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A PRECONDITIONED MINRES SOLVER FOR TIME-PERIODIC
PARABOLIC OPTIMAL CONTROL PROBLEMS

MARKUS KOLLMANN AND MICHAEL KOLMBAUER

Abstract. This work is devoted to the multiharmonic analysis of parabolic
optimal control problems in a time-periodic setting. In contrast to previous

approaches, we include the cases of different control and observation domains,

the observation in certain energy spaces and the presence of control constraints.
In all these cases we propose a new preconditioned MinRes solver for the

frequency domain equations and show that this solver is robust with respect

to the space and time discretization parameters as well as the involved “bad”
model parameters of the state equation.

1. Introduction

This work is devoted to the development of efficient solution procedures for the
following optimal control problem:

min
y,u

1
2

∫ T

0

∫
Ω1

[D(y(x, t)− yd(x, t))]2 dx dt+
λ

2

∫ T

0

∫
Ω2

[u(x, t)]2 dx dt.

subject to the state equation
σ
∂

∂t
y(x, t)−∇ · (ν∇y(x, t)) = u(x, t) ∀(x, t) ∈ Ω× (0, T ),

y(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T ),

y(x, 0) = y(x, T ) ∀x ∈ Ω̄,

and possible constraints imposed on the Fourier coefficients of the control (see
Subsection 4.3).

Here Ω is a bounded Lipschitz domain. Ω1 and Ω2 are non-empty subsets of Ω,
i.e. Ω1,Ω2 ⊂ Ω ⊂ Rd(d = 1, 2, 3), D is either the identity or ∇, σ and ν are some
positive model parameters, λ > 0 is a cost coefficient.

In order to derive a solution of this constrained minimization problem, we derive
the first order optimality conditions. If there are additional constraints to the
control u, the optimality system is nonlinear. We discretize in space and time by
means of a multiharmonic finite element method (MH-FEM). Indeed, this method
is very useful for solving problems in time-periodic settings.

The idea of using a multiharmonic approach as a non-standard discretization
method in time and combining it with the finite element method for approximating
the Fourier coefficients is not new and has been used by many authors in different
applications (e.g. [1, 2, 3, 4, 5]). Indeed, in [6] and [7] a rigorous numerical analysis
for the multiharmonic finite element method applied to the eddy current problem
and the eddy current optimal control problem is provided.

The fast solution of the corresponding large linear system of finite element fre-
quency domain equations is crucial for the competitiveness of this method. Hence
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2 MARKUS KOLLMANN AND MICHAEL KOLMBAUER

appropriate (parameter-robust) preconditioning is an important issue. In [8] a gen-
eral recipe for the construction of preconditioners for discrete linear operators that
arise from a Galerkin approach is shown. There the resulting preconditioners are
robust with respect to the choice of the bases for trial and test spaces. In order to
construct parameter-robust preconditioners, we follow an abstract preconditioning
strategy that has been rigorously analyzed in [9] and has already successfully ap-
plied to the multiharmonic finite element (MH-FEM) or boundary element method
(MH-BEM) or their coupling (MH-FEM/BEM) in several works [10, 11, 12, 7].

Indeed, in [7], time-periodic eddy current optimal control problems are analyzed
and a parameter-robust preconditioned MinRes solver is constructed. In fact, the
applicability of their approach for time-periodic parabolic optimal control problems
is shown with some eminent restrictions, that limits the applicability of their solver
to general problems, e.g. in computational electromagnetics:

1) The observation domain and the control domain have to coincide with the
computational domain, i.e. Ω1 = Ω2 = Ω.

2) The observation is restricted to be done in the L2-norm, i.e. D = Id.
3) There are no control constraints involved.

The overcome of these drawbacks is not straightforward, since we have to cope
with up to six discretization and model parameters, that impinge upon the con-
vergence rate of any iterative method. Anyhow, in all these cases we construct an
almost robust preconditioned MinRes method, meaning that the convergence rate
is independent of all but one parameter. In fact it turns out, that a generalization
of the parameter-robust block-diagonal preconditioner for the time-harmonic state
equations as studied in [10] and [11] is also the right choice in this framework.

Since inequality constraints give rise to nonlinear optimality systems, following
Herzog and Sachs [13], we apply a Newton-type approach for their solution. The
saddle point problems arising at each Newton step are solved with the almost
optimal preconditioned MinRes method.

The rest of the paper is organized as follows. In Section 2, we derive the opti-
mality system of the model problem and discretize in space and time by means of
the multiharmonic finite element method. Here we briefly recall the setting used
in [7]. Section 3 is devoted to preconditioning of the resulting linear system of
equations. After providing a theoretical basis according to a result by Zulehner
[9], we apply the preconditioning technique to the model problem stated in Sec-
tion 2. In Section 4, we generalize the results obtained in Section 3 and obtain an
almost parameter-robust MinRes solver. In Section 5, we present numerical results
confirming the rate estimates given in Section 4. Section 6 draws some conclusions.

2. The first model problem

As a first model problem we consider a time-periodic parabolic optimal control
problem and briefly recall the setting used there. We derive a preconditioner (see
Section 3), which is different to the one used in [7], but very useful for the extended
model problems (see Section 4).

Therefore we consider the model problem:

min
y,u
J̄ (y, u) = min

y,u

1
2

∫ T

0

∫
Ω

[y(x, t)− yd(x, t)]2 dx dt+
λ̄

2

∫ T

0

∫
Ω

[ū(x, t)]2 dx dt
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subject to the state equation
σ̄
∂

∂t
y(x, t)−∇ · (ν̄∇y(x, t)) = ū(x, t) ∀(x, t) ∈ Ω× (0, T ),

y(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T ),

y(x, 0) = y(x, T ) ∀x ∈ Ω̄.

Here λ̄ > 0 denotes the control cost parameter. Additionally, there are two coeffi-
cients ν̄ ∈ L∞(Ω) and σ̄ ∈ L∞(Ω), fulfilling

0 < ν̄min ≤ ν̄(x) ≤ ν̄max, and 0 ≤ σ̄(x) ≤ σ̄max, a.e in Ω.

In practical applications, e.g., for 2D eddy current problems in computational elec-
tromagnetics, σ̄(·) corresponds to the conductivity and ν̄(·) corresponds to the
reluctivity. By a simple scaling argument it can always be achieved that ν̄min = 1:
For arbitrary ν̄ we scale the state equation with ν̄−1

min to obtain the equivalent
minimization problem:

min
y,u
J (y, u) = min

y,u

1
2

∫ T

0

∫
Ω

[y(x, t)− yd(x, t)]2 dx dt+
λ

2

∫ T

0

∫
Ω

[u(x, t)]2 dx dt

(1)

subject to the state equation
σ
∂

∂t
y(x, t)−∇ · (ν∇y(x, t)) = u(x, t) ∀(x, t) ∈ Ω× (0, T ),

y(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T ),

y(x, 0) = y(x, T ) ∀x ∈ Ω̄,

(2)

with the new parameters σ = σ̄
ν̄min

, ν = ν̄
ν̄min

, λ = λ̄ν̄2
min and the scaled state

u = ū
ν̄min

. In the remainder of this work we consider the scaled PDE-constraint
minimization problem (1)-(2) with ν ≥ 1 a.e. in Ω.

2.1. Optimality system. In order to solve the optimal control problem (1)-(2),
we formulate the corresponding optimality system. The Lagrange functional of the
model problem is given by

L(y, u, p) := J (y, u) +
∫ T

0

∫
Ω

(
σ
∂y

∂t
−∇ ·

(
ν∇y

)
− u
)
p dx dt,(3)

where p denotes the co-state. A stationary point (y, u, p) of the Lagrange functional
is characterized by the following three conditions:

∇yL(y, u, p) = 0,

∇uL(y, u, p) = 0,

∇pL(y, u, p) = 0.
(4)

We can eliminate the control u from the optimality system (4) using the second
condition, i.e.

u(x, t) = λ−1p(x, t).(5)
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By (3),(4) and (5), we obtain the following (classical) formulation of the optimality
system:



σ
∂

∂t
y(x, t)−∇ · (ν∇y(x, t))− λ−1p(x, t) = 0 ∀(x, t) ∈ Ω× (0, T )

y(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T )

y(x, 0) = y(x, T ) ∀x ∈ Ω̄

−σ ∂
∂t
p(x, t)−∇ · (ν∇p(x, t)) + y(x, t) = yd(x, t) ∀(x, t) ∈ Ω× (0, T )

p(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T )

p(x, T ) = p(x, 0) ∀x ∈ Ω̄.

