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Abstract. The paper is devoted to the development of new sufficient conditions for the calmness and the
Aubin property of implicit multifunctions. As the basic tool one employs the directional limiting coderivative
which, together with the graphical derivative, enable us a fine analysis of the local behavior of the investigated
multifunction along relevant directions. For verification of the calmness property, in addition, a new condition
has been discovered which parallels the missing implicit function paradigm and permits us to replace the original
multifunction by a substantially simpler one. Moreover, as an auxiliary tool, a handy formula for the computation of
the directional limiting coderivative of the normal-cone map with a polyhedral set has been derived which perfectly
matches the framework of [11]. All important statements are illustrated by examples.
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1. Introduction. Given a multifunction M of two variables, say p, x, define the associated
implicit multifunction S by

S(p) := {x | 0 ∈M(p, x)}. (1.1)

The aim of this paper is to derive new conditions ensuring the calmness and the Aubin (Lipschitz-
like) property of S at or around the given reference point (p̄, x̄), respectively. The definitions of
these stability properties, together with several other notions, important for this development,
are collected in Section 2.1. Starting with the principal work of Dini [7], there is a large number
of works dealing with the classical variant of (1.1), where M is a (mostly smooth) single-valued
map. The rapid development of modern variational analysis having started in the seventies has
enabled, however, a step by step weakening of the assumptions imposed on M and lead eventually
to general multifunctional formulation (1.1). This modern framework has a lot of advantages and
allows us to capture, for instance, various types of parameter-dependent constraint and variational
systems, cf. [34, Sections 4.3 and 4.4]. From the long list of relevant references let us mention
the papers [36], [38], [8], [11], [12], [5], [26] where the authors consider various special (frequently
arising) classes of multifunctions M and derive conditions ensuring a Lipschitzian behavior of
S. The recent monograph [13] contains then a comprehensive presentation of currently available
results accompanied with a detailed explanation of the so-called implicit function paradigm. This
paradigm facilitates substantially the derivation of conditions ensuring various stability properties
of S but, as pointed out in [13, page 200], it does not work in the case of calmness. To overcome this
hurdle, we have significantly improved an approach from [25, Lemma 1], concerning parameterized
constraint systems. Our result (Theorem 3.3) works for general multifunctions M and enables us
to ensure the calmness of S via the metric subregularity of the mapping

Mp̄(x) := M(p̄, x)

at (x̄, 0) and a special relaxed calmness condition imposed on a mapping associated with M . Our
result has the same structure as [9, Proposition 2.3] where the authors state a criterion for the
Aubin property of S around (p̄, x̄).

To ensure the metric subregularity of Mp̄ one can employ one of the various approaches
developed in the literature, see, e.g., [28, 42, 15, 16, 30]. However, the derivative-like objects used
in these papers do not possess a decent calculus and so it is difficult to compute them, e.g., in the
case of parameterized constraint or variational systems.
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The approach used in this paper is related to the techniques from [17, 19]. It is based on the
notion of the directional limiting coderivative introduced in [18] (for a slightly different version
see [23]) which provides us with a convenient description of the local behavior of considered
multifunctions along specified directions. Moreover, the directional coderivatives do possess a
considerable calculus. The usage of this tool enables us not only to prove the calmness of S
(which was our main intention) but, in some cases, to ensure at the same time the non-emptiness
of the sets S(p) for p close to p̄.

In contrast to the property of calmness there already exists an efficient characterization of the
Aubin property of S in terms of a derivative-like object associated with M . Herewith we mean
the Mordukhovich criterion expressed via the limiting coderivative, cf. [32], [40, Theorem 9.40]
and [29] for a preceding result of this sort. Further efficient characterizations can be found, e.g.,
in [13, Chapter 4.2]. Nevertheless, in some situations we are not able to compute the limiting
coderivative of the implicitly given mapping S precisely, and then resulting sufficient conditions
can be far from necessity. This difficulty arises, e.g., when

M(p, x) = G(p, x) +Q(x),

where G is a continuously differentiable function with a nonsurjective partial Jacobian ∇pG at
the reference point (p̄, x̄). We compute then only an upper estimate of the limiting coderivative of
S, which makes the resulting condition too rough. Being motivated by this type of problems, we
have again employed the directional limiting coderivative to construct a new, substantially weaker
(less restrictive) criterion which is able to detect the Aubin property even if the existing criteria
based on the standard limiting coderivative fail. In such cases it suffices, namely, to examine the
(local) behavior of M only with respect to directions for which the graphical derivative of M at
(p̄, x̄, 0) vanishes.

Both investigated properties, namely the calmness and the Aubin property of S, belong to the
basic stability properties of multifunctions. The generalized implicit multifunction model (1.1) is
amenable for a large class of parametric models ranging from constraint systems over variational
inequalities up to complicated optimization and equilibrium problems. For all these problems the
obtained conditions can be used as an efficient tool of post-optimal analysis.

The plan of the paper is as follows. The next “preliminary” section is divided into three
parts. The first one contains the basic definitions, whereas the second one is devoted to the metric
subregularity and its relationship with other notions like the directional metric (sub)regularity and
the limiting directional coderivative. In the third part we present several auxiliary results which
are extensively used in the sequel. Some of them are interesting for their own sake and could
be used also in a different context. In particular, in Theorem 2.12 we present an easy-to-apply
formula for the directional limiting normal cone to the graph of the normal-cone map associated
with a convex polyhedron. Sections 3 and 4 containing our main results are then devoted to the
new criteria of the calmness and the Aubin property of S, respectively. The obtained results are
illustrated by examples.

Our notation is basically standard. In an Euclidean space, ‖ · ‖ is the (Euclidean) norm and
d(x,Ω) denotes the distance from a point x to the set Ω. Further, BRn and SRn denote the closed
unit ball and the unit sphere in Rn, respectively, and B(x, r) := {u | ‖u− x‖ ≤ r}. Given a metric
space X, ρX(·, ·) stands for the corresponding metric, distX denotes the respective point-to-set
distance function and BX(x, r) := {u ∈ X | ρX(u, x) ≤ r}. Given the product X × Y of two
(metric, Euclidean) spaces, we use the “Euclidean” metric

ρX×Y ((x, y), (x′, y′)) :=
√

(ρX(x, x′))2 + (ρY (y, y′))2.

For a multifunction F, gphF := {(x, y)|y ∈ F (x)} is its graph, dom F := {x |F (x) 6= ∅} stands
for its domain, rge F := {y | ∃x with y ∈ F (x)} denotes its range and F−1 means the respective
inverse mapping. Finally, K◦ is the (negative) polar cone to a cone K and the notation of the
objects from variational analysis together with the respective definitions is introduced in the next
section.

2. Preliminaries.
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2.1. Basic notions. Consider general closed-graph multifunctionsM : X ⇒ Y and F : Y ⇒
X, where X,Y are metric spaces.

Definition 2.1. (i) We say that F has the Aubin property around (ȳ, x̄) ∈ gphF , provided
there are reals κ ≥ 0 and ε > 0 such that

dX(x, F (y)) ≤ κρY (v, y) provided ρY (y, ȳ) < ε, ρX(x, x̄) < ε, x ∈ F (v).

(ii) M is said to be metrically regular around (x̄, ȳ) ∈ gphM, provided there are κ ≥ 0 and
ε > 0 such that

dX(x,M−1(y)) ≤ κdY (y,M(x)) provided ρX(x, x̄) < ε, ρY (y, ȳ) < ε.

It is easy to see that F has the Aubin property around (ȳ, x̄) if and only if F−1 is metrically
regular around (x̄, ȳ). The Aubin property has been introduced in [3] (under a different name)
and since that time it has been widely used in variational analysis both as a desired local stability
property as well as in various qualification conditions in the nonsmooth calculus. It has also a
close connection with the conclusions of theorems of Graves and Lyusternik.

Definition 2.2. In the setting of Definition 2.1 we say that

(i) F is calm at (ȳ, x̄), provided there are reals κ ≥ 0 and ε > 0 such that

dX(x, F (ȳ)) ≤ κρY (y, ȳ) provided ρY (y, ȳ) < ε, ρX(x, x̄) < ε and x ∈ F (y).

(ii)M is metrically subregular at (x̄, ȳ), provided there are κ ≥ 0 and ε > 0 such that

dX(x,M−1(ȳ)) ≤ κdY (ȳ,M(x)) provided ρX(x, x̄) < ε.

Again, F is calm at (ȳ, x̄) if and only if F−1 is metrically subregular at (x̄, ȳ). Further we
observe that the pair of properties from Definition 2 is strictly weaker (less restrictive) than
their counterparts from Definition 1 and that the calmness of F at (ȳ, x̄) does not entail the
non-emptiness of F (y) for y close to ȳ. As to our knowledge, the metric subregularity has been
introduced in [27] (under a different name) whereas the calmness arose for the first time in the
context of optimal value functions in [6]. Later, in [41] it has then be generalized to the form arising
in Definition 2 (i) and used as a weak constraint qualification (again under a different name). From
the point of view of local post-optimal analysis it is, however, also a valuable property, in particular
when one proves in addition that F (y) 6= ∅ on a neighborhood of ȳ.

The above defined stability properties will be central in our development. To be able to
conduct their thorough analysis in the investigated model, we will make use of several basic
notions of the nonsmooth calculus stated below. Since we will be working with them only in finite
dimensions, we will present their definitions below in the finite-dimensional setting.

Let A be a closed set in Rs andM be now a closed-graph multifunction mapping Rs into (sets
of) Rd.

Definition 2.3. Assume that x̄ ∈ A. Then
(i)

TA(x̄) := Lim sup
t↘0

A− x̄
t

is the tangent (contingent) cone to A at x̄;
(ii)

N̂A(x̄) := (TA(x̄))◦

is the regular normal cone to A at x̄;
(iii)

NA(x̄) := Lim sup
x

A→x̄

N̂A(x)
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is the limiting normal cone to A at x̄ and,
(iv) given a direction u ∈ Rs,

NA(x̄;u) := Lim sup
t↘0
u′→u

N̂A(x̄+ tu′)

is the directional limiting normal cone to A at x̄ in direction u.
The symbol “Limsup” in (i), (iii) and (iv) stands for the outer (upper) set limit in the sense of

Painlevé-Kuratowski, cf. [40, Chapter 4B]. If A is convex, then both the regular and the limiting
normal cones coincide with the normal cone in the sense of convex analysis. Therefore we will use
in this case the notation NA.

We say that a tangent u ∈ TA(x̄) is derivable if there exists a mapping ξ : [0, ε]→ A such that
ξ(0) = x̄ and ξ(t)− (x̄+ tu) = o(t), cf. [40, Definition 6.1]. This notion arises also in the definition
of the tangent cone in [14].

The above listed cones enable us to describe the local behavior of multifunctions via various
generalized derivatives.

Definition 2.4. Consider a point (x̄, ȳ) ∈ gphM. Then
(i) the multifunction DM(x̄, ȳ) : Rs ⇒ Rd, defined by

DM(x̄, ȳ)(u) := {v ∈ Rd|(u, v) ∈ TgphM(x̄, ȳ)}, u ∈ Rs

is called the graphical derivative of M at (x̄, ȳ);
(ii) the multifunction D̂∗M(x̄, ȳ) : Rd ⇒ Rs, defined by

D̂∗M(x̄, ȳ)(y∗) := {x∗ ∈ Rs|(x∗,−y∗) ∈ N̂gphM(x̄, ȳ)}, y∗ ∈ Rd

is called the regular coderivative of M at (x̄, ȳ).
(iii) the multifunction D∗M(x̄, ȳ) : Rd ⇒ Rs, defined by

D∗M(x̄, ȳ)(y∗) := {x∗ ∈ Rs|(x∗,−y∗) ∈ NgphM(x̄, ȳ)}, y∗ ∈ Rd

is called the limiting coderivative of M at (x̄, ȳ).
(iv) Finally, given a pair of directions (u, v) ∈ Rs×Rd, the multifunction D∗M((x̄, ȳ); (u, v)) :

Rd ⇒ Rs, defined by

D∗M((x̄, ȳ); (u, v))(y∗) := {x∗ ∈ Rs|(x∗,−y∗) ∈ NgphM((x̄, ȳ); (u, v))}, y∗ ∈ Rd (2.1)

is called the directional limiting coderivative of M at (x̄, ȳ) in direction (u, v).
For the properties of the cones (i)-(iii) from Definition 3 and generalized derivatives (i)-(iii)

from Definition 4 we refer the interested reader to the monographs [40] and [34]. Various properties
of the directional limiting normal cone and coderivative can be found in [18], [19], [20], [21], [22].
In the sequel we will make use of the fact that for a multifunction M : Rs ⇒ Rd and a smooth
mapping h : Rs → Rd one has (cf. [33])

Tgph (h+M)(x̄, ȳ) = {(u,∇h(x̄)u+ v)) | (u, v) ∈ TgphM(x̄, ȳ − h(x̄))} (2.2)

N̂gph (h+M)(x̄, ȳ) = {(x∗ −∇h(x̄)T y∗, y∗) | (x∗, y∗) ∈ N̂gphM(x̄, ȳ − h(x̄))} (2.3)

and consequently

D∗(h+M)((x̄, ȳ); (u, v))(y∗) = ∇h(x̄)T y∗ +D∗M((x̄, ȳ − h(x̄)); (u, v −∇h(x̄)u))(y∗). (2.4)

2.2. Coderivative criteria for metric subregularity and calmness. In this subsection
we will summarize some conditions for metric subregularity given by the first author, which are
used in the sequel. In addition, this subsection provides the reader with some geometrical insight
essential for the results presented in the last section.

