ṗ , σ〉F + γ̇ α) sup
(σ,α)∈K

(‖ṗ‖F‖dev σ‖F + γ̇ α)

≤ sup
α≥0

(σy (1 +H α) ‖ṗ‖F + γ̇ α) = σy‖ṗ‖F + (σy H ‖ṗ‖F + γ̇) sup
α≥0

α = σy‖ṗ‖F ,

which completes the proof.

3.2 The Variational Formulation

The numerical solution of an elastoplastic problem requires a discretization scheme. In
this thesis we focus on the implicit (backward) Euler method regarding the discretization
in time, and the Finite Element Method for the spatial discretization. Hence, a variational
formulation of the problem is required. Throughout the thesis we assume the given data
to be sufficiently smooth and integrable. For shorter notation, we omit the dependency of
stresses, strains, displacements, and forces on the spatial and temporal variables (x, t).

There are two different variational formulations popular in elastoplasticity [50]: first,
the so called primal (variational) formulation, which is derived from the classical formu-
lation in (3.29), and second, the dual (variational) formulation, derived from the classical
formulation in (3.26). 1 We shall focus on the primal variational formulation in this work.
The interested reader is referred to the monographs [96, 50] regarding the dual variational
formulation.

1The study of perfect plasticity in the previous section, which lead to the classical formulations (3.16)
and (3.12), was helpful for a better understanding of elastoplasticity with hardening. However, in this
section the variational formulation is investigated for the case of elastoplasticity with hardening only.
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3.2.1 Function Spaces

We utilize the Lebesgue space Q := [L2(Ω)]3×3
sym and the Sobolev space V := [H1(Ω)]

3
with

the associated scalar products and norms

〈p , q〉Q =

∫
Ω

〈p , q〉F dx , ‖q‖Q := 〈q , q〉1/2
Q ,

〈u , v〉V =

∫
Ω

(〈u , v〉F + 〈∇u , ∇v〉F ) dx , ‖v‖V := 〈v , v〉1/2
V .

In order to incorporate Dirichlet boundary conditions in the variational formulation, we
define the test space

V0 = {v ∈ V | v|ΓD
= 0} , (3.33)

and the hyper plane

VD = {v ∈ V | v|ΓD
= uD} . (3.34)

Moreover, recall the pseudo time interval Θ = ]0, T [. We utilize the temporal Lebesgue
space L2(Θ ; X̄) and the temporal Sobolev space H1(Θ ; X̄), where X̄ ⊂ X is an arbitrary
subspace of a Sobolev or Lebesgue subspace X (e.g., V , Q or V0). The respective scalar
products and norms read

〈u , v〉L2(Θ ; X) =

∫
Θ

〈u , v〉X dt , ‖v‖L2(Θ ; X) = 〈v , v〉1/2
L2(Θ ; X) ,

〈u , v〉H1(Θ ; X) =

∫
Θ

(〈u , v〉X + 〈u̇ , v̇〉X) dt , ‖v‖H1(Θ ; X) = 〈v , v〉1/2

H1(Θ ; X) .

Finally, let the temporal Sobolev subspace H1
0 (Θ ; X̄) be defined by

H1
0 (Θ ; X̄) = {x ∈ H1(Θ ; X̄) | x|t=0

= 0} ,

where x|t=0 denotes the trace of x on the boundary {0} of the time interval Θ.

For simpler notation, we henceforth consider homogeneous initial conditions, and for
the moment (as long as we discuss the modeling of time dependent variational formulations)
also homogeneous Dirichlet boundary conditions, i. e.,

uD(x, t) = 0 on Θ × ΓD , P0(x) = (p0(x), γ0(x)) = 0 on Ω .

The study of inhomogeneous cases is straightforward, but comes with a lot more of
technical details which would blear the main ideas. In this scope, the interested reader
is referred to the works [59, 58, 50]. As soon as we arrive at time discretized problems,
inhomogeneous Dirichlet boundary conditions are again considered, so that the main con-
tribution of this work (in Chapter 4) covers this case as well.
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3.2.2 Discretization in Time

The numerical treatment requires a time discretization of the a time-dependent variational
formulation. Therefore, let NΘ ∈ N denote the number of temporal subintervals, τ = T/NΘ

the step size, and

Θτ = {tk = k τ | k ∈ {0, . . . , NΘ}} (3.35)

be a uniform discretization of the closure of the time interval Θ = [0, T ]. We approximate
the respective quantities linearly, e. g., p(x, t) =

∑NΘ

k=1 pk(x)ϕk(t), where ϕk(t) denote
linear hat functions with ϕk(tj) = δjk, and the coefficients pk(x) = p(x, tk). On each
time interval t ∈ (tk−1, tk], the temporal derivatives are approximated by the backward
difference quotient, e. g.,

ṗ(x, t) ≈ pk(x) − pk−1(x)

τ
.

This discretization of a time-dependent problem represents an implicit Euler scheme with
fixed step size τ . We consider uniform time discretization in order to shorten the notation
a bit. Nonuniform time discretization might be applied as well.

3.2.3 The Primal Formulation

The primal formulation is derived from the Classical Formulation II (3.29). Here, the
governing equations are the equilibrium of forces (3.1),

− div σ = f ,

and the plastic flow law Σ = (σ, α) ∈ ∂XK
∗(Ṗ ), which (by definition) means, that the

inequality

σ : (q − ṗ) + α (η − γ̇) + XK
∗(ṗ, γ̇) ≤ XK

∗(q, η) ∀(q, η) ∈ R
3×3
sym × R , (3.36)

holds, with XK
∗ defined as in (3.30).

Concerning the equilibrium of forces, we substitute Hooke’s law (3.4) and the additive
splitting (3.3), multiply with an arbitrary test function v̄ = (v − u̇) (where v is arbitrary,
but has to vanish at the Dirichlet boundary ΓD) and integrate over the spatial domain
Ω and the temporal domain Θ. After partially integrating with respect to the spatial
domain Ω, the equilibrium of forces (3.1) turns into the following variational equation:
find (u, p) ∈ H1(Θ ; V0) × L2(Θ ; Q) such that for all v ∈ L2(Θ ; V0) there holds

〈C (ε(u) − p) , ε(v)− ε(u̇)〉L2(Θ ; Q) = 〈f , v− u̇〉L2(Θ ; L2(Ω)) + 〈g , v− u̇〉L2(Θ ; L2(ΓN )) . (3.37)

We turn to the plastic flow rule (3.36), where we substitute Hooke’s Law (3.4), the
additive splitting of the strain (3.3), and the relation (3.20) between the internal variable
γ and the internal force α. After integration over space and time we obtain the following
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variational inequality: find (u, p, γ) ∈ L2(Θ ; V0) × H1
0 (Θ ; Q) × H1

0 (Θ ; L2(Ω)) such that
for all (q, η) ∈ L2(Θ ; Q) × L2(Θ ; L2(Ω)) there holds

〈C (ε(u) − p) , q − ṗ〉L2(Θ ; Q) + 〈−γ , η − γ̇〉L2(Θ ; L2(Ω)) +

∫
Θ

∫
Ω

XK
∗(ṗ, γ̇) dx dt

≤
∫

Θ

∫
Ω

XK
∗(q, η) dx dt . (3.38)

Summarizing, we are looking for (u, p, γ) ∈ H1
0 (Θ ; V0) ×H1

0 (Θ ; Q) ×H1
0 (Θ ; L2(Ω)) such

that for all (v, q, η) ∈ L2(Θ ; V0) × L2(Θ ; Q) × L2(Θ ; L2(Ω)) the equations (3.37) and
(3.38) are satisfied. For a unified formulation, we collect the primal and the test variables

y = (u, p, γ) ∈ Y = H1
0 (Θ ; V0) ×H1

0 (Θ ; Q) ×H1
0 (Θ ; L2(Ω)) ,

z = (v, q, η) ∈ Z = L2(Θ ; V0) × L2(Θ ; Q) × L2(Θ ; L2(Ω)) ,

and define the bilinear forms a : Y × Z → R, b : Y × Z → R, c : Y × Z → R, the linear
form l : Z → R, and the convex functional ψ : Z → R by

b(y, z) = 〈C (ε(u) − p) , ε(v)〉L2(Θ ; Q) ,

c(y, z) = 〈C (ε(u) − p) , q〉L2(Θ ; Q) + 〈−γ , η〉L2(Θ ; L2(Ω)) ,

a(y, z) = c(y, z) − b(y, z) ,

l(z) = 〈f , v〉L2(Θ ; L2(Ω)) + 〈g , v〉L2(Θ ; L2(Γ)) ,

ψ(z) =

{∫
Θ

∫
Ω
σy ‖q‖F dx dt if a. e.: [tr q = 0] ∧ [η +H σy ‖q‖F ≤ 0] ,

+∞ else.

Then we obtain the following variational formulation:

Problem 3.1. Find y ∈ Y , such that for all z ∈ Z there hold

b(y, z − ẏ) = l(z − ẏ) , (3.39)

c(y, z − ẏ) + ψ(ẏ) ≤ ψ(z) , (3.40)

or, equivalently the subtraction (3.40) - (3.39),

a(y, z − ẏ) + l(z − ẏ) + ψ(ẏ) ≤ ψ(z) . (3.41)

Remark 3.1. C. Johnson shows in [58], that this Problem 3.1 is uniquely solvable, if the
modulus of hardening H is positive, and if the given data is sufficiently smooth.

After the discretization of Problem 3.1 with respect to time, i. e., after the application
of an implicit Euler method with uniform step size τ as discussed in Section 3.2.2, and after
some laborious, but elementary calculation, a one-time step problem is obtained, which
reads: 2

2Notice, that here we consider the inhomogeneous Dirichlet boundary condition u|ΓD
= uD again.
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Problem 3.2. Let Θτ denote the set of time steps defined in (3.35). For an arbitrary
time step tk ∈ Θτ , let the body load fk ∈ L2(Ω), the surface load gk ∈ L2(ΓN), the
previous plastic strain pk−1 ∈ Q and the previous hardening parameter γk−1 ∈ L2(Ω) be
given. Find the combination of displacement, plastic strain, and hardening parameter yk =
(uk, pk, γk) ∈ VD×Q×L2(Ω), such that for all test functions z = (v, q, η) ∈ VD×Q×L2(Ω)
there holds

ak(yk, yk − z) + lk(yk − z) + ψk(yk) ≤ ψk(z) . (3.42)

Here, the following definitions are used:

ak(yk, z) = 〈C (ε(uk) − pk) , ε(v) − q〉Q + 〈γk , η〉L2(Ω) , (3.43)

lk(z) = −〈fk , v〉L2(Ω) − 〈gk , v〉L2(ΓN ) , (3.44)

ψk(z) = σy ‖q − pk−1‖L1(Ω) + XMk
(q, η) , (3.45)

where XMk
(q, η) denotes the indicator functional (see Definition 2.5) of the set

Mk = {(q, η) ∈ Q× L2(Ω) | a. e. : [tr(q − pk−1) = 0] ∧ [η +H σy ‖q − pk−1‖F ≤ γk−1]} .

Equation (3.42) is a so called variational inequality of the second kind, and it is known
[37, 50], that there exists a unique solution to Problem 3.2. Moreover, it is elementary to
show, that Problem 3.2 is equivalent to the following minimization problem [50]:

Problem 3.3. Let Θτ denote the set of time steps defined in (3.35). For an arbitrary
time step tk ∈ Θτ , let the body load fk ∈ L2(Ω), the surface load gk ∈ L2(ΓN), the
previous plastic strain pk−1 ∈ Q and the previous hardening parameter γk−1 ∈ L2(Ω) be
given. Find the combination of displacement, plastic strain, and hardening parameter yk =
(uk, pk, γk) ∈ VD×Q×L2(Ω), such that for all test functions z = (v, q, η) ∈ VD×Q×L2(Ω)
there holds

J̄k(yk) ≤ J̄k(z) . (3.46)

Here, the minimization functional J̄k : VD ×Q× L2(Ω) → R is defined

J̄k(z) =
1

2
ak(z, z) + ψk(z) − lk(z) , (3.47)

with the bilinear form ak, the convex functional ψk, and the linear functional lk from
(3.43)–(3.45).

The convex functional J̄k in Problem 3.3 expresses the mechanical energy of the de-
formed system at the k−th time step. The goal is to find a displacement uk, a plastic
strain pk, and the hardening parameter γk, such that the energy J̄k is minimized. The
minimization with respect to the hardening parameter γk ∈ L2(Ω) can be calculated ana-
lytically, which is due to the simple minimization of the quadratic term η2 in the energy
functional J̄k under the restriction (pk, η) ∈ Mk. The minimizer γk = γ̃k(pk) depends on
the plastic strain pk, where, γ̃k : Q→ L2(Ω) reads [21]

γ̃k(q) = γk−1 − σyH‖q − pk−1‖F . (3.48)
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Of course (cf. (3.20)), a minimization with respect to the internal variable γk may identified
by the minimization with respect to the internal force αk = α̃k(pk), which is the preferred
use in literature. Here the minimizer α̃k : Q→ L2(Ω) reads

α̃k(q) = αk−1 + σyH‖q − pk−1‖F . (3.49)

By substitution, we end up with the following (equivalent) minimization problem in two
variables:

Problem 3.4. Let k ∈ {1, . . . , NΘ} denote a given time step, pk−1 ∈ Q and αk−1 ∈ L2(Ω)
be given such, that αk−1 ≥ 0 almost everywhere. Define J̄k : V ×Q → R by J̄k(v, q) := +∞
if tr q �= tr pk−1, else

J̄k(v, q) :=
1

2

∫
Ω

〈C(ε(v) − q) , ε(v) − q〉F + (αk−1 + σyH‖q − pk−1‖F )2 dx

+

∫
Ω

σy‖q − pk−1‖F dx−
∫

Ω

fk · v dx−
∫

ΓN

gk · v ds .
(3.50)

Find (uk, pk) ∈ VD ×Q such that J̄k(uk, pk) ≤ J̄k(v, q) holds for all (v, q) ∈ VD ×Q.

Notice, that J̄k is smooth with respect to the displacements v, but not with respect to
the plastic strains q.
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Chapter 4

A New Solver for the Primal
Formulation

4.1 Deriving a new Minimization Problem

Various strategies have been introduced to solve the Minimization Problem 3.4. C. Car-
stensen investigated a separated minimization with respect to the displacement v and the
plastic strain q alternately and proved the linear convergence of the resulting method in
[21]. Another interesting technique is to reduce Problem 3.4 to a minimization problem
with respect to the displacements v only. We will make the important observation that
such a reduced minimization problem is smooth with respect to the displacements v and
its derivative is explicitly computable. To discuss this issue, let us first introduce a more
abstract formulation of (3.50). Therefore, we define the C-scalar product, the C-norm, a
convex functional ψk and a linear functional lk by the relations

〈q1 , q2〉C :=

∫
Ω

〈C q1(x) , q2(x)〉F dx , ‖q‖C := 〈q , q〉1/2
C
, (4.1)

ψk(q) :=

{∫
Ω

(
1
2
α̃k(q)

2 + σy‖q − pk−1‖F

)
dx if tr q = tr pk−1 ,

+∞ else ,
(4.2)

lk(v) :=

∫
Ω

fk · v dx+

∫
ΓN

gk · v ds , (4.3)

where α̃k(q) is defined in (3.49). Then the functional J̄k(v, q) in (3.50) can simply be
rewritten as

J̄k(v, q) =
1

2
‖ε(v) − q‖2

C + ψk(q) − lk(v) . (4.4)

The following results are formulated for functionals mapping from a Hilbert space H
into the set of extended real numbers R = R ∪ {±∞}. The Hilbert space H provides a

scalar product 〈◦ , �〉H and the norm ‖·‖H := 〈· , ·〉1/2
H . The topological dual space of H

is denoted by H∗. Further, if a function F is Fréchet differentiable, we will denote its
derivative in a point x by DF (x) and its differential into the direction y by DF (x ; y).
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The following theorem can be seen as a generalization of a work of J. J. Moreau [77].
The precise difference is discussed later in Remark 4.1 on page 34.