(6)

The space-time variational formulation of (6) is the starting point of discretization
in space and time.

2.2. Multiharmonic FEM. Let us now assume that the desired state yd is mul-
tiharmonic, i.e. yd has the form

(7) yd(x, t) =
N∑
k=0

ycd,k(x) cos(kωt) + ysd,k(x) sin(kωt),

with some natural number N , frequency ω = 2π/T and amplitudes ycd,k and ysd,k.
Mention that in the case of a more general, but time-periodic desired state yd, we
can approximate yd by a truncated Fourier series. The quality of the approximation
depends on N and the smoothness of yd.

Due to the linearity of the state equation, we obtain, that the state y and the
co-state p are multiharmonic as well, and, therefore, they have the same structure:

y(x, t) =
N∑
k=0

yck(x) cos(kωt) + ysk(x) sin(kωt),

p(x, t) =
N∑
k=0

pck(x) cos(kωt) + psk(x) sin(kωt).

Due to the linearity of the reduced optimality problem, the huge (4N+2)×(4N+2)
system decouples into N 4 × 4 systems of partial differential equations for the
two Fourier coefficients of each, the state y and the co-state p belonging to the
mode k, and a 2 × 2 system of partial differential equations for the mode k = 0.
(Clearly we don’t have to solve for ps0 and ys0, since sin(0ωt) = 0.) Hence, we solve
the time-independent system of partial differential equations: Find the state y =
(yc0, y

c
1, y

s
1, . . . , y

c
N , y

s
N ) ∈ H1

0 (Ω)2N+1 and the co-state p = (pc0, p
c
1, p

s
1, . . . , p

c
N , p

s
N ) ∈

H1
0 (Ω)2N+1, such that

(8)



ωkσpck −∇ · (ν∇psk) + ysk = ysd,k, in Ω,

−ωkσpsk −∇ · (ν∇pck) + yck = ycd,k, in Ω,

−ωkσyck −∇ · (ν∇ysk)− λ−1psk = 0, in Ω,

ωkσysk −∇ · (ν∇yck)− λ−1pck = 0, in Ω,

yck = ysk = pck = psk = 0, on ∂Ω,

for all modes k = 0, 1, . . . , N . Since the whole problem decouples to a block-diagonal
one corresponding to each mode k, for preconditioning purpose, it is enough to
discuss the block for a fixed mode k. Therefore, for the rest of this work, we
concentrate on solving a 4× 4 block for a fixed mode k.
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Deriving the usual space-variational formulation of (8) for some fixed k ∈ N,
we end up with the following variational problem (we omit the subindex k): Find
(yc, ys, pc, ps) ∈ H1

0 (Ω)4, such that

(9) B((yc, ys, pc, ps), (vc, vs, qc, qs)) = F((vc, vs, qc, qs))

for all (vc, vs, qc, qs) ∈ H1
0 (Ω)4, where the left-hand side B is given by

B((yc, ys, pc, ps), (vc, vs, qc, qs)) = a((yc, ys), (vc, vs)) + b((vc, vs), (pc, ps))

+ b((yc, ys), (qc, qs))− c((pc, ps), (qc, qs)),
with the bilinear forms

a((yc, ys), (vc, vs)) : = (yc, vc)L2(Ω) + (ys, vs)L2(Ω)

c((pc, ps), (qc, qs)) : = λ−1(pc, qc)L2(Ω) + λ−1(ps, qs)L2(Ω)

b((yc, ys), (qc, qs)) : = (ν∇yc,∇qc)L2(Ω) + (ν∇ys,∇qs)L2(Ω)

+ kω(σys, qc)L2(Ω) − kω(σyc, qs)L2(Ω).

The right-hand side F is given by

F((vc, vs, qc, qs)) = (ycd, v
c)L2(Ω) + (ysd, v

s)L2(Ω).

The finite element discretization (e.g. using piece-wise linear functions with the
usual nodal basis) of each 4 × 4 block leads to a 4 × 4 matrix A of the following
form:

(10) A =


M · Kν −Mkω,σ

· M Mkω,σ Kν

Kν Mkω,σ −λ−1M ·
−Mkω,σ Kν · −λ−1M

 .

Here the mass matrix M, the conductivity matrix Mkω,σ and the stiffness matrix
Kν arise from the finite element discretization of the corresponding bilinear forms

M : (·, ·)L2(Ω), Mkω,σ : kω(σ·, ·)L2(Ω) and Kν : (ν∇·,∇·)L2(Ω).

Hence, we have to solve a linear system of finite element equations of the form

(11) Aw = f ,

where the system matrix A is given by (10) and f is the finite element discretization
of F .

In fact, the system matrix A is symmetric and indefinite and obtains a double
saddle-point structure. SinceA is symmetric, the system can be solved by a Minimal
Residual (MinRes) method [14]. Typically, the convergence rate of any iterative
method deteriorates with respect to the meshsize h and the “bad” parameters kω, ν,
σ and λ, if applied to the unpreconditioned system (11). Therefore, preconditioning
is a challenging topic.

3. Preconditioning

In [7], the parameter-robust block-diagonal preconditioner

(12) P = diag
(
D,D, λ−1D,λ−1D

)
.

with D =
√
λKν +

√
λMkω,σ + M for the solution of (11) in a MinRes setting

is proposed. This preconditioner yields robust convergence rates with respect to
all six involved discretization and model parameters, i.e. h, k, ω, σ, ν and λ.
Additionally, there is a rigorous condition number bound κC(C−1A) ≤

√
3. The

application of P to more general problems, as mentioned in the introduction, is not
straightforward. Since here, we are heading towards more practical applications,
it turns out, that we have to pay a price in the sense, that we lose robustness
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with respect to the cost coefficient λ in order to get robustness with respect to
modifications in the cost functional and/or the state equation. The idea is to use a
block-diagonal preconditioner for the optimal control problem, which obtains high
structural similarities with the parameter-robust preconditioner (12).

Furthermore, the cases handled in this work are not capable with the precondi-
tioning theory used in [7]. Therefore, we use a generalized preconditioning result
from Zulehner in [9], that is very useful for proving almost parameter-independent
bounds in all these cases.

3.1. Abstract preconditioning theory. In this Subsection we briefly recall a
result of Zulehner [9]. Let V and Q be Hilbert spaces with the inner products
(·, ·)V and (·, ·)Q. The associated norms are given by ‖ · ‖V =

√
(·, ·)V and ‖ · ‖Q =√

(·, ·)Q. Furthermore let X be the product space X = V × Q, equipped with
the inner product ((v, q), (w, r))X = (v, w)V + (q, r)Q and the associated norm
‖(v, q)‖X =

√
((v, q), (v, q))X .

Consider a mixed variational problem in the product space X = V × Q: Find
z = (w, r) ∈ X, such that

A(z, y) = F(y), for all y ∈ X

with

A(z, y) = a(w, v) + b(v, r) + b(w, q)− c(r, q), and F(y) = f(v) + g(q)

for y = (v, q) and z = (w, r). We introduce B ∈ L(V,Q∗) and its adjoint B∗ ∈
L(Q,V ∗) by

〈Bw, q〉 = b(w, q) and 〈B∗r, v〉 = 〈Bv, r〉.
Furthermore, we denote by A ∈ L(X,X∗) the operator induced by

〈Ax, y〉 = A(x, y).

The next theorem provides necessary and sufficient conditions for providing param-
eter independent bounds and can be found in Zulehner [9].