One can find numerous sufficient conditions for metric subregularity in the literature, see,
e.g., [15, 16, 20, 24, 28, 30, 31, 42]). However, these sufficient conditions are often very difficult to



LIPSCHITZIAN PROPERTIES OF IMPLICIT MULTIFUNCTIONS 5

verify. The reason is that the property of metric subregularity is in general unstable under small
perturbations, see e.g.[13], and this instability is reflected by the sufficient conditions. However,
in applications it is important to have workable criteria and thus we are looking for some sufficient
conditions for metric subregularity which are not as weak as possible but stable with respect to
certain perturbations.

Consider the following definition.
Definition 2.5. Let M : Rs ⇒ Rd be a multifunction and let (x̄, ȳ) ∈ gphM. The limit

set critical for metric subregularity, denoted by Cr0M(x̄, ȳ), is the collection of all elements
(v, u∗) ∈ Rd × Rs such that there are sequences tk ↘ 0, (uk, v

∗
k) ∈ SRs × SRd , (vk, u

∗
k) → (v, u∗)

with (−u∗k, v∗k) ∈ N̂gphM(x̄+ tkuk, ȳ + tkvk).
In [17, Theorem 3.2] it was shown that the condition (0, 0) 6∈ Cr0M(x̄, ȳ) is sufficient for

metric subregularity ofM at (x̄, ȳ). We will now show that this criterion for metric subregularity
is stable under small C1 perturbations. Moreover, we reformulate it in terms of directional limiting
coderivatives to obtain the condition (2.5) below which is very congenial to the Mordukhovich
criterion for metric regularity, cf. [32], [40, Theorem 9.40].

Remark 1. In [17, Theorem 3.2] an infinite-dimensional setting was considered and therefore
a further limit set critical for metric subregularity denoted by CrM(x̄, ȳ) appears. However, in
finite dimensions both limit sets coincide: CrM(x̄, ȳ) = Cr0M(x̄, ȳ), cf. [17, p.1450].

Theorem 2.6. Let M : Rs ⇒ Rd be a multifunction and let (x̄, ȳ) ∈ gphM. Then the
following statements are equivalent:

(i) (0, 0) 6∈ Cr0M(x̄, ȳ).
(ii) There exists r > 0 such that for every h ∈ C1(Rs,Rd) with h(x̄) = 0 and ‖∇h(x̄)‖ ≤ r

the mapping M+ h is metrically subregular at (x̄, ȳ).
(iii)

∀0 6= u ∈ Rs : 0 ∈ D∗M((x̄, ȳ); (u, 0))(v∗)⇒ v∗ = 0. (2.5)

Proof. By the second part of [17, Theorem 3.2] we have ¬(i)⇒ ¬(ii) and therefore (ii)⇒ (i)
follows. We prove the reverse implication by contraposition. Assume that (ii) does not hold, i.e.,
there exists a sequence of functions hj ∈ C1(Rs,Rd) with hj(x̄) = 0 and ‖∇hj(x̄)‖ ≤ 1/j such that
M+ hj is not metrically subregular at (x̄, ȳ). By [17, Theorem 3.2], for every j we have (0, 0) ∈
Cr0(M + hj)(x̄, ȳ) and hence for every j there exist sequences tjk ↘ 0, (ujk, v

∗
jk) ∈ SRs × SRd ,

(vjk, u
∗
jk)→ (0, 0) with (−u∗jk, v∗jk) ∈ N̂gph (M+h)(x̄+ tjkujk, ȳ + tjkvjk). For every j we can find

some index k(j) such that tjk(j) ≤ 1/j, ‖vjk(j)‖ ≤ 1/j, ‖u∗jk(j)‖ ≤ 1/j, ‖∇hj(x̄ + tjk(j)ujk(j)) −
∇hj(x̄)‖ ≤ 1/j and ‖hj(x̄ + tjk(j)ujk(j)) − hj(x̄) − tjk(j)∇hj(x̄)ujk(j)‖ ≤ tjk(j)/j. Putting tj :=
tjk(j), uj := ujk(j), vj := vjk(j) − h(x̄+ tjuj)/tj , v

∗
j := v∗jk(j) and u∗j = u∗jk(j) −∇hj(x̄+ tjuj)

T v∗j
we obtain (uj , v

∗
j ) ∈ SRs × SRd , ‖u∗j‖ ≤ ‖u∗jk(j)‖+ ‖∇hj(x̄+ tjuj)‖‖v∗j ‖ ≤ 3/j and

‖vj‖ ≤ ‖vjk(j)‖+ ‖h(x̄+ tjuj)‖/tj ≤ 1/j + (tj/j + ‖hj(x̄) + tj∇hj(x̄)uj‖)/tj ≤ 3/j.

Since (−u∗jk(j), v
∗
j ) ∈ N̂gph (M+h)(x̄+ tjuj , ȳ + tjvjk(j)), by (2.3) we have

(−u∗j , v∗j ) = (−u∗jk(j) +∇hj(x̄+ tjuj)
T v∗j , v

∗
j )

∈ N̂gphM(x̄+ tjuj , ȳ + tjvjk(j) − hj(x̄+ tjuj)) = N̂gphM(x̄+ tjuj , ȳ + tjvj)

and (0, 0) ∈ Cr0M(x̄, ȳ) follows. Hence (i)⇒ (ii) also holds and the equivalence between (i) and
(ii) is established. The equivalence between (i) and (iii) follows from the definitions and the fact,
that any sequence (uk, v

∗
k) ∈ SRs × SRd has a convergent subsequence.

One easily concludes from Theorem 2.6 that condition (2.5) implies the metric subregularity
of M at (x̄, ȳ). In the sequel we will call this condition first-order sufficient condition for metric
subregularity and use the acronym FOSCMS.

Conditions (2.5) examines the limiting coderivative only in directions of the form (u, 0), u 6= 0
and therefore we have to look into normals to the graph of M at points (x, y) with ‖y − ȳ‖ =
o(‖x− x̄‖).
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Remark 2. Note that condition (2.5) is in particular fulfilled, if either there is no direction
u 6= 0 with 0 ∈ DM(x̄, ȳ)(u) or

0 ∈ D∗M(x̄, ȳ)(v∗)⇒ v∗ = 0.

The former of these two special cases is equivalent to the so-called strong metric subregularity, cf.
[13, Theorem 4E.1], whereas the latter is equivalent to metric regularity ofM by the Mordukhovich
criterion, cf. [32],[40, Theorem 9.40]. However, the condition (2.5) is by far not restricted to these
two special cases. A simple multifunction M, where condition (2.5) is fulfilled but the respective
S is neither strong metrically subregular nor metrically regular, can be found in Example 3.

To get more insight into the equivalences of Theorem 2.6, consider the following definitions,
cf.[18].

Definition 2.7. Let M : Rs ⇒ Rd be a multifunction and let (x̄, ȳ) ∈ gphM.
(i) Given (u, v) ∈ Rs×Rd, M is called metrically regular in direction (u, v) at (x̄, ȳ), provided

there exist positive reals δ > 0 and κ > 0 such that

d(x̄+ tu′,M−1(ȳ + tv′)) ≤ κd(ȳ + tv′,M(x̄+ tu′)) (2.6)

holds for all t ∈ [0, δ] and all (u′, v′) ∈ B((u, v), δ) with d((x̄+ tu′, ȳ + tv′), gphM) ≤ δt.
(ii) For given u ∈ Rs, M is said to be metrically subregular in direction u at (x̄, ȳ), if there

are positive reals δ > 0 and κ′ > 0 such that

d(x̄+ tu′,M−1(ȳ)) ≤ κ′d(ȳ,M(x̄+ tu′)) (2.7)

holds for all t ∈ [0, δ] and u′ ∈ B(u, δ).
The infimum of κ and κ′, respectively, over all such combinations of δ, κ and κ′, respectively,

is called the modulus of the respective property.
Note that these definitions imply that a multifunction M is automatically metrically regular

in direction (u, v) when (u, v) 6∈ TgphM(x̄, ȳ) and that M is metrically subregular in direction u
when (u, 0) 6∈ TgphM(x̄, ȳ).

Metric subregularity in direction u was introduced by Penot [35] (under the name directional
metric regularity). The above definition of directional metric regularity is due to [18]. Note that in
[1, 2] Arutyunov et al. have introduced and studied another notion of directional metric regularity
which is an extension of an earlier notion used by [4].

Lemma 2.8. Let M : Rs ⇒ Rd be a multifunction and let (x̄, ȳ) ∈ gphM.
(i) Consider the following statements:

(a) M is metrically regular around (x̄, ȳ).
(b) M is metrically regular in direction (0, 0) at (x̄, ȳ).
(c) M is metrically regular in every direction (u, v) 6= (0, 0).

Then (a)⇔ (b)⇒ (c).

(ii) Consider the following statements:
(a) M is metrically subregular at (x̄, ȳ).
(b) M is metrically subregular in direction (0, 0) at (x̄, ȳ).
(c) M is metrically subregular in every direction u 6= 0.

Then (a)⇔ (b)⇔ (c).

(iii) IfM is metrically regular in direction (u, 0) at (x̄, ȳ), then it is also metrically subregular
in direction u.

Proof. Statement (i) follows immediately from the definition, statement (ii) follows from the
definition and [21, Lemma 2.7] and statement (iii) was shown in [18, Lemma 1].

The following theorem is a directional extension of the Mordukhovich criterion [32],[40, The-
orem 9.40] for metric regularity.

Theorem 2.9. LetM : Rs ⇒ Rd be a multifunction with closed graph and let (x̄, ȳ) ∈ gphM.
Then M is metrically regular in direction (u, v) ∈ Rs × Rd at (x̄, ȳ) if and only if

0 ∈ D∗M((x̄, ȳ); (u, v))(v∗)⇒ v∗ = 0.
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Hence, condition (2.5) holds if and only if M is metrically regular in every direction (u, 0) with
u 6= 0. However, by Lemma 2.8 we see that for verifying metric subregularity of M we only
need metric subregularity of M in every direction u 6= 0. Assuming some special structure of
the multifunctionM, directional metric subregularity can be ensured by a second-order sufficient
condition. This is done in the following theorem which is a specialized version of [21, Theorem
4.3(2.)].

Theorem 2.10. Let (x̄, ȳ) belong to the graph of the mapping M(x) = G(x) + Q(x), where
G : Rs → Rd is strictly differentiable at x̄ and Q : Rs ⇒ Rd is a polyhedral multifunction, i.e., its
graph is the union of finitely many convex polyhedra. Further let u 6= 0 and assume that the limit

G′′(x̄;u) := lim
t↘0
u′→u

G(x̄+ tu′)−G(x̄)− t∇G(x̄)u′

t2/2

exists. If the inequality

〈v∗, G′′(x̄;u)〉 < 0

holds for every nonzero element 0 6= v∗ ∈ Rd satisfying

0 ∈ D∗M((x̄, ȳ); (u, 0))(v∗) = ∇G(x̄)T v∗ +D∗Q((x̄, ȳ −G(x̄)); (u,−∇G(x̄)u))(v∗),

then M is metrically subregular in direction u at (x̄, ȳ).
Note that the criterion of Theorem 2.10 is stable under perturbations h ∈ C2(Rs,Rd) with

h(x̄) = 0, ∇h(x̄) = 0 and ‖∇2h(x̄)‖ sufficiently small.
In the following corollary we summarize the preceding results for the special case of constraint

systems, cf. also [22, Corollary 1].
Corollary 2.11. Let the multifunction M : Rs ⇒ Rd be given by M(x) := G(x)−D, where

G : Rs → Rd is continuously differentiable and D ⊂ Rd is a closed set. Then M is metrically
subregular at (x̄, 0) if one of the following conditions is fulfilled:

1. First order sufficient condition for metric subregularity (FOSCMS): For every 0 6= u ∈ Rs
with ∇G(x̄)u ∈ TD(G(x̄)) one has

∇G(x̄)T v∗ = 0, v∗ ∈ ND(G(x̄);∇G(x̄)u) =⇒ v∗ = 0.