Theorem 4.1. Let Φ : H → R be a convex and Fréchet differentiable function with the
derivative DΦ ∈ H∗, and let Ψ : H → R be a convex and proper function. We define the
functions f : H×H → R and F : H → R by

f(x, y) := Φ(x− y) + Ψ(x) and F (y) := inf
x∈H

f(x, y) . (4.5)

Let us assume additionally, that the infimum F (y) is attained for all y ∈ H, that is, there
exists a function x̃ : H → H such that F (y) = f(x̃(y), y). Then the following statements
are valid:

1. F is convex and continuous in H. If either Φ is strictly convex in H or Ψ is strictly
convex in its effective domain, then F is strictly convex in H.

2. The subdifferential of F writes ∂F (y) = {−DΦ(x̃(y) − y)} for all y ∈ H.

Proof. Hence Φ is finite and Ψ is proper, the function f(·, y) = Φ(· − y) + Ψ(·) is proper
with respect to the first argument for all y ∈ H. Due to the minimization property of x̃,
there holds that Ψ(x̃(y)) and F (y) are finite for all y ∈ H. Thus, F in (4.5) is well defined
as a mapping of H into R . Moreover, we note that f(x̃(y), z) is finite for all y and z in
H. For the convexity of F , we must check that

F (ty1 + (1 − t)y2) ≤ tF (y1) + (1 − t)F (y2)

for all y1 ∈ H, y2 ∈ H and t ∈ [0, 1]. Let y := ty1 +(1− t)y2 and x := tx̃(y1)+ (1− t)x̃(y2).
Utilizing the minimization property of x̃ we obtain

F (ty1 + (1 − t)y2) = F (y) = f(x̃(y), y) ≤ f(x, y). (4.6)

Using the structure f(x, y) = Φ(x − y) + Ψ(y) and the convexity of Φ and Ψ, elementary
calculations yield

f(x, y) ≤ tf(x̃(y1), y1) + (1 − t)f(x̃(y2), y2) = tF (y1) + (1 − t)F (y2). (4.7)

The substitution of (4.7) in (4.6) proves the convexity of F . If either Φ or Ψ|domΨ
was

strictly convex, the inequality in (4.7) would hold strictly for y1 �= y2 and t ∈ ]0, 1[. As
a result, F would be strictly convex. It remains to show, that F is continuous in H. We
arbitrarily fix x̂ ∈ dom Ψ, ŷ ∈ H, and ε > 0. Then, obviously

F (y) = inf
x∈H

(Φ(x− y) + Ψ(x)) ≤ Φ(x̂− y) + Ψ(x̂).

Since Φ is continuous in x̂− ŷ, there exists δ > 0, such that for all y : ‖y − ŷ‖H < δ there
holds Φ(x̂− y)+Ψ(x̂) ≤ Φ(x̂− ŷ)+ ε+Ψ(x̂). Thus, F is bounded above on the non-empty
open set U := {y : ‖y− ŷ‖H < δ} and Theorem 2.4 a) concludes the continuity of F in H.
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Note, that due to Theorem 2.4 b), the function F is subdifferentiable. Let y ∈ H, and
G ∈ ∂F (y) be arbitrary. By the definition of the subdifferential, there holds

F (y + z) ≥ F (y) + 〈G , z〉H (4.8)

for all z ∈ H. On the other hand, for all z ∈ H, there holds

F (y + z) = f(x̃(y + z), y + z) ≤ f(x̃(y), y + z) . (4.9)

Since f(x, y) = Φ(x − y) + Ψ(x) and Φ is Fréchet differentiable, there exists a function
r : H → R with the property limz→0|r(z)|/‖z‖H = 0 such that

f(x̃(y), y + z) = f(x̃(y), y)︸ ︷︷ ︸
=F (y)

−〈DΦ(x̃(y) − y) , z〉H + r(z) . (4.10)

Combining (4.9) and (4.10) we obtain

−F (y + z) ≥ −F (y) + 〈DΦ(x̃(y) − y) , z〉H − r(z) . (4.11)

Summation of (4.8) and (4.11) yields r(z) ≥ 〈G + DΦ(x̃(y) − y) , z〉H ≥ −r(−z) for all
z ∈ H, and thus there holds

lim
z→0

〈G+ DΦ(x̃(y) − y) , z〉H
‖z‖H

= 0 ,

which implies G = −DΦ(x̃(y) − y). Since G was chosen arbitrarily in ∂F (y), we end up
with ∂F (y) = {−DΦ(x̃(y) − y)}.

Notice, the subdifferential ∂F (y) does not necessarily contain one element only, but
depends on the set of functions x̃ satisfying F (y) = f(x̃(y), y). If x̃ was unique, then
∂F (y) would contain only one subgradient identical to derivative DF (y) according to
Theorem 2.4 c). We formulate a sufficient condition for the (unique) existence of x̃ under
the assumptions of coercivity and lower semicontinuity.

Corollary 4.1 (Moreau). Let the function f : H×H → R be defined

f(x, y) =
1

2
‖x− y‖2

H + ψ(x) (4.12)

where ψ is a convex, proper, l.s.c. and coercive function of H into R. Then F (y) :=
infx∈H f(x, y) defines a mapping F : H → R and there exists a unique function x̃ : H → H
such, that F (y) = f(x̃(y), y) for all y ∈ H, and there holds:

1. F is strictly convex and continuous in H.

2. F is Fréchet differentiable with

DF (y) = 〈y − x̃(y) , ·〉H ∈ H∗ for all y ∈ H . (4.13)
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Proof. Let y ∈ H be fixed arbitrarily. Then, f(·, y) satisfies the assumptions of Theo-
rem 2.5. Thus, there exists a unique element x̃(y) ∈ H such that f(x̃(y), y) = F (y).
Theorem 4.1 (by choosing Φ(z) := 1

2
‖z‖2

H) states, that F is strictly convex, continuous and
subdifferentiable with a unique subgradient 〈y − x̃(y) , ·〉H. Together with Theorem 2.4 c)
we conclude that F is Fréchet differentiable with DF (·) as in (4.13).

Remark 4.1. This corollary was first formulated and proved in 1965 by J. J. Moreau [77,
7.d. Proposition], and can be interpreted as an immediate consequence of Theorem 4.1 and
Theorem 2.5.

The following Proposition is crucial for the further investigation of elastoplastic prob-
lems. Due to Corollary 4.1 the existence of a minimizer with respect to the plastic strain
is guaranteed. This induces the definition of a new minimization functional – thus, a new
minimization problem for elastoplasticity – in (smooth) dependency on the displacements
only.

Proposition 4.1. Let tk ∈ Θτ from equation (3.35) denote the k-th time step, and let J̄k

be defined as in (3.50). Then there exists a unique mapping p̃k : Q→ Q satisfying

J̄k (v, p̃k (ε (v))) = inf
q∈Q

J̄k (v, q) ∀v ∈ VD . (4.14)

Let Jk be the mapping of VD into R defined by the identity

Jk(v) := J̄k(v, p̃k(ε(v))) ∀v ∈ VD . (4.15)

Then, Jk is strictly convex and Fréchet differentiable. The associated Gâteaux differential
reads

DJk(v ; w) = 〈ε(v) − p̃k(ε(v)) , ε(w)〉C − lk(w) ∀w ∈ V0 (4.16)

with the scalar product 〈◦ , �〉C defined in (4.1) and lk defined in (4.3).

Proof. Recall, that the functional J̄k : V × Q → R defined in (4.4) using (4.1), (4.2), and
(4.3) can be decomposed as J̄k(v, q) = fk(ε(v), q)−lk(v), where the functional fk : Q×Q →
R reads as

fk(s, q) :=
1

2
‖q − s‖2

C + ψk(q).

Then, Corollary 4.1 states an existence of a unique minimizer p̃k : Q → Q which satisfies
the condition fk(ε(v), p̃k(ε(v))) = infq∈Q fk(ε(v), q), where the functional

Fk(ε(v)) := fk(ε(v), p̃k(ε(v)))

is strictly convex and differentiable with respect to ε(v) ∈ Q. Since ε : v → ε(v) is a Fréchet
differentiable, linear and injective mapping of VD into Q, the compound functional Fk(ε(v))
is Fréchet differentiable and strictly convex with respect to v ∈ VD. Considering the Fréchet
differentiability and linearity of lk with respect to v ∈ VD, we can conclude the strictly
convexity and Fréchet differentiability (in VD) of the functional Jk defined in (4.15). The
explicit form of the Gâteaux differential DJk(v ; w) in (4.16) results from the linearity of
the two mappings lk and ε, and the Fréchet derivative DFk(ε(v) ; ·) = 〈ε(v)− p̃k(ε(v)) , ·〉C

as in (4.13), combined using the chain rule for functionals.
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Proposition 4.1 tells us, that for each displacement v there exists exactly one plastic
strain p̃k(ε(v)), such that the energy functional J(v, q) attains its minimum J(v, p̃k(ε(v)).
By the definition of Δp̃k(·) := p̃k(·) − pk−1, there holds that, for fixed v ∈ VD, finding the
minimizer p̃k(ε(v)) of functional J̄k(v, q) in (3.50) with respect to q is equivalent to finding
the minimizer Δp̃k(ε(v)) of the functional

1

2

(
2μ+ σ2

yH
2
)
‖q‖2

Q − 〈C (ε(v) − pk−1) , q〉Q + 〈σy (1 + αk−1H) , ‖q‖F 〉L2 (4.17)

amongst trace-free elements q ∈ Q.
The explicit form of Δp̃k is presented in the following theorem, which is a generalization

of [5, Proposition 7.1] in the sense that we here analyze the plastic strain field instead of the
pointwise value. The validity of the pointwise equalities and inequalities occurring there,
has to be understood in accordance with Lebesgue spaces as almost everywhere (denoted
a. e.), i.e. up to a set of a zero measure.

Theorem 4.2. Let Q = L2(Ω)3×3
sym , A ∈ Q, b ∈ L2(Ω) with b(x) > 0 in Ω, and ξ ∈ R with

ξ > 0. Then there exists exactly one p ∈ Q with ‖tr p‖L2(Ω) = 0, that satisfies

〈A− ξp , q − p〉Q ≤ 〈b , ‖q‖F − ‖p‖F 〉L2 (4.18)

for all q ∈ Q with ‖tr q = 0‖L2(Ω). This p is characterized as the minimizer of

ξ

2
‖q‖2

Q − 〈A , q〉Q + 〈b , ‖q‖F 〉L2 (4.19)

amongst trace-free elements q ∈ Q, and reads

p =
1

ξ
max{0, ‖devA‖F − b} devA

‖devA‖F

on Ω. (4.20)

The minimal value of (4.19), attained for the p given by (4.20), is

− 1

2ξ
‖max{0, ‖devA‖F − b}‖2

L2
. (4.21)

Proof. According to Definition 2.8, expression (4.18) states that

A− ξp ∈ b ∂‖·‖F (p) (4.22)

where ∂‖·‖F denotes the subgradient of the Frobenius norm, and only trace-free arguments
are under consideration. The Frobenius norm ‖·‖F : Q → R is a convex functional and
so is (4.19). The identity (4.22) is equivalent to 0 belonging to the subgradient of (4.19),
which characterizes the minimizers of (4.19). Moreover, there holds 〈A , q〉Q = 〈devA , q〉Q
for all trace-free elements q ∈ Q, whence the matrix A can be replaced by the matrix devA
in (4.18) and (4.19).
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Let us separate the domain Ω into three disjoint subdomains

Ωe := {x ∈ Ω | ∃ open ω ⊂ Ω : x ∈ ω ∧ ‖devA‖F − b ≤ 0 in ω} ,
Ωp := Ω \ Ωe , Γep := Ω \ (Ωe ∪ Ωp) .

Note that Ωe and Ωp are open, and it holds ‖devA‖F −b ≤ 0 on Ωe and ‖devA‖F −b > 0 on
Ωp. Let us additionally assume, that Γep has measure zero. Consequently, the minimization
of (4.19) results in finding p ∈ Q with ‖tr p‖L2(Ω) = 0, such that the functionals

Ji(p) :=
ξ

2

∫
Ωi

‖p‖2
F dx−

∫
Ωi

〈devA , p〉F dx+

∫
Ωi

b‖p‖F dx i ∈ {e, p} (4.23)

are minimized, or equivalently the inequalities∫
Ωi

〈devA− ξp , q − p〉F dx ≤
∫

Ωi

b (‖q‖F − ‖p‖F ) dx i ∈ {e, p} (4.24)

are satisfied for all q ∈ Q with ‖tr q‖L2(Ω) = 0.
We will show identity (4.20). An application of the pointwise Cauchy-Schwartz inequal-

ity 〈devA , p〉F ≤ ‖devA‖F‖p‖F yields

Je(p) ≥
ξ

2

∫
Ωe

‖p‖2
F dx+

∫
Ωe

(b− ‖devA‖F )︸ ︷︷ ︸
≥0

‖p‖F dx ≥ 0.

By choosing p = 0 on Ωe we obtain Je(p) = 0. Therefore,

p = 0 on Ωe (4.25)

minimizes Je in (4.23). Moreover, there holds p(x) �= 0 on Ωp which we show by contradic-
tion. Choose Ω′ ⊂ Ωp arbitrary and fix. Assuming, that p = 0 on Ω′ and plugging it into
(4.24) for i = p would yield ∫

Ω′
〈devA , q〉F dx ≤

∫
Ω′
b‖q‖F dx

for all trace-free elements q ∈ Q, which satisfy q = p on Ωp \Ω′. By the choice of q = devA
on Ω′ one obtains

∫
Ω′‖devA‖F−b dx ≤ 0 and this would be a contradiction to the definition

of Ωp.
Thus there holds p(x) �= 0 and consequently ∂‖·‖F (p) = {p/‖p‖F} on Ωp, whence (4.24)
with i = p rewrites∫

Ωp

(
devA− ξ p− b

p

‖p‖F

)
: q dx = 0 ∀q ∈ Q , ‖tr q‖L2(Ω) = 0 .

Necessarily, there must hold

devA− ξ p− b
p

‖p‖F
= 0 on Ωp , (4.26)
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whence we conclude

‖p‖F =
1

ξ
(‖devA‖F − b) . (4.27)

Plugging (4.27) into (4.26) yields

p =
1

ξ
(‖devA‖F − b)

devA

‖devA‖F

on Ωp. (4.28)

Combining the formulas (4.25) and (4.28) we obtain (4.20). Finally, plugging (4.20) into
(4.19) yields (4.21).

We define the trial stress σ̃k : Q → Q at the kth time step and the yield function
φk−1 : Q→ R (cf. (3.23)) at the previous time step by

σ̃k(q) := C(q − pk−1) and φk−1(σ) := ‖dev σ‖F − σy(1 +H αk−1) . (4.29)

After using the substitution Δp̃k(ε(v)) = p̃k(ε(v)) − pk−1, Theorem 4.2 tells us that for a
fixed displacement v ∈ VD the minimizer p̃k(ε(v)) of (3.50) reads

p̃k(ε(v)) =
1

2μ+ σ2
yH

2
max{0, φk−1(σ̃k(ε(v)))}

dev σ̃k(ε(v))

‖dev σ̃k(ε(v))‖F

+ pk−1 . (4.30)

Therefore, if the minimizer uk ∈ VD of the functional Jk(·) = J̄k(·, p̃k(ε(·))) in (4.15)
is known, then the plastic strain pk at the time step k is provided by the formula (4.30)
as pk = p̃k(ε(uk)). Notice that the formula (4.30) also satisfies the necessary condition
tr pk = tr pk−1 to guarantee the minimization property Jk(uk) = J̄k(uk, pk) < +∞ (cf.
(4.4) and (4.2)).

At each time step k the domain Ω can be decomposed into three disjoint parts (see
Figure 4.1), analogously to the decomposition we used in the proof to Theorem 4.2:

• Ωe
k(v) := {x ∈ Ω | ∃ open ω ⊂ Ω : x ∈ ω ∧ φk−1(σ̃k(ε(v))) ≤ 0 a. e. in ω}, which is

the set of elastic increment points,

• the set of plastic increment points Ωp
k(v) := Ω \ Ωe

k(v),

• and the set of elastoplastic interface points Γep
k (v) := Ω \ (Ωp

k(v) ∪ Ωe
k(v)).

Obviously, both sets Ωe
k(v) and Ωp

k(v) are open, and there holds

φk−1(σ̃k(ε(v))) ≤ 0 a. e. in Ωe
k(v),

φk−1(σ̃k(ε(v))) > 0 a. e. in Ωp
k(v).

