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Abstract

In this thesis we study the obstacle problem. It is a free boundary problem and

the computation of approximate solution can be difficult and expensive. This thesis

addresses some aspects of this issue.

We discretize the gradient with lowest order Raviart-Thomas elements and func-

tional values by piecewise constant elements. Existence and uniqueness of solutions

to the discrete problems is studied and error estimates are obtained.

We develop the Uzawa-type algorithms for the discrete system of linear equations

and inequalities that results from the discretization of the mixed formulation of the

obstacle problem.

The convergence of classical Uzawa method is analyzed and we display numerical

results that agree with theoretical results.
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Chapter 1

Introduction

One important type of contact problem is that which involves the contact between an

elastic solid and a rigid obstacle. Problems in this category are sometimes called ’ob-

stacle problems’. Obstacle problems are a type of free boundary problem. They are

of interest both for their intrinsic beauty and for the wide range of applications they

describe in subjects ranging from physics to finance. Many important problems can

be formulated by transformation to an obstacle problem, for example, the filtration

dam problem [21], the Stefan problem [21], the subsonic flow problem [12], Ameri-

can options pricing model [15],etc. Since obstacle problems are highly nonlinear, the

computation of approximate solutions can be a challenge. The main existing numer-

ical methods for the solution of contact problems in general and obstacle problems

in particular, are ’gap element’ scheme, mathematical programming approach, and

schemes based on penalty formulations and Lagrange multiplier formulations.

In this thesis we concentrate on the latter. In the Lagrange multiplier formulation,

we reformulate the boundary value problem formulation of the obstacle problem in

a weak form. It has been shown, see e.g Noor and Whiteman [18], that in the

presence of a constraint, such an approach leads to a variational inequality. This

variational inequality is equivalent to the minimization problem. There are classical

iterative methods like point projection methods and point over-relaxation methods

[6] for solving this minimization problem but these suffer from slow convergence rates

on finer meshes due to the fact that the L2 -norm is used as a measure for the

projection onto the convex set instead of the actual dual norm . In these approaches

1



1 Introduction 2

H1 conforming finite elements are used as an approximating space for the primal

variables. For this approximating space, one needs to choose basis functions such

that they are continuous across the inter element boundaries.

On the other hand, it has been noticed that one could weaken the requirement

of inter element continuity for the functions in the finite element subspace of H1(Ω)

and still obtain a convergent finite element method. This finite element approach is

called a mixed finite element which is founded on a variational principle expressing

an equilibrium (saddle point) condition and not a minimization principle. With this

approach, we approximate both the scalar variable and the vector variable and here

comes the name mixed. For the approach that we consider in this thesis, the primal

variable is in H(div,Ω), and the dual variable is in L2(Ω) and this thus makes the def-

inition of the projection easier. The resulting system of equations and inequalities are

solved using Uzawa’s method. We investigate the performance of the classical Uzawa

algorithm and its variants. Our ultimate goal will be to obtain a robust Uzawa-type

algorithm for solving the mixed variational inequality. We further present numerical

examples to verify the error estimates. Moreover, we give numerical examples which

include problems involving an elastic membrane, encountering a flat or a non-flat

rigid obstacle, and investigate the finite element convergence to the location of the

free boundary

The outline of the remainder of this thesis is as follows:

In Chapter 2, a mathematical model for the obstacle problem is derived. Different

equivalent formulations are derived. Existence and uniqueness of solutions to these

formulations is also discussed.

In Chapter 3, the new primal problem and its equivalent mixed formulations are

discretized using the mixed finite element method of Raviart-Thomas [20]. Error

estimates for the approximation of the solution are provided.

In Chapter 4, we look at how to solve the discretized problem. The classical

Uzawa algorithm and its variants for solving the system of equations and inequalities

is presented. We analyze it and show its convergence.

In Chapter 5, several cases involving an elastic membrane encountering a flat or

non-flat rigid obstacle are considered and numerical solutions are displayed. In order
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to actually compute the free boundary, the case where the exact solution is known

is chosen to demonstrate our findings. We present the performance of the classical

Uzawa algorithm and its variants.

In Chapter 6 , we give some conclusive remarks and some ideas for the extension

of this work.



Chapter 2

Obstacle Problem Formulation

In this chapter we study the obstacle problem. We give a physical example of this

obstacle problem and further derive the different mathematical formulations for this

problem with reference to [16]. We show the equivalence of these formulations and

further analyze the existence and uniqueness of the solution to these formulations.

Motivated by the mixed method of Raviart-Thomas [20], we focus on the mixed for-

mulation of the obstacle Problem. In Chapter 3 we shall introduce finite dimensional

spaces and approximate the mixed problem.

2.1 Physical Example

Let us consider a horizontal circular wire and a membrane hanging on this wire.

We assume that this membrane is horizontal and above a plate. When we load the

membrane with a force f in the vertical direction, it undergoes deflection and we

get a contact area between the membrane and the obstacle which is the plate. This

contact area is called the coincidence set (fig 2.1(b)).

The boundary of the coincidence set is called the free boundary for the obstacle

problem. The location of this boundary is not known apriori and its part of our

problem.

4
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Figure 2.1: Membrane over a plate

2.1.1 Mathematical Formulation

We now give a simple mathematical model for this problem. We assume a homo-

geneous membrane represented by a domain Ω ⊂ R
2 a distance g from the plate

(obstacle) (fig 2.1(a)). When this membrane is loaded with a force f in the vertical

direction, it undergoes a deflection (fig 2.1(b)). Let v describe the new position of

this membrane at a point (x, y) ∈ Ω. The membrane is restricted from below by a

horizontal plate,i.e.,

v ≥ 0 on Ω. (2.1.1)

In addition the wire is described by

v = constant = g on ∂Ω. (2.1.2)

From calculus of variations, the surface area of the deformed membrane is given by

Surface Area =

∫

Ω

√

1 + v2
x + v2

ydxdy.

We assume that the potential energy of the deflected membrane is proportional to

the change of area of its surface[8], such that

P (v) =

∫

Ω

√

1 + v2
x + v2

ydxdy − meas(Ω),

where meas(Ω) is the surface area of the undeflected membrane (in figure 2.1(a)).

Assuming small displacements ((v−g) ≪ 1), higher order terms are neglected. Hence
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we obtain

P (v) =
1

2

∫

Ω

|∇v|2.

The work of external forces, corresponding to v is given by

E(v) =

∫

Ω

fvdxdy,

and total energy J(v) = P (v) − E(v). i.e

J(v) =
1

2

∫

Ω

|∇v|2 −

∫

Ω

fvdxdy. (2.1.3)

2.1.2 Minimization and Variational Formulation

From the Lagrange principle of minimizing the total energy, the equilibrium state of

the membrane is realized by a function u minimizing J over a class of functions v

with finite energy, and with a prescribed value g on the boundary ∂Ω. More precisely

u ∈ K̃∗ such that J(u) ≤ J(v) ∀v ∈ K̃∗, (2.1.4)

where

K̃∗ = {v ∈ H1(Ω) |v = g on ∂Ω, v ≥ 0}. (2.1.5)

More generally, a rigid obstacle is represented by a body occupying the set

Q = {[x, y, z] ∈ R
3|z ≤ ψ(x, y)}.

In addition, we also allow non-constant boundary conditions such that the set of

admissible deflections is now given as,

K̃ = {v ∈ H1(Ω) : v = g on ∂Ω, v ≥ ψ a.e in Ω}. (2.1.6)

Let ψ be such that K̃ is non-empty. Then K̃ is convex and closed (see[6] for the

proof).

Therefore the obstacle problem can be posed as a problem in the calculus of variations.

It is solved by the solution of the minimization problem:

Find u ∈ K̃ : J(u) ≤ J(v) for any v ∈ K̃. (2.1.7)
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By putting J in the abstract form:

J(v) =
1

2
ã(v, v) − (F̃ , v),

where (·, ·) denotes the L2(Ω) inner product, and ã(·, ·) is of the form

ã(u, v) = (∇u,∇v) for all u, v ∈ H1(Ω), (2.1.8)

and F̃ = f . We assume that the bilinear form ã is positive, symmetric and that the

convex set K̃ is non empty, convex and closed, then the following proposition holds.

Proposition 2.1.1. u ∈ K̃ solves (2.1.7 ) if and only if it solves

ã(u, v − u) ≥ (F̃ , v − u) for all v ∈ K̃. (2.1.9)

Proof. Suppose 2.1.7 holds, then for 0 < ǫ < 1, for any v ∈ K̃, u + ǫ(v − u) ∈ K̃ as
K̃ is convex.
Let J(u) = infv∈K̃ J(v), this implies that

J(u) ≤ J(u+ ǫ(v − u))

=
1

2
ã(u+ ǫ(v − u), u+ ǫ(v − u)) − (F̃ , u+ ǫ(v − u))

=
1

2
ã(u, u) − (f, u) + ǫ

(

ã(u, v − u) − (F̃ , v − u)
)

+
ǫ2

2
ã(v − u, v − u)

= J(u) + ǫ
(

ã(u, v − u) − (F̃ , v − u)
)

+
ǫ2

2
ã(v − u, v − u).

By subtracting J(u) and dividing by ǫ we obtain

0 ≤ ã(u, v − u) − (F̃ , v − u) +
ǫ

2
ã(v − u, v − u).

In the limit as ǫ→ 0, we see ã(u, v − u) − (F̃ , v − u) ≥ 0, the variational inequality.
Conversely suppose u solves (2.1.9). Let v ∈ K̃ with v 6= u, and let f(ǫ) = J(u +
ǫ(v − u)). For 0 ≤ ǫ ≤ 1. Note f(0) = J(u), f(1) = J(v) and f is continuous .
Now we calculate f ′(ǫ) for 0 ≤ ǫ ≤ 1

f ′(ǫ) = lim
h→0

J (u+ (ǫ+ h)(v − u)) − J (u+ ǫ(v − u))

h
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Take w = u+ ǫ(v − u)

⇒ f ′(ǫ) = lim
h→0

J (w + h(v − u)) − J (w))

h

= lim
h→0

hã(w, (v − u)) + h2

2
ã(v − u, v − u) − h(F̃ , (v − u))

h

= ã(w, v − u) − (F̃ , v − u)

= ã(u, v − u) − (F̃ , v − u) + ǫã(v − u, v − u)

> ã(u, v − u) − (F̃ , v − u) ≥ 0 (by 2.1.9).

Thus f(1) > f(0) and u minimizes J(u) that is (2.1.7).

Condition (2.1.9) is called the variational inequality formulation. This formulation

sometimes called the primal formulation of the obstacle problem. Having established

the equivalence of the minimization and variational formulation, it remains to show

the existence and uniqueness of solution to the primal formulation (2.1.9), which we

discuss in the following section (2.2)

2.2 Existence of the solution

As we have seen in the previous section, the obstacle problem can be described as a

minimization problem. This minimization is equivalent to the variational inequality

which we call a primal formulation of the obstacle problem. We will now present some

general theory about the existence and uniqueness of the solution to these problems.

The idea of proofs to the general theorems stated in this section were obtained from

[16], [14]. We then adapt these general ideas to the obstacle problem.

2.2.1 Existence and Uniqueness for the Primal Problem

Throughout this thesis, unless specified, the following parenthesis 〈·, ·〉R shall denote

the L2(R) inner product on Ω. For example,

〈f, g〉Ω =

∫

Ω

f(x, y)g(x, y)dxdy and 〈f, g〉∂Ω =

∫

∂Ω

f(x, y)g(x, y)dσ.

If the subscript R is omitted, we assume that R = Ω. The scalar product and the

norm in the Sobolev space Hk(Ω) are denoted by (·, ·)k and ‖ · ‖k respectively. Let
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V be a real Hilbert space equipped with scalar product (·, ·)V and the norm ‖ · ‖V .

Let V ∗ denote its dual and (·, ·) the duality pairing. Additionally, we need V 0 to be

a closed subspace of V , then Vg := ug + V0 denote a linear manifold containing all

functions satisfying essential boundary conditions i.e (u = g on ∂Ω). We assume that

the set of admissible solutions K̃ is non-empty, closed and convex. we further assume

that the bilinear form ã : V × V → R is symmetric, bounded and elliptic on V0 such

that,

|ã(u, v)| ≤ α1||u||V ||v||V ∀ u, v ∈ V (2.2.1)

ã(v, v) ≥ α2||v||
2
V ∀ v ∈ V0 (2.2.2)

Then the following theorem holds.