Theorem 1 ([9, Theorem 2.6]). If there are constants cw, cr, cw, cr > 0, such that

(13) cw‖w‖2V ≤ a(w,w) + ‖Bw‖2Q∗ ≤ cw‖w‖2V , for all w ∈ V

and

(14) cr‖r‖2Q ≤ c(r, r) + ‖B∗r‖2V ∗ ≤ cr‖r‖2Q, for all r ∈ Q,

then

(15) c‖z‖X ≤ ‖Ax‖X∗ ≤ c‖z‖X , for all z ∈ X

is satisfied with constants c, c > 0 that depend only on cw, cw, cr, cr.

As stated in [9, Remark 2], for the special case c(·, ·) = 0, Theorem 1 simplifies
to the classical Theorem of Brezzi.

3.2. Preconditioning the MH-FEM matrices. We use the preconditioning
technique of the last subsection to analyze a preconditioner for the MH-FEM prob-
lem (10). Before we tackle the generalized problems, we demonstrate the application
of Theorem 1 for the simple model problem (1)-(2). Later on, parts of this proof
can be re-used in the generalized cases.

In order to construct a parameter-robust preconditioner, we start by choosing
special norms in H1

0 (Ω). Therefore we introduce the non-standard norm ‖ · ‖C1 in
H1

0 (Ω) as follows:

‖u‖2C1 := (ν∇u,∇u)L2(Ω) + kω(σu, u)L2(Ω).
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Note, that this is a norm in H1
0 (Ω) even for the degenerated case σ = 0. This

definition gives rise to non-standard norms ‖ · ‖C2 and ‖ · ‖C in the product spaces
H1

0 (Ω)2 and H1
0 (Ω)4, respectively:

‖(yc, ys)‖2C2 :=
∑

j∈{c,s}

[
(ν∇yj ,∇yj)L2(Ω) + kω(σyj , yj)L2(Ω)

]
‖(yc, ys, pc, ps)‖2C := ‖(yc, ys)‖2C2 + ‖(pc, ps)‖2C2

The main result is summarized in the following Lemma, that claims that the inf-sup
condition in the Theorem of Babuška-Aziz is fulfilled in this non-standard norm.

Lemma 1 (Robust estimates of standard case). We have

c ‖(yc, ys, pc, ps)‖C ≤ sup
(vc,vs,qc,qs) 6=0

B((yc, ys, pc, ps), (vc, vs, qc, qs))
‖(vc, vs, qc, qs)‖C

,

c ‖(yc, ys, pc, ps)‖C ≥ sup
(vc,vs,qc,qs) 6=0

B((yc, ys, pc, ps), (vc, vs, qc, qs))
‖(vc, vs, qc, qs)‖C

with constants c, c independent of k, ω, ν and σ.

Proof. Using Friedrichs’ inequality ‖y‖20 ≤ CF |y|21 for y ∈ H1
0 (Ω), we can show

non-negativity and boundedness of a(·, ·):
(16)

0 ≤ a((yc, ys), (yc, ys)) = ‖yc‖2L2(Ω) + ‖ys‖2L2(Ω) ≤ CF
(
|yc|2H1(Ω) + |ys|2H1(Ω)

)
≤ CF

∑
j∈{c,s}

(ν∇yj ,∇yj)L2(Ω) ≤ CF ‖(yc, ys)‖2C2 .

Non-negativity and boundedness of c(·, ·) follows by an analogous procedure:
(17)

0 ≤ c((pc, ps), (pc, ps)) = λ−1
(
‖pc‖2L2(Ω) + ‖ps‖2L2(Ω)

)
≤ λ−1CF

(
|pc|2H1(Ω) + |ps|2H1(Ω)

)
≤ λ−1CF

∑
j∈{c,s}

(ν∇pj ,∇pj)L2(Ω) ≤ λ−1CF ‖(pc, ps)‖2C2 .

Finally, we show boundedness of b(·, ·),

b((yc, ys), (qc, qs)) ≤

 ∑
j∈{c,s}

[
(ν∇yj ,∇yj)L2(Ω) + kω(σyj , yj)L2(Ω)

]1/2

·

 ∑
j∈{c,s}

[
(ν∇qj ,∇qj)L2(Ω) + kω(σqj , qj)L2(Ω)

]1/2

= ‖(yc, ys)‖C2‖(qc, qs)‖C2 ,

and the inf-sup condition of b(·, ·): For the test function we use the special choice
(qc, qs) = (yc + ys, ys − yc) to obtain

b((yc, ys), (yc, ys)) + b((yc, ys), (ys,−yc)) ≥∑
j∈{c,s}

[
(ν∇yj ,∇yj)L2(Ω) + kω(σyj , yj)L2(Ω)

]
= ‖(yc, ys)‖2C2 .
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Note, that for this special choice we have ‖(qc, qs)‖C2 =
√

2‖(yc, ys)‖C2 . Hence we
obtain the estimate

(18)
1√
2
‖(yc, ys)‖C2 ≤ sup

06=(qc,qs)

b((yc, ys), (qc, qs))
‖(qc, qs)‖C2

≤ ‖(yc, ys)‖C2 .

Since b(·, ·) is skew symmetric, the same estimate can be obtained for the adjoint
setting:

(19)
1√
2
‖(pc, ps)‖C2 ≤ sup

06=(vc,vs)

b((vc, vs), (pc, ps))
‖(vc, vs)‖C2

≤ ‖(pc, ps)‖C2 .

Therefore, combining (16) with (18) and (17) with (19) yields

1
2
‖(yc, ys)‖2C2 ≤ a((yc, ys), (yc, ys)) +

(
sup

0 6=(qc,qs)

b((yc, ys), (qc, qs))
‖(qc, qs)‖C2

)2

≤ (1 + CF )‖(yc, ys)‖2C2 ,

1
2
‖(pc, ps)‖2C2 ≤ c((p

c, ps), (pc, ps)) +

(
sup

0 6=(vc,vs)

b((vc, vs), (pc, ps))
‖(vc, vs)‖C2

)2

≤ (1 + λ−1CF )‖(pc, ps)‖2C2 .

Now the result follows with Theorem 1. �

Furthermore Lemma 1 remains valid for the finite element subspace of H1
0 (Ω)4,

since we are working in a conforming Galerkin approach and consequently the proof
can be repeated for the finite element functions step by step.

Hence it follows by the theorem of Babuška-Aziz, that there exists a unique
solution of the corresponding variational problem (9), and that the solution contin-
uously depends on the data, uniformly in k, ω, σ and ν. Hence we conclude, that
the block-diagonal preconditioner

(20) C = diag (Kν + Mkω,σ ,Kν + Mkω,σ,Kν + Mkω,σ,Kν + Mkω,σ)

yields robust convergence rates with respect to the space discretization parameter h
and the time discretization parameters k and ω, as well as to the model parameters
σ and ν. Additionally, from Lemma 1, we immediately obtain that the spectral
condition number of the preconditioned system can be estimated by a constant, i.e.

κC(C−1A) := ‖C−1A‖C‖A−1C‖C ≤
c

c
6= c(ν, σ, ω, k, h).

Clearly, if we use (20) instead of (12), we lose robustness with respect to the cost
coefficient λ, but the block-diagonal preconditioner (20) is also applicable to the
extensions discussed in the introduction. This is the topic of the next section.

4. Extensions to more practical applications

In this section, we extend the basic model problem (1)-(2) step by step to more
involved problems. In all the three cases discussed in the introduction, the re-
sulting system matrices (after an appropriate linearization) obtain high structural
similarities to A as in (10). Therefore, we analyze the applicability of the block-
diagonal preconditioner (20) for these general problems and study the robustness
with respect to the involved parameters.
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4.1. Different control and observation domains. In many practical applica-
tions, it makes no sense to locate the observation and/or control in the full compu-
tational domain Ω. Therefore, we assume that the observation and control domains
Ω1 and Ω2 are Lipschitz domains and simply connected subdomains of the compu-
tational domain Ω, i.e. Ω1 ⊂ Ω and Ω2 ⊂ Ω. In order to deal with the different
support of the observation and control, we define the prolongation operators Pi,
i = 1, 2, by

Pi : L2(Ωi)→ L2(Ω),

(Piu, v)L2(Ω) = (u, v)L2(Ωi), ∀u ∈ L2(Ωi) ∀v ∈ L2(Ω),

and the corresponding restriction operators P ∗i , i = 1, 2, by

P ∗i : L2(Ω)→ L2(Ωi),

(Piu, v)L2(Ω) = (u, P ∗i v)L2(Ωi), ∀u ∈ L2(Ωi) ∀v ∈ L2(Ω).