(4.31)

For a one-time step problem, the sets Ωe(v) := Ωe
1(v) and Ωp(v) := Ωp

1(v) specify elastically
and plastically deformed parts of the continuum, respectively.

We obtain a smooth minimization problem with respect to the displacement field uk

only:
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Ω

Ωe
k : φk−1(σ̃k) ≤ 0

Ωp
k : φk−1(σ̃k) > 0

Γep
k

Figure 4.1: Domain decomposition of Ω at the kth time step, generated by the trial stress
σ̃k(ε(v))(x) with x ∈ Ω, as an argument of the yield functional φk−1 (cf. 4.29). Up to the
knowledge of the author, there is nothing known regarding the regularity of the elastoplastic
interface Γep

k (v) in general. In this work, however, it is assumed to be sufficiently smooth
and of measure zero.

Problem 4.1. Let k ∈ {1, . . . , NΘ} denote the time step. Let pk−1 ∈ Q and αk−1 ∈ L2(Ω)
be given, such that αk−1 ≥ 0 almost everywhere. Find uk ∈ VD such that for all v ∈ VD

there holds Jk(uk) ≤ Jk(v) with the strictly convex and Fréchet differentiable functional
Jk defined in (4.15) using p̃k as in (4.30). The Gâteaux differential of Jk is presented in
(4.16).

Remark 4.2 (unique existence of a solution). We know, that there exists a unique solution
(uk, pk) to Problem 3.4, and the second component pk can be calculated by the identity
pk = p̃k(ε(uk)) explicitly. This implies that, due to the definition Jk(·) = J̄k(·, p̃k(·)), there
holds Jk(uk) ≤ Jk(v) for all v ∈ VD. Thus, there exists a solution, namely uk ∈ VD, to
Problem 4.1. The uniqueness of the solution follows from the strict convexity of the energy
functional Jk, as it is shown in Proposition 4.1.

4.2 Solution by a Slant Newton Method

The minimizer p̃k in (4.30) is a continuous mapping of Q into Q. Thus, DJk(v ;w) in
(4.16) is continuous with respect to v as well, and a gradient method could be used for a
numerical solution. Instead, we investigate the existence of the second derivative of Jk(v),
which would allow the use of Newton’s method or at least some Newton-like method.

4.2.1 Pointwise Smoothness results

The Gâteaux differential of DJk defined in (4.16) reads

D2Jk(v ; w1, w2) = 〈ε(w1) − D p̃k(ε(v) ; ε(w1)) , ε(w2)〉C ∀w1, w2 ∈ V0

provided that the Gâteaux differential D p̃k : Q → L(Q,Q) of the plastic strain minimizer
p̃k(ε(v)) defined in (4.30) exists.
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Remark 4.3. Throughout Subsection 4.2.1 we assume, that the total strain ε(v) and the
plastic strain pk−1 of the previous time step are piecewise continuous on the domain Ω.
Thus, the mapping p̃k in (4.30) be seen as a piecewise continuous function on Ω. If so, we
are able to discuss its pointwise Fréchet differentiability. The results of this discussion will
give us candidates for slanting functions – a semismooth approach which will be discussed
in the following two subsections.

Remark 4.4. Note, that the plastic strain minimizer p̃k is not Fréchet differentiable as a
mapping from the Lebesgue space Q into Q, which is due to the nonlinearity of the mapping
(see [69]).

In order to shorten the notation, let us, for the moment, omit the dependency of the
strain ε on the displacement v, i. e. we write ε(x) instead of ε(v(x)). Whenever appropriate,
we also skip the dependency on the space variable, and write ε instead of ε(x).

In the set of elastic increment points x ∈ Ωe
k, where we have φk−1(σ̃k(ε(x))) ≤ 0, there

holds
D p̃k(ε(x) ; q) = 0 (4.32)

for all q ∈ R3×3
sym . Notice, that if Ωe

k = Ω, then we obtain the purely elastic case

D2Jk(v ; w1, w2) = 〈ε(w1) , ε(w2)〉C ∀w1, w2 ∈ V0 .

In the set of plastic increment points x ∈ Ωp
k, where we have φk−1(σ̃k(ε(x))) > 0, the

plastic strain reads (cf. (4.30) and (4.31))

p̃k(ε) = (2μ+ σ2
yH

2)−1φk−1(σ̃k(ε))
dev σ̃k(ε)

‖dev σ̃k(ε)‖F

.

By using the product and the chain rules, for every direction q ∈ R3×3
sym we obtain

D p̃k(ε ; q) =
1

2μ+ σ2
yH

2

(
Dφk−1(σ̃k(ε) ; D σ̃k(ε ; q))

dev σ̃k(ε)

‖dev σ̃k(ε)‖F

+ φk−1(σ̃k(ε)) D
(·)
‖·‖F

(dev σ̃k(ε) ; D dev σ̃k(ε ; q))

)
.

Using the derivatives rules (cf. (4.29))

D σ̃k(ε ; q) = D σ̃k( q) = C q, D dev σ̃k(ε ; q) = D dev σ̃k( q) = 2μ dev q

and

Dφk−1(σ ; τ) =
〈dev σ , D dev(σ ; τ)〉F

‖σ‖F

, D
(·)
‖·‖F

(σ ; τ) =
τ

‖σ‖F

− σ〈σ , τ〉F
‖σ‖3

F

,

we end up with the formula

D p̃k(ε ; q) =
2μ

2μ+ σ2
yH

2

(
φk−1(ε)

‖dev σ̃k(ε)‖F

dev q

+

(
1 − φk−1(ε)

‖dev σ̃k(ε)‖F

)
〈dev σ̃k(ε) , dev q〉F

‖dev σ̃k(ε)‖2
F

dev σ̃k(ε)

)
.

(4.33)
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The set of elastoplastic interface points Γep
k represents the only part of Ω, where p̃k in

(4.30), due to the term max{0, φk−1}, is not pointwise differentiable (see Figure 4.1). No
matter that the elastoplastic interface is a set of measure zero, a classical Newton method
is not applicable to Problem 4.1 - not even after a spatial discretization. However, the
difficulties in differentiating the max-term may be overcome by the concept of slanting
functions, as discussed in the following subsection.

4.2.2 The Concept of Slant Differentiability

Our goal is to solve Problem 4.1 by means of a Newton-like method which replaces the
requirement of the second derivative D2Jk(v) on the elastoplastic interface in a way that
the local superlinear convergence rate can be shown.

The main tool in order to overcome the non-differentiability of DJk due to the map-
ping max{0, ·} is the concept of slant differentiability, which was introduced by X. Chen,
Z. Nashed and L. Qi in [26]. Other concepts of semismoothness, e. g. [106], or the regular-
ization (smoothing) of the non-differentiable terms, e. g. [63], are not discussed here and
might be considered for alternate analysis of elastoplastic problems.

Henceforth, let X, Y , and Z be Banach spaces, and L(◦, �) denote the set of all linear
mappings of the set ◦ into the set �.

Definition 4.1 (slant differentiability pointwise). Let U ⊆ X be an open subset and
x ∈ U . A function F : U → Y is said to be slantly differentiable at x if there exist

1. mappings F o : U → L(X, Y ) and r : X → Y with limh→0
‖r(h)‖
‖h‖ = 0 such, that

F (x+ h) = F (x) + F o(x+ h) h+ r(h)

holds for all h ∈ X satisfying (x+ h) ∈ U , and

2. constants δ > 0 and C > 0 such that for all h ∈ X with ‖h‖ < δ there holds

‖F o(x+ h)‖ := sup
y∈X\{0}

‖F o(x+ h) y‖
‖y‖ ≤ C .

We say, that F o(x) is a slanting function for F at x.

Definition 4.2 (slant differentiability in an open set). Let U ⊆ X be an open subset. A
function F : U → Y is said to be slantly differentiable in U if there exists F o : U → L(X, Y )
such that F o is a slanting function for F at every point x ∈ U . F o is said to be a slanting
function for F in U . The set of all functions which are slantly differentiable in U and map
to Y is denoted by S(U, Y ).

Remark 4.5. In analogy to the relation between Gâteaux differential and Gâteaux deriva-
tive, we define the slanting differential for F o at x along the direction h by F̃ o : U×X → Y
with F̃ o(x ; h) := F o(x)h. Since the mappings F o and F̃ o are taking a different number of
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arguments, it is sufficient, if we characterize both by the same denomination F o and forget
about F̃ o. In other words, we shall write F o(·) for a slanting function and F o(◦ ; �) for the
appropriate slanting differential for F .

Theorem 4.3. Let U ⊆ X be an open subset, and F : U → Y be a slantly differentiable
function with a slanting function F o : U → L(X, Y ). We suppose, that x∗ ∈ U is a
solution to the nonlinear problem F (x) = 0. If F o(x) is non-singular for all x ∈ U and
{‖F o(x)−1‖ : x ∈ U} is bounded, then the Newton-like iteration

xj+1 = xj − F o(xj)−1F (xj) (4.34)

converges super-linearly to x∗, provided that ‖x0 − x∗‖ is sufficiently small.

Proof. See [26, Theorem 3.4] or [52, Theorem 1.1].

Our goal is to solve the smooth minimization problem in the displacement (Problem 4.1)
by finding uk ∈ VD such, that DJk(uk;w) = 0 for all w ∈ V0 with DJk as in (4.16).
Therefore, we use the Newton-like method (4.34) with the choice

X = V , Y = V0
∗ , U = VD , F = DJk , xj = vj , and x∗ = uk .

The iteration scheme for the Newton-like method is formulated either as an operator equa-
tion in V0

∗ or in variational form: find vj+1 in VD such that there holds

(DJk)
o (vj ; vj+1 − vj) = −DJk(v

j) , (4.35)

or equivalently,

(DJk)
o (vj ; vj+1 − vj , w) = −DJk(v

j ; w) ∀w ∈ V0 . (4.36)

It is still unclear, if a slanting function (DJk)
o for the residual DJk exists. If it exists, the

super-linear convergence of the Newton-like iteration scheme (4.35) or (4.36) can be shown
by Theorem 4.3.

4.2.3 Slanting Functions in Elastoplasticity

It will turn out in this subsection, that a slanting function (DJk)
o for the mapping DJk,

defined in (4.16), does - in general - not exist. We will outline the difficulties in detail,
and formulate an assumption, under which a slanting function can be found. However,
in the spatially discretized case (see Chapter 5) the existence and the explicit form of a
slanting function can be proven rigorously without any assumptions by the results of this
subsection.

The motivation, to study the slant differentiability of DJk in the spatially continuous
case, is the following: If there existed a slanting function for DJk, then the resulting slant
Newton method (4.36) converges locally super-linear to the solution of the elastoplastic
Problem 4.1 with a certain number N ∈ N of iteration steps. It would follow, that the
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number of iteration steps for the spatially discretized problems is bounded from above by
N (see [16]).

Let us now calculate candidates for a slanting function (DJk)
o for DJk in VD, which

uses the minimizer p̃k : Q → Q defined as in (4.30). Notice, that a Fréchet differentiable
function is slantly differentiable, with the Fréchet derivative serving as a slanting function,
and the Gâteaux differential serving as a slanting differential. Due to the chain rule for
slanting functions (Theorem A.1 in the Appendix) we obtain, that

(DJk)
o (v ; w1, w2) =

∫
Ω

C [ε(w1) − p̃k
o(ε(v) ; ε(w1))] : ε(w2) dx (4.37)

for all w1 and w2 in V0 serves as a slanting function for DJk in (4.16), if p̃k
o serves as a

slanting function for p̃k.
Due to the chain rule and the product rule for slanting functions (Theorem A.1 and

Theorem A.2 in the Appendix), and under the assumption, that all subterms are slantly
differentiable (note, that a Fréchet derivative serves as a slanting function), a possible
candidate for a slanting function p̃o

k for p̃k would have to satisfy

p̃k
o(ε(v) ; q) =

{
0 in Ωe

k(v) ,

ξ
(
βk dev q + (1 − βk)

〈dev σ̃k , dev q〉F
‖dev σ̃k‖2

F
dev σ̃k

)
in Ωp

k(v) ,
(4.38)

for all q ∈ Q. Here, the abbreviations

ξ :=
2μ

2μ+ σ2
yH

2
, βk :=

φk−1(σ̃k)

‖dev σ̃k‖F
, σ̃k := σ̃k(ε(v(x))) (4.39)

with the mappings φk−1 and σ̃k defined in (4.29) are used. Since the modulus of hardening
H , the yield stress σy, and the Lamé parameter μ are positive and due to (3.49), (4.29)
and (4.31), we always have

ξ ∈ ]0, 1[ and βk : Ωp
k(v) → ]0, 1[ . (4.40)

M. Hintermüller, K. Ito and K. Kunisch discuss the slant differentiability of the mapping
max{0, y} for certain Banach spaces, that is, for the finite dimensional case y ∈ Rn in [52,
Lemma 3.1], and the infinite dimensional case y ∈ Lq(Ω) in [52, Proposition 4.1]. Let us
summarize their results in the following two theorems.

Theorem 4.4 (The finite dimensional case). Let n ∈ N be arbitrary, and F be a mapping
of Rn into Rn defined as F (y) := max{0, y}. Then, F is slantly differentiable, and, for all
γ = (γ1, . . . , γn)T ∈ R

n, the matrix valued function

F o(y) := diag (fi(yi))
n
i=1 with fi(z) =

⎧⎪⎨
⎪⎩

0 if z < 0 ,

1 if z > 0 ,

γi if z = 0 ,

(4.41)

serves as a slanting function.
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The next theorem addresses the slant differentiability of the mapping max{0, y} in the
infinite dimensional case y ∈ Lq(Ω). Therefore we require a decomposition of the domain
Ω into three distinct subspaces Ω = Ω≤ ∪ Γ| ∪Ω>, where Ω> denotes the union of all open
subsets of Ω satisfying y(x) > 0 a. e., Ω≤ is the interior of the complement of Ω> with
respect to Ω, and Γ| denotes the interface between Ω> and Ω≤.

Theorem 4.5 (The infinite dimensional case). Let p and q in R be fixed arbitrarily such
that 1 ≤ p ≤ q ≤ +∞ is satisfied, and let F be a mapping of Lq(Ω) into Lp(Ω) defined as
F (y) := max{0, y}. Then there holds, that for γ fixed arbitrarily in R, the function

F o(y)(x) :=

⎧⎪⎨
⎪⎩

0 on Ω≤ ,

1 on Ω> ,

γ on Γ| ,

(4.42)

serves as a slanting function for F if p < q, but F o does in general not serve as a slanting
function for F if p = q.

Theorem 4.5 is a surprising result, since operators from one Lebesgue space into another
Lebesgue space are Fréchet differentiable if and only if they are linear operators [69].

By the use of these results and the following assumption, we are able to find a slanting
function for p̃k from (4.30), and thus for DJk from (4.16).

Assumption 4.1. For each time step tk ∈ Θτ (see (3.35)) there exists a positive number
δk ∈ R

+, and a subset V k ⊂ V , which induces the subsets

Qk = {q ∈ Q | ∃v ∈ V k : ε(v) = q} ⊂ Q ,

Lk
2(Ω) = {η ∈ L2(Ω) | ∃q ∈ Qk : ‖q‖F = η} ⊂ L2(Ω) ,

such that for αk−1 ∈ Lk−1
2 (Ω) and pk−1 ∈ Qk−1 the mapping φk−1 ◦ σ̃k, defined as in (4.29),

is slantly differentiable as a mapping from Qk into L2+δ(Ω), and the mapping (·)/‖·‖F is
slantly differentiable from Qk into [L∞(Ω)]3×3

sym .

Remark 4.6. Assumption 4.1 is not needed in the spatially discrete case, since there, the
max-function is slantly differentiable from R to R without any extra assumptions (see The-
orem 4.4), and the argument φk−1◦ σ̃k of the max-function in formula (4.30) is continuously
differentiable. In other words, all the following results of this subsection can be shown for
the spatially discrete case (in Chapter 5) by the same techniques and without the use of
Assumption 4.1.

Following, we shall denote V k
0 = V0 ∩ V k and V δ

D = VD ∩ V k.

