
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Isogeometric Analysis: Condition Number
Estimates and Fast Solvers

DISSERTATION
zur Erlangung des akademischen Grades

Doktor
im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:
M.Sc., M.Tech. Krishan Pratap Singh Gahalaut

Angefertigt am:
Johann Radon Institute for Computational and Applied Mathematics,
Österreichische Akademie der Wissenschaften (ÖAW)

Beurteilung:
Dr. Satyendra Kumar Tomar (Betreuung)
Prof. Lourenço Beirão da Veiga

Linz, May, 2013





Abstract

Isogeometric methods were introduced by Hughes et al. in 2005. Since its introduction these
methods have been used in many practical problems in science and engineering. However,
so far, only few papers appeared in the field of iterative solvers for these methods. This
thesis contributes to the development of fast iterative solvers for the matrices arising in
isogeometric discretization of elliptic partial differential equations.

Since the performance of iterative solvers depends on the properties of the coefficient matrix,
first we focus on the study of condition number estimates for the isogeometric matrices. The
bounds for the extremal eigenvalues and the spectral condition number of matrices arising
in isogeometric discretizations of elliptic partial differential equations in Ω ⊂ Rd, d = 2, 3,
are given in this thesis. Using the results from Bazilevs et al. on approximation properties,
stability analysis and error estimates for isogeometric discretizations, and existing finite
element theory, we obtain the condition number estimates for h-refined meshes. For the
h-refinement, the condition number of the stiffness matrix is bounded above and below by
a constant times h−2, and the condition number of the mass matrix is uniformly bounded.
For the p-refinement, it is proved that the condition number is bounded above by p2d4pd and
p2(d−1)4pd for the stiffness matrix and the mass matrix, respectively.

For large problem size, the high condition number of coefficient matrix necessitates the
development of fast and robust iterative solvers. In this thesis, we present three classes of it-
erative solvers. At first, the multigrid methods for isogeometric discretization are presented.
The smoothing property of the relaxation method, and the approximation property of the
intergrid transfer operators are analyzed for two-grid and multi-grid cycles. It is shown that
the convergence of the multigrid solver is independent of the discretization parameter h,
and that the overall solver is of optimal complexity. Secondly, we present another class of
iterative solvers called algebraic multilevel iteration (AMLI) methods for isogeometric dis-
cretizations. The formation of coarse space and complement hierarchical space is discussed
for B-splines and NURBS. The numerical study of Cauchy-Bunyakowski-Schwarz constant
γ, measuring the quality of splitting between coarse space and its hierarchical complement,
is also presented. It is found that the convergence of the AMLI solver is independent of
the discretization parameter h, and for Cp−1 continuous basis functions the convergence
rates are independent of polynomial degree p. For C0 continuous basis functions, numerical
results indicates almost p-independent convergence rates. Thirdly, some numerical results
on graph theory based preconditioners, namely, Vaidya’s preconditioners (maximum weight
spanning tree) and Gremban and Miller’s preconditioners (support tree) are also presented.
However, these preconditioners do not yield h-independent results for the condition number
of preconditioned system.



Zusammenfassung

Isogeometrische Verfahren wurden 2005 von Hughes et al. eingeführt. Seitdem wurden diese
Methoden in vielen praktischen Problemen in Wissenschaft und Ingenieurswesen verwen-
det. Jedoch gibt es zu diesem Zeitpunkt nur wenige Publikationen, die sich mit iterativen
Lösern für diese Methoden beschäftigen. Die vorliegende Dissertation leistet einen Beitrag
zur Entwicklung schneller iterativer Löser für die Matrizen, die in isogeometrischen Diskre-
tisierungen elliptischer partieller Differentialgleichungen auftreten.

Da das Verhalten iterativer Löser von den Eigenschaften der Koeffizientenmatrix abhängt,
konzentrieren wir uns zunächst auf das Studium von Eigenwertsabschätzungen für die iso-
geometrischen Matrizen. Schranken für die größten und kleinsten Eigenwerte sowie für die
Konditionszahl der Matrizen, die in isogeometrischen Diskretisierungen elliptischer partiel-
ler Differentialgleichungen in Ω ⊂ Rd auftreten, werden angegeben. Mittels der Resultate
von Bazilevs et al. zu Approximationseigenschaften, Stabilitätsanalyse und Fehlerabschät-
zungen für isogeometrische Diskretisierungen, sowie existierender Finite Elemente-Theorie,
erhalten wir Konditionszahlabschätzungen für h-verfeinerte Gitter. Für h-Verfeinerung ist
die Konditionszahl der Steifigkeitsmatrix von oben und unten beschränkt durch eine Kon-
stante mal h−2, und die Konditionszahl der Massenmatrix ist gleichförmig beschränkt. Für
p-Verfeinerung zeigen wir, dass die Konditionszahl von oben durch p2d4pd und die der Mas-
senmatrix durch p2(d−1)4pd beschränkt ist.

Für große Probleme erfordert die hohe Konditionszahl der Koeffizientenmatrix die Entwick-
lung schneller und robuster iterativer Löser. In dieser Dissertation stellen wir drei Klassen
iterativer Löser vor. Zunächst gehen wir auf Mehrgitterverfahren für isogeometrische Dis-
kretisierungen ein. Wir analysieren die Glättungseigenschaft des Relaxationsverfahrens und
die Approximationseigenschaft des Gittertransferoperators für Zwei- und Mehrgitterzyklen.
Wir zeigen, dass die Konvergenz von Mehrgitterlösern unabhängig von h ist und dass der
Löser insgesamt optimale Komplexität aufweist. Zweitens stellen wir eine andere Klasse
von iterativen Lösern, die algebraische Multilevel-Iteration (AMLI) für isogeometrische
Diskretisierungen, vor. Wir diskutieren die Bildung grober Räume und des komplemen-
tären hierarchischen Raumes für B-Splines und NURBS. Weiters präsentieren wir eine nu-
merische Studie der Cauchy-Bunyakowski-Schwarz-Konstante γ, welche die Qualität der
Aufspaltung zwischen dem groben Raum und dessen hierarchischen Komplement misst. Es
stellt sich heraus, dass die Konvergenz des AMLI-Lösers unabhängig von h ist, und dass
für Cp−1-stetige Basisfunktionen die Konvergenzrate unabhängig vom Polynomgrad p ist.
Für C0-stetige Basisfunktionen weisen die numerischen Resultate fast p-unabhängige Kon-
vergenzraten auf. Drittens präsentieren wir numerische Resultate für graphentheoretische
Vorkonditionierer, insbesondere die Vorkonditionierer von Vaidya (maximum weight span-
ning tree) sowie Gremban und Miller (support tree). Jedoch liefern diese Vorkonditionierer
keine h-unabhängigen Resultate für die Konditionszahl des vorkonditionierten System.





Acknowledgments

It would not have been possible to write this thesis without the help and support of the kind
people around me, to only some of whom it is possible to give particular mention here.

Above all, I would like to thank my parents, my brothers and sisters. They have given me
their unequivocal support throughout, as always, for which my mere expression of thanks
likewise does not suffice.

This thesis would not have been possible without the help, support and patience of my ad-
viser, Satyendra Tomar. I would like to express my thanks to him, giving me the opportunity
to write this thesis, for various discussions and for organizing financial support.

The good advice, support and friendly-nature of my group member, Johannes Kraus, has
been invaluable on both an academic and a personal level, for which I am extremely grateful.

I would like to thank Ulrich Langer who, as leader of the group I am employed in, made
constructive suggestions on many details of this thesis. I also want to thank Walter Zulehner,
Ludmil Zikatanov for helpful discussions.

I am grateful to my colleagues Manas Kar, Durga Challa, Nagaiah Chamakuri, Huidong
Yang, Monika Wolfmayr, Ivan Georgiev, Ervin Karer, Martin Purrucker, Jörg Willems,
Nadir Bayramov, Stefan Kleiss, Stephen Moore, Angelos Mantzaflaris and other members
of my group for the good and stimulating working atmosphere. I would also like to thank
Clemens Hofreither for translating the abstract of this thesis in German.

I would like to acknowledge the academic and technical support of RICAM office staff,
specially, Florian Tischler, Wolfgang Forsthuber, Annette Weihs and Doris Neundinger.

I am also grateful to S Sundar and Martin Kiehl.

It would be unfair if I don’t mention the following names, I deeply acknowledge the support
of my friends Sahab, Pushpendra, Shikha, Kuldeep, Shipra, Gaurav, Varun S, Rakesh, Ra-
jneesh, Ajay S, Pankaj K, Vipul, Sateesh, Somvir, Mohar, Upendra, Dheerendra S, Dheeren-
dra O, Dharmendra, Amit, Manoj S, Ajay K, Shakti, Ajeet, Santosh, Rangnath, Hema,
Manoj P, Divakar, Sandeep, Ravi, Ramakrishna, Raghavendra, Harish V, Rajkumar, Rajani,
Pradeep, Varun G, IshtDev, Dhaval, Kaushik, Om, Rashmi, Aparna, Anurag, Brajbhushan,
Pankaj S, and Darshana.

iv



v

I express my thanks to Pappan, Harish N, Kousik, Gururaja, Mahendra, Guhan, Sridhar,
Anirban, Mohar, Rajdeep, Naresh Chadha, Amal Das and my other Indian friends in Linz.

Special thanks goes to my colleague and friend Ankik Giri for his kind support academically
and personally.

I would also like to thank Mini Giri and Shashi Tomar for their kind support during my stay
in Linz.

At last, I don’t have words to express my thanks to Sivananthan Sampath without whom
this thesis could not have been completed. He has been an inspirational and motivational
person during my PhD work. At times when I was needed the most, he was the one who
truly supported me. Thanks a ton my dear friend Siva.

KPS Gahalaut
Linz, May 2013





Contents

1 Introduction 1

2 Preliminaries 9
2.1 Spline Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Knot Insertion and Degree Elevation . . . . . . . . . . . . . . . . . 12
2.1.4 Derivatives of Splines . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Fundamentals of Isogeometric Analysis . . . . . . . . . . . . . . . . . . . 13
2.3 Model Problem and its Discretization . . . . . . . . . . . . . . . . . . . . 16
2.4 Iterative Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Basic Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Conjugate Gradient Methods . . . . . . . . . . . . . . . . . . . . . 19

2.5 Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Two-grid Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Multigrid Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 AMLI Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Condition number estimates in IGA 25
3.1 Condition Number of B-splines . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Condition Number Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Mass Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 h-refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 p-refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 r-refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Explicit and Multilevel B-splines 60
4.1 Explicit Representation for B-splines . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Cp−1-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 C0-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Multilevel Representation of B-splines and NURBS . . . . . . . . . . . . . 67

vii



CONTENTS viii

4.2.1 Multilevel B-splines . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2 Multilevel NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Multigrid methods in IGA 75
5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 The Discrete System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Two-grid Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Approximation Property . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Smoothing Property . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Multigrid Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.1 W-cycle Convergence . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.2 V-cycle Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Numerical Results for Multigrid Convergence . . . . . . . . . . . . . . . . 89
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 AMLI methods in IGA 98
6.1 Construction of Hierarchical Spaces . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Cp−1-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.2 C0-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Numerical Study of CBS Constant . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Numerical Results for AMLI Methods . . . . . . . . . . . . . . . . . . . . 106
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Graph theory based preconditioning in IGA 116
7.1 Preliminaries of Support Graph Theory . . . . . . . . . . . . . . . . . . . 116
7.2 Graph Preconditioning Techniques . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Maximum Weight Spanning Tree Preconditioners . . . . . . . . . . 118
7.2.2 Support Tree Preconditioners . . . . . . . . . . . . . . . . . . . . . 121

7.3 Local Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3.1 M -matrix Approach . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3.2 Two-colors Approach . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.1 Preconditioning of the Stiffness Matrix . . . . . . . . . . . . . . . 127
7.4.2 Local Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.3 Preconditioning of the Schur Complement Matrix . . . . . . . . . . 129

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Conclusions 133

Bibliography 136





Chapter 1

Introduction

Solving the large system of linear equations is a central part of many scientific calculations.
Whatever physical phenomenon might be modeled, at the end of the discretization process
usually a linear system must be solved for unknowns that represent the physical quantities
of the underlying problem. We are particularly interested in the solution of linear system of
equations which arise from the discretization of scalar elliptic partial differential equations.
Finite difference methods, finite element methods, and finite volume methods are the most
promising discretization schemes which have been used or are being used by engineers and
scientists. Recently, in the middle of the last decade, a new discretization technique, namely,
“isogeometric analysis”, has been developed.

Isogeometric analysis, a hidden technique for decades in between Finite Element Analysis
(FEA) and Computer Aided Designs (CAD), was introduced by Hughes et al. in 2005.
The communities of FEA and CAD were established in two different domains far from
each other. Isogeometric analysis fills this gap between these two technologies. It may be
argued that there is nothing new in these two techniques, however their fusion resulting in
isogeometric analysis has offered a great potential.

FEA was first developed in 1943 by R. Courant, who utilized the Ritz method of numerical
analysis and minimization of variational calculus to obtain approximate solutions to vibra-
tion systems. Shortly thereafter, a series of papers published in 1956 by M. J. Turner, R. W.
Clough, H. C. Martin, and L. J. Topp established a broader definition of numerical analysis.
The finite element method was originally developed to study the stresses in complex aircraft
structures. Then, it was applied to other fields of continuum mechanics, such as heat trans-
fer, fluid mechanics, acoustics, electromagnetics, geomechanics, biomechanics, etc. FEA
is used in various industries, such as aerospace, automotive, biomedical, bridges and build-
ings, electronics and appliances, heavy equipment and machinery, micro electromechanical
systems, and sporting goods, etc.

In FEA the solution of differential equations is saught over simple regions, e.g., triangles,
quadrilaterals, tetrahedrons etc., and then assembled together so that continuity is satisfied
at the interconnecting nodal points of the domains. If the method is convergent, it is natural
to assume that if the size of the approximating domains becomes infinitely small, the solu-
tion so obtained tending to this limit by successive mesh refinement converges towards the
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CHAPTER 1. INTRODUCTION 2

analytic solution. There are two main features of FEA: approximation of solution and ap-
proximation of geometry. Typically, the approximation of geometry is done by interpolatory
polynomials. The classical families of polynomials, especially the Lagrange and Hermite
polynomials, are widely used in FEA. These may be considered the historical antecedents of
finite elements. The integrated Legendre functions have also been used to approximate the
geometry. If we use the same functions to approximate the solution of the underlying prob-
lem, the approach is called isoparametric method. Through the use of triangles, quadrilat-
erals, tetrahedron, etc., it became a simple matter to generate C0-continuous finite elements
using classical polynomials, and in result to get the C0-continuous solution of the problem.
A limitation of the isoparametric concept was that while it worked for C0-continuous in-
terpolation, it did not for C1 or higher. There was a strong interest in the development of
C1-continuous interpolation schemes. Many researchers sought solutions to this problem
and they have got noteworthy successes. However, these methods were complicated to use
and expensive, and interest moved to different variational formulations to circumvent the
need for C1-continuous basis functions. In the next paragraph we discuss about the origin
of the basis functions from which one obtains high continuous interpolations.

The Bézier curves were discovered simultaneously by Paul de Casteljau at Citroen and Pierre
E. Bézier at Renault around late 1950s and early 1960s. The generalization of Bézier func-
tions are Basis splines, or B-splines for short. B-splines were known and studied by N.
Lobachevsky whose major contribution to mathematics is perhaps the so-called hyperbolic
(non-Euclidean) geometry in late eighteenth century. However, we shall adopt a modern
version developed by C. de Boor, M. Cox and L. Mansfield in late 1970s. Note that Bézier
curves are special cases of B-splines. B-spline methods for curves and surfaces were first
proposed in the 1940s but were seriously developed only in the 1970s. They have been
studied extensively and considerably extended since the 1970s, and a lot is currently known
about them. However, B-splines can only represent what polynomial parametric forms can.
By introducing homogeneous coordinates making them rational, B-splines are generalized
to Non-Uniform Rational B-splines (NURBS). NURBS curves are more powerful than B-
spline curves since they can exactly represent circles and ellipses. NURBS are commonly
used in computer-aided design (CAD), manufacturing, engineering and are part of numerous
industry world-wide. NURBS tools are also found in various 3D modeling and animation
software packages. CAD implementations have evolved dramatically since the introduction
of NURBS. Initially, with 3D in the 1970s, it was typically limited to producing drawings
similar to hand-drafted drawings. Advances in programming and computer hardware, no-
tably solid modeling in the 1980s, have allowed more versatile applications of computers in
design activities.

Computer aided designs, specially B-splines, have also been used as a basis for solving
variational problems (see, e.g., Schultz, 1973; Prenter 1975; Sabin, 1997, Hoellig 2003;
Kwok et al., 2001), but these efforts have been dwarfed by activity in finite element analysis.
It is interesting to note that the isoparametric elements developed in the 1960s are still the
most widely utilized elements in commercial FEA codes, and even in research activities in
FEA. Therefore before 2005, it was still a challenge to break down the barriers between
engineering design and analysis, but at the same time maintain compatibility with existing
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practices. A fundamental step is to focus on one, and only one, geometric model, which
can be utilized directly as an analysis model, or from which geometrically precise analysis
models can be automatically built. This requires a change from classical finite element
analysis to an analysis procedure based on CAD representations. This concept is referred
to as Isogeometric Analysis due to the isoparametric approach is invoked from geometry to
solution.

Isogeometric analysis, since its introduction, has received great attention in the compu-
tational mechanics community. The concept has the capability of leading to large steps
forward in computational efficiency since effectively, the process of re-meshing is either
eliminated or greatly suppressed. The geometry description of the underlying domain is
adopted from a Computer Aided Design (CAD) parametrization which is usually based on
Non-Uniform Rational B-splines (NURBS), and the same basis functions are employed to
approximate the physical solution. Isogeometric analysis techniques have been studied and
applied in diverse fields, see e.g., [2, 3, 14–24, 34, 35, 41, 57, 67, 68]. Moreover, some theo-
retical aspects such as approximation properties, condition number estimates have also been
studied, see [14, 20, 56]. The isogeometric methods, depending on various choices of basis
functions, have shown several advantages over standard Finite Element Methods (FEM).
For example, some common geometries arising in engineering and applied sciences, such as
circles or ellipses, are exactly represented, and complicated geometries are represented more
accurately than traditional polynomial based approaches. When we compare NURBS based
isogeometric analysis with standard Lagrange polynomials based finite element analysis, it
leads to qualitatively more accurate results [39]. Unlike finite element analysis, where C1 or
higher order interpolation finite elements are complicated and expensive to construct, iso-
geometric analysis offers Cp−k-continuous interpolation for p-degree basis functions with
knot multiplicity k. Moreover, the ease in building spaces with high inter-element regu-
larity allows for rather small problem sizes (in terms of degrees of freedom) with respect
to standard finite element methods with the same approximation properties. This implies
that, in general, for same approximation properties isogeometric stiffness and mass matrices
are smaller than the corresponding finite element ones. Nevertheless, isogeometric analysis
discrete problems may still be very large in realistic problems of interest, which result in a
large linear system of equations.

This thesis deals with the solution of linear system of equations arising from the isogeomet-
ric discretization of scalar second order elliptic problems. For simplicity, we restrict our-
selves to a model Poisson problem with Dirichlet boundary conditions in an open, bounded
and connected Lipschitz domain in two- and three-dimensions. The isogeometric discretiza-
tion technique begins by defining a weak or variational formulation of the problem and then
approximating the solution in a finite dimensional space. The finite dimensional nature of
the function spaces used in discretization process leads to a coupled system of linear alge-
braic equations. Such systems can can be of very large size, and must be solved efficiently.
Computational algorithms for finding the solution of large linear system of equations are
an important part of numerical linear algebra, and play a prominent role in engineering and
science.
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Ancient Indian texts “Sulabh Sutra” (meaning Easy Solution Procedures) describe the method
in terms of solving systems of two linear equations in two variables, see [75]. The texts have
been dated from around 800 BCE to 200 CE. The recorded analysis of simultaneous equa-
tions is also found in the ancient Chinese book “Chiu-chang suan-shu” (meaning mathemat-
ical treatise in nine sections), estimated to have been written sometime around 2000 years
ago. This effort culminated around 825 CE in the writing of two books, that attracted inter-
national attention, by the Arabic mathematician Muhammad ibn-Musa Al-khawarizmi. The
first was “Al-Maqala fi Hisab al-jabr w’almuqabilah” (meaning An essay on Algebra and
equations). The second book “Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi” appeared in a
Latin translation under the title “Algoritmi de Numero Indorum” (meaning Al-Khawarizmi
Concerning the Hindu Art of Reckoning). It was based on earlier Indian and Arabic trea-
tises. However, it was not until near the end of the 17th Century that the ideas reappeared
and development really got underway. Leibnitz, one of the two founders of calculus, used
determinants in 1693, and later in the 18th century Lagrange further developed the idea of
determinants through his Lagrangian multipliers. Cramer presented his determinant-based
formula for solving systems of linear equations (today known as Cramer’s Rule) in 1750.
The rule appears in his “Introduction to the Analysis of Algebraic Curves”, and deals with
the problem of finding the equation of an algebraic plane curve passing through some fixed
points. Gauss further developed the idea of using matrices to solve systems of linear equa-
tions through the use of Gaussian elimination. Later, Wilhelm Jordan introduced the tech-
nique of Gauss-Jordan elimination. In 1848 in England, J.J. Sylvester first introduced the
term “matrix”, which was the Latin word for womb, as a name for an array of numbers.
Matrix algebra was nurtured by the work of Arthur Cayley in 1855. Cayley studied com-
positions of linear transformations and was led to define matrix multiplication so that the
matrix of coefficients for the composite transformation ST is the product of the matrix for S
times the matrix for T. He went on to study the algebra of these compositions including ma-
trix inverses. The famous Cayley-Hamilton theorem, which asserts that a square matrix is a
root of its characteristic polynomial, was given by Cayley in his 1858 Memoir on the The-
ory of Matrices. After World War II, there was renewed interest in matrices, particularly on
the numerical analysis of matrices with the development of modern digital computers. John
von Neumann and Herman Goldstine introduced condition numbers in analyzing round-off
errors in 1947. Alan Turing and von Neumann were the 20th century giants in the develop-
ment of stored-program computers. Turing introduced the LU decomposition of a matrix in
1948, where L is a lower triangular matrix with 1’s on the diagonal and the U is an upper
triangular matrix. It is common to use LU decompositions in the solution of a sequence of
systems of linear equations, each having the same coefficient matrix. The QR factorization
is used in computer algorithms for various computations, such as solving equations and find
eigenvalues, where Q is a matrix whose columns are orthonormal vectors and R is a square
upper triangular invertible matrix with positive entries on its diagonal. These are easy and
intuitive algorithms however, because of their high computational complexity these are not
suitable for large practical computations.

Direct methods for solving linear systems theoretically give the exact solution in a finite
number of steps but are not appropriate for solving large number of equations in a system
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where a high computational cost is involved. Another disadvantage of direct methods is
rounding errors: an error made in one step spreads further in all following steps. There
is another class of methods to solve linear system of equations called iterative methods.
These methods generate a sequence of approximate solutions and essentially involve the
coefficient matrix only in the context of matrix-vector multiplication. The evaluation of an
iterative method invariably focuses on how quickly the iterates converge. The study of round
off errors is in general not very well developed. A reason for this is that the iterates are only
approximations of the exact solution, so round off errors in general only influence the speed
of convergence but not the quality of the final approximation.

The earliest reference to an iterative approach to solving Ax = b appears to be contained
in a letter by Gauss to his student Gerling dated 26 December 1823. It was in the context
of solving least squares problems via the normal equations. In 1845 Jacobi introduced his
own iterative method, again for solving normal equations for least squares problems arising
in astronomical calculations. Again in the context of least squares, in 1874 Seidel published
his own iterative method. The paper contains what we now call the Gauss-Seidel method,
which he describes as an improvement over Jacobi’s method. In the early 20th century we
note the important contributions, Richardson (1910) and Liebmann (1918). These papers
marked the first use of iterative methods in the solution of finite difference approximations
to elliptic PDEs. Richardson’s method is still well known today, and can be regarded as an
acceleration of Jacobi’s method by means of over- or under-relaxation factors. Liebmann’s
method is identical with Seidel’s method.

In the early 1950s a number of new methods appeared that dramatically changed the land-
scape of iterative methods. In separate contributions Lanczos [76] and Hestenes and Stiefel
[62] proposed different versions of what is now known as the conjugate gradient method.
The method proposed by Lanczos is, for symmetric positive-definite matrices, mathemati-
cally equivalent to the conjugate gradient method, but it was described for the general case
of nonsymmetric matrices. The theory of stationary iterative methods was solidly estab-
lished with the work of Young starting in the 1950s. Only in the 1970s was it realized that
conjugacy based methods work very well for partial differential equations, especially the
elliptic type. These methods are also used in practice upto a great extant, but none of these
methods gives optimal order (linear in time) method.

In 1961, a new class of methods, namely multigrid methods, were discovered. During the
last five decades, these methods have been established as a powerful and efficient tool for
solving linear system of equations arising in a variety of problems [30,60,97]. The key idea
of multigrid goes back to R.P. Fedorenko in the early 1960s [52, 53], who developed the
first multigrid method for solving the Poisson equation on a unit square. The first rigorous
convergence proof was provided by Bakhwalov [13]. In early 1970s, the multigrid idea was
generalized to variational finite difference equations and general finite element equations
by Astrachancev [1] and Korneev [71]. However, the huge potential of multigrid methods
was realized due to the works of Brandt [31] and Hackbusch [59, 60]. These methods use
the power of classical iterative methods on different levels of the problem. Nowadays the
multigrid technique is one of the most efficient methods for solving a large class of problems
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including elliptic boundary value problems for partial differential equations (PDEs) or sys-
tems of PDEs. In the early 1980s, algebraic multigrid methods were introduced by Brandt,
McCormick, and Ruge [32], which rebuild the multigrid algorithm based on the information
that is accessible via the system of (linear) algebraic equations only. Around the same time,
AMLI methods were introduced by Axelsson and Vassilevski in a series of papers [7–10].
To achieve optimal computational complexity from AMLI methods, various stabilization
techniques can be used. In the original work [7, 8], the stabilization was achieved by em-
ploying properly shifted and scaled Chebyshev polynomials. This approach requires the
computation of polynomial coefficients which depends on the bounds of the eigenvalues of
the preconditioned system. Alternatively, some inner iterations at coarse levels can be used
to stabilize the outer iterations, which lead to parameter-free AMLI methods [9, 10, 72, 85].
These methods utilize a sequence of coarse-grid problems that are obtained from repeated
application of a natural (and simple) hierarchical basis transformation, which is computa-
tionally advantageous. Moreover, the underlying technique of these methods often requires
only a few minor adjustments (mainly two-level hierarchical basis transformation) even if
the underlying problem changes significantly.

Since the introduction of isogeometric analysis, most of its progress has been focused on the
applications and discretization properties. Nevertheless, when dealing with large problems,
the cost of solving the linear system of equations arising from the isogeometric discretization
becomes an important issue. Clearly, the discretization matrix A gets denser with increasing
polynomial degree p. Therefore, the cost of a direct solver, particularly for large problems,
becomes prohibitively expensive. The most practical way to solve them is to resort to an
iterative method. Since the convergence rate of such methods is strongly affected by the
condition number of the system matrix A, it is important to assess this quantity as a function
of the mesh size h for the h-refinement, or as a function of the degree p for the p-refinement.
Note that in the p-refinement, improved approximate solutions are sought by increasing p
while the mesh of the domain, and thus the maximum quadrilateral diameter h, is held fixed,
whereas in the h-refinement, improved approximations are obtained by refining the mesh,
and thus reducing h, while p is held fixed. In this thesis we consider both the cases, i.e. the
h-refinement and the p-refinement. Our main results provide upper and lower bounds for
the condition number of the stiffness matrix and the mass matrix for the h-refinement, and
upper bounds for the condition number of the stiffness matrix and the mass matrix for the
p-refinement. It is well known fact that for the h-refinement, when applied to second order
elliptic problems on a regular mesh, the condition number of the finite element stiffness
matrix scales as h−2, and the condition number of the mass matrix is bounded uniformly,
independent of h, see e.g. [11, 33]. This is true for a great variety of elements and indepen-
dent of the dimension of the problem domain. Our results are in agreement with the fact
that for h-refinement whatever may be the underlying basis functions from the respective
function space, the above bounds remain same [5]. These results are useful in theoretical
analysis that relate to the h-refinement. For example, in convergence analysis of multigrid
methods, these results are one of the key elements in deriving convergence factors, for fi-
nite element analysis, see e.g. [29, 60, 61, 91], and for isogeometric analysis, see [55]. It is
known that the order of the approximation error of the numerical solution depends on the
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choice of the finite dimensional subspace, and not on the choice of its basis. Therefore,
when working with finite element method or isogeometric method for elliptic problems, one
should think in terms of function spaces rather than on the choice of particular basis func-
tions. Nevertheless, the choice of the basis functions affects the condition number of the
stiffness matrix and the mass matrix, which influences the performance of iterative solvers.
To the best of our knowledge, there is no general theory to characterize the extremal eigen-
values or the condition number based on a set of general polynomial basis functions, see
e.g. [12, 80–82]. Unlike the h-refinement, for the p-refinement the condition number heav-
ily depends on the choice of basis functions. For different choices of basis functions the
condition number may grow algebraically or exponentially. Olsen and Douglas, Jr. [86]
estimated the condition number bounds of finite element matrices for tensor product ele-
ments with two choices of basis functions. For the first choice, Lagrange elements, it is
proved that the condition number grows exponentially in p, whereas for the second choice,
hierarchical basis functions based on Chebychev polynomials, the condition number grows
rapidly but only algebraically in p. Similar results on the condition number bounds can be
found in, e.g., [51,66,79]. Due to the larger support of NURBS basis functions, the band of
the stiffness matrix corresponding to the NURBS-based isogeometric method is less sparse
than the one arising from finite element procedures. Therefore, a larger condition number is
expected. Our results for the p-refinement show that in isogeometric method the condition
number of system matrices grows exponentially.

Condition number estimates for the isogeometric matrices advocate fast, efficient and ro-
bust iterative solvers. In this thesis, first we focus on multigrid methods for solving the
linear system of equations arising from the isogeometric discretization of scalar second or-
der elliptic problems in a single patch. These methods are based on smoothing property of
classical iterative methods and approximation property of intergrid transfer operators. We
analyze two-grid methods and multigrid methods. The smoothing property and approxima-
tion properties are proved for two-grid cycle. Together, these two components establish the
h-independence of the two-grid solver. For the multi-grid solver, which uses the two-grid
solver recursively, we recall the h-independent convergence estimates from [60]. Elliptic
problems with constant and variable coefficients are solved on a single patch in two and
three dimensions. Numerical results show good convergence rates independent of the mesh
parameter h. However, for discretizations based on higher degree polynomials, the conver-
gence rate are quickly deteriorated. Therefore, we further analyze algebraic multilevel itera-
tion methods. These methods are based upon the splitting of the fine space into coarse space
and its hierarchical complement. Coarse space together with its hierarchical complement
forms hierarchical space. The construction of hierarchical space is not unique and it de-
pends on the different choices of linear combination of fine basis functions. Therefore, with
different choices of hierarchical spaces we get different convergence rates. We construct
two different hierarchical spaces for C0-continuous and Cp−1-continuous basis functions.
We could obtain for Cp−1-continuous basis functions p-independent convergence rates. It
is still a challenge for higher p and low regularity basis functions to form the hierarchical
spaces in optimal sense.

In this thesis, we also study the preconditioning of the isogeometric stiffness matrix us-
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ing support graph theory. It began with the remarkable work of Pravin Vaidya in the early
1990s, in which he proposed and analyzed maximum weight spanning tree preconditioners
for Laplacian matrices. Vaidya chose not to publish his work, but to produce commercial
software instead. His software has had a significant impact in the structural analysis com-
munity. Fortunately, John Gilbert and Gary Miller recognized the significance of Vaidya’s
ideas and kept them from being lost. Miller and two of his students (Keith Gremban and
Steve Guattery) formalized and greatly extended the techniques that Vaidya had used. In
the process, they devised a new multi-level preconditioner and also conducted an analysis
of incomplete Cholesky preconditioning. The idea, to use such graph theory based pre-
conditioners in isogeometric analysis, stems from the fact that B-splines (NURBS) basis
functions have larger support. We numerically studied Vaidya’s preconditioners (maximum
weight spanning tree) and Gremban and Miller’s preconditioners (support tree). Since pre-
liminary results were not promising, we did not pursue this direction further.

This thesis is structured as follows. Chapter 2 contains the preliminaries and basic concepts
and introduces the notations. We briefly describe B-splines and NURBS. A brief methodol-
ogy of multigrid methods and AMLI methods is also given.

In Chapter 3, we give the estimates of condition number of isogeometric matrices. The
condition number estimates of B-spline basis functions are also given in this section. We
discuss the condition number estimates for stiffness matrix and mass matrix as a function of
mesh size h, and as a function of polynomial degree p.

Chapter 4 deals with the explicit representation of B-splines on a unit interval with uniform
refinement. Moreover, the multilevel structure of B-splines and NURBS basis functions is
given. The B-splines transfer operators are presented from a given fine level to the next
coarse level. NURBS transfer operators are obtained from B-spline transfer operators.

In Chapter 5, we introduce the multigrid methods for isogeometric discretizations. The
smoothing property of the Gauss-Seidel method and the approximation properties of inter-
grid transfer operators are discussed . Two-grid analysis and multigrid analysis for solving
isogeometric linear system of equations are also analyzed in this section.

Chapter 6 describes our work on AMLI methods for isogeometric discretizations. This
chapter focuses on construction and numerical studies. The construction of hierarchical
spaces is given. The numerical study of constant γ, which measures the quality of space
splitting, is also given in this section.

In Chapter 7, we discuss the graph theory based preconditioners for system of equations
arising in isogeometric discretizations. The implementation of Vaidya’s preconditioners
and Gremban and Miller’s preconditioners are given. In this section we also give local pre-
conditioning of stiffness matrix based on M -matrix based approaches and two-color based
approaches.

Finally in Chapter 8 we end with some concluding remarks and give an outlook on possible
future work.



Chapter 2

Preliminaries

In this chapter we briefly describe the definitions and the basics of the study material which
is useful for following this thesis. We first focus on B-splines and NURBS, and then describe
our model problem. For simplicity we restrict ourselves to a model Poisson problem with
Dirichlet boundary conditions. A short description to isogeometric analysis is given. Finally,
we shall give a short overview on multigrid and multilevel methods to solve the resulting
linear system of equations.

2.1 Spline Curves
The types of curve fall into two broad categories: interpolating curves and approximating
curves. Interpolation curves fit given data points exactly, i.e, these curves will pass through
the points used to describe it. Lagrange polynomials, integrated Legendre polynomials are
interpolatory functions and commonly used in FEM. We shall not discuss them in details.
Our main focus is on approximating curves which are commonly used in isogeometric anal-
ysis. Unlike interpolating curves, an approximating curve will not necessarily pass through
the data points. The fundamental unit of approximating curves is Bézier curves. Bézier
curves are defined by Bernstein polynomials. To define a Bézier curve of degree p, we need
to choose p+ 1 control points in space so that they roughly indicate the shape of the desired
curve. Then, if it is not up to our expectation, we can move the control points around. As
one or more control points are moved, the shape of the Bézier curve changes accordingly,
but the curve always lies in the convex hull defined by the control points. However, we
cannot easily control the curve locally, i.e., any change to an individual control point will
cause changes in the curve along its full length. In addition, we cannot create a local cusp
in the curve, i.e., we cannot create a sharp corner unless we create it at the beginning or end
of a curve where it joins another curve. Finally, it is not possible to keep the degree of the
Bézier curve fixed while adding additional points; any additional points will automatically
increase the degree of the curve. The so-called B-spline curve, which is the generalization
of Bézier curves, addresses each of these problems with the Bézier curve. It provides to-
days’ powerful and useful approach to curve design. We shall discuss them in the following
section.

9
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2.1.1 B-splines
Definition 2.1. Let Ξ1 = {ξi : i = 1, ..., n + p + 1} be a non-decreasing sequence of real
numbers called the knot vector, where ξi is the ith knot, p is the polynomial degree, and
n is the number of basis function. With a knot vector in hand, the B-spline basis functions
denoted by Np

i (ξ) are (recursively) defined starting with a piecewise constant (p = 0)

N0
i (ξ) =

{
1 if ξ ∈ [ξi, ξi+1),
0 otherwise,

(2.1a)

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ), (2.1b)

where 0 ≤ i ≤ n, p ≥ 1 and
0

0
is considered as zero.

The above is usually referred as the Cox-de Boor recursion formula, see e.g. [45]. For a
B-spline basis function of degree p, an interior knot can be repeated at most p times, and
the boundary knots can be repeated at most p + 1 times. A knot vector for which the two
boundary knots are repeated p + 1 times is said to be open. In this case, the basis functions
are interpolatory at the first and the last knot. If the number of knots is m, the degree of the
basis functions is p, and the number of basis functions of degree p is n, then m = n+ p+ 1.
B-spline basis functions have the following properties.