Therefore, the constraint minimization problem reads as:

min
y,u

1
2

∫ T

0

∫
Ω1

|P ∗1 [y(x, t)− yd(x, t)] |2dx dt+
λ

2

∫ T

0

∫
Ω2

[u(x, t)]2 dx dt

subject to the state equation
σ(x)

∂

∂t
y(x, t)−∇ · (ν(x)∇y(x, t)) = P2u(x, t) ∀(x, t) ∈ Ω× (0, T ),

y(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T ),

y(x, 0) = y(x, T ) ∀x ∈ Ω̄.

Here y ∈ H1
0 (Ω) and u ∈ L2(Ω2). We use the same approach as in Subsection 2.2.

Again we can eliminate the control u and end up with a new bilinear form B1 for
the reduced optimality-system for a fixed mode k, given by

B1((yc, ys, pc, ps), (vc, vs, qc, qs)) = a1((yc, ys), (vc, vs)) + b((vc, vs), (pc, ps))

+ b((yc, ys), (qc, qs))− c1((pc, ps), (qc, qs)),

with the modified bilinear forms

a1((yc, ys), (vc, vs)) : = (P ∗1 y
c, P ∗1 v

c)L2(Ω1) + (P ∗1 y
s, P ∗1 v

s)L2(Ω1) and

c1((pc, ps), (qc, qs)) : = λ−1(P ∗2 p
c, P ∗2 q

c)L2(Ω2) + λ−1(P ∗2 p
s, P ∗2 q

s)L2(Ω2).

Remark 1. Let us mention, that in the continuous setting we have

(P ∗i y, P
∗
i v)L2(Ωi) = (y, v)L2(Ωi), i = 1, 2.

In view of the discrete system it is more convenient to stay with the restriction and
prolongation operators also in the continuous setting.

Using the C norm as defined in Subsection 3.2, we obtain the following result:

Lemma 2 (Robust estimates). We have

c1 ‖(yc, ys, pc, ps)‖C ≤ sup
(vc,vs,qc,qs)6=0

B1((yc, ys, pc, ps), (vc, vs, qc, qs))
‖(vc, vs, qc, qs)‖C

,

c1 ‖(yc, ys, pc, ps)‖C ≥ sup
(vc,vs,qc,qs)6=0

B1((yc, ys, pc, ps), (vc, vs, qc, qs))
‖(vc, vs, qc, qs)‖C

with constants c1, c1 independent of k, ω, ν, σ, Ω1 and Ω2.
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Proof. The proof is basically the same as the proof of Lemma 1. The main differ-
ences are the lower and upper bounds for a1(·, ·) and c1(·, ·). Indeed, we have

0 ≤ a1((yc, ys), (yc, ys)) ≤ a((yc, ys), (yc, ys)) ≤ CF ‖(yc, ys)‖2C2
and

0 ≤ c1((pc, ps), (pc, ps)) ≤ c((pc, ps), (pc, ps)) ≤ λ−1CF ‖(pc, ps)‖2C2 .

This finishes the proof. �

Furthermore Lemma 2 remains valid for finite element subspaces of H1
0 (Ω)4,

since we are working in a conforming Galerkin approach, and consequently the
proof can be repeated step by step for the finite element functions. The finite
element discretization (e.g. using piece-wise linear functions with the usual nodal
basis) of each 4× 4 block leads to a 4× 4 matrix A1 of the following form:

A1 =


M1 · Kν −Mkω,σ

· M1 Mkω,σ Kν

Kν Mkω,σ −λ−1M2 ·
−Mkω,σ Kν · −λ−1M2

 .

Here the matrices M1 and M2 are reduced mass matrices, indeed

Mi = Pi(Pi
TMPi)Pi

T ,

where the prolongation matrices Pi, i = 1, 2, are the finite element discretization
of Pi.

Remark 2. In the special case Ω1 = Ω2, a modification of the parameter-robust
preconditioner (12) can be used to obtain convergence-rates that are additionally
independent of λ (see also [7]).

4.2. Observation in the energy norm. In some practical applications, the quan-
tity of interest in the observation domain is not the L2-norm, but some energy norm,
e.g. the H1-semi norm. Therefore, we are dealing with the following problem:

min
y,u

1
2

∫ T

0

∫
Ω

[∇(y(x, t)− yd(x, t))]2 dx dt+
λ

2

∫ T

0

∫
Ω

[u(x, t)]2 dx dt

subject to the state equation
σ(x)

∂

∂t
y(x, t)−∇ · (ν(x)∇y(x, t)) = u(x, t) ∀(x, t) ∈ Ω× (0, T ),

y(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T ),

y(x, 0) = y(x, T ) ∀x ∈ Ω̄.

In order to derive the reduced optimality-system for a fixed mode k in the weak
form, we use the same approach as in Subsection 2.2 and end up with a new bilinear
form B2, given by

B2((yc, ys, pc, ps), (vc, vs, qc, qs)) = a2((yc, ys), (vc, vs)) + b((vc, vs), (pc, ps))

+ b((yc, ys), (qc, qs))− c((pc, ps), (qc, qs)),

with the modified bilinear form

a2((yc, ys), (vc, vs)) := (∇yc,∇vc)L2(Ω) + (∇ys,∇vs)L2(Ω).

Using the C norm as defined in Subsection 3.2, we obtain the following result:
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Lemma 3 (Robust estimates). We have

c2‖(yc, ys, pc, ps)‖C ≤ sup
(vc,vs,qc,qs)6=0

B2((yc, ys, pc, ps), (vc, vs, qc, qs))
‖(vc, vs, qc, qs)‖C

,

c2‖(yc, ys, pc, ps)‖C ≥ sup
(vc,vs,qc,qs)6=0

B2((yc, ys, pc, ps), (vc, vs, qc, qs))
‖(vc, vs, qc, qs)‖C

with constants c2, c2 independent of k, ω, ν and σ.

Proof. The proof is basically the same as the proof of Lemma 1. The main differ-
ences are the lower and upper bounds for a2(·, ·). We have

0 ≤ a2((yc, ys), (yc, ys)) = |yc|2H1(Ω) + |ys|2H1(Ω) ≤ ‖(y
c, ys)‖2C2 .

This finishes the proof. �

Furthermore, Lemma 3 remains also valid for finite element subspaces of H1
0 (Ω)4,

since we are working in a conforming Galerkin approach, and consequently the proof
can be repeated step by step for the finite element functions. The finite element
discretization (e.g. using piece-wise linear functions with the usual nodal basis) of
each 4× 4 block leads to a 4× 4 matrix A2 of the following form:

A2 =


K · Kν −Mkω,σ

· K Mkω,σ Kν

Kν Mkω,σ −λ−1M ·
−Mkω,σ Kν · −λ−1M

 .

Remark 3. This case is of special interest if we want to observe the magnetic flux
density B = curl y in eddy current optimal control problems (cf. [7]).

4.3. Control constraints. In this generalized problem we add control constraints
to the standard setting (1)-(2). This is done in a very specific way, namely by
adding control constraints for each mode k to the according Fourier coefficients.
Again we observe a decoupling with respect to the modes k. Due to the control
constraints the optimality system obtains a nonlinear structure. In order to deal
with the nonlinearity, following Herzog and Sachs [13], we apply a semi-smooth
Newton approach on the theoretical basis of [15]. At each Newton step we have to
solve a saddle point equation.