Corollary 4.2. Let Assumption 4.1 be fulfilled, let tk ∈ Θτ as in (3.35), let v ∈ V k
D,

pk−1 ∈ Qk−1, and αk−1 ∈ Lk
2(Ω) be fixed arbitrarily. Then, the mapping

p̃k : Qk → Q
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defined as in (4.30) is slantly differentiable at ε(v(x)). The mapping

p̃k
o(ε(v(x)) ; q) =

{
ξ
(
βk dev q + (1 − βk)

〈dev σ̃k , dev q〉F
‖dev σ̃k‖2

F
dev σ̃k

)
in Ωp

k(v) ,

0 else ,
(4.43)

for all q ∈ Q serves as a slanting function for p̃k at ε(v(x)), wherein the abbreviations
(4.39) together with the definitions (4.29) are used. Moreover, the functional DJk(v) in
(4.16) is slantly differentiable from V δ

D into V0
∗ with the slanting function (DJk)

o (v) defined
as in (4.37).

Proof. The result follows immediately by the application of the chain rule and the product
rule (Theorem A.1 and Theorem A.2 in the Appendix), Theorem 4.5 (by setting γ = 0),
and Assumption 4.1 to the explicit formula (4.30).

4.2.4 Proof of Locally Superlinear Convergence

In order to apply Theorem 4.3, the existence and boundedness of the inverse operator
[(DJk)

o]
−1

is required. It is proved in detail in Proposition 4.2 on page 46, which uses the
boundedness and ellipticity of the bilinear form (DJk)

o (v) := (DJk)
o (v ; �, ◦) from the

following lemma.

Lemma 4.1. Let k ∈ {1, . . . , NΘ} and v ∈ VD be fixed arbitrarily, and let the mapping
(DJk)

o : VD → L(V0, V0
∗) be defined (DJk)

o (v) := (DJk)
o (v ; �, ◦) as in (4.37) with the

mapping p̃k
o as in (4.43). Then there exist positive constants κ1 and κ2 which satisfy

(DJk)
o (v ; w,w) ≥ κ1‖w‖2

V ∀w ∈ V0 (ellipticity) , (4.44)

(DJk)
o (v ; w,w) ≤ κ2‖w‖V ‖w‖V ∀w,w ∈ V0 (boundedness) . (4.45)

Proof. Let us recall the definition of (DJk)
o in (4.37), i.e.,

(DJk)
o (v ; w,w) = 〈ε(w) − p̃k

o(ε(v) ; ε(w)) , ε(w)〉C . (4.46)

First, we prove the contractivity of the operator pk
o(ε(v), ·) defined in (4.43) with respect

to its second argument: There holds

‖p̃k
o(ε(v) ; q)‖2

C =

∫
Ω

〈Cpk
o(ε(v) ; q) , pk

o(ε(v) ; q)〉F dx = 2μ

∫
Ω

‖pk
o(ε(v) ; q)‖2

F dx

= ξ2 2μ

∫
Ωp

k(v)

‖βk dev q + (1 − βk)
〈dev σ̃k , dev q〉F

‖dev σ̃k‖2
F

dev σ̃k‖2
F dx

≤ ξ2 2μ

∫
Ω

‖dev q‖2
F = ξ2

∫
Ω

〈C dev q , dev q〉F dx

≤ ξ2

∫
Ω

〈Cq , q〉F dx = ξ2‖q‖2
C
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for all q ∈ Q, where ξ, βk, and σ̃k are defined in (4.39). Then the substitution of this
estimate to (4.46) yields

(DJk)
o (v ; w,w) ≥ (1 − ξ)‖ε(w)‖2

C ,

which together with Korn’s inequality (there exists a constant κe
1 > 0 such, that ‖ε(w)‖2

C
≥

κe
1‖w‖2

V holds for all w in V0) already provides the ellipticity with the constant

κ1 := (1 − ξ)κe
1.

We show the boundedness (4.45). The Cauchy-Schwartz inequality implies

(DJk)
o (v ; w,w) ≤ ‖ε(w) − p̃k

o(ε(v) ; ε(w))‖C‖ε(w)‖C ∀w,w ∈ V0 . (4.47)

Then the triangle inequality and the contractivity of p̃k
o provide the estimate

(DJk)
o (v ; w,w) ≤ (1 + ξ) ‖ε(w)‖C‖ε(w)‖C ∀w,w ∈ V0. (4.48)

It is well know from linear elasticity, that there exists a constant κe
2, which satisfies

‖ε(w)‖C ‖ε(w)‖C ≤ κe
2 ‖w‖V ‖w‖V .

Thus, (4.45) holds with
κ2 = (1 + ξ)κe

2. (4.49)

Remark 4.7. By exploiting the structure of the slanting function p̃k
o(ε(v); ε(w)) the bound-

edness constant κ2 from (4.49) can be further improved to

κ2 = κe
2. (4.50)

Let us check that for all w ∈ V0 there holds a. e. in Ωp
k(v):

‖p̃k
o(ε(v) ; ε(w))‖2

F = ξ2

(
β2

k‖dev ε(w)‖2
F + (1 + βk)(1 − βk)

〈dev σ̃k , dev ε(w)〉2F
‖dev σ̃k‖2

F

)

≤ ξ

(
βk‖dev ε(w)‖2

F + 2(1 − βk)
〈dev σ̃k , dev ε(w)〉2F

‖dev σ̃k‖2
F

)

≤ 2ξ

(
βk‖dev ε(w)‖2

F + (1 − βk)
〈dev σ̃k , dev ε(w)〉2F

‖dev σ̃k‖2
F

)
= 2〈dev ε(w) , p̃k

o(ε(v) ; ε(w))〉F ,
where ξ, βk, and σ̃k are defined in (4.39). This inequality holds trivially a. e. in Ωe

k(v),
where p̃k

o(ε(v) ; ·) ≡ 0. Using the scalar product 〈◦ , �〉Q =
∫
Ω
〈◦ , �〉F dx, we obtain

‖p̃k
o(ε(v) ; ε(w))‖2

Q ≤ 2 〈dev ε(w) , p̃k
o(ε(v) ; ε(w))〉Q,

which is equivalent thanks to Lemma A.1 to

‖p̃k
o(ε(v) ; ε(w))‖2

C ≤ 2 〈ε(w) , p̃k
o(ε(v) ; ε(w))〉C. (4.51)

Due to (4.51), there holds ‖ε(w) − p̃k
o(ε(v) ; ε(w))‖2

C
≤ ‖ε(w)‖2

C
, which applied to the

inequality (4.47) improves the inequality (4.48) and provides the sharper constant (4.50).
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Proposition 4.2. Let k ∈ {1, . . . , NΘ} be fixed and the assumptions of Corollary 4.2 be
fulfilled. Let the mapping DJk : V k

D → V0
∗ be defined by DJk(v) := DJk(v ; ◦) as in (4.16),

the mapping (DJk)
o : V k

D → L(V0, V0
∗) be defined (DJk)

o (v) := (DJk)
o (v ; �, ◦) as in

(4.37), and let the solution uk to Problem 4.1 be in V k
D ⊂ VD (see Assumption 4.1). Then

the Newton-like iteration

vj+1 = vj −
[
(DJk)

o (vj)
]−1

DJk(v
j)

converges superlinearly to the solution uk, provided that ‖v0 − uk‖V is sufficiently small.

Proof. We check the assumptions of Theorem 4.3 for the choice F = DJk. Let v ∈ V k
D

be arbitrarily fixed. The mapping (DJk)
o (v) : V0 → V0

∗ serves as a slanting function for
DJk at v. Moreover, (DJk)

o (v) : V0 → V0
∗ is bijective if and only if there exists a unique

element w in V0 such, that for arbitrary but fixed f ∈ V0
∗ there holds

(DJk)
o (v ; w,w) = f(w) ∀w ∈ V0 . (4.52)

Since the bilinear form (DJk)
o (v) is elliptic and bounded (Lemma 4.1), we apply the

Lax-Milgram Theorem to ensure the existence of a unique solution to (4.52). Finally, the
uniform boundedness of [(DJk)

o (·)]−1
follows from the estimate

‖[(DJk)
o (v)]

−1‖L(V0
∗,V0) = sup

w∗∈V0
∗

‖[(DJk)
o (v)]

−1
w∗‖V

‖w∗‖V0
∗

= sup
w∈V0

‖w‖V

‖(DJk)
o (v ; w, ·)‖V0

∗
= sup

w∈V0

inf
w∈V0

‖w‖V ‖w‖V

|(DJk)
o (v ; w,w)|

≤ sup
w∈V0

‖w‖2
V

|(DJk)
o (v ; w,w)| ≤

1

κ1
,

with κ1 denoting the v-independent ellipticity constant of Lemma 4.1.

Summarizing, Problem 4.1 can be iteratively solved by a slant Newton method:

Problem 4.2. Let tk ∈ Θτ , defined in (3.35), denote the time step, and let Assumption 4.1
be fulfilled. Let pk−1 ∈ Qk−1 and αk−1 ∈ Lk−1

2 (Ω) be given, such that αk−1 ≥ 0 almost
everywhere. For a given initial value v0 ∈ V k

D, iterate vj ∈ V k
D such that

(DJk)
o (vj ; vj+1 − vj , w) = −DJk(v

j ; w) ∀w ∈ V0 , (4.53)

where DJk and (DJk)
o are defined in (4.16) and (4.37) using p̃k as in (4.30) and p̃o

k as in
(4.43).

Remark 4.8. The slanting function (DJk)
o is the spatially continuous counterpart of the

consistent tangential stiffness matrix proposed by Simo and Hughes [96].
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4.3 Vector Representation

Throughout the following chapters we use a vector representation of the stress and strain
tensors of the following kind:

σ =

⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ → σ =

(
σ11 σ22 σ33 σ23 σ13 σ12

)T
,

ε =

⎛
⎝ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

⎞
⎠ → ε =

(
ε11 ε22 ε33 2 ε23 2 ε13 2 ε12

)T
,

p =

⎛
⎝p11 p12 p13

p12 p22 p23

p13 p23 p33

⎞
⎠ → p =

(
p11 p22 p33 2 p23 2 p13 2 p12

)T
.

Hooke’s Law (3.4) may then be realized by the matrix-vector multiplication

σ = C (ε − p) , C =

⎛
⎜⎜⎜⎜⎜⎜⎝

2μ+ λ λ λ 0 0 0
λ 2μ+ λ λ 0 0 0
λ λ 2μ+ λ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎞
⎟⎟⎟⎟⎟⎟⎠ .

The main benefit of using this representation is its comfortable use in the implementation
of the numerical solver. Moreover, there are two special cases, where the dimensionality of
the problems may be reduced – resulting in a higher efficiency of the numerical solver:

4.3.1 The Plane Strain Model

If the domain Ω is long and has a constant cross section with respect to one of the three
space dimensions, and if no body forces, surface forces, or displacements are prescribed
in that direction, then the solution uk will vanish in one, let’s say the last, component.
Therefore it is sufficient to look for a solution uk in the space [H1(Ω)]

2
instead of [H1(Ω)]

3
.

The domain Ω still has to be considered as a three dimensional object, though.
Consequently, the displacement u and the strain ε, due to (3.2), read (the time- or

load-step index k is now omitted)

u =

⎛
⎝u1(x)
u2(x)

0

⎞
⎠ , ε =

⎛
⎝ε11 ε12 0
ε12 ε22 0
0 0 0

⎞
⎠ ,

and the stress σ and plastic strain p, due to (3.4) and (4.30), read

σ =

⎛
⎝σ11 σ12 0
σ12 σ22 0
0 0 σ33

⎞
⎠ , p =

⎛
⎝p11 p12 0
p12 p22 0
0 0 p33

⎞
⎠ ,
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where σ33 can be calculated by using σ11, σ22, and σ12 (see Table 4.1), as well as p33, since p
is trace free, can be calculated by p33 = −(p11 +p22). Therefore, it is sufficient to represent
u, ε, p and σ by the vectors

u =

(
u1

u2

)
, ε = ε(u) =

⎛
⎝ ε11(u1, u2, 0)
ε22(u1, u2, 0)
2ε12(u1, u2, 0)

⎞
⎠ , p =

⎛
⎝p11

p22

p12

⎞
⎠ , σ =

⎛
⎝σ11

σ22

σ12

⎞
⎠ . (4.54)

Analogously to the 3D-case, Hooke’s Law may be formulated as the matrix-vector multi-
plication

σ = C (ε − p) , C =

⎛
⎝2μ+ λ λ 0

λ 2μ+ λ 0
0 0 μ

⎞
⎠ .

A detailed collection of analogous operations in classical or vector representation – such as
norms, traces and deviators – is presented in Table 4.1.

4.3.2 The Plane Stress Model

If the domain Ω is very thin with respect to one of the three space dimensions, and if
no body forces, surface forces, or displacements are prescribed in that direction, then the
components of the stress tensor with respect to this component, will vanish:

σ =

⎛
⎝σ11 σ12 0
σ12 σ22 0
0 0 0

⎞
⎠ .

Hooke’s Law says
0 = σ33 = 2μ (ε33 − p33) + λ tr (ε− p) ,

which implies

λ tr (ε− p) =
2μλ

2μ+ λ
(ε11 − p11 + ε22 − p22) .

Hence, by using the representation (4.54), we end up with

σ = C (ε − p) , C =

⎛
⎝2μ+ λ̃ λ̃ 0

λ̃ 2μ+ λ̃ 0
0 0 μ

⎞
⎠ ,

with

λ̃ =
2μλ

2μ+ λ
.

Up to this rescaling of λ, the variational formulation in the plane stress case is identical to
the one in the plane strain case, and a slightly modified version Table 4.1 can be used.

Note, that in vector representation (no matter if we consider the plane strain, plane
stress, or the full 3D-case), there always holds 〈σ , ε〉F = σT ε. For simplicity, we shall
consider the plane strain model in vector representation throughout the remaining part of
this work. As matter of fact, we no more indicate the use of the vector representation by
bold letters.
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Classical Representation Vector Representation

ε :=

(
ε11 ε12 0
ε12 ε22 0
0 0 0

)
ε :=

( ε11
ε22
2 ε12

)

σε := C ε =

(
σε,11 σε,12 0
σε,12 σε,22 0

0 0 σε,33

)
σε :=

(σε,11
σε,22
σε,12

)
=

(
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

)
︸ ︷︷ ︸

=:C

ε ,

with C ε = 2μ ε + λ tr ε I σε,33 =
λ

2 (λ + μ)︸ ︷︷ ︸
=ν

(1 1 0) σε, tr σε = ν+1
ν σε,33

dev σε = σε − tr σε
3 I devσε :=

⎛
⎝(dev σε)11

(dev σε)22
(dev σε)12

⎞
⎠ = σε − tr σε

3

(1
1
0

)
,

thus, devσε =

(
I − ν + 1

3

(1 1 0
1 1 0
0 0 0

))
︸ ︷︷ ︸

=:K

σε

p =

(
p11 p12 0
p12 p22 0
0 0 − (p11 + p22)

)
p :=

(p11
p22
p12

)
, ‖p‖2

N := pT

(2 1 0
1 2 0
0 0 2

)
︸ ︷︷ ︸

=:N

p ,

then: ‖p‖N = ‖p‖F

σp := C p =

(
σε,11 σε,12 0
σε,12 σε,22 0

0 0 σε,33

)
σp :=

(σp,11
σp,22
σp,12

)
= 2μp

with C p = 2μ p + λ tr p︸︷︷︸
=0

I = 2μ p and σp,33 = − (1 1 0) σp

σ = C (ε − p) = σε − σp σ = σε − σp and σ33 = σε,33 − σp,33

dev σ = dev σε − dev σp︸ ︷︷ ︸
=σp

, devσ = devσε − σp , ‖dev σ‖F = ‖devσ‖N ,

‖dev σ‖2
F =

∑
i,j (dev σ)2ij (dev σ)33 = − (1 1 0) devσ

Table 4.1: Classical vs. Vector Representation in case of the Plane Strain Model.

49



50



Chapter 5

Spatial Discretization

In this chapter, we discuss the spatial discretization of the (elastoplastic) Problem 4.1.
Therefore, in order to shorten the notation, we assume, that the domain Ω is a polygonal
domain, and that the Dirichlet boundary condition (3.5) is homogeneous (uD = 0).