1. Polynomial: Np
i (ξ) is a degree p polynomial in ξ.

2. Nonnegativity: For all i, p and ξ, Np
i (ξ) is non-negative.

3. Local Support: Np
i (ξ) is a non-zero polynomial only on [ξi, ξi+p+1). On any span

[ξi, ξi+1), at most p+ 1 basis functions of degree p are non-zero, namely:
Np
i−p(ξ), N

p
i−p+1(ξ), Np

i−p+2(ξ), ..., Np
i (ξ).

4. Partition of Unity: The sum of all non-zero degree p basis functions on span [ξi, ξi+1)
is 1.

5. Composite curve: Basis function Np
i (ξ) is a composite curve of degree p polynomials

with joining points at knots in [ξi, ξi+p+1).

6. Continuity: At a knot of multiplicity k, basis function Np
i (ξ) is Cp−k continuous.

Therefore, increasing multiplicity decreases the level of continuity, and increasing
degree increases continuity.

Definition 2.2. A B-spline curve C(ξ), is defined by

C(ξ) =
n∑
i=1

PiN
p
i (ξ) (2.2)

where {Pi : i = 1, ..., n} are the control points and Np
i are B-spline basis functions defined

in (2.1).
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B-spline curves are generalization of Bézier curves and share many important properties
with them. Moreover, B-spline curves have more useful properties than Bézier curves. The
list below shows some of the most important properties of B-spline curves.

1. B-spline curve C(ξ) is a piecewise curve with each component a curve of degree p.
This nice property allows us to design complex shapes with lower degree polynomials.

2. Convex Hull Property: A B-spline curve is contained in the convex hull of its control
net. More specifically, if ξ is in knot span [ξi, ξi+1), then C(ξ) is in the convex hull of
control points Pi−p, Pi−p+1, ..., Pi.

3. Local modification: Changing the position of control point Pi only affects the curve
C(ξ) on interval [ξi, ξi+p+1). This local modification property is very important to
curve design.

4. C(ξ) is Cp−k continuous at a knot of multiplicity k.

5. Variation Diminishing Property: The variation diminishing property holds for B-
spline curves. If the curve is in a plane (space), this means that no straight line (resp.
plane) intersects a B-spline curve more times than it intersects the curve’s control
polyline.

6. Affine Invariance: The affine invariance property also holds for B-spline curves. If
an affine transformation is applied to a B-spline curve, the result can be constructed
from the affine images of its control points. When we want to apply a geometric
transformation to a B-spline curve, this property states that we can apply the transfor-
mation to control points, which is quite easy, and once the transformed control points
are obtained the transformed B-spline curve is the one defined by these new points.
Therefore, we do not have to transform the curve.

The previous definitions are easily generalized to the higher dimensional cases by means
of tensor product. Using tensor product of one-dimensional B-spline functions, a B-spline
surface S(ξ, η) is defined as follows:

S(ξ, η) =

n1∑
i=1

n2∑
j=1

Np1,p2
i,j (ξ, η)Pi,j, (2.3)

where Pi,j , i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, denote the control points, Np1,p2
i,j is the tensor

product of B-spline basis functions Np1
i and Np2

j , and Ξ1 = {ξ1, ξ2, . . . , ξn1+p1+1} and Ξ2 =
{η1, η2, . . . , ηn2+p2+1} are the corresponding knot vectors. Similarly, B-spline solids can
also be defined.

2.1.2 NURBS
It is known that polynomials can not exactly describe frequently encountered shapes in
engineering, particularly the conic family, e.g. circle. While B-splines (polynomials) are
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flexible and have many nice properties for curve design, they are also incapable of repre-
senting such curves exactly. Such limitations are overcome by NURBS functions which can
be used to exactly represent a wide array of objects. Rational representation of conics orig-
inates from projective geometry. The “coordinates” in the additional dimension are called
weights, which we shall denote by w. Furthermore, let {Pw

i } be a set of control points for
a projective B-spline curve in R3. For the desired NURBS curve in R2, the weights and the
control points are derived by the relations

wi = (Pw
i )3, (Pi)d = (Pw

i )/wi, d = 1, 2, (2.4)

where wi is called the ith weight and (Pi)d is the dth-dimension component of the vector Pi.
The weight function w(ξ) is defined as

w(ξ) =
n∑
i=1

Np
i (ξ)wi. (2.5)

Then, the NURBS basis functions and curve are defined by

Rp
i (ξ) =

Np
i (ξ)wi
w(ξ)

, C(ξ) =
n∑
i=1

Rp
i (ξ)Pi. (2.6)

The NURBS surfaces are analogously defined as follows

S(ξ, η) =

n1∑
i=1

n2∑
j=1

Rp1,p2
i,j (ξ, η)Pi,j, (2.7)

where Rp1,p2
i,j is the tensor product of NURBS basis functions Rp1

i and Rp2
j . NURBS func-

tions also satisfy the properties of B-spline functions. For a detailed exposition see, e.g.
[88, 90, 94].

2.1.3 Knot Insertion and Degree Elevation
The meaning of knot insertion is adding a new knot into the existing knot vector without
changing the shape of the curve. This new knot may be equal to an existing knot and, in
this case, the multiplicity of that knot is increased by one. Because of the fundamental
relation m = n + p + 1, after adding a new knot, the value of m is increased by one
and, consequently, either the number of control points or the degree of the curve must also
be increased by one. Changing the degree of the curve due to the increase of knots will
change the shape of the curve globally and will not be considered. Therefore, inserting
a new knot causes a new control point to be added. Knot insertion is one of the most
important features for B-spline curves since many other useful techniques are based on knot
insertion. For example, in isogeometric analysis h-refinement takes place by inserting the
knots. The second mechanism by which one can enrich the basis is degree elevation. As
its name implies, the process involves raising the polynomial degree of the basis functions
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used to represent the geometry. During degree elevation, the multiplicity of each knot value
is increased by one, but no new knot values are added. As with knot insertion, the geometry
does not changed with degree elevation. There are well established algorithms for knot
insertion and degree elevation. Therefore, we shall not discuss them in details, and refer the
reader to, e.g., [88, 90, 94].

2.1.4 Derivatives of Splines
Derivatives of B-splines and NURBS, see e.g. [54,88,90,94], and their conditioning are very
important for the estimation of the condition number of the stiffness matrix. The recursive
definition of B-spline functions allows us to seek the relationship between the derivative of
a B-spline basis function and lower degree basis function.

Definition 2.3. The derivative of ith B-spline basis function defined in (2.1), is given by

d

dξ
Np
i (ξ) =

p

ξi+p − ξi
Np−1
i (ξ)− p

ξi+p+1 − ξi+1

Np−1
i+1 (ξ). (2.8)

By repeating differentiation of (2.8), we get the general formula for any order derivative.
Since we are interested in the first derivative only, we ignore further details.

The derivatives of rational functions will clearly depend on the derivatives of their non-
rational counterpart. Definition 2.3 can be generalized for NURBS as follows.

Definition 2.4. The derivative of ith NURBS basis function is given by

d

dξ
Rp
i (ξ) = wi

w(ξ)
d

dξ
Np
i (ξ)− d

dξ
w(ξ)Np

i (ξ)

(w(ξ)2)
. (2.9)

where wi and w(ξ) are defined in (2.4) and (2.5), respectively.

2.2 Fundamentals of Isogeometric Analysis
In FEA there is one notion of a mesh and one notion of an element, but an element has
two representations, one in the parent domain and one in the physical domain. Elements are
usually defined by their nodal coordinates and the degrees-of-freedom are usually the values
of the basis functions at the nodes. Finite element basis functions are typically interpolatory
and may take on positive and negative values. Finite element basis functions are often
referred to as interpolation functions.

On the other hand, isogeometric analysis utilizes NURBS basis functions and two concepts
about numerical meshes can be identified: control mesh and physical mesh. Control points
are defined in order to control the geometry and they do not conform to the actual geometry.
The control mesh looks like a finite element mesh constructed with multilinear elements.
Geometry and degrees-of-freedom are represented in terms of their respective values defined
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Figure 2.1: Schematic illustration of NURBS paraphernalia for a one-patch surface model.
Courtesy [39].
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Figure 2.2: In classical finite element analysis, the parameter space is local to individual
elements. Each element has its own mapping from the reference element. Courtesy [39].

Figure 2.3: The B-spline parameter space is local to the entire patch. Internal knots partition
the patch into elements. A single B-spline map takes the patch from the parameter space to
the physical space. Courtesy [39].

at the control points. The physical mesh is a decomposition of the actual geometry. There
are two notions of elements in the physical mesh, the patch and the knot span. The patch
may be thought of as a macro-element or subdomain. Most geometries utilized for academic
test cases can be modeled with a single patch. Each patch has two representations, one in
a parent domain and one in physical domain. In two-dimensional topologies, a patch is a
rectangle in the parent domain representation, and in three dimensions it is a cuboid.

Each patch can be decomposed into knot spans. Knot spans are bounded by knots. These
define element domains where basis functions are smooth (i.e., C∞). Across knots, basis
functions will be Cp−k where p is the degree of the polynomial and k is the multiplicity of
the knot in question. There is one other very important notion that is a key to understanding
NURBS, the index space of a patch. It uniquely identifies each knot and discriminates
among knots having multiplicity greater than one. The Figure 2.2, taken from [39], explains
this mechanism.

Unlike in standard finite element analysis, the B-spline parameter space is local to patches
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rather than elements. That is, the parameter space in FEA (tellingly dubbed the “reference
element” or “parent element”) is mapped into a single element in the physical space, and
each element has its own such mapping, as in Figure 2.2. On the other hand, the B-spline
mapping takes a patch of multiple elements in the parameter space into the physical space,
as seen in Figure 2.3. Each element in the physical space is the image of a corresponding el-
ement in the parameter space, but the mapping itself is global to the whole patch, rather than
to the elements themselves. Patches play the role of subdomains within which element types
and material models are assumed to be uniform. Many simple domains can be represented
by a single patch.

2.3 Model Problem and its Discretization
Let Ω ⊂ Rd, d = 2, 3, be an open, bounded and simply connected Lipschitz domain with
Dirichlet boundary ∂Ω. We consider the following second order scalar elliptic partial differ-
ential equation,

−∇ · (A∇u) = f in Ω, u = g on ∂Ω, (2.10)

where f : Ω → R is given. The aim is to find u : (Ω ∪ ∂Ω) → R which satisfies (2.10).
There are several classes of numerical methods that lend themselves to isogeometric anal-
ysis. However, we restrict to Galerkin’s formulation of the problem which is commonly
used in isogeometric analysis. Isogeometric discretization has the same theoretical founda-
tion as finite element analysis, namely the variational form of a partial differential equation.
For this we define the function space, denoted by S, as all the functions which have square
integrable derivatives and also satisfy u|∂Ω = g, i.e.

S = {u : u ∈ H1(Ω), u|∂Ω = g}, (2.11)

whereH1(Ω) = {u : Dαu ∈ L2(Ω), |α| ≤ 1} is the Sobolev space, α ∈ Nd is a multi-index,

Dα = Dα1
1 Dα2

2 ...Dαd
d and Dj

i =
∂j

∂xji
. The second collection of functions is very similar to

the first one, except that we have the homogeneous counterpart of the Dirichlet boundary
condition. We denote it by a set V defined by

V = {u : u ∈ H1(Ω), u|∂Ω = 0}, (2.12)

We now write the variational formulation of the model problem by multiplying it by an
arbitrary test function v ∈ V and integrating by parts. For a given f ∈ L2(Ω): Find u ∈ S
such that for all v ∈ V ∫

Ω

A∇u · ∇v dΩ =

∫
Ω

fv dΩ.

We may rewrite above as
a(u, v) = L(v), (2.13)

where
a(u, v) =

∫
Ω

A∇u · ∇v dΩ, and L(v) =

∫
Ω

fv dΩ.
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A few properties of a(·, ·) and L(·) are worth noting. The first is the symmetry of a(·, ·). It
follows directly from its definition that a(u, v) = a(v, u). Also, a(·, ·) is bilinear and L(·) is
linear. That is, for all constants C1 and C2,

a(C1u+ C2v, w) = C1a(u,w) + C2a(v, w),

L(C1u+ C2v) = C1L(u) + C2L(v).
(2.14)

Let Sh and Vh be the finite dimensional approximations of S and V , respectively, i.e. Sh ⊂
S and Vh ⊂ V . Suppose we have a given function gh ∈ Sh such that gh|∂Ω = g, then for
every uh ∈ Sh there exists a unique vh ∈ Vh such that

uh = vh + gh. (2.15)

The Galerkin form of the problem is: Find uh = vh + gh, where vh ∈ Vh, such that for all
wh ∈ Vh

a(uh, wh) = L(wh). (2.16)

It is well known that (2.16) is a well-posed problem and has a unique solution.

By approximating uh and vh using B-splines or NURBS basis functionsNi, i = 1, 2, . . . , nh,
where nh = O(h−2), the variational formulation (2.16) is transformed in to a set of linear
algebraic equations

Au = f, (2.17)

where A denotes the stiffness matrix obtained from the bilinear form a(·, ·), i.e.

A = (ai,j) = (a(Ni, Nj)), i, j = 1, 2, 3, ...., nh,

u denotes the vector of unknown degrees of freedom, and f denotes the right hand side
(RHS) vector from the known data of the problem. It is clear that A is a real symmetric
positive definite matrix.

2.4 Iterative Solvers
The system of linear equations coming from isogeometric discretization of partial differen-
tial equations is, in general, large and sparse. Direct solution methods can be impractical
for such large and sparse systems because of memory and computational time requirements.
Iterative methods are useful for such problems.

2.4.1 Basic Iterative Methods
The basic idea behind iterative methods for the solution of a linear system Au = f is:
starting from a given u(k), obtain a better approximation u(k+1) of u in a cheap way. Note
that f − Au(k) is small if u(k) is close to u. This motivates the iteration process

u(k) = u(k−1) +M−1(f − Au(k−1)). (2.18)
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One can easily verifies that if this process converges, then the iterates u(k) converges to exact
solution u. Rewriting of (2.18) leads to

Mu(k) = Nu(k−1) + f, (2.19)

where the matrix N is obtained from the splitting A = M −N . It can easily be seen from

Mu = Nu+ f ⇐⇒ Au = (M −N)u = f. (2.20)

The classic iterative methods are based on different splittings of the coefficient matrix A.

Jacobi Method

The first classical iterative technique is called the Jacobi method, named after Carl Gustav
Jacob Jacobi. This method splits A into three matrices: the diagonal D, an upper triangular
U , and a lower triangular L, such that D is the same as the diagonal of A, −U is the upper
triangular part of A, and −L is the lower triangular part of A, i.e.,

A = D − L− U. (2.21)

Therefore, Au = f can be rewritten

(D − L− U)u = f, (2.22)

which leads to

Du = (L+ U)u+ f, =⇒ u = D−1(L+ U)u+D−1f. (2.23)

This results in the iterative Jacobi technique:

u(k) = D−1(L+ U)u(k−1) +D−1f, k = 1, 2, 3, .... (2.24)

In order to get a convergence result for the Jacobi method we need to recall the concept of
diagonal dominance. We say a matrix A is strictly row diagonally dominant if

|aii| >
∑
j 6=i

|aij|. (2.25)

Theorem 2.5. [91] If A is strictly row diagonally dominant, then the Jacobi method con-
verges for any initial guess u(0).

Gauss-Seidel Method

Gauss-Seidel method is a more efficient version of the Jacobi Method. The way of deriving
the Gauss-Seidel method formally is as follows

(D − L)u = Uu+ f, =⇒ u = (D − L)−1Uu+ (D − L)−1f, (2.26)

and hence, generating the recurrence relation

u(k) = (D − L)−1Uu(k−1) + (D − L)−1f. (2.27)

The convergence criteria for Gauss-Seidel iteration are a little more general than those for
the Jacobi method. We have the following result.
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Theorem 2.6. [91] The Gauss-Seidel method converges for any initial guess u(0) if

1. A is strictly diagonally dominant, or

2. A is symmetric positive definite.

Successive Relaxation Method

The successive relaxation method further improves the Gauss-Seidel method. The recur-
rence relation is given by

u(k) = (D − ωL)−1((1− ω)D + ωU)u(k−1)) + (D − ωL)−1ωf. (2.28)

If 0 < ω < 1, the iterative method is known as a “successive under relaxation” and they
can be used to obtain convergence when the Gauss-Seidel scheme is not convergent. For
choices of ω > 1 the scheme is a “successive over relaxation” and is used to accelerate
the convergence of Gauss-Seidel iterations. Note that, ω = 1 is simply the Gauss-Seidel
iterative method. We can prove a general convergence theorem that is similar to those for
the Jacobi and Gauss-Seidel methods:

Theorem 2.7. [91] If A is symmetric positive definite then the SOR method with 0 < ω < 2
converges for any starting value u(0).

2.4.2 Conjugate Gradient Methods
The Conjugate Gradient (CG) algorithm is one of the best known iterative techniques for
solving sparse symmetric positive definite linear systems. CG is simply the method of con-
jugate directions where the search directions are constructed by conjugation of the residuals.
The method proceeds by generating vector sequences of iterates (i.e., successive approxi-
mations to the solution), residuals corresponding to the iterates, and search directions used
in updating the iterates and residuals.

The iterates u(k) are updated in each iteration by a multiple αk of the search direction vector
p(k):

u(k) = u(k−1) + αkp
(k). (2.29)

Correspondingly the residuals r(k) = f − Au(k) are updated as

r(k) = r(k−1) − αkq(k). (2.30)

where
q(k) = Ap(k). (2.31)

The choice

α = αk =
r(k−1)T r(k−1)

p(k)TAp(k)
(2.32)
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minimizes r(k)TA−1r(k) over all possible choices for α. The search directions are updated
using the residuals

p(k) = r(k) − βk−1p
(k−1), (2.33)

where the choice

βk =
r(k)T r(k)

r(k−1)T r(k−1)
(2.34)

ensures that p(k) and Ap(k−1), or equivalently, r(k) and r(k−1), are orthogonal.

Preconditioning is an important technique used to develop an efficient CG method solver for
challenging problems in scientific computing. The idea behind preconditioning is using the
CG method on an equivalent system. Thus, instead of solving Au = f we solve a related
problem Ãũ = f̃ for which Ã is chosen such that its condition number is closer to one; in
other words, Ã is close to the identity.

The generalized conjugate gradient (GCG) methods are iterative methods that are based on
generating residuals that are formally orthogonal to each other with respect to some true or
formal inner product. This includes methods that generate residuals that are minimal with
respect to some norm based on an inner product. In this case the preconditioner is no longer
given by a linear mapping but it can be defined by an iterative process itself.

For brevity reasons, we skip the details of CG algorithms and convergence analysis, and
refer the readers to, e.g., [4, 9, 10, 73, 91].

2.5 Multigrid Methods
A multigrid method involves a hierarchy of meshes and related discretizations. The starting
point of the multigrid idea is the observation that classical iteration methods (e.g. Jacobi and
Gauss-Seidel schemes) have smoothing properties. Although these methods are character-
ized by poor global convergence rates, for errors whose length scales are comparable to the
mesh size, they provide rapid damping, leaving behind smooth, longer wave-length errors.
These smooth parts of the error are responsible for the poor convergence. A quantity that
is smooth on a certain grid can, without any essential loss of information, also be approxi-
mated on a coarser grid. So the low-frequency error components can be effectively reduced
by a coarse-grid correction procedure. Because the action of smoothing steps leaves only
smooth error components, it is possible to represent them as the solution of an appropriate
coarser system. Once this coarser problem is solved, its solution is interpolated back to the
fine grid to correct the fine grid approximation for its low-frequency errors.

2.5.1 Two-grid Cycle
We begin with two-grid method. For smoothing on each grid one can use Gauss-Seidel. For
the larger problem on the fine grid, the effect of smoothing on the low frequency (smooth)
part of the solution u is small. The multigrid method transfers the current residual rh =
fh−Auh, h represents mesh size at fine level, to the coarse grid, denoted by H . We perform
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Algorithm 2.1 Two-grid algorithm

1. Perform ν Gauss-Seidel steps on Ahuh = fh at fine grid with given initial guess uh.

2. Restrict the residual rh = fh − Auh to the coarse grid by rH = RH
h rh, where RH

h is
the restriction operator.

3. Solve AHEH = rH exactly.

4. Interpolate EH to get Eh by Eh = P h
HEH , where P h

H is the prolongation operator.

5. Correct uh as uh + Eh.

6. Go to step 1.

a few smoothing step on the H grid, to approximate the coarse-grid error by EH . Then, we
interpolate EH back to Eh on the fine grid, and make the correction to uh , and begin again.
This fine-coarse-fine loop is a two-grid V -cycle. The procedural way of a two-grid V -cycle
is given in Algorithm 2.1.

2.5.2 Multigrid Cycle
For real world large scale problems, the two-grid method is impractical because the exact
solution of the coarse-grid problem is required. The two-grid V -cycle extends in a nat-
ural way to more grids. It can go down to coarser grids (2h, 4h, 8h, ...) and back up to
(..., 4h, 2h, h). For a detailed description, we introduce a sequence of grids with mesh size
h1 > h2 > ... > hL > 0, so that hk−1 = 2hk . Here k = 1, 2, ..., L, is called the level
number. On each level k we define the problem Akuk = fk. Algorithm 2.2 explains the
µ-cycle multigrid procedure.

We skip further details about the convergence results of multigrid theory for FEM, and refer
the reader to, e.g., [4, 60, 61, 91, 97]. The convergence rates of multigrid methods in the
framework of isogeometric analysis will be discussed in details in Chapter 5.

2.6 AMLI Methods
In this section we present the basic principle of AMLI methods. In what follows we will
denote by M (k) a preconditioner for stiffness matrix A(k) corresponding to level k. We will
also make use of the corresponding hierarchical matrix Â(k), which is related to A(k) via a
two-level hierarchical basis (HB) transformation J (k), i.e.,

Â(k) = J (k)A(k)(J (k))T . (2.35)

The transformation matrix J (k) specifies the space splitting, which will be described in detail
in Chapter 6. By A

(k)
ij and Â

(k)
ij , 1 ≤ i, j ≤ 2, we denote the blocks of A(k) and Â(k)
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Algorithm 2.2 Multigrid algorithm

1. If k = 1 solve Akuk = fk exactly.

2. Pre-smoothing steps on the fine grid: ν Gauss-Seidel steps to solve Akuk = fk.

3. Restriction of the residual rk = fk − Auk to the next coarse grid by rk−1 = Rk−1
k rk.

4. Set uk−1 = 0.

5. Call µ times the ‘Multigrid algorithm’ to solve Ak−1uk−1 = rk−1.

6. Coarse-grid correction: uk = uk + Ikk−1uk−1.

7. Post-smoothing steps on the fine grid: ν Gauss-Seidel steps to solve Akuk = fk
starting from the improved initial guess.

that correspond to the fine-coarse partitioning of degrees of freedom where the degrees of
freedom associated with the coarse mesh are numbered last.

The aim is to build a multilevel preconditioner M (L) for the coefficient matrix A(L) at the
level of the finest mesh that has a uniformly bounded (relative) condition number

κ(M (L)−1
A(L)) = O(1),

and an optimal computational complexity, that is, linear in the number of degrees of freedom
NL at the finest mesh (grid). In order to achieve this goal hierarchical basis methods can be
combined with various types of stabilization techniques.

One particular purely algebraic stabilization technique is the so-called algebraic multilevel
iteration (AMLI) method, where a specially constructed matrix polynomial p(k) of degree
νk can be employed at some (or all) levels k. The AMLI algorithm has been originally
introduced and studied in a multiplicative form, see [7, 8].

We have the following two-level hierarchical basis representation at level k

Â(k) =

[
Â

(k)
11 Â

(k)
12

Â
(k)
21 Â

(k)
22

]
=

[
A

(k)
11 Â

(k)
12

Â
(k)
21 A(k−1)

]
. (2.36)

Starting at level l = 1 (associated with the coarsest mesh), on which a complete LU factor-
ization of the matrix A(1) is performed, we define

M (1) := A(1). (2.37)

Given the preconditioner M (k−1) at level k − 1, the preconditioner M (k) at level k is then
defined by

M (k) := L(k)U (k), (2.38)
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where

L(k) :=

[
C

(k)
11 0

Â
(k)
21 C

(k)
22

]
, U (k) :=

[
I C

(k)
11

−1
Â

(k)
12

0 I

]
. (2.39)

Here C(k)
11 is a preconditioner for the pivot block A(k)

11 , and

C
(k)
22 := A(k−1)

(
I − p(k)(M (k−1)−1

A(k−1))
)−1

(2.40)

0 ≤ p(k)(t) < 1, 0 < t ≤ 1, p(k)(0) = 1. (2.41)

It is easily seen that (2.40) is equivalent to

C
(k)
22

−1
= M (k−1)−1

q(k)(A(k−1)M (k−1)−1
), (2.42)

where the polynomial q(k) is given by

q(k)(x) =
1− p(k)(x)

x
. (2.43)

We note that the multilevel preconditioner defined via (2.38) is getting close to a two-level
method when q(k)(x) closely approximates 1/x, in which case C(k)

22

−1
≈ A(k−1)−1. In order

to construct an efficient multilevel method, the action ofC(k)
22

−1
on an arbitrary vector should

be much cheaper to compute (in terms of the number of arithmetic operations) than the
action of A(k−1)−1. Optimal order solution algorithms typically require that the arithmetic
work for one application of C(k)

22

−1
is of the orderO(Nk−1) where Nk−1 denotes the number

of unknowns at level k − 1.

It is well known from the theory introduced in [7,8] that a properly shifted and scaled Cheby-
shev polynomial p(k) := pνk of degree νk can be used to stabilize the condition number of
M (k)−1

A(k) (and thus obtain optimal order computational complexity). Other polynomials
such as the best polynomial approximation of 1/x in uniform norm also qualify for stabiliza-
tion, see, e.g., [74]. Alternatively, in the nonlinear AMLI method, see, e.g., [10], a few inner
flexible conjugate gradient (FCG) type iterations (for the FCG algorithm, see also [84]) are
performed in order to improve (or freeze) the residual reduction factor of the outer FCG iter-
ation. In general, the resulting nonlinear (variable step) multilevel preconditioning method
is almost equally efficient, and, because its realization does not rely on any spectral bounds,
is easier to implement than the linear AMLI method (based on a stabilization polynomial).
For a convergence analysis of nonlinear AMLI see, e.g., [72, 100].
Typically, the iterative solution process is of optimal order of computational complexity if
the degree νk = ν of the matrix polynomial (or alternatively, the number of inner iterations
for nonlinear AMLI) at level k satisfies the optimality condition

1/
√

(1− γ2) < ν < τ, (2.44)

where τ ≈ τk = Nk/Nk−1 denotes the reduction factor of the number of degrees of free-
dom, and γ denotes the constant in the strengthened Cauchy-Bunyakowski-Schwarz (CBS)
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inequality. The value of τ is approximately 4 and 8 in case of two- and three-dimensional
problems, respectively. For a more detailed discussion of AMLI methods, including imple-
mentation issues, see, e.g., [73, 100].

Remark 2.8. The preconditioner defined in (2.38) is of multiplicative form. The introduction
of AMLI methods was based on the multiplicative form, see [7–10], and is commonly used
in practice. However, it is also possible to choose the preconditioner in the additive form,
which is defined as follows

M
(k)
A :=

[
C

(k)
11 0

0 C
(k)
22

]
. (2.45)

In this case the optimal order of computational complexity demands that the matrix poly-
nomial degree (or the number of inner iterations of nonlinear AMLI) satisfy the following
relation √

(1 + γ)/(1− γ) < ν < τ. (2.46)



Chapter 3

Condition Number Estimates of
Isogeometric Matrices

The condition number of matrices plays an important role in the numerical linear algebra. It
measures the sensitivity of the solution of a problem to perturbations in the data. It provides
an approximate upper bound on the error in a computed solution. The condition number
can also be used to predict the convergence of iterative methods. The convergence of an
iteration process and the existence of the solution of linear system depends on the form of
the coefficient matrix. If the matrix is singular, then this system does not have a solution. On
the contrary, when determinant of A 6= 0, it is the condition number of a matrix that decides
the convergence of the approximate solution, obtained in the iteration process, to the correct
solution of the equation system. The condition number is defined by the relation

κ(A) = ‖A‖ · ‖A−1‖ (3.1)

The value of condition number is dependent on the choice of a matrix norm, and indirectly
on the choice of a vector norm. We use the spectral norm to estimate the condition number
throughout the thesis. If a condition number is very high then the matrix A is said to be
ill-conditioned, otherwise it is said to be well-conditioned. A matrix with a high condition
number can generate approximations with a large error.

The condition number is very crucial in the discretization techniques. It heavily depends
on the choice of the basis functions. In the next section, we briefly discuss about the con-
dition number of B-splines, which will be followed by the main results on the estimates
of condition number of isogeometric matrices. We shall discuss the bounds on maximum
and minimum eigenvalues of the stiffness matrix and the mass matrix. These bounds are
given with respect to h-refinement and p-refinement. The numerical results will be given for
h-refinement, for p-refinement, and for r-refinement.

25
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3.1 Condition Number of B-splines
To bound the condition number of matrices resulting from isogeometric discretizations, first
we need to know the bounds on B-spline basis functions in Ls-norm1, where s ∈ [1,∞],
which is briefly discussed in this section. We estimate the size of the coefficients of a
polynomial of degree p in d dimensions when it is represented using the tensor product
structure of B-spline basis functions. The condition number of a basis can be defined as
follows.

Definition 3.1. A basis {Ni} of a normed linear space is said to be stable with respect
to a vector norm if there are constants K1 and K2 such that for all coefficients {vi} =
{v1, v2, ..., vnh} the following relation holds

K−1
1 ‖{vi}‖ ≤

∥∥∥∑
i

viNi

∥∥∥ ≤ K2‖{vi}‖. (3.2)

The number κ = K1K2, withK1 andK2 as small as possible, is called the condition number
of {Ni} with respect to the norm ‖ · ‖. Note that we use the symbols ‖ · ‖ and ‖{·}‖ for the
norms in the vector space and the discrete vector norm, respectively.

Such condition numbers give an upper bound for magnification of error in the coefficients
to the function values. Indeed, if f =

∑
i

fiNi 6= 0 and g =
∑
i

giNi, then it follows

immediately from (3.2) that

‖f − g‖
‖f‖

≤ κ
‖{fi − gi}‖
‖{fi}‖

.

More details on the approximation properties and the stability of B-splines can be found in,
e.g., [63–65, 77, 78, 83, 87]. We shall use these estimates on κ to estimate the bounds on the
condition number of the stiffness matrix and the mass matrix.

It is of central importance for working with B-spline basis functions that its condition num-
ber is bounded independently of the underlying knot sequence. That is, the condition num-
ber of B-splines does not depend on the multiplicity of the knots of knot vector. This fact was
proved by de Boor in 1968 for the sup-norm and in 1973 for any Ls-norm, see [42–44, 47].
In [43] he gave the direct estimate that the worst condition number of a B-spline of degree
p with respect to s-norm is bounded above by p9p, and conjectured that the real value of κ
grows like 2p, which is seen far better than the direct estimate:

κ < p9p (direct estimate), (3.3a)
κ ∼ 2p (conjecture). (3.3b)

1Note that we use the subscript ‘s’ to represent the norm in Ls-space because we reserve ‘p’ to represent
the degree of the spline basis functions.
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In [46], de Boor discussed that the exact condition number of B-spline basis may be hard to
determine. Scherer and Shadrin proved that the upper bound of the condition number of a
B-spline of degree p with respect to s-norm is bounded by p

1
2 4p, see [92], i.e.

κ < p
1
2 4p. (3.4)

This improves de Boor’s estimate κ < p9p and stands closer to his conjecture that κ ∼ 2p.
Later, in [93], Scherer and Shadrin proved the following result.

Lemma 3.2. For all p and all s ∈ [1,∞],

κ < p2p. (3.5)

The above lemma confirms the de Boor’s conjecture up to a polynomial factor. Further
possible approaches by which the polynomial factor could be removed are also discussed
in [93].

The above one-dimensional B-spline condition number can be easily generalized to d-
dimensions. For the tensor product B-spline basis of degree p in d-dimensions, using (3.5)
one obtains the condition number estimate as follows

κ < (p2p)d. (3.6)

3.2 Condition Number Estimates
This section is devoted to the estimates for the condition number of the stiffness matrix
and the mass matrix obtained from isogeometric discretization. We study the condition
number of the stiffness matrix and the mass matrix with respect to h-refinement and p-
refinement. For h-refinement, upper and lower bounds for the extremal eigenvalues and the
condition number are given, whereas for p-refinement we prove upper and lower bounds
for the maximum eigenvalue, lower bounds for the minimum eigenvalue, and upper bounds
for the condition number. The constant C will be used often in this section for the generic
constant that may take different values at different occasions, and is independent of h and p
in the analysis with respect to h-refinement and p-refinement, respectively.

3.2.1 Stiffness Matrix
h-refinement

For simplicity, we begin with a two-dimensional domain. Let Ω := (0, 1)2 be an open
parametric domain which we will refer as a patch. Assume that two open knot vectors
Ξ1 := {0 = ξ1, ξ2, ξ3, . . . , ξm1 = 1} and Ξ2 := {0 = η1, η2, η3, . . . , ηm2 = 1} are given.
Associated with Ξ1 and Ξ2, we partition the patch Ω in to a mesh

Qh := {Q = (ξi, ξi+1)⊗(ηj, ηj+1), i = p1+1, 2, . . . ,m1−p1−1, j = p2+1, 2, . . . ,m2−p2−1},



CHAPTER 3. CONDITION NUMBER ESTIMATES IN IGA 28

where Q is a two-dimensional open knot-span whose diameter is denoted by hQ. We con-
sider a family of quasi-uniform meshes {Qh}h on Ω, where h = max{hQ|Q ∈ Qh} denotes
the family index, see [14]. Furthermore, let Sh denote the B-spline space associated with
the mesh Qh. Given two adjacent elements Q1 and Q2, by mQ1Q2 we denote the number of
continuous derivatives across their common face ∂Q1 ∩ ∂Q2. In the analysis, we will use
the following Sobolev space of order m ∈ N

Hm(Ω) :=
{
v ∈ L2(Ω) such that v|Q ∈ Hm(Q),∀Q ∈ Qh, and (3.7)

∇i(v|Q1) = ∇i(v|Q2) on ∂Q1 ∩ ∂Q2,

∀i ∈ N with 0 ≤ i ≤ min{mQ1Q2 ,m− 1}, ∀Q1, Q2 with ∂Q1 ∩ ∂Q2 6= ∅
}
,

where∇i has the usual meaning of ith-order partial derivative, and Hm is the usual Sobolev
space of order m. The spaceHm is equipped with the following semi-norms and norm

|v|2Hi(Ω) :=
∑
Q∈Qh

|v|2Hi(Q), 0 ≤ i ≤ m, ‖v‖2
Hm(Ω) :=

m∑
i=0

|v|2Hi(Ω).

On a regular mesh of size h, the condition number of the finite element equations for a
second-order elliptic boundary value problem can be obtained using inverse estimates, see
the classical texts e.g. [5, 29, 33, 37]. Therefore, similar inverse estimates are of interest in
isogeometric framework using NURBS basis functions. To keep this chapter self-contained,
we recall some results from [14, 94].

Theorem 3.3. Let Sh be the spline space consisting of piecewise polynomials of degree p
associated with uniform partitions. Then there exists a constant C = C(shape), such that
for all 0 ≤ l ≤ m,

‖v‖Hm(Ω) ≤ Chl−m‖v‖Hl(Ω), ∀v ∈ Sh. (3.8)

The proof of the above theorem, for a particular case m = 2 and l = 1, is given in [14].
More general inverse inequalities can be easily derived following the same approach. By
taking m = 1 and l = 0, the following can be easily derived from (3.8)

a(v, v) =

∫
Ω

|∇v|2 ≤ Ch−2‖v‖2. (3.9)

Under suitable conditions, the condition number related to elliptic problems in finite element
analysis scales as h−2, see e.g. [51,69,95]. We prove the similar result for the stiffness matrix
arising in isogeometric discretization. To prove that we first shall prove the following result.

Lemma 3.4. There exist constants C1 and C2 independent of h (but may depend on p), such

that for all v =

nh∑
i=1

viNi ∈ Sh, we have

C1h
2‖{vi}‖2 ≤

∥∥∥ nh∑
i=1

viNi

∥∥∥2

≤ C2h
2‖{vi}‖2. (3.10)
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Proof. We only consider the non-trivial case, i.e. there exists some i for which vi 6= 0.
For any Q ∈ Qh, there are (p + 1)2 basis functions with non-zero support. Let IQh ≡
{iQ1 , i

Q
2 , . . . , i

Q
p+1} × {j

Q
1 , j

Q
2 , . . . , j

Q
p+1} ⊂ {1, 2, . . . , nh} denote the index set for the basis

functions which have non-zero support in Q. Also, let v̄q = max
i∈IQh
|vi| and v̄ = max

i=1,2,...,nh
|vi|.