We consider the following optimal control problem with pointwise control con-
straints for the Fourier coefficients.

min
y,u

1
2

∫ T

0

∫
Ω

[y(x, t)− yd(x, t)]2 dx dt+
λ

2

∫ T

0

∫
Ω

[u(x, t)]2 dx dt

subject to the state equation
σ(x)

∂

∂t
y(x, t)−∇ · (ν(x)∇y(x, t)) = u(x, t) ∀(x, t) ∈ Ω× (0, T ),

y(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T ),

y(x, 0) = y(x, T ) ∀x ∈ Ω,

with the control constraints associated to the Fourier coefficients

uck ≤uck ≤ uck, a.e. in Ω, k = 0, 1, . . . , N,

usk ≤usk ≤ usk, a.e. in Ω, k = 1, . . . , N.

Here the Fourier coefficients are given by

uck(x) =
2
T

∫ T

0

u(x, t) cos(kωt) dt and usk(x) =
2
T

∫ T

0

u(x, t) sin(kωt) dt.
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We mention, that the desired state yd is multiharmonic, cf. (7). In this setting, it is
more convenient to apply the multiharmonic approach to the constrained minimiza-
tion problem before deriving the necessary and sufficient optimality conditions. In
fact, the time discretization and the derivation of the optimality system commutes.
Since the problem decouples with respect to the modes k, we again concentrate on
one block for a fixed k and omit the subindex. Therefore we consider the following
problem:

min
yc,ys,uc,us

Jd(yc, ys, uc, us) = min
yc,ys,uc,us

∑
j∈{c,s}

1
2

∫
Ω

[
yj − yjd

]2
dx+

λ

2

∫
Ω

[
uj
]2
dx,

subject to the state equation
kωσ(x)ys(x)−∇ · (ν(x)∇yc(x)) = uc(x) ∀x ∈ Ω,

−kωσ(x)yc(x)−∇ · (ν(x)∇ys(x)) = us(x) ∀x ∈ Ω,

yc(x) = ys(x) = 0 ∀x ∈ ∂Ω,

with the control constraints associated to the Fourier coefficients

uc ≤uc ≤ uc, a.e. in Ω,

us ≤us ≤ us, a.e. in Ω.

Continuous version. The corresponding Lagrange functional is given by

L(yc, ys, uc, us, pc, ps, ξc,+, ξs,+, ξc,−, ξs,−) := Jd(yc, ys, uc, us)
+ kω(σys, pc)L2(Ω) + (ν∇yc,∇pc)L2(Ω) − (uc, pc)L2(Ω)

− kω(σyc, ps)L2(Ω) + (ν∇ys,∇ps)L2(Ω) − (us, ps)L2(Ω)

+
∑

j∈{c,s}

[
(ξj,+, uj − uj)L2(Ω) + (ξj,−, uj − uj)L2(Ω)

]
.

The first order necessary and sufficient optimality conditions are given by

(21)



−kω(σps, vc)L2(Ω) + (ν∇pc,∇vc)L2(Ω) + (yc, vc)L2(Ω) = (ycd, v
c)L2(Ω),

kω(σpc, vs)L2(Ω) + (ν∇ps,∇vs)L2(Ω) + (ys, vs)L2(Ω) = (ysd, v
s)L2(Ω),

λ(uc, wc)L2(Ω) − (pc, wc)L2(Ω) + (ξc, wc)L2(Ω) = 0,

λ(us, ws)L2(Ω) − (ps, ws)L2(Ω) + (ξs, ws)L2(Ω) = 0,

kω(σys, qc)L2(Ω) + (ν∇yc,∇qc)L2(Ω) − (uc, qc)L2(Ω) = 0,

−kω(σyc, qs)L2(Ω) + (ν∇ys,∇qs)L2(Ω) − (us, qs)L2(Ω) = 0,

ξc −max(0, ξc + C(uc − uc))−min(0, ξc − C(uc − uc)) = 0, a.e. in Ω,

ξs −max(0, ξs + C(us − us))−min(0, ξs − C(us − us)) = 0, a.e. in Ω,

with Lagrange multipliers pc, ps, ξc = ξc,+ − ξc,− and ξs = ξs,+ − ξs,− and test
functions vc, vs, qc, qs, wc, ws and some positive constant C.

This system is nonlinear, but due to [15], the last two equations in (21) enjoy the
Newton differentiability, at least for C = λ. In order to solve this system, we use
the primal-dual active set method as introduced in [15]. This method is equivalent
to a semi-smooth Newton method. The strategy proceeds as follows: Given an
iterate (ycl , y

s
l , u

c
l , u

s
l , p

c
l , p

s
l , ξ

c
l , ξ

s
l ), the active sets are determined by

Ec,+l = {x ∈ Ω : ξcl + C(ucl − uc) > 0},

Ec,−l = {x ∈ Ω : ξcl − C(uc − ucl ) < 0},

Es,+l = {x ∈ Ω : ξsl + C(usl − us) > 0},

Es,−l = {x ∈ Ω : ξsl − C(us − usl ) < 0},
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and the inactive sets are determined by Icl = Ω\(Ec,+l ∪ Ec,−l ) and Isl = Ω\(Es,+l ∪
Es,−l ). The Newton step for the solution of (21), given in terms of the new iterate,
reads as follows:

I · · · K −Iσ,kω · ·
· I · · Iσ,kω K · ·
· · λI · −I · I ·
· · · λI · −I · I
K Iσ,kω −I · · · ·

−Iσ,kω K · −I · · · ·
· · CχEc

l
· · · χIc

l
·

· · · CχEs
l
· · · χIs

l





ycl+1
ysl+1
ucl+1
usl+1
pcl+1
psl+1
ξcl+1
ξsl+1

 =


ycd
ysd
0
0
0
0

C(χ
Ec,+
l

uc+χ
Ec,−
l

uc)

C(χ
Es,+
l

us+χ
Es,−
l

us)

 .

The operators I, Iσ,kω and K correspond to the identity, a weighted identity and
the differential operator −∆, respectively. The symbol χ denotes the characteristic
function with respect to the set denoted in the subscript. Next we use that the
restriction of ξj , j ∈ {c, s}, to the inactive sets Ij is zero, and hence this variable
can be eliminated from the system. Therefore only ξjEj , the restriction of ξj to the
active sets Ej , enter the system. The Newton system then attains the equivalent
symmetric saddle point form (we omit the the Newton iteration index l):

I · · · K −Iσ,kω · ·
· I · · Iσ,kω K · ·
· · λI · −I · χEc ·
· · · λI · −I · χEs
K Iσ,kω −I · · · ·

−Iσ,kω K · −I · · · ·
· · χEc · · · · ·
· · · χEs · · · ·




yc

ys

uc

us

pc

ps

ξcEc
ξsEs

 =


ycd
ysd
0
0
0
0

χEc,+u
c+χEc,−u

c

χEs,+u
s+χEs,−u

s

 .

In the following we concentrate on the efficient and robust solution of the Newton
system at each step. According to the strategy presented in Section 3, we start
with the definition of non-standard norms in the product spaces H1

0 (Ω)2 × L2(Ω)2

and H1
0 (Ω)2 × L2(Ec)× L2(Es):

‖(yc, ys, uc, us)‖2D1
:= ‖(yc, ys)‖2C2 +

∑
j∈{c,s}

‖uj‖2L2(Ω) and

‖(pc, ps, ξcEc , ξsEs)‖2D2
:= ‖(pc, ps)‖2C2 +

∑
j∈{c,s}

‖ξjEj‖
2
L2(Ej).

These non-standard norms give rise to a norm in the product space (H1
0 (Ω)2 ×

L2(Ω)2)× (H1
0 (Ω)2 × L2(Ec)× L2(Es)):

‖(yc, ys, uc, us, pc, ps, ξcEc , ξsEs)‖2D := ‖(yc, ys, uc, us)‖2D1
+ ‖(pc, ps, ξcEc , ξsEs)‖2D2

.

According to the notation in Section 3 we introduce the bilinear forms

a((yc, ys, uc, us), (vc, vs, wc, ws)) :=
∑

j∈{c,s}

[
(yj , vj)L2(Ω) + λ(uj , wj)L2(Ω)

]
and

b((vc, vs, wc, ws), (pc, ps, ξcEc , ξ
s
Es)) :=

∑
j∈{c,s}

[
(wj , ξjEj )L2(Ej) − (wj , pj)L2(Ω)

]
+ (ν∇vc,∇pc)L2(Ω) + (ν∇vs,∇ps)L2(Ω) + kω(σvs, pc)L2(Ω) − kω(σvc, ps)L2(Ω).