5.1 Galerkin Scheme

We approximate the space V = [H1(Ω)]
2

by a sequence of finite dimensional subspaces

V 1
FE ⊂ V 2

FE ⊂ . . . ⊂ V l−1
FE ⊂ V l

FE ⊂ V l+1
FE ⊂ . . . ⊂ V (5.1)

with the property

lim
l→∞

inf
w∈V l

FE

‖v − w‖V = 0 , ∀v ∈ V . (5.2)

Here, V l
FE is called the subspace of V at level l. Since V l

FE is finite dimensional, there exists
Nl ∈ N and a basis {ψ1, . . . , ψNl

} with ψi ∈ V for all i ∈ {1, . . . , N1}, such that

V l
FE = span{ψ1, . . . , ψNl

} , Nl = dim V l
FE .

Further, we define the subspace

V l
FE,0 = V l

FE ∩ V0 .

The finite dimensional approximation spaces regarding the plastic strains and the hardening
parameter are defined as

Ql
FE = {q ∈ Q | ∃v ∈ V l

FE : q = ε(v)} ,
Ll

FE = {η ∈ L2(Ω) | ∃q ∈ Ql
FE : η = ‖q‖F} ,

where the strain ε (in vector representation) is defined in (4.54). In this way, the solution
to Problem 4.1 is approximated by a solution to
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Problem 5.1. Let tk ∈ Θτ , defined as in (3.35), denote the time step, and let l ∈ N be the
level of spatial discretization. Let pk−1 ∈ Ql

FE and αk−1 ∈ Ll
FE be given, such that αk−1 ≥ 0

almost everywhere. Find uk ∈ V l
FE,0 such that for all v ∈ V l

FE,0 there holds Jk(uk) ≤ Jk(v)
with the strictly convex and Fréchet differentiable functional Jk defined in (4.15) using p̃k

as in (4.30). The Gâteaux differential of Jk is presented in (4.16).

This problem is solved by the slant Newton scheme (4.53), where the explicit form of
the residual DJk and the stiffness matrix (DJk)

o in the discrete case depends on the special
choice of the approximation spaces V l

FE, Ql
FE, and Ll

FE. In case of using a low order Finite
Element Method (Section 5.2) the explicit formulas are given in (5.9) and (5.10) by using
the minimizer with respect of the plastic strain (5.6) and its slanting function (5.11). The
respective formulas in the case of high order Finite Elements (Section 5.3) may be obtained
analogously.

Remark 5.1. Unlike in the infinite dimensional case, no more assumptions are needed in
the finite dimensional case (cf. Assumption 4.1) in order to obtain a slanting function for
the residual DJk or the plastic strain pk, respectively. This is because the special choice
of discrete spaces V l

FE in the following subsections will be such, that the plastic strain pk

is piecewise continuous on Ω, and therefore a slanting function (cf. Remark 4.8) may be
derived pointwise. Hence, the slant Newton method for the elastoplastic problem is well
defined and the local super-linear convergence is guaranteed.

5.2 Low Order FEM (h-FEM)

In this section, the reader is assumed to already know the basics of h-FEM (for an intro-
duction on this topic, see [27]). Utilizing this method, we are going to derive the discrete
formulas of DJk and (DJk)

o, by which Problem 4.2 finally may be implemented and solved
on the computer. The notation in this section is based on the work [4]. In order to keep
things simple, we consider the plane strain model only (see Section 4.3). The plane stress
case or the fully 3D case can be treated analogously.

Let T be a γ-shape regular triangulation of Ω, where all elements T ∈ T are triangles.
The term γ-shape regular means, that the ratio of diameter versus radius of the inscribed
circle is uniformly bounded from below by a constant γ > 0 for all elements T ∈ T .

Let E = {E} denote the set of all edges and EN = E ∩ ΓN be its intersection with the
Neumann boundary ΓN . The vertices of all triangles are collected in the set

N = {x ∈ R
2 | ∃T ∈ T : x is vertex of T} .

Let ψi : Ω → R be an affine linear function on each element T ∈ T such that for an
arbitrary node xl the condition ψi(xl) = δil is satisfied for all i, l ∈ {1, . . . , |N |}. Further,
let ej denote the j-th unit vector. Then, uFE can be expressed by

uFE(x) :=

|N |∑
i=1

2∑
j=1

ui,jψi(x)ej ,
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where ui,j := (u(xi))j, or for short, we can write

uFE(x) = Ψ(x)T u

by defining
Ψ(x) := (ψi(x) ej)i∈{1,...,|N |},j∈{1,2} ∈ R

2|N |

and
u := (ui,j)i∈{1,...,|N |},j∈{1,2} ∈ R

2|N | .

Recalling the notation of Section 5.1, the space V is approximated by the subspace

V l
FE := {ΨTu | u ∈ R

2|N |} .

Note, that the dimension of the approximation space is 2|N |, which is related to the
mesh size h by h ≈ |N |−2 in 2D. The term l in V l

FE means, that we have a mesh size of
h = h0 ∗ 0.5l, where h0 denotes the initial mesh size. In this way, the level l controls the
dimension of the approximation space.

Let RT and RE be operators which restrict the global vector u onto a local element T
by

uT = RTu , uE = REu . (5.3)

Let the fixed triangle T ∈ T have the vertices (xα,xβ,xγ) with the coordinates

((xα,1, xα,2) , (xβ,1, xβ,2) , (xγ,1, xγ,2)) .

Then ε(uFE) can be calculated on T by

ε(uh)(x)|T =

⎛
⎝ ∂1ψα 0 ∂1ψβ 0 ∂1ψγ 0

0 ∂2ψα 0 ∂2ψβ 0 ∂2ψγ

∂2ψα ∂1ψα ∂2ψβ ∂1ψβ ∂2ψγ ∂1ψγ

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

uα,1

uα,2

uβ,1

uβ,2

uγ,1

uγ,2

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

or in a more compact way,
ε(uh)(x)|T = B uT , (5.4)

where the partial derivatives of ψα, ψβ , and ψγ can be obtained by

∇

⎛
⎝ ψα

ψβ

ψγ

⎞
⎠ =

⎛
⎝ 1 1 1

xα,1 xβ,1 xγ,1

xα,2 xβ,2 xγ,2

⎞
⎠−1 ⎛⎝ 0 0

1 0
0 1

⎞
⎠ .

Integration over body and surface forces may be realized by the midpoint rule. We approx-
imate fk and gk by fT := fk(xT ) and gE := gk(xE), where xT and xE denote the center of
mass of the element T , and the edge E, respectively. Defining

fT :=
|T |
3
RT

T fT , and gE :=
|E|
2
RT

E gE ,
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on each T ∈ T and on each E ∈ EN there hold∫
T

fTvh dx ≈ fT
T v , and

∫
E

gTvh ds ≈ gT
Ev . (5.5)

The whole integral over Ω can be split into a sum of integrals on single elements
T ∈ T . Therefore, by combining (5.3), (5.4) and (5.5) we obtain from (4.16) the discrete
formulation of the energy functional’s Gâteaux-differential

DJFE
k (u ; v) :=

∑
T∈T

[
|T | (C B uT − 2μ p̃k(B uT ))T BRT − fT

T

]
v −

∑
E∈EN

gT
E v

with

p̃k(B uT ) :=
max{0, φk−1(devσ̃k(B uT ))}

2μ+ σ2
yH

2

devσ̃k(B uT )

‖devσ̃k(B uT )‖N
+ pk−1 , (5.6)

where

devσ̃k(B uT ) := KCB uT − 2μpk−1 , (5.7)

φk−1(devσ̃k(B uT )) := ‖devσ̃k(B uT )‖N − σy(1 +Hαk−1) . (5.8)

Since DJFE
k (u ; v) is a finite dimensional mapping, there exists the Fréchet-derivative

DJFE
k (u) =

∑
T∈T

(
|T | (CB uT − 2μ p̃k(B uT ))T BRT − fT

)
−

∑
E∈EN

gE . (5.9)

Moreover (see Corollary 4.2 and Remark 5.1), the mapping DJFE
k is slantly differentiable

with (
DJFE

k

)o
(u) =

∑
T∈T

|T |RT
T B

T (C − 2μ p̃o
k(B uT ))T BRT , (5.10)

where due to Theorem 4.4, and the fact, that a Fréchet derivative also is a slanting function
(a result from [26]), the mapping

p̃o
k(B uT ) =

{
ξ
(
(1 − βk)

devσ̃kdevσ̃T
k N

‖devσ̃k‖2
N

+ βkI
)
KC if φk(σ̃k) > 0 ,

0 else .
(5.11)

serves as a slanting function for p̃k defined in (5.6). Here, the definitions ξ := 1
2μ+σ2

yH2 and

βk := φk−1(devσ̃k)
‖devσ̃k‖N

, and the abbreviation devσ̃k for devσ̃k(B uT ) as in (5.7) are used.

The slant Newton method (see Theorem 4.3) is applied for the calculation of u ∈ R2|N |

such that DJFE
k (u) = 0 and u satisfies the Dirichlet boundary condition:

ui+1 = ui + Δui+1 (∀i ∈ N0), (5.12)

where Δui+1 solves (
DJFE

k

)o
(ui) Δui+1 = −DJFE

k (ui) . (5.13)
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Remark 5.2. Note, that the slant Newton iterates (5.12) with (5.13) converge locally super
linear to the discrete solution, if the initial error ‖u − u0‖F is sufficiently small. This
result can be shown by using Theorem 4.3, since

(
DJFE

k

)o
(ui) is positively definite, as

can be shown analogously to Lemma 4.1, and the uniform boundedness of the inverse[(
DJFE

k

)o
(ui)

]−1
can be shown analogously to Proposition 4.2.

5.3 High Order FEM (p-FEM)

In this section, we will briefly mention the most important definitions and results of high
order Finite Element Methods (p-FEM). For more detailed information, the interested
reader is referred to the pioneering work [10], and the monograph [93]. Same as in h-FEM,
also in p-FEM a γ-shape regular mesh is used, but in contrast to h-FEM, the accuracy of
the approximate solution is increased, i. e., the dimension of the finite element space V l

FE

is enlarged, by increasing the polynomial degree of the shape functions instead of refining
the mesh by the partitioning of elements. The big advantage of a high order method is the
faster convergence [9], whereas the major drawback of a high order method is the expensive
assembling of the system matrix. As long as this handicap can be settled (e.g., by finding
recurrences via symbolic computation [11, 14, 15]), the application of such methods are
definitely worth their price. We turn to the basic definition of hierarchic basis functions in
p-FEM. Let be mentioned, that in this paper, we concentrate on the Karniadakis-Sherwin
polynomials [61]. Before defining the discretization of the vector valued displacement field
u ∈ [H1(Ω)]

2
, the scalar case u ∈ H1(Ω) is discussed.

Let the reference triangle K̂ and the reference square Q̂ be defined by

K̂ := {(x, y) | x > −1, y > −1, x+ y < 0} and Q̂ = (−1, 1)2 . (5.14)

The Duffy transformation D : R2 → R2, defined by

D(η1, η2) =

(
1

2
(1 + η1)(1 − η2) − 1 , η2

)
, (5.15)

maps Q̂ onto K̂. The inverse maps K̂ onto Q̂ and is given by

D−1(ξ1, ξ2) =

(
2
1 + ξ1
1 − ξ2

− 1 , ξ2

)
.

The further proceeding is to define local shape functions Φ on Q̂ and then, by the
application of the inverse Duffy transformation Ψ = Φ◦D−1 , to obtain local shape functions
on the reference triangle K̂.

Definition 5.1. Let α > −1, β > −1, and n ∈ N ∪ {0} be given. The polynomial

P
(α,β)
n : [−1, 1] → R defined by

P (α,β)
n (η) :=

(−1)n

2n n!
(1 − η)−α(1 + η)−β dn

dηn

(
(1 − η)α+n(1 + η)β+n

)
(5.16)

is called nth Jacobi Polynomial with respect to the weight (1 − η)α(1 + η)β.
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Figure 5.1: The reference elements K̂ and Q̂ defined in equation (5.14).

Definition 5.2. Let the reference elements K̂ and Q̂ be given by (5.14) and let the trans-
formation D : R2 → R2 be defined as in (5.15). For a given polynomial degree p ∈ N we
define the set Ψ =

⋃5
B=1 ΨB of local shape functions by

ΨB := ΦB ◦D−1 = {φ ◦D−1 | φ ∈ ΦB} B = 1, . . . , 5 , (5.17)

where ΦB is given by:

Φ1 = {(1 − η1)

2

(1 − η2)

2
,
(1 + η1)

2

(1 − η2)

2
,
(1 + η2)

2
},

Φ2 = {(1 − η1)

2

(1 + η1)

2

(1 − η2)

2
P

(1,1)
i−1 (η1) | i = 1, . . . , p− 1},

Φ3 = {(1 + η1)

2

(1 − η2)

2

(1 + η2)

2
P

(1,1)
i−1 (η2) | i = 1, . . . , p− 1},

Φ4 = {(1 − η1)

2

(1 − η2)

2

(1 + η2)

2
P

(1,1)
i−1 (η2) | i = 1, . . . , p− 1},

Φ5 = {(1 − η2
1)

4

(1 + η2)

2

(1 − η2)
i+1

2i+1
P

(1,1)
i−1 (η1)P

(2i+1,1)
j−1 (η2)

| i, j = 1, . . . , p− 1}.

The subdivision of the shape functions is as follows: The set Φ1 contains vertex shape
functions, which vanish on all vertices, except on one, where the value one is attained. The
set Φ5 contains the interior bubble functions, which vanish on all edges, and the remaining
sets Φ2, Φ3, Φ4 contain edge bubble functions, which vanish on all but one edge. In [61] it
is shown, that Ψ is a set of linear independent polynomial functions, and that the span of
Ψ contains all polynomials of degree p on the reference triangle K̂.
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Figure 5.2: Degrees of freedom in case of h-refinement.

In this way we approximate u ∈ H1(Ω) by uFE ∈ Sp(Ω, T ) with

Sp(Ω, T ) := {u ∈ H1(Ω) | u ◦ FK ∈ spanΨ for all K ∈ T } , (5.18)

where FK denotes the mapping from the reference triangle K̂ to the local element K. In
case of vector valued problems, such as in elastoplasticity, each shape function ψ ∈ Ψ is
replaced by a set of d vector valued shape functions {ψ ei | i = 1, . . . , d}, where ei denotes
the ith unit vector. Speaking in the notation of Section 5.1, we have V l

FE = Spl(Ω, T ),
where pl denotes the polynomial degree of level l. In order to keep the property (5.1), one
has to guarantee pl ≥ pl−1.

When using p-FEM with pl = l, only

|V l
FE| = O(p2

l ) = O(l2)

degrees of freedom have to be computed. Compared to this (compare Figure 5.2), the
growth of unknowns in the case of h-FEM with hl = 2−l is

|V l
FE| = O(21/hl) = O(4l) .

The a priori error analysis of the high order Finite Element Method [9] states the
convergence (for space dimension d = 2)

‖u− uFE‖H1(Ω) ≤ C p−s ‖u‖Hs+1(Ω)

if u ∈ Hs+1(Ω)2, and in the case of singular behavior of the type u ≈ rα, α > 0, where r
is the distance from the singularity, we obtain

‖u− uFE‖H1(Ω) ≤ C p−2α ,

which is logarithmically twice the rate of the h-version [93].
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5.4 Combining Low and High Order FEM (hp-FEM)

The concept of hp-FEM is the adaptive combination h-FEM and p-FEM. The key idea is to
increase the polynomial degree locally on elements, where the solution has high regularity.
On such elements we can expect locally up to exponential convergence (see [7, 93]) of the
approximate towards the solution. On other elements, where the regularity of the solution
is low, mesh refinement, i. e. h-FEM, is applied, which locally yields algebraic convergence.
Globally, the convergence of hp-approximations is much faster than the convergence in h-
FEM or p-FEM, under certain conditions up to exponential convergence can be achieved.
The price we pay is, that the method is much harder to implement than h- or p-FEM. We
turn to the definition of the approximation space, which actually will be very much the
same as in p-FEM.

Let a polynomial degree pK ∈ N be associated with each element K ∈ T and the
polynomial degree pe with each edge e by

pe = min{pK | e is an edge of K} .

The information of polynomial degree distribution is collected in a vector p = (pK)K∈T ,
which is called (polynomial) degree vector.