Now using positivity and partition of unity properties of basis functions, the right hand side
inequality can be proved as follows:

‖v‖2 =
∑
Q∈Qh

∫
Q

v2 =
∑
Q∈Qh

∫
Q

(∑
i∈IQh

viNi

)2

≤
∑
Q∈Qh

∫
Q

(
v̄q
∑
i∈IQh

Ni

)2

=
∑
Q∈Qh

∫
Q

v̄2
q ≤

∑
Q∈Qh

h2
Qv̄

2
q ≤

∑
Q∈Qh

h2
Q

∑
i∈IQh

v2
i

≤h2
∑
Q∈Qh

∑
i∈IQh

v2
i ≤ C2h

2

nh∑
i=1

v2
i = C2h

2‖{vi}‖2.

For the left hand side inequality, we have

h2‖{vi}‖2 =h2

nh∑
i=1

v2
i ≤ h2

nh∑
i=1

v̄2 = h2nhv̄
2 ≤ h2

(
C

h

)2

v̄2 = C2v̄2

=C2‖{vi}‖2
L∞ ≤ C2K2

1‖v‖2
L∞

(
using (3.2), K−1

1 ‖{vi}‖L∞ ≤
∥∥∑ viNi

∥∥
L∞

)
≤C2K2

1‖v‖2.

The result then follows by taking C1 =

(
1

C2K2
1

)
.

We now turn to the problem of obtaining bounds on the extremal eigenvalues and the condi-
tion number. The main result concerning the condition number of the stiffness matrix is the
following.

Theorem 3.5. Let A be the stiffness matrix, i.e. A = (aij), where aij = a(Ni, Nj) =∫
Ω

∇Ni · ∇Nj , then the bounds on λmax and λmin are given by

k1 ≤ λmax ≤ k2, and k3h
2 ≤ λmin ≤ k4h

2,

where k1, k2, k3 and k4 are constants independent of h. Furthermore, the bounds on κ(A)
are given by

c1h
−2 ≤ κ(A) ≤ c2h

−2,

where c1 and c2 are constants independent of h.



CHAPTER 3. CONDITION NUMBER ESTIMATES IN IGA 30

Proof. Let v =

nh∑
i=1

viNi. Then a(v, v) = {vi} · A{vi}, where {vi} = {v1, v2, ..., vnh}.

Using inverse estimate (3.9) we get

{vi} · A{vi}
‖{vi}‖2

=
a(v, v)

‖{vi}‖2
≤ Ch−2‖v‖2

‖{vi}‖2
=: G.

Let G be the supremum of
{vi} · A{vi}
‖{vi}‖2

. Using (3.10) we can get the following upper and

lower bounds on G

G =
Ch−2‖v‖2

‖{vi}‖2
≥ Ch−2C1h

2‖{vi}‖2

‖{vi}‖2
= CC1 = k1

⇒ sup sup
{vi} · A{vi}
‖{vi}‖2

= k1,

and

G =
Ch−2‖v‖2

‖{vi}‖2
≤ Ch−2C2h

2‖{vi}‖2

‖{vi}‖2
= CC2 = k2

⇒ inf sup
{vi} · A{vi}
‖{vi}‖2

= k2.

Therefore

k1 ≤ sup
v 6=0

{vi} · A{vi}
‖{vi}‖2

≤ k2,

which implies
k1 ≤ λmax ≤ k2. (3.11)

On the other hand, for the bounds on λmin, by using coercivity of bilinear form a(v, v) we
get

{vi} · A{vi}
‖{vi}‖2

=
a(v, v)

‖{vi}‖2
≥
α‖v‖2

H1

‖{vi}‖2
≥ α‖v‖2

‖{vi}‖2
=: G.

Assume G is the infimum of
{vi} · A{vi}
‖{vi}‖2

. Using again (3.10), we get

G =
α1‖v‖2

‖{vi}‖2
≥ α1C1h

2‖{vi}‖2

‖{vi}‖2
= α1C1h

2 = k3h
2

⇒ sup inf
{vi} · A{vi}
‖{vi}‖2

= k3h
2,

and

G =
α1‖v‖2

‖{vi}‖2
≤ α1C2h

2‖{vi}‖2

‖{vi}‖2
= α1C2h

2 = k4h
2

⇒ inf inf
{vi} · A{vi}
‖{vi}‖2

= k4h
2,

which implies
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k3h
2 ≤ inf

v 6=0

{vi} · A{vi}
‖{vi}‖2

≤ k4h
2.

Therefore, we have
k3h

2 ≤ λmin ≤ k4h
2. (3.12)

The condition number of the stiffness matrix is given by

κ(A) =
λmax

λmin
,where λmax = max

v 6=0

{vi} · A{vi}
‖{vi}‖2

, and λmin = min
v 6=0

{vi} · A{vi}
‖{vi}‖2

.

From (3.11) and (3.12), we get

c1h
−2 ≤ κ(A) ≤ c2h

−2, (3.13)

which concludes the proof.

Table 3.1: λmax and λmin for κ(A)
HH

HHHH

1/h
2 4 8 16 32 64

p = 2
λmax 2.1726 2.5607 2.6436 2.6612 2.6653 2.6663

C0 λmin 0.2929 0.2008 0.0726 0.0190 0.0048 0.0012
λmax 1.4222 1.4238 1.4896 1.4951 1.4991 1.4997

C1 λmin 0.3556 0.3556 0.2855 0.0756 0.0192 0.0048
p = 3

λmax 2.1297 2.2415 2.2844 2.2961 2.2992 2.2999
C0 λmin 0.0284 0.0210 0.0190 0.0085 0.0021 0.0005

λmax 0.8962 1.1705 1.1910 1.2078 1.2129 1.2142
C1 λmin 0.0386 0.0386 0.0386 0.0191 0.0048 0.0012

λmax 1.0384 1.3698 1.5247 1.5627 1.5720 1.5743
C2 λmin 0.0336 0.0464 0.0522 0.0547 0.0191 0.0048

p = 4
λmax 2.1002 2.1105 2.1174 2.1195 2.1200 2.1202

C0 λmin 0.0024 0.0019 0.0018 0.0017 0.0012 0.0003
λmax 0.8752 1.0840 1.1452 1.1606 1.1644 1.1654

C1 λmin 0.0030 0.0030 0.0030 0.0030 0.0021 0.0005
λmax 0.6780 0.9178 0.9847 1.0059 1.0118 1.0133

C2 λmin 0.0040 0.0048 0.0051 0.0052 0.0047 0.0012
λmax 0.9369 1.3334 1.7182 1.8111 1.8311 1.8357

C3 λmin 0.0028 0.0050 0.0072 0.0081 0.0085 0.0048

In Table 3.1 the extremal eigenvalues of the stiffness matrix, using basis functions with
continuity from C0 to Cp−1, are given. The extremal eigenvalues support the theoretical es-
timates given above, i.e. the maximum eigenvalues are independent of h, and the minimum
eigenvalues asymptotically scale as h−2.
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p-refinement

In this section we estimate the upper bound for the condition number as a function of p.
Without loss of generality, we assume a single element mesh, i.e., Q = Ω = (0, 1)2. We
denote Sp the tensor product space of spline functions of degree p. Next we provide some
basic technical lemmas which will be needed later on. The following lemma is well known
generalization of a theorem of Markov by Hill, Szechuan and Tamarkin, see [25, 86].

Lemma 3.6 (Schmidt’s inequality). There exists a constant C (independent of p) such that
for any polynomial f(x) of degree p we have∫ 1

−1

(f ′(x))2dx ≤ Cp4

∫ 1

−1

(f(x))2dx. (3.14)

No such constant C exists so that (3.14) holds for all f(x) with the exponent smaller than 4.

Let I = (−1, 1). Then using (3.14), we have∫
I

(
dNp(ξ)

dξ

)2

dξ ≤ Cp4

∫
I

(Np(ξ))
2dξ. (3.15)

Now using (3.15), we get the following∫
Ω

∇Np(ξ, η) · ∇Np(ξ, η)dξdη =

∫
I

∫
I

[(
∂Np(ξ, η)

∂ξ

)2

+

(
∂Np(ξ, η)

∂η

)2
]
dξdη

≤ Cp4

∫
Ω

(Np(ξ, η))2dξdη.

(3.16)

Moreover, the following estimate directly follows from Schmidt’s inequality and (3.16)

a(v, v) =

∫
Ω

|∇v|2 ≤ Cp4‖v‖2. (3.17)

From this we can have a similar result like in Lemma 3.4 for the p-refinement.

Lemma 3.7. There exist constants C1 and C2 (independent of p), such that for all

v =

np∑
i=1

viNi ∈ Sp, we have

C1

(p24p)2
‖{vi}‖2 ≤

∥∥∥ np∑
i=1

viNi

∥∥∥2

≤ C2‖{vi}‖2, (3.18)

Proof. From the stability of B-splines there exists a constant γ, which depends on the degree
p, such that ∥∥∥ np∑

i=1

viNi

∥∥∥ ≤ ‖{vi}‖ ≤ γ
∥∥∥ np∑
i=1

viNi

∥∥∥, (3.19)

where γ = p24p, following (3.6). In the estimate (3.18) the right hand side inequality
follows easily from nonnegativity and partition of unity properties of basis functions, and
the left hand side inequality follows from (3.19).
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Now we prove the following result, analogous to Theorem 3.5, for the p-refinement of iso-
geometric discretization.

Theorem 3.8. Let {Ni} be a set of basis function of Sp on a unit square. Then the following
upper bound on κ(A) holds

κ(A) ≤ Cp816p.

Proof. We prove this theorem following the same approach as for the h-refinement esti-

mates. Let v =

np∑
i=1

viNi, where {vi} = {v1, v2, ..., vnp}. Now using (3.17) and (3.18), we

get

{vi} · A{vi}
‖{vi}‖2

=
a(v, v)

‖{vi}‖2
≤ Cp4‖v‖2

‖{vi}‖2
≤ Cp4C2‖{vi}‖2

‖{vi}‖2
= CC2p

4 = Cp4,

which implies that

λmax = max
v 6=0

{vi} · A{vi}
‖{vi}‖2

≤ Cp4. (3.20)

To prove the lower bound for λmin we use (3.18) and coercivity of bilinear form,

{vi} · A{vi}
‖{vi}‖2

=
a(v, v)

‖{vi}‖2
≥
α‖v‖2

H1

‖{vi}‖2
≥ α‖v‖2

‖{vi}‖2

≥
α

C1

(p24p)2
‖{vi}‖2

‖{vi}‖2
=

αC1

(p24p)2
=

C

(p416p)
,

which implies that

λmin = min
v 6=0

{vi} · A{vi}
‖{vi}‖2

≥ C

(p416p)
. (3.21)

From (3.20) and (3.21), we get the desired result, i.e.

κ(A) =
λmax

λmin
≤ Cp4(

C

(p416p)

) ≤ C(p816p).

Remark 3.9. The above result can be easily generalized for higher dimensions.The bound
for condition number of the stiffness matrix for d-dimensional problem is given by (p4+2d4pd).

In the above theorem we proved upper bound on the maximum eigenvalue of the stiffness
matrix using B-spline basis functions, which is independent of the choice of the basis func-
tions (holds for all kind of basis functions irrespective to their nature). However, from
numerical experiments using B-spline basis functions, we observe that λmax is uniformly
bounded and is independent of p. This motivates us for further investigations.
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The lower bound on the minimum eigenvalues depends on the stability of the B-spline basis
functions, which cannot be improved further (specially beyond the de Boor’s conjecture).
On the other hand the upper bound on the maximum eigenvalue directly depends on the
upper bound of bilinear form a(v, v). Therefore, we shall improve the bound for a(v, v)
given in (3.17). From the derivative of a B-spline basis function given in (2.8) we can obtain
a new upper bound on the maximum eigenvalue of the stiffness matrix, which is given in the
following lemma.

Lemma 3.10. There exists a constant C independent of p, such that for all v =

np∑
i=1

viNi ∈

Sp, we have

a(v, v) =

∫
Ω

|∇v|2 ≤ Cp2. (3.22)

Proof. From the derivative of a B-spline basis function given in (2.8), we have

d

dξ
Np
i (ξ) =

p

ξi+p − ξi
Np−1
i (ξ)− p

ξi+p+1 − ξi+1

Np−1
i+1 (ξ). (3.23)

Without loss of generality, we consider single element mesh where we have ξi+p − ξi =
ξi+p+1 − ξi+1 = 1. Then (3.23) gives

d

dξ
Np
i (ξ) = p

(
Np−1
i (ξ)−Np−1

i+1 (ξ)
)

⇒
(
d

dξ
Np
i (ξ)

)2

= p2
(
Np−1
i (ξ)−Np−1

i+1 (ξ)
)2

≤ p2
((
Np−1
i (ξ)

)2
+
(
Np−1
i+1 (ξ)

)2
)
.

Integrating over unit interval I , we get∫
I

(
d

dξ
Np
i (ξ)

)2

dξ ≤ p2

(∫
I

(
Np−1
i (ξ)

)2
dξ +

∫
I

(
Np−1
i+1 (ξ)

)2
dξ

)
≤ p2

(
‖Np−1

i (ξ)‖2 + ‖Np−1
i+1 (ξ)‖2

)
≤ Cp2.

(3.24)

Now using above we get∫
Ω

∇Np
i (ξ, η) · ∇Np

i (ξ, η)dξdη =

∫
I

∫
I

[(
∂Np

i (ξ, η)

∂ξ

)2

+

(
∂Np

i (ξ, η)

∂η

)2
]
dξdη

≤ Cp2,

which concludes the proof.

However, this bound is still not independent of p. To further improve this bound, we proceed
as follows.
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On a unit length interval, the B-spline basis functions of degree p in variable ξ are given by

Np
i,ξ = (−1)i

(
p

i

)
(ξ − 1)p−iξi, i = 0, 1, 2, ..., p.

Similarly in variable η, we have

Np
j,η = (−1)j

(
p

j

)
(η − 1)p−jηj, j = 0, 1, 2, ..., p.

B-spline basis functions in two variables on a unit square element is simply given by the
tensor product:

Np,p
i,j,ξ,η = (−1)i+j

(
p

i

)(
p

j

)
ξiηj(ξ − 1)p−i(η − 1)p−j, i, j = 0, 1, 2, ..., p.

We prove the following lemma for the diagonal entries of the stiffness matrix.

Lemma 3.11. There exists a constant C independent of p, such that

(A(i,j),(i,j)) = a(Np,p
i,j,ξ,η, N

p,p
i,j,ξ,η) =

∫ 1

0

∫ 1

0

∇Np,p
i,j,ξ,η · ∇N

p,p
i,j,ξ,ηdξdη ≤ C. (3.25)

Proof. For all i, j = 0, 1, 2, ..., p we have

a(Np,p
i,j,ξ,η, N

p,p
i,j,ξ,η) =

∫ 1

0

∫ 1

0

∇Np,p
i,j,ξ,η · ∇N

p,p
i,j,ξ,ηdξdη

=

∫ 1

0

∫ 1

0

{(
∂

∂ξ
Np,p
i,j,ξ,η

)2

+

(
∂

∂η
Np,p
i,j,ξ,η

)2
}
dξdη

=

∫ 1

0

∫ 1

0

[{
∂

∂ξ

(
(−1)i+j

(
p

i

)(
p

j

)
ξiηj(ξ − 1)p−i(η − 1)p−j

)}2

+

{
∂

∂η

(
(−1)i+j

(
p

i

)(
p

j

)
ξiηj(ξ − 1)p−i(η − 1)p−j

)}2
]
dξdη

=

∫ 1

0

∫ 1

0

[{(
p

i

)(
p

j

)
ηj(η − 1)p−j

∂

∂ξ

(
ξi(ξ − 1)p−i

)}2

+

{(
p

i

)(
p

j

)
ξi(ξ − 1)p−i

∂

∂η

(
ηj(η − 1)p−j

)}2
]
dξdη

=

∫ 1

0

∫ 1

0

[{(
p

i

)(
p

j

)
ηj(η − 1)p−j

(
iξi−1(ξ − 1)p−i + (p− i)ξi(ξ − 1)p−i−1

)}2

+

{(
p

i

)(
p

j

)
ξi(ξ − 1)p−i

(
jηj−1(η − 1)p−j + (p− j)ηj(η − 1)p−j−1

)}2
]
dξdη

= I + II,
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where

I =

(
p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

{
iξi−1ηj(ξ − 1)p−i(η − 1)p−j+

(p− i)ξiηj(ξ − 1)p−i−1(η − 1)p−j
}2
dξdη,

II =

(
p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

{
jξiηj−1(ξ − 1)p−i(η − 1)p−j+

(p− j)ξiηj(ξ − 1)p−i(η − 1)p−j−1
}2
dξdη.

Now,

I =

(
p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

{
iξi−1ηj(ξ − 1)p−i(η − 1)p−j+

(p− i)ξiηj(ξ − 1)p−i−1(η − 1)p−j
}2
dξdη

=

(
p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

(
i2ξ2(i−1)η2j(ξ − 1)2(p−i)(η − 1)2(p−j)) dξdη+(

p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

(
(p− i)2ξ2iη2j(ξ − 1)2(p−i−1)(η − 1)2(p−j)) dξdη+(

p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

(
2i(p− i)ξ2i−1η2j(ξ − 1)2p−2i−1(η − 1)2(p−j)) dξdη

= I1 + I2 + I3,

where

I1 =

(
p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

(
i2ξ2(i−1)η2j(ξ − 1)2(p−i)(η − 1)2(p−j)) dξdη

=

(
p

i

)2(
p

j

)2

i2
(∫ 1

0

(
ξ2(i−1)(ξ − 1)2(p−i)) dξ)︸ ︷︷ ︸

=: I11

(∫ 1

0

(
η2j(η − 1)2(p−j)) dη)︸ ︷︷ ︸

=: I12

=

(
p

i

)2(
p

j

)2

i2I11I12,

I2 =

(
p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

(
(p− i)2ξ2iη2j(ξ − 1)2(p−i−1)(η − 1)2(p−j)) dξdη

=

(
p

i

)2(
p

j

)2

(p− i)2

(∫ 1

0

(
ξ2i(ξ − 1)2(p−i−1)

)
dξ

)
︸ ︷︷ ︸

=: I21

(∫ 1

0

(
η2j(η − 1)2(p−j)) dη)︸ ︷︷ ︸

=: I22

=

(
p

i

)2(
p

j

)2

(p− i)2I21I22,
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and

I3 =

(
p

i

)2(
p

j

)2 ∫ 1

0

∫ 1

0

(
2i(p− i)ξ2i−1η2j(ξ − 1)2p−2i−1(η − 1)2(p−j)) dξdη

=

(
p

i

)2(
p

j

)2

2i(p− i)
(∫ 1

0

(
ξ2i−1(ξ − 1)2p−2i−1

)
dξ

)
︸ ︷︷ ︸

=: I31

(∫ 1

0

(
η2j(η − 1)2(p−j)) dη)︸ ︷︷ ︸

=: I32

=

(
p

i

)2(
p

j

)2

2i(p− i)I31I32.

We now compute the above integrals.
Case I1: Clearly, for i = 0, I1 = 0 and for i = 1, 2, 3, ..., p,

I11 =

∫ 1

0

(
ξ2(i−1)(ξ − 1)2(p−i)) dξ = (−1)2(p−i)

∫ 1

0

ξ(2i−1)−1(1− ξ)(2p−2i+1)−1dξ.

Using the integration formula for beta function, i.e.
∫ 1

0

tn−1(1− t)m−1dt =
Γ(n)Γ(m)

Γ(n+m)
, we

get

I11 =
Γ(2i− 1)Γ(2p− 2i+ 1)

Γ(2p)
=

(2i− 2)!(2p− 2i)!

(2p− 1)!
=

(2i)!(2p− 2i)!

(2p− 1)!(4i2 − 2i)
,

I12 =

∫ 1

0

(
η2j(η − 1)2(p−j)) dη = (−1)2(p−j)

∫ 1

0

η(2j+1)−1(1− η)(2p−2j+1)−1dη

=
Γ(2j + 1)Γ(2p− 2j + 1)

Γ(2p+ 2)
=

(2j)!(2p− 2j)!

(2p+ 1)!
,

which implies

I1 =

(
p

i

)2(
p

j

)2

i2
(2i)!(2p− 2i)!

(2p− 1)!(4i2 − 2i)

(2j)!(2p− 2j)!

(2p+ 1)!

≤ 1

2

(
p

i

)2(
p

j

)2
(2i)!(2p− 2i)!

(2p− 1)!

(2j)!(2p− 2j)!

(2p+ 1)!

(
since

i2

4i2 − 2i
≤ 1

2

)
.

Case I2: For i = p, we get I2 = 0 and for i = 0, 1, 2, ..., (p− 1),

I21 =

∫ 1

0

(
ξ2i(ξ − 1)2(p−i−1)

)
dξ = (−1)2(p−i−1)

∫ 1

0

ξ(2i+1)−1(1− ξ)(2p−2i−1)−1dξ

=
Γ(2i+ 1)Γ(2p− 2i− 1)

Γ(2p)
=

(2i)!(2p− 2i− 2)!

(2p− 1)!
=

(2i)!(2p− 2i)!

(2p− 1)!(4(p− i)2 − 2(p− i))
,

I22 = I12 =
(2j)!(2p− 2j)!

(2p+ 1)!
.



CHAPTER 3. CONDITION NUMBER ESTIMATES IN IGA 38

Therefore, we get

I2 =

(
p

i

)2(
p

j

)2

(p− i)2 (2i)!(2p− 2i)!

(2p− 1)!(4(p− i)2 − 2(p− i))
(2j)!(2p− 2j)!

(2p+ 1)!

≤ 1

2

(
p

i

)2(
p

j

)2
(2i)!(2p− 2i)!

(2p− 1)!

(2j)!(2p− 2j)!

(2p+ 1)!

(
since

(p− i)2

4(p− i)2 − 2(p− i)
≤ 1

2

)
.

Case I3: Clearly, I3 = 0 for i = 0 and i = p, and for i = 1, 2, 3, ..., (p− 1),

I31 =

∫ 1

0

(
ξ2i−1(ξ − 1)2p−2i−1

)
dξ = (−1)2(p−i)−1

∫ 1

0

ξ(2i)−1(ξ − 1)(2p−2i)−1dξ

= −Γ(2i)Γ(2p− 2i)

Γ(2p)
= −(2i− 1)!(2p− 2i− 1)!

(2p− 1)!
= − (2i)!(2p− 2i)!

(2p− 1)!(4i(p− i))
,

I32 = I12 =
(2j)!(2p− 2j)!

(2p+ 1)!
,

which implies

I3 = −
(
p

i

)2(
p

j

)2

2i(p− i) (2i)!(2p− 2i)!

(2p− 1)!(4i(p− i))
(2j)!(2p− 2j)!

(2p+ 1)!

= −1

2

(
p

i

)2(
p

j

)2
(2i)!(2p− 2i)!

(2p− 1)!

(2j)!(2p− 2j)!

(2p+ 1)!
.

Now, for all i = 0, 1, 2, ..., p,

I = I1 + I2 + I3

=


I2, if i = 0,

I1 + I2 + I3, if i = 1, 2, ..., p− 1,

I1, if i = p,

≤ 1

2

(
p

i

)2(
p

j

)2
(2i)!(2p− 2i)!

(2p− 1)!

(2j)!(2p− 2j)!

(2p+ 1)!

=

{(
p

i

)2
(2i)!(2p− 2i)!

(2p− 1)!

}{(
p

j

)2
(2j)!(2p− 2j)!

(2p+ 1)!

}

=
(2p)

(2p+ 1)

{(
p

i

)2
(2i)!(2p− 2i)!

(2p)!

}{(
p

j

)2
(2j)!(2p− 2j)!

(2p)!

}

≤

{(
p

i

)2
(2i)!(2p− 2i)!

(2p)!

}{(
p

j

)2
(2j)!(2p− 2j)!

(2p)!

}
= IaIb, where

Ia =

(
p

i

)2
(2i)!(2p− 2i)!

(2p)!
=

p!p!

i!i!(p− i)!(p− i)!
(2i)!(2p− 2i)!

(2p)!
,

Ib =

(
p

j

)2
(2j)!(2p− 2j)!

(2p)!
=

p!p!

j!j!(p− j)!(p− j)!
(2j)!(2p− 2j)!

(2p)!
.



CHAPTER 3. CONDITION NUMBER ESTIMATES IN IGA 39

Now, we seek the upper bound for Ia. We prove that Ia ≤ C by induction on p, where C is
a constant independent of p. For p = 1, we have Ia = 1 for all i = 0, 1, i.e. the result holds
for the base case. Assume that the result holds for p = m and for all i = 0, 1, 2, ...,m, i.e.

m!m!

i!i!(m− i)!(m− i)!
(2i)!(2m− 2i)!

(2m)!
≤ C. (3.26)

Now we shall show that the result holds for p = m+ 1 and for all i = 0, 1, 2, ...,m+ 1. We
have

(m+ 1)!(m+ 1)!

i!i!(m+ 1− i)!(m+ 1− i)!
(2i)!(2(m+ 1)− 2i)!

(2(m+ 1))!

=


(m+ 1)m!(m+ 1)m!

i!i!(m+ 1− i)(m− i)!(m+ 1− i)(m− i)!
(2i)!(2(m− i+ 1))(2(m− i) + 1)(2m− 2i)!

(2(m+ 1))(2m+ 1)(2m)!
,

if i = 0, 1, 2, ...,m,
(m+ 1)!(m+ 1)!

(m+ 1)!(m+ 1)!(0)!(0)!

(2(m+ 1))!(0)!

(2(m+ 1))!
, if i = m+ 1,

=


(
m2 + 2m+ 1

4m2 + 6m+ 2

)(
4(m− i)2 + 6(m− i) + 2

(m− i)2 + 2(m− i) + 1

){
m!m!

i!i!(m− i)!(m− i)!
(2i)!(2m− 2i)!

(2m)!

}
,

if i = 0, 1, 2, ...,m,

1, if i = m+ 1.

Using (3.26) and since
(
m2 + 2m+ 1

4m2 + 6m+ 2

)(
4(m− i)2 + 6(m− i) + 2

(m− i)2 + 2(m− i) + 1

)
≤ 1, we get for

all i = 0, 1, 2, ...,m+ 1,

(m+ 1)!(m+ 1)!

i!i!(m+ 1− i)!(m+ 1− i)!
(2i)!(2(m+ 1)− 2i)!

(2(m+ 1))!
≤ C.

We now have Ia ≤ C, where C is a constant independent of p. Similarly we can obtain that
Ib ≤ C. Therefore,

I = IaIb ≤ C.

Proceeding in the same way for II , we can prove that

II ≤ C.

Therefore,
a(Np,p

i,j,ξ,η, N
p,p
i,j,ξ,η) = I + II ≤ C,

which concludes the proof.

Thus, we have proved that a(Np,p
i,j,ξ,η, N

p,p
i,j,ξ,η) is bounded by a constant independent of p.

Since the upper bound of the diagonal entries is the upper bound of all the entries of the
stiffness matrix, the maximum entry of the stiffness matrix is bounded by a constant inde-
pendent of p, i.e.

a(Np,q
i,j,ξ,η, N

p,q
k,l,ξ,η) ≤ C. (3.27)
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Similarly, we can prove for three dimensional problem that

a(Np,q,r
i,j,k,ξ,η,ζ , N

p,q,r
l,m,n,ξ,η,ζ) ≤ C. (3.28)

Using (3.27) and (3.28) we can give the following result.

Lemma 3.12. The maximum eigenvalue of the stiffness matrix A can be bounded below by
a constant C (independent of p), i.e.

λmax(A) ≥ C.

Proof. We prove this by using the basics of matrix norms. The max-norm of a matrix is the
element-wise norm defined by

‖A‖max = max{|aij|}.

From (3.25), we have
max{|aij|} = C,

where C is independent of p. By the equivalence of norms we have

‖A‖2 ≥ ‖A‖max = C,

which implies
λmax(A) ≥ C.

To bound λmax from above we bound the spectral norm by the `1-norm in the following
lemma.

Lemma 3.13. For any fixed k and l such that 0 ≤ k, l ≤ p and for any 0 ≤ i, j ≤ p we have

p∑
i=0

p∑
j=0

∣∣a(Np,p
k,l,ξ,η, N

p,p
i,j,ξ,η)

∣∣ < C,

where C is a constant independent of p.

Proof. We have
Np,p

0,0,ξ,η = (1− ξ)p(1− η)p.

We first prove the bound for the absolute rowsum for the first row, i.e.

p∑
i=0

p∑
j=0

∣∣a(Np,p
0,0,ξ,η, N

p,p
i,j,ξ,η)

∣∣ < C,
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where C is a constant independent of p. We have

a(Np,p
0,0,ξ,η, N

p,p
i,j,ξ,η)

=

∫ 1

0

∫ 1

0

∇Np,p
0,0,ξ,η · ∇N

p,p
i,j,ξ,ηdξdη

=

∫ 1

0

∫ 1

0

{(
∂

∂ξ
Np,p

0,0,ξ,η

∂

∂ξ
Np,p
i,j,ξ,η

)
+

(
∂

∂η
Np,p

0,0,ξ,η

∂

∂η
Np,p
i,j,ξ,η

)}
dξdη

=

∫ 1

0

∫ 1

0

(
∂

∂ξ
Np,p

0,0,ξ,η

∂

∂ξ
Np,p
i,j,ξ,η

)
dξdη +

∫ 1

0

∫ 1

0

(
∂

∂η
Np,p

0,0,ξ,η

∂

∂η
Np,p
i,j,ξ,η

)
dξdη

= I + II,

where

I =

∫ 1

0

∫ 1

0

(
∂

∂ξ
Np,p

0,0,ξ,η

∂

∂ξ
Np,p
i,j,ξ,η

)
dξdη,

and

II =

∫ 1

0

∫ 1

0

(
∂

∂η
Np,p

0,0,ξ,η

∂

∂η
Np,p
i,j,ξ,η

)
dξdη.

Now

I =

∫ 1

0

∫ 1

0

(
−p(1− ξ)p−1(1− η)p

)
((

p

i

)(
p

j

)
ηj(1− η)p−j

(
iξi−1(1− ξ)p−i − (p− i)ξi(1− ξ)p−i−1

))
dξdη

= −p
(
p

i

)(
p

j

)(∫ 1

0

ηj(1− η)2p−jdη

)
(∫ 1

0

iξi−1(1− ξ)2p−i−1dξ −
∫ 1

0

(p− i)ξi(1− ξ)2p−i−2dξ

)
= −p

(
p

i

)(
p

j

)
(I1) (I2 − I3) ,

where

I1 =

∫ 1

0

ηj(1− η)2p−jdη, I2 =

∫ 1

0

iξi−1(1− ξ)2p−i−1dξ,

and

I3 =

∫ 1

0

(p− i)ξi(1− ξ)2p−i−2dξ.

For i = 0, 1, 2, ..., p we have

I1 =

∫ 1

0

ηj(1− η)2p−jdη =
Γ(j + 1)Γ(2p− j + 1)

Γ(2p+ 2)

=
(j)!(2p− j)!

(2p+ 1)!
=

1

(2p+ 1)

(j)!(2p− j)!
(2p)!

.
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Clearly, I2 = 0 if i = 0. For i = 1, 2, ..., p

I2 =

∫ 1

0

iξi−1(1− ξ)2p−i−1dξ = i
Γ(i)Γ(2p− i)

Γ(2p)

= i
(i− 1)!(2p− i− 1)!

(2p− 1)!
=

2p

(2p− i)
(i)!(2p− i)!

(2p)!
.

For i = p we get I3 = 0 and for i = 0, 1, ..., p− 1

I3 =

∫ 1

0

(p− i)ξi(1− ξ)2p−i−2dξ

= (p− i)Γ(i+ 1)Γ(2p− i− 1)

Γ(2p)

= (p− i)(i)!(2p− i− 2)!

(2p− 1)!
=

(p− i)(2p)
(2p− i)(2p− i− 1)

(i)!(2p− i)!
(2p)!

.

Therefore we have

I =



(
p

j

)
p2

(4p2 − 1)

(j)!(2p− j)!
(2p)!

, if i = 0,

−p
(
p

i

)(
p

j

)
2p

(2p+ 1)

(i)!(2p− i)!
(2p)!

(j)!(2p− j)!
(2p)!

1

(2p− i)

(
1− (p− i)

(2p− i− 1)

)
,

if i = 1, 2, ..., p− 1,

−
(
p

j

)
2p

(2p+ 1)

(p)!(p)!

(2p)!

(j)!(2p− j)!
(2p)!

, if i = p.

Similar expression can be easily obtained for II . We are interested to calculate the sum
p∑
i=0

p∑
j=0

∣∣a(Np,p
0,0,ξ,η, N

p,p
i,j,ξ,η)

∣∣.
For i = 0, we have

p∑
j=0

|I| =
p∑
j=0

(
p

j

)
p2

(4p2 − 1)

(j)!(2p− j)!
(2p)!

<
1

3

p∑
j=0

(
p

j

)
(j)!(2p− j)!

(2p)!

(
since

p2

(4p2 − 1)
≤ 1

3

)

=
1

3

p∑
j=0

(p)!(2p− j)!
(2p)!(p− j)!

<
1

3

(
1 +

1

2
+

1

4
+

1

8
+ ...+

p!p!

(2p)!

)
< 1.

For i = 1, 2, ..., p− 1, we have
p−1∑
i=1

p∑
j=0

|I|

=

p−1∑
i=1

p∑
j=0

(
p

i

)(
p

j

)
2p2

(2p+ 1)

(i)!(2p− i)!
(2p)!

(j)!(2p− j)!
(2p)!

1

(2p− i)

(
1− (p− i)

(2p− i− 1)

)
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<

p−1∑
i=1

p!(2p− i)!
(2p)!(p− i)!

p(p− 1)

(2p− i)(2p− i− 1)

p∑
j=0

p!(2p− j)!
(2p)!(p− j)!

(
since

2p

(2p+ 1)
< 1

)

=

p−1∑
i=1

p!(2p− i)!
(2p)!(p− i)!

p(p− 1)

(2p− i)(2p− i− 1)

(
1 +

1

2
+

1

4
+

1

8
+ ...+

p!p!

(2p)!

)

<

p−1∑
i=1

p!(2p− i)!
(2p)!(p− i)!

2p(p− 1)

(2p− i)(2p− i− 1)

(
since 1 +

1

2
+

1

4
+

1

8
+ ...+

p!p!

(2p)!
< 2

)

=

p−1∑
i=1

p− 1

2p− 1

p!(2p− i− 2)!

(2p− 2)!(p− i)!
<

1

2

p−1∑
i=1

p!(2p− i− 2)!

(2p− 2)!(p− i)!

<
1

2

(
1 +

1

2
+

1

4
+

1

8
+ ...+

p!(p− 1)!

(2p− 2)!

)
< 1.

For i = p, we have

p∑
j=0

|I| =
p∑
j=0

(
p

j

)
2p

(2p+ 1)

(p)!(p)!

(2p)!

(j)!(2p− j)!
(2p)!

<

p∑
j=0

p!p!p!(2p− j)!
(2p)!(2p)!(p− j)!

<

(
1

2
+

1

4
+

1

8
+ ...+

(p!)4

((2p)!)2

)
< 1.

Therefore, we have
p∑
i=0

p∑
j=0

|I| < C, (3.29)

where C is independent of p. Similarly, we can get

p∑
i=0

p∑
j=0

|II| < C. (3.30)

Therefore, from (3.29) and (3.30) we get

p∑
i=0

p∑
j=0

∣∣a(Np,p
0,0,ξ,η, N

p,p
i,j,ξ,η)

∣∣ < C, (3.31)

where C is a constant independent of p.

The above gives us the absolute row-sum for the first row of the stiffness matrix. Since on a
uniform mesh the absolute rowsum for all rows of the stiffness matrix are of the same order
upto a constant, we get the desired result, i.e.

p∑
i=0

p∑
j=0

∣∣a(Np,p
k,l,ξ,η, N

p,p
i,j,ξ,η)

∣∣ < C,

for any fixed k and l such that 0 ≤ k, l ≤ p and for any 0 ≤ i, j ≤ p, where C is a constant
independent of p.
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Similar results can be obtained for higher dimensions. The next lemma, which gives an
upper bound for the maximum eigenvalue, is a direct consequence of the above lemma.

Lemma 3.14. The maximum eigenvalue of the stiffness matrix A can be bounded above by
a constant C, independent of p, i.e.

λmax(A) ≤ C.

Proof. We have
p∑
i=0

p∑
j=0

∣∣a(Np,p
k,l,ξ,η, N

p,p
i,j,ξ,η)

∣∣ < C,

where C is a constant independent of p, which implies ‖A‖1 ≤ C. We use the following
inequality between matrix norms

‖A‖2 ≤
√
‖A‖1‖A‖∞. (3.32)

Since A is symmetric matrix, we have ‖A‖1 = ‖A‖∞, which implies

‖A‖2 ≤ |A‖1 ≤ C.

Therefore,

λmax(A) ≤ C.

From Lemma 3.12 and Lemma 3.14, we have the following result.

Lemma 3.15. λmax(A) = C, where C is a constant independent of p.