Now we consider the computed bilinear form

B̃3((yc, ys, uc, us, pc, ps, ξcEc , ξ
s
Es), (v

c, vs, wc, ws, qc, qs, ζcEc , ζ
s
Es)) :=

a((yc, ys, uc, us), (vc, vs, wc, ws)) + b((vc, vs, wc, ws), (pc, ps, ξcEc , ξ
s
Es))

+ b((yc, ys, uc, us), (qc, qs, ζcEc , ζ
s
Es)).

Note, that in this setting we have c(·, ·) = 0.
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Lemma 4 (Robust estimates). We have

c̃3‖(yc, ys, uc, us, pc, ps, ξcEc , ξsEs)‖D ≤

sup
B̃3((yc, ys, uc, us, pc, ps, ξcEc , ξ

s
Es), (v

c, vs, wc, ws, qc, qs, ζcEc , ζ
s
Es))

‖(vc, vs, wc, ws, qc, qs, ζcEc , ζsEs)‖D
≤ c̃3‖(yc, ys, uc, us, pc, ps, ξcEc , ξsEs)‖D

with constants c̃3, c̃3 independent of k, ω, ν, σ, Ec and Es.

Proof. Throughout this proof we use a generic constant c that may depend on λ,
but is independent of h, k, ω, σ, ν, Ec and Es. We use Theorem 1 for the special
case c(·, ·) = 0. Boundedness of a(·, ·) follows easily by using Cauchy-Schwarz’ and
Friedrichs’ inequalities:

a((yc, ys, uc, us), (vc, vs, wc, ws))

≤ c
∑

j∈{c,s}

[
‖yj‖L2(Ω)‖vj‖L2(Ω) + ‖uj‖L2(Ω)‖wj‖L2(Ω)

]

≤ c

 ∑
j∈{c,s}

‖yj‖2L2(Ω) + ‖uj‖2L2(Ω)

1/2 ∑
j∈{c,s}

‖vj‖2L2(Ω) + ‖wj‖2L2(Ω)

1/2

≤ c

 ∑
j∈{c,s}

|yj |2H1(Ω) + ‖uj‖2L2(Ω)

1/2 ∑
j∈{c,s}

|vj |2H1(Ω) + ‖wj‖2L2(Ω)

1/2

≤ c‖(yc, ys, uc, us)‖D1‖(vc, vs, wc, ws)‖D1 .

To verify the coercivity of a(·, ·), let (yc, ys, uc, us) be in the kernel of b(·, ·). Then,
in particular, {

(ν∇yc,∇qc)L2(Ω) + kω(σys, qc)L2(Ω) = (uc, qc)L2(Ω)

(ν∇ys,∇qs)L2(Ω) − kω(σyc, qs)L2(Ω) = (us, qs)L2(Ω)

holds for all (qc, qs) ∈ H1
0 (Ω)2. In particular, for the choice qc = yc + ys and

qs = ys − yc, we obtain the a priori estimate

‖(yc, ys)‖2C2 ≤ c(‖u
c‖2L2(Ω) + ‖us‖2L2(Ω)),

where again c is a generic constant. This implies

a((yc, ys, uc, us), (yc, ys, uc, us)) =
∑

j∈{c,s}

[
‖yj‖2L2(Ω) + λ‖uj‖2L2(Ω)

]
≥ c

(
‖uc‖2L2(Ω) + ‖us‖2L2(Ω) + ‖(yc, ys)‖2C2

)
= c‖(yc, ys, uc, us)‖2D1

.

Boundedness of b(·, ·) follows directly by using Cauchy’s inequality several times:

b((vc, vs, wc, ws), (pc, ps, ξcEc , ξ
s
Es))

≤ c‖(vc, vs)‖C2‖(pc, ps)‖C2 +
∑

j∈{c,s}

[
‖wj‖L2(Ej)‖ξjEj‖L2(Ej) + ‖wj‖L2(Ω)‖pj‖L2(Ω)

]

≤ c

‖(vc, vs)‖C2 +
∑

j∈{c,s}

‖wj‖L2(Ω)

‖(pc, ps)‖C2 +
∑

j∈{c,s}

‖ξjEj‖L2(Ej)


≤ c‖(vc, vs, wc, ws)‖D1‖(pc, ps, ξcEc , ξsEs)‖D2 .
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The inf-sup condition for b(·, ·) can be obtained as follows: We start by choosing
(vc, vs, wc, ws) = (pc, ps, ξcEc , ξ

s
Es) (by extending ξcEc , ξ

s
Es by zero outside of Ec and

Es, respectively). Then we obtain the estimate

(22)

b((vc, vs, wc, ws), (pc, ps, ξcEc , ξ
s
Es))

=
∑

j∈{c,s}

[
‖ξjEj‖L2(Ej) − (ξjEj , p

j)L2(Ω) + (ν∇pj ,∇pj)L2(Ω)

]
≥

∑
j∈{c,s}

[
‖ξjEj‖L2(Ej) − ‖ξjEj‖L2(Ω)‖pj‖L2(Ω) + (ν∇pj ,∇pj)L2(Ω)

]
≥

∑
j∈{c,s}

[
‖ξjEj‖L2(Ej) −

1
2
‖ξjEj‖

2
L2(Ω) −

1
2
‖pj‖2L2(Ω) + (ν∇pj ,∇pj)L2(Ω)

]

≥
∑

j∈{c,s}

[
1
2
‖ξjEj‖L2(Ej) −

CF
2

(ν∇pj ,∇pj)L2(Ω) + (ν∇pj ,∇pj)L2(Ω)

]
.

Furthermore, for the choice (vc, vs, wc, ws) = (ps,−pc, 0, 0), we have

(23) b((vc, vs, wc, ws), (pc, ps, ξcEc , ξ
s
Es)) =

∑
j∈{c,s}

kω(σpj , pj)L2(Ω).

Finally, for the choice (vc, vs, wc, ws) = CF /2(pc, ps, 0, 0), we obtain

(24) b((vc, vs, wc, ws), (pc, ps, ξcEc , ξ
s
Es)) =

∑
j∈{c,s}

CF
2

(ν∇pj ,∇pj)L2(Ω).

So combining the estimates (22)-(24), gives the inf-sup condition for b(·, ·) with a
constant independent of k, ω, σ, ν, Ec and Es. This completes the proof. �

Discrete version. After discretization in space and time, for a fixed mode k, we are
dealing with the following constrained minimization problem (again we omit the
subscript k):

min
(yc,ys,uc,us)

1
2

∑
j∈{c,s}

[
(yj − yj

d)TM(yj − yj
d) + λujTMuj

]
subject to the state equation

Kνyc + Mkω,σys = Muc,

−Mkω,σyc + Kνys = Mus,

uc ≤ uc ≤ uc (componentwise),

us ≤ us ≤ us (componentwise).

We can use the same approach as used in the continuous setting. Additionally
we eliminate the control variables uc and us and the Lagrange multipliers for the
inequality constraints ξcEc and ξsEs from the resulting system of linear equations and
end up with the following problem to be solved at each Newton step l:

(25)


M · Kν −Mkω,σ

· M Mkω,σ Kν

Kν Mkω,σ −λ−1MEc ·
−Mkω,σ Kν · −λ−1MEs


︸ ︷︷ ︸

A3


yc

ys

pc

ps

 =


Myc

d

Myc
d

rc

rs

 .

Here, for j ∈ {c, s}, MEj are the matrices corresponding to the active index set Ej ,
i.e.

MEj = M−PEj
(
PT
EjM

−1PEj
)−1

PT
Ej ,
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and rj are parts of the right-hand sides

rj = PEj(PEj
TM−1PEj)−1(PE+,j

Tuj + PE−,j
Tuj).

Here, for j ∈ {c, s}, PEj
T is a rectangular matrix consisting of those rows, which

belong to the active indices, and similarly for PE±,j
T . For the reduced system, an

analogon to Lemma 4 holds. Let B3 denote the bilinear form corresponding to the
continuous form of the reduced system (25), then the following result holds.