With pKe1, pKe2, pKe3, and pK denoting the polynomial degree on the edges e1, e2, e3,
and in the interior of element K, the set of shape functions Ψ is defined as in Definition 5.2,
where Φ1,. . . ,Φ5 are given by:

Φ1 = {(1 − η1)

2

(1 − η2)

2
,
(1 + η1)

2

(1 − η2)

2
,
(1 + η2)

2
},

Φ2 = {(1 − η1)

2

(1 + η1)

2

(1 − η2)

2
P

(1,1)
i−1 (η1) | i = 1, . . . , pAB − 1},

Φ3 = {(1 + η1)

2

(1 − η2)

2

(1 + η2)

2
P

(1,1)
i−1 (η2) | i = 1, . . . , pBC − 1},

Φ4 = {(1 − η1)

2

(1 − η2)

2

(1 + η2)

2
P

(1,1)
i−1 (η2) | i = 1, . . . , pCA − 1},

Φ5 = {(1 − η2
1)

4

(1 + η2)

2

(1 − η2)
i+1

2i+1
P

(1,1)
i−1 (η1)P

(2i+1,1)
j−1 (η2)

| i, j = 1, . . . , pK − 1}.

The approximation space reads

Sp(Ω, T ) := {u ∈ H1(Ω) | u ◦ FK ∈ spanΨ for all K ∈ T } , (5.19)

where Ψ depends on pKe1, pKe2, pKe3, and pK . Referring to Section 5.1, in hp-FEM the
approximation space is defined V l

FE = Spl(Ω, T ), where pl denotes the polynomial degree
vector of level l. In order to keep the property (5.1), one has to guarantee pl ≥ pl−1

component wise.
As already mentioned, the hp-method is expensive, but the approximate solutions con-

verge very fast. It is even possible to achieve exponential convergence, if the solution is
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analytic up to point-wise singularities on the boundary (if Ω ∈ R2). Therefore the construc-
tion of ideal geometric meshes and the use of linear degree vectors (see Definitions 5.3 and
5.4), is assumed. However, in such cases the convergence rate is globally even exponential
([8], [93, Theorem 4.63])

‖u− uFE‖H1(Ω) ≤ C exp(−bN1/3) , (5.20)

where C and b denote some positive constants, and N = dim(Sp(Ω, T )) denotes the
dimension of the used finite element space.

In elastoplasticity, the solution in each time step is known to be in H2
loc(Ω), and analytic

in balls where the plastic strain p vanishes [65, 12]. These, so called elastic zones, typically
cover the major part of the domain Ω, thus, the application of an hp-FEM is a natural
choice. In those parts of the interior domain, where the material reacts purely elastic, the
polynomial degree of the shape functions is increased, whereas the mesh is being h-refined
in plastic areas and towards rough boundary data or geometry.

Whenever plastic zones are small compared to elastic zones, the application of hp-FEM
is worth the cost. However, since the plastic zones are a set of non-zero measure, we cannot
expect an exponential convergence rate as in (5.20), but some algebraic convergence which
is faster than in both h-FEM and p-FEM.

The basic hp-adaptive algorithm reads as presented in Algorithm 1.

Algorithm 1 The hp-adaptive Algorithm:

Require: A mesh T , a polynomial degree vector (pK)K∈T , a Finite Element Solution uFE.
Ensure: A refined mesh Tref, a new polynomial degree vector (pK)K∈Tref

.

1: Determine which elements to refine → Th.
2: Determine where the polynomial degree should be increased → Tp.
3: Obtain a preliminary refined mesh → T ′

ref.
4: Elimination of hanging nodes → Tref.
5: Increase the polynomial degree pK = pK +1 for all elements K ∈ Tref∩Tp. In particular:

Elements to which an h-refinement is applied inherit the polynomial degree from their
father.

Note, that Items 3–5 are straight forward, whereas, one still has to decide on the exact
realization of Items 1 and 2. In general, the set of all adaptive strategies divides into two
classes: strategies which are problem dependent, and those which are not. In problem
dependent strategies, the decision whether to refine in h, or in p, or not at all, relies on
the evaluation of problem dependent quantities, typically the error estimator. Strategies
of this type can be found in [83, 30, 1].

Since the reliability and efficiency of error estimators for elastoplasticity is strongly
depending on the amount of hardening (i. e., the size of the hardening module H , which
was introduced in (3.23)), the use of problem independent algorithms is a natural choice,
wherever the hardening moduleH is small. Methods as in [32, 33], estimate the regularity of
the solution without using problem dependent quantities. The main idea of these strategies
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is to minimize a local error projection of a reference solution, that is obtained by a uniformly
h-refined mesh intermediately. In this way an optimal hp-mesh is produced adaptively. The
big advantage of such method is, that no knowledge about the problem has to be passed
to the mesh generation, the drawback is to cope with different meshes at the same time,
which often is hard to implement on the computer in Finite Element frameworks.

In this paper we choose a strategy of hp-refinement, which is presented in [38]. This
strategy was first discussed in [71] for the spectral element method, and later used in [57] for
hp-FEM in one dimension (or in more dimensions, where elements have tensor structure).
T. Eibner and M. Melenk [38] present the extension of the strategy to hp-FEM for the
Poisson problem in more dimensions, i. e., where elements have the shape of triangles and
tetrahedrons. Especially two advantages are covered by this approach: First, the algorithm
is problem independent (see Remark 5.3), and second, there is no need to handle more than
one FE-mesh in the implementation. The algorithm is based on estimating the Sobolev
regularity of the solution by a certain L2-orthogonal polynomial expansion:

Proposition 5.1. Define on the reference triangle K̂ the L2(K̂)-orthogonal basis ψpq,
p, q ∈ N0 by

ψpq = ψ̃pq ◦D−1 , ψ̃pq = P (0,0)
p (η1)

(
1 − η2

2

)p

P (2p+1,0)
q (η2) ,

where P
(α,β)
p is the (well known) p-th Jacobi polynomial with respect to the weight η �→

(1 − η)α(1 + η)β and D the Duffy transformation. Let u ∈ L2(K̂) be written as

u =
∑

p,q∈N0

upqψpq . (5.21)

Then u is analytic on K̂ if and only if there exist constants C, b > 0 such that |upq| ≤
C e−b(p+q) for all p, q ∈ N0.

Proof. See [72].

Since the true solution u is not available, the idea for an hp-adaptive algorithm is
to estimate the decay of the coefficients upq of the L2 conforming expansion of the finite
element solution uFE|K ◦ FK =

∑
p,q upqψpq instead. If the decay is exponentially, then the

polynomial degree p will be increased, otherwise, the mesh will be refined, see Algorithm 2.

Remark 5.3. Note, that in the above algorithm, the use of an a-posteriori error estimator
can be switched off by setting σ = 0, which is recommended for materials without, or small,
hardening effects. The crucial part of the algorithm is testing the approximated slope of
the expansion coefficients versus a given critical slope b. In this sense, the algorithm is
problem independent. However, the use of an a-posteriori error estimator (say the ZZ-
error estimator [29]) may nevertheless be of advantage. Particularly if the material shows
hardening effects, i. e., if the modulus of hardening H in (3.23) is large.
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Algorithm 2 Items 1 and 2 in Algorithm 1:

Require: A mesh T ; a polynomial degree vector (pK)K∈T ; parameters b > 0 and σ ≥ 0;
a Finite Element Solution uFE; a reliable, efficient, and localizable a posteriori error
estimator η(uFE).

Ensure: The marked elements Tp and Th.

1: Compute the mean error η̄2 = |T |−1
∑

K∈T η
2
K

2: For elements K ∈ T with η2
K ≥ ση̄2 compute the expansion coefficients

uij,K = ‖ψij‖−2

L2(K̂)
〈uFE|K ◦ FK , ψij〉L2(K̂)

for 0 ≤ i+ j ≤ pK .
3: Estimate the decay coefficient bK by a least squares fit of

ln|uij,K| ≈ CK − bK(i+ j) .

4: Determine

Tp = {K ∈ T | η2
K ≥ σ η̄2 ∧ bK ≥ b} ,

Th = {K ∈ T | η2
K ≥ σ η̄2 ∧ bK < b} .

In Chapter 6 we compare Algorithm 2 with a standard hp-adaptive approach, which
is proposed a Series of papers by L. Demkowicz, T. Oden, W. Rachowicz, and coworkers
[31, 82, 87] and also used in hp-BEM, e. g., [51]. This approach, summarized in Algorithm 3,
puts the decision of whether refining in h or in p solely on the local evaluation of an a-
posteriori-error-estimator ηK(uFE).

Algorithm 3 Items 1 and 2 in Algorithm 1:

Require: A mesh T ; parameters 0 < σ1 < σ2 < 1; a localizable a-posteriori error estima-
tor η(uFE).

Ensure: The marked elements Tp and Th.

1: Compute the maximum error ηmax = maxK∈T ηK

2: Determine

Tp = {K ∈ T | σ1 ηmax < ηK ≤ σ2 ηmax} ,
Th = {K ∈ T | σ2 ηmax < ηK} .

61



5.5 The Zone Concentrated FEM

In addition to the hp-adaptive strategy in Algorithm 1, we investigate also another ap-
proach, which we call a Zone Concentrated FEM (ZC-FEM). For this technique we use the
knowledge from Boundary Concentrated FEM (BC-FEM), introduced by B. N. Khorom-
skij and J. M. Melenk [62]).1 This approach is still of an hp-adaptive Finite Element type,
but with a slightly different aim. Let us start with a short review on BC-FEM. Considering
the regularity of the solution to be low at the boundary and high in the interior of the
domain, the parameters h and p are chosen to be small in a neighborhood of the boundary
and to be growing towards the interior of the domain. This growth is based on the use of
geometric meshes and linear polynomial degree vectors, which are defined as follows:

Definition 5.3. A γ-shape-regular mesh T is called a geometric mesh with boundary mesh
size h if there exist constants c1, c2 > 0 such that for all K ∈ T with diameter hK the
following hold:

1. h ≤ hK ≤ c2h at the boundary, and

2. c1 infx∈K (x,Γ) ≤ hK ≤ c2 supx∈K (x,Γ).

Here, (x,Γ) denotes the shortest distance of point x to the boundary Γ = ∂Ω.

Definition 5.4. A polynomial degree vector p := (pK)K∈T is said to be linear with slope
α > 0 if there exist positive constants c1 and c2, such that

1 + α c1 log
hK

h
≤ pK ≤ 1 + α c2 log

hK

h
.

holds for all K ∈ T .

In BC-FEM, a hp-FEM discretization is performed, which uses a geometric mesh T
and a linear polynomial degree vector p. If the slope α of Definition 5.4 is chosen large
enough, then the convergence rate of BC-FEM is of the same order as in h-FEM, namely
in 2D

‖u− uFE‖H1(Ω) ≤ ‖u‖H1+s(Ω)h
s ,

where u is assumed to have global Sobolev regularity u ∈ [H1+s(Ω)]
2

with s ∈ (0, 1), and
h denotes the mesh size on the boundary - see [62].

Note, that the number of unknowns is significantly smaller than in h-FEM. For the 2D
case, in BC-FEM the number of unknowns is proportional to the number of unknowns on
the boundary (such as in BEM), whereas in a classical h-FEM the number of degrees of
freedom is proportional to the square of the number of unknowns on the boundary. This
is why the method is called a Boundary Concentrated Finite Element Method (BC-FEM)
[62]. And this is the conceptional difference to other hp-adaptive strategies: The method

1Similarly to a Zone Conzentrated FEM, one could also think of applying an Interface Concentrated
Finite Element Method (IC-FEM), see [13], to Elastoplasticity.
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exploits the knowledge about the regularity of the solution in a way, that it searches for
the smallest (and sparse) system which allows for the same convergence rate as is obtained
in a uniform h-FEM.

Here we come to the extension of BC-FEM, which we call ZC-FEM: In elastoplasticity,
BC-FEM can be applied for the purely elastic region, since the solution is known to be
analytic in the interior of the purely elastic region [12], whereas the plastic region, where
the solution is known to be just in H2

loc(Ω) [65], is discretized by using a classical h-FEM.
Usually, when applying BC-FEM, the geometric mesh T , and the linear polynomial degree
vector p can be constructed in advance, since the position of the boundary is known. This
is different when using ZC-FEM for elastoplastic problems. The interface between plastic
and elastic parts of the domain, which represents a part of the boundary of the elastic zone,
is not known in advance. This is due to the fact that the calculation of the plastic strain
field relies on the solution of the problem (the displacement field), as it is pointed out in
equation (4.30). In other words, after every refinement step the interface will probably
move. Thus, one has to estimate, which parts of the domain will be plastic at the next
step of refinement. This task can be handled by two different strategies:

The first one is to estimate the analyticity of the FE-solution as presented in Algorithm 2
(with σ = 0). This would yield an optimal prediction of the plastic zones in the next step
of refinement. Although, the prize we pay is a fairly high-dimensional test situation, since
the polynomial degree of the shape functions has to be high (experimentally: greater than
4) in order to obtain a reasonable prediction of the plastic zones.

The second option is to mark all elements for h-refinement, if they behave plastic at this
level of refinement, i. e., where the plastic strain pk satisfies ‖pk‖L2(K) > 0, and additionally
mark elements for h-refinement, which have a common vertex with those. This technique
implicitly assumes, that the elastoplastic interface of the FE-solution after the refinement
will move no further than at most one layer of elements from its former position, which
can be acchieved by choosing the time step (or load step, respectively) sufficiently small.

The resulting method has the same accuracy as a classical h-FEM, i. e.,

‖u− uFE‖H1(Ω) = O(h)

where h denotes the mesh size at the boundary. However, the number of degrees of freedom
of uFE is significantly smaller compared to the classical h-FEM approach: Considering the
classical h-FEM in two dimensions (d = 2), the number degrees of freedom is roughly
O(N2), with N = h−1 denoting the number of nodes on the boundary of the domain,
whereas in ZC-FEM it is O(NE) + O(N2

P ), where NE is the number of nodes on the
boundary of the purely elastic sub-domain, and NP the number of nodes on the boundary
of the plastic sub-domain. Thus, this method pays off in situations, where the area of the
plastic regions is small compared to the overall domain.

Let finally be mentioned, that the fastest expected convergence rate of the fully discrete
scheme (no matter if h- or hp-FEM is used in space) assymptotically satisfies

‖u− uFE‖H1(Θ ; H1(Ω)) = O(τ + h) ,

where τ denotes the maximum step size of the pseudo-time variable, see [50].
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Chapter 6

Implementation and Numerical
Results

6.1 Software Development

The implementation was done in two software packages. First, the theoretical results of
Chapter 4 were tested for the plane stain and plane stress case in Matlab. The full code is
named Epsilom (Elastoplastic solver induced by the Lemma of Moreau). It is available for
download at http://www.numa.uni-linz.ac.at/Research/software.html. Then, the code
was transferred to the software package NETGEN/NGSolve [92], in which the 3D case, and
especially the adaptive strategies for hp-FEM (see Section 5.4 and 5.5) were implemented.
After laborious work on the implementation in NETGEN/NGSolve, it was finally visible,
which strategies are of advantage for certain problems. The study of these tests is subject
to the following Sections.

6.2 Uniform h-FEM

In this section, we show the computational success of the slant Newton method for a spatial
discretization of uniform h-refinement and the constant polynomial degree p = 1. In all
numerical examples, the scaled accuracy of the residual (cf. (5.12) and (5.13)) was used as
the termination criterion, i. e., we tested

‖DJFE
k (ui)‖ ≤ 10−8 ‖DJFE

k (u0)‖ .