Theorem 2.2.1. Let V be the Hilbert space, and K̃ non-empty , closed and convex
subset of Vg. Let ã be symmetric and satisfy (2.2.1) and (2.2.2) and F̃ ∈ V ∗ such
that

ã(u, v − u) ≥ (F̃ , v − u) for all v ∈ K̃. (2.2.3)

Then there exists a unique solution u ∈ K̃ of the variational problem (2.2.3). If u1, u2

are solutions to problem (2.2.3) with corresponding right hand sides F̃1, F̃2 ∈ V ∗, then
the following stability estimate holds

‖u1 − u2‖ ≤
1

α2

‖F̃2 − F̃1‖ . (2.2.4)

Proof. We begin with the proof of the existence of solution u to (2.2.3), which we
present in several steps. First we define the functional J(u) and use our assumption
that a is symmetric

J(u) =
1

2
ã(u, u) − (F̃ , u). u ∈ V (2.2.5)

Let d = infK̃J(u). Since

J(u) ≥
α2

2
‖u‖2

V − ‖F̃‖V ∗‖u‖V

≥
α2

2
‖u‖2

V −
1

2α2

‖F̃‖2
V ∗ −

α2

2
‖u‖2

V

≥ −
1

2α2

‖F̃‖2
V ∗ ,
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we see that d ≥ − 1
2α2

‖F̃‖2
V ∗ ≥ −∞. Let un be a minimizing sequence of J in K̃ such

that
{

un ∈ K̃ : d ≤ J(un) ≤ d+ (1/n)
}

Applying the parallelogram law, and keeping in mind that K̃ is convex, we see that

α2‖un − um‖
2
V ≤ ã(un − um, un − um)

= 2ã(un, un) + 2ã(um, um) − 4ã(
1

2
(un + um),

1

2
(un + um))

= 4J(un) + 4J(um) − 8J(
un + um

2
)

≤ 4[(1/n) + (1/m)],

where we have used

4(F̃ , un) + 4(F̃ , um) − 8(F̃ ,
1

2
(un + um)) = 0.

Hence the sequence {un} is a cauchy sequence and the closed set K̃ contains an
element u such that un → u in V and J(un) → J(u). So J(u) = d.
Now that we have seen the existence of the solution. It remains to show the uniqueness
of this solution and consequently the stability estimate (2.2.4). First, suppose there
exists u1, u2 ∈ V be solutions to the variational inequalities

u ∈ K̃ : ã(ui, v − ui) ≥ (F̃i, v − ui) ∀ v ∈ K̃, i = 1, 2. (2.2.6)

Setting v = u2 in the variational inequality for u1 and v = u1 in that of u2 we obtain,
upon adding

ã(u1 − u2, u1 − u2) ≤ (F̃1 − F̃2, u1 − u2).

Hence by coerciveness of ã

α2‖u1 − u2‖
2
V ≤ ‖F̃2 − F̃1‖V ∗‖u1 − u2‖V .

and thus there holds the stability estimate (2.2.4). For F̃1 = F̃2, we can also see
uniqueness of the solution.

Application to the obstacle problem

We have seen a general theorem on variational inequalities, that assures existence and

uniqueness of a solution to a primal problem, provided all conditions are satisfied. So
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our next aim is to prove that the primal formulation for the obstacle problem satisfy

the required conditions.

Primal variational formulation

We formulated the following form of the obstacle problem:

Find u ∈ K̃ = {v ∈ H1(Ω) : v ≥ ψ in Ω, (v − g)|∂Ω = 0} such that

ã(u, v − u) ≥ 〈F̃ , v − u〉 for all v ∈ K̃, (2.2.7)

where for u, v ∈ H1(Ω)

ã(u, v) =

∫

Ω

∇u∇v dx for all u, v ∈ H1(Ω) ,

〈F̃ , v〉 =

∫

Ω

f.v dx .

We can immediately see that the bilinear form ã : H1(Ω)×H1(Ω) → R is symmetric.

Boundedness of ã follows of cauchy’s inequality i.e.

|ã(u, v)| = |

∫

Ω

∇u∇v dx|

≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω)

≤ ‖u‖1‖v‖1 .

In addition, ã is coercive on H1
0 (Ω) i.e.

ã(u, u) =

∫

Ω

|∇u|2 dx =
1

2

∫

Ω

|∇u|2 +
1

2

∫

Ω

|∇u|2 .

Using Friedrichs’ Inequality [9], we have ‖u‖2
0 ≤ γ‖∇u‖2

0 ∀u ∈ H1
0 (Ω) hence

ã(u, u) ≥
1

2

∫

Ω

|∇u|2 + c‖u‖2
0

≥ c′‖u‖2
1 for all u ∈ H1

0 (Ω) ,

where c = 1
γ
, c′ = min(1/2, 1/2c) are positive constants.

Clearly F̃ is bounded and linear. Therefore we get existence and uniqueness of a

solution u ∈ K̃ by Theorem (2.2.1).
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Linear Complementarity Problem Formulation

As a motivation towards deriving a new primal formulation that is well suited for the

mixed method of Raviart-Thomas, we recall the obstacle problem: Given f ∈ L2(Ω)

and (g, ψ) ∈ H1(Ω) with ψ ≥ g almost everywhere on ∂Ω, find u ∈ K̃ such that

〈∇u,∇(v − u)〉 ≥ 〈f, v − u〉 for all v ∈ K̃, (2.2.8)

where

K̃ = {v ∈ H1(Ω)|v ≥ ψ a.e in Ω, (v − g)|∂Ω = 0} . (2.2.9)

We suppose that we have a high regularity of the solution ,i.e., u ∈ H2(Ω)∩K̃. Then,

by applying Greens formula to the left hand side of (2.2.8), we obtain

∫

Ω

−∆u(v − u)dxdy +

∫

∂Ω

∂u

∂n
(v − u)ds ≥

∫

Ω

f(v − u)dxdy ∀v ∈ K̃ . (2.2.10)

As v−u = 0 on ∂Ω, the integral along the boundary ∂Ω vanishes. Let φ ∈ C∞
0 (Ω) be

a nonnegative function in Ω. Then v = u + tφ ∈ K̃ for any 0 < t ≤ 1. Substituting

this element into (2.2.10) we get

∫

Ω

(−∆u− f)φdxdy ≥ 0,

for all functions φ ∈ C∞
0 (Ω), with φ ≥ 0 in Ω. Hence

−∆u ≥ f a.e in Ω .

The domain Ω can now be divided as follows:

Ω = Ω0 ∪ Ω+,

where

Ω0 = {A ∈ Ω|u(A) = ψ(A)},

Ω+ = {A ∈ Ω|u(A) > ψ(A)}.

Let us assume that ψ ∈ C(Ω̄). As H2(Ω) →֒ C(Ω̄), the set Ω+ is open. Let Ã ∈ Ω+

be given. Then there exists a neighborhood Uδ(Ã) ⊂ Ω+. If φ ∈ C∞
0 (Uδ(Ã)), the
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function v = u± tφ belongs to K̃ i.e v = u± tφ ≥ ψ provided t is sufficiently small,

both positive and negative. Substituting v into ( 2.2.10), we obtain

(±t)

∫

Uδ(Ã)

−∆uφ dxdy ≥ (±t)

∫

Uδ(Ã)

fφ dxdy,

which holds for φ ∈ C∞
0 (Uδ(Ã)). Therefore

−∆u = f a.e in Uδ(Ã)).

Summing up, we have proved that for u ∈ H2(Ω) ∩ K̃, being the solution of (2.1.9)

satisfies the following set of relations

−∆u ≥ f a.e in Ω, (2.2.11)

u ≥ ψ a.e in Ω,

if u(A) > ψ(A) then − ∆u(A) = f(A).

Instead of (2.2.11) we can write also

−∆u ≥ f, u ≥ ψ ∈ Ω, (2.2.12)

(u− ψ)(−∆u− f) = 0 a.e in Ω. (2.2.13)

This formulation (2.2.12 - 2.2.13) is the linear complementarity problem(LCP)

formulation of the obstacle problem.

New Primal Formulation

Now we have seen that, provided everything is smooth enough, then the LCP formu-

lation (2.2.12) holds. Motivated by this formulation, we would like to further give a

new primal formulation of (2.2.12 - 2.2.12) that is well suited for the mixed method

of Raviart and Thomas [20]. Let us define the space

H(div,Ω) = {q ∈ L2(Ω) × L2(Ω) : ∇.q ∈ L2(Ω)},

with associated scalar product form

[q, p]Ω = 〈q, p〉Ω + 〈∇.q,∇.p〉Ω, ||q||H,Ω = [q, q]
1/2
Ω .
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The first step towards deriving a new primal formulation is to let

p = ∇u . (2.2.14)

We also define a new convex set K such that

K = {q ∈ H(div,Ω) : ∇.q + f ≤ 0 a.e in Ω}.

If we multiply equation (2.2.14) by a test function q from K and integrate over Ω, by

using Greens formula, and noting that u = g on the boundary ∂Ω we obtain

〈p, q〉 = 〈∇u, q〉 = −〈u,∇.q〉 + 〈u, q.n〉∂Ω = −〈u,∇.q〉 + 〈g, q.n〉∂Ω . (2.2.15)

We can replace q by (q − p) in (2.2.15) and obtain

〈p, q − p〉 = −〈u,∇.(q − p)〉 + 〈g, (q − p).n〉∂Ω . (2.2.16)

From conditions (2.2.12) and (2.2.13) one has ψ−u ≤ 0 and ∇.q+f ≤ 0, ∀ q ∈ K,

so combining these two conditions, we obtain

〈ψ − u, (∇.q + f)〉 ≥ 0 . (2.2.17)

From (2.2.13) one has

〈ψ − u,∇.p+ f〉 = 0 a.e in Ω . (2.2.18)

So we can re-write (2.2.17) as

〈ψ − u, (∇.q + f)〉 − 〈ψ − u,∇.p+ f〉 ≥ 0 a.e in Ω . (2.2.19)

From this equation we see that

〈ψ,∇.(q − p)〉 − 〈u,∇.(q − p)〉 ≥ 0 . (2.2.20)

Combining (2.2.20) and (2.2.16) we obtain the new primal formulation

〈p, q − p〉 ≥ −〈ψ,∇.(q − p)〉 + 〈g, (q − p).n〉∂Ω for all q ∈ K. (2.2.21)
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Putting together all the ideas we have gathered so far, we have derived a new primal

formulation of (2.2.12) that is well suited for the mixed method i.e:

Find p ∈ K such that

〈p, q − p〉 ≥ −〈ψ,∇.(q − p)〉 + 〈g, (q − p).n〉∂Ω for all q ∈ K, (2.2.22)

where

K = {q ∈ H(div,Ω) : ∇.q + f ≤ 0 a.e in Ω}. (2.2.23)

For all q ∈ H(div,Ω), Greens formula implies that q.n ∈ W−1/2(∂Ω). Since g ∈

W 1(Ω), we also have g ∈ W 1/2(∂Ω) by the trace theorem. Hence the last term in

(2.2.22) is well defined. Let us define the new closed convex cone Λ in L2(Ω):

Λ = {µ ∈ L2(Ω) : µ ≥ 0 a.e. in Ω} . (2.2.24)

The new primal formulation (2.2.22-2.2.23) above can then be written in abstract

form:

Find p ∈ K such that

a(p, q − p) ≥ (F, q − p) for all q ∈ K, (2.2.25)

where

K = {q ∈ V : b(q, µ) ≤ (φ, µ) for all µ ∈ Λ}. (2.2.26)

and

a(p, q) = 〈p, q〉, b(q, µ) = 〈∇.q, µ〉 , (2.2.27)

(φ, µ) = −〈f, µ〉, V = H(div,Ω) , (2.2.28)

(F, q) = −〈ψ,∇.q〉 + 〈g, q.n〉∂Ω . (2.2.29)

We have seen the existence of the solution p = ∇u to (2.2.25) provided u ∈

K̃ ∩ H2(Ω). It remains to show the uniqueness of this solution. We note that the

bilinear form a is not coercive and hence Lax-Milgram Theorem 2.2.1 can not be

used to show the uniqueness of the solution. However it is important to note that the

bilinear form

a(q, q) =

∫

q2 > 0 for all q ∈ V with q 6= 0
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We now state a theorem from [14] that assures us about the uniqueness of the solution

p

Theorem 2.2.2. If f ∈ L2(Ω), (g, ψ) ∈ H2(Ω), and u is the unique solution to
(2.2.8), then p = ∇u is the unique solution to (2.2.22).

Proof. Now we have seen that p = ∇u is the solution to (2.2.25), it remains to show
the uniqueness of this solution.

First, suppose there exists p1, p2 ∈ V solutions to the variational inequality
(2.2.25) then for all q ∈ K, we have:

a(p1, q − p1) ≥ (F, q − p1), (2.2.30)

a(p2, q − p2) ≥ (F, q − p2) . (2.2.31)

setting q = p2 in the variational inequality for p1 and q = p1 in that of p2 we obtain,
upon adding

a(p1 − p2, p1 − p2) ≤ 0 .

But since a is positive, then we have that p1 = p2.