Theorem 3.16. For two dimensional problem the improved upper bound for the condition
number of the stiffness matrix A is given as follows

κ(A) ≤ C(p24p)2 = Cp416p. (3.33)

This result can be easily generalized for higher dimensions, the bound for d-dimensional
problem is given as follows

κ(A) ≤ Cp2d4pd. (3.34)

Remark 3.17. We have used the condition number of B-splines κ ∼ p2p in reaching the
above estimates. If we use the de Boor’s conjecture (the condition number of B-splines
κ ∼ 2p) instead, then the upper bound of the stiffness matrix can be further improved and
given by

κ(A) ≤ C4pd. (3.35)
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3.2.2 Mass Matrix
h-refinement

We now estimate the condition number of the mass matrix. Let M be the mass matrix, i.e.
M = (mij), where

mij = (Ni, Nj) =

∫
Ω

NiNj i, j = 1, 2, ..., nh.

The following lemma gives estimates on the maximum and minimum eigenvalues of the
mass matrix with respect to h.

Lemma 3.18. For the extremal eigenvalues of the mass matrix M = (mij) = (Ni, Nj), we
have the following estimates

C1h
2 ≤ λmin ≤ λmax ≤ C2h

2,

where C1, C2 are constants independent of h. Furthermore

c1 ≤ κ(M) ≤ c2,

where c1, c2 are constants independent of h.

Proof. By recalling the result from (3.10), we can bound both the extremal eigenvalues of
the mass matrix. For the minimum eigenvalue, we have

{vi} ·M{vi}
‖{vi}‖2

=
(v, v)

‖{vi}‖2
≥ C1h

2‖{v}‖2

‖{vi}‖2
= C1h

2.

On the other hand, for the maximum eigenvalue we have

{vi} ·M{vi}
‖{vi}‖2

=
(v, v)

‖{vi}‖2
≤ C2h

2‖{v}‖2

‖{vi}‖2
= C2h

2.

Therefore we have
C1h

2 ≤ λmin ≤ λmax ≤ C2h
2,

which implies
c1 ≤ κ(M) ≤ c2.

p-refinement

In this section we estimate the bounds on the extremal eigenvalues and the condition number
of the mass matrices for p-refinement. We first prove the following lemma

Lemma 3.19. The mass matrix is a positive matrix, and all the entries of the mass matrix

are bounded above by
C

(2p+ 1)2
, where C is a constant independent of p.
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Proof. We have

(M(i,j),(k,l)) = (Np,p
i,j,ξ,η, N

p,p
k,l,ξ,η) =

∫ 1

0

∫ 1

0

Np,p
i,j,ξ,η ·N

p,p
k,l,ξ,ηdξdη

=

∫ 1

0

∫ 1

0

(
(−1)i+j

(
p

i

)(
p

j

)
ξiηj(ξ − 1)p−i(η − 1)p−j

)
(

(−1)k+l

(
p

k

)(
p

l

)
ξkηl(ξ − 1)p−k(η − 1)p−l

)
dξdη

=

(
(−1)i+j+k+l

(
p

i

)(
p

j

)(
p

k

)(
p

l

))
∫ 1

0

∫ 1

0

(
ξi+kηj+l(ξ − 1)2p−i−k(η − 1)2p−j−l) dξdη

=

(
(−1)i+j+k+l(−1)2p−i−k(−1)2p−j−l

(
p

i

)(
p

j

)(
p

k

)(
p

l

))
(∫ 1

0

ξi+k(1− ξ)2p−i−kdξdη

)(∫ 1

0

ηj+l(1− η)2p−j−ldξdη

)
=

(
p

i

)(
p

j

)(
p

k

)(
p

l

)(∫ 1

0

ξ(i+k+1)−1(1− ξ)(2p−i−k+1)−1dξdη

)
(∫ 1

0

η(j+l+1)−1(1− η)(2p−j−l+1)−1dξdη

)
= (I) (II) ,

where

I =

(
p

i

)(
p

k

)(∫ 1

0

ξ(i+k+1)−1(1− ξ)(2p−i−k+1)−1dξdη

)
=

(
p

i

)(
p

k

)
Γ(i+ k + 1)Γ(2p− i− k + 1)

Γ(2p+ 2)

=
p!p!

i!k!(p− i)!(p− k)!

(i+ k)!(2p− i− k)!

(2p+ 1)!

=
1

2p+ 1

{
p!p!

i!k!(p− i)!(p− k)!

(i+ k)!(2p− i− k)!

(2p)!

}
︸ ︷︷ ︸

I1

=
1

2p+ 1
I1,

and

II =

(
p

j

)(
p

l

)(∫ 1

0

η(j+l+1)−1(1− η)(2p−j−l+1)−1dξdη

)
=

(
p

j

)(
p

l

)
Γ(j + l + 1)Γ(2p− j − l + 1)

Γ(2p+ 2)

=
p!p!

j!l!(p− j)!(p− l)!
(j + l)!(2p− j − l)!

(2p+ 1)!
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=
1

2p+ 1

{
p!p!

j!l!(p− j)!(p− l)!
(j + l)!(2p− j − l)!

(2p)!

}
︸ ︷︷ ︸

II1

=
1

2p+ 1
II1.

Now, by induction on p, we can easily obtain that (as we proved in Lemma 3.11),

I1 =

{
p!p!

i!k!(p− i)!(p− k)!

(i+ k)!(2p− i− k)!

(2p)!

}
≤ C.

Similarly, II1 ≤ C. Therefore

(M(i,j),(k,l)) ≤
C

(2p+ 1)2
. (3.36)

It is also clear that for all p ≥ 1 and i, k = 0, 1, 2, ..., p, I1 > 0, and II1 > 0. This implies
that the mass matrix (M(i,j),(k,l)) is a positive matrix.

Lemma 3.20. The maximum eigenvalue of the mass matrix M can be bounded below as
follows

λmax(M) ≥ C

(2p+ 1)2
.

Proof. Following the proof of Lemma 3.12 and (3.36), we get the desired result.

To bound λmax from above we bound the spectral norm by the `1-norm of the mass matrix.
In the following lemma we first compute the `1-norm of the mass matrix.

Lemma 3.21. For the mass matrix M on a unit square element, we have

‖M‖1 =
1

(p+ 1)2
.

Proof. We have

‖M‖1 = max
i,j

∑
k,l

∫ 1

0

∫ 1

0

Np,p
i,j,ξ,η ·N

p,p
k,l,ξ,ηdξdη = max

i,j

∑
k,l

(Np,p
i,j,ξ,η, N

p,p
k,l,ξ,η)

= max
i,j

(Np,p
i,j,ξ,η,

∑
k,l

Np,p
k,l,ξ,η) = max

i,j
(Np,p

i,j,ξ,η, 1)
(

since
∑
k,l

Np,p
k,l,ξ,η = 1

)
= max

i,j

∫ 1

0

∫ 1

0

Np,p
i,j,ξ,ηdξdη.

Now, ∫ 1

0

∫ 1

0

Np,p
i,j,ξ,ηdξdη =

∫ 1

0

∫ 1

0

(−1)i+j
(
p

i

)(
p

j

)
ξiηj(ξ − 1)p−i(η − 1)p−jdξdη

=

(
p

i

)(
p

j

)∫ 1

0

∫ 1

0

(−1)i+j+p−i+p−jξiηj(1− ξ)p−i(1− η)p−jdξdη
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=

(
p

i

)(
p

j

)(∫ 1

0

ξ(i+1)−1(1− ξ)(p−i+1)−1dξ

)(∫ 1

0

η(j+1)−1(1− η)(p−j+1)−1dη

)
=

(
p

i

)(
p

j

)(
Γ(i+ 1)Γ(p− i+ 1)

Γ(p+ 2)

)(
Γ(j + 1)Γ(p− j + 1)

Γ(p+ 2)

)
=

p!

i!(p− i)!
p!

j!(p− j)!
i!(p− i)!
(p+ 1)!

j!(p− j)!
(p+ 1)!

=
1

(p+ 1)2
.

The above implies

max
i,j

∫ 1

0

∫ 1

0

Np,p
i,j,ξ,ηdξdη =

1

(p+ 1)2
,

which concludes the proof.

The symmetry of M implies

‖M‖∞ = ‖M‖1 =
1

(p+ 1)2
. (3.37)

Lemma 3.22. The maximum eigenvalue of the mass matrix M can be bounded above as
follows

λmax(M) ≤ 1

(p+ 1)2
.

Proof. Using the inequality (3.32) for matrix norm, Lemma 3.21 and (3.37), we get the
bound on the spectral norm of M

‖M‖2 ≤
1

(p+ 1)2
,

which gives the desired result.

Remark 3.23. In fact, we get λmax(M) =
1

(p+ 1)2
by Lemma 3.19 and by [99, Lemma 2.5].

Lemma 3.24. There exists a constant C, independent of p, such that the minimum eigen-
value of the mass matrix M can be bounded below as follows

λmin(M) ≥ C

p416p
.

Proof. To bound the minimum eigenvalue from below we use the left hand side inequality
of (3.18). We have

{vi} ·M{vi}
‖{vi}‖2

=
(v, v)

‖{vi}‖2
≥

C

p416p
‖{vi}‖2

‖{vi}‖2
=

C

p416p
.

Therefore, λmin(M) ≥ C

p416p
, where C is a constant, independent of p.
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The following theorem gives us the upper bound for the condition number of the mass
matrix.

Theorem 3.25. The condition number of the mass matrix M is bounded above by

κ(M) ≤ Cp216p,

where C is a constant, independent of p.

Proof. From Lemma 3.22 and Lemma 3.24 we have

C

p416p
≤ λmin ≤ λmax ≤

1

(p+ 1)2
,

which gives the desired result.

Remark 3.26. The above bound can be easily generalized for d-dimensional problem, and
is given as follows

κ(M) ≤ p2(d−1)4pd. (3.38)

Furthermore, following Remark 3.17, by using the de Boor’s conjecture, the upper bound
for the condition number of the mass matrix can be further improved and given as follows

κ(M) ≤ p−24pd. (3.39)

Remark 3.27. We have done all the analysis on the parametric domain (0, 1)2. To get
the results for physical domain we can define an invertible NURBS geometrical map from
parametric domain to physical domain, and with suitable transformations we get the results
for physical domain. For details we refer the article by Bazilevs et al. [14].

3.3 Numerical Results
In this section we provide the numerical results. Apart from the h-refinement and the p-
refinement, for which we have established theoretical results, we also provide numerical
results for the r-refinement, where we have a possibility to vary the continuity of the basis
functions from C0 to Cp−1. As we shall see, however, the difference between the condition
numbers for C0 and Cp−1 continuous basis functions is hardly of order p, and the results are
dominated by the exponent term 4pd.

The numerical discretizations are performed using the Matlab toolbox GeoPDEs [48, 49].

3.3.1 h-refinement
For the h-refinement, the condition number of the stiffness matrix is shown in Table 3.2 for
C0 and Cp−1 continuous basis functions. Numerical results are provided from p = 2 to
p = 5. The results show a different behavior than the classical finite element method for
higher p. In classical finite element method, the condition number of the stiffness matrix is
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Table 3.2: Condition number of the stiffness matrix A

HH
HHHHp
h−1

2 4 8 16 32 64

C0 inter element continuity
2 7.41 12.75 36.40 140.00 554.99 2215.03
3 75.11 106.56 120.34 269.99 1075.42 4297.18
4 881.40 1099.74 1189.14 1214.75 1761.85 7041.29
5 11093.95 12951.15 13680.12 13886.00 13939.10 13952.48

Cp−1 inter element continuity
2 4.00 4.00 5.22 19.77 78.14 311.58
3 30.93 29.51 29.19 28.56 82.10 327.21
4 339.92 269.23 240.03 222.55 215.00 381.73
5 4177.20 3220.60 2148.25 1812.58 1700.63 1688.11

of order h−2 even for a coarse mesh-size, but in isogeometric discretizations, for higher p the
condition number does not appear to be of order h−2 for a coarse mesh-size. This is due to
the stability of B-splines. The condition number of B-splines heavily depends on polynomial
degree (as explained in Sec. 3.1), and scales as (p2p)d. This factor (p2p)d dominates the
factor h−2 for coarse meshes. However, the numerical results support the theoretical findings
asymptotically (for reasonably refined meshes) for any polynomial degree.

In Table 3.3, we present the condition number of the mass matrix for C0 and Cp−1 continu-
ous basis functions. We see that the condition number is bounded uniformly by a constant
independent of h, which confirms the theoretical estimates.

Table 3.3: Condition number of the mass matrix M

HHH
HHHp
h−1

2 4 8 16 32

C0 inter element continuity
2 181.43 203.92 208.18 208.50 208.95
3 2295.08 2560.70 2629.67 2641.57 2641.85
4 29390.74 32123.43 32891.28 33071.24 33103.92
5 387089.92 414957.07 422941.81 424969.15 425438.49

Cp−1 inter element continuity
2 89.679 109.68 108.51 109.85 111.29
3 915.558 799.941 737.379 708.010 715.89
4 11773.17 6795.46 5381.96 4762.53 4750.07
5 163371.70 77448.11 42580.04 33560.40 32587.27



CHAPTER 3. CONDITION NUMBER ESTIMATES IN IGA 51

3.3.2 p-refinement
We perform numerical experiments to obtain the maximum and minimum eigenvalues, and
the condition number of the stiffness matrix and the mass matrix. The eigenvalues and the
condition number are obtained on a single unit square element.

In Table 3.4, we present the extremal eigenvalues and the condition number of the stiffness
matrix for p = 2 to p = 15 (for higher p roundoff errors start contaminating the results).

We observe that the maximum eigenvalue scales as a constant independent of p, and the

Table 3.4: λmax, λmin, and κ(A) for p = 2 to p = 15 on one element

p λmax λmin κ(A)
κp(A)

κp−1(A)
2 3.5e-01 3.5e-01 1.0e+00 –
3 4.5e-01 3.8e-02 1.1e+01 11.67
4 4.1e-01 2.9e-03 1.3e+02 11.82
5 3.5e-01 2.1e-04 1.6e+03 11.80
6 3.3e-01 1.5e-05 2.1e+04 13.31
7 3.3e-01 1.1e-06 2.9e+05 13.77
8 3.1e-01 7.8e-08 4.0e+06 13.71
9 3.0e-01 5.4e-09 5.6e+07 13.88

10 3.0e-01 3.7e-10 8.1e+08 14.33
11 3.0e-01 2.5e-11 1.1e+10 14.58
12 3.0e-01 1.7e-12 1.7e+11 14.63
13 3.0e-01 1.1e-13 2.5e+12 14.70
14 2.9e-01 8.0e-15 3.7e+13 14.77
15 2.9e-01 5.0e-16 5.5e+14 14.62

minimum eigenvalue is bounded from below by the bound given in Theorem 3.8, i.e. λmin ≥
C/(p416p), and the ratio κp(A)/κp−1(A) is bounded by 16. In Fig. 3.1, we plot these results,
which confirm the behavior of condition number according to the theoretical estimates.

The extremal eigenvalues and the condition number of the mass matrix for increasing p are
presented in Table 3.5. In Fig. 3.2, we plot extremal eigenvalues and the condition number
of the mass matrix against polynomial degree. We perform numerical results for p = 2 to
p = 10 (we stop at p = 10 due to roundoff errors). Numerical results confirm the theoretical
estimates given in Lemma 3.22, Lemma 3.24, and Theorem 3.25.

3.3.3 r-refinement
In this section we study how the condition number behaves with increasing smoothness of
basis functions, i.e., with respect to the r-refinement. We numerically compute to get the
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Table 3.5: λmax, λmin, and κ(M) for p = 2 to p = 10 on one element

p λmax λmin κ(M)
κp(M)

κp−1(M)
2 1.1e-01 1.1e-03 1.0e+02 –
3 6.2e-02 5.1e-05 1.2e+03 12.25
4 4.0e-02 2.5e-06 1.5e+04 12.96
5 2.7e-02 1.3e-07 2.1e+05 13.44
6 2.0e-02 6.9e-09 2.9e+06 13.80
7 1.5e-02 3.7e-10 4.1e+07 14.06
8 1.2e-02 2.0e-11 5.9e+08 14.27
9 1.0e-02 1.1e-12 8.5e+09 14.44

10 8.2e-03 6.6e-14 1.2e+11 14.58
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Figure 3.1: The maximum eigenvalue, the minimum eigenvalue, and the condition number
of the stiffness matrix is shown on a square element for increasing p. In the top-left graph
we plot the maximum eigenvalue versus polynomial degree, in the top-right the graph is
given for the minimum eigenvalue versus polynomial degree, and at bottom the condition
number κ(A) is plotted against polynomial degree.

condition number of the stiffness matrix and the mass matrix for increasing smoothness
for both, the h-refinement and the p-refinement. Though, one would expect the condition
number to be the best and the worst in case of maximum and minimum smoothness of basis
functions, respectively, however, from numerical tests we see that the best condition number
is obtained for Cb

p
2
c or Cd

p
2
e continuous basis functions. Here, Cb

p
2
c and Cd

p
2
e denote the
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Figure 3.2: The graphs of the extremal eigenvalues of the mass matrixM against polynomial
degree are given in the top left and top right. At bottom the condition number ofM is plotted
against polynomial degree.

floor value and ceiling value, respectively.

h-refinement

In Fig. 3.3 and Fig. 3.4, we plot the extremal eigenvalues of the stiffness matrix and the
mass matrix, respectively for increasing smoothness of basis functions with respect to the
h-refinement. In Table 3.6 and Table 3.7, we present the κ(A) and κ(M), respectively for
varying smoothness of basis functions for p = 5. The following observation can be made
from numerical results.

Table 3.6: κ(A) for h-refinement with varying smoothness, p = 5

HHHH
HHh
r

C0 C1 C2 C3 C4

8×8 1.4e+04 4.5e+03 1.4e+03 1.1e+03 2.1e+03
16×16 1.4e+04 4.5e+03 1.3e+03 9.8e+02 1.8e+03
32×32 1.4e+04 4.6e+03 1.3e+03 9.7e+02 1.7e+03
64×64 1.4e+04 4.6e+03 1.5e+03 9.7e+02 1.7e+03

• The maximum eigenvalue of the stiffness matrix is maximum corresponding to C0 or
Cp−1 continuous basis function, and it is minimum for Cb

p
2
c continuous basis func-
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Table 3.7: κ(M) for h-refinement with varying smoothness, p = 5

H
HHH

HHh
r

C0 C1 C2 C3 C4

8×8 4.2e+05 2.1e+05 7.4e+04 4.7e+04 4.3e+04
16×16 4.2e+05 2.1e+05 7.5e+04 4.5e+04 3.4e+04
32×32 4.3e+05 2.1e+05 7.5e+04 4.6e+04 3.3e+04
64×64 4.3e+05 2.1e+05 7.5e+04 4.6e+04 3.3e+04

tions. The minimum eigenvalue of the stiffness matrix keeps moving away from zero
with increasing smoothness. See Fig. 3.3 and Table 3.6.

• For the mass matrix, the maximum and minimum eigenvalues uniformly keep moving
away from zero with increasing smoothness of basis functions, i.e. the condition num-
ber is the best and the worst for Cp−1 and C0 continuous basis functions, respectively.
See Fig. 3.4 and Table 3.7.

p-refinement

For p-refinement, we perform numerical computations on a 2× 2 mesh (because there is no
varying regularity for one element). In Table 3.8 and Table 3.9, we present the condition
number of the stiffness matrix and the mass matrix, respectively for p = 2 to p = 10 with
increasing continuity from C0 to Cp−1. In Fig. 3.5 and Fig. 3.6, we plot the condition
number of the stiffness matrix and the mass matrix, respectively with varying continuity of
basis functions with all possible cases (from minimum C0 to maximum Cp−1). We have the
following observations from numerical results.

• The condition number of the stiffness matrix and the mass matrix is the worst for
the C0 continuous basis functions. However, for all possible cases of smoothness
the condition number of the stiffness matrix and the mass matrix is not the best for
maximum smoothness, i.e Cp−1 continuous basis functions.

• In Table 3.8, for p = 2 to p = 9, the condition number of the stiffness matrix decreases
from C0 to Cb

p
2
c continuous basis functions and then it increases up to Cp−1, and for

p = 10 the condition number decreases from C0 to C
p
2
−1, and then increases up to

Cp−1.

• The condition number of the mass matrix, for p = 2 to p = 6, decreases from C0 to
Cd

p
2
e continuous basis functions, and then it increases up toCp−1. For p = 7 to p = 10

the condition number decreases from C0 to Cb
p
2
c, and then increases up to Cp−1.

• In Fig. 3.5, Fig. 3.6, Table 3.8 and Table 3.9, we see that there is a difference of a
factor about p between the best and the worst condition numbers, which is negligible
as the exponent term 4pd is the dominating factor for higher p.
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Figure 3.3: The extremal eigenvalues of the stiffness matrix A w.r.t. the h-refinement and
varying smoothness.
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Figure 3.4: The extremal eigenvalues of the stiffness matrix M w.r.t. the h-refinement and
varying smoothness.
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Figure 3.5: The behavior of the condition number of the stiffness matrix on a 2 × 2 mesh
with varying continuity of basis functions on interfaces. The results are shown from p = 2
to p = 10 and with smoothness from C0 to Cp−1.
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Figure 3.6: The condition number of the mass matrix is plotted on a 2×2 mesh with varying
continuity of basis functions on interfaces. The results are shown from p = 2 to p = 10 and
with smoothness from C0 to Cp−1.
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3.4 Conclusions
We have provided the bounds for the minimum eigenvalue, maximum eigenvalue and the
condition numbers of the stiffness matrix and the mass matrix for the Laplace operator with
the h-refinement and the p-refinement of the isogeometric discretizations based on B-spline
(NURBS) basis functions. We proved that in the h-refinement, like finite element method,
the condition number of the stiffness matrix scales as h−2, and for the mass matrix it scales
as constant independent of h. For p-refinement, we have shown that the condition number
of the stiffness matrix and the mass matrix grows exponentially in p.

For p-refinement, the estimates for the maximum eigenvalues of the stiffness matrix and the
mass matrix are sharp and can not be improved. However, the estimates for the minimum
eigenvalues of the stiffness matrix and the mass matrix depend on the stability constant of
B-splines. In reaching these estimates we have used the stability constant of B-splines as
p2p. Using the de Boor’s conjecture (the stability constant of B-splines given by 2p, which is
the best known bound to our knowledge), these estimates can be further improved according
to Remarks 3.17 and 3.26. Unfortunately, a sharp estimate for the stability constant is not
known, and therefore, a sharp estimate for the minimum eigenvalue is hard to determine.
Furthermore, the effect of continuity of basis functions is negligible on the condition number
because the difference between the best and the worst condition number is about a factor of
p, which is dwarfed by the exponent term 4pd.



Chapter 4

Explicit and Multilevel Representation of
B-splines and NURBS

In this chapter, we present the explicit representation of B-splines for a uniform mesh on a
unit interval. The explicit representation of B-spline basis functions for a fixed mesh size h
is given for p = 2, 3, 4 and forC0- andCp−1-continuity. Moreover, we present the multilevel
structure of B-spline and NURBS. The multilevel transfer operators from fine level to coarse
level are given in matrix form. The NURBS transfer operators are generated from B-splines
transfer operators.

4.1 Explicit Representation for B-splines
The recursive form of B-spline basis functions, given by (2.1), is elegant and concise, and
is presented in all the isogeometric related references, see e.g. [39, 67], and also in classical
texts [45, 88, 90, 94]. However, this form may not be the most efficient from computational
point of view, specially when dealing with large knot vectors. To the best of authors’ knowl-
edge, within the isogeometric literature there is no reference on the explicit representation
of B-splines for a given mesh size h. Therefore, we present the explicit form of B-splines
in terms of the mesh size (knot-span) h. Having an explicit form of basis functions is also
advantageous in devising inter-grid transfer operators for multigrid and multilevel iterative
solvers. For brevity reasons, we restrict ourselves to a unit interval with equal spacing.
Moreover, as most of the engineering designs based on NURBS are of polynomial degree
p = 2 and 3, we will confine ourselves up to p = 4 with C0 and Cp−1 continuous basis
functions.

4.1.1 Cp−1-continuity
We first consider the Cp−1 continuous case as this is the default case for knot vector with
non-repeated internal knots. For B-spline functions with p = 0 and p = 1, we have the same
representation as for standard piecewise constant and linear finite element functions, re-
spectively. Quadratic B-spline basis functions, however, differ from their FEA counterparts.
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They are each identical but shifted related to each other, whereas the shape of a quadratic fi-
nite element function depends on whether it corresponds to an internal node or an end node.
This “homogeneous” pattern continues for the B-splines with higher-degrees.
We are interested to give an explicit representation for uniform B-spline basis functions de-
fined on a knot vectorEk at any given level k, where k = 1, 2, 3, ...,with spacing h (= 1/n),
where n is the total number of knot spans. We shall use the notation Bp,r

k,i for B-splines,
where superscripts represent the polynomial degree and the regularity of basis functions,
respectively, and the subscripts represent the level and the number of basis function, respec-
tively. We start with level k = 1 with only one element. Using the definition from (2.1), at
level 1, the B-spline basis functions of degree p = 2 on the knot vectorE1 = {0, 0, 0, 1, 1, 1}
are defined as follows

B2,p−1
1,1 = (1− x)2, 0 ≤ x ≤ 1,

B2,p−1
1,2 = 2x(1− x), 0 ≤ x ≤ 1,

B2,p−1
1,3 = x2, 0 ≤ x ≤ 1.

(4.1)

The mesh refinement takes place by inserting the knots. We consider uniform refinement of
E1, i.e. inserting knots at the mid point of the knot values. At the next level k = 2, the basis
functions on refined knot vector E2 = {0, 0, 0, 1

2
, 1, 1, 1} are given by

B2,p−1
2,1 =

{
(1− 2x)2, 0 ≤ x < 1

2
,

0, 1
2
≤ x ≤ 1,

B2,p−1
2,2 =

{
2x(2− 3x), 0 ≤ x < 1

2
,

2(1− x)2, 1
2
≤ x ≤ 1,

B2,p−1
2,3 =

{
2x2, 0 ≤ x < 1

2
,

−2 + 8x− 6x2, 1
2
≤ x ≤ 1,

B2,p−1
2,4 =

{
0, 0 ≤ x < 1

2
,

(1− 2x)2, 1
2
≤ x ≤ 1.

(4.2)

Further refinements take place in a similar way, i.e., starting with E1, a single knot span, in
the knot span Ek we will thus have 2k−1 knot spans. The explicit representation of B-splines
at level k, where k ≥ 3, is given by

B2,p−1
k,1 =

1

h2
(h− x)2, 0 ≤ x < h, h ≤ 1,

B2,p−1
k,2 =


1

2h2
x(4h− 3x), 0 ≤ x < h,

1

2h2
(2h− x)2, h ≤ x < 2h,

for h ≤ 1

2
,
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B2,p−1
k,3+i =



1

2h2
(x− ih)2, ih ≤ x < (i+ 1)h,

−3

2
+

3

h
(x− ih)− 1

h2
(x− ih)2, (i+ 1)h ≤ x < (i+ 2)h,

1

2h2
(3h− (x− ih))2, (i+ 2)h ≤ x < (i+ 3)h,

where i = 0, 1, 2, 3, ..., (1/h)− 3, and h ≤ 1/4.

B2,p−1
k,n+p−1 =


1

2h2
(−1 + 2h+ x)2, 1− 2h ≤ x < 1− h,

−1

2h2
(3− 4h+ 2(2h− 3)x+ 3x2), 1− h ≤ x ≤ 1,

for h ≤ 1

2
,

B2,p−1
k,n+p =

1

h2
(1− h− x)2, 1− h ≤ x ≤ 1, h ≤ 1.

(4.3)

For higher degree polynomials, we can define the explicit representation in a similar way.
Again using the definition (2.1) of B-splines, for p = 3, at first level k = 1 the basis
functions with Cp−1-continuity are given as follows

B3,p−1
1,1 = (1− x)3, 0 ≤ x ≤ 1,

B3,p−1
1,2 = 3x(1− x)2, 0 ≤ x ≤ 1,

B3,p−1
1,3 = 3x2(1− x), 0 ≤ x ≤ 1,

B3,p−1
1,4 = x3, 0 ≤ x ≤ 1.

(4.4)

At level 2, we have the following basis functions

B3,p−1
2,1 =

{
(1− 2x)3, 0 ≤ x < 1

2
,

0, 1
2
≤ x ≤ 1,

B3,p−1
2,2 =

{
2x(3− 9x+ 7x2), 0 ≤ x < 1

2
,

2(1− x)3, 1
2
≤ x ≤ 1,

B3,p−1
2,3 =

{
2x2(3− 4x), 0 ≤ x < 1

2
,

2(−1 + x)2(−1 + 4x), 1
2
≤ x ≤ 1,

B3,p−1
2,4 =

{
2x3, 0 ≤ x < 1

2
,

2− 12x+ 24x2 − 14x3, 1
2
≤ x ≤ 1,

B3,p−1
2,5 =

{
0, 0 ≤ x < 1

2
,

(−1 + 2x)3, 1
2
≤ x ≤ 1.

(4.5)

For all other levels k, where k ≥ 3, the basis functions are defined below

B3,p−1
k,1 =

1

h3
(h− x)3, 0 ≤ x < h, h ≤ 1,
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B3,p−1
k,2 =


x

h

(
3− 9

2

x

h
+

7

4

x2

h2

)
, 0 ≤ x < h,

1

4h3
(−2h+ x)3, h ≤ x < 2h,

for h ≤ 1

2
,

B3,p−1
k,3 =



1

6

x2

h2

(
9− 11

2

x

h

)
, 0 ≤ x < h,

−3

2
+

9

2

x

h
− 3

x2

h2
+

7

4

x3

h3
, h ≤ x < 2h,

1

6h3
(−3h+ x)3, 2h ≤ x < 3h,

for h ≤ 1

4
,

B3,p−1
k,4+i =



1

6h3
(x− ih)3, ih ≤ x < (i+ 1)h,

2

3
− 2

h
(x− ih) +

1

2h2
(x− ih)2 − 1

2h3
(x− ih)3, (i+ 1) ≤ x < (i+ 2)h,

−22

3
+

10

h
(x− ih)− 4

h2
(x− ih)2 +

1

2h3
(x− ih)3, (i+ 2)h ≤ x < (i+ 3)h,

32

h

(
1− (x− ih)

4h

)3

, (i+ 3)h ≤ x < (i+ 4)h,

where i = 0, 1, 2, 3, ..., (1/h)− 4, and h ≤ 1

4
,

B3,p−1
k,n+p−2 =



1

6h3
(−3h+ (1− x))3, 1− 3h ≤ x < 1− 2h,

−3

2
+

9

2

(1− x)

h
− 3

(1− x)2

h2
+

7

4

(1− x)3

h3
, 1− 2h ≤ x < 1− h,

1

6

(1− x)2

h2

(
9− 11

2

(1− x)

h

)
, 1− h ≤ x ≤ 1,

for h ≤ 1

4
,

B3,p−1
k,n+p−1 =


1

4h3
(−2h+ (1− x))3, 1− 2h ≤ x < 1− h,

(1− x)

h

(
3− 9

2

(1− x)

h
+

7

4

(1− x)2

h2

)
, 1− h ≤ x < 1,

for h ≤ 1

2
,

B3,p−1
k,n+p =

1

h3
(h− (1− x))3, 1− h ≤ x ≤ 1, h ≤ 1.

(4.6)

Finally, we give the explicit representation of basis functions for p = 4 withCp−1-continuity.
At level 1, with knot E1, the B-spline basis functions of degree p = 4 are given by

B4,p−1
1,1 = (1− x)4, 0 ≤ x ≤ 1,

B4,p−1
1,2 = 4x(1− x)3, 0 ≤ x ≤ 1,

B4,p−1
1,3 = 6x2(1− x)2, 0 ≤ x ≤ 1,
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B4,p−1
1,4 = 4x3(1− x), 0 ≤ x ≤ 1,

B4,p−1
1,5 = x4, 0 ≤ x ≤ 1.

(4.7)

The B-splines on second level k = 2 with knot E2 are defined as follows

B4,p−1
2,1 =

{
(1− 2x)4, 0 ≤ x < 1

2
,

0, 1
2
≤ x ≤ 1,

B4,p−1
2,2 =

{
2x(4− 18x+ 28x2 − 15x3), 0 ≤ x < 1

2
,

2(1− x)4, 1
2
≤ x ≤ 1,

B4,p−1
2,3 =

{
2x2(6− 16x+ 11x2), 0 ≤ x < 1

2
,

2(1− x)3(−1 + 5x), 1
2
≤ x ≤ 1,

B4,p−1
2,4 =

{
2x3(4− 5x), 0 ≤ x < 1

2
,

2(1− x)2(1− 6x+ 11x2), 1
2
≤ x ≤ 1,

B4,p−1
2,5 =

{
2x4, 0 ≤ x < 1

2
,

−2 + 16x− 48x2 + 64x3 − 30x4, 1
2
≤ x ≤ 1,

B4,p−1
2,6 =

{
0, 0 ≤ x < 1

2
,

(1− 2x)4, 1
2
≤ x ≤ 1.

(4.8)

At all other levels k, where k ≥ 3, the basis functions of degree p = 4 with Cp−1-continuity
are given by

B4,p−1
k,1 =

1

h4
(h− x)4, 0 ≤ x < h, h ≤ 1,

B4,p−1
k,2 =


−4x

h

(
−1 +

9

4

x

h
− 7

4

x2

h2
+

15

32

x3

h3

)
, 0 ≤ x < h,

1

8h4
(2h− x)4, h ≤ x < 2h,

for h ≤ 1

2
,

B4,p−1
k,3 =



1

9

x2

h2

(
27− 33

x

h
+

85

8

x2

h2

)
, 0 ≤ x < h,

−3

2
+ 6

x

h
− 6

x2

h2
+

7

3

x3

h3
− 23

72

x4

h4
, h ≤ x < 2h,

1

18h4
(3h− x)4, 2h ≤ x < 3h,

for h ≤ 1

4
,

B4,p−1
k,4 =



2

3

x3

h3
− 25

72

x4

h4
, 0 ≤ x < h,

2

3
− 8

3

x

h
+ 4

x2

h2
− 2

x3

h3
+

23

72

x4

h4
, h ≤ x < 2h,

−22

3
+

40

3

x

h
− 8

x2

h2
+ 2

x3

h3
− 13

72

x4

h4
, 2h ≤ x < 3h,

1

24h4
(4h− x)4, 3h ≤ x < 4h,

for h ≤ 1

4
.



CHAPTER 4. EXPLICIT AND MULTILEVEL B-SPLINES 65

B4,p−1
k,5+i =



1

24h4
(x− ih)4, ih ≤ x < (i+ 1)h,

1

24

(
−5 +

20

h
(x− ih)− 30

h2
(x− ih)2 +

20

h3
(x− ih)3 − 4

h4
(x− ih)4

)
,

(i+ 1)h ≤ x < (i+ 2)h,
155

24
− 25

2h
(x− ih) +

35

4h2
(x− ih)2 − 5

2h3
(x− ih)3 − 1

4h4
(x− ih)4,

(i+ 2)h ≤ x < (i+ 3)h,
−655

24
+

65

2h
(x− ih)− 55

4h2
(x− ih)2 +

5

2h3
(x− ih)3 − 1

6h4
(x− ih)4,

(i+ 3)h ≤ x < (i+ 4)h,
1

24h4
(5h− (x− ih))4, (i+ 4)h ≤ x < (i+ 5)h,

where i = 0, 1, 2, 3, ..., (1/h)− 5, and h ≤ 1

4
.

B4,p−1
k,n+p−3 =



1

24h4
(4h− (1− x))4 , 1− 4h ≤ x < 1− 3h,

−22

3
+

40

3

(1− x)

h
− 8

(1− x)2

h2
+ 2

(1− x)3

h3
− 13

72

(1− x)4

h4
,

1− 3h ≤ x < 1− 2h,
2

3
− 8

3

(1− x)

h
+ 4

(1− x)2

h2
− 2

(1− x)3

h3
+

23

72

(1− x)4

h4
,

1− 2h ≤ x < 1− h,
2

3

(1− x)3

h3
− 25

72

(1− x)4

h4
, 1− h ≤ x ≤ 1,

for h ≤ 1

4
,

B4,p−1
k,n+p−2 =



1

18h4
(3h− (1− x))4, 1− 3h ≤ x < 1− 2h,

−3

2
+ 6

(1− x)

h
− 6

(1− x)2

h2
+

7

3

(1− x)3

h3
− 23

72

(1− x)4

h4
,

1− 2h ≤ x < 1− h,
1

9

(1− x)2

h2

(
27− 33

(1− x)

h
+

85

8

(1− x)2

h2

)
, 1− h ≤ x ≤ 1,

for h ≤ 1

4
,

B4,p−1
k,n+p−1 =


1

8h4
(2h− (1− x))4, 1− 2h ≤ x < 1− h,

−4(1− x)

h

(
−1 +

9

4

(1− x)

h
− 7

4

(1− x)2

h2
+

15

32

(1− x)3

h3

)
,

1− h ≤ x ≤ 1,

for h ≤ 1

2
,

B4,p−1
k,n+p =

1

h4
(h− (1− x))4, 0 ≤ x ≤, 1 h ≤ 1.