2. Second order sufficient condition for metric subregularity (SOSCMS): G is twice Fréchet
differentiable at x̄, D is the union of finitely many convex polyhedra and for every 0 6=
u ∈ Rs with ∇G(x̄)u ∈ TD(G(x̄)) one has

∇G(x)T v∗ = 0, v∗ ∈ ND
(
G(x̄);∇G(x̄)u

)
, uT∇2(v∗TG)(x̄)u ≥ 0 =⇒ v∗ = 0.

For a second order sufficient condition for metric subreguality of constraint systems 0 ∈
G(x)−D when D is convex but not necessarily polyhedral we refer to [17].

2.3. Auxiliary results. In this section we consider the computation of the directional lim-
iting normal cone to the graph of the normal cone mapping NΓ with a convex polyhedral set Γ.
To this end, we introduce for each (y, y∗) ∈ gphNΓ the critical cone

KΓ(y, y∗) := TΓ(y) ∩ [y∗]⊥,

where [u] denotes the subspace {αu |α ∈ R} for any vector u. Further we set KΓ(y, y∗) := ∅ if
(y, y∗) 6∈ gphNΓ.

Now consider a fixed pair (ȳ, ȳ∗) ∈ gphNΓ. Then it is well known, that the geometry of the
normal cone mapping NΓ near (ȳ, ȳ∗) coincides with the geometry of the normal cone mapping to
KΓ(ȳ, ȳ∗) near (0, 0). In particular we have, cf. [13, Lemma 2E.4],

(ȳ + v, ȳ∗ + v∗) ∈ gphNΓ ⇔ (v, v∗) ∈ gphNKΓ(ȳ,ȳ∗) for (v, v∗) sufficiently near to (0, 0), (2.8)



8 H. GFRERER AND J. V. OUTRATA

and therefore

TgphNΓ
(ȳ, ȳ∗) = gphNKΓ(ȳ,ȳ∗). (2.9)

Further it was shown in [11, Proof of Theorem 2] that

N̂gphNΓ
(ȳ, ȳ∗) = (KΓ(ȳ, ȳ∗))◦ ×KΓ(ȳ, ȳ∗) (2.10)

and that NgphNΓ
(ȳ, ȳ∗) is the union of all product sets K◦ ×K associated with cones K of the

form F1 − F2, where F1 and F2 are closed faces of the critical cone KΓ(ȳ, ȳ∗) satisfying F2 ⊂ F1.
Thanks to the definition of a face of a convex set, see [39, Chapter 18], the closed faces F of

any polyhedral convex cone K are the polyhedral convex cones of the form

F = K ∩ [z∗]⊥ for some z∗ ∈ K◦.

We will denote the collection of all closed faces of a polyhedral convex cone K by F(K).
In the following proposition we state a similar description of the directional limiting normal

cone in terms of selected faces of the critical cone KΓ(ȳ, ȳ∗).
Theorem 2.12. Let Γ be a convex polyhedral set in Rm, and let (ȳ, ȳ∗) ∈ gphNΓ and

(v, v∗) ∈ TgphNΓ(ȳ, ȳ∗) be given. Then NgphNΓ((ȳ, ȳ∗); (v, v∗)) is the union of all product sets
K◦ × K associated with cones K of the form F1 − F2, where F1 and F2 are closed faces of the
critical cone KΓ(ȳ, ȳ∗) satisfying v ∈ F2 ⊂ F1 ⊂ [v∗]⊥.

In order to prove this theorem we need two preparatory lemmas.
Lemma 2.13. Let Γ be a convex polyhedral set in Rm, and let (ȳ, ȳ∗) ∈ gphNΓ. Then there

exists some radius ρ > 0 such that for every (y, y∗) ∈ gphNΓ ∩ B((ȳ, ȳ∗), ρ) one has

KΓ(y, y∗) = (KΓ(ȳ, ȳ∗) ∩ [y∗ − ȳ∗]⊥) + [y − ȳ]. (2.11)

Proof. From [11, Proof of Theorem 2] we can distill that there exists some radius ρ > 0 such
that for every (y, y∗) ∈ gphNΓ ∩ B((ȳ, ȳ∗), ρ) one has

KΓ(y, y∗) = (TΓ(ȳ) ∩ [y∗]⊥) + [y − ȳ] (2.12)

TΓ(ȳ) ∩ [y∗]⊥ ⊂ KΓ(ȳ, ȳ∗). (2.13)

Now consider (y, y∗) ∈ gphNΓ ∩B((ȳ, ȳ∗), ρ). We will show that TΓ(ȳ)∩ [y∗]⊥ = KΓ(ȳ, ȳ∗)∩ [y∗−
ȳ∗]⊥. Fix any w ∈ TΓ(ȳ) ∩ [y∗]⊥. By (2.13) we have w ∈ KΓ(ȳ, ȳ∗) and thus w ∈ [ȳ∗]⊥. Since
w ∈ [y∗]⊥ we obtain

0 = 〈y∗, w〉 = 〈ȳ∗ + (y∗ − ȳ∗), w〉 = 〈y∗ − ȳ∗, w〉

and w ∈ TΓ(ȳ) ∩ [ȳ∗]⊥ ∩ [y∗ − ȳ∗]⊥ = KΓ(ȳ, ȳ∗) ∩ [y∗ − ȳ∗]⊥ follows. This shows TΓ(ȳ) ∩ [y∗]⊥ ⊂
KΓ(ȳ, ȳ∗) ∩ [y∗ − ȳ∗]⊥. On the other hand we always have [y∗]⊥ ⊃ [ȳ∗]⊥ ∩ [y∗ − ȳ∗]⊥ yielding
TΓ(ȳ) ∩ [y∗]⊥ ⊃ TΓ(ȳ) ∩ [ȳ∗]⊥ ∩ [y∗ − ȳ∗]⊥ = KΓ(ȳ, ȳ∗) ∩ [y∗ − ȳ∗]⊥. Hence the claimed relation
TΓ(ȳ) ∩ [y∗]⊥ = KΓ(ȳ, ȳ∗) ∩ [y∗ − ȳ∗]⊥ holds true and the statement of the lemma follows from
(2.12).

Lemma 2.14. Let K ⊂ Rd be a convex polyhedral cone and let (v, v∗) ∈ gphNK . Then

F((K ∩ [v∗]⊥) + [v]) = {F + [v] |F ∈ F(K), v ∈ F ⊂ [v∗]⊥}. (2.14)

and

{F̃1−F̃2 | F̃1, F̃2 ∈ F((K∩[v∗]⊥)+[v]), F̃2 ⊂ F̃1} = {F1−F2 |F1, F2 ∈ F(K), v ∈ F2 ⊂ F1 ⊂ [v∗]⊥}.
(2.15)

Proof. Note that for two convex polyhedral cones K1,K2 their polar cones K◦1 , K◦2 and their
sum K1 + K2 are also convex polyhedral by [39, Corollaries 19.2.2, 19.3.2] and therefore closed.



LIPSCHITZIAN PROPERTIES OF IMPLICIT MULTIFUNCTIONS 9

This implies (K1 ∩K2)◦ = K◦1 +K◦2 and (K1 +K2)◦ = K◦1 ∩K◦2 by [39, Corollary 16.4.2]. Hence
K̃◦ = (K◦ + [v∗])∩ [v]⊥, where K̃ := (K ∩ [v∗]⊥) + [v]. Let F̃ ∈ F(K̃) and consider z∗ ∈ K̃◦ with
F̃ = K̃ ∩ [z∗]⊥. From z∗ ∈ K̃◦ we conclude z∗ ∈ [v]⊥ and F̃ = K ∩ [v∗]⊥ ∩ [z∗]⊥ + [v] follows.
Further z∗ = w∗+αv∗ with w∗ ∈ K◦ and α ∈ R, implying [z∗]⊥∩[v∗]⊥ = [w∗]⊥∩[v∗]⊥. Since v∗ ∈
NK(v) = K◦∩[v]⊥, we obtain w∗+v∗ ∈ K◦, v ∈ [w∗+v∗]⊥ and K∩[w∗+v∗]⊥ = K∩[w∗]⊥∩[v∗]⊥.
This shows that F̃ = F + [v], where F = K ∩ [v∗]⊥ ∩ [z∗] = K ∩ [w∗+ v∗]⊥ is a face of K verifying
v ∈ F ⊂ [v∗]⊥. Conversely, let F ∈ F(K) satisfying v ∈ F ⊂ [v∗]⊥ and choose w∗ ∈ K◦

with F = K ∩ [w∗]⊥. Then w∗ + v∗ ∈ K◦ and v ∈= [w∗]⊥ ∩ [v∗]⊥ = [w∗ + v∗]⊥ ∩ [v∗]⊥. Hence
w∗+v∗ ∈ (K̃◦+[v∗])∩[v]⊥∩[v]⊥ = K̃◦ and F+[v] = F ∩[v∗]⊥+[v] = K∩[w∗+v∗]⊥∩[v∗]⊥+[v] =
((K ∩ [v∗]⊥) + [v]) ∩ [w∗ + v∗]◦ ∈ F(K̃) follows.
In order to prove (2.15), consider F̃1, F̃2 ∈ F((K ∩ [v∗]⊥) + [v]) with F̃2 ⊂ F̃1 and, according to
(2.14), some corresponding faces F1, F2 ∈ F(K) with v ∈ Fi ⊂ [v∗]⊥ such that F̃i = Fi + [v],
i = 1, 2. Now consider an arbitrary element f2 ∈ F2. Then, due to F̃2 ⊂ F̃1, there are f1 ∈ F1

and α ∈ R such that f2 = f1 + αv. Expressing α as the difference of two nonnegative numbers
α1 and α2, we obtain f2 + α2v = f1 + α1v ∈ F2 ∩ F1. Hence for all reals β we have f2 + βv =
f2 + α2v + (β − α2)v ∈ (F2 ∩ F1) + [v] showing F̃2 ⊂ (F2 ∩ F1) + [v]. Since we obviously have
F̃2 ⊃ (F2 ∩ F1) + [v], the equality F̃2 = F2 ∩ F1 + [v] holds. The intersection F ′2 = F2 ∩ F1 of the
closed faces F1, F2 of K is again a closed face of K, the inclusion v ∈ F ′2 ⊂ F1 ⊂ [v∗]⊥ obviously
holds and we obtain

F̃1 − F̃2 = (F1 + [v])− (F ′2 + [v]) = F1 − F ′2 + [ṽ] = (F1 + R+{v})− (F ′2 + R+{v}) = F1 − F ′2.

On the other hand, for faces F1, F2 of K with v ∈ F2 ⊂ F1 ⊂ [v∗]⊥ we have F2 + [v] ⊂ F1 + [v]
and

F1 − F2 = (F1 + R+{v})− (F2 + R+{v}) = F1 − F2 + [ṽ] = (F1 + [v])− (F2 + [v]).

Relation (2.15) now follows from this relation together with (2.14).
Proof. (of Theorem 2.12) Let K̄ denote the critical cone KΓ(ȳ, ȳ∗). Note that the requirement

(v, v∗) ∈ TgphNΓ
(ȳ, ȳ∗) is equivalent to (v, v∗) ∈ gphNK̄ by virtue of (2.9). This means that v ∈ K̄

and v∗ ∈ NK̄(v) = K̄◦ ∩ [v]⊥. Since gphNΓ is the union of finitely many convex polyhedrons, we
can apply [19, Lemma 3.4] together with (2.10) to obtain

NgphNΓ
((ȳ, ȳ∗); (v, v∗)) =

⋃
t∈(0,t̄]

(w,w∗)∈B((v,v∗),δ)

(KΓ(ȳ + tw, ȳ∗ + tw∗))◦ ×KΓ(ȳ + tw, ȳ∗ + tw∗)

for all δ, t̄ > 0 sufficiently small. By virtue of (2.8), we can choose δ and t̄ small enough such that
for every t ∈ (0, t̄) and every (w,w∗) ∈ B((v, v∗), δ) the condition (ȳ + tw, ȳ∗ + tw∗) ∈ gphNΓ

is equivalent to (w,w∗) ∈ gphNK̄ . By taking into account that KΓ(ȳ + tw, ȳ∗ + tw∗) = ∅ when
(ȳ + tw, ȳ∗ + tw∗) 6∈ gphNΓ, we arrive at the more precise statement

NgphNΓ
((ȳ, ȳ∗); (v, v∗)) =

⋃
t∈(0,t̄)

(w,w∗)∈B((v,v∗),δ)∩gphNK̄

(KΓ(ȳ+ tw, ȳ∗+ tw∗))◦×KΓ(ȳ+ tw, ȳ∗+ tw∗).