Example 6.1. This example is motivated by a benchmark problem for linear elasticity,
where an L-shape domain (geometry and coarse grid triangulation are displayed in Fig-
ure 6.1) is deformed (due to a certain choice of surface traction) such, that the solution u
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dof 10 66 . . . 20466 97282 391170
step 1 2.8383e-02 3.9827e-02 . . . 7.2243e-02 7.0236e-02 6.8321e-02
step 2 1.0467e-04 1.2352e-03 . . . 1.1004e-02 1.1063e-02 1.1022e-02
step 3 2.3781e-09 6.1409e-07 . . . 1.1453e-03 1.2746e-03 1.3552e-03
step 4 1.0944e-16 2.9589e-13 . . . 2.0826e-05 4.0743e-05 5.9611e-05
step 5 . . . 6.8005e-09 5.1957e-08 2.0693e-07
step 6 . . . 5.2211e-15 1.3866e-13 4.3361e-12
step 7 . . . 1.8774e-14

time 2.00537 2.25042 . . . 142.29 590.106 2692.87

Table 6.1: Convergence table in Example 6.1.

can be written in polar coordinates as

ur(r, θ) =
1

2μ
rα [−(α + 1) cos((α+ 1) θ) + (C2 − (α + 1))C1 cos((α− 1) θ)] ,

uθ(r, θ) =
1

2μ
rα [(α+ 1) sin((α + 1) θ) + (C2 + (α− 1))C1 sin((α− 1) θ)] ,

(6.1)

where C1 = −(cos((α+ 1)ω))/ cos((α− 1)ω), and C2 = (2(λ+ 2μ))/(λ+ μ). This solution
attains a singularity at the reentrant corner of the domain, when α ≈ 0.544483737. We now
prescribe the solution (6.1) with α = 0.544483737 at the whole boundary of the domain,
and calculate the solution of the related elastoplastic problem. The material parameters
are defined as

E = 1e5 MPa , ν = 0.3 , σY = 2.2 MPa , H = 1 .

Figure 6.2 shows the yield function φ (3.23) on the right and the plastic zones on the
left, where purely elastic zones are colored green (light gray in case of a non-color print
respectively), and plastic zones are colored pink (dark grey respectively). For better vis-
ibility, the domain’s displacement is multiplied by a factor of 3000. Table 6.1 reports on
the convergence behavior of the Newton-like method for uniform mesh refinement. For
various levels of refinement (dof: short for degrees of freedom) the table displays the H1(Ω)
seminorm of the error |uj − u∗|1, where u∗ is the approximation after 20 Newton iteration
steps. The total duration in the last line is measured in seconds.

Example 6.2. This example simulates the deformation of a screw-wrench under pressure.
Problem geometry is shown in Figure 6.3: A screw-wrench sticks on a screw (homogeneous
Dirichlet boundary condition) and a surface load g is applied to a part of the wrench’s
handhold in interior normal direction (Neumann boundary condition, cf. 6.3). The material
parameters are set

E = 2e8 MPa , ν = 0.3 , σY = 2e6 MPa , H = 0.001 ,

and the surface load intensity amounts |g| = 6e4 MPa. Figure 6.4 shows the yield function
φ (3.23) on the right and the plastic zones on the left, where purely elastic zones are colored
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Figure 6.1: Problem geometry and the coarse triangulation of Example 6.1. The L-shape
domain Ω is described by the polygon (−1,−1), (0,−2), (2, 0), (0, 2), (−1, 1), (0, 0).
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Figure 6.2: Plastic zones (left) and yield function (right) of the deformed domain in Ex-
ample 6.1. The displacement is magnified by the factor 3000.
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dof 60 202 . . . 41662 165246 658174
step 1 2.3834e-14 3.6169e-03 . . . 1.3194e-01 1.4872e-01 1.5846e-01
step 2 2.3598e-06 . . . 5.6966e-02 6.9302e-02 7.9603e-02
step 3 1.5324e-11 . . . 7.5805e-03 1.3223e-02 2.9909e-02
step 4 4.5752e-15 . . . 4.0307e-04 2.4344e-03 3.5626e-03
step 5 . . . 5.9665e-06 2.1840e-04 1.2013e-04
step 6 . . . 2.9485e-10 1.5089e-05 1.0364e-05
step 7 . . . 7.8696e-14 3.8914e-09 1.1642e-09
step 8 . . . 1.5508e-13 2.9988e-13

time 1.31385 2.58625 . . . 262.304 1177.64 4892

Table 6.2: Convergence table in Example 6.2.

green (light gray in case of a non-color print respectively), and plastic zones are colored
pink (dark grey respectively). The displacement of the domain is multiplied by the factor
10, for a better visibility of the deformation. Table 6.2 reports on the convergence of the
Newton-like method for graduated uniform meshes. Alike in Example 6.1, for various levels
of refinement (dof: short for degrees of freedom) the table displays the H1(Ω) seminorm of
the error |uj − u∗|1, where u∗ is the approximation after 20 Newton iteration steps. The
total duration in the last line is measured in seconds.

Example 6.3. The example is taken from [100] and serves as a benchmark problem in
computational plane strain plasticity (see [35]). In difference to the original problem setup,
we choose H to be non-zero, thus hardening effects are considered. The calculation of the
original perfect plastic problem can be found in [44]. We consider a thin plate represented
by the square (−10, 10)× (−10, 10) with a circular hole of the radius r = 1 in the middle.
A surface load g is applied on the plate’s upper and lower edge with the intensity |g| =
450 MPa. Due to the domain’s symmetry, only the right upper quarter is discretized, as
can be seen in Figure 6.41. Therefore it is necessary to incorporate homogeneous Dirichlet
boundary conditions in the normal direction (gliding conditions) to both symmetry axes.
The material parameters are set

E = 206900 MPa , ν = 0.29 , σY =

√
2

3
450 MPa , H =

1

2
.

Figure 6.43 shows the yield function φ (3.23) and Figure 6.44 shows the plastic zones, where
purely elastic zones are colored red, and plastic zones are colored blue. To obtain a better
visibility, the deformation in Figure 6.42 is multiplied by a factor of 100. Table 6.3 reports
on the convergence of the Newton-like method. For various levels of refinement (dof: short
for degrees of freedom) the table displays the H1(Ω) seminorm of the error |uj−u∗|1, where
u∗ is the approximation after 20 Newton iteration steps. The total duration in the last line
is measured in seconds.
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Figure 6.3: Problem geometry in Example 6.2.
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Figure 6.4: Plastic zones (left) and yield function (right) of the deformed domain in Ex-
ample 6.2. The displacement is magnified by the factor 10.

dof 245 940 . . . 14560 57920 231040
step 1 2.1826e-02 3.5365e-02 . . . 4.5238e-02 4.6300e-02 4.6603e-02
step 2 2.2225e-03 5.8553e-03 . . . 8.0839e-03 8.3886e-03 8.5454e-03
step 3 1.0478e-04 1.6539e-04 . . . 3.4440e-04 4.0032e-04 4.1602e-04
step 4 1.4404e-08 3.9755e-08 . . . 1.5206e-05 1.2050e-05 1.3944e-05
step 5 7.2634e-16 6.9728e-15 . . . 2.4947e-07 7.2972e-07 3.2631e-07
step 6 . . . 3.5062e-13 5.3972e-12 1.6473e-12
step 7 . . . 7.2441e-15 1.4518e-14

time 2 4.6 . . . 64 286 1195

Table 6.3: Convergence table in Example 6.3.
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Figure 6.5: On the left, you see the hysteresis curve for Example 6.3 with respect to
the time dependent surface load g(t) = (0, sin(πt)) MPa for t ∈ [0, 4]. At the material
point with coordinates roughly (2,2), the stress component σ22 is plotted versus the strain
component ε22. Both quantifiers are set to zero at t = 0. The time development takes
place in direction of the arrows. On the right, you see the hysteresis curve for the same
example, testing for H = 0 which models a perfect plastic material behaviour.

Example 6.4. The same problem as in Example 6.3 was calculated in 3D assuming the
plate geometry (−10, 10) × (−10, 10) × (0, 2). Figure 6.6 shows the norm of the plastic
strain field p (right) and the coarsest refinement of the geometry (left), and Table 6.4
reports on the convergence of the slant Newton method. The implementation was done in
C++ using the NETGEN/NGSolve software package developed in Linz [92].

6.3 Adaptive hp-FEM Strategies

We discuss three different numerical examples, for each of which four different hp-adaptive
FEM strategies are tested versus a uniform h-refinement:

dof: 717 5736 45888 367104
step 1 1.013e-01 1.254e-01 1.367e-01 1.419e-01
step 2 7.024e-03 6.919e-03 7.159e-03 6.993e-03
step 3 1.076e-04 9.359e-05 1.263e-04 1.176e-04
step 4 2.451e-08 6.768e-07 1.744e-06 1.849e-06
step 5 7.149e-15 6.887e-12 4.874e-09 1.001e-08
step 6 4.298e-13 2.368e-14
time: 10 72 912 39200

Table 6.4: Convergence table of Example 6.4
.
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Figure 6.6: The two plots show the coarsest tetrahedal FE-mesh with the applied traction
g (left), and the norm of the plastic strain field p (right) on a finer mesh of the three
dimensional problem in Example 6.4.

• Strategy 1 is a Zone Concentrated FEM as outlined in Section 5.5. It is the com-
bination of a-priori h-refinement towards the boundary and the plastic zones. An
element is treated as a part of the plastic zone, if one of its vertices belongs to an
element, where the plastic strain is nonzero, ‖pk‖F �= 0. The remaining part of the
domain, which reacts purely elastic, is discretized by a geometric mesh and a linear
polynomial degree vector (see Definition 5.3 and 5.4).

• Strategy 2 exactly covers Algorithm 2, where the parameters are set to σ = 10−4

and b = 3. If the FE-solution is of too low order (p < 5) locally, then testing for
analyticity is not reliable, and the element is marked for p-refinement.

• Strategy 3 is almost identical to Strategy 2, and also using the same parameters. In
difference to Strategy 2, plastic elements (where the plastic strain pk yields ‖pk‖F �= 0)
are marked for h-refinement in advance. Also elements, which have a common vertex
with those, are marked for h-refinement, since the elastoplastic interface may move
from refinement to refinement. This way, the polynomial degree of the FE-solution
may kept low in elastoplastic zones.

• Strategy 4 is the classical hp-adaptivity approach, as in Algorithm 3. The parameters
are set to σ1 = 10−8 and σ2 = 10−4.
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Remark 6.1. In all of the above Strategies, which rely on a-posteriori error-estimation, the
ZZ-error-estimator [29]

η2
K(uFE) =

∫
K

(σFE − σ∗
FE) : C

−1(σFE − σ∗
FE) dx ,

η2(uFE) =

∑
K∈T η

2
K∑

K∈T
∫

K
σ∗

FE : C−1σ∗
FE dx

(6.2)

is used. Here, the flux σFE = C ε(uFE) is the elastic part of the stress depending on the
finite element solution uFE (element wise), and σ∗

FE is the Clement Interpolation of σFE.
This error estimator is known to be efficient and reliable for elastoplastic problems with
hardening [22, 3, 24, 23]. However, the respective estimates are cruzially depending on the
modulus of hardening H (see (3.23)) and do, particularly, not hold in the case of perfect
plasticity, where H = 0.

All examples of this section were computed in the framework NETGEN/NGSolve [92].

Example 6.5. A beam Ω = (0, 2)×(−0.5, 0.5) is fixed on the left boundary ΓD = {(x, y) ∈
∂Ω | x = 0} and stressed on the right boundary ΓN = {(x, y) ∈ ∂Ω | x = 2} in positive x-
direction with a traction of intensity |g| = 1.35 (see Figure 6.7). The material parameters
are chosen as follows: Young’s modulus E = 1000 MPa, Poisson ratio ν = 0.3, yield
stress σy = 1 MPa, and modulus of hardening H = 10. The graphical output after some
steps of uniform refinement is as follows: The displacement is plotted in Figure 6.8, which
also shows the deformation of the domain magnified by a factor 100. The yield function
φ (3.23) is plotted in Figure 6.9. In Figure 6.10 the plastic zones (red) versus elastic
zones (blue) are shown, whereas Figure 6.11 and Figure 6.12 report on the point-wise
Frobenius-norm of the plastic strain. The estimated slope of the FE solution coefficients,
as discussed in Algorithm 2, is plotted in Figure 6.13. We numerically tested uniform
refinement (h-FEM) versus the hp-FE Strategies 1-4. Let be mentioned, that in all tests
the super linear convergence of the Newton like method was observed. Figures 6.14-6.17
illustrate the polynomial order distribution after some steps of adaptive hp-refinement,
whereas the resulting meshes are shown in Figures 6.18-6.21. The approximation error
‖u− uFE‖H1(Ω) is estimated by the elastic ZZ-error estimator (6.2). Figures 6.22 and 6.23
show the convergence results graphically.
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ΓD ΓN gΩ

Figure 6.7: Geometry and problem description of Example 6.5.

Figure 6.8: Displacement and deformed domain (×100) in Example 6.5.

Figure 6.9: Yield function φ (3.23) in Example 6.5.
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Figure 6.10: Plastic (red) and elastic (blue) zones in Example 6.5.

Figure 6.11: Frobenius norm of the plastic strain in Example 6.5.

Figure 6.12: Logarithmic Frobenius norm of the plastic strain in Example 6.5.
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Figure 6.13: The estimated slope of coefficients (Algorithm 2) in Example 6.5.

Figure 6.14: Polynomial order with Strategy 1 in Example 6.5.

Figure 6.15: Polynomial order with Strategy 2 in Example 6.5.

75



Figure 6.16: Polynomial order with Strategy 3 in Example 6.5.

Figure 6.17: Polynomial order with Strategy 4 in Example 6.5.

Figure 6.18: Adaptive mesh with Strategy 1 in Example 6.5.
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Figure 6.19: Adaptive mesh with Strategy 2 in Example 6.5.

Figure 6.20: Adaptive mesh with Strategy 3 in Example 6.5.

Figure 6.21: Adaptive mesh with Strategy 4 in Example 6.5.
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Figure 6.22: The global estimated error (6.2) versus degrees of freedom in Example 6.5.
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Figure 6.23: Here, the global estimated error (6.2) is plotted versus the time (in seconds)
which was spent per Newton step in Example 6.5. One Newton step covers the assembling
of the stiffness matrix and a sparse direct solver (PARDISO [90, 91]).
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Example 6.6. A beam Ω = (0, 2) × (−0.5, 0.5) is fixed on the boundary ΓD = {(x, y) ∈
∂Ω | x ∈ (0, 0.5)}. On the boundary ΓN = {(x, y) ∈ ∂Ω | x ∈ (1.5, 2)} a traction
g = (0.9,−sign(y) 0.1) is applied (see Figure 6.24). The material parameters are chosen as
follows: Young’s modulus E = 1000 MPa, Poisson ratio ν = 0.3, yield stress σy = 1 MPa,
and modulus of hardening H = 10. The graphical output after some steps of uniform
refinement is as follows: The displacement is plotted in Figure 6.25, which also shows the
deformation of the domain magnified by a factor 50. The yield function φ (3.23) is plotted
in Figure 6.26. In Figure 6.27 the plastic zones (red) versus elastic zones (blue) are shown,
whereas Figure 6.28 and Figure 6.29 report on the point-wise Frobenius-norm of the plastic
strain. The estimated slope of the FE solution coefficients, as discussed in Algorithm 2,
is plotted in Figure 6.30. We numerically tested uniform refinement (h-FEM) versus the
hp-FE Strategies 1-4. Let be mentioned, that in all tests the super linear convergence of
the Newton like method was observed. Figures 6.31-6.33 illustrate the polynomial order
distribution after some steps of adaptive hp-refinement, whereas the resulting meshes are
shown in Figures 6.35-6.37. The approximation error ‖u − uFE‖H1(Ω) is estimated by
the elastic ZZ-error estimator (6.2). Figures 6.39 and 6.40 show the convergence results
graphically.
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Figure 6.24: Geometry and problem description of Example 6.6.
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Figure 6.25: Displacement and deformed domain (×50) in Example 6.6.

Figure 6.26: Yield function φ (3.23) in Example 6.6.

Figure 6.27: Plastic (red) and elastic (blue) zones in Example 6.6.
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Figure 6.28: Frobenius norm of the plastic strain in Example 6.6.

Figure 6.29: Logarithmic Frobenius norm of the plastic strain in Example 6.6.

Figure 6.30: The estimated slope of coefficients (Algorithm 2) in Example 6.6.
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Figure 6.31: Polynomial order with Strategy 1 in Example 6.6.

Figure 6.32: Polynomial order with Strategy 2 in Example 6.6.

Figure 6.33: Polynomial order with Strategy 3 in Example 6.6.
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Figure 6.34: Polynomial order with Strategy 4 in Example 6.6.

Figure 6.35: Adaptive mesh with Strategy 1 in Example 6.6.

Figure 6.36: Adaptive mesh with Strategy 2 in Example 6.6.
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Figure 6.37: Adaptive mesh with Strategy 3 in Example 6.6.