Mixed formulation

Having obtained the new formulation that is well suited for the mixed method of

Raviart-Thomas, we now want to give a mixed formulation of (2.2.25). In addition to

the assumptions on V, V0, and Vg we made in the previous section, as stated earlier,

we again stress the assumption here that the bilinear form

a(q, q) > 0 for all q ∈ V with q 6= 0.

and that the convex cone is given by (2.2.23). In addition the bilinear form b(·, ·) is

assumed to be continuous on V ×Q, Q a Hilbert space and Λ is a closed convex cone

in Q with the vertex at the origin, and φ ∈ Q∗.

We consider the following mixed formulation of (2.2.25):

Find a pair (p, λ) ∈ V × Λ such that

a(p, q) + b(q, λ) = 〈F, q〉 ∀q ∈ V, (2.2.32)

b(p, µ− λ) ≤ 〈φ, µ− λ〉Q ∀µ ∈ Λ . (2.2.33)
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2.2.2 Existence and Uniqueness of a solution to the Mixed
Problem

Provided that all the assumptions stated above hold, following [14], we develop general

results about the existence and uniqueness of a solution (p, λ) ∈ V × Λ to the mixed

problem (2.2.32-2.2.33). To this end we state the following theorem.

Theorem 2.2.3. Suppose that there exists a constant β > 0 such that

inf
µ∈Q

sup
q∈V

b(q, µ)

‖q‖V ‖µ‖Q

≥ β, µ, p 6= 0. (2.2.34)

Then problems (2.2.25) and (2.2.32)-(2.2.33) have at most one solution. If either
problem has a solution, then they both have solutions. Furthermore if (p, λ) solves
(2.2.32)-(2.2.33), then p solves (2.2.25)

Proof. Let us begin by establishing the uniqueness of (2.2.32)-(2.2.33). The unique-
ness of (2.2.25) has already been established from the proof to Theorem (2.2.2). If
(p1, λ1) and (p2, λ2) are solutions of (2.2.32)-(2.2.33), then

a(p1, q) + b(q, λ1) = 〈f, q〉, (2.2.35)

b(p1, µ− λ1) ≤ 〈φ, µ− λ1〉Q, (2.2.36)

a(p2, q) + b(q, λ2) = 〈f, q〉, (2.2.37)

b(p2, µ− λ2) ≤ 〈φ, µ− λ2〉Q. (2.2.38)

Choosing q = p1−p2 in (2.2.35), µ = λ2 in (2.2.36) and q = p2−p1 in (2.2.37), µ = λ1

in (2.2.38) we get

a(p1, p1 − p2) + b(p1 − p2, λ1) = 〈f, p1 − p2〉, (2.2.39)

b(p1, λ2 − λ1) ≤ 〈φ, λ2 − λ1〉Q, (2.2.40)

a(p2, p2 − p1) + b(p2 − p1, λ2) = 〈f, p2 − p1〉, (2.2.41)

b(p2, λ1 − λ2) ≤ 〈φ, λ1 − λ2〉Q. (2.2.42)

Adding these relations gives a(p2 − p1, p2 − p1) ≤ 0, but since a is positive, we then
have p1 = p2. Now assume that (p, λ1) and (p, λ2) are solutions to (2.2.32) then:

a(p, q) + b(q, λ1) = 〈f, q〉, (2.2.43)

a(p, q) + b(q, λ2) = 〈f, q〉. (2.2.44)

Subtracting, we obtain b(q, λ2 − λ1) = 0 ∀ q ∈ V . Using the inf-sup condition, it
follows that

0 = b(q, λ2 − λ1) ≥ β‖q‖V ‖λ1 − λ2‖Q ∀ q ∈ V, (2.2.45)
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which implies λ1 = λ2 .
Does p belong to K? To answer this question we observe that p ∈ V, λ ∈ Q satisfy
(2.2.33) if and only if p ∈ K and

b(p, λ) = 〈φ, λ〉, (2.2.46)

i.e , if p ∈ K, then b(p, µ) ≤ 〈φ, µ〉 and using (2.2.46) implies b(p, µ− λ) ≤ 〈φ, µ− λ〉
hence (2.2.33) is satisfied.
Conversely, if (2.2.33) holds, we choose µ = 0 and µ = 2λ to obtain b(p, λ) = 〈φ, λ〉
and from (2.2.33), we have then that b(q, µ) ≤ 〈φ, µ〉 ∀µ ∈ Λ, hence p ∈ K.

Now we consider the last part of the theorem. If 〈p, λ〉 satisfies (2.2.32-2.2.33), we
just observed that p ∈ K . Moreover (2.2.32) and (2.2.46) gives us

a(p, q − p) = 〈f, q − p〉 − b(q − p, λ)

= 〈f, q − p〉 − b(q, λ) + b(p, λ)

= 〈f, q − p〉 + 〈φ, λ〉 − b(q, λ)

≥ 〈f, q − p〉 for all q ∈ K . (2.2.47)

Hence p ∈ K satisfies (2.2.3) with respect to variable p.
Conversely, let p be the solution to (2.2.3), and let the bounded linear operators
A : V → V ∗ and B : V → Q∗ be defined by:

〈Au, q〉 = a(u, q) for all u, q ∈ V,

〈Bq, µ〉 = b(q, µ) for all q ∈ V, µ ∈ Q .

(2.2.48)

If z ∈ Z = Ker{B}, i.e., b(z, µ) = 0 ∀ z ∈ Z, then p ± z belongs to K and (2.2.3)
implies

a(p, p± z − p) ≥ (f, p± z − p),

a(p, z) = (f, z) for all z ∈ Z .

(2.2.49)

This implies that 〈Ap − f, z〉 = 0 for all z ∈ Z hence Ap − f belongs to the polar
set Z0 of Z (see[19]). Using the hypothesis (2.2.34), the result from Brezzi asserts
that the adjoint operator B∗ is an isomorphism from Q to Z0. Therefore there exists
λ ∈ Q such that B∗λ = f − Ap, i.e.,

(B∗λ, q) = 〈f − Ap, q〉,

(λ,Bq) = (f, q) − (Ap, q) .
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and (2.2.32) is established.
To conclude we prove (2.2.33). It is important to note that (Z0)∗ can be isometrically
identified with the orthogonal complement Z⊥ of Z. The operator B is an isomor-
phism from Z⊥ to Q∗. Hence there exists p̄ ∈ Z⊥ such that Bp̄ = φ. By definition of
K, both p̄ and 2p− p̄ are in K and by (2.2.25) we get

a(p, p̄− p) = (f, p̄− p) . (2.2.50)

Inserting q = p̄− p into (2.2.32) gives us

0 = b(p̄− p, λ) = b(p̄, λ) − b(p, λ) . (2.2.51)

Since p ∈ K, (2.2.51) and the equivalence (2.2.46) imply that (2.2.33) holds. Finally
the next task is to show if λ ∈ Λ. Relations (2.2.25), (2.2.32) and (2.2.51) imply that
for all p ∈ K,

0 ≤ b(q − p, λ) = b(q, λ) − (φ, λ).

Since the range of B is Q∗, we have that λ ∈ Λ.

Application to the mixed problem

We have seen that the general theorem , assures us about existence and uniqueness

of a solution to the primal problem (2.2.25) and the abstract mixed problem (2.2.32-

2.2.33). As we saw earlier, the new primal formulation (2.2.22) has at most one

solution. Thus under the hypothesis of Theorem (2.2.3), there exists an equivalent

mixed problem

Find (p, λ) = (∇u, u− ψ) ∈ H(div, Ω) × Λ such that

〈p, q〉 + 〈λ,∇.q〉 = −〈ψ,∇.q〉 + 〈g, q.n〉∂Ω for all q ∈ H(div Ω), (2.2.52)

〈∇.p, µ− λ〉 ≤ −〈f, µ− λ〉 for all µ ∈ Λ . (2.2.53)

Moreover if all the conditions of Theorem 2.2.3 are satisfied, then

Theorem 2.2.4. (p, λ) = (∇u, u− ψ) ∈ H(div, Ω)×Λ is the unique solution to the
mixed problem (2.2.52-2.2.53)

Proof. Theorem 2.2.3 is applied now with V = H(div,Ω), Q = L2(Ω), a(p, q) = 〈p, q〉
and b(q, µ) = 〈µ,∇.q〉. As we saw earlier, the bilinear form a(q, q) =

∫
q2 > 0 ∀q 6= 0.

Moreover the bilinear form b is bounded since µ ∈ L2(Ω) and ∇.q ∈ L2(Ω) ∀ q ∈
H(div,Ω). Now we verify the condition (2.2.34): Given µ ∈ Q, let α satisfy:

∆α = µ in Ω, α|∂Ω = 0,
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and set q = ∇α. Since α vanishes on ∂Ω, there exists a constant γ (independent of
µ) such that ‖∇α‖Q ≤ γ‖µ‖Q (Fredrich’s inequality). Hence we have

||q||H,Ω = ‖µ‖2
Q + ‖∇α‖2

Q ≤ (1 + γ2)‖µ‖2
Q,

b(q, µ)

‖q‖H, Ω

=
〈µ,∇.q〉

‖q‖H, Ω

=
‖µ‖2

Q

‖q‖H, Ω

≥ β‖µ‖Q,

where β = (1 + γ2)−1/2.
Since relation (2.2.34) holds, by Theorem (2.2.3), the mixed formulation, (2.2.52)-
(2.2.53) has a unique solution (p, λ) and p = ∇u implies (using Greens formula)
that

〈p, q〉 = −〈u,∇.q〉 + 〈g, q.n〉∂Ω ∀q ∈ H(div,Ω).

Similarly

〈p, q〉 + 〈λ+ ψ,∇.q〉 = 〈g, q.n〉∂Ω.

So combining both implies

〈λ+ ψ − u,∇.q〉 = 0 for all q ∈ H(div,Ω). (2.2.54)

Choosing q = ∇α, where ∇.q = ∆α = µ = λ+ψ− u ,(2.2.54) implies λ = u−ψ.

So far we have seen that the obstacle problem can be formulated as a minimiza-

tion problem. This minimization problem is equivalent to the variational inequality.

Further we have established that if u ∈ H2(Ω) ∩ K̃, then the variational inequality

can be expressed as a linear complementarity problem. We developed a new primal

formulation (2.2.22) of this problem (LCP) that is suitable for the mixed method of

Raviart-Thomas . We have further shown that a unique solution to (2.2.22) is also a

unique solution to the mixed problem ([2.2.52]- [2.2.53]) provided, the inf-sup con-

dition is satisfied and the bilinear form a(q, q) is positive. In order to solve this mixed

problem, we approximate it using finite dimensional subspaces which we introduce in

the next chapter.



Chapter 3

Approximation of the Obstacle
problem

In this chapter, we are interested in finding an approximative solution to the ob-

stacle problem. We shall prove existence and uniqueness of a solution to this finite

dimensional problem. Furthermore, we shall study the behavior of the approximative

solutions, as the parameter of discretization tends to zero. In the next chapter, we

shall see how we can solve the discrete problem that we are going to develop.

3.1 Introduction

Let us recall from the previous chapter the new primal formulation of the obstacle

problem :

Find p ∈ K such that

〈p, q − p〉 ≥ −〈ψ,∇.(q − p)〉 + 〈g, (q − p).n〉∂Ω for all q ∈ K, (3.1.1)

where

K = {q ∈ H(div,Ω) : ∇.q + f ≤ 0 a.e in Ω}. (3.1.2)

This formulation was found to be equivalent to the mixed problem :

Find (p, λ) = (∇u, u− ψ) ∈ H(div, Ω) × Λ such that

〈p, q〉 + 〈λ,∇.q〉 = −〈ψ,∇.q〉 + 〈g, q.n〉Γ for all q ∈ H(div Ω), (3.1.3)

〈∇.p, µ− λ〉 ≤ −〈f, µ− λ〉 for all µ ∈ Λ. (3.1.4)

21
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The existence and uniqueness of the solution (p, λ) to (3.1.3-3.1.4) and its equivalence

with (3.1.1-3.1.2) were established in the previous chapter. We now want to discretize

our domain Ω in order to solve these problems. We remark here that the accuracy

of a finite element discretization is determined by the approximability of the exact

solution by the finite element subspace and the stability of the discretization [1]. These

two properties, together with implementational issues, furnish the major factors for

the construction and evaluation of the finite element spaces to be used. Stability is

automatic for coercive methods so that the finite element space can be chosen on the

basis of approximation and ease of implementation alone.

It is important to remark here that the bilinear form a(p, q) = 〈p, q〉 is not coercive

and stability is by no means automatic. In fact elements chosen without due regard

to stability will prove to be unstable[1]. This then leads us to use elements that

satisfy the Brezzi condition ([5], [14],[1]). Various techniques have been developed

for design of stable mixed finite elements [1]. Polynomials whose normal components

are continuous across the inter-element boundaries is the family of many mixed finite

elements satisfying this property. An example among this family is the lowest order

Raviart-Thomas elements which we shall use in the discretization of our space V (≡

H(div,Ω)).