(2.16)
Further, by decreasing t̄ if necessary, we can also assume that (ȳ + tw, ȳ∗ + tw∗) ⊂ gphNΓ ∩
B((ȳ, ȳ∗), ρ) holds for all t ∈ (0, t̄) and all (w,w∗) ∈ B((v, v∗), δ) ∩ gphNK̄ , where ρ is given
by Lemma 2.13, implying KΓ(ȳ + tw, ȳ∗ + tw∗)) = (K̄ ∩ [tw∗]⊥) + [tw] = (K̄ ∩ [w∗]⊥) + [w] =
KΓ(ȳ + t̄w, ȳ∗ + t̄w∗)) and

NgphNΓ
((ȳ, ȳ∗); (v, v∗)) =

⋃
(w,w∗)∈B((v,v∗),δ)∩gphNK̄

(KΓ(ȳ+ t̄w, ȳ∗ + t̄w∗))◦ ×KΓ(ȳ+ t̄w, ȳ∗ + t̄w∗).

(2.17)
By the Critical Superface Lemma [13, Lemma 4H.2] we obtain

{KΓ(ȳ + t̄w, ȳ∗ + t̄w∗) | (w,w∗) ∈ B((v, v∗), δ) ∩ gphNK̄}
= {F1 − F2 |F1, F2 ∈ F(KΓ(ȳ + t̄v, ȳ∗ + t̄v∗)), F2 ⊂ F1}
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for every δ > 0 sufficiently small and the statement of the theorem follows from (2.17) and Lemmas
2.13,2.14.

3. Calmness of implicit multifunctions. This section is divided into two parts. In the first
one we prove that the calmness of F is ensured by the two conditions imposed on M , mentioned
already in the Introduction. In contrast to the remainder of the paper, Subsection 3.1 is formulated
in the setting of general metric spaces. Subsection 3.2 is then focused on the question how these
two conditions can be verified by using the tools of variational analysis.

3.1. General theory. Let P,X, Y be metric spaces. With respect to this general setting we
will analyze now, instead of (1.1), the multifunction

S(p) := {x ∈ X|ȳ ∈M(p, x)}, (3.1)

where M : P ×X ⇒ Y is a given multifunction and ȳ is a given element of Y .
In [25, Lemma 1] the authors considered the special case

M(p, x) = G(p, x)−D, (3.2)

where the function G : P × X → Y is Lipschitz near the reference pair (p̄, x̄) and D is a closed
subset of Y . When P,X, Y are normed spaces, it has been shown therein that the calmness of
the respective multifunction S at (p̄, x̄) is implied by the metric subregularity of the (simpler)
mapping Mp̄ : X ⇒ Y defined by

Mp̄(x) := M(p̄, x) = G(p̄, x)−D

at (x̄, 0).
Next we present a deep generalization of this result which is valid even in our general setting

in metric spaces and in which the structural assumption (3.2) is abandoned. We associate with
M the multifunctions HM : P ⇒ X × Y and Mp : X ⇒ Y defined by

HM (p) := {(x, y) | y ∈M(p, x)} (3.3)

and

Mp(x) := {y | y ∈M(p, x)} for each p ∈ P . (3.4)

Note that gphHM = gphM . The following auxiliary notion will be crucial for our analysis.
Definition 3.1. Let (p̄, x̄, ȳ) ∈ gphM . We say that M has the restricted calmness property

with respect to p at (p̄, x̄, ȳ), if there are reals L ≥ 0 and ε > 0 such that

dX×Y ((x, ȳ), HM (p̄)) ≤ LρP (p, p̄) provided ρP (p, p̄) < ε, ρX(x, x̄) < ε and (x, ȳ) ∈ HM (p). (3.5)

Remark 3. It is easy to see that M has the restricted calmness property with respect to p at
(p̄, x̄, ȳ), if HM is calm at (p̄, (x̄, ȳ)). In particular, in the setting of normed spaces this condition is
fulfilled for multifunctions of the form M(p, x) = G(p, x)+Q(x), where G is a Lipschitz continuous
function and Q is set-valued.

The following lemma states that the restricted calmness property with respect to p is necessary
for the calmness of the solution mapping S.

Lemma 3.2. If S is calm at (p̄, x̄), then M has the restricted calmness property with respect
to p at (p̄, x̄, ȳ).

Proof. According to the definition of calmness we choose reals L ≥ 0 and ε > 0 such that

dX(x, S(p̄)) ≤ LρP (p, p̄) provided p ∈ BP (p̄, ε) and x ∈ S(p) ∩ BX(x̄, ε).

Next, for every p ∈ BP (p̄, ε) and every (x, ȳ) ∈ HM (p) with x ∈ BX(x̄, ε) we have x ∈ S(p) ∩
BX(x̄, ε). Clearly, for each α > 0 there is some x̃ ∈ S(p̄) with ρX(x, x̃) ≤ dX(x, S(p̄)) + α and so
it follows that ρX(x, x̃) ≤ LρP (p, p̄) + α. Note that (x̃, ȳ) ∈ HM (p̄), whence

dX×Y ((x, ȳ), HM (p̄)) ≤ ρX(x, x̃) ≤ LρP (p, p̄) + α.
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Since a suitable point x̃ can be found for any arbitrary small α, one can conclude that

dX×Y ((x, ȳ), HM (p̄)) ≤ LρP (p, p̄),

which amounts to the restricted calmness property with respect to p of M at (p̄, x̄, ȳ).
We state now a sufficient criterion for the calmness of S.
Theorem 3.3. Let ȳ ∈ M(p̄, x̄), assume that M has the restricted calmness property with

respect to p at (p̄, x̄, ȳ) and Mp̄ is metrically subregular at (x̄, ȳ). Then S is calm at (p̄, x̄).
Proof. By virtue of the restricted calmness property with respect to p of M at (p̄, x̄, ȳ) we can

find moduli L and κ along with some radii rp, rx, σ > 0 such that

dX×Y ((x, ȳ), HM (p̄)) ≤ LρP (p, p̄) provided p ∈ BP (p̄, rp), x ∈ BX(x̄, rx) and (x, ȳ) ∈ HM (p)
(3.6)

and, by the metric subregularity of Mp̄ at (x̄, ȳ), one has

dX(x,M−1
p̄ (ȳ)) ≤ κdY (ȳ,Mp̄(x)) provided x ∈ BX(x̄, σ). (3.7)

By decreasing the radii rp and rx if necessary we can assume rx +Lrp < σ. Now fix p ∈ BP (p̄, rp)
and consider x ∈ S(p) ∩ BX(x̄, rx) so that (x, ȳ) ∈ HM (p) ∩ (BX(x̄, rx) × {ȳ}). Further observe
that for each β > 0 there is some (x̃, ỹ) ∈ HM (p̄) satisfying

ρX×Y ((x, ȳ), (x̃, ỹ)) ≤ dX×Y ((x, ȳ), HM (p̄)) + β. (3.8)

Consequently, by virtue of (3.6)

ρX×Y ((x, ȳ), (x̃, ỹ)) ≤ LρP (p, p̄) + β. (3.9)

It follows from the triangle inequality and (3.9) that

ρX(x̃, x̄) ≤ ρX(x̃, x) + ρX(x, x̄) ≤ LρP (p, p̄) + β + ρX(x, x̄) ≤ Lrp + β + rx.

Since Lrp+rx < σ, β can be chosen sufficiently small to obtain that ρX(x̃, x̄) < σ as well. Further
we note that to each γ > 0 there is some x̂ ∈ S(p̄) = M−1

p̄ (ȳ) such that

ρX(x̃, x̂) ≤ dX(x̃,M−1
p̄ (ȳ)) + γ.

This implies, by virtue of (3.7), that

ρX(x̃, x̂) ≤ κdY (ȳ,Mp̄(x̃)) + γ ≤ κρY (ȳ, ỹ) + γ, (3.10)

where the last inequality follows from the fact that ỹ ∈Mp̄(x̃).
Hence, by using successively the triangle inequality, estimate (3.10), the Cauchy-Schwartz

inequality and estimates (3.9), (3.6), we obtain

dX(x, S(p̄)) ≤ ρX(x, x̂) ≤ ρX(x, x̃) + ρX(x̃, x̂) ≤ ρ(x, x̃) + κρY (ȳ, ỹ) + γ

≤
√

1 + κ2
√

(ρX(x, x̃))2 + (ρY (ȳ, ỹ))2 + γ =
√

1 + κ2ρX×Y ((x, ȳ), (x̃, ỹ)) + γ

≤
√

1 + κ2(LρP (p, p̄) + β) + γ.

It remains to notice again that suitable points (x̃, ỹ) and x̂ can be found for arbitrarily small values
of β and γ whence

dX(x, S(p̄)) ≤
√

1 + κ2LρP (p, p̄).

Since p ∈ BP (p̄, rp) was arbitrarily fixed, the claimed calmness of S at (p̄, x̄) follows.
Remark 4. Note that the restricted calmness property with respect to p of M is strictly less

stringent than condition (3.3) in [5, Theorem 3.1]. This condition was used there together with a
sufficient condition for metric subregularity of Mp̄ to show the calmness of S.
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Corollary 3.4. Consider the implicit multifunction S given by (3.1) with ȳ = 0 and

M(p, x) = A(p)x+ b(p) +Q(x)

around the reference point (p̄, x̄) ∈ gphS. Assume that the mappings A : Rl → Rm×n and
b : Rl → Rm are Lipschitz near p̄ and the graph of Q : Rn ⇒ Rm is a union of finitely many
convex polyhedra. Then S is calm at (p̄, x̄).

Proof. As mentioned in Remark 1, such mapping M has the restricted calmness property with
respect to p at (p̄, x̄, 0). Furthermore, Mp̄ is polyhedral and hence metrically subregular at (x̄, 0)
by virtue of [37, Proposition 1]. The statement thus directly follows from Theorem 3.3.

In the above way one can model solution maps to parameterized quadratic programs with the
parameter arising in the objective.

Next section is devoted to workable conditions ensuring that the assumptions of Theorem 3.3
are fulfilled.

3.2. Calmness criteria. The next theorem states a sufficient condition for the restricted
calmness property with respect to p of M based on generalized differentiation. From now on
P = Rl, X = Rn, Y = Rm and ȳ = 0.

Theorem 3.5. Let 0 ∈M(p̄, x̄) and assume that there do not exist elements u ∈ SRn , q∗ ∈ SRl

and sequences (qk, uk, vk)→ (0, u, 0), (q∗k, u
∗
k, v
∗
k)→ (q∗, 0, 0), tk ↘ 0 such that

(q∗k, u
∗
k) ∈ D̂∗M((p̄, x̄, 0) + tk(qk, uk, vk))(v∗k) ∀k, (3.11)

qk 6= 0 ∀k, lim
k→∞

〈q∗k,
qk
‖qk‖

〉 = −1. (3.12)

Then M has the restricted calmness property with respect to p at (p̄, x̄, 0).
Proof. By contraposition. Assume on the contrary that M does not have the restricted

calmness property with respect to p at (p̄, x̄, 0). Then there are sequences (pk, xk) → (p̄, x̄) such
that (xk, 0) ∈ HM (pk) and ‖xk − x̄‖ ≥ d((xk, 0), HM (p̄)) > k‖pk − p̄‖. Next we denote by
(p̄k, x̄k, ȳk) for each k a global solution of the program

min
p,x,y

φk(p, x, y) := ‖p− p̄‖+
2

k
‖x− xk‖+

1√
k
‖y‖ subject to (p, x, y) ∈ gphM.

