Divergence Free Virtual Elements for the Stokes Problem on Polygonal Meshes

 Seminar on Numerical Analysis

 Seminar on Numerical Analysis
 Virtual Element Methods (VEM)

Andreas Schafelner

Johannes Kepler University, Linz

22 January 2019

Outline

\square Continuous Problem
\square Virtual formulation
\square Approximation and convergence properties
\square Reduced spaces and reduced problem
\square Numerical example

\square
 Continuous Problem

Virtual formulation

Approximation and convergence properties

Reduced spaces and reduced problem

Numerical example

The model Stokes problem

Find (\mathbf{u}, p) such that (s.t.)

$$
\begin{array}{rr}
-\nu \Delta \mathbf{u}-\nabla p=\mathbf{f} & \text { in } \Omega, \\
\operatorname{div} \mathbf{u}=0 & \text { in } \Omega, \\
\mathbf{u}=0 & \text { on } \Gamma=\partial \Omega
\end{array}
$$

The model Stokes problem

Find $(\mathbf{u}, p) \in \mathbf{V} \times Q=\left[H_{0}^{1}(\Omega)\right]^{2} \times L_{0}^{2}(\Omega)$ s.t.

$$
\begin{aligned}
a(\mathbf{u}, \mathbf{v})+b(\mathbf{v}, p)=(\mathbf{f}, \mathbf{v}) & \forall \mathbf{v} \in \mathbf{V}, \\
b(\mathbf{u}, q)=0 & \forall q \in Q,
\end{aligned}
$$

with

$$
\begin{array}{r}
a(\mathbf{u}, \mathbf{v}):=\int_{\Omega} \nu \nabla \mathbf{u}: \nabla \mathbf{v} \mathrm{d} \Omega \\
b(\mathbf{v}, q):=\int_{\Omega} \operatorname{div} \mathbf{v} q \mathrm{~d} \Omega
\end{array}
$$

Existence and Uniqueness are well known (see [NumCM])

The model Stokes problem

Find $(\mathbf{u}, p) \in \mathbf{V} \times Q=\left[H_{0}^{1}(\Omega)\right]^{2} \times L_{0}^{2}(\Omega)$ s.t.

$$
\begin{aligned}
a(\mathbf{u}, \mathbf{v})+b(\mathbf{v}, p)=(\mathbf{f}, \mathbf{v}) & \forall \mathbf{v} \in \mathbf{V}, \\
b(\mathbf{u}, q)=0 & \forall q \in Q
\end{aligned}
$$

with

$$
\begin{array}{r}
a(\mathbf{u}, \mathbf{v}):=\int_{\Omega} \nu \nabla \mathbf{u}: \nabla \mathbf{v} \mathrm{d} \Omega \\
b(\mathbf{v}, q):=\int_{\Omega} \operatorname{div} \mathbf{v} q \mathrm{~d} \Omega
\end{array}
$$

Existence and Uniqueness are well known (see [NumCM]).

\square Continuous Problem

Virtual formulationApproximation and convergence properties
\square Reduced spaces and reduced problem

Numerical example

Preliminaries

Let $\left\{\mathcal{T}_{h}\right\}_{h}$ be a sequence of decompositions of Ω into general polygonal elements K with

$$
h_{K}:=\operatorname{diam}(K) \quad \text { and } \quad h:=\sup _{K \in \mathcal{T}_{h}} h_{K} .
$$

Assumptions on \mathcal{T}_{h}

(A1) K is star-shaped wrt a ball of radius $\geq \gamma h_{K}$,
(A2) the distance between any two vertices of K is $\geq c h_{K}$

The local virtual spaces

Let
■ $\mathbb{P}_{k}(K)$ the set of polynomials on K of degree $\leq k$
■ $\mathbb{B}_{k}(K):=\left\{v \in C^{0}(\partial K):\left.v\right|_{e} \in \mathbb{P}_{k}(e) \forall e \subset \partial K\right\}$