3.2 Discretization of the obstacle problem

3.2.1 Definition of spaces

Let Th be a regular family of decomposition of Ω into triangles [7]. The parameter of

discretization h corresponds to the largest length of the edge of such a triangle. We

define our finite dimensional spaces V h ⊂ V and Qh ⊂ L2(Ω) as

V h = {φ ∈ V : φ|T = (a1 + bx, a2 + by), a1, a2, b ∈ R}, (3.2.1)

Qh = {τ : τ is piecewise constant on each triangle}. (3.2.2)

We further set Λh = Λ ∩Qh :

Λh = P0(T ) := {µh ∈ L2(Ω) : T ∈ T , µh|T ∈ P0(T ), µh ≥ 0}. (3.2.3)
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Remark 3.2.1. Notice that a vector in V h has a normal component which is constant
on each edge. Moreover if E is an edge in the triangulation ( see figure 3.1) shared
by two triangles T+ and T−, then

∀E ∈ EΩ, [φ]E.νE = 0, (3.2.4)

where T is a regular triangulation , EΩ is the set of all interior edges, and [φ]E.νE :=
φ|T+ − φ|T−

along E denotes the jump of φ across the edge E = T+ ∩ T− shared by
the two neighboring elements T+ and T− in T . νE is the outer normal of E, whose
orientation is such that it equals the outer normal of T+ (and hence points into T−).
This space V h is the lowest order Raviart-Thomas RT0(T )[20]. The continuity of the

Figure 3.1: Two neighboring triangles T+ and T− that share the edge E = ∂T+∩∂ T−
with initial node A and end node B and unit normal νE. The orientation of νE is
such that it equals the outer normal of T+ (and hence points into T−).

normal components on the boundaries reflects the conformity RT0(T ) ⊂ H(div,Ω).

3.2.2 Approximation of the new primal and mixed formula-
tions

We now approximate the new primal variational inequality (3.1.1 - 3.1.2) and the

mixed system (3.1.3 - 3.1.4) using the above mentioned finite dimensional subspaces.

The discrete new primal problem then reads :

Find ph ∈ Kh such that

〈ph, qh − ph〉 ≥ −〈ψ,∇.(qh − ph)〉 + 〈g, (qh − ph).n〉∂Ω for all qh ∈ Kh, (3.2.5)

where

Kh = {qh ∈ V h : ∇.qh + f ≤ 0 a.e in Ω}. (3.2.6)
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Following the general results discussed in [20], we now state and prove the following

Theorem.

Theorem 3.2.1. There exits a unique solution ph to the problem (3.2.5). Moreover
if (p, λ) satisfies (3.1.3)-(3.1.4), then for all qh ∈ Kh and µh ∈ Λh we have

‖p−ph‖2
0 ≤ 〈p−ph, p−qh〉+〈λ−µh,∇.p+f〉+〈λ−µh,∇.(ph−qh)〉+〈µh,∇.(p−qh)〉.

(3.2.7)

Proof. Since V h is finite dimensional , 〈·, ·〉 is coercive on V h. Therefore there exists
a unique solution to (3.2.5) by classical arguments. Now we focus our attentional to
the error bound.

〈p− ph, p− ph〉 = 〈p− ph, p− qh + qh − ph〉

= 〈p− ph, p− qh〉 + 〈p− ph, qh − ph〉

= 〈p− ph, p− qh〉 + 〈p, qh − ph〉 − 〈ph, qh − ph〉. (3.2.8)

But 〈p, qh−qh〉 = 〈g, (qh−ph).n〉−〈λ+ψ,∇.(ph−qh)〉. If we substitute this in 3.2.8,
we obtain

〈p− ph, p− ph〉 = 〈p− ph, p− qh〉 + 〈g, (qh − ph).n〉 + 〈λ+ ψ,∇.(ph − qh)〉 − 〈ph, qh − ph〉

= 〈p− ph, p− qh〉 + 〈λ,∇.(ph − qh)〉 +

〈g, (qh − ph).n〉 − 〈ψ,∇.(qh − ph)〉 − 〈ph, qh − ph〉
︸ ︷︷ ︸

≤0

≤ 〈p− ph, p− qh〉 + 〈λ,∇.(ph − qh)〉.

Note: By using the fact that 〈∇.p, λ〉 = 〈−f, λ〉 and that 〈∇.p, µh〉 ≤ 〈−f, µh〉 we
have:

〈λ,∇.(ph − qh)〉 = 〈∇.(ph − qh), λ− µh〉 + 〈∇.(p− qh), µh〉

+〈∇.p, λ− µh〉 + 〈f, λ− µh〉 + 〈∇.ph, µh〉 + 〈f, µh〉

≤ 〈∇.(ph − qh), λ− µh〉 + 〈∇.(p− qh), µh〉

+〈∇.p, λ− µh〉 + 〈f, λ− µh〉.

Hence (3.2.7) is clear from the above arguments

Now we have seen the existence of a unique solution to the discrete new primal

formulation (3.2.5-3.2.6). Theorem [2.2.3] in section [2.2.2] assures us that there exists
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an equivalent discrete mixed formulation to the problem (3.2.5-3.2.6) which reads:

Find (ph, λh) ∈ V h × Λh :

〈ph, qh〉 + 〈λh,∇.qh〉 = −〈ψ,∇.qh〉 + 〈g, qh.n〉Γ for all qh ∈ V h, (3.2.9)

〈∇.ph, µh − λh〉 ≤ −〈f, µh − λh〉 for all µh ∈ Λh, (3.2.10)

provided the discrete inf-sup condition is satisfied. Moreover this discrete mixed

formulation also has a unique solution. To this end we state the following theorem

Theorem 3.2.2. Suppose that there exits a constant β > 0 (independent of h) such
that

inf
µh∈Qh

sup
qh∈V h

b(µh,∇.qh)

‖qh‖H,Ω‖µh‖0

≥ β. (3.2.11)

Then there exists a unique pair (ph, λh) solving the problem (3.2.9)-(3.2.10). If
(ph, λh) solves (3.2.9)-(3.2.10), then ph solves (3.2.5). Moreover if (p, λ) satisfies
(3.1.3)-(3.1.4), there exists a constant C (independent of h) such that

‖λ− λh‖0 ≤ C{‖p− ph‖0 + inf
µh∈Qh

‖λ− µh‖0}. (3.2.12)

Proof. Uniqueness is an immediate consequence of Theorem(2.2.3). Now we prove
the error estimate. We note that

‖λ− λh‖0 ≤ ‖λ− µh‖0 + ‖µh − λh‖0. (3.2.13)

The task now is to estimate each of these terms in this equation. Let us begin by
estimating the term ‖µh − λh‖0.

From (3.2.9) and (3.1.3), one obtains

〈λh − µh,∇.qh〉 = 〈g, qh.n〉 − 〈ψ,∇.qh〉 − 〈ph, qh〉 − 〈µh,∇.qh〉, (3.2.14)

〈g, qh.n〉Γ = 〈p, qh〉 + 〈λ+ ψ,∇.qh〉. (3.2.15)

Substituting (3.2.15) in (3.2.14) we obtain

〈λh − µh,∇.qh〉 = 〈p− ph, qh〉 + 〈λ− µh,∇.qh〉. (3.2.16)

We divide this equation (3.2.16) by ‖qh‖H ,and take the supremum we obtain

sup
qh∈V h

〈λh − µh,∇.qh〉

‖qh‖H

= sup
qh∈V h

〈p− ph, qh〉

‖qh‖H

+ sup
qh∈V h

〈λ− µh,∇.qh〉

‖qh‖H

. (3.2.17)
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But (3.2.11) implies that

β‖λh − µh‖0 ≤ sup
qh∈V h

〈λh − µh,∇.qh〉

‖qh‖H

. (3.2.18)

So we have

β‖λh − µh‖0 ≤ sup
qh∈V h

〈p− ph, qh〉

‖qh‖H

+ sup
qh∈V h

〈λ− µh,∇.qh〉

‖qh‖H

, (3.2.19)

β‖λh − µh‖0 ≤ sup
qh∈V h

〈p− ph, qh〉

‖qh‖H

+ ‖λ− µh‖0, (3.2.20)

Now we remark thatH(div,Ω) is continuously imbedded in L2(Ω), that is,H(div,Ω) ⊂
L2(Ω) and there exists a constant γ such that ‖q‖0 ≤ ‖q‖H for all q ∈ H(div,Ω).
a(·, ·) = 〈p, q〉 is continuous on H(div,Ω), which then implies

〈p− ph, qh〉

‖qh‖H

≤ ‖p− ph‖0. (3.2.21)

We obtain

β‖λh − µh‖0 ≤ ‖p− ph‖0 + ‖λ− µh‖0. (3.2.22)

We take the infimum over all µh ∈ Qh. Combining (3.2.22) and (3.2.13) will then
yield the required result.

Having obtained the above estimates, we now embark on the task of estimating

‖λ− λh‖0 and ‖p− ph‖0. If one uses (3.2.12) to estimate ‖λ− λh‖0, we find that we

need information about ‖p− ph‖0 and infµh∈Qh ‖λ− µh‖0 to estimate ‖p− ph‖0. We

will use (3.2.7). To this end, we state the following theorem from [14] that hold in

case of a polygonal domain.

Theorem 3.2.3. If Ω is polygonal , (ψ, g) ∈ H2(Ω), f ∈ L2(Ω) and (p, λ) is a
solution to (3.1.3-3.1.4) then the error in piecewise constant approximation (ph, λh)
generated by (3.2.9)-(3.2.10) satisfies

‖p− ph‖0 = O(h) (3.2.23)

‖λ− λh‖0 = O(h) (3.2.24)

Proof. Raviart and Thomas [20] constructed pI ∈ V h such that

〈1, (p− pI).n〉E = 0 (3.2.25)
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for edges E in the triangulation where n is the unit normal along E. Moreover the
following estimates hold

‖p− pI‖0 = O(h) if p ∈ H1(Ω), (3.2.26)

‖∇.(p− pI)‖0 = O(h) if ∇.p ∈ H1(Ω), (3.2.27)

〈µh,∇.(p− pI)〉 = 0 forall µh ∈ Qh. (3.2.28)

Combining the relations Λh ⊂ Λ, (3.2.28) and ∇.p+ f ≤ 0, we see that pI ∈ Kh i.e

〈µh,∇.pI + f〉 = 〈µh,∇.p+ f〉 ≤ 0,

for all µh ∈ Λh. Letting λI denote the L2 projection of λ = u − ψ onto Qh, observe
that λI ≥ 0. Therefore we can apply error bound (3.2.7) using (qh, µh) = (pI , λI)
Now we estimate term by term in (3.2.7). Let us start with

〈λ− µh,∇.(ph − qh)〉 and 〈µh,∇.(p− qh)〉
By (3.2.28) and the orthogonality relation (λ− λI) ⊥ Qh, we have

〈λ− λI ,∇.(ph − pI)〉 = 0, (3.2.29)

〈λI ,∇.(p− pI)〉 = 0. (3.2.30)

Looking at the second term 〈p−ph, p−qh〉, since p = ∇u ∈ H1(Ω), then using (3.2.26)
we have

〈p− ph, p− pI〉 ≤ ‖p− ph‖0‖p− pI‖0 (3.2.31)

= ch‖p− ph‖0. (3.2.32)

To conclude we estimate the term 〈λ− µh,∇.p+ f〉 = 〈λ− λI ,∇.p+ f〉.
We consider two cases, i.e., u > ψ and u = ψ:
We first observe that if u > ψ on triangle T , then ∇.p+ f = 0 on T and in this case
〈λ− λI ,∇.p+ f〉 = 0.
Now if we consider the case u = ψ, i.e.,
If λ = 0 on a subset of T with positive measure, then by the contraction property 1

of projections and by classical interpolation theory, one obtains

‖λI‖0,T ≤ ‖λ‖0,T ≤ ch2‖λ‖2,T . (3.2.33)

If Z is the region of triangles where λ vanishes on a subset of positive measure, then
(3.2.33) gives us:

〈λ− λI ,∇.p+ f〉 = 〈λ− λI ,∇.p+ f〉Z ≤ ‖∇.p+ f‖0,Z‖λ− λI‖0,Z .

≤ 2‖∇.p+ f‖0,Z‖λ‖0,Z = O(h2).

(3.2.34)

1‖pΛ(λ) − pΛ(0)‖0 ≤ ‖λ − 0‖0
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Combining all the results from (3.2.29), (3.2.31) and (3.2.34), Theorem (3.2.1) yields

‖p− ph‖2
0 ≤ ch‖p− ph‖0 +O(h2). (3.2.35)

Hence ‖p − ph‖0 = O(h). Since Raviart and Thomas established the existence of a
constant β > 0 satisfying (3.2.11) uniformly in h, then if one replaces µh by λI in
equation (3.2.12) we obtain the required estimate ‖λ− λh‖0 = O(h)

Brezzi, Hager and Raviart [20] assert that to obtain an optimal error estimate

with linear elements, we need an assumption about the behavior of λ near the free

boundary. Given a constant c > 0, one defines the sets

F h = {(x, y) : 0 < λ(x, y) < ch2} (3.2.36)

and Ωh=the union of all triangles T ⊂ Ωh such that T ∩ F h 6= ∅. They assume that

the measure (Ωh
F ) = O(h). Moreover in applications, this condition is always satisfied

since the free boundary usually has finite length and the normal derivative ∂2λ/∂n2

along the free boundary is positive.