Then we must have p̄k 6= p̄ since otherwise we would obtain

1

k
d((xk, 0), HM (p̄)) ≤ 1

k
(‖(xk − x̄k‖+ ‖ȳk‖) ≤

2

k
‖x̄k − xk‖+

1√
k
‖ȳk‖

= φk(p̄, x̄k, ȳk) = φk(p̄k, x̄k, ȳk) ≤ φk(pk, xk, 0) = ‖pk − p̄‖

contradicting d((xk, 0), HM (p̄)) > k‖pk − p̄‖. Hence tk := ‖(p̄k, x̄k, ȳk) − (p̄, x̄, 0)‖ > 0 and by
passing to a subsequence if necessary we can assume that ((p̄k, x̄k, ȳk) − (p̄, x̄, 0))/tk converges
to some element (q, u, v) ∈ SRl×Rn×Rm . Since φk(p̄k, x̄k, ȳk) ≤ φk(pk, xk, 0) = ‖pk − p̄‖, we can
conclude ‖p̄k − p̄‖ ≤ ‖pk − p̄‖, 2

k‖x̄k − xk‖ ≤ ‖pk − p̄‖ and 1√
k
‖ȳk‖ ≤ ‖pk − p̄‖, yielding, together

with ‖pk − p̄‖ < 1
k‖xk − x̄‖, the relations

‖x̄k − x̄‖ ≥ ‖xk − x̄‖ − ‖x̄k − x̄‖ ≥ ‖xk − x̄‖ −
k

2
‖pk − p̄‖ >

1

2
‖xk − x̄‖ >

k

2
‖pk − p̄‖ ≥

k

2
‖p̄k − p̄‖

and ‖ȳk‖ ≤
√
k‖pk−p̄‖ < 1√

k
‖xk−x̄‖ < 2√

k
‖x̄k−x̄‖. Hence we can conclude ‖p̄k−p̄‖/‖x̄k−x̄‖ → 0,

‖ȳk‖/‖x̄k − x̄‖ → 0 and q = 0, v = 0 follows. Since

‖x̄k − x̄‖ ≤ ‖xk − x̄‖+ ‖x̄k − x̄‖ ≤ ‖xk − x̄‖+
k

2
‖pk − p̄‖ <

3

2
‖xk − x̄‖ → 0,

it also follows that tk ↘ 0.
Next we utilize the optimality condition 0 ∈ ∂φk(p̄k, x̄k, ȳk)+NgphM (p̄k, x̄k, ȳk), see [40, Theorem
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8.15], where ∂φk can be taken as the subdifferential of convex analysis since φk is convex. Let
(α∗k, β

∗
k , γ
∗
k) ∈ (−∂φk(p̄k, x̄k, ȳk)) ∩ NgphM (p̄k, x̄k, ȳk). Then, standard arguments from convex

analysis yield α∗k = −(p̄k − p̄)/‖p̄k − p̄‖ and β∗k ∈ 2
kBRn , γ∗k ∈ 1√

k
BRm and we deduce (β∗k , γ

∗
k) →

(0, 0) as k →∞. By the definition of the limiting normal cone we can find for each k some elements
(p̄′k, x̄

′
k, ȳ
′
k) and (q∗k, u

∗
k,−v∗k) ∈ N̂gphM (p̄′k, x̄

′
k, ȳ
′
k) verifying

‖(p̄′k, x̄′k, ȳ′k)− (p̄k, x̄k, ȳk)‖ ≤ ‖p̄k − p̄‖/k, ‖(q∗k, u∗k,−v∗k)− (α∗k, β
∗
k , γ
∗
k)‖ ≤ 1

k
.

Then we obviously have (u∗k, v
∗
k) → (0, 0). Since α∗k ∈ SRl ∀k and q∗k − α∗k → 0, by passing

to a subsequence if necessary we can assume that q∗k converges to some q∗ ∈ SRl . Now set
(qk, uk, vk) := ((p̄′k, x̄

′
k, ȳ
′
k)− (p̄, x̄, ȳ))/tk. Since ‖p̄k− p̄‖ ≤ tk, the choice of (p̄′k, x̄

′
k, ȳ
′
k) guarantees

that (qk, uk, vk) converges to (0, u, 0). Further we have∥∥∥∥ p̄k − p̄
‖p̄k − p̄‖

− p̄′k − p̄
‖p̄′k − p̄‖

∥∥∥∥ =

∥∥∥∥ (p̄′k − p̄)(‖p̄′k − p̄‖ − ‖p̄k − p̄‖)− (p̄′k − p̄k)‖p̄′k − p̄‖
‖p̄′k − p̄‖ · ‖p̄k − p̄‖

∥∥∥∥
≤ 2‖p̄′k − p̄k‖ · ‖p̄′k − p̄‖
‖p̄′k − p̄‖ · ‖p̄k − p̄‖

≤ 2

k

implying

lim
k→∞

〈q∗k,
qk
‖qk‖

〉 = lim
k→∞

〈q∗k,
p̄′k − p̄
‖p̄′k − p̄‖

〉 = lim
k→∞

〈q∗k,
p̄k − p̄
‖p̄k − p̄‖

〉 = lim
k→∞

〈α∗k,
p̄k − p̄
‖p̄k − p̄‖

〉 = −1.

Finally note that we have (q∗k, u
∗
k) ∈ D̂∗M((p̄, x̄, 0)+tk(qk, uk, vk))(v∗k) by our construction. Hence

we see that q∗, u together with the sequences tk, (qk, uk, vk) and (q∗k, u
∗
k, v
∗
k) violate the assumptions

of the theorem yielding the desired contradiction. This finishes the proof.
Condition (3.11) suggests the following definition.
Definition 3.6. The outer coderivative of M with respect to p in direction u at (p̄, x̄, 0)

is the multifunction D∗>p
M((p̄, x̄, 0);u) : Rm ⇒ Rl × Rn, where D∗>p

M((p̄, x̄, 0);u)(v∗) consists
of all pairs (q∗, u∗) such that there are sequences tk ↘ 0, (qk, uk, vk) → (0, u, 0), (q∗k, u

∗
k, v
∗
k) →

(q∗, u∗, v∗) verifying

qk 6= 0 and (q∗k, u
∗
k,−v∗k) ∈ N̂gphM (p̄+ tkqk, x̄+ tkuk, tkvk) ∀k.

By the definition of the directional limiting coderivative we see that

D∗>p
M((p̄, x̄, 0);u)(v∗) ⊂ D∗M((p̄, x̄, 0); (0, u, 0))(v∗) ∀v∗ ∈ Rm. (3.13)

Further we haveD∗>p
M((p̄, x̄, 0);u) ≡ ∅ whenever (0, u, 0) 6∈ TgphM (p̄, x̄, 0), i.e., 0 6∈ DM(p̄, x̄, 0)(0, u).

These observations yield the following point based sufficient condition for the restricted calmness
property with respect to p to hold.

Corollary 3.7. Let 0 ∈ M(p̄, x̄) and assume that there do not exist elements u ∈ SRn and
q ∈ SRl ∩ TdomHM

(p̄) satisfying

0 ∈ DM(p̄, x̄, 0)(0, u), (3.14)

(−q, 0) ∈ D∗>p
M((p̄, x̄, 0);u)(0). (3.15)

Then M has the restricted calmness property with respect to p at (p̄, x̄, 0).
Proof. Consider the sequences specified in Theorem 3.5 which satisfy, in particular, the re-

lations (3.11), (3.12). By passing to a subsequence if necessary we can assume that qk/‖qk‖
converges to some q ∈ SRl . Since we also have p̄+ (tk‖qk‖)(qk/‖qk‖) ∈ domHM and tk‖qk‖ → 0,
the inclusion q ∈ TdomHM

(p̄) follows. From the second condition in (3.12) it follows that

〈q∗, q〉 = −1 with q∗, q ∈ SRl .
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This is, however, possible only when q∗ = −q and we are done.
In the following example we demonstrate the application of Theorem 3.5 in a situation when

M is of the form M(x, y) = G(x, y) +Q(y) with G being non-Lipschitzian.
Example 1. Consider the multifunction M : R×R→ R given by M(p, x) =

√
|px|+ x+R+

at (p̄, x̄) = (0, 0). Straightforward calculations yield

TgphM (0, 0, 0) = {(q, u, v) | v ≥
√
|qu|+ u}

and in case when px 6= 0,

D̂∗M(p, x, y)(v∗) =


{(0, 0)} if y >

√
|px|+ x, v∗ = 0,

{(
√
|x/p|v∗sign p,

√
|p/x|v∗signx+ v∗)} if y =

√
|px|+ x, v∗ ≥ 0,

∅ else.

Now assume that there are sequences tk ↘ 0, (qk, uk, vk)→ (0, u, 0) ∈ TgphM (0, 0, 0) and (q∗k, u
∗
k, v
∗
k)→

(q∗, 0, 0) such that u ∈ SR, q∗ ∈ SR and (3.11), (3.12) hold. The condition (0, u, 0) ∈ TgphM (0, 0, 0)
amounts to u ≤ 0, together with u ∈ SR we obtain u = −1 and therefore uk 6= 0 holds for all k
sufficiently large. Since qk 6= 0, we obtain v∗k ≥ 0,

q∗k =

√∣∣∣∣ tkuktkqk

∣∣∣∣v∗ksign tkqk =

√∣∣∣∣ukqk
∣∣∣∣v∗ksign qk

and consequently

〈q∗k,
qk
|qk|
〉 =

√∣∣∣∣ukqk
∣∣∣∣v∗k ≥ 0

contradicting (3.12). Hence, it follows from Theorem 3.5 that M has the restricted calmness
property with respect to p at (p̄, x̄, 0). 4

Corollary 3.7 is illustrated by the following example.
Example 2. Let M(p, x) = N̂Γ(p)(x), where Γ(p) = {x ∈ R | px ≤ 0} for p ∈ R, and let

(p̄, x̄) = (0, 0). Then

Γ(p) =


R if p = 0,

R− if p > 0,

R+ if p < 0

and therefore

M(p, x) =


{0} if p = 0 or px < 0,

R+ if p > 0, x = 0,

R− if p < 0, x = 0,

∅ else,

HM (p) =


R× {0} if p = 0,

({0} × R+) ∪ (R− × {0}) if p > 0,

({0} × R−) ∪ (R+ × {0}) if p < 0.

Hence M has the restricted calmness property with respect to p at (p̄, x̄, 0), but HM is not calm
at (p̄, (x̄, 0)). Now let us consider the conditions of Corollary 3.7. Since (3.15) involves the outer
directional coderivative of M with respect to p only in directions u 6= 0, we have to compute the
regular normal cone to gphM at points (p, x, y, z) with px 6= 0. Straightforward calculations yield

N̂gphM (p, x, y) =

{
{0} × {0} × R if y = 0 and px < 0,

∅ else if px 6= 0,

showing D∗>p
M((p̄, x̄, 0);u)(v∗) = {(0, 0)} ∀v∗ ∈ R provided u 6= 0. Hence we can also conclude

from Corollary 3.7 that M has the restricted calmness property with respect to p. Note that in this
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example the inclusion (3.13) is proper and one could not detect the restricted calmness property
with respect to p of M by using the standard directional limiting coderivative. 4

To verify the metric subregularity of the mapping Mp̄ at (x̄, 0) one can use the criteria pre-
sented in Section 2. In the following theorem we apply these conditions to the frequently arising
case of the so-called parameterized constraint systems. We prove that we obtain not only calmness
of the solution mapping S but also, under some suitable assumptions, the non-emptiness of S(p)
near p̄.