Figure 6.38: Adaptive mesh with Strategy 4 in Example 6.6.
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Figure 6.39: The global estimated error (6.2) versus degrees of freedom in Example 6.6.
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Figure 6.40: Here, the global estimated error (6.2) is plotted versus the time (in seconds)
which was spent per Newton step in Example 6.6. One Newton step covers the assembling
of the stiffness matrix and a sparse direct solver (PARDISO [90, 91]).
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Example 6.7. A plate with a hole Ω = {x ∈ [−10, 10]2 : ‖x‖ ≥ 1} is torn on the top
and bottom edges ΓN = {(x, y) ∈ ∂Ω | |y| = 10} in normal direction with a traction
of intensity |g| = 450. Due to the symmetry of the problem, only the top right quarter
is considered in the numerical simulation (see Figure 6.41). Note, that gliding conditions
are required on the cutting edges. The material parameters are chosen as follows: Young’s
modulus E = 206900 MPa, Poisson ratio ν = 0.29, yield stress σy = 450

√
2/3 MPa,

and modulus of hardening H = 0.1. The graphical output after some steps of uniform
refinement is as follows: The displacement is plotted in Figure 6.42, which also shows
the deformation of the domain magnified by a factor 100. The yield function φ (3.23) is
plotted in Figure 6.43. In Figure 6.44 the plastic zones (red) versus elastic zones (blue) are
shown, whereas Figure 6.45 and 6.46 report on the point-wise Frobenius-norm of the plastic
strain. The estimated slope of the FE solution coefficients, as discussed in Algorithm 2,
is plotted in Figure 6.47. We numerically tested uniform refinement (h-FEM) versus the
hp-FE Strategies 1-4. Let be mentioned, that in all tests the super linear convergence of
the Newton like method was observed. Figures 6.48-6.50 illustrate the polynomial order
distribution after some steps of adaptive hp-refinement, whereas the resulting meshes are
shown in Figures 6.52-6.54. The approximation error ‖u − uFE‖H1(Ω) is estimated by
the elastic ZZ-error estimator (6.2). Figures 6.56 and 6.57 show the convergence results
graphically.
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Figure 6.41: Geometry and problem description of Examples 6.3 and 6.7.

86



Figure 6.42: Displacement and deformed domain (×100) in Examples 6.3 and 6.7.

Figure 6.43: Yield function φ (3.23) in Examples 6.3 and 6.7.
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Figure 6.44: Plastic (red) and elastic (blue) zones in Examples 6.3 and 6.7.

Figure 6.45: Frobenius norm of the plastic strain in Examples 6.3 and 6.7.
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Figure 6.46: Logarithmic Frobenius norm of the plastic strain in Examples 6.3 and 6.7.

Figure 6.47: The estimated slope of coefficients (Algorithm 2) in Example 6.7.
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Figure 6.48: Polynomial order with Strategy 1 in Example 6.7.

Figure 6.49: Polynomial order with Strategy 2 in Example 6.7.
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Figure 6.50: Polynomial order with Strategy 3 in Example 6.7.

Figure 6.51: Polynomial order with Strategy 4 in Example 6.7.
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Figure 6.52: Adaptive mesh with Strategy 1 in Example 6.7.

Figure 6.53: Adaptive mesh with Strategy 2 in Example 6.7.
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Figure 6.54: Adaptive mesh with Strategy 3 in Example 6.7.

Figure 6.55: Adaptive mesh with Strategy 4 in Example 6.7.
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Figure 6.56: The global estimated error (6.2) versus degrees of freedom in Example 6.7.
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Figure 6.57: Here, the global estimated error (6.2) is plotted versus the time (in seconds)
which was spent per Newton step in Example 6.7. One Newton step covers the assembling
of the stiffness matrix and a sparse direct solver (PARDISO [90, 91]).
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Chapter 7

Conclusion

7.1 Discussion of the Numerical Experiments

The Tables 6.1, 6.2 and 6.3 clearly show the super-linear convergence for each of the
Examples 6.1-6.3 at each level of refinement. In order to allow the verification of the
convergence tables, the initial value was chosen to be zero for all experiments. Notice, that
the last iteration step sometimes shows only a very small improvement compared to the
preceding iteration step, which is due to the already reached machine accuracy. Let also be
mentioned, that in all examples of Section 6.3, where hp-FEM was chosen for the spatial
discretization, the super-linear convergence was observed.

Let us finally discuss the convergence plots Figure 6.22, Figure 6.39, and Figure 6.56.
Obviously, Strategy 2 works asymptotically best. However, in the first couple of refine-
ments, the strategy seems to fail. This is due to the fact, that the polynomial degree has
to be large enough, say greater than 4, for the method to work properly. Remember, the
decision of whether to refine in h or in p is left to the least squares fit of a straight line
through the point cloud (ln |upq|, p + q), where upq denote the coefficients with respect to
the expansion (5.21). So, the convergence of the FE-solution to the solution starts very late
but is fast with Strategy 2. The big disadvantage of Strategy 2 is its problem dependency:
the adjustment of the parameter b (which indicates, if the slope of the straight line is steep
enough) is the key point for the success of the strategy.

With Strategy 3, where we decide for h-refinement if an element was in the plastic zone,
the convergence is the second best asymptotically, but it starts off much earlier. Hence,
this strategy may be the best choice for use in real-time simulations. The strategy benefits
from the fact, that plastic zones cover regions, where the purely elastic solution would
have singularities. Thus an extra test on the regularity of the solution is avoided. The
difficulty of adjusting the parameters in a proper way, as in Strategy 2, can be avoided
in Strategy 3. However, Strategy 3 is pessimistic in the sense, that it can’t benefit if the
solution has higher regularity within plastic zones, which is especially weird for problems
with large plastic zones.

Strategy 4 is not reliable. In many experiments the author encountered a great loss
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of convergence rate at high levels of refinement (see Figure 6.22). Although the ZZ error
estimator [29], which we use in Strategy 4, is known to be efficient and reliable (see [24,
23]), this strategy cannot cope with the success of Strategies 1, 2, and 3. Note, that the
equilibration of this error estimator is sensitive with respect to the modulus of hardening
H (see (3.23)), which might be an explanation for the bad success of the strategy.

Despite the rather slow convergence rate (only about twice as fast as if we use uniform
h-refinement), there is a big advantage of Strategy 1: there are no problem depending
parameters to adjust, and it works well for rough boundary data (or geometry). In other
words, this strategy is robust and reliable in any case.

7.2 Theoretical Contribution and Outlook

A new framework was presented in Chapter 4, which allows to analyze an elastoplastic
problem already in a semi-continuous state, i. e., after time discretization (where we used an
implicit Euler scheme), but before spatial discretization. This framework is characterized
by the use of

• Moreau’s Theorem [77] (see Theorem 4.1 and Corollary 4.1),

• the explicit known minimizer with respect to the plastic strain [5] (see Theorem 4.2
and Equation 4.30), and

• the concept of slanting functions [26](see Subsections 4.2.2 and 4.2.3).

The first item allowed us to find, that the primal formulation (a nonsmooth minimization
problem with respect to the displacement and plastic strain), is equivalent to another
minimization problem, where the functional depends smooth on the displacement only. By
using the second item, the Fréchet derivative of this functional is explicitly given. The
following (variational) problem is to find a displacement, such that the Fréchet derivative
equals zero. Since the functional is not differentiable a second time, we used the concept
of slanting functions in order to iterate the solution of the elastoplastic problem by a
slant Newton method. This is a Newton-like method which uses a slanting function of the
functionals Fréchet derivative instead of its second derivative.

In the fully discrete case, such a slanting function exists and the resulting slant Newton
iterates are converging locally super-linear. This answers an open question of J. Alberty,
C. Carstensen, and D. Zarrabi [5, Remark 7.5], who observed the local super-linear con-
vergence numerically. Moreover, if we knew, that Assumption 4.1 was satisfied, a slanting
function would exists even in the spatially continuous setting, and the slant Newton method
would also converge locally super-linear in this case. Let us conclude this discussion with
an open question: Are there elastoplastic problems for which Assumption 4.1 is satisfied?
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Appendix A

General Calculus Results

Recall Definition 4.1 and Definition 4.2 in § 4.2.2, and letX, Y and Z be Banach spaces and
H a Hilbert space. Following, the chain rule and the product rule for slanting functions are
presented, wherein we use that a slantly differentiable function F : X → Y is continuous.
This is because limh→0 ‖F o(x+ h)‖ is bounded for all x ∈ X, whence

lim
h→0

‖F (x+ h) − F (x)‖ = lim
h→0

‖F o(x+ h) h+ r(h)‖ = 0 .

Theorem A.1. (chain rule) Let U ⊆ X and V ⊆ Y be open subsets. Let F ∈ S(U, Y )
such that F (U) ⊆ V and G ∈ S(V, Z). Let F o be a slanting function for F in U and Go

be a slanting function for G in V . Then there holds G ◦ F ∈ S(U,Z) where

(G ◦ F )o (x) := Go(F (x))F o(x) ∀x ∈ U

serves as a slanting function for G ◦ F in U .

Proof. Let x ∈ U be chosen arbitrary. Since U is open, there exists an open neighborhood
N ⊆ X centered at zero, such that (x + h) ∈ U if h ∈ N . One assumption was, that
function F is slantly differentiable in U with the slanting function F o. That is, there exists
a mapping r : X → Y with limh→0‖r(h)‖/‖h‖ = 0 such that, for all h ∈ N , there holds

F (x+ h) = F (x) + F o(x+ h) h+ r(h) .

Also, function G is slantly differentiable in V with the slanting function Go. That is, there
exists a mapping s : Y → Z with limk→0‖s(k)‖/‖k‖ = 0 such that

G(y + k) = G(y) +Go(y + k) k + s(k) (A.1)

holds for all y ∈ V and k ∈ Y which satisfy (y + k) ∈ V . The certain choice

y := F (x) , k(h) := F (x+ h) − F (x) = F o(x+ h) h+ r(h)

for h ∈ N satisfies y ∈ V and (y + k(h)) ∈ V , and yields

G(F (x+ h)) = G(F (x)) +Go(F (x+ h))F o(x+ h) h+ t(h) ,
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with t(h) := Go(F (x+ h)) r(h) + s(k(h)). It remains to show, that

lim
h→0

‖t(h)‖
‖h‖ = 0 .

Let ε > 0 be arbitrary. Since limh→0‖F o(x + h)‖ is bounded, limh→0 k(h) = 0, and

limk→0
‖s(k)‖
‖k‖ = 0, there holds

lim
h→0

(
(‖F o(x+ h)‖ + ε)

‖s(k(h))‖
‖k(h)‖

)
= 0 . (A.2)

There exists δ > 0, such that for all h ∈ N with ‖h‖ < δ there holds

(‖F o(x+ h)‖ + ε) ‖h‖ > ‖F o(x+ h)‖‖h‖ + ‖r(h)‖ ≥ ‖F o(x+ h) h+ r(h)‖ = ‖k(h)‖ .

Using this together with (A.2), we obtain limh→0
‖s(k(h))‖

‖h‖ = 0 . Hence a slantly differentiable

function is continuous, the function F is continuous. Thus, the limit limh→0‖Go(F (x+h))‖
is bounded, and we conclude

lim
h→0

‖t(h)‖
‖h‖ ≤ lim

h→0

(
‖Go(F (x+ h))‖‖r(h)‖‖h‖

)
+ lim

h→0

(
‖s(k(h))‖

‖h‖

)
= 0 .

Theorem A.2. (product rule) Let U ⊆ X be an open subset. Let F, G ∈ S(U,H) for which
F o : U → L(X,H) and Go : U → L(X,H) serve as slanting functions in U . Then, the
product P : U → R , x �→ 〈F (x) , G(x)〉H is slantly differentiable in U , and the mapping
P o : U → L(X,R) with

P o(x) := 〈F o(x ; ·) , G(x)〉H + 〈F (x) , Go(x ; ·)〉H ∀x ∈ U (A.3)

serves as a slanting function for P in U .

Proof. Let x ∈ U be arbitrarily and fixed. One has to show

lim
h→0

|P (x+ h) − P (x) − P o(x+ h) h|
‖h‖ = 0 . (A.4)

By the definition of

F̄ (x, h) :=
F (x+ h) + F (x)

2
, Ḡ(x, h) :=

G(x+ h) +G(x)

2

for all h ∈ X, there holds

P (x+ h) − P (x) = 〈F̄ (x, h) , G(x+ h) −G(x)〉 + 〈F (x+ h) − F (x) , Ḡ(x, h)〉 . (A.5)
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F and G are slantly differentiable, i. e., there exist mappings r : X → H and s : X → H
with

lim
h→0

‖r(h)‖
‖h‖ = lim

h→0

‖s(h)‖
‖h‖ = 0 ,

such that

F (x+ h) − F (x) = F o(x+ h) h+ r(h) , G(x+ h) −G(x) = Go(x+ h) h+ s(h) .

Substituting this in (A.5) and subtracting P o(x+ h) h, with P o defined in (A.3), yields

P (x+ h) − P (x) − P o(x+ h) h = 〈F̄ (x, h) , s(h)〉 + 〈Ḡ(x, h) , r(h)〉

+
1

2
〈F (x) − F (x+ h) , Go(x+ h) h〉 +

1

2
〈F o(x+ h) h , G(x) −G(x+ h)〉 .

Hence, the limit in (A.4) can be bounded from above by

lim
h→0

(
‖F̄ (x, h)‖‖s(h)‖‖h‖ + ‖Ḡ(x, h)‖‖r(h)‖‖h‖

+ ‖F (x+ h) − F (x)‖ ‖Go(x+ h)‖ + ‖F o(x+ h)‖ ‖G(x+ h) −G(x)‖
)
. (A.6)

Notice, that due to the continuity of F and G, there holds

lim
h→0

‖F̄ (x, h)‖ = ‖F (x)‖ , lim
h→0

‖F (x+ h) − F (x)‖ = 0

and the same for G. Thus, the limit in (A.6) equals zero, which implies that (A.4) is
true.

A few simple properties concerning the deviator are summarized in the following lemma,
and often used throughout this work.

Lemma A.1. Let n ∈ N, λ ∈ R with λ > 0, μ ∈ R with μ > 0, and I denote the identity
matrix in Rn×n. Let the mappings dev : Rn×n → Rn×n and C : Rn×n → Rn×n be defined

dev x := x− 〈x , I〉F
〈I , I〉F

I , Cx := μ(x+ xT ) + λ〈x , I〉F I .

Then, for all matrices x and y in R
n×n, the the following properties hold:

1. 〈dev x , y〉F = 〈x , dev y〉F , 2. dev I = 0 ,

3. 〈dev x , I〉F = 0 , 4. dev dev x = dev x ,

5. dev Cx = μ
(
dev x+ dev xT

)
, 6. C dev x = μ

(
dev x+ dev xT

)
,

7. 〈Cx , I〉F = (2μ+ 〈I , I〉Fλ)〈x , I〉F , 8. 〈C dev x , dev x〉F ≤ 〈Cx , x〉F .
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Proof. The first and the second property follow from the definition of the deviator:

〈dev x , y〉F = 〈x , y〉F − 〈x , I〉F 〈y , I〉F
〈I , I〉F

= 〈x , dev y〉F ,

dev I = I − 〈I , I〉F
〈I , I〉F

I = 0 .

The third property follows from the first two properties:

〈dev x , I〉F = 〈x , dev I〉F = 0 .

The fourth property holds due to the third property:

dev dev x = dev x− 〈dev x , I〉F
〈I , I〉F

I = dev x .

The fifth property relies on the second property,

dev Cx = μ(dev x+ dev xT ) + λ〈x , I〉F dev I = μ
(
dev x+ dev xT

)
,

and the sixth property relies on the third property,

C dev x = μ
(
dev x+ dev xT

)
+ λ〈dev x , I〉F I = μ

(
dev x+ dev xT

)
.

The seventh property follows from the definition of the mapping C:

〈Cx , I〉F = μ(〈x , I〉F + 〈xT , I〉F ) + 〈I , I〉Fλ〈x , I〉F = (2μ+ 〈I , I〉Fλ)〈x , I〉F .

The eighth property can be shown by

〈C dev x , dev x〉F = 〈dev Cx , dev x〉F = 〈Cx , dev dev x〉F = 〈Cx , dev x〉F

= 〈Cx , x〉F − 〈Cx , I〉F 〈x , I〉F
〈I , I〉F

≤ 〈Cx , x〉F .
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