To conclude this subsection, we have seen that applying the finite elements of Raviart-

Thomas to our models, gives a O(h) L2 convergence of the function values and gradi-

ents for piecewise constant elements. Moreover for the obstacle problem, Brezzi et.al.

[14] further established that:

Theorem 3.2.4. If Ω is polygonal , (u, ψ) ∈ W 2,∞(Ω), f ∈ L∞(Ω), u ∈W s,p(Ω) for
all 1 < p <∞ and s < 2+1/p, and (p, λ) is a solution to (3.1.3-3.1.4) then the error
in piecewise linear approximation (ph, λh) generated by (3.2.9)-(3.2.10) satisfies

‖p− ph‖0 = O(h
3
2
−ǫ) (3.2.37)

‖λ− λh‖0 = O(h
3
2
−ǫ) (3.2.38)

for any ǫ > 0.

The proof to this theorem is can be found in [14]. Its important to remark here

that although this result was proved for a polygonal domain, it still holds if ∂Ω is C2.

See ([14] Theorem 4.6) for the proof.
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3.2.3 Discretization of the Mixed Formulation

In this subsection we shall focus on the computational details of the mixed formu-

lation. In the next chapter, we shall then see how to solve the resulting systems

of equations. Following our approximation approach in the previous subsection, we

choose finite dimensional subspaces V h ⊂ H(div,Ω) and Qh ⊂ L2(Ω) and consider

the approximate problem:

Find (ph, λh) ∈ V h × Λh such that

〈ph, qh〉 + 〈λh,∇.qh〉 = −〈ψ,∇.qh〉 + 〈g, qh.n〉Γ for all qh ∈ V h, (3.2.39)

〈∇.ph, µh − λh〉 ≤ −〈f, µh − λh〉 for all µh ∈ Λh. (3.2.40)

Choice of basis for V h

If we assume that φ1, φ2, · · · , φN be the edge oriented basis for the N -dimensional

space V h ⊆ RT0(T ). Here N denotes the number of edges in the triangulation

T (dim(V h)) .

Figure 3.2: Triangle T with vertices (P1, P2, P3) (ordered counterclockwise) and op-
posite edges E1, E2, E3 of lengths |E1|, |E2|, |E3|, respectively. The heights h1, h2, h3

depicted

Following [2], we give the following definitions



3.2 Discretization of the obstacle problem 30

Definition 3.2.1. (Local definition of φE). Let E1, E2, E3 be the edges of a triangle
T opposite to its vertices P1, P2, P3, respectively(see figure 3.2), and let νEj

denote
the unit normal vector of Ej chosen with a global fixed orientation while νj denotes
the outer unit normal of T along Ej. Define

φEj
(x) = σj

|Ej|

2|T |
(x− Pj) for j = 1, 2, 3 and x ∈ T, (3.2.41)

where σj = νj.νEj
is +1 if νEj

points outward and otherwise -1. |Ej| is the length of
Ej, and |T | is the area of T,

2|T | = det(P2 − P1, P3 − P1) = det

(
P1 P2 P3

1 1 1

)

(3.2.42)

(with the 3×3-matrix that consists of the 2×3 matrix of the three vectors P1, P2, P3 ∈
R

2 plus three ones in the last row).

Suppose now, we have more than one element, then there holds the following

definition

Definition 3.2.2. (Global definition of φE). Given an edge E ∈ E there are either
two elements T+ and T− in T with the joint edge E = ∂T+ ∩ ∂T− (see Fig: 3.1 ) or
there is exactly one element T+ ∈ T with E ⊂ ∂T+. Then if T± = conv(E ∪ {P±})
for the vertex P± opposite to E set

φE(x) :=

{

± |E|
2|T±|

(x− P±) for x ∈ T±
0 elsewhere.

(3.2.43)

We now state the following Lemma without proof. The details of the proof can

be found in [2]

Lemma 3.2.5. There hold

(a) φE.νE =

{
0 along (∪E) \ E,
1 alongE;

(b) φE ∈ H(div,Ω);

(c) (φE : E ∈ E) is a basis of RT0(T )

(d) divφE =

{

± |E|
|T±|

on T±,

0 elsewhere.

From now, unless specified, we shall abbreviate φj := φEj
.
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Choice of basis for Qh

If we assume that τ1, τ2, · · · , τL is a basis of the L-dimensional space Qh. In our case

we choose τk as a characteristic function of the element Tl in T (piecewise constant),

where L = card(T ).

System of equations and inequalities

Having set up the basis for our spaces, then equation (3.2.39) can be written as

〈ph, φi〉 + 〈λh + ψ,∇.φi〉 = 〈g, φi.n〉Γ for all φi ∈ V h.

Each ph ∈ V h and µh ∈ Qh can be uniquely represented by vectors p = (pk), pk ∈ R

and λ = (λi), λi ∈ R respectively. Thus we can make a series expansion of ph and

λh in terms of φk and τj such that

ph =
N∑

k=1

pkφk (φk ∈ V h) and λh =
L∑

j=1

λjτj.

We obtain

∫

Ω

N∑

k=1

pkφkφidx+

∫

Ω

L∑

j=1

λjτj∇.φidx =

∫

Γ

gφi.nds−

∫

Ω

ψ∇.φidx, (3.2.44)

which can be rewritten as

N∑

k=1

pk

∫

Ω

φkφidx+
L∑

j=1

λj

∫

Ω

τj∇.φidx =

∫

Γ

gφi.nds−

∫

Ω

ψ∇.φidx.

If we further denote by g, the vector induced by the right hand side (3.2.44) such that

g = (gi), (gi) =

∫

Γ

gφi.nds−

∫

Ω

ψ∇.φidx,

and the matrices A,BT such that

A = (Aik), Aik =

∫

Ω

φkφidx,

BT = (BT
ij), BT

ij =

∫

Ω

τj∇.φidx.
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We can finally cast (3.2.44) into a system of linear equations

Ap+BTλ = g. (3.2.45)

Similarly for (3.2.40) we have

∫

Ω

(

∇.
N∑

k=1

pkφk + f

)

(µh − λh) dx ≤ 0

L∑

j=1

(µj − λj)

∫

Ω

(

∇.
N∑

k=1

pkφk + f

)

τj dx ≤ 0

L∑

j=1

N∑

k=1

(µj − λj)pk

∫

Ω

∇.φkτjdx ≤ −
L∑

j=1

(µj − λj)

∫

Ω

fτjdx.

(3.2.46)

If we again denote by f , the vector induced by the right hand side (3.2.46) such that

f = (fi), (fi) =

∫

Ω

fτjdx,

and µh ∈ Qh such that it has a vector representation µ such that

µ = (µk), (µk) ≥ 0,

then (3.2.46) is equivalent to

(µ− λ)TBp ≤ (µ− λ)Tf. (3.2.47)

Putting together all the ideas that we have gathered so far in this subsection, we can

see that the discrete mixed formulation can be rewritten as a system of equations and

inequalities for p ∈ R
N , λ ∈ R

L, λ ∈ Λ

Ap+BTλ = g, (3.2.48)

(µ− λ)TBp ≤ (µ− λ)Tf ∀µ ∈ Λ, (3.2.49)

where

Λ = {µ : µk ≥ 0, k ≤ L}.
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3.2.4 Discretization Matrices and Right Hand Sides

In the previous subsection, we have developed a system of equations and inequalities.

We now want to see how we can calculate each of these terms involved in these

systems. It is important to note that each φi defined in the previous subsection

has support over at most two elements and each τj has support over one element,

thus when a regular triangulation T has been generated for the domain Ω, one can

calculate the stiffness matrix A, the matrix BT and the right hand sides f and g as

a sum over all elements i.e

Aik =
∑

T∈T

∫

T

φkφidx, BT
ij =

∑

T∈T

∫

T

∇.φidx (τj = 1), (3.2.50)

and the right hand sides

gi =

∫

Γ

gφi.nds−
∑

T∈T

∫

T

ψ∇.φidx, (3.2.51)

fj =
∑

T∈T

∫

T

fdx. (3.2.52)

Definition 3.2.3. Let the local stiffness matrices AT , DT ∈ R
3×3 and BT ∈ R

3×1 be
defined by

(AT )ik : =

∫

T

φkφidx for i, k = 1, 2, 3 , (3.2.53)

(DT ) : = diag

(∫

T

divφ1dx,

∫

T

, divφ2dx,

∫

T

divφ3dx

)

, (3.2.54)

(BT )i =

∫

T

divφidx. (3.2.55)

Given (3.2.53)-(3.2.54) and the matrices

M :=















2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0

0 1 0 2 0 1

1 0 1 0 2 0

0 1 0 1 0 2















∈ R
6×6 andN :=







0 P1 − P2 P1 − P3

P2 − P1 0 P2 − P3

P3 − P1 P3 − P2 0







∈ R
6×3,
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Then there holds

AT =
1

48|T |
DT

TN
TMNDT . (3.2.56)

We follow the proof in [2] and try to adapt it to our problem.

Proof. Let λ1, λ2, λ3 denote the barycentric coordinates in the triangle T of Figure
(3.2), with properties

1 = λ1 + λ2 + λ3, (3.2.57)

x = λ1P1 + λ2P2 + λ3P3. (3.2.58)

Then an affine function (3.2.41) reads

φi(x) =
σEi

|Ei|

2|T |
(λ1P1 + λ2P2 + λ3P3 − Pi(λ1 + λ2 + λ3)) (3.2.59)

=
σEi

|Ei|

2|T |

3∑

l=1

λl(Pl − Pi). (3.2.60)

Similarly, we obtain

φk(x) =
σEk

|Ek|

2|T |

3∑

m=1

λm(Pm − Pk). (3.2.61)

Then

(AT )ik =

∫

T

φkφidx =
σEi

|Ei|σEk
|Ek|

4|T |2

∫

T

3∑

l=1

λl(Pl − Pi).
3∑

m=1

λm(Pm − Pk)dx

=
σEi

|Ei|σEk
|Ek|

4|T |2

3∑

l=1

3∑

m=1

(Pl − Pi)Pm − Pk)

∫

T

λlλmdx.

Since
∫

T
λlλm = |T |

12
(1 + δlm), this yields

(AT )ik =
σEi

|Ei|σEk
|Ek|

4|T |2

3∑

l=1

3∑

m=1

(Pl − Pi)(Pm − Pk)

(
|T |

12
(1 + δlm)

)

=
σEi

|Ei|

48|T |

((
3∑

l=1

(Pl − Pi)

)

.

(
3∑

m=1

(Pm − Pk)

)

+
3∑

l=1

(Pl − Pi)(Pl − Pk)

)

σEk
|Ek|.

(3.2.62)

Direct calculations of (AT )ik for each i, k = 1, 2, 3 and Pi,k = (Pi,k,x, Pi,k,y)
T verify

the relation (3.2.56).
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Handling of the Right Hand Sides

We now analyze each term for the expression

gi =

∫

Γ

gφi.nds−

∫

Ω

ψ∇.φidx, (3.2.63)

and later the term fj =
∫

Ω
fτjdx =

∫

Tl
fdx, where the integral is over each element

Tl with center of gravity zTl
, l = 1, · · · , L.

Let us start with
∫

Γ
gφi.n.

Since the normal components of the test functions φ are zero or equal to one along

the edge E ∈ ED of number j with mid-point (xm, ym) (See lemma 3.2.5), a simple

one point integration reads
∫

Γ

gφi.nds =

∫

E

gds ≈ g(xm, ym)|E|, (3.2.64)

where |E| is the length of the edge, and ED is a set of all edges on the boundary.

Now let us turn our attention to the second term
∫

Ω

ψ∇.φidx. (3.2.65)

This term can be re-written as a sum over all elements in the triangulation T i.e
∫

Ω

ψ∇.φidx =
∑

j

∫

Tl

ψ∇.φidx. (3.2.66)

Next approximate the integral
∫

Tl
ψ∇.φidx using the mid-point rule, such that if zTl

is

the value in the centroid of each triangular element, we can rewrite equation (3.2.66)

as

N∑

j=1

ψ(zTj
)

∫

Tl

∇.φidx =
N∑

j=1

ψ(zTj
)BT

ij, (3.2.67)

where BT
ij is the global matrix defined in (3.2.50). Finally we approximate the term

fj =
∫

Ω
fτjdx =

∫

Tl
fdx. Numerical realization of this term also in the simplest case

involves one point numerical quadrature. Based on results from [3], one can evaluate

the following integral as
∫

Tl

fdx =
|Tl|

3
f(zl), (3.2.68)
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where zTl
is the centroid of triangle Tl. It is important to remark here that the system

matrices that we have developed so far are sparse [17], and thus easy to implement

them. In the next chapter we shall see how the system (3.2.48 - 3.2.49) can be solved.