Theorem 3.8. Let

M(p, x) = G(p, x)−D, (3.16)

where D ⊂ Rm is closed, G maps Rl×Rn into Rm and consider the reference point (p̄, x̄) ∈ G−1(D).
Assume that G(p̄, ·) is strictly differentiable at x̄ and there are neighborhoods W of p̄, U of x̄ and
a real L′ such that

‖G(p, x)−G(p̄, x)‖ ≤ L′‖p− p̄‖,∀(p, x) ∈W × U. (3.17)

If there do not exist vectors 0 6= u ∈ Rn, 0 6= v∗ ∈ Rm such that

∇xG(p̄, x̄)u ∈ TD(G(p̄, x̄)) (3.18)

0 = ∇xG(p̄, x̄)T v∗, (3.19)

v∗ ∈ ND(G(p̄, x̄);∇xG(p̄, x̄)u), (3.20)

then S is calm at (p̄, x̄).
If in addition G is partially differentiable with respect to x on W ×U , if the partial derivative

∇xG is continuous at (p̄, x̄), if for every p ∈W the mapping ∇xG(p, ·) is continuous on U and if
there exists some ũ ∈ SRn such that ∇xG(p̄, x̄)ũ ∈ TD(G(p̄, x̄)) and ∇xG(p̄, x̄)ũ is derivable, then
there exists a neighborhood W̃ of p̄ and a real L̃ such that S(p) 6= ∅ ∀p ∈ W̃ and

d(x̄, S(p)) ≤ L̃‖p− p̄‖, p ∈ W̃ . (3.21)

Proof. We first show that M has the restricted calmness property with respect to p at (p̄, x̄, 0).
Indeed, if p ∈W and (x, 0) ∈ HM (p)∩U ×{0}, then 0 ∈M(p, x) = G(p, x)−D and consequently
G(p̄, x)−G(p, x) ∈ G(p̄, x)−D, i.e., (x,G(p̄, x)−G(p, x)) ∈ HM (p̄). Hence

d((x, 0), HM (p̄)) ≤ ‖(x, 0)− (x,G(p̄, x)−G(p, x))‖ ≤ ‖G(p̄, x)−G(p, x)‖ ≤ L′‖p− p̄‖

and the restricted calmness property with respect to p for M at (p̄, x̄, ȳ) follows. By using FOSCMS
of Corollary 2.11 we see that the imposed assumptions guarantee metric subregularity of Mp̄ at
(x̄, 0). Thus calmness of S follows from Theorem 3.3. It remains to show the non-emptiness of S
near p̄ and the bound (3.21). This is done by contraposition. Assume on the contrary that there
is some sequence pk converging to p̄ such that pk 6= p̄ and

d(x̄, S(pk)) > k‖pk − p̄‖. (3.22)

Since the tangent vector∇xG(p̄, x̄)ũ is assumed to be derivable, there exists a mapping ξ : R+ → D
such that ξ(0) = G(p̄, x̄) and ξ(t) − (G(p̄, x̄) + t∇xG(p̄, x̄)ũ) = o(t) as t ↘ 0. Since G(p̄, ·)
is assumed to be continuously differentiable, η(t) := ‖G(p̄, x̄ + tũ) − ξ(t)‖ = o(t) follows. By
passing to a subsequence if necessary we can assume that ‖pk − p̄‖ ≤ k−2 and η(tk) ≤ ‖pk − p̄‖
holds for all k, where tk := k‖pk−p̄‖

2 . Then tk ↘ 0 and we can find some L > 0 such that
‖G(pk, x̄ + tkũ) − G(p̄, x̄ + tkũ)‖ ≤ L‖pk − p̄‖ holds for all k sufficiently large, without loss of
generality for all k.

Next consider for each k a solution (x̄k, ȳk) of the program

min
x,y

φk(x, y) :=
4(L+ 1)

k
‖x− (x̄+ tkũ)‖+ ‖y‖ subject to (x, y) ∈ gphMpk .
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Because of (x̄+ tkũ, G(pk, x̄+ tkũ)− ξ(tk)) ∈ gphMpk we obtain

φk(x̄k, ȳk) ≤ ‖G(pk, x̄+ tkũ)− ξ(tk)‖
≤ ‖G(pk, x̄+ tkũ)−G(p̄, x̄+ tkũ)‖+ ‖G(p̄, x̄+ tkũ)− ξ(tk)‖
≤ L‖pk − p̄‖+ η(tk) ≤ (L+ 1)‖pk − p̄‖.

Further we must have ȳk 6= 0 since otherwise we would have 4(L+1)
k ‖x̄k−(x̄+tkũ)‖ = φk(x̄k, ȳk) ≤

(L+ 1)‖pk − p̄‖ and 0 = ȳk ∈M(pk, x̄k) implying x̄k ∈ S(pk) and

d(x̄, S(pk)) ≤ ‖x̄k − x̄‖ ≤ ‖x̄k − (x̄+ tkũ)‖+ tk‖ũ‖ ≤
k

4
‖pk − p̄‖+

k

2
‖pk − p̄‖,

which clearly contradicts the inequality (3.22).
By the first order optimality conditions [40, Theorem 8.15] we have 0 ∈ ∂φk(x̄k, ȳk) +

NgphMpk
(x̄k, ȳk), where ∂φk stands for the subdifferential in the sense of convex analysis, cf.

[40, Proposition 8.12]. Hence there are elements (x∗k, y
∗
k) ∈ −∂φk(x̄k, ȳk) ∩ NgphMpk

(x̄k, ȳk).

Then x∗k ∈
4(L+1)

k BRn and y∗k ∈ SRm because of ȳk 6= 0. By the definition of the limiting nor-

mal cone we can find elements (x̄′k, ȳ
′
k) ∈ gphMpk and (u∗k, v

∗
k) ∈ N̂gphMpk

(x̄′k, ȳ
′
k) such that

‖(x̄k, ȳk) − (x̄′k, ȳ
′
k)‖ ≤ tk/k and ‖(x∗k, y∗k) − (u∗k, v

∗
k)‖ ≤ 1/k. From Mpk(·) = G(pk, ·) − D we

conclude that −v∗k ∈ N̂D(G(pk, x̄
′
k)− ȳ′k) and u∗k = −∇xG(pk, x̄

′
k)T v∗k → 0. Since

‖x̄′k− x̄‖ ≥ ‖x̄k− x̄‖−
tk
k
≥ tk‖ũ‖−‖x̄k− (x̄+ tkũ)‖− tk

k
≥ tk−

k

4
‖pk− p̄‖−

tk
k

= (
k

4
− 1

2
)‖pk− p̄‖

and

‖x̄′k− x̄‖ ≤ ‖x̄k− x̄‖+
tk
k
≤ tk‖ũ‖+‖x̄k−(x̄+tkũ)‖+ tk

k
≤ tk+

k

4
‖pk− p̄‖+

tk
k

= (
3k

4
+

1

2
)‖pk− p̄‖,

it follows that τk → 0 and (pk − p̄)/τk → 0, where τk := ‖x̄′k − x̄‖. By passing to a subsequence
we may assume that the sequence −v∗k converges to v∗ and the sequence (x̄′k − x̄)/τk converges to
some u ∈ SRn . Together with

‖ȳ′k‖ ≤ ‖ȳk‖+
tk
k
≤ φk(x̄k, ȳk) +

tk
k
≤ (L+

3

2
)‖pk − p̄‖ = o(τk),

we obtain

lim
k→∞

G(pk, x̄
′
k)− ȳ′k −G(p̄, x̄)

τk
= lim
k→∞

(
G(pk, x̄

′
k)−G(p̄, x̄′k)

τk
+
G(p̄, x̄′k)−G(p̄, x̄)

τk

)
= ∇xG(p̄, x̄)u.

This shows v∗ ∈ ND(G(p̄, x̄),∇xG(p̄, x̄)u) and ∇xG(p̄, x̄)u ∈ TD(G(p̄, x̄)). Since we also have

0 = lim
k→∞

∇xG(pk, x̄
′
k)T (−v∗k) = ∇xG(p̄, x̄)T v∗

we obtain a contradiction to (3.18)-(3.20) and this completes the proof.
The next statement concerns the frequently arising case when D is a union of convex polyhe-

drons which occurs, e.g., in case of parameterized complementarity problems.
Theorem 3.9. In the setting of Theorem 3.8 consider the situation that D ⊂ Rm is the

union of finitely many convex polyhedra, G(p̄, ·) is twice Fréchet differentiable at x̄ and there are
neighborhoods W of p̄, U of x̄ and a real L′ such that (3.17) holds.

If there do not exist vectors 0 6= u ∈ Rn, 0 6= v∗ ∈ Rm verifying (3.18)-(3.20) and

uT∇2
xx(v∗TG)(p̄, x̄)u ≥ 0, (3.23)

then S is calm at (p̄, x̄).
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Moreover, if in addition G is twice partially differentiable with respect to x on W × U , if G,
∇G and ∇2

xxG are continuous on W × U , if

‖∇xG(p, x̄)−∇xG(p̄, x̄)‖ ≤ L′‖p− p̄‖

holds for all p near p̄ and if there exists some nonzero ũ with ∇xG(p̄, x̄)u ∈ TD(G(p̄, x̄)), then
there exist a neighborhood W̃ of p̄ and a real L̃ such that S(p) 6= ∅ ∀p ∈ W̃ and

d(x̄, S(p)) ≤ L̃‖p− p̄‖1/2, p ∈ W̃ . (3.24)

Proof. The same arguments as in the proof of Theorem 3.8 show that M has the restricted
calmness property with respect to p at (p̄, x̄, 0). By our assumptions, SOSCMS of Corollary 2.11
is fulfilled for Mp̄ at (x̄, 0) and therefore the calmness of S at (p̄, x̄) follows from Theorem 3.3.
Further, the non-emptiness of S(p) and the bound (3.24) follow from [22, Proposition 2 (2.)].

The situation of Theorem 3.8 is illustrated in the following example.
Example 3. Let p ∈ R2, x ∈ R2 and S be implicitly given by the complementarity problem

0 ≤ x1 − p1 ⊥ x2 − p2 ≥ 0

combined with the (nonlinear) inequality constraints −x1 − x2
1 ≤ x2 ≤ x1 + x2

1. Let (p̄, x̄) =
(0R2 , 0R2). This problem attains the form (3.16) with

G(p, x) =


−p1 + x1

−p2 + x2

−x1 − x2
1 − x2

−x1 − x2
1 + x2

 (3.25)

and D = K × R2
−, where K denotes the “complementarity angle”, i.e.,

K := {z ∈ R2
+|z1z2 = 0}.

G clearly fulfills all the assumptions of Theorem 3.8. It follows from (3.18) that we have to analyze
the directions u ∈ R2 satisfying the conditions

(u1, u2) ∈ K,−u1 − u2 ≤ 0,−u1 + u2 ≤ 0,

which amount to u1 ≥ 0, u2 = 0. As to condition (3.19), we obtain the equalities

v∗1 − v∗3 − v∗4 = 0
v∗2 − v∗3 + v∗4 = 0.

(3.26)

Finally we observe that for any sequence of vectors u(k) → (ū1, 0) with ū1 > 0 and for any sequence
of reals t(k) ↘ 0 such that

G(p̄, x̄) + t(k)∇xG(p̄, x̄)u(k) = t(k)


u

(k)
1

u
(k)
2

−u(k)
1 − u(k)

2

−u(k)
1 + u

(k)
2

 ∈ K × R2
−,

one has u
(k)
2 = 0 and therefore

NK×R2
−

(G(p̄, x̄) + tk∇xG(p̄, x̄)u(k)) = {v∗ ∈ R4|v∗1 = v∗3 = v∗4 = 0}. (3.27)

Thus, by combining (3.26) and (3.27) we conclude that v∗2 = 0 as well and, due to (3.20), the
corresponding implicit multifunction S is calm at (p̄, x̄). Since the direction ũ = (1, 0) fulfills
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∇xG(p̄, x̄)ũ = (1, 0,−1−1) ∈ D = TD(G(p̄, x̄)) and ∇xG(p̄, x̄)ũ is derivable, we also have S(p) 6= ∅
and d(x̄, S(p)) ≤ L̃‖p− p̄‖ for some real L̃ and all p near p̄.

Note that in the above example the implicit multifunction S does not possess the Aubin property
around (p̄, x̄), because we have

(0, 0) ∈ S(0, p2) ∀p2 < 0, (0, 0) 6∈ S(p1, p2) ∀p1 > 0, p2 < 0.

Further, S does not have the isolated calmness property at (p̄, x̄) as well because S(p̄) = R+×{0}.
Moreover, Mp̄ fulfills FOSCMS but is neither strongly metrically subregular nor metrically regular.
4

The next example illustrates the situation of Theorem 3.9.
Example 4. For p ∈ R let S(p) be given by the solutions x ∈ R2 of the nonlinear inequalities

p− 1

2
x2

1 + x2 ≤ 0, p− 1

2
x2

1 − x2 ≤ 0.

Again this system can be written in the form (3.16) with

G(p, x) =

(
p− 1

2x
2
1 + x2

p− 1
2x

2
1 − x2

)
, D = R2

−.