Lemma 5 (Robust estimates). We have

c3‖(yc, ys, pc, ps)‖C ≤ sup
(vc,vs,qc,qs) 6=0

B3((yc, ys, pc, ps), (vc, vs, qc, qs))
‖(vc, vs, qc, qs)‖C

c3‖(yc, ys, pc, ps)‖C ≥ sup
(vc,vs,qc,qs) 6=0

B3((yc, ys, pc, ps), (vc, vs, qc, qs))
‖(vc, vs, qc, qs)‖C

with constants c3, c3 independent of k, ω, ν, σ, Ec and Es.
Proof. cf. proof of Lemma 4. �

4.4. Condition number estimate and MinRes convergence-rate. Conse-
quently, since Lemma 2, Lemma 3 and Lemma 5 are also valid for finite element
functions, we immediately obtain that the spectral condition number of the pre-
conditioned systems can be estimated by constants ci, i.e.

Proposition 1. For i = 1, 2, 3, we have a parameter-independent condition number
bound:

κC(C−1Ai) := ‖C−1Ai‖C‖A−1
i C‖C ≤

ci
ci
6= ci(ν, σ, ω, k, h),

with constants ci, ci and consequently ci independent of k, ω, ν, σ and h.

Using the convergence rate estimate of the MinRes method (e.g. [16]), we finally
arrive at the following theorem.

Theorem 2 (Robust solver). For i = 1, 2, 3, the MinRes method applied to the
preconditioned systems converges. At the m-th iteration, the preconditioned residual
rm = C−1f − C−1Aiwm is bounded as

(26)
∥∥r2m

∥∥
C ≤

2qm

1 + q2m

∥∥r0
∥∥
C where q =

κC(C−1Ai)− 1
κC(C−1Ai) + 1

≤ ci + 1
ci − 1

.

Proof. This result directly follows from [16] and Proposition 1. �

Therefore the number of MinRes iterations required for reducing the initial error
by some fixed factor ε ∈ (0, 1) is independent of the space and time discretization
parameter h and kω and the involved model parameters ν and σ. In the nonlinear
setting, the convergence is also independent of the active index sets Ec and Es.
Remark 4 (Combinations). The results obtained in Theorem 2 are also valid for
arbitrary combinations of the three generalizations derived in Section 4.

Remark 5 (Friedrichs’ inequality). The proofs of Lemma 2 and Lemma 4 heavily
rely on the existence of Friedrichs’ inequality. Indeed, thinking about practical appli-
cations, e.g. in computational electromagnetics, the existence of a Friedrichs’ type
inequality in H(curl) is a serious requirement. For the special case σ > 0 and
k ≥ 1, the results of Subsection 4.1 and Subsection 4.3 can also be obtained without
the need for a Friedrich type inequality. This can be seen in the following way:
By a scaling of the state equation with the factor σ−1

min, we obtain an equivalent
minimization problem:

min
y,u
J (y, u) = min

y,u

ω

2

∫ T

0

∫
Ω

[y(x, t)− yd(x, t)]2 dx dt+
λ̃

2ω

∫ T

0

∫
Ω

[ũ(x, t)]2 dx dt
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subject to the state equation
σ̃
∂

∂t
y(x, t)−∇ · (ν̃∇y(x, t)) = ũ(x, t) ∀(x, t) ∈ Ω× (0, T ),

y(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T ),

y(x, 0) = y(x, T ) ∀x ∈ Ω,

with the new parameters σ̃ = σ̄
σ̄min

, ν̃ = ν̄
σ̄min

, λ̃ = λ̄σ̄2
minω

2 and the scaled state
ũ = ū

σ̄min
. This scaling gives σ̃min = 1 and therefore the estimate ω(u, v)L2(Ω) ≤

kω(σu, v)L2(Ω). Consequently the block-diagonal preconditioner (20) yields almost
robust convergence rates. Let us mention, that in this setting the block corresponding
to k = 0 has to be treated separately.

Remark 6 (Realization of the diagonal blocks). The application of the precondi-
tioner C as given in (20) requires an robust and efficient evaluation of the inverse
applied to a given vector. Observe that the diagonal blocks D := Kν + Mkω,σ of C
are the stiffness matrices representing the bilinear form d(y, v) = (ν∇y,∇v)L2(Ω) +
kω(σy, v)L2(Ω). For the practical realization, these diagonal blocks of the theoreti-
cal preconditioner C are replaced by appropriate, easily realizable preconditioners D̃
such that D̃ ∼ D, using the following notation:

Let M,N ∈ Rn×n, n ∈ N be two symmetric matrices. Then M ∼ N if and only
if there exist constants c, c such that

cxTMx ≤ xTNx ≤ cxTMx ∀x ∈ Rn.

We call M and N spectrally equivalent. If M and N depend on some parame-
ters, then we additionally assume that the constants c, c are independent of those
parameters.

The construction of such blocks D̃ can be done by techniques as multigrid, mul-
tilevel or domain decomposition methods for the second order elliptic differential
operator represented by the bilinear form d(·, ·), see, e.g. [17, 18, 19, 20, 21]. The
practical block diagonal preconditioner is then given by

C̃ = diag
(
D̃, D̃, D̃, D̃

)
.

The spectral equivalence of the diagonal blocks D̃ ∼ D implies the spectral equiva-
lence of the preconditioners C̃ ∼ C with the same parameter independent constants.
So, the practical block diagonal preconditioner yields again robust convergence rates
(see also the discussion in [7]).

5. Numerical results

All the numerical experiments are done for the two-dimensional case (d = 2).
The computational domain is the unit square, i.e. Ω = (0, 1)2. The problems are
discretized using piecewise linear and continuous polynomials on a triangulation of
Ω. We perform several experiments for the three cases discussed in Section 4 for
various parameter settings ω, k, σ, ν, λ and h. We provide condition numbers of the
preconditioned systems and the number of MinRes iteration required for reducing
the C-norm of the preconditioned initial residual by a factor 10−8. In all the Tables
presented in this Section, l denotes the number of refinements (corresponding to
the mesh size h = 2−l) and DOF is the total number of degrees of freedom. We
perform our numerical test for constant coefficients ν and σ. Due to the scaling
argument, we always have ν = 1 and therefore we do not have to test for robustness
with respect to ν.

As discussed in Remark 6, the theoretical preconditioner is not realized exactly.
Each application of each block of the preconditioner C consists of one V-cycle. The
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coarsest level contains four triangles obtained by connecting the two diagonals and
therein an exact solver is applied. We use the symmetric Gauss-Seidel with one
pre-smoothing and one post-smoothing step as smoothing sweeps in the V-cycle.

5.1. Different control and observation domains. Table 1, 2, 3 and 4 provide
numerical results for the problem stated in Subsection 4.1 for various settings of
kωσ, λ, ν and h. The observation domain is chosen to be Ω1 = {(x, y) : (y ≥
−x+ 0.5)∧ (y ≥ x− 0.5)∧ (y ≤ −x+ 1.5)∧ (y ≤ x+ 0, 5)} and the control domain
is chosen to be Ω2 = (0.25, 0.75) × (0.25, 0.75). Therefore we have Ω2 $ Ω1 $ Ω.
Note that the subdomains Ω1 and Ω2 have to be resolved by the mesh.

5.2. Observation in H1-semi norm. Table 5, 6, 7 and 8 provide numerical re-
sults for the problem stated in Subsection 4.2 for various settings of kωσ, λ, ν and
h.

5.3. Control constraints for Fourier coefficients. Table 9, 10, 11 and 12 pro-
vide numerical results for the problem stated in Subsection 4.3 for various settings
of kωσ, λ, ν and h. For the active sets, we choose a randomly distributed set for
the cosine active sets. For the sine active sets we choose all degrees of freedom in
the upper half of the computational domain.