(4.9)
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4.1.2 C0-continuity
To reduce the continuity of the basis functions across element boundaries, the knot values
are repeated upto a desired level. By repeating the internal knots k times we get the Cp−k

continuous basis functions. In the previous section we have given the explicit representa-
tion for Cp−1 continuity, which is the highest continuity for polynomial degree p. We now
consider another extreme case, the lowest continuity, i.e. C0 continuous basis functions.
At first level k = 1 the C0 continuous B-spline basis functions of degree p = 2, 3, 4 on a
knot E1 = {0, 0, 0, 1, 1, 1} are same as those of Cp−1 continuous B-spline basis functions
of same degree, see (4.1), (4.4), and (4.1.1) respectively.
The explicit representation for C0 continuous B-spline basis functions of degree p = 2 at
level k, where k ≥ 2 is given by

B2,0
k,1 =

1

h2
(h− x)2, 0 ≤ x < h,

B2,0
k,2+2i =

−2

h2
(x− ih)(h+ (x− ih)), (i− 1)h ≤ x < ih,

where i = 0, 1, 2, 3, ..., (1/h)− 1,

B2,0
k,3+2i =


1

h2
(h+ (x− ih))2, (i− 1)h ≤ x < ih,

1

h2
(−h+ (x− ih))2, ih ≤ x < (i+ 1)h,

where i = 0, 1, 2, 3, ..., ((1/h)− 2) ,

B2,0
k,np+1 =

1

h2
(1− h− x)2, 1− h ≤ x ≤ 1.

(4.10)

For p = 3, the explicit representation for B-spline basis functions with C0-continuity, at
level k, where k ≥ 2 is given by

B3,0
k,1 =

1

h3
(h− x)3, 0 ≤ x < h,

B3,0
k,2+3i =

3

h

(
−1 +

1

h
(x− ih)

)2

, ih ≤ x < (i+ 1)h,

where i = 0, 1, 2, 3, ..., (1/h)− 1,

B3,0
k,3+3i =

3

h2
(x− ih)2

(
1− 1

h
(x− ih)

)
, ih ≤ x < (i+ 1)h,

where i = 0, 1, 2, 3, ..., (1/h)− 1,

B3,0
k,4+3i =


1

h3
(x− ih)3, ih ≤ x < (i+ 1)h,

8

(
1− 1

2h
(x− ih)

)3

, (i+ 1)h ≤ x < (i+ 2)h,

where i = 0, 1, 2, 3, ..., ((1/h)− 2) ,

B3,0
k,np+1 =

1

h3
(1− h− x)3, 1− h ≤ x ≤ 1.

(4.11)
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Finally, the explicit representation for C0 continuous basis functions of degree p = 4 at level
k, where k ≥ 2 is given below

B4,0
k,1 =

1

h4
(h− x)4, 0 ≤ x < h,

B4,0
k,2+4i =

4

h
(x− ih)

(
1− (x− ih)

h

)3

, ih ≤ x < (i+ 1)h,

where i = 0, 1, 2, 3, ..., (1/h)− 1,

B4,0
k,3+4i =

6

h2
(x− ih)2

(
1− (x− ih)

h

)2

, ih ≤ x < (i+ 1)h,

where i = 0, 1, 2, 3, ..., (1/h)− 1,

B4,0
k,4+4i =

4

h3
(x− ih)3

(
1− (x− ih)

h

)
, ih ≤ x < (i+ 1)h,

where i = 0, 1, 2, 3, ..., (1/h)− 1,

B4,0
k,5+4i =


1

h4
(x− ih)4, ih ≤ x < (i+ 1)h,

16

(
1− 1

2h
(x− ih)

)4

, (i+ 1)h ≤ x < (i+ 2)h,

where i = 0, 1, 2, 3, ..., ((1/h)− 2) ,

B4,0
k,np+1 =

1

h4
(1− h− x)4, 1− h ≤ x ≤ 1.

(4.12)

4.2 Multilevel Representation of B-splines and NURBS

4.2.1 Multilevel B-splines
In this section, we present the multilevel structure of B-splines and NURBS spaces. This
will be used in the construction of corresponding hierarchical spaces (i.e. splitting the fine
space into coarse space and its hierarchical complement) in Section 6.1. For a two level
setting, let Bp,rk−1 and Bp,rk denote the B-spline spaces at coarse and fine level, respectively.
Let {Bp,r

k−1,i, i = 1, 2, ..., nk−1} and {Bp,r
k,i , i = 1, 2, ..., nk} be the set of basis functions for

coarse and fine space, respectively, i.e.

Bp,rk−1 = span{Bp,r
k−1,1, B

p,r
k−1,2, B

p,r
k−1,3, ..., B

p,r
k−1,nk−1

},

and
Bp,rk = span{Bp,r

k,1, B
p,r
k,2, B

p,r
k,3, ..., B

p,r
k,nk
}.

The following result expresses coarse basis functions as the linear combination of fine basis
functions.
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Proposition 4.1. Each coarse basis function Bp,r
k−1,i, i = 1, 2, ..., nk−1, can be represented

as the linear combination of the fine basis functions {Bp,r
k,i , i = 1, 2, ..., nk} by the following

relation

Bp,rk−1 = Gp,r
k B

p,r
k , i.e., Bp,r

k−1,i =

nk∑
j=1

gijB
p,r
k,j , (4.13)

where Gp,r
k = (gij)nk−1×nk , is called the restriction operator from a given fine level to the

next coarse level for B-spline basis functions.

In the following we explain the formation of transfer operator Gp,r
k at different levels of

mesh and with increasing polynomial degree with both the extreme cases of Cp−1 and C0-
continuity.

Cp−1-continuity

The B-spline basis functionsB2,p−1
1,i , i = 1, 2, 3, andB2,p−1

2,i , i = 1, 2, 3, 4, of degree p = 2 on
knots E1 = {0, 0, 0, 1, 1, 1} and E2 = {0, 0, 0, 1

2
, 1, 1, 1}, respectively, are defined in section

4.1.1. Clearly, the total number of coarse and fine basis functions are three (nk−1 = 3)
and four (nk = 4), respectively. The matrix G2,p−1

2 = (gij)3×4 is given by the following
representation of coarse basis functions as the linear combination of fine basis functions.

B2,p−1
1,1 = g11B

2,p−1
2,1 + g12B

2,p−1
2,2 + g13B

2,p−1
2,3 + g14B

2,p−1
2,4 ,

B2,p−1
1,1 = g21B

2,p−1
2,1 + g22B

2,p−1
2,2 + g23B

2,p−1
2,3 + g24B

2,p−1
2,4 ,

B2,p−1
1,1 = g31B

2,p−1
2,1 + g32B

2,p−1
2,2 + g33B

2,p−1
2,3 + g34B

2,p−1
2,4 .

Equivalently, it can be written as

B2,p−1
1 = G2,p−1

2 B2,p−1
2 ,

where

B2,p−1
1 =

 B2,p−1
1,1

B2,p−1
1,2

B2,p−1
1,3

 , G2,p−1
2 =

 g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

 ,B2,p−1
2 =


B2,p−1

2,1

B2,p−1
2,2

B2,p−1
2,3

B2,p−1
2,4

 .
For the above set of basis functions, G2,p−1

2 is given by

G2,p−1
2 =

1

4

 4 2 0 0
0 2 2 0
0 0 2 4

 . (4.14a)

Similarly, the coarse basis functions for B2,p−1
2,i , i = 1, 2, 3, 4, at level 2, can be obtained in

terms of B2,p−1
3,i , i = 1, 2, ..., 6, by the following matrix

G2,p−1
3 =

1

4


4 2 0 0 0 0
0 2 3 1 0 0
0 0 1 3 2 0
0 0 0 0 2 4

 . (4.14b)
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In a multilevel setting, the representation of each basis functionB2,p−1
k,i at level k as the linear

combination of the basis functions B2,p−1
k+1,i at level k + 1 is given by the the following matrix

G2,p−1
k+1 , where 3 ≤ k ≤ L− 1.

G2,p−1
k+1 =

1

4



4 2
2 3 1

1 3 3 1
1 3 3 1

.. .. .. ..
.. .. .. ..

1 3 3 1
1 3 3 1

1 3 2
2 4


. (4.14c)

The size of the matrix G2,p−1
k+1 is (nk + 2) × (nk+1 + 2), where nk and nk+1 are the number

of total knot spans at level k and k + 1, respectively.
For higher degree polynomials, the transfer operators can be defined in a similar way. For
p = 3, at level k = 1 the basis functions B3,p−1

1,i , i = 1, 2, 3, 4, with Cp−1-continuity can be
represented by the following restriction operator at level l = 2.

G3,p−1
2 =

1

2


2 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 2

 . (4.15a)

The transfer operator for level 3 can be written as

G3,p−1
3 =

1

16


16 8 0 0 0 0 0
0 8 12 3 0 0 0
0 0 4 10 4 0 0
0 0 0 3 12 8 0
0 0 0 0 0 8 16

 . (4.15b)

For all levels k + 1, where 3 ≤ k ≤ L− 1, we have

G3,p−1
k+1 =

1

16



16 8
8 12 3

4 11 8 2
2 8 12 8 2

.. .. .. .. ..
.. .. .. .. ..

2 8 12 8 2
2 8 11 4

3 12 8
8 16


. (4.15c)
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The size of the matrix G3,p−1
k+1 is (nk + 3)× (nk+1 + 3).

Finally, we give the transfer operators for p = 4 with Cp−1-continuity. For levels 2 and 3
the transfer operators are defined as follows:

G4,p−1
2 =

1

2


2 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 2

 , (4.16a)

G4,p−1
3 =

1

48


48 24 0 0 0 0 0 0
0 24 36 9 0 0 0 0
0 0 12 30 9 0 0 0
0 0 0 9 30 12 0 0
0 0 0 0 9 36 24 0
0 0 0 0 0 0 24 48

 , (4.16b)

respectively. For levels k, , where 3 ≤ k ≤ L − 1,, the transfer operator is given by the
following

G4,p−1
k+1 =

1

48



48 24
24 36 9

12 33 20 4
6 25 29 15 3

3 15 30 30 15 3
.. .. .. ..
.. .. .. ..
3 15 30 30 15 3

3 15 29 25 6
4 20 33 12

9 36 24
24 48



,

(4.16c)
where the size of the matrix is (nk + 4)× (nk+1 + 4).

Remark 4.2. Since in the span of an internal basis function of degree p at coarse level, there
are p+ 2 full basis functions in the same span at fine level, therefore, any row of Gp,p−1

k+1 can
have at most p+ 2 entries.

C0-continuity

In section 4.1.2, we explained the explicit representation of C0 continuous B-spline basis
functions. The corresponding transfer operators are given in this section. The transfer oper-
ator G2,0

2 for p = 2 with C0-continuity at level 2 is given by

G2,0
2 =

1

4

 4 2 1 0 0
0 2 2 2 0
0 0 1 2 4

 . (4.17a)
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The operator G2,0
k+1, where 2 ≤ k ≤ L− 1, is given by

G2,0
k+1 =

1

4



4 2 1 0 0
0 2 2 2 0
0 0 1 2 4 2 1 0 0

0 2 2 2 0
0 0 1 2 4

.. .. ..

.. .. ..
4 2 1 0 0
0 2 2 2 0
0 0 1 2 4 2 1 0 0

0 2 2 2 0
0 0 1 2 4



, (4.17b)

with size (2nk + 1)× (2nk+1 + 1). The matrix G2,0
k+1, k ≥ 2, has block structure with blocks

G2,0
2 . The blocks are connected in such a way that if a block ends at ith row and jth column

of G2,0
k+1 then the next block will start at (i, j)th position of G2,0

k+1 with an overlap of last
entry and first entry of the corresponding blocks. Note that, the first entry and the last entry
in a block are same.
The transfer operators for p = 3 with C0-continuity for levels 2 and 3 are given by

G3,0
2 =

1

8


8 4 2 1 0 0 0
0 4 4 3 2 0 0
0 0 2 3 4 4 0
0 0 0 1 2 4 8

 , (4.18a)

and

G3,0
3 =

1

8



8 4 2 1 0 0 0
0 4 4 3 2 0 0
0 0 2 3 4 4 0
0 0 0 1 2 4 8 4 2 1 0 0 0

0 4 4 3 2 0 0
0 0 2 3 4 4 0
0 0 0 1 2 4 8


, (4.18b)

respectively. Following the same block structure as in G2,0
k+1, we can generate G3,0

k+1, where
3 ≤ k ≤ L− 1, with size (3nk + 1)× (3nk+1 + 1). Finally for p = 4, we have the following
transfer operators for levels 2 and 3

G4,0
2 =

1

16


16 8 4 2 1 0 0 0 0
0 8 8 6 4 2 0 0 0
0 0 4 6 6 6 4 0 0
0 0 0 2 4 6 8 8 0
0 0 0 0 1 2 4 8 16

 , (4.19a)
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and

G4,0
3 =

1

16



16 8 4 2 1 0 0 0 0
0 8 8 6 4 2 0 0 0
0 0 4 6 6 6 4 0 0
0 0 0 2 4 6 8 8 0
0 0 0 0 1 2 4 8 16 8 4 2 1 0 0 0 0

0 8 8 6 4 2 0 0 0
0 0 4 6 6 6 4 0 0
0 0 0 2 4 6 8 8 0
0 0 0 0 1 2 4 8 16


, (4.19b)

respectively. Similarly, repeating these blocks as in previous cases, we can generate G4,0
k+1,

where 3 ≤ k ≤ L− 1, with size (4nk + 1)× (4nk+1 + 1).

Remark 4.3. Note that the transfer operators are defined for one dimensional B-splines.
For two- and three-dimensions, we take tensor product of these operators.

4.2.2 Multilevel NURBS
This section presents the procedure for constructing NURBS multilevel spaces in a simpli-
fied manner. Since NURBS are generated from B-splines, its natural to construct NURBS
transfer operators from B-splines transfer operators. For a two level setting, let N p,r

k−1 and
N p,r
k denote the NURBS spaces at coarse and fine level, respectively. Let {Np,r

k−1,i, i =
1, 2, ..., nk−1} and {Np,r

k,i , i = 1, 2, ..., nk} be the set of basis functions for coarse and fine
space, respectively, i.e.

N p,r
k−1 = span{Np,r

k−1,1, N
p,r
k−1,2, N

p,r
k−1,3, ..., N

p,r
k−1,nk−1

},

and
N p,r
k = span{Np,r

k,1 , N
p,r
k,2 , N

p,r
k,3 , ..., N

p,r
k,nk
}.

Note that, a relation similar to Proposition 4.1 also holds for NURBS basis functions, i.e.,
we have

N p,r
k−1 = Rp,r

k N
p,r
k , i.e., Np,r

k−1,i =

nk∑
j=1

rijN
p,r
k,j , ∀i = 1, 2, 3, ..., nk−1, (4.20)

where Rp,r
k = (rij)nk−1×nk , is restriction operator with respect to NURBS basis functions.

As NURBS are formed from B-splines and ‘weights’, Rp,r
k can be obtained from Gp,r

k and
‘weights’. Using the definition of NURBS and (4.20), we have

wk−1
i Bp,r

k−1,i
nk−1∑
i′=1

wk−1
i′ Bp,r

k−1,i′

=

nk∑
j=1

rij
wkjB

p,r
k,j

nk∑
j′=1

wkj′B
p,r
k,j′

, ∀i = 1, 2, 3, ..., nk−1,
(4.21)
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where wk−1
i , i = 1, 2, 3, ..., nk−1, and wkj , j = 1, 2, 3, ..., nk, are the weights for coarse space

and fine space, respectively. Note that the weight function
n∑
i=1

wiBi does not change its

value with respect to refinements, i.e., we have

nk−1∑
i=1

wk−1
i Bp,r

k−1,i =

nk∑
j=1

wkjB
p,r
k,j , (4.22)

which is an important result from the refinement point of view. Now using (4.22), from
(4.21) we get

wk−1
i Bp,r

k−1,i =

nk∑
j=1

rijw
k
jB

p,r
k,j ,

and thus

Bp,r
k−1,i =

nk∑
j=1

rijw
k
j

wk−1
i

Bp,r
k,j . (4.23)

Comparing the coefficients of Bp,r
k,j in (4.13) and (4.23), we get

rijw
k
j

wk−1
i

= gij =⇒ rij =
wk−1
i gij
wkj

. (4.24)

This can be equivalently written as

Rp,r
k = W k−1

I Gp,r
k

(
W k
I

)−1
, (4.25)

where W k−1
I and W k

I are the diagonal matrices corresponding to weights at the coarse level
and fine level, respectively, and defined as follows

W k−1
I =



wk−1
1

wk−1
2

..
..

wk−1
nk−1−1

wk−1
nk−1

 ,

W k
I =


wk1

wk2
..

..
wknk−1

wknk

 .

The equation (4.25) gives us the NURBS operators using B-splines transfer operators and
weights at coarse and fine levels. From (4.22) we can also obtain the procedure to refine the
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weights as follows. We have

nk−1∑
i=1

wk−1
i Bp,r

k−1,i =

nk∑
j=1

wkjB
p,r
k,j ,

which implies
nk−1∑
i=1

wk−1
i

nk∑
j=1

gijB
p,r
k,j =

nk∑
j=1

wkjB
p,r
k,j .

Comparing the coefficients of Bp,r
k,j from both the sides, we get

wkj =

nk−1∑
i=1

wk−1
i gij for j = 1, 2, ..., nk. (4.26)

Equivalently, this can be written in matrix form as follows

W k = (Gp,r
k )T W k−1, (4.27)

where

W k =


wk1
wk2
:
:

wknk−1

wknk

 ,W
k−1 =



wk−1
1

wk−1
2

:
:

wk−1
nk−1−1

wk−1
nk−1

 .

Using above, now we can write the NURBS operators in terms of B-spline operator and
weights only at coarse level. From (4.24), we get

rij =
gijw

k−1
i

nk−1∑
i=1

wk−1
i gij

. (4.28)

In matrix form this can be written as

Rp,r
k = W k−1

I Gp,r
k

(
diag

(
(Gp,r

k )T W k−1
))−1

. (4.29)

Remark 4.4. The operators Gp,r
k and Rp,r

k can also be used in constructing restriction op-
erators in multigrid methods, see e.g., [55].



Chapter 5

Multigrid Methods for Isogeometric
Discretizations

Our focus in this chapter is on multigrid methods for solving the linear system of equa-
tions arising from the isogeometric discretization of scalar second order elliptic problems
in a single patch. We first prove the condition number estimates of the discrete system for
the h-refinement, and provide the supporting numerical results for all levels of smoothness
(from C0 to Cp−1). These results suggest the expected behavior from the two-(multi-)grid
solver. We then prove both the components of the two-grid solver, namely the approxima-
tion property of the inter-grid transfer operators, and the smoothing property of the classical
Gauss-Seidel (symmetric as well as non-symmetric) method. Together, these two compo-
nents establish the h-independence of the two-grid solver. For the multi-grid solver, which
uses the two-grid solver recursively, we recall the h-independent convergence estimates
from [60].

Following the terminology of standard FEM, we will call the open knot-span as element
wherever appropriate. Moreover, as most of the NURBS based designs in engineering use
polynomial degree p = 2 and 3, throughout this chapter we will confine ourselves up to
p = 4. Furthermore, throughout this chapter we use the notation f � g (respectively f � g
) to denote f ≤ cg (respectively f ≥ cg ) where the constant c is independent of the mesh
parameter h and the inequality arguments, but it may depend on the polynomial degree p.
For the sake of completeness of this chapter we here repeat some results from Chapter 3.

5.1 Notations
To deal with the tensor-product structure in d-dimensions, we introduce the dimension index
set D := {1, . . . , d}, and the index set for knot vectors Kα := {1, 2, . . . , kα, α ∈ D}. Also,
letNα = {1, 2, . . . , nα, α ∈ D} be the index set of number of basis functions in each dimen-
sion, and pD = {p1, . . . , pd} and ND = {⊗α∈DNα} be the index set of polynomial degree
and number of basis functions, respectively, in all dimensions. Now let Ω̃ := (0, 1)d ⊂ Rd

be an open parametric domain which we will refer as a patch. Assume that d open knot

75
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vectors Ξα := {ξα,Kα}, α ∈ D, are given such that ξα,1 = 0 and ξα,κα = 1 for all α ∈ D.
Associated with Ξα, α ∈ D, we partition the patch Ω̃ in to a mesh

Qh := {Q = ⊗α∈D(ξα,iα , ξα,iα+1)|Q 6= ∅, pα + 1 ≤ iα ≤ kα − pα − 1},

where Q is a d-dimensional open knot-span whose diameter is denoted by hQ. We consider
a family of quasi-uniform meshes {Qh}h on Ω̃, where h = max{hQ|Q ∈ Qh} denotes the
family index, see [14].

Furthermore, let Bh denote the B-spline space associated with the mesh Qh. Since we do
not consider p-refinements, we will use Bh to denote the mesh familyQh for all polynomial
degrees. The functions in Bh are piecewise polynomials of degree pd in the dth coordinate.
Given two adjacent elements Q1 and Q2, by mQ1Q2 we denote the number of continuous
derivatives across their common (d − 1)-dimensional face ∂Q1 ∩ ∂Q2. In the analysis, we
will use the following Sobolev space of order m ∈ N

Hm(Ω̃) :=
{
v ∈ L2(Ω̃) such that v|Q ∈ Hm(Q),∀Q ∈ Qh, and (5.1)

∇i(v|Q1) = ∇i(v|Q2) on ∂Q1 ∩ ∂Q2,

∀i ∈ N with 0 ≤ i ≤ min{mQ1Q2 ,m− 1}, ∀Q1, Q2 with ∂Q1 ∩ ∂Q2 6= ∅
}
,

where∇i has the usual meaning of ith-order partial derivative, and Hm is the usual Sobolev
space of order m. The spaceHm is equipped with the following semi-norms and norm

|v|2Hi(Ω̃)
:=

∑
Q∈Qh

|v|2Hi(Q), 0 ≤ i ≤ m, ‖v‖2
Hm(Ω̃)

:=
m∑
i=0

|v|2Hi(Ω̃)
. (5.2)

Clearly, for all nested meshes Qhk ⊂ Qhk+1
we have Bhk ⊂ Bhk+1

for all k ≥ 0, where
h0 refers to the initial mesh. To a non-empty element Q = ⊗α∈D(ξα,iα , ξα,iα+1) ⊂ Ω̃ we
associate the support extension

Q̃ := ⊗α∈D(ξα,iα−pα , ξα,iα+pα+1) ⊂ Ω̃, (5.3)

which is the union of supports of those basis functions whose support intersects Q. The
restriction ofHm(Ω̃) to the support extension Q̃ is denoted byHm(Q̃), and is equipped with
the following semi-norms and norm

|v|2Hi(Q̃)
:=

∑
Q′∈Qh
Q′∩Q̃6=∅

|v|2Hi(Q′), 0 ≤ i ≤ m, ‖v‖2
Hm(Q̃)

:=
m∑
i=0

|v|2Hi(Q̃)
. (5.4)

The NURBS space on the patch Ω̃, associated with the mesh Qh, will be denoted by Rh.
When no ambiguity should arise, we will use the notation Ph to represent the polynomial
space of either B-splines or NURBS.
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Moreover, let the NURBS geometrical map F : Ω̃ → Ω, which is a parametrization of the
physical domain Ω, be given by (2.7) with suitable control points. We assume that F is
invertible, with smooth inverse, on each element Q ∈ Qh. Therefore, each element Q ∈ Qh
is mapped into an element K = F(Q) := {F(ξ)|ξ ∈ Q} ⊂ Ω, and the support extension Q̃
is mapped into K̃ = F(Q̃) ⊂ Ω. Thereby, in the physical domain Ω we introduce the mesh
Th := {K = F(Q)|Q ∈ Qh}, where h denotes the maximum element size (hereinafter
called the mesh-size) in the domain Ω. Note that the notation h is used for parametric
domain as well as physical domain, however, it is a different quantity in both the contexts.
Wherever needed, by hK we will denote the element size in the physical domain. On the
physical domain Ω, we denote the space of B-splines by VBh and the space of NURBS by
VRh , which are defined as

VBh := span
{
φpDND = BpD

ND ◦ F
−1
}
, (5.5)

VRh := span
{
ϕpDND = RpD

ND ◦ F
−1
}
. (5.6)

When no ambiguity should arise, we will collectively denote VBh and VRh by Vh, and φpDND
and ϕpDND by ψpDND , respectively. We will denote the number of elements (open knot-spans
with non-zero measure) for a one-dimensional uniform knot vector Ξ by n0 ≈ 1/h. Further-
more, let nh denote the cardinality of the space Vh. Note that for Vh with degree pα = p, for
all α ∈ D, and Cp−1 continuity, we have nh = (n0 + p)d ≈ h−d.

Finally, we associate a reference support extension Q̂ to Q̃ through a piecewise affine map
G : Q̂→ Q̃ such that each elementQ′ ∈ Q̃ is the image of a unit hypercube G−1(Q′), where
G−1(Q′) := {G−1(ξ)|ξ ∈ Q′}. For brevity reasons, we omit further details (including the
related spaces) related to the map G and refer the reader to [14].

5.2 Error Estimates
We first recall some results from [14, 94]. By l and m we shall denote integer indices with
0 ≤ l ≤ m ≤ p+ 1.

1. Approximation property of the spline space Bh: The following result is analogous
to the classical result by Bramble and Hilbert.

Lemma 5.1. [14, Lemma 3.1] Given Q ∈ Qh, the support extension Q̃ as defined in
(5.3), and v ∈ Hm, there exists an s ∈ Bh such that

|v − s|Hl(Q̃) � hm−lQ |v|Hm(Q̃). (5.7)

2. Projection operators (quasi-interpolants): Let ΠBh : L2(Ω̃) → Bh be a projection
operator on the spline space Bh, which is defined as follows, see [94, Chapter 12]:

ΠBhv :=
∑
iα∈ND

τiαvB
pD
iα
, ∀v ∈ L2(Ω̃), (5.8)
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where τiα are dual basis functionals defined as

τiαB
pD
i′α

=

{
1 if iα = i′α,

0 otherwise.

The projection operator ΠRh : L2(Ω̃) → Rh on the NURBS space is defined as,
see [14],

ΠRhv :=
ΠBh(wv)

w
, ∀v ∈ L2(Ω̃), (5.9)

where the weight function w is defined in (2.5). Collectively, the projection operators
ΠBh and ΠRh will be denoted by ΠPh . Finally, the projection operator ΠVh : L2(Ω)→
Vh on the physical space is defined as, see [14],

ΠVhv := (ΠPh(v ◦ F)) ◦ F−1, ∀v ∈ L2(Ω). (5.10)

Lemma 5.2. [94, Theorem 12.6] The projection operator ΠPh has the following
properties:

ΠPhs = s, ∀s ∈ Ph (spline preserving), (5.11a)

‖ΠPhv‖L2(Ω̃) � ‖v‖L2(Ω̃), ∀v ∈ L
2(Ω̃) (stability). (5.11b)

3. Interpolation error estimates: The following lemmas concern the interpolation error
estimates.

Lemma 5.3. Let the projection operator ΠBh : L2(Ω̃)→ Bh, defined by (5.8), satisfy
(5.11). Then the following estimate holds for all v ∈ Hm(Ω̃), see [94, Theorem 12.7]
and [14].

|v − ΠBhv|Hl(Ω̃) � hm−l|v|Hm(Ω̃). (5.12)

For the projection operator ΠRh the following result is valid for all v ∈ Hm(Ω̃),
see [14]:

|v − ΠRhv|Hl(Ω̃) � hm−l‖v‖Hm(Ω̃). (5.13)

For the physical domain Ω we have the following result:

Lemma 5.4. [14, Theorem 3.2] For the projection operator ΠVh , the following esti-
mate holds for all v ∈ Hm(Ω).∑

K∈Th

|v − ΠVhv|2Hl(K) �
∑
K∈Th

h
2(m−l)
K

m∑
i=0

‖∇F‖2(i−m)

L∞(F−1(K))|v|
2
Hi(K). (5.14)

Note that the constants in (5.13) and (5.14) depend on the weight function w (and
hence on the shape of the parametric domain).

Now assuming sufficient regularity (for the dual problem), a classical convergence analysis
and the duality argument (Aubin-Nitsche’s trick) easily give the following result.

Theorem 5.5. The solution of the problem (2.16) satisfies the following error estimates

|u− uh|H1(Ω) � hm−1‖u‖Hm(Ω), (5.15)
‖u− uh‖L2(Ω) � h‖u− uh‖H1(Ω). (5.16)
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5.3 The Discrete System
By approximating uh and vh using B-spline (NURBS) basis functions ψi, i = 1, 2, . . . , nh,
where nh = O(h−d), the weak formulation (2.16) is transformed in to a set of linear alge-
braic equations

Āhuh = f̄h, (5.17)

where Āh denotes the stiffness matrix obtained from the bilinear form a(·, ·), uh denotes
the vector of unknown degrees of freedom, and f̄h denotes the right hand side (RHS) vector
from the known data of the problem. In the following Lemma we show the equivalence
of the Euclidean norm and the maximum norm for the B-spline (NURBS) space. In this
section, for ease of notations we assume uniform polynomial degree in each dimension, i.e.
pα = p for all α ∈ D, although the results are easily generalizable for non-uniform order
case.

Lemma 5.6. Let Vh = span{ψi, i = 1, . . . , nh} be the space of B-spline (NURBS) basis

functions. Let v =

nh∑
i=1

viψi, where vi are arbitrary. Then the following relation holds for all

K ∈ Th
‖v‖L∞(K) �

( ∑
supp({ψi})∩K 6=∅

v2
i

)1/2

� ‖v‖L∞(K). (5.18)

Proof. We only consider the non-trivial case, i.e. there exists some i for which vi 6= 0. For
any K ∈ Th, there are at most (p + 1)d basis functions with non-zero support. Let IKh ≡
⊗α∈D{iKα,1, iKα,2, . . . , iKα,p+1} ⊂ {1, 2, . . . , nh} denote the index set for the basis functions
which have non-zero support in K. Also, let v̄K = max

i∈IKh
|vi|. Invoking the non-negativity

and the partition of unity properties of basis functions, we have

‖v‖2
L∞(K) = (sup{|v(x)| : x ∈ K})2 =

(
sup

∣∣ ∑
i∈IKh

viψi
∣∣)2

≤
(

sup
∑
i∈IKh

ψi|vi|
)2 ≤

(
v̄K sup

∑
i∈IKh

ψi
)2

= v̄2
K ≤

∑
i∈IKh

v2
i .

Furthermore, since
∑

i∈IKh
v2
i ≤

∑
i∈IKh

v̄2
K = (p + 1)dv̄2

K , using the stability of B-spline
basis functions [83, 93], we obtain the right hand side inequality with a constant γ1 =
O(p2d2dp).

Using Sobolev inequalities, see [14], and following the standard FEM approach, see e.g. [5],
we obtain the following bounds on the condition number of the matrix Āh.

Lemma 5.7. Let the basis {ψi, i = 1, . . . , nh} satisfy (5.18). Then the following relation
holds

hd � λmin(Āh), λmax(Āh) � hd−2, κ(Āh) � h−2, (5.19)

where κ(Āh) denotes the spectral condition number of Āh.
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From (5.19), we also note that

‖Āh‖ = λmax(Āh) � hd−2, ‖Āh
−1‖ = λmax(Āh

−1
) = 1/λmin(Āh) � h−d, (5.20)

where ‖ · ‖ denotes the spectral norm.

Table 5.1: λmax, λmin, and κ(Āh) for d = 2. Smoothness from C0 to Cp−1.
HHH

HHH

n0 2 4 8 16 32 64

p = 2
λmax 2.1726 2.5607 2.6436 2.6612 2.6653 2.6663

C0 λmin 0.2929 0.2008 0.0726 0.0190 0.0048 0.0012
κ(A) 7.4169 12.755 36.405 140.01 555.00 2215.0
λmax 1.4222 1.4238 1.4896 1.4951 1.4991 1.4997

C1 λmin 0.3556 0.3556 0.2855 0.0756 0.0192 0.0048
κ(A) 4.0000 4.0044 5.2173 19.768 78.142 311.58

p = 3
λmax 2.1297 2.2415 2.2844 2.2961 2.2992 2.2999

C0 λmin 0.0284 0.0210 0.0190 0.0085 0.0021 0.0005
κ(A) 75.111 106.56 120.34 269.99 1075.4 4297.2
λmax 0.8962 1.1705 1.1910 1.2078 1.2129 1.2142

C1 λmin 0.0386 0.0386 0.0386 0.0191 0.0048 0.0012
κ(A) 23.234 30.346 30.878 63.200 252.68 1008.4
λmax 1.0384 1.3698 1.5247 1.5627 1.5720 1.5743

C2 λmin 0.0336 0.0464 0.0522 0.0547 0.0191 0.0048
κ(A) 30.927 29.509 29.192 28.561 82.102 327.22

p = 4
λmax 2.1002 2.1105 2.1174 2.1195 2.1200 2.1202

C0 λmin 0.0024 0.0019 0.0018 0.0017 0.0012 0.0003
κ(A) 881.41 1099.7 1189.1 1214.8 1761.9 7041.3
λmax 0.8752 1.0840 1.1452 1.1606 1.1644 1.1654

C1 λmin 0.0030 0.0030 0.0030 0.0030 0.0021 0.0005
κ(A) 293.90 364.01 384.55 389.72 545.08 2177.9
λmax 0.6780 0.9178 0.9847 1.0059 1.0118 1.0133

C2 λmin 0.0040 0.0048 0.0051 0.0052 0.0047 0.0012
κ(A) 167.95 191.78 193.17 192.21 213.24 842.40
λmax 0.9369 1.3334 1.7182 1.8111 1.8311 1.8357

C3 λmin 0.0028 0.0050 0.0072 0.0081 0.0085 0.0048
κ(A) 339.92 269.23 240.26 222.54 215.00 381.73

In Table 5.1, we present the extremal eigenvalues and the spectral condition number of
Āh for Ω ⊂ R2. We consider all levels of smoothness, i.e. minimum C0 to maximum
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Cp−1 for the polynomial degrees p = 2, 3, 4. For h-refinement (knot insertion), we see that
the extremal eigenvalues satisfy the theoretical estimates (5.19) for the discrete system of
second order elliptic problems, i.e., maximum eigenvalues are constant, and the minimum
eigenvalues are of O(h2) asymptotically, see e.g. [33]. As mentioned earlier, for reducing
the smoothness we insert multiple knots. Note that, due to a high condition number γ1 of the
B-spline basis (see proof of Lemma 5.6), for a given mesh size a higher polynomial degree
adversely affects the condition number of the matrix Āh, see [56].

Before proceeding further, we need to introduce some more notations which are needed for
two(multi)-grid analysis. Let k = 1, . . . , L, denote the level of mesh Thk , and hk be the
associated mesh size. The discrete space of B-spline (NURBS) basis functions at level k
is denoted by Vk. We assume that the meshes are nested and that Vk ⊂ Vk+1. The mesh-
dependent inner product (·, ·)k on Vk is defined by

(v, w)k := hdk

nk∑
i=1

viwi, (5.21)

where vi and wi denote the approximation coefficients of functions v and w, respectively,
with respect to the basis of Vk. The operator Ak : Vk → Vk is defined by

(Akv, w)k = a(v, w), ∀v, w ∈ Vk. (5.22)

Note from (5.21)-(5.22) that Ak = h−dk Āh. In terms of the operator Ak, the discrete system
(5.17) can be equivalently written as

Akuk = fk, (5.23)

where fk ∈ Vk satisfies
(fk, v)k = (f, v), v ∈ Vk. (5.24)

Since Ak is symmetric positive definite (SPD) with respect to (·, ·)k, we define the following
mesh-dependent norm

|||v|||s,k := (Askv, v)
1/2
k , (5.25)

where Ask denotes the sth-power of the SPD operator Ak for any s ∈ R. Note that the norm
||| · |||1,k coincides with the energy norm ‖ · ‖E =

√
a(·, ·). Moreover, |||v|||2,k = (A2

kv, v)
1/2
k =

(Akv, Akv)
1/2
k = |||Akv|||0,k. For the equivalence of the norm ||| · |||0,k with the L2-norm we

have the following result.

Lemma 5.8. For v ∈ Vk we have

‖v‖L2(Ω) � |||v|||0,k � ‖v‖L2(Ω). (5.26)

Proof. Let v =

nk∑
i=1

viψi, where vi are arbitrary. For any K ∈ Th, there are at most (p +

1)d basis functions with non-zero support. Let v̄K and the index set IKh be as defined in
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Lemma 5.6. Also, let v̄ = maxK∈Tk v̄K . Using the positivity and the partition of unity
properties of the basis functions, we know that v|K ≤ v̄K . Therefore, using hK ≤ hk, we
have

‖v‖2
L2(Ω) =

∑
K∈Tk

∫
K

v2 ≤
∑
K∈Tk

hdK v̄
2
K ≤

∑
K∈Tk

hdK
∑
i∈IKh

v2
i

� hdk

nk∑
i=1

v2
i = |||v|||20,k.