Let p̄ = 0, x̄ = 0R2 . D is a convex polyhedron and we will apply Theorem 3.9. The conditions
(3.18)-(3.23) amount to

u2 ≤ 0, −u2 ≤ 0, v∗1 − v∗2 = 0, v∗1 ≥ 0, v∗2 ≥ 0, −(v∗1 + v∗2)u2
1 ≥ 0,

which cannot be fulfilled with u = (u1, u2) 6= (0, 0), v∗ = (v∗1 , v
∗
2) 6= (0, 0). Hence, S is calm at

(p̄, x̄) and since the direction ũ = (1, 0) fulfills ∇xG(p̄, x̄)ũ = (0, 0) ∈ TD(G(p̄)) we conclude that
S(p) 6= ∅ and an estimate of the form d(x̄, S(p)) = O(

√
|p|) holds for p near 0. Indeed, we have

d(x̄, S(p)) = ‖(0,±
√
−p)‖ =

√
−p for all p < 0. This example demonstrates the antisymmetry

of the calmness property. Although the points x ∈ S(p) near x̄ are close to S(p̄) up to the order
O(‖p− p̄‖), the point x̄ ∈ S(p̄) is not close to S(p) with this order. 4

Since every inclusion 0 ∈M(p, x) can be written equivalently in the form (3.16) by

0 ∈ M̃(p, x) := (p, x, 0)− gphM, (3.28)

one can combine Corollary 3.7, Theorem 3.3 and Theorem 3.8 to obtain pointbased conditions for
the calmness of solution mappings of general inclusions.

Corollary 3.10. Let S(p) := {x | 0 ∈ M(p, x)}, where M : Rl × Rn → Rm is a closed
multifunction, and let x̄ ∈ S(p̄).

(i) Assume that there do not exist directions u 6= 0, û 6= 0, q ∈ TdomHM
and elements q∗ ∈ SRl ,

v∗ ∈ SRm such that

0 ∈ DM(p̄, x̄, 0)(0, u), (q∗, 0) ∈ D∗>p
M((p̄, x̄, 0);u)(0), 〈q∗, q〉 = −1, (3.29)

0 ∈ DMp̄(x̄, 0)(û), 0 ∈ D∗Mp̄((x̄, 0); (û, 0))(v∗). (3.30)

Then S is calm at (p̄, x̄).
(ii) If there do not exist a direction u 6= 0 and elements (q∗, v∗) 6= (0, 0) such that

0 ∈ DM(p̄, x̄, 0)(0, u), (q∗, 0) ∈ D∗M((p̄, x̄, 0); (0, u, 0))(v∗) (3.31)

and if there exists a direction ũ such that (0, ũ, 0) ∈ TgphM (p̄, x̄, 0) and (0, ũ, 0) is derivable, then

S is calm at (p̄, x̄) and there exist a real L̃ and a neighborhood W̃ of p̄ such that

S(p) 6= ∅, d(x̄, S(p)) ≤ L̃‖p− p̄‖ ∀p ∈ W̃ .

Proof. By Corollary 3.7 condition (3.29) ensures that M has the restricted calmness property
with respect to p at (p̄, x̄, 0). Further, Mp̄ is metrically subregular at (x̄, 0) due to (3.30) and
FOSCMS (2.5). Hence, calmness of S follows from Theorem 3.3. The second statement follows
from Theorem 3.8 together with the observation that conditions (3.18)-(3.20) applied to M̃ given
by (3.28) amount to (3.31).
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4. Aubin property of implicit multifunctions. The aim of this section is to investigate
the Aubin property of S given by (1.1) with a closed-graph mapping M : Rl × Rn ⇒ Rm. We
start with the following proposition.

Proposition 4.1. Let M : Rs ⇒ Rd be a multifunction with closed graph. Given (x̄, ȳ) ∈
gphM and a direction u ∈ Rs, assume that M is metrically subregular in direction u at (x̄, ȳ)
with modulus κ. Then

u ∈ TM−1(ȳ)(x̄) ⇔ 0 ∈ DM(x̄, ȳ)(u) (4.1)

and

NM−1(ȳ)(x̄;u) ⊂ {x∗ | ∃y∗ ∈ κ‖x∗‖BRd : (x∗, y∗) ∈ NgphM((x̄, ȳ); (u, 0))} (4.2)

⊂ rge D∗M((x̄, ȳ); (u, 0)).

Proof. In order to prove the forward implication in (4.1), assume u ∈ TM−1(ȳ)(x̄). Then
there are sequences tk ↘ 0 and uk → u such that x̄ + tkuk ∈ M−1(ȳ) or, equivalently, ȳ =
ȳ + tk0 ∈ M(x̄ + tkuk), implying (u, 0) ∈ TgphM(x̄, ȳ) which is the same as 0 ∈ DM(x̄, ȳ)(u).
Conversely, if 0 ∈ DM(x̄, ȳ)(u), then there are sequences tk ↘ 0 and (uk, vk) → (u, 0) such that
ȳ + tkvk ∈ M(x̄+ tkuk). By virtue of the assumed metric subregularity of M in direction u and
choosing κ′ > κ we have

d(x̄+ tkuk,M−1(ȳ)) ≤ κ′d(ȳ,M(x̄+ tkuk)) ≤ κ′tk‖vk‖

for all k sufficiently large and therefore we can find a sequence xk ∈M−1(ȳ) verifying ‖xk − (x̄+
tkuk)‖ ≤ κ′tk‖vk‖. Thus

lim
k→∞

‖xk − x̄
tk

− u‖ ≤ lim
k→∞

‖xk − x̄
tk

− uk‖+ ‖uk − u‖ ≤ lim
k→∞

κ′‖vk‖+ ‖uk − u‖ = 0

and we conclude u ∈ TM−1(ȳ)(x̄). Hence the relation (4.1) is shown.
To prove inclusion (4.2), consider x∗ ∈ NM−1(ȳ)(x̄;u). Then there are sequences tk ↘ 0,

uk → u and x∗k → x∗ such that x∗k ∈ N̂M−1(ȳ)(xk), where xk := x̄ + tkuk. Hence, for each k we
can find some radius rk > 0 such that

〈x∗k, x− xk〉 ≤
1

k
‖x− xk‖ ∀x ∈M−1(ȳ) ∩ B(xk, rk).

By decreasing the radii rk if necessary we can assume rk/tk ≤ 1/k. Further, by the supposed
metric subregularity of M in direction u with modulus κ and by passing to a subsequence if
necessary we have

d(x,M−1(ȳ)) ≤ (κ+
1

k
)d(ȳ,M(x)) ∀x ∈ B(xk, rk) ∀k.

Next fix k, consider x ∈ B(xk, rk/2) and let x̃ denote the projection of x onto M−1(ȳ). Then
‖x̃−xk‖ ≤ ‖x− x̃‖+‖x−xk‖ ≤ 2‖x−xk‖ ≤ rk and ‖x− x̃‖ = d(x,M−1(ȳ)) ≤ (κ+ 1

k )d(ȳ,M(x))
and therefore

〈x∗k, x− xk〉 = 〈x∗k, x̃− xk〉+ 〈x∗k, x− x̃〉 ≤
1

k
‖x̃− xk‖+ ‖x∗k‖‖x− x̃‖

≤ 2

k
‖x− xk‖+ (κ+

1

k
)‖x∗k‖ inf

y∈M(x)
‖y − ȳ‖.

Since x ∈ B(xk, rk/2) was arbitrary, we conclude

(κ+
1

k
)‖x∗k‖‖y − ȳ‖ − 〈x∗k, x− xk〉+

2

k
‖x− xk‖ ≥ 0 ∀x ∈ B(xk, rk/2) ∀(x, y) ∈ gphM.
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Taking into account that xk ∈ M−1(ȳ) and therefore ȳ ∈ M(xk), we see that (xk, ȳ) is a local
minimizer for the problem

min
(x,y)∈gphM

(κ+
1

k
)‖x∗k‖‖y − ȳ‖ − 〈x∗k, x− xk〉+

2

k
‖x− xk‖.

The respective optimality conditions [40, Theorem 8.15] imply the existence of some y∗k ∈ BRd and
some η∗k ∈ BRs such that

0 ∈
(
− x∗k +

2

k
η∗k, (κ+

1

k
)‖x∗k‖y∗k

)
+NgphM(xk, ȳ)

and by the definition of the limiting normal cone to gphM at (xk, ȳ) we can find elements (x̃k, ỹk) ∈
gphM and (x̃∗k, ỹ

∗
k) ∈ N̂gphM(x̃k, ỹk) such that

‖(x̃k, ỹk)− (xk, ȳ)‖ ≤ tk
k

and ‖(−x∗k +
2

k
η∗k, (κ+

1

k
)‖x∗k‖y∗k) + (x̃∗k, ỹ

∗
k)‖ ≤ 1

k
.

We infer ‖ỹ∗k‖ ≤ (κ+ 1
k )‖x∗k‖+ 1

k and therefore, by passing to a subsequence if necessary, we can
assume that ỹ∗k converges to some y∗ ∈ Rd. Since limk→∞ x̃∗k = limk→∞ x∗k = x∗ and

lim
k→∞

(x̃k, ỹk)− (x̄, ȳ)

tk
= lim
k→∞

(
(x̃k, ỹk)− (xk, ȳ)

tk
+ lim
k→∞

(xk, ȳ)− (x̄, ȳ)

tk

)
= (u, 0),

we conclude (x∗, y∗) ∈ NgphM((x̄, ȳ); (u, 0)) and ‖y∗‖ ≤ κ‖x∗‖ and the first inclusion in (4.2) is
shown. The second one is straightforward.

By combining (4.1) and Lemma 2.8(iii) we obtain the following corollary.
Corollary 4.2. Assume that the multifunction M : Rs ⇒ Rd is metrically subregular at

(x̄, ȳ) ∈ gphM. Then

TM−1(ȳ)(x̄) = {u | 0 ∈ DM(x̄, ȳ)(u)}.

By combining the Mordukhovich criterion for the Aubin property of S with the definition of
the directional limiting coderivative and by invoking Proposition 4.1 and Corollary 4.2, we arrive
at the next statement.

Proposition 4.3. Assume that the condition

(q∗, 0) ∈ {(q, u) | 0 ∈ DM(p̄, x̄, 0)(q, u)}◦ ⇒ q∗ = 0 (4.3)

holds, assume that M is metrically subregular at (p̄, x̄, 0) and assume that there do not exist vectors
(0, 0) 6= (q, u) ∈ Rl × Rn, (q∗, v∗) ∈ Rl × Rm with q∗ 6= 0 such that

0 ∈ DM(p̄, x̄, 0)(q, u), (q∗, 0) ∈ D∗M((p̄, x̄, 0); (q, u, 0))(v∗). (4.4)

Then S has the Aubin property around (p̄, x̄).
Proof. By contraposition. Assume on the contrary that S does not have the Aubin prop-

erty around (p̄, x̄). Then we can infer from the Mordukhovich criterion [32],[40, Theorem 9.40]
that 0 6= q∗ ∈ D∗S(p̄, x̄)(0). By the definition of the limiting coderivative there are sequences

(pk, xk, q
∗
k, u
∗
k) → (p̄, x̄, q∗, 0) such that (q∗k,−u∗k) ∈ N̂gphS(pk, xk) for every k. Consider first the

case that (pk, xk) = (p̄, x̄) holds for infinitely many k. Then, by passing to a subsequence and

using the fact that the regular normal cone N̂gphS(p̄, x̄) is closed as a polar cone of TgphS(p̄, x̄),

we obtain (q∗, 0) ∈ N̂gphS(p̄, x̄) = (TgphS(p̄, x̄))◦. Since M is metrically subregular at (p̄, x̄, 0)
and gphS = M−1(0), by Corollary 4.2 we arrive at (q∗, 0) ∈ {(q, u) | 0 ∈ DM(p̄, x̄, 0)(q, u)}◦
contradicting (4.3). Hence, (pk, xk) = (p̄, x̄) only holds for finitely many k and so without loss
of generality (pk, xk) 6= (p̄, x̄) for all k. By putting tk := ‖(pk − p̄, xk − x̄)‖ and by passing
to a subsequence if necessary we can assume that (pk − p̄, xk − x̄)/tk converges to some (q, u)
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with ‖(q, u)‖ = 1 and we conclude (q∗, 0) ∈ NgphS((p̄, x̄); (q, u)). Hence (q, u) ∈ TgphS(p̄, x̄) and
by Proposition 4.1 we conclude 0 ∈ DM(p̄, x̄, 0)(q, u) and the existence of some v∗ such that
(q∗, 0) ∈ D∗M((p̄, x̄, 0); (q, u, 0))(v∗) contradicting (4.4).