6. Conclusion and Outlook

Summary and conclusion. We demonstrate, that a generalization of the para-
meter-robust preconditioner for the forward problem can be used for the optimal
control as well to obtain almost robust convergence rates for the solution of the
discretized optimality system. The convergence rates of the MinRes method applied
to the preconditioned saddle point equations is independent of the space and time
discretization parameters h and kω as well as the model parameters ν and σ of
the state equation. Additionally, we gain robustness with respect to modifications
in the minimization functional J , the observation and control domains Ω1 and Ω2

and the presence of control constraints to the Fourier coefficients. Despite that,
we have to pay the price, that the condition number depends on the scaled cost
coefficient λ = λ̄ν̄2

min, that actually depends on the minimal value of the unscaled
coefficient ν̄. Hence, for very small λ the convergence-rate deteriorates to 1. This
behavior can also be seen in the numerical experiments.

Altogether the presented MinRes solver shows great potential towards the robust
solution of practical parabolic time-periodic optimal control problems.

Outlook. The preconditioned MinRes solvers presented in this paper can be gen-
eralized to eddy current optimal control problems studied in [7], as well as to
symmetrically coupled finite element and boundary element discretization, as done
in [12]. The treatment of non-linear parabolic problems, i.e. ν = ν(x, |∇y|), and
the treatment of control constraints of the form u ≤ u(x, t) ≤ u in Ω × (0, T ) as
well as state constraints is more involved. These nonlinearities lead to a coupling
of the Fourier coefficients (see [6, 22] for eddy current problems). Anyway, the
preconditioners proposed in this paper can also be useful for these cases.
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Table 1. Condition numbers (λ = 1, ν = 1)

l DOF kωσ

0 10−12 10−8 10−4 1 104 108 1012

2 132 1.16 1.16 1.16 1.16 1.2 1.38 1.09 1.09
3 516 1.18 1.18 1.18 1.18 1.23 1.69 1.09 1.22
4 2 052 1.21 1.21 1.21 1.21 1.24 1.84 1.09 1.09
5 8 196 1.25 1.25 1.25 1.25 1.25 1.45 1.09 1.09
6 32 772 1.3 1.3 1.3 1.3 1.29 1.49 1.09 1.09
7 131 076 1.3 1.3 1.3 1.3 1.29 1.56 1.09 1.09

Table 2. Iteration numbers (λ = 1, ν = 1)

l DOF kωσ

0 10−12 10−8 10−4 1 104 108 1012

2 132 12 12 12 12 13 12 10 10
3 516 14 13 14 14 16 18 10 10
4 2 052 16 16 16 16 16 22 12 12
5 8 196 16 16 16 16 16 22 12 12
6 32 772 16 16 16 16 16 22 12 12
7 131 076 18 18 18 18 18 24 12 12

Table 3. Condition numbers (kωσ = 1, ν = 1)

l DOF λ

10−3 10−2 10−1 1 104 108 1012

2 132 >500 20.21 1.56 1.2 1.22 1.22 1.22
3 516 >500 21.57 1.57 1.23 1.25 1.25 1.25
4 2 052 >500 21.85 1.57 1.25 1.26 1.26 1.26
5 8 196 >500 21.92 1.57 1.25 1.59 1.59 1.59
6 32 772 >500 21.94 1.57 1.29 1.29 1.29 1.29
7 131 076 >500 21.96 1.57 1.29 1.29 1.29 1.29

Table 4. Iteration numbers (kωσ = 1, ν = 1)

l DOF λ

10−3 10−2 10−1 1 104 108 1012

2 132 103 38 15 13 13 13 13
3 516 163 39 17 16 15 15 15
4 2 052 171 40 17 16 16 16 16
5 8 196 166 40 18 16 16 16 16
6 32 772 157 36 18 16 16 16 16
7 131 076 148 36 18 18 18 18 18
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Table 5. Condition numbers (λ = 1, ν = 1)

l DOF kωσ

0 10−12 10−8 10−4 1 104 108 1012

2 132 2.83 2.83 2.83 2.83 2.91 2.62 2.62 2.62
3 516 2.91 2.91 2.91 2.91 2.96 2.62 2.62 2.62
4 2 052 3.07 3.07 3.07 3.07 3.06 2.62 2.62 2.62
5 8 196 3.2 3.2 3.2 3.2 3.19 2.62 2.62 2.62
6 32 772 3.26 3.26 3.26 3.26 3.24 2.62 2.62 2.62
7 131 076 3.27 3.27 3.27 3.27 3.25 2.62 2.62 2.62

Table 6. Iteration numbers (λ = 1, ν = 1)

l DOF kωσ

0 10−12 10−8 10−4 1 104 108 1012

2 132 11 11 11 11 12 13 12 12
3 516 14 14 14 14 14 18 12 12
4 2 052 16 16 16 16 16 24 14 14
5 8 196 16 16 16 16 17 30 14 14
6 32 772 17 17 17 17 17 32 14 14
7 131 076 17 17 17 17 17 33 14 14

Table 7. Condition numbers (kωσ = 1, ν = 1)

l DOF λ

10−4 10−3 10−2 10−1 1 104 108 1012

2 132 >500 67.74 7.01 2.62 2.91 3.05 3.05 3.05
3 516 >500 68.18 7.04 2.77 2.96 3.12 3.12 3.12
4 2 052 >500 68.28 7.24 2.98 3.06 3.15 3.15 3.15
5 8 196 >500 68.47 7.88 3.16 3.19 3.17 3.17 3.17
6 32 772 >500 69.47 8.35 3.23 3.24 3.18 3.18 3.18
7 131 076 >500 70.13 8.57 3.26 3.25 3.19 3.19 3.19

Table 8. Iteration numbers (kωσ = 1, ν = 1)

l DOF λ

10−4 10−3 10−2 10−1 1 104 108 1012

2 132 39 37 26 14 12 12 12 12
3 516 91 63 29 16 14 16 16 16
4 2 052 155 71 29 18 16 16 16 16
5 8 196 186 73 31 18 17 17 17 17
6 32 772 202 73 31 18 17 17 17 17
7 131 076 202 73 29 18 17 17 17 17
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Table 9. Condition numbers (λ = 1, ν = 1)

l DOF kωσ

0 10−12 10−8 10−4 1 104 108 1012

2 132 1.17 1.17 1.17 1.17 1.21 1.14 1.09 1.09
3 516 1.2 1.2 1.2 1.2 1.25 1.55 1.09 1.09
4 2 052 1.22 1.22 1.22 1.22 1.4 1.67 1.09 1.09
5 8 196 1.27 1.27 1.27 1.27 1.27 1.81 1.1 1.1
6 32 772 1.29 1.29 1.29 1.29 1.29 1.5 1.1 1.1
7 131 076 1.31 1.31 1.31 1.31 1.3 1.56 1.1 1.1

Table 10. Iteration numbers (λ = 1, ν = 1)

l DOF kωσ

0 10−12 10−8 10−4 1 104 108 1012

2 132 12 12 12 12 14 12 10 10
3 516 14 14 14 14 16 18 10 10
4 2 052 16 16 16 16 16 22 12 12
5 8 196 16 16 16 16 16 22 12 12
6 32 772 16 16 16 16 16 22 12 12
7 131 076 18 18 18 18 18 24 12 12

Table 11. Condition numbers (kωσ = 1, ν = 1)

l DOF λ

10−3 10−2 10−1 1 104 108 1012

2 132 >500 17.22 1.53 1.21 1.24 1.34 1.24
3 516 >500 13.77 1.45 1.25 1.27 1.27 1.27
4 2 052 >500 13.65 1.44 1.4 1.28 1.28 1.28
5 8 196 >500 12.26 1.43 1.27 1.28 1.28 1.28
6 32 772 >500 12.21 1.42 1.29 1.29 1.29 1.29
7 131 076 >500 12.18 1.42 1.23 1.3 1.3 1.3

Table 12. Iteration numbers (kωσ = 1, ν = 1)

l DOF λ

10−3 10−2 10−1 1 104 108 1012

2 132 107 36 15 14 12 12 12
3 516 174 38 17 16 15 15 15
4 2 052 176 39 17 16 16 16 16
5 8 196 172 37 17 16 16 16 16
6 32 772 158 37 18 16 16 16 16
7 131 076 154 35 18 18 18 18 18
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