For the right hand side inequality we have

|||v|||20,k = hdk

nk∑
i=1

v2
i ≤ (phk + 1)dv̄2 ≤ (p+ 1)dv̄2 � ‖v‖2

L∞(Ω),

where the equivalence constant, say γ2, is O(p2d2dp), see [83, 93]. The result then follows
by using ‖v‖L∞(Ω) ≤ ‖v‖L2(Ω).

Note that the equivalence constant γ2 is of the same order as γ1 in Lemma 5.6, and can be
improved up to O(pd2dp), see [93] for details.

To bound the spectral norm of the matrix Ak we proceed as follows. For SPD matrices
we know that the eigenvalues can be estimated in terms of the Rayleigh quotients. There-
fore, using the norm (5.25), the norm-equivalence relation (5.26), and the inverse inequality
‖v‖1,Ω � h−1‖v‖0,Ω, we obtain

‖Ak‖ = λmax(Ak) = sup
x

(x,Akx)

(x, x)
= sup

0 6=v∈Vk

|||v|||21,k
|||v|||20,k

� sup
06=v∈Vk

‖v‖2
1

‖v‖2
0

� h−2
k . (5.27)

5.4 Two-grid Analysis
In this section we present a two-grid analysis for solving the linear system (5.17). The
purpose of this analysis is to show that the rate of convergence of the two-grid method for
isogeometric linear system of equations is independent of the mesh-size h.

In a two-grid method, the solution of the system (5.17) is first approximated on the fine
grid using a simple stationary iterative method (e.g., Jacobi or Gauss-Seidel), which is often
referred to as relaxation process (or smoother because it smooths the error). Then, since
on a coarser grid the smooth error can be well represented, and computations are cheaper,
the resulting residual equation is transferred to the coarse grid and an error correction (by
solving the residual equation) is computed. This error correction is then transferred back
to the fine grid where it is added to the approximate solution obtained by the relaxation
process. This is called the coarse-grid correction step. Finally, post-relaxation helps to
further improve the fine-grid approximation by smoothing error components that may have
been contaminated during the inter-grid transfer (from the coarse to the fine grid). The
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convergence rate of any two-grid method like this depends on the efficiency of the relaxation
method (smoother) and on the approximation properties of the inter-grid transfer operators,
and on how well smoothing and coarse-grid correction complement each other.

For the two-grid analysis, we shall use the conventional notations h and H to denote the
mesh size at the fine level and the coarse level, respectively. Together with the space of
basis functions V, the SPD operator A, and the linear functional f, these notations shall be
used to reflect the mesh level.

Let Ih be the identity matrix and Gh be the smoothing iteration matrix. Furthermore, let
PH
h : Vh → VH be the orthogonal projection operator (called restriction operator) with

respect to a(·, ·), i.e.

a(PH
h vh, wH) = a(vh, wH), ∀wH ∈ VH . (5.28)

Another projection operator P h
H : VH → Vh, called prolongation operator, is analogously

defined. We know that the convergence of the two-grid method depends on the iteration
matrix [60]

M = Gν2
h (Ih − P h

HA
−1
H PH

h Ah)G
ν1
h , (5.29)

where AH = PH
h AhP

h
H , and ν1 and ν2 denote the number of pre- and post- smoothing steps,

respectively. For simplicity sake (only in analysis), we take ν2 = 0. Then, for ν1 = ν, the
equation (5.29) can be written as [60]

M = (A−1
h − P

h
HA
−1
H PH

h )AhG
ν
h. (5.30)

This break-up in to two separate parts, A−1
h − P h

HA
−1
H PH

h and AhGν
h, greatly helps the con-

vergence analysis, see [60]. The factor A−1
h − P h

HA
−1
H PH

h is related to the approximation
property and the factor AhGν

h is related to the smoothing property.

In the following two sections we study the approximation property of the inter-grid transfer
operators, and the smoothing property of the relaxation method. The h-independent conver-
gence of the two-grid method, i.e.

‖M‖ ≤ ‖A−1
h − P

h
HA
−1
H PH

h ‖‖AhGν
h‖ � η(ν), (5.31)

where ν is defined in (5.43), is then an immediate consequence of (5.34), (5.44) and (5.47).

5.4.1 Approximation Property
To establish the approximation property we first prove the following Lemma, see e.g. [29].

Lemma 5.9. Let vH := PH
h vh. Then the following estimates hold for all vh ∈ Vh.

|||vh − vH |||0,h � h|||vh − vH |||1,h, (5.32a)
|||vh − vH |||1,h � h|||vh|||2,h. (5.32b)
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Proof. Using the triangle inequality, we have

|||vh − vH |||0,h ≤ |||u− vH |||0,h + |||u− vh|||0,h.

The inequality (5.32a) is then easily obtained by the equivalence of discrete norms and their
continuous counter-parts, using (5.16), and noting that H ≤ ch for quasi-uniform nested
meshes. For (5.32b) we proceed as follows.

|||vh − vH |||21,h = a(vh − vH , vh − vH) = a(vh − vH , vh)
= (vh − vH , Ahvh) ≤ |||vh − vH |||0,h|||Ahvh|||0,h
= |||vh − vH |||0,h|||vh|||2,h � h|||vh − vH |||1,h|||vh|||2,h,

which gives the desired result.

Combining (5.32a) and (5.32b) we get

|||vh − vH |||0,h � h2|||vh|||2,h.

Hence, the quality of approximation of vh := A−1
h fh by P h

HvH , where vH := A−1
H PH

h fh, can
also be measured in terms of

|||A−1
h fh − P h

HA
−1
H PH

h fh|||0,h � h2|||A−1
h fh|||2,h = h2|||fh|||0,h. (5.33)

Equivalently, albeit in a different terminology, see [29, 60] for details, the estimate (5.33)
reads

‖A−1
h − P

h
HA
−1
H PH

h ‖ � h2 � ‖Ah‖−1. (5.34)

In Table 5.2, we present the spectral norm ofA−1
h −P h

HA
−1
H PH

h , which confirms the estimate
(5.34).

Table 5.2: Illustration of the approximation property, i.e. h−2‖A−1
h − P h

HA
−1
H PH

h ‖, d = 2.
HH

HHHHp
n0 8 16 32 64

2 2.8125 2.8125 2.8125 2.8125
3 19.1435 18.2758 17.9280 17.8227
4 139.6540 122.87 117.4090 116.4410

5.4.2 Smoothing Property
In this section we recall the smoothing property of the symmetric Gauss-Seidel method. Let
Ah = Dh−Lh−Uh be the decomposition of the matrix Ah, where Dh denotes the diagonal
matrix formed from the diagonal of Ah, and Lh and Uh denote strictly lower and strictly
upper triangular matrices, respectively. From Ah = ATh it follows that Uh = LTh .
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Now consider the symmetric Gauss-Seidel iteration

uν+1
h = Ghu

ν
h +B−1

h fh, ∀ν = 0, 1, . . . . (5.35)

where the preconditioner Bh is given by

Bh = (Dh − Lh)D−1
h (Dh − Uh) = Ah + LhD

−1
h Uh, (5.36)

and the iteration matrix Gh is given by

Gh = (Dh − Uh)−1Lh(Dh − Lh)−1Uh. (5.37a)

It is easy to see that

Gh =
(
Ih − (Dh − Uh)−1Ah

) (
Ih − (Dh − Lh)−1Ah

)
= Ih −

(
(Dh − Lh)D−1

h (Dh − Uh)
)−1

Ah

= Ih −B−1
h Ah. (5.37b)

Note that ifAh is SPD (denoted byAh > 0 since (Ahx, x) > 0 for all x 6= 0) then the matrix
Dh and the preconditioner Bh are SPD, and we have the estimate

0 < Ah ≤ Ah + LhD
−1
h Uh = Bh. (5.38)

Moreover,
(Dh)i,i = h−da(ψi, ψi) � h−d|ψi|21 � h−2, (5.39)

because by using a Poincare type inequality on the domain supp(ψi) of characteristic size
(p + 1)h ∼ h, it can be shown that |ψi|21 � hd−2. Note that the inequality constant also
depends on the stability constant and γ−2

1 . Therefore, using ‖D−1
h ‖ = maxi(Dh)

−1
i,i we get

‖D−1
h ‖ � h2 � ‖Ah‖−1. (5.40)

We also note that ‖Lh‖∞ = maxi
∑
|lij| ≤ cmaxi,j |lij| ≤ cmaxi,j |aij| ≤ c‖Ah‖, where

lij and aij denote the entries of the matrices Lh and Ah, respectively, and c is the maximum
number of non-zero entries per row (which depends on the polynomial degree p). Similarly,
it can be shown that ‖Lh‖1 ≤ c‖Ah‖. Therefore, using ‖ · ‖2 ≤ ‖ · ‖1‖ · ‖∞, we get

‖Uh‖2 = ‖UT
h ‖2 = ‖Lh‖2 ≤ ‖Lh‖1‖Lh‖∞ � ‖Ah‖2. (5.41)

From (5.40) and (5.41) we get

‖Bh‖ = ‖Ah + LhD
−1
h Uh‖ � ‖Ah‖. (5.42)

We are now in a position to prove the following lemma.
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Lemma 5.10. Let
η(ν) :=

νν

(ν + 1)(ν+1)
. (5.43)

The symmetric Gauss-Seidel method (5.35) satisfies the smoothing property

‖AhGν
h‖ � η(ν)‖Ah‖, (5.44)

where the function η(ν)→ 0 as ν →∞.

Proof. Let Xh := B
−1/2
h AhB

−1/2
h . From (5.38) it follows that ρ(Xh) ≤ 1. Also, from [60,

Lemma 6.2.1] we have ‖Xh(Ih − Xh)
ν‖ ≤ η(ν) for 0 ≤ Xh = XT

h ≤ Ih. Hence, using
(5.42) we obtain

‖AhGν
h‖ = ‖BhB

−1
h AhG

ν
h‖

≤ ‖Bh‖‖B−1
h Ah(Ih −B−1

h Ah)
ν‖

� ‖Ah‖‖B−1/2
h Ah(Ih −B−1

h Ah)
νB
−1/2
h ‖

= ‖Ah‖‖Xh(Ih −Xh)
ν‖

≤ η(ν)‖Ah‖, (5.45)

which completes the proof.

For the non-symmetric (forward) Gauss-Seidel method, with Bh = Dh−Lh, we proceed as
follows.

Lemma 5.11. Let ‖ · ‖ be a matrix norm corresponding to a vector norm. Let Gh = Ih −
B−1
h Ah be the iteration matrix of the smoother, and Xh = Ih − 2B−1

h Ah be some matrix.
Assume

‖Xh‖ ≤ 1, and ‖Bh‖ � ‖Ah‖. (5.46)

Then for ν ≥ 1 the following smoothing property holds

‖AhGν
h‖ �

√
2/(πν)‖Ah‖. (5.47)

Proof. We have Ih −Xh = 2B−1
h Ah, and Ih +Xh = 2(Ih −B−1

h Ah). Therefore,

(Ih −Xh)(Ih +Xh)
ν = 2ν+1B−1

h Ah(Ih −B−1
h Ah)

ν = 2ν+1B−1
h AhG

ν
h.

Therefore, AhGν
h = 2−(ν+1)Bh(Ih−Xh)(Ih +Xh)

ν . Now using ‖(Ih−Xh)(Ih +Xh)
ν‖ ≤

2ν+1
√

2/(πν) for some matrix Xh with ‖Xh‖ ≤ 1 (from Reusken’s Lemma [89], see also
[61, Theorem 10.6.8, Lemma 10.6.9]), we get the desire result.

In Table 5.3, we list the spectral norm of AhGν
h for ν = 1, . . . , 4, symmetric Gauss-Seidel

iterations, which confirms the estimate (5.45). To compare the smoothing property of sym-
metric Gauss-Seidel iterations with forward Gauss-Seidel iterations, since the latter is prac-
tically advantageous, in Table 5.4, we list the spectral norm of AhGν

h for ν = 1, . . . , 8,
forward Gauss-Seidel iterations. As one might expect, the effect of one symmetric (one
forward followed by one backward) Gauss-Seidel iteration is almost the same as for two
forward Gauss-Seidel iterations. In fact, we see that for higher p and smaller ν, the forward
Gauss-Seidel iterations perform better than the symmetric version. Due to this reason, we
will use forward Gauss-Seidel iterations in our numerical tests for multigrid convergence.
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Table 5.3: Illustration of the smoothing property, i.e. h2‖AhGν
h‖, for symmetric Gauss-

Seidel method, d = 2
p = 1 p = 2

HH
HHHHν

n0 8 16 32 64 8 16 32 64

1 0.3523 0.3789 0.3889 0.3915 0.1317 0.1534 0.1597 0.1620
2 0.1312 0.1468 0.1516 0.1535 0.0462 0.0596 0.0622 0.0632
3 0.0856 0.0894 0.0929 0.0941 0.0181 0.0346 0.0376 0.0388
4 0.0563 0.0662 0.0669 0.0678 0.0071 0.0266 0.0276 0.0280

p = 3 p = 4
H
HHH

HHν
n0 8 16 32 64 8 16 32 64

1 0.1948 0.1947 0.1947 0.1947 0.3775 0.3878 0.3904 0.3911
2 0.0530 0.0521 0.0520 0.0520 0.0917 0.0918 0.0918 0.0918
3 0.0253 0.0251 0.0251 0.0251 0.0364 0.0360 0.0360 0.0360
4 0.0158 0.0157 0.0163 0.0164 0.0222 0.0222 0.0222 0.0222

5.5 Multigrid Convergence
In this section we summarize some important consequences of the smoothing and approx-
imation properties on the convergence of the classical multigrid algorithm in the setting of
the isogeometric discretization. Since the proofs of the quoted convergence results can be
found in [60], we confine ourselves to a short discussion without repeating any proofs.

For convenience we first consider the symmetric case which is the simplest to analyze. Let

Ak ≡ Ah = ATh > 0, (5.48a)

Pk ≡ P h
H = (PH

h )T , (5.48b)

denote the stiffness matrix and the interpolation matrix at level k, respectively, where 1 ≤
k ≤ L. Further, let the coarse grid matrix Ak−1 satisfy the Galerkin relation

Ak−1 = P T
k AkPk ≡ PH

h AhP
h
H = AH . (5.49)

Moreover, assume that the preconditioner Bk is SPD, i.e.,

Bk ≡ Bh = BT
h , (5.50)

and that the smoothing iteration at level k is defined via the iteration matrix

Gk = Ik −B−1
k Ak. (5.51)

Then the iteration matrix of the classical multigrid algorithm with ν1 pre- and ν2 post-
smoothing steps at level k can be recursively defined via

Mk(ν1, ν2) := Gν2
k

(
Ik − Pk (Ik−1 − (Mk−1(ν1, ν2))γ)A−1

k−1P
T
k Ak

)
Gν1
k , (5.52)



CHAPTER 5. MULTIGRID METHODS IN IGA 88

Table 5.4: Illustration of the smoothing property, i.e. h2‖AhGν
h‖, for forward Gauss-Seidel

method, d = 2
p = 1 p = 2

HH
HHHHν

n0 8 16 32 64 8 16 32 64

1 0.8917 0.9508 0.9674 0.9716 0.3508 0.3817 0.3946 0.3982
2 0.3496 0.3783 0.3888 0.3915 0.1262 0.1525 0.1595 0.1619
3 0.2007 0.2134 0.2206 0.2229 0.0738 0.0861 0.0905 0.0919
4 0.1314 0.1466 0.1516 0.1535 0.0447 0.0599 0.0622 0.0632
5 0.1065 0.1138 0.1153 0.1168 0.0260 0.0447 0.0477 0.0481
6 0.0862 0.0895 0.0930 0.0941 0.0147 0.0348 0.0377 0.0389
7 0.0697 0.0760 0.0783 0.0788 0.0082 0.0305 0.0323 0.0324
8 0.0561 0.0666 0.0671 0.0678 0.0045 0.0267 0.0277 0.0281

p = 3 p = 4
HHHH

HHν
n0 8 16 32 64 8 16 32 64

1 0.4897 0.4918 0.4945 0.4951 0.6895 0.7160 0.7218 0.7230
2 0.1758 0.1731 0.1729 0.1729 0.2766 0.2833 0.2843 0.2845
3 0.0868 0.0856 0.0854 0.0854 0.1240 0.1247 0.1257 0.1260
4 0.0510 0.0502 0.0501 0.0501 0.0743 0.0730 0.0730 0.0730
5 0.0342 0.0333 0.0332 0.0332 0.0486 0.0483 0.0483 0.0483
6 0.0249 0.0243 0.0242 0.0242 0.0349 0.0345 0.0345 0.0345
7 0.0193 0.0190 0.0190 0.0194 0.0269 0.0263 0.0263 0.0263
8 0.0159 0.0156 0.0163 0.0164 0.0214 0.0212 0.0211 0.0211

where M0(ν1, ν2) = 0, cf., [60, Lemma 7.1.4]. Note that the choices γ = 1 and γ = 2 in
(5.52) correspond to the classical V-cycle and W-cycle multigrid methods, respectively.

5.5.1 W-cycle Convergence
Consider the iteration matrix (5.52) of the W-cycle method, i.e., the case γ = 2, Further,
for convenience, let ν1 = ν2 = ν/2 on all levels k where 1 ≤ k ≤ L. Then the following
convergence result holds true, cf. [60, Theorem 7.2.3].

Theorem 5.12 (Convergence of W-cycle). Let (5.48)-(5.51) hold, and the approximation
property (5.34) be satisfied on all levels k = 1, 2, . . . , L with a constant cA, i.e.,

‖A−1
k − PkA

−1
k−1P

T
k ‖ ≤ cA‖Ak‖−1. (5.53)

If cA > 1 and ν ≤ (cA − 1) (1− (1− 1/cA)2ν), the contraction number of the W-cycle
method (γ = 2) with ν/2 pre- and ν/2 post-smoothing steps can be estimated by

‖Mk(ν/2, ν/2)‖ ≤ (1− 1/cA)ν < 1. (5.54)



CHAPTER 5. MULTIGRID METHODS IN IGA 89

Otherwise, the smallest root ζ := ζ(ν) of ζ = η(ν) (ζ2 + (1− ζ2)cA)
ν+1 satisfies

‖Mk(ν/2, ν/2)‖ ≤ ζ(ν) (5.55)

for all k ≥ 0.

5.5.2 V-cycle Convergence
Next, consider the iteration matrix (5.52) of the V-cycle method, i.e., the case γ = 1. For
the case of equal number of pre- and post-smoothing steps, i.e., ν1 = ν2 = ν/2, we have the
following convergence estimate for the V-cycle, cf. [60, Theorem 7.2.2].

Theorem 5.13 (Convergence of V-cycle). Under the assumptions of Theorem 5.12 the V-
cycle method (γ = 1) is convergent. In the case ν1 = ν2 = ν/2 its contraction number can
be estimated by

‖Mk(ν/2, ν/2)‖ ≤ cA
cA + ν

< 1. (5.56)

For the more general case of ν1 pre- and ν2 post-smoothing steps, see [60, Theorem 7.2.5].
The numerical results in the next section indicate, however, that these estimates are some-
what pessimistic, and that one obtains better convergence rates in practice.

5.6 Numerical Results for Multigrid Convergence
To test the multigrid solvers’ performance, we consider the following test problems, whose
discretizations are performed using the Matlab toolbox GeoPDEs [48, 49].

Example 5.1. Let Ω = (0, 1)2. Together withA = I , and homogeneous Dirichlet boundary
conditions, the right hand side function f is chosen such that the analytical solution of the
problem is given by u = sin(πx) sin(πy).

Example 5.2. Let Ω = (0, 1)2. Together withA = x5 exp(10y)I , and homogeneous Dirich-
let boundary conditions, the right hand side function f is chosen such that the analytical
solution of the problem is given by u = sin(πx) sin(πy).

Example 5.3. The domain is chosen as a quarter annulus in the first Cartesian quadrant
with inner radius 1 and outer radius 2, see [48]. Together with A = I , and homogeneous
Dirichlet boundary conditions, the right hand side function f is chosen such that the analytic
solution is given by u = (x2 + y2 − 3

√
x2 + y2 + 2) sin(2 arctan(y/x)).

Example 5.4. Let Ω = (0, 1)3. Together withA = I , and homogeneous Dirichlet boundary
conditions, the right hand side function f is chosen such that the analytical solution of the
problem is given by u = sin(πx) sin(πy) sin(πz).
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Furthermore, the operator PH
h is chosen such that the coarse basis functions are exactly

represented in the space of fine basis functions. At the finest level (largest problem size),
the parametric domain is divided into n0 equal elements in each direction. The initial guess
for (iteratively) solving the linear system of equations is chosen as a random vector. Let
r0 denote the initial residual vector and rit denote the residual vector at a given multigrid
iteration nit. The following stopping criteria is used

‖rit‖
‖r0‖

≤ 10−8. (5.57)

The average convergence factor reported in the following tables is defined as ρ =
(‖rit‖
‖r0‖

)1/nit

.

In the tables, by M we collectively denote the multigrid method which is specified by the
choice of the cycle, i.e. V - or W - or F - cycle. Moreover, p, ν, and L denote the polyno-
mial degree, number of pre- and post- smoothing steps, and the number of mesh refinement
levels, respectively. For all the test cases we take the polynomial degree p = 2, 3, 4.

For Example 5.1, since the geometry mapping is identity, it suffices to choose the basis func-
tions as B-splines. To evaluate the integrals computationally, we use the Gauss-quadrature
formulas with number of quadrature points nq = p + 1 in each direction. This number is
sufficient since the Jacobian from the mapping is constant.

We first present the ν-dependence of two-grid V -cycle method in Table 5.5. We see that for
a fixed polynomial degree p and a fixed mesh size h, the number of iterations nit of two-grid
V -cycle inversely depends on the number of smoothing steps ν.
To study the effect of refinement levels on the convergence of V -cycle method, in Table 5.6,
we present the average convergence factor ρ and number of iterations nit against the number
of refinement levels for a fixed h = 1/256, and with C0 and Cp−1 smoothness. As predicted
by the theoretical estimates on the optimality of the V -cycle method, it is not surprising to
see that ρ and nit are practically same for all refinement levels. We do not repeat this study
for W - and F - cycles, which are also of optimal order and their results for L = 2, 4 are
presented in the next Table.
In Table 5.7, we present the average convergence factor ρ and number of iterations nit for
V -, W -, and F -cycle multigrid methods. The mesh size varies from 1/8 to 1/64 in each
direction. We consider both the extreme cases of smoothness, namely, C0 and Cp−1. As all
the cycles are of optimal order, to present a comparative study of all the cases in a concise
manner, we consider here only L = 2, 4. We make the following observations.

• For all polynomial degrees, all the approaches exhibit optimal convergence with re-
spect to the mesh refinement, which confirm the theoretical estimates (5.31) for two-
grid method, and (5.54)-(5.56) for multigrid methods.

• For a fixed mesh size, since the condition number rapidly increases with increasing
polynomial degree, this affects the two-(multi-)grid convergence.

• ForC0 smoothness, for any given polynomial degree, the convergence factor is slower
(and thus requires more number of iterations) as compared to the problem with Cp−1
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Table 5.5: Poisson problem in a unit square: ν-dependence of two-grid V -cycle
H
HHH

HHν
n0 8 16 32 64

ρ nit ρ nit ρ nit ρ nit

p = 2
1 0.1639 11 0.1869 11 0.1819 11 0.1833 11
2 0.0286 6 0.0320 6 0.0338 6 0.0350 6
4 0.0010 3 0.0009 3 0.0010 3 0.0011 3
8 1.0e-06 2 3.0e-06 2 3.0e-06 2 3.0e-06 2

p = 3
1 0.6052 37 0.5864 35 0.5987 36 0.6039 37
2 0.3659 19 0.3494 18 0.3716 19 0.3584 18
4 0.1197 9 0.1195 9 0.1385 10 0.1278 9
8 0.0212 5 0.0172 5 0.0179 5 0.0180 5

p = 4
1 0.8790 143 0.8645 127 0.8586 121 0.8598 122
2 0.7763 73 0.7611 68 0.7418 62 0.7392 61
4 0.5487 31 0.5614 32 0.5611 32 0.5502 31
8 0.3293 17 0.3281 17 0.3069 16 0.3043 16

Table 5.6: Poisson problem in a unit square: V -cycle convergence, nit (and ρ) versus L,
h = 1/256; ν = 2

C0 Cp−1

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4
L ρ nit ρ nit ρ nit ρ nit ρ nit ρ nit

2 0.0349 6 0.4051 21 0.8143 90 0.0358 6 0.3569 18 0.7420 62
3 0.0349 6 0.4050 21 0.8144 90 0.0358 6 0.3569 18 0.7420 62
4 0.0349 6 0.4050 21 0.8144 90 0.0358 6 0.3569 18 0.7420 62
5 0.0349 6 0.4050 21 0.8144 90 0.0358 6 0.3569 18 0.7420 62
6 0.0349 6 0.4050 21 0.8144 90 0.0358 6 0.3569 18 0.7420 62
7 0.0349 6 0.4050 21 0.8144 90 0.0358 6 0.3569 18 0.7420 62
8 0.0349 6 0.4050 21 0.8144 90 0.0358 6 0.3569 18 0.7420 62

smoothness. This phenomenon, which is more prominent for higher polynomial de-
grees, may be attributed to an increased problem size.

• Since the V -cycle method is optimal, we see that the performance of the W -cycle for
four-grids, i.e. L = 4, is only as good as the V -cycle method. Moreover, there is a
consistent improvement of a factor about 2/3 in the number of iterations in the F -cycle
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Table 5.7: Poisson problem in a unit square: Multigrid convergence, ν = 2
PPPPPPPPPM(L)

n0 8 16 32 64

ρ nit ρ nit ρ nit ρ nit

p = 2, C0

V (2) 0.0236 5 0.0337 6 0.0340 6 0.0341 6
V (4) 0.0236 5 0.0338 6 0.0340 6 0.0341 6
W (4) 0.0236 5 0.0337 6 0.0340 6 0.0341 6
F (4) 0.0039 4 0.0062 4 0.0062 4 0.0063 4

p = 2, Cp−1

V (2) 0.0290 6 0.0351 6 0.0347 6 0.0356 6
V (4) 0.0290 6 0.0351 6 0.0347 6 0.0356 6
W (4) 0.0290 6 0.0351 6 0.0347 6 0.0356 6
F (4) 0.0049 4 0.0066 4 0.0065 4 0.0067 4

p = 3, C0

V (2) 0.3762 19 0.3922 20 0.4068 21 0.4043 21
V (4) 0.3761 19 0.3922 20 0.4067 21 0.4043 21
W (4) 0.3762 19 0.3922 20 0.4068 21 0.4043 21
F (4) 0.2335 13 0.2506 14 0.2595 14 0.2571 14

p = 3, Cp−1

V (2) 0.3589 18 0.3468 18 0.3465 18 0.3546 18
V (4) 0.3589 18 0.3468 18 0.3465 18 0.3546 18
W (4) 0.3589 18 0.3468 18 0.3465 18 0.3546 18
F (4) 0.2150 12 0.2042 12 0.2040 12 0.2111 12

p = 4, C0

V (2) 0.8101 88 0.8145 90 0.8122 89 0.8139 90
V (4) 0.8103 88 0.8147 90 0.8122 89 0.8140 90
W (4) 0.8103 88 0.8147 90 0.8122 89 0.8139 90
F (4) 0.7299 59 0.7353 60 0.7315 59 0.7343 60

p = 4, Cp−1

V (2) 0.7494 64 0.7679 70 0.7278 58 0.7387 61
V (4) 0.7493 64 0.7679 70 0.7278 58 0.7387 61
W (4) 0.7493 64 0.7679 70 0.7278 58 0.7387 61
F (4) 0.6496 43 0.6736 47 0.6220 39 0.6358 41

as compared to the number of V -cycle iterations. This compensates the additional
computational cost in F -cycle to a good extent.

We now study the performance of V -cycle multigrid solver on a multi-patch geometry. This
simple model case is produced by p times repetition of the knot at h = 1/2 (in both direc-
tions). Thereby, we get four patch fully-conforming geometry which has C0 smoothness at
h = 1/2 interfaces and Cp−1 smoothness elsewhere. The coarsest mesh is fixed with n0 = 4
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elements in each direction and for both the refinements (2-level and 4-level). The results
presented in Table 5.8 show that the convergence behavior fits nicely between the conver-
gence behavior for global C0 and Cp−1 smoothness, with a bias towards Cp−1 smoothness.

Table 5.8: Poisson problem in a unit square: V -cycle convergence on a multi-patch geome-
try, ν = 2

ρ nit ρ nit ρ nit ρ nit

L = 2
HH

HHHHp
n0 8 16 32 64

2 0.0217 5 0.0284 6 0.0353 6 0.0343 6
3 0.3925 20 0.3790 19 0.3727 19 0.3651 19
4 0.8082 87 0.7756 73 0.7558 66 0.7485 64

L = 4
H
HHH

HHp
n0 32 64 128 256

2 0.0353 6 0.0343 6 0.0352 6 0.0357 6
3 0.3727 19 0.3651 19 0.3578 18 0.3577 18
4 0.7558 66 0.7485 64 0.7423 62 0.7448 63

We now consider Example 5.2 with variable coefficients. In Table 5.9, we present the results
for V -cycle multigrid convergence for p = 2, 3, 4 and L = 4. We take the number of
quadrature points nq = p + 2 in both the directions so that the integrals with respect to x-
variable are evaluated exactly. However, due to the exponential function, exact integration
is not possible with respect to y-variable. We note that the results are qualitatively same as
those with constant coefficients case (see Table 5.7).
We now consider Example 5.3 with curved boundary. The geometry for this example is
represented by NURBS basis functions of degree 1 in the radial direction and of degree
2 in the angular direction, see [48]. Since the Jacobian of the geometry mapping is no
more a constant, for exact integral evaluations it does not suffice to take the number of
Gauss quadrature points nq = p + 1 in each direction (which is clear from simple heuristic
arguments). Therefore, we choose nq = p + 2. From numerical experiments, it is found
that this is sufficient (for up to p = 4) to keep the approximation error (5.34) smaller than
the L2-norm of the discretization error (which otherwise would contaminate the accuracy of
two-(multi-)grid solver). Note however that this is not detrimental to the optimality of any of
the methods, which can be seen from the variable coefficients case presented in Table 5.9.
In Table 5.10, we present the ν-dependence of two-grid V -cycle method. In Table 5.11,
we present the convergence factor and the number of iterations for V -, W -, and F - cycle
multigrid methods. The mesh size again varies from 1/8 to 1/64 in each direction, and both
the extreme cases of smoothness, namely, C0 and Cp−1 are considered. All the results are
qualitatively similar to that of Example 5.1 with square domain.
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Table 5.9: Variable coefficients elliptic problem in a unit square: V -cycle convergence,
ν = 2; L = 4

H
HHH

HHp
n0 8 16 32 64

ρ nit ρ nit ρ nit ρ nit

C0

2 0.0177 5 0.0241 5 0.0290 6 0.0322 6
3 0.3162 16 0.3872 20 0.3887 20 0.3910 20
4 0.8005 83 0.7977 82 0.8104 88 0.8121 89

Cp−1

2 0.0342 6 0.0199 5 0.0306 6 0.0357 6
3 0.3067 16 0.3737 19 0.3556 18 0.3516 18
4 0.8146 90 0.7870 77 0.7257 58 0.7260 58

Table 5.10: Poisson problem in a quarter annulus: ν-dependence of two-grid V -cycle
HHH

HHHν
n0 8 16 32 64

ρ nit ρ nit ρ nit ρ nit

p = 2
1 0.1926 12 0.2823 15 0.3052 16 0.3319 17
2 0.0371 6 0.0810 8 0.0931 8 0.1126 9
4 0.0014 3 0.0066 4 0.0087 4 0.0136 5
8 3.0e-06 2 4.3e-05 2 7.5e-05 2 2.3e-04 3

p = 3
1 0.5858 35 0.6118 38 0.5977 36 0.6036 37
2 0.3477 18 0.3741 19 0.3575 18 0.3670 19
4 0.1196 9 0.1437 10 0.1277 9 0.1383 10
8 0.0159 5 0.0206 5 0.0181 5 0.0191 5

p = 4
1 0.8703 133 0.8594 122 0.8604 123 0.8617 124
2 0.7564 66 0.7384 61 0.7408 62 0.7425 62
4 0.5767 34 0.5475 31 0.5488 31 0.5513 31
8 0.3331 17 0.3046 16 0.3054 16 0.3083 16

Finally, we consider the three-dimensional problem described in Example 5.4. The results
for V -cycle multigrid method are presented in Table 5.12, which confirm the h-independence
and optimality of the solver. The entries marked by † represent the cases where the results
could not be obtained due to limitation on computational resources. As shown by the results
of two-dimensional examples, the W - and F -cycle methods will not offer any improvement
in convergence results, and are thus not repeated here.
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Table 5.11: Poisson problem in a quarter annulus: Multigrid convergence, ν = 2
PPPPPPPPPM(L)

n0 8 16 32 64

ρ nit ρ nit ρ nit ρ nit

p = 2, C0

V (2) 0.0716 7 0.0977 8 0.0985 8 0.1071 9
V (4) 0.0716 7 0.0976 8 0.0985 8 0.1071 9
W (4) 0.0716 7 0.0977 8 0.0985 8 0.1071 9
F (4) 0.0189 5 0.0314 6 0.0325 6 0.0346 6

p = 2, Cp−1

V (2) 0.0371 6 0.0810 8 0.0931 8 0.1126 9
V (4) 0.0371 6 0.0810 8 0.0931 8 0.1126 9
W (4) 0.0371 6 0.0810 8 0.0931 8 0.1126 9
F (4) 0.0071 4 0.0225 5 0.0302 6 0.0378 6

p = 3, C0

V (2) 0.3904 20 0.4046 21 0.3977 20 0.4046 21
V (4) 0.3903 20 0.4045 21 0.3975 20 0.4045 21
W (4) 0.3903 20 0.4046 21 0.3976 20 0.4046 21
F (4) 0.2415 13 0.2573 14 0.2556 14 0.2574 14

p = 3, Cp−1

V (2) 0.3477 18 0.3741 19 0.3575 18 0.3670 19
V (4) 0.3469 18 0.3741 19 0.3575 18 0.3670 19
W (4) 0.3472 18 0.3741 19 0.3575 18 0.3670 19
F (4) 0.2046 12 0.2311 13 0.2138 12 0.2246 13

p = 4, C0

V (2) 0.8158 91 0.8184 92 0.8232 95 0.8230 95
V (4) 0.8145 90 0.8183 92 0.8229 95 0.8228 95
W (4) 0.8145 90 0.8183 92 0.8229 95 0.8228 95
F (4) 0.7351 60 0.7413 62 0.7461 63 0.7459 63

p = 4, Cp−1

V (2) 0.7564 66 0.7384 61 0.7408 62 0.7421 62
V (4) 0.7582 67 0.7384 61 0.7408 62 0.7422 62
W (4) 0.7581 67 0.7384 61 0.7408 62 0.7422 62
F (4) 0.6609 45 0.6355 41 0.6368 41 0.6411 42

For all the examples, we also tested the multigrid convergence for intermediate continuities
Cr, i.e. 0 < r < p − 1, and found that the results lie nicely between the results of C0

and Cp−1 continuities. However, they are not reported here for brevity reasons. We also
remark the following on the numerical results of high polynomial degrees and where the
exact solution has reduced regularity.

Remark 5.14. It is known from finite elements literature that standard h- multigrid, which
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Table 5.12: Poisson problem in a unit cube: V -cycle multigrid convergence, ν = 2
H
HHH

HHp
n0 8 16 32

ρ nit ρ nit ρ nit

C0, L = 2
2 0.3578 18 0.4073 21 0.4066 21
3 0.8221 147 0.8929 163 0.8947 166
4 0.9879 1514 0.9881 1540 † †

Cp−1, L = 2
2 0.2874 15 0.3383 17 0.3692 19
3 0.8582 121 0.8403 106 0.8431 108
4 0.9728 669 0.9751 731 0.9745 713

C0, L = 4
2 0.3685 19 0.3977 20 0.4076 21
3 0.8891 157 0.8923 162 0.8942 165
4 0.9877 1493 0.9881 1543 † †

Cp−1, L = 4
2 0.3339 17 0.2356 18 0.3700 19
3 0.8572 120 0.8556 110 0.8422 112
4 0.9772 797 0.9738 695 0.9740 698

is the focus of this chapter, is not suited for high polynomial degree. Most of the literature is
for first and second degree polynomials only. This fact is related to the smoothing properties
of the classical smoothers like Jacobi, Gauss-Seidel or Richardson methods. These methods
work effectively only when the error function is oscillatory, whereas the error function gets
smoother with increasing polynomial degree. For high polynomial degree, either p-multigrid
should be used or different smoothers should be devised. Nevertheless, since isogeometric
method in engineering applications mostly utilize second or third degree polynomials, in
this study we considered polynomial degree up to p = 4.