Chapter 4

Solution of discretized Problem

In this chapter we want to develop an algorithm for solving the system of equations

and inequalities that we obtained in the previous chapter. We shall also analyze the

convergence of this algorithm to the exact solution of the discrete problem

Find p ∈ R
N , λ ∈ R

L, λ ∈ Λ such that

Ap+BTλ = g, (4.0.1)

(µ− λ)TBp ≤ (µ− λ)Tf ∀µ ∈ Λ, (4.0.2)

where

Λ = {µ : µk ≥ 0, k ≤ L}.

From now onwards, for the sake of simplicity of the notation, we shall omit the

underlines and denote the vector induced by some λh ∈ Λh by λ, similarly p as p .

Using equation (4.0.1), we have

p = −A−1(BTλ− g). (4.0.3)

Inserting this into our inequality system (4.0.2) , we get

−(µ− λ)TB(A−1(BTλ− g)) ≤ (µ− λ)Tf,

−(µ− λ)TBA−1BTλ ≤ (µ− λ)T (f −BA−1g).

This leaves us with a problem for λ only. Setting the Schur complement S =

BA−1BT and right hand side h = BA−1g − f , we obtain

(µ− λ)T (Sλ− h) ≥ 0 ∀ µ ∈ Λ. (4.0.4)

37
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The Schur complement S is symmetric as A is symmetric. We also have that A is

positive definite and the rank of B = L, therefore also S is positive definite and there

exists numbers s1, s2 such that

〈Sµ, µ〉 ≥ s1‖µ‖
2, (4.0.5)

(Sµ, λ) ≤ s2‖µ‖‖λ‖, (4.0.6)

where (·, ·) and ‖ · ‖ denote the Euclidean norm and scalar product in R
L. Due to

this, equation [4.0.4] is equivalent to minimization problem

F(λ) = min
µ∈Λ

F(µ) where

F(µ) =
1

2
µTSµ− hTµ. (4.0.7)

We denote the gradient of the energy F by r such that

r(µ) = ∇(F(µ)) = Sµ− h.

In the following we present the algorithm for minimization of F over Λ. Once we

have computed λ by such a method, we can then determine u from u = λ+ψ. In the

following, we will need the projection operator PΛ, which acts from RL onto Λ. For

µ ∈ R
L , PΛ(µ) is the closest on the convex cone Λ in the L2 norm defined by

(µ, λ)M = (Mµ, λ), (4.0.8)

where

M = (Mij), Mij =

∫

Ω

τiτjdx. (4.0.9)

M is a diagonal mass matrix with each of the entries on the diagonal equivalent to

the area of triangle say Tl in the mesh. Consequently the associated norm in vector

notation is then given by

‖λ‖M =
√

(Mµ, λ). (4.0.10)

Lemma 4.0.6. The components of PΛ(µ) are given by:

PΛ(µ)k = max(µk, 0).
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Proof. PΛ(µ) is the closest on the convex cone Λ to some µ , thus we have

||PΛ(µ) − µ||M ≤ ||µh − µ||M ∀µh ∈ Λ. (4.0.11)

If we let
µ =

∑

µiτj,

we set
PΛ(µ) =

∑

max(µi, 0)τj.

If we square both sides of (4.0.11) and divide by 2 both sides, we obtain

1

2
||PΛ(µ) − µ||2M ≤

1

2
||µh − µ||2M ∀µh ∈ Λ. (4.0.12)

Now we define the functional

J(µh) =
1

2
||µh − µ||2M ∀µh ∈ Λ

=
1

2
(µh − µ, µh − µ)

=
1

2
(µh, µh) − (µ, µh) +

1

2
(µ, µ). (4.0.13)

We want to minimize the functional (4.0.13). Since µ is constant, it does not affect
the minimizer of (4.0.13), thus one can minimize instead

min
µ∈Λ

J̃(µh) =
1

2
(µh, µh) − (µ, µh). (4.0.14)

This minimization is equivalent to the variational inequality (see subsection (2.1.2)
proposition [2.1.1] )

(µ̄h, µh − µ̄h) ≥ (µ, µh − µ̄h), (4.0.15)

where µ̄h is the solution to (4.0.14). (4.0.15) can be written as

(µ− µ̄h, µh − µ̄h) ≤ 0. (4.0.16)

By our claim, we set

µ̄h =
∑

max(µi, 0)τj,

and show that with this choice, (4.0.16) holds. Consider
(∑

(µi − max(µi, 0))τj,
∑

(µ̃i − max(µi, 0))τj

)

. (4.0.17)

If µi ≥ 0, max(µi, 0) = µi and (4.0.17) will be zero. On the other hand if µi ≤ 0,
then (4.0.17) becomes (µi, µ̃i) ≤ 0 (since µ̃i ∈ Λ) which completes the proof.
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4.1 Uzawa’s method

Uzawa’s method is an iterative method for solving systems of equations and inequal-

ities of the form (4.0.1-4.0.2). Starting with some initial guess, λ can be computed

from the constrained minimization problem (4.0.7). Then equation (4.0.3) allows the

computation of p. A classical method of this type is the Uzawa algorithm [11], which

relies on an exact solver for (4.0.1) and a Jacobi-like iteration for the constrained

minimization problem (4.0.7). Below we outline the algorithm for this method.

Algorithm for Uzawa’s method

Algorithm 1 Uzawa

1: give some initial value λ(0)

2: k=0
3: repeat

4: compute p(k+1) from the equation:
Ap(k+1) + BT λ(k) := g

5: λ
(k+1)
∗ := λ(k) + αM−1(Bp(k+1) − f)

{α is some given, small positive constant}

6: take λ(k+1) as the projection of λ
(k+1)
∗ onto Λ :

λ(k+1) := PΛ(λ
(k+1)
∗ )

7: k=k+1
8: until max{‖p(k+1) − p(k)‖/‖p(k+1)‖, ‖λ(k+1) − λ(k)‖/‖λ(k+1)‖} ≤ ε

For an appropriate choice of α one can show that the sequence (p(k), λ(k)) con-

verges to (p, λ) of the reduced obstacle problem (3.2.48-3.2.49). By using the Schur

compliment S and the right hand side h we introduced before, we can eliminate p(k+1)

from the construction of λ(k+1). This means that we compute λ(k+1) directly from λ(k)

without finding p(k+1). From the first step of the kth iteration , we obtain

p(k+1) = −A−1(BTλ(k) − g).

Inserting this into the formula for λ
(k+1)
∗ we get

λ(k+1)
∗ = λ(k) + α(−BA−1BTλ(k) +BA−1g − f)

= λ(k) − α(Sλ(k) − h). (4.1.1)
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This is a fixed-parameter first order Richardson iteration [24] applied to the system

Sλ = h. (4.1.2)

Therefore we can reformulate the algorithm 1. In each iteration , we compute λ(k+1)

from λ(k) in two steps.

Algorithm 2 Reformulation of the Uzawa

1: give some initial value λ(0)

2: k=0
3: repeat
4: λ

(k+1)
∗ := λ(k) − αM−1(Sλ(k) − h)

{α is some given, small positive constant}

5: take λ(k+1) as the projection of λ
(k+1)
∗ on Λ :

λ(k+1) := PΛ(λ
(k+1)
∗ )

6: k=k+1
7: until ‖λ(k+1) − λ(k)‖ ≤ ε‖λ(k+1)‖
8: p(k+1) = −A−1(BTλ(k+1) − f)

Convergence of Uzawa’s Method

The choice of the parameter α determines the convergence of the sequence (p(k), λ(k))

to (p, λ) of the reduced obstacle problem (3.2.48-3.2.49). Good choices of the scalar

α are determined from observation of equation (4.1.2). Our goal now is to analyze

the convergence of Uzawa’s Method. Before we analyze the convergence of the Uzawa

method, we shall first briefly recall some of the properties of the projection operator

for our discussion. Recall that for z ∈ Q, we define PΛ(z), called the projection of z

onto Λ as the closest point in Λ to z.

The projection function has several interesting properties, which we define in the

following theorem:

Theorem 4.1.1. For Λ a convex, closed and non-empty set, we have

1. ∀z ∈ Q there is a unique optimum of (4.0.7) which we call x∗ = PΛ(z)

2. x∗ is the unique point in Λ such that ∀x ∈ Λ, (z − x∗)(x− x∗) ≤ 0
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3. Projection is non-expansive:

∀x, y ∈ Q, ||PΛ(x) − PΛ(x)|| ≤ ||x− y||

in other words PΛ is Lipschitz with constant 1.

We give the figures to illustrate these properties. The proofs of these theorems

Figure:(a)

Figure:(b)

Figure 4.1: Explanatory pictures for the projection theorem. In general, z − x∗ must
form an obtuse angle with x − x∗ for any x ∈ Λ (left), The projection also has the
property that projections x∗ and y∗ of points x and y are at least as close together as
x and y are (right).

can be found in [25]. We shall make use of the last property in order to discuss the

convergence of Uzawa method.

We now state some theorem that assures us about the convergence of Uzawa’s Method.

Theorem 4.1.2. Let A, B be defined as above, and (p, λ) be a solution to the system
(4.0.1-4.0.2). Let s1, s2 denote the smallest and the largest eigenvalues of M−1S, and
let (p(k), λ(k)) be defined by Uzawa’s method. Then there exists a positive constant
ᾱ > 0 such that for each choice α ∈ (0, ᾱ) there holds

p(k) → p, λ(k) → λ.

Proof. Recall from Algorithm 1 that

λ(k+1)
∗ : = λ(k) − αM−1(Sλ(k) − h) (4.1.3)

= (I − αS)λ(k) + αh. (4.1.4)

One then defines
λ(k+1) := PΛ

(
(I − αS)λ(k) + αM−1h

)
. (4.1.5)
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Similarly , if λ ∈ Λ is a solution to the mixed problem, then one has

λ = PΛ

(
(I − αM−1S)λ+ αM−1h

)
. (4.1.6)

Then the errors satisfy

λ(k+1) − λ = PΛ

(
(I − αM−1S)λ(k) + αM−1h

)
− PΛ

(
(I − αM−1S)λ+ αM−1h

)
.

(4.1.7)
By the contraction property of projections, we have

‖λ(k+1) − λ‖M ≤ ‖(I − αM−1S)‖M‖λ(k) − λ‖M . (4.1.8)

Let us denote ‖λ(k+1) −λ‖M by ek+1 and ‖λ(k) −λ‖M by ek+1 , then the errors satisfy

ek+1 ≤ ‖(I − αM−1S)‖Me
k. (4.1.9)

Therefore we have,

(ek+1, ek+1) ≤ ((I − αM−1S)ek, (I − αM−1S)ek). (4.1.10)

Since S is symmetric, it follows that ρ(I − αM−1S) = ||I − αM−1S||M , so that the
error norm satisfies

||ek+1||M ≤ ρ((I − αM−1S)||ek||M . (4.1.11)

If let s1, s2 denote the smallest and the largest eigenvalues of M−1S, respectively,
and µi denote the eigen values of (I − αM−1S). Then

1 − αs2 ≤ µi ≤ 1 − αs1,

and the Uzawa’s Method is convergent provided ρ(I −αM−1S) < 1 i.e 0 < α < 2/s2.
As pk depends continuously on λk, we can conclude that pk → p.

We will take ρ(I − αM−1S) as the measure of effectiveness of the algorithm and

refer to it as the convergent factor.

4.2 Inexact Uzawa Method

One problem with the algorithm (1) is that the bulk of computational effort is spent

in the computation of A−1 at each step of the iteration. For many application this is

an expensive operation. The inexact Uzawa replaces the action of A−1 by a precon-

ditioner Â. This preconditioner is a linear operator Â : V → V which is symmetric
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and positive definite. Moreover Â should be relatively cheap to invert i.e the com-

putational cost of Â−1 should be comparable to that of A and not A−1. The inexact

algorithm then reads

Algorithm 3 Inexact Uzawa Algorithm

1: given some initial value λ(0) ∈ Λ , p(0) ∈ V
2: k=0
3: repeat

4: compute p(k+1),λ(k+1) from the equations:
pk+1 = pk + Â−1(g − Apk − BT λk)

λ
(k+1)
∗ = λk + αM−1(Bpk+1 − f)

{α is some given, small positive constant}

5: take λ(k+1) as the projection of λ
(k+1)
∗ onto Λ :

λ(k+1) := PΛ(λ
(k+1)
∗ )

6: k=k+1
7: until max{‖p(k+1) − p(k)‖/‖p(k+1)‖, ‖λ(k+1) − λ(k)‖/‖λ(k+1)‖} ≤ ε

One step of the inexact Uzawa Algorithm involves an evaluation of each of the oper-

ators A, B, BT , Â−1 and M−1. The complete analysis of convergence of algorithm3

for the case of equations can be found in [11], [4], [26].