We are now in the position to state the main result of this section:

Theorem 4.4. Assume that

{u | 0 ∈ DM(p̄, x̄, 0)(q, u)} 6= ∅ for all q ∈ Rl (4.5)

holds, assume that M is metrically subregular at (p̄, x̄, 0) and for every (0, 0) 6= (q, u) ∈ Rl × Rn
verifying 0 ∈ DM(p̄, x̄, 0)(q, u) the condition

(q∗, 0) ∈ D∗M((p̄, x̄, 0); (q, u, 0))(v∗) =⇒ q∗ = 0 (4.6)

holds. Then S has the Aubin property around (p̄, x̄) and

DS(p̄, x̄)(q) = {u | 0 ∈ DM(p̄, x̄, 0)(q, u)}, q ∈ Rl. (4.7)

Proof. In view of Proposition 4.3 and Corollary 4.2 we only have to show that condition
(4.5) implies condition (4.3). In fact, let (q∗, 0) ∈ {(q, u) | 0 ∈ DM(p̄, x̄, 0)(q, u)}◦. Then, for every
q ∈ Rl we can find some uq ∈ {u | 0 ∈ DM(p̄, x̄, 0)(q, u)} and therefore 〈q∗, q〉+〈0, uq〉 = 〈q∗, q〉 ≤ 0
implying q∗ = 0.

If we replace the requirement that M is metrically subregular at (p̄, x̄, 0) by FOSCMS (2.5),
we obtain the next corollary.

Corollary 4.5. Assume that (4.5) holds and assume that for every (0, 0) 6= (q, u) ∈ Rl×Rn
verifying 0 ∈ DM(p̄, x̄, 0)(q, u) the condition

(q∗, 0) ∈ D∗M((p̄, x̄, 0); (q, u, 0))(v∗) =⇒ q∗ = 0, v∗ = 0 (4.8)

is fulfilled. Then S has the Aubin property around (p̄, x̄) and (4.7) holds.

We now show that condition (4.5) is also necessary in order that the mapping S has the Aubin
property.

Proposition 4.6. If S has the Aubin property around (p̄, x̄) then (4.5) is fulfilled.

Proof. If S has the Aubin property around (p̄, x̄), then {x̄} ⊂ S(p) + L‖p − p̄‖BRn holds for
all p in some neighborhood of p̄. Consider now any direction q ∈ Rl and any sequence tk ↘ 0.
Then for every k sufficiently large we can find xk ∈ S(p̄+ tkq) such that ‖xk − x̄‖ ≤ Ltk‖q‖. By
passing to a subsequence we can assume that the sequence uk := (xk − x̄)/tk converges to some
u. Since 0 ∈M(p̄+ tkqk, xk) = M(p̄+ tkqk, x̄+ tkuk), the inclusion 0 ∈ DM(p̄, x̄, 0)(q, u) follows
and thus {u | 0 ∈ DM(p̄, x̄, 0)(q, u)} 6= ∅. Because q was chosen arbitrarily, relation (4.5) follows.

Now let us compare the criteria of Corollary 4.5 with the criterion of [34, Corollary 4.60]. By
taking f ≡ 0 and Q = M in [34, Corollary 4.60] we obtain that the condition

(q∗, 0) ∈ D∗M(p̄, x̄, 0)(v∗) =⇒ q∗ = 0, v∗ = 0 (4.9)

is sufficient for the Aubin property of S around (p̄, x̄). So, instead of the standard coderivative of
M used in (4.9), we use in condition (4.8) the directional coderivative of M in certain directions,
which is by definition not larger (typically smaller) than the standard coderivative. This indicates
that in this way we arrive at substantially less restrictive sufficient conditions ensuring the Aubin
property of S. By Example 5 below, we will strikingly illustrate that the conditions of Corollary
4.5 are indeed weaker than (4.9).

Before we present this example, we work out the preceding theory for the case of a class of
variational systems, where

M(p, x) = G(p, x) +Q(x) (4.10)
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with G : Rl × Rn → Rm continuously differentiable and Q : Rn ⇒ Rm being a closed-graph
multifunction. It is well-known that in this case, cf. [13, Proposition 4A.2], at a fixed triple
(p̄, x̄, 0) ∈ gphM one has

DM(p̄, x̄, 0)(q, u) = ∇pG(p̄, x̄)q +∇xG(p̄, x̄)u+DQ(x̄, ȳ∗)(u),

where ȳ∗ := −G(p̄, x̄).
Condition (4.5) thus amounts to the requirement that the generalized equation (GE)

0 ∈ ∇pG(p̄, x̄)q +∇xG(p̄, x̄)u+DQ(x̄, ȳ∗)(u) (4.11)

in variable u possesses a solution for all q ∈ Rl. Further, by virtue of (2.4), condition (4.6) amounts
to the implication

q∗ = (∇pG(p̄, x̄))T v∗

0 ∈ (∇xG(p̄, x̄))T v∗ +D∗Q((x̄, ȳ∗); (u,−∇pG(p̄, x̄)q −∇xG(p̄, x̄)u))(v∗)

}
=⇒ q∗ = 0 (4.12)

and condition (4.8) amounts to a strengthened variant of (4.12), where on the right-hand side one
has q∗ = 0, u∗ = 0. In contrast to the criterion from [34, Corollary 4.61] this means that, instead
of the solutions v∗ to the standard adjoint GE

0 ∈ (∇xG(p̄, x̄))T v∗ +D∗Q(x̄, ȳ∗)(v∗) (4.13)

with the standard limiting coderivative of Q(·), we have now to consider the respective directional
adjoint GE for directions (q, u) solving (4.11). By the definition, the respective set of solutions is
not larger (typically much smaller) than the set of solutions to (4.13).

In the following example we illustrate the efficiency of our technique for the special case when
Q(x) = NΓ(x) with Γ ⊂ Rn being a convex polyhedron. Then, by virtue of (2.9), condition (4.11)
amounts to

0 ∈ ∇pG(p̄, x̄)q +∇xG(p̄, x̄)u+NKΓ(x̄,ȳ∗)(u). (4.14)

Example 5. Consider the solution map S : R ⇒ R2 of the GE

0 ∈M(p, x) =

(
x1 − p
−x2 + x2

2

)
+NΓ(x) (4.15)

with Γ = {x ∈ R2 | 1
2x1 ≤ x2 ≤ − 1

2x1} at (p̄, x̄) = (0, (0, 0)) ∈ gphS. We will now demonstrate
that by means of Corollary 4.5 we can verify the Aubin property of S around (p̄, x̄) whereas [34,
Corollary 4.60, Corollary 4.61] are not applicable.

We have ȳ∗ = (0, 0), KΓ(x̄, ȳ∗) = {u ∈ R2 | 1
2u1 ≤ u2 ≤ − 1

2u1} and therefore, concerning the
directions (q, u) verifying (4.14), one has to consider the following four situations:

(i) q ≤ 0, u1 = q, u2 = 0;
(ii) q ≤ 0, u1 = 4

3q, u2 = − 2
3q;

(iii) q ≤ 0, u1 = 4
3q, u2 = 2

3q;
(iv) q ≥ 0, u1 = u2 = 0.

We observe that (4.5) is fulfilled. Since we are only interested in nonzero directions (q, u), for our
further analysis we can restrict to the case q 6= 0.

The faces of the critical cone are exactly the cones F1 := {(0, 0)}, F2 := R+(−1, 1
2 ), F3 :=

R+(−1,− 1
2 ) and the critical cone F4 := KΓ(x̄, ȳ∗) itself.

In the case (i) one has

−∇pG(p̄, x̄)q −∇xG(p̄, x̄)u =

(
0
0

)
and, by virtue of Theorem 2.12,

NgphNΓ
((x̄, ȳ∗); ((q, 0), (0, 0))) = (F4 −F4)◦ × (F4 −F4) = {(0, 0)} × R2,
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since the only face of KΓ(x̄, ȳ∗) containing (q, 0) with q < 0 is the critical cone itself. Thus

D∗NΓ((x̄, ȳ∗); ((q, 0), (0, 0)))(v∗) = {(0, 0)}

and the directional adjoint GE attains the form(
0
0

)
=

(
v∗1
−v∗2

)
. (4.16)

In the case (ii)

−∇pG(p̄, x̄)q −∇xG(p̄, x̄)u =

(
− 1

3q
− 2

3q

)
,

NgphNΓ
((x̄, ȳ∗); ((

4

3
q,−2

3
q), (−1

3
q,−2

3
q))) = (F2 −F2)◦ × (F2 −F2),

D∗NΓ((x̄, ȳ∗); ((
4

3
q,−2

3
q), (−1

3
q,−2

3
q)))(v∗) =

{
K◦1 if −v∗ ∈ K1,

∅ otherwise,

with K1 := F2 −F2 = R(−1, 1
2 ) and the directional adjoint GE attains the form(
0
0

)
∈
(

v∗1
−v∗2

)
+ R

(
1
2
1

)
, −v∗ ∈ K1, (4.17)

which has the only solution v∗ = 0.
Similarly to the second case, in the case (iii) the directional adjoint GE attains the form(

0
0

)
∈
(

v∗1
−v∗2

)
+ R

(
1
2
−1

)
, −v∗ ∈ K2 := F3 −F3 = R

(
−1
− 1

2

)
(4.18)

and again the unique solution is v∗ = 0.
Finally, in the case (iv),

−∇pG(p̄, x̄)q −∇xG(p̄, x̄)u =

(
q
0

)
,

NgphNΓ
((x̄, ȳ∗); ((0, 0), (q, 0))) = (F1 −F1)◦ × (F1 −F1) = R2 × {(0, 0)},

D∗NΓ((x̄, ȳ∗); ((0, 0), (q, 0)))(v∗) =

{
R2 if v∗ = (0, 0),

∅ otherwise,

and the directional adjoint GE attains the form(
0
0

)
∈
(

v∗1
−v∗2

)
+ R2, v∗ = (0, 0). (4.19)

In this way we have analyzed all ”suspicious” pairs of nonzero directions (q, u) given by (4.14) and
concluded that all GEs (4.16)-(4.19) possess only the trivial solution v∗ = (0, 0). Since q∗ = −v∗1 ,
Corollary 4.5 implies that the solution map of GE (4.15) indeed has the Aubin property around
(p̄, x̄).

Now let us analyze the standard GE (4.13), which reads as(
0
0

)
∈
(

v∗1
−v∗2

)
+D∗NΓ(x̄, ȳ∗)(v∗) (4.20)
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for our example. Using the representation of the limiting normal cone NgphNΓ
at (x̄, ȳ∗) as stated

in Section 2, we obtain

Ngph N̂Γ
(x̄, ȳ∗) =

9⋃
i=1

(K◦i ×Ki)

with K3 = F4 − F1 = KΓ(x̄, ȳ∗), K4 = F4 − F2 = {v ∈ R2 | 1
2v1 + v2 ≤ 0}, K5 = F4 − F3 = {v ∈

R2 | 1
2v1− v2 ≤ 0}, K6 = F4−F4 = R2, K7 = F2−F1 = R+(−1, 1

2 ), K8 = F3−F1 = R+(−1,− 1
2 )

and K9 = F1 −F1 = {(0, 0)}.
We see that for v∗ = (−1, 2) we have −v∗ ∈ K4 and −(v∗1 ,−v∗2) = (1, 2) ∈ K◦4 ⊂ D∗NΓ(x̄, ȳ∗)(v∗),
verifying that v∗ is a nontrivial solution of the GE (4.20). Another nontrivial solution of (4.20)
is provided by v∗ = (−1,−2) ∈ −K5. This implies that we cannot apply [34, Corollary 4.60,
Corollary 4.61] to detect the Aubin property of the solution map S. 4

5. Conclusion. In both main sections of the paper (i.e., Sections 3 and 4) we use as basic
tool the directional limiting coderivatives. The purpose for their usage, however, is different.
Whereas in Section 3 they are employed in verifying the calmness of Mp̄ and in this role they
could possibly be substituted by another calmness criterion, in Section 4 they help us to capture
the behavior of M along relevant directions and in this role they cannot be substituted by any
of the currently available generalized derivatives. This ability of directional limiting coderivatives
could possibly be utilized also in analysis of other stability properties of S (than the calmness
and the Aubin property). In particular, under the assumptions of Theorem 4.4 the mapping S
has a single-valued Lipschitz localization around (p̄, x̄) whenever we ensure the single-valuedness
of S close to (p̄, x̄). This may be done, e.g., by standard monotonicity assumptions imposed on
Mp(·) but we believe that a suitable additional condition could be formulated directly in terms
of graphical derivatives and directional limiting coderivatives of M at (p̄, x̄, 0). This question
we plan to tackle in our future research. The application potential of the directional limiting
coderivative is further increased by the formula developed in Theorem 2.12, which enables us an
efficient computation of this object in the case of polyhedral constraints.
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