Remark 5.15. In the presence of discontinuities in the coefficients, or due to the irregular
geometry (e.g. L-shaped domain), the exact solution of elliptic problems has reduced regu-
larity and lies only in H1+ε(Ω), where 0 < ε < 1 depends on the strength of the singularity.
Firstly, in such cases the single-patch isogeometric approach with global continuity r > 0
(for p > 1) is not so attractive. Secondly, the standard (geometric) multigrid methods are
not tailored for such general problems and need special treatment. The reduced regularity
negatively affects the approximation property of Lemma 5.9, and thus the overall conver-
gence behavior of solver. Though specific problems can be treated to obtain optimal order
convergence (which involves more technical results). For such problems, the multi-patch
techniques, such as the tearing and interconnecting approach of Kleiss et al. [70] or BDDC
approach of Beirao et al. [22], are more suitable where the multigrid solver can be used
within each sub-patch.
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5.7 Conclusions
We have presented multigrid methods, with V -, W - and F - cycles, for the linear system
arising from the isogeometric discretization of the scalar second order elliptic problems. For
a given polynomial degree p, all multigrid cycles are of optimal complexity with respect to
the mesh refinement. Despite that the condition number of the stiffness matrix grows very
rapidly with the polynomial degree, these excellent results exhibit the power of multigrid
methods. Nevertheless, this study can only be regarded as a first step towards utilizing the
power of multigrid methods in isogeometric analysis.



Chapter 6

Algebraic Multilevel Preconditioning in
Isogeometric Analysis: Construction and
Numerical Studies

In this chapter, we discuss the construction of linear solvers which provide not only h-
independent convergence rates but also exhibit (almost) independence on p. The presented
optimal order solvers are based on algebraic multilevel iteration (AMLI) methods.
AMLI methods were introduced by Axelsson and Vassilevski in a series of papers [7–10].
The AMLI methods, which are recursive extensions of two-level multigrid methods for
FEM [6], have been extensively analyzed in the context of conforming and nonconforming
FEM (including discontinuous Galerkin methods). For a detailed systematic exposition of
AMLI methods, see the monograph [73, 100]. To reduce the overall complexity of AMLI
methods (to achieve optimal computational complexity), various stabilization techniques
can be used. In the original work [7, 8], the stabilization was achieved by employing prop-
erly shifted and scaled Chebyshev polynomials. This approach requires the computation of
polynomial coefficients which depends on the bounds of the eigenvalues of the precondi-
tioned system. Alternatively, some inner iterations at coarse levels can be used to stabilize
the outer iterations, which lead to parameter-free AMLI methods [9,10,72,85]. These meth-
ods utilize a sequence of coarse-grid problems that are obtained from repeated application
of a natural (and simple) hierarchical basis transformation, which is computationally advan-
tageous. Moreover, the underlying technique of these methods often requires only a few
minor adjustments (mainly two-level hierarchical basis transformation) even if the underly-
ing problem changes significantly.

6.1 Construction of Hierarchical Spaces
The hierarchical basis techniques result in splittings in which the angle between the coarse
space and its hierarchical complement is uniformly bounded with respect to the mesh size.
We recall from Section 2.6, the following two-level hierarchical basis representation for

98
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stiffness matrix at fine level

Â(k) =

[
Â

(k)
11 Â

(k)
12

Â
(k)
21 Â

(k)
22

]
=

[
Â

(k)
11 Â

(k)
12

Â
(k)
21 A(k−1)

]
, (6.1)

where Â(k)
22 represents the matrix corresponding to coarse basis functions and Â(k)

11 represents
the matrix corresponding to its hierarchical complement, and 1 ≤ k ≤ L. Recall from
Section 4.2, for B-splines we have the following transformations

Â
(k)
22 = Gp,r

k Ak(Gp,r
k )T , (6.2)

respectively. For hierarchical complementary spaces, let T p,rk be the matrix such that

Â
(k)
11 = T p,rk Ak(T p,rk )T . (6.3)

Here the matrix T p,rk is a hierarchical complementary transfer operator, which transfers fine
basis functions to a set of hierarchical complementary basis functions. The remaining two
blocks of the hierarchical matrix Â(k) can be obtained by the following relations

Â
(k)
12 = T p,rk A(k)(Gp,r

k )T ,

Â
(k)
21 = Gp,r

k A(k)(T p,rk )T .
(6.4)

Note that similar results hold for Rp,r
k .

To construct T p,rk efficiently, the following points are important.

1. The basis for hierarchical complementary space should be locally supported. In other
words, the block Â11 should be sparse and nicely structured.

2. The condition number of the Â(k)
11 block should be independent of mesh size.

3. The CBS constant γ, see (6.9), should be bounded away from one, i.e. the minimum
generalized eigenvalue of block Â(k)

22 with respect to the Schur complement should be
greater than 1/4 for ν = 2 and 1/9 for ν = 3.

The construction of T p,rk , based on the linear combination of fine basis functions, is not
unique. Based on the above mentioned guidelines, a representation of a complementary ba-
sis function should not involve several fine basis functions because it will cause less sparse
structure of matrix T p,rk . Based on our extensive study with different choices of linear com-
binations satisfying the above requirements, we present two choices for T p,rk , for p = 2, 3, 4
and for extreme cases of smoothness, namely Cp−1 and C0.
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6.1.1 Cp−1-continuity
First choice of T p,rk :

We have the following matrix representation of hierarchical complementary space for
p = 2 with Cp−1-continuity, and for k ≤ L− 1.

T 2,p−1
k+1 =



0 1 −1 0 0 0
0 0 0 1 −1 0

0 1 −1 0 0 0
0 0 0 1 −1 0

.. ..

.. ..
0 1 −1 0 0 0
0 0 0 1 −1 0


.

The above matrix has the block structure with blocks, say M2,p−1
1 . The blocks are

connected in such a way that if a block ends at ith row and jth column of T 2,p−1
k+1 then

the next block will start at (i+1, j−1)th position of T 2,p−1
k+1 . In general, for p = 2, 3, 4,

we write the following block form of T p,p−1
k+1 with blocks Mp,p−1

1

T p,p−1
k+1 =


Mp,p−1

1

Mp,p−1
1

..

Mp,p−1
1

Mp,p−1
1

 , (6.5)

where

M2,p−1
1 =

[
0 1 −1 0 0 0
0 0 0 1 −1 0

]
,

M3,p−1
1 =

[
0 −1/2 3/4 −1/2 0 0 0
0 0 0 −1/2 3/4 −1/2 0

]
,

and

M4,p−1
1 =

[
0 1/2 −1 1 −1/2 0 0 0
0 0 0 1/2 −1 1 −1/2 0

]
,

respectively. The blocks are connected in such a way that if a block ends at ith row
and jth column of T p,p−1

k+1 then the next block will start at (i+1, j− (p−1))th position
of T p,p−1

k+1 .

Second choice of T p,rk :

For second choice we give the following block matrix. For k ≤ L− 1

T p,p−1
k+1 =


Mp,p−1

2

Mp,p−1
2

..

Mp,p−1
2

Mp,p−1
2

 , (6.6)
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where the blocks Mp,p−1
2 are given by

M2,p−1
2 =

[
−1/2 1 −1 1/2 0 0

0 0 −1/2 1 −1 1/2

]
,

M3,p−1
2 =

[
1/8 −1/2 3/4 −1/2 1/8 0 0
0 0 1/8 −1/2 3/4 −1/2 1/8

]
,

and

M4,p−1
2 =

[
1/4 1/2 −1 1 −1/2 −1/4 0 0
0 0 1/4 1/2 −1 1 −1/2 −1/4

]
,

respectively, and the blocks are connected in a similar way as in first choice.

6.1.2 C0-continuity
First choice of T p,rk :

For C0 continuous basis functions, we give the following matrix representation of
hierarchical complementary spaces. For p = 2, and for k ≤ L− 1, we have

T 2,0
k+1 =



0 1 −1/4 0 0
0 0 1 −1/4 0

0 1 −1/4 0 0
0 0 1 −1/4 0

.. ..

.. ..
0 1 −1/4 0 0
0 0 1 −1/4 0


.

The above matrix has the block structure and the blocks are connected in such a way
that if a block ends at ith row and jth column of T 2,0

k+1 then the next block will start at
(i + 1, j)th position of T 2,0

k+1. In general, for p = 2, 3, 4, we can write the following
hierarchical complementary operators

T p,0k+1 =


Mp,0

1

Mp,0
1

..

Mp,0
1

Mp,0
1

 , (6.7)

where

M2,0
1 =

[
0 1 −1/4 0 0 0
0 0 0 −1/4 1 0

]
,

M3,0
1 =

 0 1 −1 0 0 0 0
0 0 0 1/2 −1/2 0 0
0 0 0 0 1 −1 0

 ,
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and

M4,0
1 =


0 −2/3 5/4 0 0 0 0 0 0
0 0 −2/3 5/4 0 0 0 0 0
0 0 0 0 0 5/4 −2/3 0 0
0 0 0 0 0 0 5/4 −2/3 0

 ,
respectively.

Second choice of T p,rk :

Another choice for T p,rk+1 (where k ≤ L − 1) for C0 continuous basis functions is
obtained by choosing the following block matrix

T p,0k+1 =


Mp,0

2

Mp,0
2

..

Mp,0
2

Mp,0
2

 , (6.8)

where

M2,0
2 =

[
−1/4 1 −1/4 0 0

0 0 −1/4 1 −1/4

]
,

M3,0
2 =

 0 −1/2 1/2 0 0 0 0
0 0 −1/4 1/10 −1/4 0 0
0 0 0 0 1/2 −1/2 0

 ,
and

M4,0
2 =


0 −5/9 1 −5/9 0 0 0 0 0
0 0 −5/9 1 −5/9 0 0 0 0
0 0 0 0 −5/9 1 −5/9 0 0
0 0 0 0 0 −5/9 1 −5/9 0

 ,
respectively, and blocks are connected in a similar way as in first choice

Remark 6.1. All the above operators are defined for one-dimension. The higher dimen-
sional operators are obtained via tensor product.

6.2 Numerical Study of CBS Constant
The construction of optimal preconditioners in the framework of AMLI methods is based
upon a theory in which the constant γ in the strengthened Cauchy-Bunyakowski-Schwarz
(CBS) inequality plays a key role. The CBS constant measures the cosine of the abstract
angle between the coarse space and its hierarchical complementary space. The general idea
is to construct a proper splitting by means of a hierarchical basis transformation.
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In the hierarchical bases context we denote by V1 and V2 subspaces of the space Vh . The
space V2 is spanned by the coarse-space basis functions and V1 is the complement of V2 in
Vh , i.e., Vh is a direct sum of V1 and V2:

Vh = V1 ⊕ V2.

Let vi ∈ Vi, i = 1, 2. The CBS constant measures the strength of the off-diagonal blocks
in relation to the diagonal blocks (see, (6.1)) and can be defined as the minimal γ satisfying
the strengthened CBS inequality

|vT1 Â12v2| ≤ γ
{

(vT1 Â11v1)(vT2 Â22v2)
}1/2

. (6.9)

A detailed exposition of the role of this constant can be found in [50]. The CBS constant
can be estimated locally also. Let us assume that

Â =
∑
E∈E

RT
EAERE, v =

∑
E∈E

RT
EvE, (6.10)

where AE are symmetric positive semidefinite local matrices (macro element matrices),
E is some index set, and the summation is understood as assembling. The global splitting
naturally induces the two-by-two block representation of the local matrixAE and the related
vector vE , namely,

AE =

[
AE:11 AE:12

AE:21 AE:22

]
, vE =

[
vE:1

vE:2

]
.

The local CBS constant corresponding to AE satisfies the following

|vTE:1AE:12vE:2| ≤ γE
{

(vTE:1AE:11vE:1)(vTE:2AE:22vE:2)
}1/2

. (6.11)

As it is shown in [73], the relation between global γ and local γE is given by

γ ≤ maxE∈EγE < 1. (6.12)

In the framework of isogeometric analysis, the local analysis for CBS constant for C0-
continuous basis functions can be done as in finite element analysis. However, for Cp−1-
continuous basis functions, it is not straightforward. The extended support of B-splines
(NURBS) creates dimension mismatch for macro element in the fine space and its corre-
sponding hierarchical space, i.e., for the macro element the number of basis function in fine
space is not identical with the number of basis functions in its hierarchical space. As ex-
plained for p = 2 in Fig. 6.1 and Fig. 6.2, for macro element the total number of basis
functions in fine space are 4, while in its corresponding hierarchical space the total number
of basis functions are 6. For local analysis with Cp−1 continuous basis functions further
investigations are needed.
In Tables 6.1-6.4, we provide the global γ, and the Tables 6.5-6.8 the condition number of
Â11 block (corresponding to hierarchical complementary space) is presented. In Table 6.1

and Table 6.3, for p = 4, (C0), the value of γ2 is not less than
3

4
, but still we obtain optimal

complexity with W -cycle. The numerical results show that the condition number of Â11

block is independent of h. In Table 6.7 and Table 6.8, the entries marked by ∗ represent the
cases where the results could not be obtained due to limitation on computational resources.
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Figure 6.1: B-spline basis functions for p = 2 on a unit interval with 8 subdivisions. The
pictures from top to bottom represent basis functions at fine level, coarse level, the hier-
archical complement of coarse level, and the direct sum of coarse basis function and its
hierarchical complement respectively.
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Figure 6.2: Dimension mismatch of basis function for macro element in fine space and its
corresponding hierarchical space. For macro element the coarse space and its hierarchi-
cal complementary space have 3 basis functions each, which results in 6 basis function in
hierarchical space. Whereas, there are 4 basis function for macro element in fine space.
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Table 6.1: γ2 with first choice of T p,rk+1 in a square domain
1/h 8 16 32 64 128

p = 2, (C0) 0.2948 0.3169 0.3230 0.3244 0.3248
p = 2, (Cp−1) 0.1788 0.1872 0.1933 0.1927 0.1931
p = 3, (C0) 0.5580 0.5714 0.5747 0.5751 0.5757
p = 3, (Cp−1) 0.3585 0.3013 0.2990 0.2990 0.2990
p = 4, (C0) 0.7845 0.7855 0.7856 0.7857 0.7857
p = 4, (Cp−1) 0.5299 0.5307 0.5140 0.5138 0.5138

Table 6.2: γ2 with second choice of T p,rk+1 in a square domain
1/h 8 16 32 64 128

p = 2, (C0) 0.2662 0.2834 0.2882 0.2894 0.2897
p = 2, (Cp−1) 0.0866 0.0828 0.0827 0.0827 0.0826
p = 3, (C0) 0.3242 0.3340 0.3363 0.3368 0.3368
p = 3, (Cp−1) 0.1872 0.1834 0.1791 0.1791 0.1791
p = 4, (C0) 0.4126 0.4198 0.4216 0.4221 0.4221
p = 4, (Cp−1) 0.5299 0.5307 0.5140 0.5138 0.5138

Table 6.3: γ2 with first choice of T p,rk+1 in a quarter annulus domain
1/h 8 16 32 64 128

p = 2, (C0) 0.5236 0.5587 0.5722 0.5787 0.5823
p = 2, (Cp−1) 0.2803 0.2901 0.2991 0.3019 0.3048
p = 3, (C0) 0.6503 0.6708 0.6787 0.6825 0.6847
p = 3, (Cp−1) 0.4357 0.3830 0.3800 0.3779 0.3768
p = 4, (C0) 0.8498 0.8531 0.8549 0.8559 0.8566
p = 4, (Cp−1) 0.5982 0.5968 0.5792 0.5762 0.5745

Table 6.4: γ2 with second choice of T p,rk+1 in a quarter annulus domain
1/h 8 16 32 64 128

p = 2, (C0) 0.4369 0.4670 0.4796 0.4863 0.4902
p = 2, (Cp−1) 0.1158 0.1128 0.1145 0.1166 0.1181
p = 3, (C0) 0.5211 0.5560 0.5708 0.5786 0.5830
p = 3, (Cp−1) 0.2910 0.2646 0.2564 0.2541 0.2530
p = 4, (C0) 0.5289 0.5528 0.5629 0.5681 0.5711
p = 4, (Cp−1) 0.5982 0.5968 0.5792 0.5762 0.5745
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Table 6.5: κ(Â11) with first choice of T p,rk+1 in a square domain
1/h 8 16 32 64 128

p = 2, (C0) 15.9373 16.9902 17.2737 17.3455 17.3617
p = 2, (Cp−1) 6.4614 6.4612 6.4589 6.4602 6.4601
p = 3, (C0) 49.8749 51.4403 51.8519 51.9560 51.9768
p = 3, (Cp−1) 24.5972 27.3123 28.4354 28.8173 28.9115
p = 4, (C0) 322.5053 333.7176 336.6485 336.6485 337.4931
p = 4, (Cp−1) 101.3294 107.7746 108.5736 110.3152 110.8763

Table 6.6: κ(Â11) with first choice of T p,rk+1 in a quarter annulus domain
1/h 8 16 32 64 128

p = 2, (C0) 39.9569 45.3915 48.7833 50.9325 52.2557
p = 2, (Cp−1) 20.1094 22.5348 23.6238 24.1816 24.4936
p = 3, (C0) 143.1039 154.9739 161.5832 165.3860 167.4313
p = 3, (Cp−1) 57.4348 71.9216 79.5643 84.0098 86.5798
p = 4, (C0) 895.9249 973.3435 1007.4551 1027.7064 1041.6096
p = 4, (Cp−1) 220.8714 269.8018 298.3185 318.9531 331.4400

Table 6.7: κ(Â11) with second choice of T p,rk+1 in a square domain
1/h 8 16 32 64 128

p = 2, (C0) 20.2427 28.8017 33.5893 34.9019 35.0668
p = 2, (Cp−1) 14.1704 14.9985 15.2420 15.3056 15.3183
p = 3, (C0) 306.1720 321.0679 325.5046 326.5145 *
p = 3, (Cp−1) 31.5794 42.0848 43.4486 43.6467 43.7659
p = 4, (C0) 1392.1584 1437.1349 1449.1122 1452.0971 *
p = 4, (Cp−1) 101.3294 107.6565 108.5731 110.3167 110.8768

6.3 Numerical Results for AMLI Methods
To test the performance of the AMLI methods, we consider the following test problems,
whose discretizations are performed using the Matlab toolbox GeoPDEs [48, 49].

Example 6.1. Let Ω = (0, 1)2. Together with A = I , and Dirichlet boundary conditions,
the right hand side function f is chosen such that the analytical solution of the problem is
given by u = ex sin(y).

Example 6.2. The domain is chosen as a quarter annulus in the first Cartesian quadrant
with inner radius 1 and outer radius 2. Together with A = I , and homogeneous Dirichlet
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Table 6.8: κ(Â11) with second choice of T p,rk+1 in a quarter annulus domain
1/h 8 16 32 64 128

p = 2, (C0) 39.5611 46.0474 49.6333 51.5032 52.5131
p = 2, (Cp−1) 43.7848 65.3521 81.3138 91.4048 98.0443
p = 3, (C0) 787.0425 870.8352 926.6575 965.7286 *
p = 3, (Cp−1) 74.8251 109.9180 127.7675 137.0648 142.2085
p = 4, (C0) 4161.5121 4561.4503 4751.9078 4848.1261 *
p = 4, (Cp−1) 220.8714 269.8018 298.3185 318.9535 331.4414

boundary conditions, the right hand side function f is chosen such that the analytic solution
is given by u = −xy2(x2 + y2 − 1)(x2 + y2 − 4), see [48, 49].

Example 6.3. The domain is chosen as a thick quarter of a ring. Together with A = I ,
and Dirichlet boundary conditions, the right hand side function f is chosen such that the
analytical solution of the problem is given by u = ex sin(xy)cos(z).

At the finest level (largest problem size), the parametric domain is divided into n equal
elements in each direction. The initial guess for (iteratively) solving the linear system of
equations is chosen as the zero vector. Let r0 denote the initial residual vector and rit denote
the residual vector at a given PCG/FCG iteration nit. The following stopping criteria is used

‖rit‖
‖r0‖

≤ 10−8. (6.13)

The average convergence factor reported in the following tables is defined as ρ =
(‖rit‖
‖r0‖

)1/nit

.

In the following tables, by L1, L2 and N2 we denote the linear multiplicative AMLI cycles
with ν = 1, ν = 2 and non-linear multiplicative AMLI cycle with ν = 2, respectively. By tc,
we represent the setup time, i.e., the time taken in the construction of transfer operators and
generating the preconditioner for Â11 block (for which we used the ILU(0) factorization,
i.e. without any fill-in). The solver time is represented by ts. For all the test cases we take
the polynomial degree p = 2, 3, 4 with C0- and Cp−1-continuity. Furthermore, the transfer
operator Gp,r

k+1 is fixed and it exactly represents the coarse basis functions in the space of
fine basis functions. The hierarchical complementary transfer operator T p,rk+1 are chosen in
two different ways as defined in Section 6.1, see (6.5)-(6.8).
We first consider the Example 6.1 and provide tc, ts, nit and ρ for L1-, L2-, N2- cycles with
both the choices of T p,rk+1. Numerical results are presented in Tables 6.9-6.10 and Tables
6.11-6.12 for first choice and second choice of T p,rk+1, respectively .
From Tables 6.9-6.12 we observe the following:

• The number of iterations and total solution (tc + ts) time show an h-independent
convergence rates for Cp−1- and C0-continuity.
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Table 6.9: AMLI methods for Example 6.1, first choice of T p,rk+1 (given in (6.5)), Cp−1

regularity
1/h tc ts nit ρ

L1 L2 N2 L1 L2 N2 L1 L2 N2
p = 2

8 0.00 0.00 0.00 0.00 7 7 7 0.0641 0.0641 0.0622
16 0.00 0.00 0.01 0.01 8 7 7 0.0948 0.0966 0.0670
32 0.01 0.01 0.01 0.01 9 8 7 0.1108 0.0988 0.0672
64 0.04 0.02 0.03 0.04 9 8 7 0.1086 0.0901 0.0622

128 0.18 0.07 0.09 0.12 9 8 7 0.1166 0.0909 0.0624
256 0.72 0.25 0.30 0.41 9 8 7 0.1175 0.0879 0.0603
512 2.97 1.03 1.12 1.50 9 8 7 0.1276 0.0945 0.0620

p = 3
8 0.00 0.00 0.00 0.00 8 8 8 0.0901 0.0901 0.0901

16 0.01 0.01 0.01 0.01 9 9 8 0.1111 0.1129 0.0686
32 0.02 0.01 0.01 0.02 10 9 7 0.1293 0.1043 0.0577
64 0.10 0.03 0.04 0.05 10 8 7 0.1361 0.0857 0.0551

128 0.41 0.12 0.13 0.18 10 8 7 0.1369 0.0821 0.0536
256 1.76 0.48 0.46 0.63 10 8 7 0.1348 0.0794 0.0523
512 7.50 1.65 1.77 2.37 9 8 7 0.1283 0.0771 0.0511

p = 4
8 0.00 0.00 0.00 0.00 10 10 10 0.1139 0.1139 0.1139

16 0.01 0.01 0.01 0.01 12 12 10 0.1866 0.1882 0.1378
32 0.06 0.02 0.02 0.03 12 11 9 0.2013 0.1822 0.1100
64 0.26 0.07 0.07 0.10 12 10 9 0.2038 0.1557 0.1032

128 1.09 0.26 0.24 0.37 12 9 9 0.2028 0.1209 0.0977
256 4.57 0.98 0.88 1.21 12 9 8 0.1976 0.1182 0.0975
512 19.05 3.60 3.44 4.66 11 9 8 0.1853 0.1146 0.0930

• For Cp−1-continuity, the results are almost p-independent, whereas for C0-continuity,
the degree p has some effect on PCG/FCG iterations.

• For Cp−1-continuity, all the AMLI cycles give optimal results, and the V -cycle (ν =
1) is the fastest among all. This is due to a very nice bound on γ for Cp−1-continuity.
Therefore, in the remaining numerical computations we consider linear AMLI cycle
with ν = 1 and nonlinear AMLI cycle with ν = 2 forCp−1 continuous basis functions.

• For C0-continuity, V -cycle (ν = 1) is not an optimal order method, an observation
similar to standard FEM. However, for C0-continuity, both the ν = 2 cycle methods
(linear and nonlinear) exhibit optimal order behavior, and nonlinear AMLI gives over-
all better results. Therefore, we consider only nonlinear AMLI cycle with ν = 2 for
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Table 6.10: AMLI methods for Example 6.1, first choice of T p,rk+1 (given in (6.7)), C0 regu-
larity

1/h tc ts nit ρ
L1 L2 N2 L1 L2 N2 L1 L2 N2

p = 2
8 0.00 0.01 0.01 0.01 9 9 9 0.1072 0.1072 0.1072

16 0.01 0.01 0.01 0.01 11 11 9 0.1695 0.1716 0.1102
32 0.02 0.03 0.04 0.04 13 11 9 02195 0.1738 0.1110
64 0.10 0.07 0.09 0.10 14 11 9 0.2606 0.1744 0.1109
128 0.38 0.30 0.29 0.34 16 11 9 0.2973 0.1743 0.1105
256 1.65 1.25 1.04 1.23 17 11 9 0.3288 0.1736 0.1102
512 6.93 5.17 3.84 4.61 18 11 9 0.3557 0.1730 0.1100

p = 3
8 0.01 0.01 0.01 0.03 12 12 12 0.1999 0.1999 0.1999

16 0.02 0.03 0.04 0.03 17 17 12 0.3288 0.3305 0.2124
32 0.09 0.09 0.12 0.10 22 18 12 0.4258 0.3568 0.2129
64 0.37 0.38 0.41 0.33 27 19 12 0.5014 0.3650 0.2122
128 1.55 1.77 1.34 1.21 32 19 12 0.5581 0.3673 0.2114
256 6.73 7.87 4.88 4.51 37 19 12 0.6038 0.3670 0.2110
512 28.76 36.56 19.12 17.84 42 19 12 0.6394 0.3664 0.2108

p = 4
8 0.01 0.03 0.03 0.03 19 19 19 0.3631 0.3631 0.3631

16 0.05 0.07 0.10 0.09 25 26 19 0.4784 0.4827 0.3719
32 0.24 0.32 0.36 0.29 38 30 19 0.6087 0.5337 0.3720
64 1.07 1.62 1.29 1.05 52 32 19 0.6982 0.5585 0.3719
128 4.50 8.04 4.90 3.89 67 34 19 0.7585 0.5766 0.3709
256 18.73 40.11 19.41 15.25 85 35 19 0.8038 0.5827 0.3703
512 76.22 190.29 77.37 62.24 1001 35 19 0.8379 0.5878 0.3700

C0 continuous basis functions in remaining numerical results.

• For p = 4 withCp−1-continuity, we could not obtain better γ with the second choice of
T p,rk+1 as compared to the first choice. Therefore, in Table 6.11, the numerical results
are presented only for p = 2, 3 with second choice of T p,rk+1. Numerical results for
p = 4 may be improved by choosing different operators, which demands further
investigation.

• For Cp−1-continuity, though the number of iterations are less for second choice of
T p,rk+1, the overall time (tc + ts) is more than the first choice of T p,rk+1. This happens due
to comparatively less sparse structure of second choice T p,rk+1, which results in more

1did not converge upto desired accuracy.
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Table 6.11: AMLI methods for Example 6.1, second choice of T p,rk+1 (given in (6.6)), Cp−1

regularity
1/h tc ts nit ρ

L1 L2 N2 L1 L2 N2 L1 L2 N2
p = 2

8 0.08 0.02 0.42 0.52 5 5 5 0.0227 0.0227 0.0227
16 0.00 0.01 0.01 0.01 6 6 5 0.0304 0.0326 0.0217
32 0.02 0.01 0.01 0.01 6 6 5 0.0316 0.0311 0.0226
64 0.07 0.02 0.05 0.05 6 6 5 0.0303 0.0300 0.0224

128 0.30 0.06 0.08 0.10 6 6 5 0.0314 0.0310 0.0234
256 1.21 0.22 0.30 0.39 6 6 5 0.0301 0.0296 0.0226
512 5.18 0.88 1.05 1.62 6 6 6 0.0326 0.0321 0.0269

p = 3
8 0.00 0.02 0.00 0.00 7 7 7 0.0443 0.0443 0.0443

16 0.01 0.00 0.00 0.01 7 7 6 0.0560 0.0569 0.0365
32 0.04 0.01 0.01 0.02 7 7 6 0.0576 0.0494 0.0319
64 0.18 0.04 0.04 0.05 7 6 5 0.0569 0.0377 0.0216

128 0.77 0.12 0.13 0.17 7 6 5 0.0542 0.0343 0.0204
256 3.32 0.47 0.49 0.64 7 6 5 0.0502 0.0326 0.0195
512 13.99 1.60 1.89 2.44 6 6 5 0.0446 0.0311 0.0186

construction time tc. Therefore, in the remaining numerical tests we consider only the
first choice of T p,rk+1 for Cp−1 continuous basis functions.

• For C0-continuity, we get mixed results from both the choices of T p,rk+1. This is due to
the fact that there is not much difference in number of nonzero entries in each row of
T p,rk+1 for two different choices. Therefore, numerical results are provided for both the
choices of T p,rk+1 for C0 continuous basis functions.

We now consider Example 6.2 with curved boundary. The geometry for this example is
represented by NURBS basis functions of order 1 in the radial direction and of order 2 in
the angular direction, see [48]. Numerical results are provided for Cp−1-continuity with first
choice of T p,rk+1 in Table 6.13, and for C0-continuity with both the choices of T p,rk+1 in Table
6.14. All the results are qualitatively similar to that of Example 6.1 with square domain.
Finally, we consider three-dimensional problem as stated in Example 6.3. The numerical
results are presented in Tables 6.15-6.16. Due to the limitation of available computer re-
sources numerical results in three-dimensions are provided only upto h = 1/32. In Table
6.15, linear AMLI cycle with ν = 1, and nonlinear AMLI cycle with ν = 2 are given
for Cp−1 continuity with first choice of T p,rk+1. The results exhibit optimal order for both the
solvers. The increased number of iterations (as compared to two-dimensional examples) can
be attributed to the smaller angle between coarse space and its complementary space. For
C0-continuity the numerical results with both the choices of T p,rk+1 are given in Table 6.16.
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Table 6.12: AMLI methods for Example 6.1, second choice of T p,rk+1 (given in (6.8)), C0

regularity
1/h tc ts nit ρ

L1 L2 N2 L1 L2 N2 L1 L2 N2
p = 2

8 0.00 0.00 0.00 0.00 8 8 8 0.0901 0.0901 0.0901
16 0.01 0.01 0.01 0.01 9 9 8 0.1173 0.1195 0.0918
32 0.04 0.02 0.03 0.04 10 9 8 0.1308 0.1197 0.0900
64 0.15 0.07 0.09 0.12 10 9 8 0.1430 0.1192 0.0890

128 0.62 0.27 0.32 0.41 10 9 8 0.1479 0.1191 0.0884
256 2.71 1.08 1.20 1.56 10 9 8 0.1509 0.1191 0.0880
512 11.22 4.33 4.55 6.00 10 9 8 0.1528 0.1191 0.0878

p = 3
8 0.01 0.01 0.03 0.03 9 9 9 0.1133 0.1133 0.1133

16 0.02 0.02 0.02 0.02 11 11 9 0.1724 0.1743 0.1191
32 0.09 0.05 0.07 0.07 13 11 9 0.2216 0.1762 0.1206
64 0.39 0.20 0.22 0.25 14 11 9 0.2627 0.1777 0.1212

128 1.62 0.88 0.79 0.91 16 11 9 0.2998 0.1782 0.1215
256 7.06 3.70 2.87 3.42 17 11 9 0.3321 0.1785 0.1216
512 29.78 16.54 11.24 13.37 19 11 9 0.3630 0.1786 0.1217

p = 4
8 0.01 0.02 0.02 0.02 10 10 10 0.1368 0.1368 0.1368

16 0.07 0.04 0.06 0.05 13 13 10 0.2199 0.2219 0.1419
32 0.33 0.15 0.18 0.18 15 13 10 0.2825 0.2254 0.1416
64 1.88 0.61 0.60 0.64 17 13 10 0.3259 0.2251 0.1412

128 5.92 2.51 2.20 2.41 18 13 10 0.3575 0.2247 0.1410
256 25.51 11.39 8.56 9.56 20 13 10 0.3844 0.2245 0.1408
512 104.33 49.49 35.15 39.67 21 13 10 0.4042 0.2244 0.1408

The first choice of T p,rk+1, however, does not result in an optimal order method. The optimal-
ity is restored with ν = 3, which are presented in the column with N3. The second choice,
though expensive, gives optimal order method for second order stabilization (ν = 2). In
Tables 6.15-6.16, The entries marked by ∗ represent the cases where the computations are
performed on a machine with larger memory but shared with other users, therefore timings
are not provided for these cases.
We note that for two-dimensional problems, the total time of the solvers also exhibit optimal
complexity, however, for three-dimensional problem the increase in the total time (tc + ts)
for successive refinement is more than the factor of increase in number of unknowns. This
is due to the construction of operators Gp,r

k+1 and T p,rk+1 by tensor product of matrices for one-
dimensional operators (see Remark 6.1), and expensive preconditioner for Â11 (ILU(0)).
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6.4 Conclusions
We have presented AMLI methods for the linear system arising from the isogeometric dis-
cretization of the scalar second order elliptic problems. We summarize the main contribution
of this chapter as follows.

1. We provide the explicit representation of B-splines as a function of mesh size h on a
unit interval with uniform refinement. The explicit representation is given for C0 and
Cp−1 continuous basis functions of polynomial degree p = 2, 3, 4, the most widely
used cases in engineering applications. Explicit form of B-splines is important from
computational point of view, as well as in forming the inter-grid transfer operators. It
is intended to help the reader in writing optimized/fast computer programs.

Table 6.13: AMLI methods for Example 6.2, first choice of T p,rk+1 (given in (6.5)), Cp−1

regularity

1/h tc ts nit ρ
L1 N2 L1 N2 L1 N2

p = 2
8 0.02 0.02 0.01 8 8 0.0802 0.0802

16 0.00 0.01 0.01 9 8 0.1201 0.0839
32 0.01 0.01 0.01 10 7 0.1499 0.0658
64 0.05 0.02 0.03 11 6 0.1838 0.0453
128 0.17 0.09 0.10 12 6 0.2048 0.0351
256 0.72 0.38 0.30 13 5 0.2211 0.0226
512 2.93 1.53 1.07 13 5 0.2374 0.0194

p = 3
8 0.00 0.00 0.00 9 9 0.1201 0.1201

16 0.01 0.01 0.01 10 9 0.1560 0.1148
32 0.02 0.01 0.02 12 8 0.1839 0.0988
64 0.10 0.04 0.06 13 8 0.2104 0.0900
128 0.41 0.16 0.20 13 8 0.2363 0.0858
256 1.76 0.66 0.72 14 8 0.2514 0.0828
512 7.45 2.56 2.35 14 7 0.2644 0.0706

p = 4
8 0.03 0.01 0.00 11 11 0.1686 0.1686

16 0.01 0.01 0.01 12 11 0.2073 0.1665
32 0.05 0.02 0.03 13 9 0.2419 0.1248
64 0.24 0.11 0.10 14 9 0.2549 0.1054
128 1.07 0.32 0.43 15 8 0.2688 0.0884
256 4.47 1.23 1.09 15 7 0.2924 0.0648
512 18.79 5.30 4.13 16 7 0.3061 0.0534
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2. The construction of B-spline basis functions at coarse level from the linear combina-
tion of fine basis functions is provided. For p = 2, 3, 4, and with C0 and Cp−1 con-
tinuities, these transfer operators (from fine level to coarse level) are given in matrix
form for a multilevel mesh. These operators can also be used to generate restriction
operators in multigrid methods.

3. The transfer operators are also provided for NURBS basis functions. The formulation
of NURBS operators is given in terms of B-spline operators and weights.