Preconditioning

The inexact Uzawa method above can be seen as preconditioned Richardson method

K̂1

(

pk+1 − pk

λ
(k+1)
∗ − λk

)

=

(

g

f

)

−K

(

pk

λk

)

, (4.2.1)

which an additional projection step for λ(k+1) defined as

λ(k+1) := PΛ(λ(k+1)
∗ ).

With a preconditioner K̂1 =

(

Â 0

B −Ŝ

)

, and the matrix K is given by

(

A BT

B 0

)

.

A class of symmetric preconditioners

We now want to discuss a class of symmetric preconditioners. These preconditioners

were discussed in detail in [26] for a situation where we have a saddle point system
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with equations. It was found that one can factorize matrix K in the following form

K =

(

A 0

B I

)(

A−1 0

0 −C

)(

A BT

0 I

)

, (4.2.2)

which motivates the use of the preconditioner

K =

(

Â 0

B I

)(

Â−1 0

0 −Ĉ

)(

Â BT

0 I

)

. (4.2.3)

This is equivalent to the following procedure for the case of equations

p̂k+1 = pk + Â−1(g − Apk −BTλk), (4.2.4)

λk+1 = λk + Ŝ−1(Bp̂k+1 − f), (4.2.5)

pk+1 = p̂k+1 − Â−1BT (λk+1 − λk). (4.2.6)

This method can be viewed as inexact Uzawa algorithm with additional correction

step for p. Actually we can call it a symmetric inexact Uzawa algorithm. We can then

modify this algorithm so that it can be used to solve the mixed system (4.0.1-4.0.2).

The modified algorithm then reads

Algorithm 4 Symmetric Inexact Uzawa Algorithm

1: given some initial value λ(0) ∈ Λ , p(0) ∈ V , A(0), Ŝ = M
2: k=0
3: repeat

4: compute p(k+1),λ(k+1) from the equations:
p̂k+1 = pk + Â−1(g − Apk − BT λk)

λ
(k+1)
∗ = λk + αŜ−1(Bp̂k+1 − f)

take λ(k+1) as the projection of λ
(k+1)
∗ onto Λ :

λ(k+1) := PΛ(λ
(k+1)
∗ )

pk+1 = p̂k+1 − Â−1(BT λ(k+1) − λk)
5: k=k+1
6: until max{‖p(k+1) − p(k)‖/‖p(k+1)‖, ‖λ(k+1) − λ(k)‖/‖λ(k+1)‖} ≤ ε

If we choose Â = A and α is some properly chosen constant, the above algorithm can

then be seen as the classical Uzawa algorithm. However, when A is singular, it cannot

be inverted and the Schur complement does not exist. In this case one possible way
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of dealing with the system is by argumentation, for example by replacing A by Â =

A+BTM−TB where M is a mass matrix. Such kind of preconditioner has been found

to be effective in simulation of incompressible flow problems, Maxiwell equations in

mixed form (see [13]and references there in for details). For this particular choice of

Â, we shall study a mixed problem from a Poisson equation which after discretisation

can be written in matrix form.

Find p ∈ R
N , λ ∈ R

L such that

Ap+BTλ = g, (4.2.7)

Bp = f, (4.2.8)

with gi =
∫

∂Ω
gφi.n and A,B and f are as defined in chapter (3) subsection (3.2.3).

Due to the presence of inequality constraints in the mixed system of the obstacle

problem, we shall need to modify algorithm (4) such that a variable preconditioner

can be used. This preconditioner depends of the set of active indices A:

A = {i : λk+1
∗ (i) > 0}. (4.2.9)

To this end, we introduce the following algorithm.

Algorithm 5 Symmetric inexact Uzawa Algorithm with a variable preconditioner

1: given some initial value λ(0) ∈ Λ , p(0) ∈ V , A(0), Ŝ = M
2: k=0
3: repeat

4: compute p(k+1),λ(k+1) from the equations:
p̂k+1 = pk + (Âk)−1(g − Apk − BT λk)

λ
(k+1)
∗ = λk + αŜ−1(Bp̂k+1 − f)

take λ(k+1) as the projection of λ
(k+1)
∗ onto Λ :

λ(k+1) := PΛ(λ
(k+1)
∗ )

pk+1 = p̂k+1 − (Âk)−1BT (λ(k+1) − λk)
5: Compute A(k+1) = {i : λk+1(i) > 0}.

6: Â(k+1) = A +
∑

i∈A(k+1)

bT
i M−1

i bi.

7: k=k+1
8: until max{‖p(k+1) − p(k)‖/‖p(k+1)‖, ‖λ(k+1) − λ(k)‖/‖λ(k+1)‖} ≤ ε

Based on this algorithm, we shall thus study three interesting cases,
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• The case when Â = A, i.e. A(k+1) = ∅.

• The case when Â = A+BTM−1B. In this case we assume A(k+1) is

fully indexed such that
∑

i∈A(k+1)

bTi M
−1
i bi = BTM−1B. This represents

a situation where we have only equations and no inequalities and thus we shall

investigate the performance of this case.

• The case where we choose Â = A+
∑

i∈A(k+1)

bTi M
−1
i bi, such that the preconditioner

Â is dynamically changing during each step of iteration due to the change of

the index set A.



Chapter 5

Numerical Experiments

In this chapter, we solve the obstacle problem using the Uzawa algorithm presented

in the previous chapter. We prescribe the obstacle using Matlab inline functions. We

take different kinds of surfaces representing our obstacle and we ensure that each of

these surfaces satisfy the required conditions that we discussed in the introductory

chapter. For this problem, we approximate Ω by a triangular mesh and use the

preexisting Matlab pdetool for mesh generation and refinement. The data describing

the triangulation consists of a list of coordinates for the R node locations p (an

R × 2 array of real coordinates), a list of L triangles (an L × 3 array of indices

into p), and a list of all edges on the boundary on which we prescribe the Dirichlet

boundary conditions. All this data is stored in 3 matrices namely , nodes2element,

which is a sparse matrix describing the number of an element as a function of its

2 vertices, nodes2edge which is a symmetric sparse matrix of dimension card(N)

(N total number of edges), that describes number of edges, and element2edge which

stores information of an initial and end node of an edge E shared by any two elements

in the triangulation. For example, from this matrix, we can obtain information about

the edges in the interior and on the boundary of the domain Ω. (We remark here

that these names are not standard in literature but were choosen for the sake of

experiments).

48
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Choice of mesh

We use both structured and unstructured mesh as shown in figure (5.1). These meshes

are generated by a Matlab pdetool. The unstructured mesh is constructed using a

Delaunay1 type algorithm. The structured triangular mesh consist of a triangulation

in some particular direction as shown in Figure(5.1 (structured mesh)) .
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Figure 5.1: meshing of domain Ω

We consider the unstructured mesh on a circular domain to analyze the order of con-

vergence of the mixed method of Raviart-Thomas because it is then easy to construct

the analytic solution to this domain which we discuss in section (5.3). In addition,

due to the availability of the exact solution on this domain, we also identify the free

boundary of the obstacle problem on this domain Ω. To study the convergence of

Uzawa’s method as the paramenter of discretization becomes small, we use the struc-

tured mesh on a square domain (−1, 1) × (−1, 1) because of a good sparsity pattern

of matrix A on this mesh.

1Delaunay triangulation or Delone triangularization for a set P of points in the plane is a trian-
gulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay
triangulations maximize the minimum angle of all the angles of the triangles in the triangulation;
they tend to avoid ”sliver” triangles. The triangulation was invented by Boris Delaunay in 1934.
[wikipedia]
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5.1 Identification of free boundary

In this section we want to identify the boundary of the coincidence set where the

obstacle and the membrane touch each other.

Figure:(a) Figure:(b)

Figure:(c) Figure:(d)

Figure 5.2: Membrane above an Obstacle (different cases)

Several cases of the membrane above an obstacle are illustrated in figure (5.2) . In

table below we prescribe the conditions that each of these cases satisfy

Figure Obstacle f g

a ψ = −x2 − y2 + 0.3 0 0

b ψ = −x2 − y2 + 0.3 -4 0.7

c ψ = 0.2 -4 x2 + y2 + 0.3

d ψ = −x2 -4 0
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In each of these cases, the membrane is constrained to lie above an obstacle ψ.

As a simple case, we consider a case where the exact solution is known. Consider the

problem

−∆u ≥ −4 in Ω (5.1.1)

u ≥ −x2 − y2 + 0.3, in Ω (5.1.2)

(−∆u+ 4)(u+ x2 + y2 − 0.3) = 0 in Ω (5.1.3)

u = 0.7 on ∂Ω (5.1.4)

on the disc of radius 1 centered at the origin i.e

Ω = {(x, y)|x2 + y2 < 1} (5.1.5)

subject to the constraint u ≥ ψ where

ψ(x, y) = −x2 − y2 + 0.3. (5.1.6)

That is we suppose that the membrane is attached at a point y=0.7 and is loaded by

a force f = −4. In this case the problem is fully radial and u = u(r). Thus

∆u = urr +
1

r
ur.

And if u > ψ then u solves

−∆u = −4.

Hence we have that

urr +
1

r
ur = 4, (5.1.7)

from which we obtain

u(r) = r2 + C1 ln(r) + C2. (5.1.8)

If the free boundary is at position a then we seek a, C1 and C2 satisfying

u(a) = ψ(a), u′(a) = ψ′(a), u(1) = 0.7. (5.1.9)
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It is then clear that 0 < a < 1. Using relations (5.1.9), we obtain

a2 + C1 ln a+ C2 = −a2 + 0.3, (5.1.10)

2a+
C1

a
= −2a. (5.1.11)

From which we obtain C1 = −4a2 and C2 = −2a2 + 0.3 + 4a2 ln a. Hence

u(r) = r2 − 4a2 ln r − 2a2 + 0.3 + 4a2 ln a. (5.1.12)

Now using the fact that u(1) = 0.7, this implies that C2 = −0.3 and hence we obtain

a scalar nonlinear equation for a

−2a2 + 0.3 + 4a2 ln a = −0.3. (5.1.13)

A quick plot2 of (5.1.13) gives the solution is near 0.3 (see figure [5.3]). Now when

we solve (5.1.13) analytically, we obtain a = 0.2953. Thus to see the convergence of
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Figure 5.3: Location of free boundary

the finite element solution to the exact location of the boundary, we run the program

for computing the obstacle problem for triangulations with decreasing values of step

size hk starting from 0.5. By using the assumption the free boundary is circular,

2a=0:.01:1;plot(a,0.3+4*a.*a.*log(a),a,2*a.*a-0.3);
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we estimate it by obtaining all indices which we denote by “nogap”3 where u = ψ.

The x and y coordinates corresponding to each of these indices is obtained and the

maximum value rh:

rh = max
√

x2 + y2,

is obtained. In Table 5.1 we report the results obtained.

step size hk 0.5 0.25 0.125 0.0625 0.0313
max(rh(rh < 1)) 0.3702 0.3236 0.3130 0.3049 0.3001
error (abs(r-rh)) 0.0749 0.0283 0.0177 0.0096 0.0048

Table 5.1: Location of free boundary and error

From this table, we see that as step size hk is made smaller, we have convergence to

the exact location of the free boundary. In figure 5.4, we display the analytic and

numerical solution for step size hk = 1
32

.

Figure:(a) Figure:(b)

Figure 5.4: Analytic and numerical solution

Further to support our results, we plot in figure (5.5), the free boundary estimate

with iteration for several values of hk. This graph shows that for each value of hk, the

sequence converge to a constant value after some fixed number of iterations. Similar

treatment for the computation of free boundary can also be seen in [6].

3nogap = (uh == obs(W )); rh = sqrt(W (nogap, 1)2 + W (nogap, 2)2);max(rh(rh < 1))
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Figure 5.5: Convergence to the exact location of the free boundary

Remark 5.1.1. The mixed finite element solution is piecewise constant (figure 5.6(a))
and thus to obtain its continuous representation , we considered the solution at the
centroid of each of the triangular elements and consequently made an interpolation
to obtain a smooth solution (figure 5.6 (b)).
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Figure 5.6: smooth and piecewise constant numerical solution for obstacle problem
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5.2 Convergence of Uzawa’s method

5.2.1 Convergence of Classical Uzawa for Obstacle problem

In this section, we study the dependency of the convergence of Uzawa method on the

mesh size hk, we use four different refinement levels corresponding to hk = 1
2
, 1

4
, 1

8
,

1
16

, and 1
32

. The respective meshes consist of 25, 81, 289, 1089 and 4225 nodes.