Table 6.14: AMLI methods for Example 6.2, C0 regularity

with first choice of T p,rk+1 given in (6.7)
1/h tc ts nit ρ

N2 N2 N2
p = 2

8 0.00 0.01 11 0.1744
16 0.01 0.02 11 0.1820
32 0.02 0.05 11 0.1791
64 0.09 0.13 11 0.1752

128 0.40 0.43 11 0.1730
256 1.72 1.52 11 0.1717
512 7.36 5.61 11 0.1704

p = 3
8 0.00 0.01 13 0.2237

16 0.02 0.04 14 0.2507
32 0.08 0.11 14 0.2584
64 0.34 0.39 14 0.2632

128 1.49 1.43 14 0.2649
256 6.35 5.37 14 0.2648
512 27.51 20.83 14 0.2638

p = 4
8 0.01 0.03 22 0.4319

16 0.05 0.11 24 0.4516
32 0.22 0.38 24 0.4563
64 0.92 1.34 24 0.4591

128 4.21 5.03 24 0.4609
256 18.28 19.79 24 0.4639
512 76.62 81.78 25 0.4644

with second choice of T p,rk+1 given in (6.8)
1/h tc ts nit ρ

N2 N2 N2
p = 2

8 0.00 0.01 10 0.1445
16 0.01 0.02 10 0.1510
32 0.04 0.04 10 0.1478
64 0.15 0.15 10 0.1463

128 0.62 0.52 10 0.1437
256 2.65 1.93 10 0.1419
512 11.05 7.72 10 0.1401

p = 3
8 0.01 0.01 11 0.1647

16 0.02 0.03 11 0.1780
32 0.09 0.09 11 0.1845
64 0.39 0.33 12 0.1883

128 1.63 1.21 12 0.1922
256 6.98 4.52 12 0.1938
512 28.76 17.94 12 0.1940

p = 4
8 0.01 0.02 11 0.1660

16 0.07 0.05 11 0.1758
32 0.32 0.19 11 0.1789
64 1.39 0.70 11 0.1785

128 5.99 2.64 11 0.1774
256 25.31 10.49 11 0.1765
512 99.22 43.15 11 0.1757

4. The construction of hierarchical spaces for B-splines (NURBS) is presented. Hierar-
chical spaces are constructed as direct sum of coarse spaces and corresponding hier-
archical complementary spaces. We have presented matrix form of these operators.
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Table 6.15: AMLI methods for Example 6.3, First choice of T p,rk+1 (given in (6.5)), Cp−1

regularity

1/h tc ts nit ρ
L1 N2 L1 N2 L1 N2

p = 2
4 0.00 0.00 0.00 8 8 0.0899 0.0899
8 0.04 0.01 0.01 12 10 0.1913 0.1438
16 0.60 0.10 0.10 13 10 0.2400 0.1484
32 7.18 1.09 0.89 15 10 0.2694 0.1346
64 * * * 15 9 0.2830 0.1168

p = 3
4 0.00 0.00 0.00 10 10 0.1415 0.1415
8 0.15 0.02 0.03 14 13 0.2492 0.2304
16 2.84 0.27 0.24 15 11 0.2923 0.1862
32 35.61 2.79 2.21 17 11 0.3215 0.1762
64 * * * 17 11 0.3349 0.1738

p = 4
4 0.01 0.01 0.01 10 10 0.1443 0.1443
8 0.52 0.06 0.07 16 16 0.3027 0.3040
16 14.81 0.82 0.85 20 17 0.3900 0.3324
32 213.74 8.82 7.55 21 15 0.4067 0.2927
64 * * * 21 14 0.4042 0.2546

As the choice of hierarchical complementary spaces is not unique, we have provided
two different choices of these operators for each of C0- and Cp−1-continuity of basis
functions.

5. For a given polynomial degree p, AMLI cycles are of optimal complexity with respect
to the mesh refinement. Also, for a given mesh size h, AMLI cycles are (almost)
p-independent. We provided numerical results for a square domain, quarter annulus
(ring), and quarter thick ring. The iteration counts, convergence factor, and timings
are given for AMLI linear V -, W - and nonlinear W -cycles. Note that, for Cp−1-
continuity the linear V -cycle also exhibits optimal convergence rates (due to very
nice space splitting, which is normally not found in standard FEM). The linear and
nonlinear AMLIW -cycle is optimal for all cases except for a particular case of degree
p = 4 with C0-continuity in three-dimensional problem with first choice of T p,rf . For
this case, the number of iterations are provided with ν = 3 cycle, which is optimal.
The numerical results are complete for p = 2, 3, 4,with Cp−1 and C0 continuous basis
functions.
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Table 6.16: AMLI methods for Example 6.3, C0 regularity

with first choice of T p,rk+1 given in (6.7)
1/h tc ts nit ρ

N2 N2(N3) N2
p = 2

4 0.01 0.01 12 (12) 0.2124
8 0.11 0.05 15 (15) 0.2904

16 1.25 0.52 16 (15) 0.2996
32 12.06 4.51 16 (15) 0.3022

p = 3
4 0.07 0.04 18 (18) 0.3527
8 1.09 0.50 23 (22) 0.4408

16 12.23 5.13 26 (23) 0.4919
32 114.77 49.48 28 (23) 0.5164

p = 4
4 0.39 0.45 48 (48) 0.6770
8 5.84 4.36 54 (50) 0.7081

16 64.09 47.27 64 (51) 0.7497
32 * * 73 (51) 0.7764

with second choice of T p,rk+1 given in (6.8)
1/h tc ts nit ρ

N2 N2 N2
p = 2

4 0.37 0.31 11 0.1753
8 0.32 0.13 13 0.2212

16 4.29 0.76 13 0.2250
32 33.13 7.44 13 0.2261

p = 3
4 0.09 0.03 14 0.2663
8 1.42 0.34 16 0.3092

16 15.72 3.30 17 0.3342
32 123.05 32.24 18 0.3415

p = 4
4 0.98 0.23 16 0.2987
8 13.39 1.84 18 0.3465

16 144.03 17.32 18 0.3560
32 * * 18 0.3577

Despite that the condition number of the stiffness matrix grows very rapidly with the poly-
nomial degree, these excellent results exhibit the strength and flexibility of AMLI methods.
Nevertheless, the rigorous local analysis of the CBS constant γ, particularly due to the over-
lapped support of B-splines, is not a straight forward task, and is still an open problem.



Chapter 7

Condition Number Study of Graph
Theory Based Preconditioners for
Isogeometric Discretization

We study the preconditioning of the stiffness matrix which arises from the discretization of
the model problem using isogeometric method. We use graph theory based precondition-
ers, namely, Vaidya’s preconditioners (maximum weight spanning tree) and Gremban and
Miller’s preconditioners (support tree). Numerical results show that these preconditioners
do not perform satisfactorily for the matrices arising in isogeometric method. The purpose
of this chapter is to present our study on graph theory based preconditioners towards pre-
conditioning the linear system arising from isogeometric discretizations (2.17).

7.1 Preliminaries of Support Graph Theory
Support graph theory gives us a new class of preconditioners, called support graph precon-
ditioners. The main idea is to use a subgraph of the graph of the coefficient matrix A as a
preconditioner. These graphs are connected graphs, and the preconditioner graph edges are
the subset of the actual graph edges. Moreover, the preconditioner graph edges support the
actual graph edges.
We first present some definitions which are related to the graph theory.

Walk: A walk is an alternating sequence of vertices and edges that begins and end with
a vertex, such that any edge in the sequence connects the vertex preceding it to the
vertex following it.

Path: A path is a walk in which all the vertices are distinct.

Graph embedding: Let G and H be two graphs. An embedding of H into G is a mapping
of vertices of H onto vertices of G and edges of H onto paths in G.
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Dilation: The dilation of an edge e of H is the number of edges in its support path (length
of support path) in G. The dilation of the embedding is the length of the longest path
in G onto which an edge of H is mapped.

Congestion: The congestion of an edge e inG is the number of paths of the embedding that
contain e. The congestion of the embedding is the maximum congestion of the edges
in G.

Support: The support σ(A,B) of matrix B for matrix A is

min{τ : τB − A is positive semi-definite (PSD)}.

The following results [58] are of fundamental importance for graph-theory based precondi-
tioners.

Lemma 7.1 (Support lemma). Let A and B be SPD matrices. If τB−A is PSD, where τ is
a positive number, then λmax(B−1A) ≤ τ .

The support lemma shows that the support of a matrix pair (A,B) bounds its eigenvalue,
i.e.,

λmax(B−1A) ≤ σ(A,B).

Note that
1/λmin(B−1A) = λmax(A−1B) ≤ σ(B,A),

which implies
κ(B−1A) ≤ σ(A,B).σ(B,A).

Lemma 7.2 (Splitting lemma). If A = A1 + A2 + ... + Am, where A1, A2, ..., Am are all
PSD matrices, then A is a PSD matrix.

Furthermore, it can be proved that

σ(A,B) ≤ max{σ(Ai, Bi)},

where
A =

∑
Ai, and B =

∑
Bi,

satisfies the splitting lemma.
In other words, let A = A1 +A2 + . . .+Am, and B = B1 +B2 + . . .+Bm. Assume that we
have a set {τ1, τ2, . . . , τm}, such that τiBi−Ai is PSD for all i. Let τ ∗ = max{τ1, τ2, . . . , τm}
then τ ∗Bi − Ai is PSD for all i.
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7.2 Graph Preconditioning Techniques

7.2.1 Maximum Weight Spanning Tree Preconditioners
Graph preconditioners, introduced by Vaidya [98] in early nineties, use maximum weight
spanning tree (MWST) preconditioners to bound the condition number of a preconditioned
system. Vaidya’s method constructs a preconditioner V whose underlying graph GV is a
subgraph of GA (graph of A). The graph GV of the preconditioner has the same set of ver-
tices as GA, and a subset of the edges of GA. The methodology of Vaidya’s preconditioners
is described in Algorithm 7.1. Vaidya proposed two classes of preconditioners. The first

Algorithm 7.1 Vaidya’s Preconditioner
Require: GA (Graph of A)
Ensure: Preconditioner V

1. Find a maximum weight spanning tree T in GA.
2. Decompose it into a set of k connected subgraphs T1, ..., Tk, such that each Ti has

roughly same number of vertices.
3. Form GV by adding to T the heaviest edge between Ti and Tj for all i and j.
4. Add nothing if there are no edges between Ti and Tj or the heaviest edge between Ti

and Tj is already in T .
5. The preconditioner V is the matrix whose graph is GV .

class, MWST preconditioners, guarantees a condition-number bound ofO(n2) for any n×n
sparse diagonally dominant symmetric matrix [26]. The second class of preconditioners is
based on MWST augmented with a few extra edges. The cost of factoring this second class
of preconditioners depends on how many edges are added to the tree. Vaidya proposed that
the factorization cost can be balanced with the iteration costs, and he provided balancing
guidelines for some classes of matrices. This class of preconditioners guarantees that the
work in the linear solver is bounded by O(n1.75) for any sparse diagonally dominant matrix,
and byO(n1.2) for sparse diagonally dominant matrices whose underlying graphs are planar.
We construct MWST by simply dropping some off-diagonal non-zeros from A and modify-
ing the diagonal elements to maintain certain row-sum property. We construct the precondi-
tioners in the following ways.

1. Algorithm 7.2 constructs MWST with maximum value (not absolute maximum) and
makes the matrix of MWST diagonally dominant. Note that the preconditioner matrix
is diagonally dominant but not an M -matrix.

2. Algorithm 7.3 first transforms the A matrix into an M -matrix, and then finds the
MWST. So the resulting preconditioner is diagonally dominant as well as M -matrix.

3. Algorithm 7.4 first drops all the positive off-diagonal entries, and then constructs
MWST of modified stiffness matrix. To maintain the row-sum property it performs a
weighted distribution of the sum of dropped positive off-diagonal entries and dropped
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negative off-diagonal entries (while forming MWST) on the negative off-diagonal en-
tries of MWST. In a variant of Algorithm 7.4 we make the following changes. If the
sum of dropped positive off-diagonal entries and dropped negative off-diagonal entries
(while forming MWST) is positive then it is added to the diagonal entry, otherwise the
algorithm performs a weighted distribution of the sum on the negative off-diagonal en-
tries of MWST. Note that in the variant of Algorithm 7.4 the preconditioned matrix is
not symmetric.

4. Algorithm 7.5 first constructs MWST with maximum value (not absolute maximum),
and calculates the sum of the dropped positive and negative off-diagonal entries. If
this sum is positive it performs a weighted distribution of this sum on the negative
off-diagonal entries of the tree, and if this sum is negative then it adds the sum to the
diagonal entry of MWST.

Algorithm 7.2 MWST preconditioner (Diagonally Dominant)
Require: Stiffness Matrix A
Ensure: Preconditioner B1

1. Find maximum weight spanning tree Bmwst with maximum value (NOT absolute maxi-
mum).

2. if Bmwst is diagonally dominant then
3. B1 = Bmwst (output matrix).
4. else
5. find si =

∑
i 6=j bij for each row i of Bmwst.

6. if bii < si then
7. bii = si.
8. The resulting matrix is B1.

Algorithm 7.3 MWST preconditioner (Diagonally dominant M-matrix)
Require: Stiffness Matrix A
Ensure: Preconditioner B2

1. for i = 1 to # of rows in A do
2. for j = 1 to # of columns in A do
3. if aij > 0 then
4. aii = aii + aij
5. aij = 0
6. From step (1), we get an M-matrix, say Am.
7. Find maximum weight spanning tree Bmwst with absolute maximum value of Am.
8. The resulting matrix Bmwst is our preconditioner matrix B2.

Some numerical results using Vaidya’s preconditioners and support tree preconditioners (see
Section 7.2.2) are given in Table 7.1 using linear basis functions. Here Mw denotes the
MWST preconditioner matrix, PV denotes the preconditioner from Vaidya’s approach, k
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Algorithm 7.4 Approximation by M-matrices (a), note the comments for the variant
Require: Stiffness matrix A
Ensure: Matrix B3

1. for i = 1 to # of rows in A do
2. sp(i) = 0
3. for j = 1 to # of columns in A do
4. if i 6= j then
5. if aij > 0 then
6. sp(i) = sp(i) + aij
7. aij = 0
8. The resulting matrix is M-matrix, say Am.
9. Find MWST of Am.

10. for i = 1 to # of rows in Am do
11. sn(i) = sum of row-wise dropped negative entries while finding MWST Am
12. sn(Am)(i) = sum of off-diagonal entries of ith row of Am
13. S(i) = sp(i) + sn(i)
14. if S(i) > 0 {< 0 for the variant} then
15. for k = 1 to # of rows in Am do
16. if i 6= k then
17. amik = amik + {S(i)× | amik

sn(Am)(i)
|}

18. else
19. amii = amii + S(i)
20. The output matrix is B3 {Bv

3 for the variant}

Algorithm 7.5 Approximation by M-matrices (b)
Require: Stiffness matrix A
Ensure: Matrix B4

1. Find MWST of A, say AT .
2. for i = 1 to # of rows in AT do
3. sp(i) = sum of row-wise dropped positive entries while finding MWST AT
4. sn(i) = sum of row-wise dropped negative entries while finding MWST AT
5. sn(AT )(i) = sum of off-diagonal entries of ith row of AT
6. S(i) = sp(i) + sn(i)
7. if S(i) > 0 then
8. for k = 1 to # of rows in AT do
9. if i 6= k then

10. aTik = aTik + {S(i)× | aTik
sn(AT )(i)

|}
11. else
12. aTii = aTii + S(i)
13. The output matrix is B4
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denotes the number of added extra edges, and PT denotes the preconditioner from support
tree approach.

Table 7.1: Vaidya’s preconditioning of A (linear basis function)

mesh 4×4 8×8 16×16 32×32 64×64
κ(A) 3.15 12.82 51.71 207.34 829.85

κ(M−1
w A) 2.75 10.73 45.80 184.08 737.79

κ(P−1
V A), k = (n/log10n) 1.00 5.54 13.43 53.15 158.17
κ(P−1

V A), k = (n/2) 1.91 5.54 11.71 20.47 46.23
κ(P−1

T A) 3.04 12.77 51.70 207.33 829.85

7.2.2 Support Tree Preconditioners
Gremban and Miller extended Vaidya’s work, and introduced support tree preconditioners.
A support tree preconditioner is a preconditioning matrix whose associated graph is a tree
on a superset of the vertices. The tree is constructed to provide good support for coefficient
matrix. Each vertex in the graph of the matrix becomes a leaf of the support tree, and the
internal vertices of the tree are added vertices. The algorithmic way of constructing support
tree preconditioners is given in Algorithm 7.6.

Algorithm 7.6 Support Tree Preconditioner
Require: GA (Graph of A)
Ensure: Preconditioner V

1. Find a small edge separator that gives a balanced cut.
2. Assign the root of the tree to this separator.
3. Recursively build support trees for the components left after removing the separator.
4. Add edges from the root of the subtrees of the components to the root of the tree.

The construction of support tree is based on hierarchical decomposition of the graph GA.
The algorithm removes from GA a set of edges, known as a separator, that breaks it into a
small number of subgraphs G1, G2, . . . , Gk. The algorithm then recursively partitions each
Gi until the graph is decomposed into single vertices. The resulting support tree T of the
graph GA can not be used as preconditioner because number of vertices in T are more than
the number of vertices in GA. Now we perform Gaussian elimination on

T =

[
B11 B12

BT
12 B22

]
to eliminate all the internal vertices, referred by subscript 2, here blockB11 is a square matrix
of the same order as A, say n, block B22 is a square matrix whose order is the number of
extra added (internal) vertices in the support tree, say m, and block B12 is a rectangular
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matrix of order n ×m. Eliminating the internal vertices of T produces a matrix T ′ defined
as

T ′ =

[
B 0
0 D

]
,

where B is the Schur compliment B11 −B12B
−1
22 B

T
12, and D is a diagonal matrix. Gremban

and Miller used this matrixB as a preconditioner ofA. The condition number of support tree
preconditioned matrix is of O(n log n). Unfortunately, involvement of matrix B−1

22 seriously
limits the advantages of these preconditioners, and does not offer a significant gain in the
condition number of preconditioned system (B−1A), see last row of Table 7.1.

7.3 Local Preconditioning
To study the effect of local preconditioning (element level), we now consider the symmetric
positive semi-definite (SPSD) stiffness matrix Ae of one element (without imposing the
boundary condition) but with increasing p. We study the effective condition number κeff of
the generalized eigenvalue problem

Ãex = λB̃ex (7.1)

where Ãe = P T
e AePe, B̃e = P T

e BePe, Be is some matrix obtained from Ae, and the matrix
Pe ∈ Rn×(n−1), defined as

Pe =


1
−1 1

−1 1
. . . . . . . . .

−1 1
−1

 , (7.2)

is the transformation matrix to eliminate the zero eigenvalue.

7.3.1 M -matrix Approach
We approximate the SPSD matrix Ae by an M -matrix Be which is obtained from Ae by the
following approaches.

1. Algorithm 7.7 drops all positive off-diagonal entries. Note that the resulting precon-
ditioned matrix in this approach is not positive definite.

2. Algorithm 7.8 adds all positive off-diagonal entries to the diagonal and replaces them
by zero.

3. Algorithm 7.9 drops all positive off-diagonal entries and performs a weighted distri-
bution of the sum of dropped positive off-diagonal entries on the negative off-diagonal
entries (row-wise). Note that the resulting preconditioned matrix is not symmetric.
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Algorithm 7.7 Approximation by M-matrices (c)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in Ae do
2. for j = 1 to # of columns in Ae do
3. if i 6= j then
4. if aeij > 0 then
5. aeij = 0
6. The output matrix is Be.

Algorithm 7.8 Approximation by M-matrices (d)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in Ae do
2. for j = 1 to # of columns in Ae do
3. if aeij > 0 then
4. aeii = aeii + aeij
5. aeij = 0
6. The output matrix is Be.

Algorithm 7.9 Approximation by M-matrices (e)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in Ae do
2. sp(i) = 0, sn(i) = 0
3. for j = 1 to # of columns in Ae do
4. if i 6= j then
5. if aeij > 0 then
6. sp(i) = sp(i) + aeij
7. aeij = 0
8. if aeij < 0 then
9. sn(i) = sn(i) + aeij

10. for k = 1 to # of rows in Ae do
11. if i 6= k then
12. aik = aik + {sp(i)× | aiksn(i)

|}
13. The output matrix is Be.
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7.3.2 Two-colors Approach
Given a mesh, multi-coloring consists of assigning a color to each point so that the couplings
between two points of the same color are eliminated in the discretization matrix. We color
the graph of stiffness matrix by two colors such that each color forms a disjoint set. This can
also be done by reordering the matrix in such a way that the diagonal blocks of the matrix
form two disjoint sets of nodes. Suppose we divide the nodes of the graph of stiffness matrix
into two disjoint sets, say S1 and S2. Then

Ae =

(
A11 A12

A21 A22

)
,

where block A11 is the matrix of connections within S1, block A22 is the matrix of connec-
tions within S2, block A12 is the matrix of connections of S1 to S2, and block A21 is the
matrix of connections of S2 to S1. We denote the modified matrix by Be such that

Be =

(
B11 B12

B21 B22

)
,

where B11, B12, B21, and B22 are the modified versions of A11, A12, A21, and A22, respec-
tively.
The following three algorithms modify A11 to a diagonal matrix. The other three blocks
A12, A21 and A22 are returned unchanged.

1. Algorithm 7.10 modifies A11 by simply dropping all off-diagonal entries.

2. Algorithm 7.11 drops all off-diagonal entries and the diagonal entries are the row-wise
sum of A11.

3. Algorithm 7.12 drops all off-diagonal entries and the diagonal entries are the row-wise
absolute sum of A11.

Algorithm 7.10 Two Colors Approaches (a)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in A11 do
2. for j = 1 to # of columns in A11 do
3. B11(i, i) = A11(i, i)
4. The other blocks of Be are same as the blocks of Ae respectively
5. The output matrix is Be

In the following three approaches the algorithms modify the blocks A11 and A12, and return
the remaining two blocks A21 and A22 unchanged.

1. Algorithm 7.13 drops all off-diagonal entries ofA11, and performs a row-wise weighted
distribution of the sum of dropped entries of A11 in A12.
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Algorithm 7.11 Two Colors Approaches (b)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in A11 do
2. s(i) = 0
3. for j = 1 to # of columns in A11 do
4. s(i) = A11(i, j) + s(i)
5. B11(i, i) = s(i)
6. The other blocks of Be are same as the blocks of Ae respectively
7. The output matrix is Be

Algorithm 7.12 Two Colors Approaches (c)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in A11 do
2. s(i) = 0
3. for j = 1 to # of columns in A11 do
4. s(i) = abs(A11(i, j)) + s(i)
5. B11(i, i) = s(i)
6. The other blocks of Be are same as the blocks of Ae respectively
7. The output matrix is Be

2. Algorithm 7.14 drops all off-diagonal entries of A11, adds the row-wise sum of pos-
itive off-diagonal entries of A11 to its diagonal, and performs a row-wise weighted
distribution of the sum of the remaining negative entries of A11 in A12. We make the
following changes in a variant of Algorithm 7.14, drop all off-diagonal entries of A11,
adds the row-wise sum of negative off-diagonal entries of A11 to its diagonal, and per-
forms a row-wise weighted distribution of the sum of the remaining positive entries
of A11 in A12.

The last two approaches are as follows.

• In Algorithms 7.10–7.14 the block B11 is a diagonal matrix. Algorithm 7.15 returns a
non-diagonal block B11 by adding the sum of positive entries to the diagonal for each
row in A11, and keeping the negative entries untouched. The resulting matrix B11 is
positive definite.

• In Algorithms 7.13–7.15 the preconditioning matrix B is non-symmetric. Algorithm
7.16 returns a symmetric matrix by performing the following steps:

– The absolute row-sum of A11 forms B11.

– To maintain row-sum property, the added quantity is distributed (in a weighted
sense) to the block A12 to get B12
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Algorithm 7.13 Two Colors Approaches (d)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in A11 do
2. s1(i) = 0
3. for j = 1 to # of columns in A11 do
4. if i 6= j then
5. s1(i) = A11(i, j) + s1(i)
6. B11(i, i) = A11(i, i)
7. for i = 1 to # of rows in A12 do
8. s2(i) = 0
9. for j = 1 to # of columns in A12 do

10. if i 6= j then
11. s2(i) = A12(i, j) + s2(i)
12. for k = 1 to # of columns in A12 do
13. B12(i, k) = A12(i, k) + {s1(i)× |A12(i,k)

s2(i)
|}

14. The other two blocks B21, B22 are same as the blocks of Ae respectively
15. The output matrix is Be

Algorithm 7.14 Two Colors Approaches (e), note the comments for the variant
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in A11 do
2. s1(i) = 0, s2(i) = 0
3. for j = 1 to # of columns in A11 do
4. if i 6= j then
5. if A11(i, j) > 0 then
6. s1(i) = A11(i, j) + s1(i)
7. else
8. s2(i) = A11(i, j) + s2(i)
9. B11(i, i) = A11(i, i) + s1(i) {s2(i) for the variant}

10. for i = 1 to # of rows in A12 do
11. s3(i) = 0
12. for j = 1 to # of columns in A12 do
13. s3(i) = A12(i, j) + s3(i)
14. for k = 1 to # of columns in A12 do
15. B12(i, k) = A12(i, k) + [s2(i) {s1(i) for the variant} ×|A12(i,k)

s3(i)
|]

16. B21 and B22 are same as A21 and A22 respectively
17. The output matrix is Be
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– Transpose of B12 forms B21. Again, to maintain row-sum property, the added
quantity in B21 is added to the diagonal entry of A22 to get B22.

Algorithm 7.15 Two Colors Approaches (f)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in A11 do
2. s(i) = 0
3. for j = 1 to # of columns in A11 do
4. if i 6= j then
5. if A11(i, j) > 0 then
6. s(i) = A11(i, j) + s(i)
7. A11(i, j) = 0
8. B11(i, j) = A11(i, j)
9. B11(i, j) = B11(i, j) + s(i)

10. The other blocks of Be are same as the blocks of Ae respectively
11. The output matrix is Be

7.4 Numerical Results
For our numerical tests we consider the problem (2.10) with domain Ω = (0, 1)2, u = 0 on
boundary, and A = I. In Figure 7.1, we first depict the sparsity pattern of the coefficient
matrices using fourth degree NURBS polynomials, with C0 and Cp−1 continuity, with uni-
form knot vectors in a single patch of 4 × 4 mesh and 16 × 16 mesh. Clearly, the block
structure is reduced for higher continuity and the band is denser, however, the nonzero size
is reduced due to the reduced problem size.
The condition number of the coefficient matrix with different mesh sizes is shown in Ta-
ble 7.2 for C0- and Cp−1-continuity. Note that, in the following tables × signifies that the
particular case could not be computed (due to limitations of the corresponding algorithm),
and − signifies that the corresponding entry is not computed because the preceding results
did not show any improvement.

7.4.1 Preconditioning of the Stiffness Matrix
Since the qualitative behavior of the numerical results does not essentially change for p ≥ 5,
to avoid proliferation we omit the preconditioning results for p ≥ 5 in all cases. In Table
7.3 we present the results for the condition number of the preconditioned system P−1A,
where P is the preconditioning matrix of A. The preconditioner P is obtained from various
approaches listed in the algorithms, and the Jacobi preconditioner D (i.e. the diagonal of
the matrix A). Since the preconditioned system of Algorithm 7.5 is singular, its results are
not shown here. In Table 7.4 the condition number of the preconditioned system P−1A are
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Algorithm 7.16 Two Colors Approaches (g)
Require: Element stiffness matrix Ae
Ensure: Matrix Be

1. for i = 1 to # of rows in A11 do
2. s1(i) = 0, s2(i) = 0
3. for j = 1 to # of columns in A11 do
4. s1(i) = s1(i) + abs(A11(i, j))
5. if A11(i, j) < 0 then
6. s2(i) = −2× abs(A11(i, j)) + s2(i)
7. B11(i, i) = s1(i)
8. for i = 1 to # of rows in A12 do
9. s3(i) = 0

10. for j = 1 to # of columns in A12 do
11. s3(i) = A12(i, j) + s3(i)
12. for k = 1 to # of columns in A12 do
13. B12(i, k) = A12(i, k) + {s2(i)× |A12(i,k)

s3(i)
|}

14. B21 = BT
12

15. Let the resulting matrix after modifying the blocks A11, A12, and A21 be E
16. for i = (# of rows in B11 + 1) to # of rows in E do
17. s4(i) = 0
18. for j = 1 to # of columns in E do
19. s4(i) = s4(i) + E(i, j)
20. for i = 1 to # of rows in A22 do
21. B22(i, i) = A22(i, i)− s4(i+ # of rows in B11)
22. The output matrix is Be

shown for Cp−1 continuity.

7.4.2 Local Preconditioning
We now present the effective condition number of the generalized eigenvalue problems (7.1)
in Table 7.5, where Be is computed from Algorithm 7.8. Recall that the preconditioned
matrix in Algorithm 7.7 is not positive definite, and in Algorithm 7.9 it is not symmetric,
therefore, corresponding results are not shown here.
The observation from the two-colors approach discussed in Section 7.3.2 are as follows.

• The resulting preconditioned system from Algorithm 7.11 is indefinite because in the
matrix A11 the negative off-diagonal entries are dominating the diagonal entry.

• The resulting preconditioned system from Algorithms 7.12 and 7.15 are positive def-
inite but the effective condition number of the preconditioned system is very large.

• The Algorithms 7.10, 7.13 and 7.14 give indefinite preconditioned systems.
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Figure 7.1: Sparsity pattern of A
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• The resulting preconditioning system in Algorithm 7.16 is SPD but the effective con-
dition number of the preconditioned system is very large.

7.4.3 Preconditioning of the Schur Complement Matrix
In this section we present the condition number of Schur complement S (obtained by elimi-
nating all degrees of freedom inside the elements) and the preconditioned Schur complement
system.
The condition number of the Schur Complement for C0-continuity is shown in Table 7.6. In
Table 7.7, results are shown for the condition number of the preconditioned system P−1

S S,
where PS is the preconditioning matrix obtained from various approaches listed in the algo-
rithms, and the diagonal matrix obtained from S.
The eigenvalues of the generalized eigenvalue problems S̃ex = λB̃sex are calculated, and
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Table 7.2: Condition number of A
H
HHH

HHp
mesh

2×2 4×4 8×8 16×16 32×32

C0-continuity
2 7 13 36 140 555
3 75 107 120 270 1075
4 881 1100 1189 1215 1762
5 11094 12951 13680 13886 13940
6 146296 162488 168707 170451 170900

Cp−1-continuity
2 4 4 5 20 78
3 31 29 29 29 82
4 340 269 240 223 215
5 4177 3220 2148 1812 1700
6 54385 46606 20819 15133 –

the effective condition number κeff of (Se, Bse) is shown in Table 7.8, where Bse is com-
puted from Algorithm 7.8. Algorithms 7.4 and 7.5 have also been tried but results are not
favorable and not shown here.

Table 7.3: Condition number of P−1A for C0-continuity
HH

HHHHp
mesh

2×2 4×4 8×8 16×16 32×32

P = D
2 2 6 22 87 346
3 20 30 48 192 766
4 181 249 275 331 1323

P = B1, see Algorithm 7.2
2 2 6 23 92 366
3 5 12 48 190 761
4 50 60 127 524 –

P = B2, see Algorithm 7.3
2 × 4 16 66 280
3 20 28 32 98 –
4 220 299 325 336 –

P = B3, see Algorithm 7.4
2 × 16 155 979 9409
3 18 388 4525 22757 –
4 171 3259 41763 – –
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Table 7.4: Condition number of P−1A for Cp−1-continuity
HHH

HHHp
mesh

2×2 4×4 8×8 16×16 32×32

P = B1, see Algorithm 7.2
2 2 3 6 21 84
3 9 9 13 19 80
4 89 45 105 257 1056

P = B2, see Algorithm 7.3
2 × 4 4 17 68
3 × 22 20 20 53
4 228 185 123 116 113

Table 7.5: Effective condition number of (Ae, Be) for p = 2, . . . , 6
H
HHH

HHBe

p
2 3 4 5 6

Alg. 7.8 2.4 25.8 246.5 2336 23999

Table 7.6: Condition number of S
HHH

HHHp
mesh

2×2 4×4 8×8 16×16 32×32

2 3 9 28 106 417
3 9 14 37 147 585
4 29 40 48 178 706
5 100 123 130 205 815
6 355 410 430 436 951

7.5 Conclusion
We have numerically studied the behavior of condition numbers of graph theory based
preconditioners for NURBS-based isogeometric discretization of Poisson equation. It can
be seen that the condition number of preconditioned system, based on both the types of
Vaidya’s preconditioners, as well as support tree preconditioners of Gremban and Miller, is
not independent of mesh-size. It is important to note that the support graph preconditioners
are sensitive to the nonzero structure of the coefficient matrix, and not to the values of its
entries. However, these methods are limited to the class of Symmetric Diagonally Dominant
(SDD) matrices. Unfortunately, except for p = 1 when we get the stiffness matrix as an M -
matrix, the matrices obtained from isogeometric method for p ≥ 2 can not be guaranteed to
be SDD. We tried a few approaches (discussed in earlier sections) for higher p using support
graph preconditioners but in the current form these approaches do not give condition num-
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Table 7.7: Condition number of P−1
S S

H
HHH

HHp
mesh

2×2 4×4 8×8 16×16 32×32

PS = DS

2 2 5 19 73 291
3 7 10 33 132 529
4 20 29 47 181 720

PS = BS1 , see Algorithm 7.2
2 2 5 20 77 307
3 3 8 29 115 457
4 5 12 45 176 703

PS = BS2 , see Algorithm 7.3
2 × 4 14 59 241
3 5 6 19 76 303
4 18 24 26 99 398

Table 7.8: Effective condition number of (Se, BSe) for p = 2, . . . , 6
H
HHH

HHBSe

p
2 3 4 5 6

Alg. 7.8 1.3 5.8 20.1 64.2 203.2

bers independent of mesh-size. Therefore, it is not possible to develop optimal order solver
with these preconditioners.



Chapter 8

Conclusions

There are two main topics covered in this thesis. The first one deals with the condition
number estimates of the matrices arising in the isogeometric discretization of the elliptic
partial differential equations. The second one is the fast iterative solvers for the resulting
linear system of equations. Our approaches to solve linear system are based on multigrid
and multilevel methods. We also discuss the preconditioning techniques based upon graph
theory. We can summarize the contribution of this thesis as follows.

Estimates of Eigenvalues
The estimates of maximum and minimum eigenvalues for the stiffness matrix and the mass
matrix are given for h-refinement and p-refinement. For h-refinement, upper bounds and
lower bounds for maximum and minimum eigenvalues are presented for the stiffness matrix
and the mass matrix. For p-refinement, we present the upper and lower bounds for maximum
eigenvalue of the stiffness and the mass matrix. For minimum eigenvalue of the stiffness
matrix and the mass matrix, we provided only lower bounds.

Estimates of Condition Number
The condition number of the stiffness matrix with respect to mesh size h grows as O(h−2).
For the mass matrix the condition number is independent of the mesh size h and scales as
O(1). We have proved that in the p-version of the isogeometric method, the condition num-
ber of the stiffness matrix and the mass matrix exponentially grows with p and is bounded
above by p2d4pd and p2(d−1)4pd for the stiffness matrix and the mass matrix respectively.

Explicit Representation of B-splines
The recursive form of B-splines may not be efficient from the computation cost and memory
point of view. Moreover, the recursive form offer little insight in devising intergrid transfer
operators. Therefore, we presented explicit formulas for the B-spline basis functions for a
uniform mesh on a unit interval. The explicit representation of B-spline basis functions for
a fixed mesh size h is given for p = 2, 3, 4, and for C0- and Cp−1-continuity.

133
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Multilevel B-splines and NURBS
The multilevel transfer operators from one level to another are at the heart of the multigrid
or multilevel methods. Therefore, the construction of B-spline basis functions at coarse
level from the linear combination of fine basis functions is provided. For p = 2, 3, 4, and
with C0 and Cp−1 continuities, these transfer operators (from fine level to coarse level) are
given in matrix form for a multilevel mesh. The transfer operators are also provided for
NURBS basis functions. The formulation of NURBS operators is given in terms of B-spline
operators and weights.

Multigrid Methods
The multigrid methods are presented for isogeometric discretization of scalar second order
elliptic problems. The smoothing property of the relaxation method, and the approximation
property of the intergrid transfer operators are analyzed. These properties, when used in the
framework of classical multigrid theory, imply uniform convergence of two-grid and multi-
grid methods. For two dimensions, numerical results include the problems with variable
coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of con-
vergence behavior on refinement levels L, whereas for three dimensions, only the constant
coefficient problem in a unit cube is considered.

AMLI Methods
We have numerically studied AMLI methods for isogeometric discretizations. For B-splines
(NURBS), hierarchical spaces are constructed as direct sum of coarse spaces and corre-
sponding hierarchical complementary spaces. We have presented matrix form of these op-
erators. As the choice of hierarchical complementary spaces is not unique, we have pro-
vided two different choices of these operators for each of C0- and Cp−1-continuity of basis
functions. The numerical study of CBS constant and the condition number of Â11 block,
corresponding to hierarchical complementary basis functions, are presented. For a given
polynomial degree p, AMLI cycles are of optimal complexity with respect to the mesh re-
finement. For a given mesh size h, AMLI cycles are p-independent for Cp−1 continuous
basis function. Numerical results indicate almost p-independent convergence rates for C0

continuous basis functions.

Graph Theory Based Preconditioning
The condition number of preconditioned system using Vaidya’s preconditioner (maximum
weight spaning tree) and Gremban and Miller preconditioner (support tree) is analyzed. It
can be seen that the condition number of preconditioned system, based on both the types of
Vaidya’s preconditioners, as well as support tree preconditioners of Gremban and Miller, is
not independent of mesh-size.
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Future Directions
We present here some possible future direction.

1. The estimates for the minimum eigenvalues of the stiffness matrix and the mass matrix
depend on the stability constant of B-Splines. Using the stability constant of B-Splines
we could prove the lower bound of the minimum eigenvalue. The estimates for upper
bound of minimum eigenvalue of the stiffness matrix and the mass matrix is still an
open problem.

2. A general formula for the explicit representation of B-splines basis functions, for any
mesh size h and for any polynomial degree p with uniform and non-uniform intervals,
is not available. This will be advantageous from computation and memory point of
views.

3. The iterative solvers which are fully robust with respect to the polynomial degree p
are not yet available.

4. Due to larger support (in p+1 knot spans) of B-splines, local analysis of CBS constant
is still an open problem.
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