For the dual variable λ, we get 32, 128, 512, 2048, 8192 degrees of freedom, while

for the variable p we obtain 56, 208, 800, 3136 and 12416 (no of edges). Thus the

dimension of the matrix S for a finer mesh is 8192× 8192 and it takes on average 0.6

seconds in Matlab to compute this matrix. We compute αmax := 2
λmax(M−1S)

, where

λmax(M
−1S) is the maximum eigenvalue of M−1S. Moreover this value is constant if

a uniform mesh is used. We further compute the condition number k(S) = λmax(S)
λmin(S)

for

different values of step size hk. In Table 5.2 we put the number of iterations required

αmax = 0.1111, λ0=0
step size hk α Uzawa steps No of nodes k(S)

1/2 0.103 62 25 28.7160
1/4 0.103 199 81 116.2310
1/8 0.11 709 289 466.3903
1/16 0.11 2199 1089 1.8671e+ 003
1/32 0.11 6989 4225 ≈ 2.9032e+ 003

Table 5.2: Convergence of Uzawa method

for the convergence of λk to λ to a degree of relative tolerance 1×10−6 using classical

Uzawa’s method.

From Table 5.2, we can see that the condition number k(S) of S = BA−1BT de-

pends on step size hk, in fact k(S) grows like h−2
k , this thus leads to the number of

iterations required for computation of p, λ by Uzawa’s method to increase and this

can be observed in Table 5.2. Thus we can see that the operator S is not uniformly

well conditioned and thus should be preconditioned to get an efficient algorithm. In

Figure (5.7) we display the convergence history of the iteration error.



5.2 Convergence of Uzawa’s method 56

0 1000 2000 3000 4000 5000 6000 7000
10

−8

10
−6

10
−4

10
−2

10
0

j

ite
r 

er
r

h
k
=0.5

h
k
=0.25

h
k
=0.125

h
k
=0.0625

h
k
=0.0313

Figure 5.7: Convergence history for different values of step size hk

To explain the behavior, we introduce the experimental convergence factor Ek com-

puted as follows

Ek =

(
‖h− Sλk‖

‖h− Sλ0‖

) 1
k

,

with corresponding convergence rate (CR) defined by CR = −ln(Ek) (see [22]). In

step size hk Ek CR

1/2 0.9714 0.0290
1/4 0.9885 0.0116
1/8 0.9957 0.0043
1/16 0.9985 0.0015
1/32 0.9995 4.6767e-004

Table 5.3: Convergence factor

the table (5.3) we display this experimental convergence factor. From this table, we

can see that the convergence factor of the classical Uzawa without preconditioning

is close to 1, so the algorithm converges very slowly and this gets worse as the mesh
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becomes finer.

5.2.2 Preconditioning of Classical Uzawa’s method

Convergence results for the mixed system for Poisson equation

In the previous subsection, we have seen that Uzawa’s methods takes long to conver-

gence, moreover the number of iterations increase as the mesh becomes fine. In this

section we want to introduce a preconditioner Â for the matrix A and we study the

convergence of preconditioned Uzawa’s method. As a motivation towards achieving

a robust numerical precondtioner for the Uzawa method for the obstacle problem, we

start by looking at the Uzawa method for the mixed system for the Poisson equation,

since theory regarding effective precondtioners for mixed systems of equations ex-

ist(see [13]). As discussed earlier in the previous section, Algorithm (4) is used, with

Â = A + BTM−1B as a suitable preconditioner. In Table 5.4 we report the results

obtained. If we compare with results in Table (5.5) obtained using classical Uzawa’s

α = 1

step size hk 0.5 0.25 0.125 0.0625 0.0313
iter 16 16 16 16 16

Table 5.4: Convergence for poisson equation with preconditioner Â = A+BTM−1B

method for the mixed system of poisson equation, we can see that with this choice

α = 0.11

step size hk 0.5 0.25 0.125 0.0625 0.0313
iter 226 461 1489 4636 > 5000

Table 5.5: Convergence for poisson equation with preconditioner Â = A

of preconditioner, we get a robust method, where the condition number of the new

Schur complement M−1BT Â−1B is independent of hk, and consequently the number
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of iterations counts also does not grow with step size which is the ultimate goal of any

numerical experiment. These results further agree with literature (see [13]) where the

robustness of the preconditioner of the form Â = A+BTW−1B is claimed, where W

is the weight matrix. Motivated by these results, as discussed earlier, we now want

to see if such a preconditioner can be applied to the inequality system.

Convergence results for the mixed system for obstacle problem

We now want to study the convergence of preconditioned Uzawa’s method for the

mixed system for the obstacle problem. As discussed earlier in the previous section,

Algorithm (5) is used, with three possible alternative cases for the preconditioner Â.

We discuss the three cases i.e A(k+1) = ∅
(

Â = A
)

, the case where A(k+1) is fully

indexed such that
∑

i∈A(k+1)

bTi M
−1
ii bi = BTM−1B, and the case when the index matrix

is dynamically changing such that

Â(k+1) = A+
∑

i∈A(k+1)

bTi M
−1
ii bi.

• The case A(k+1) = ∅
(

Â = A
)

.

For this, convergence results the same as those obtained for the classical Uzawa

Method are obtained (see Table(5.2)) .

• The case Â = A+BTM−1B.

In Table (5.6) we put the results obtained for this case.

α = 0.11

step size hk 0.5 0.25 0.125 0.0625 0.0313
iter 268 495 677 2562 8000

Table 5.6: Convergence for obstacle problem with preconditioner Â = A+BTM−1B

If we compare these results with those from classical Uzawa method, we see that

they are of the same order. This thus means that although this preconditioner is
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good for mixed system equations, it is not optimal for variational Inequalities. It is

comparable to the classical Uzawa method. In other words by presuming that the

index set comprise of only equations is as equally bad as assuming that it comprise

of only inequalities.

We now study the intermediate case where we take into consideration of having

some knowledge about the index set A where λi > 0. We use algorithm (5) and

take as initial conditions, Â = A, α = α0 (α0 optimal parameter for convergence

of classical Uzawa method). After some iter* determined experimentally, we update

the matrix Â = A to Â = A +
∑

i∈A(k+1)

bTi M
−1
ii bi and α0 to 1. On each consecutive

iteration, we compute the index and consequently update Â while we keep α fixed to

1. In Table 5.7 we report the results obtained.

step size hk iter* iter(classical Uzawa) iter Extra iteration needed

1/2 16 62 29 13
1/4 128 199 140 12
1/8 330 709 342 12
1/16 1750 2199 1762 12
1/32 4500 6989 4512 12

Table 5.7: Dynamically changing index set

Here we can see that provided we have identified clearly a better starting value, we just

need an extra constant 12 iterations to achieve convergence, and this is independent

of the mesh size. Thus this means that provided we have a better way of computing

the initial guess rather than using the classical uzawa method, the update by the

preconditioner Â = A+
∑

i∈A

bTi M
−1
ii bi seems to be robust. It remains to be investigated

how well one can handle this initial computational step before we carry out the update.

5.3 Discretization Error Estimation

In this section, we present the results from numerical experiments that illustrate the

theory of error estimates developed in chapter[3]. Our objective is then to establish
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experimentally the conclusions from the theoretical analysis of the approximation of

the obstacle problem. To compute the L2 error, we approximate element wise both

the numerical solution uh and the exact solution u at the centroid (x̄, ȳ) of each of

the triangles Tj. Then the L2 error is computed according to

||u− uh|| =
√∑

Area(Tj) ∗ (uj(x̄) − uhj(x̄)). (5.3.1)

The maximum edge length in the triangulation is equivalent to hkmax and is computed

from matrix BT . The radial solution u(r) which was computed in section (5.1) is

converted into u(x, y) and used as the analytic solution such that

u(x, y) =

{

0.3 − x2 − y2 on 0 ≤
√

x2 + y2 ≤ 0.2953

x2 + y2 − 0.3 − 0.3489166809 ln(
√

x2 + y2) on 0.2953 ≤
√

x2 + y2 ≤ 1

Below in Table (5.8) we report the error computed for different values of mesh size

hkmax. If we denote the step size hk for triangulation Tk and hk+1 for triangulation

Tk+1 with respective errors obtained at these steps denoted by ek and ek+1, then the

value of p is computed according to

p =
log
(

hk+1

hk

)

log
(

ek+1

ek

)

λ0=0
step size hk hmax e = ||u− uh||2 p

1/2 0.6019 0.02230297 -
1/4 0.3108 0.003368309 2.8600
1/8 0.1500 0.001218882 1.3953
1/16 0.0769 0.0003664056 1.7990
1/32 0.0398 7.637119e-005 2.3809

Table 5.8: Error estimates for the obstacle problem
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Figure (5.8) indicates the loglog plot of the L2-error against hmax. The solid line

indicates the error plot while the dotted line indicates order 2 convergence . Thus we

conclude from these observations of p in Table 5.8 that the error ‖u− uh‖ is O(h2±ǫ
k )

which still agrees with the theory we presented, since hk is less than one.
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Figure 5.8: Convergence order for obstacle problem



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Bearing in mind that many important problems ranging from physics to finance can

be formulated by transformation to an obstacle problem, an efficient and robust way

of solving this free boundary problem was a major motivation of our study.

Starting from a simple physical example of this problem, we derived a simple math-

ematical model to this problem. We showed that a solution to this problem is equiv-

alent to solving a constrained minimization problem over a non-empty closed convex

set. We further showed that the minimization problem is equivalent to a variational

problem (primal problem). Motivated by the mixed method of Raviart-Thomas, un-

der the assumptions of high regularity of our solution u, we further derived a new

primal variational formulation and an equivalent mixed formulation both of which

included variational inequalities. The existence and uniqueness of these formulations

were further established. In order to actually compute the deflection of the mem-

brane, we discretized the problem. In the discrete setting, we showed that there

exists a unique solution to the discrete problem since the inf-sup condition is satis-

fied. We proposed Uzawa algorithm to solve the variational inequalities induced by

the discrete problem. We proved convergence of the Uzawa algorithm, and for this

method, we obtained linear convergence. Finally, we implemented the problem nu-

merically using Matlab. The classical Uzawa’s method was used to solve the system

of equations and inequalities and a solution to the obstacle problem was obtained.

62
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We observed that as the parameter of discretization was made smaller, the mixed

finite element method converged to the exact location of the free boundary which

was part of our problem. We further established numerically the validity of the the-

oretical error estimates which were found to be sharper. On the other hand, as we

expected, we found that the Uzawa method does not converge faster, since it uses di-

rections of steepest descent. In addition the convergence depended on the parameter

of discretization, as the condition number of the system matrices gets worse for finer

meshes.

Thus in order to improve on the convergence of Uzawa method, a symmetric three

step Uzawa type algorithm was introduced. Studies involving mixed systems for a

Poisson equation with a preconditioner Â = A + BTM−1B for the block matrix A

were carried out and proved to be robust, since the condition number of the associated

Schur complement was found to be independent of the parameter of the discretization

hk. As a motivation from this approach, we modified the symmetric Uzawa algorithm

by introducing an index set which comprised of all indices where λ is positive. A pre-

conditioner Â was computed based on this set. We investigated two extreme cases

where the index set is empty. Results same as the classical Uzawa method were ob-

tained. Further we tested the case where the index set is full, i.e Â = A+BTM−1B.

Experiments revealed that although this preconditioner is robust for the mixed sys-

tem of a poisson equation, it seems to be not any better than the classical Uzawa. In

fact the number of iterations obtained are of the same order as the classical Uzawa.

We investigated the intermediate case where an index set of positive λ was considered

at each iteration step. Results revealed that if we switch to the preconditioner Â, and

the parameter α to 1 after some number of iterations, we obtain a robust numerical

method independent of hk.

6.2 Future Work

Based on conclusions that we have discussed in the previous section, the following

are possible suggestions for the extension of this work,

• We propose a thorough study of the case where we choose only indices where
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λ > 0 such that the preconditioner

Â = A+
∑

i∈A(k+1)

bTi M
−1
ii bi

where

A(k+1) = {i | λi > 0}

• Provided we have a better way of computing the initial guess rather than the

classical uzawa method, the update by the preconditioner Â = A+
∑

i∈A

bTi M
−1
ii bi

seems to be robust. It remains to be investigated how well one can handle this

initial computational step before we carry out the update.

• In algorithm 5, we needed to update the parameter α from α0 to 1. It remains

to be investigated on how well one can continuously update this parameter as

we simultaneously update the index set.

• Further, by assuming that we have no prior knowledge of the the indices, one can

modify the symmetric Uzawa algorithm such that the set A(k+1) is dynamically

changing.

• The Uzawa type methods we studied replaced the exact inverse of A by an

”approximate” evaluation of A−1 or a preconditioner for its symmetric part.

However several other efficient algorithms such as: (i) a linear one-step method,

where the action of the inverse is replaced by a linear preconditioner such as

one sweep of a multigrid procedure; (ii) a multistep method, where a suffi-

ciently accurate approximation to A−1 is provided by some iterative method,

e.g., preconditioned GMRES or preconditioned Lanczos , can be used.

Thus in short summary, we hope that this approach can yield a robust numerical

method for computing the numerical solution of the obstacle problem using the Uzawa

type methods provided the above points are taken into considerations.
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