- $\mathcal{G}_{k}(K):=\nabla\left(\mathbb{P}_{k+1}(K)\right) \subseteq\left[\mathbb{P}_{k}(K)\right]^{2}$
- $\mathcal{G}_{k}(K)^{\perp} \subseteq\left[\mathbb{P}_{k}(K)\right]^{2}$ be the L^{2}-orth. complement to $\mathcal{G}_{k}(K)$

On each element, we define for $k \geq 2$ the local virtual spaces
$\mathbf{V}_{h}^{K}:=\left\{\mathbf{v} \in\left[H^{1}(K)\right]^{2}:\left.\mathbf{v}\right|_{\partial K} \in\left[\mathbb{B}_{k}(\partial K)\right]^{2},\left\{\begin{array}{l}-\nu \boldsymbol{\Delta} \mathbf{v}-\nabla s \in \mathcal{G}_{k-2}(K)^{\perp}, \\ \operatorname{div} \mathbf{v} \in \mathbb{P}_{k-1}(K),\end{array}\right.\right.$ for some $\left.s \in L^{2}(K)\right\}$
and

$$
Q_{h}^{K}:=\mathbb{P}_{k-1}(K)
$$

Degrees of freedom I

For $\mathbf{v} \in \mathbf{V}_{h}^{K}$ we have the linear operator $\mathbf{D}_{\mathbf{V}}$ for the local degrees of freedom (DoFs)

- $\mathbf{D}_{\mathbf{V}} \mathbf{1}$: the values of \mathbf{v} at the vertices of K
- $\mathbf{D}_{\mathbf{V}} \mathbf{2}$: the values of \mathbf{v} at $k-1$ distinct points of every edge $e \subset \partial K$
■ $\mathrm{D}_{\mathrm{V}} 3$: the moments of \mathbf{v}

$$
\int_{K} \mathbf{v} \cdot \mathbf{g}_{k-2}^{\perp} \mathrm{d} K \quad \text { for all } \mathbf{g}_{k-2}^{\perp} \in \mathcal{G}_{k-2}(K)^{\perp}
$$

- $\mathbf{D}_{\mathbf{V}} 4$: the moments up to order $k-1$ and greater than zero of $\operatorname{div} \mathbf{v}$ in K,

$$
\int_{K}(\operatorname{div} \mathbf{v}) q_{k-1} \mathrm{~d} K \quad \text { for all } q_{k-1} \in \mathbb{P}_{k-1}(K) / \mathbb{R}
$$

Degrees of freedom II

For $q \in Q_{h}^{K}$ we have the local degrees of freedom
■ $\mathbf{D}_{\mathbf{Q}}$: the moments up to order $k-1$ of q in K,

$$
\int_{K} q p_{k-1} \mathrm{~d} K \quad \text { for all } p_{k-1} \in \mathbb{P}_{k-1}(K)
$$

Proposition

The linear operators $\mathbf{D}_{\mathbf{V}}$ and $\mathbf{D}_{\mathbf{Q}}$ are a unisolvent set of DoFs for the virtual spaces \mathbf{V}_{h}^{K} and Q_{h}^{K}, respectively.

Proof.

See [1].

Degrees of freedom III

DoFs for $k=2, k=3$. We denote $\mathbf{D}_{\mathbf{V}} \mathbf{1}$ with the black dots, $\mathbf{D}_{\mathbf{V}} \mathbf{2}$ with the red squares, $\mathrm{D}_{\mathrm{V}} 3$ with the green rectangles, $\mathrm{D}_{\mathrm{V}} 4$ with the blued dots inside the elements.

The global spaces

We define the global virtual element spaces as

$$
\mathbf{V}_{h}:=\left\{\mathbf{v} \in\left[H_{0}^{1}(\Omega)\right]^{2}:\left.\mathbf{v}\right|_{K} \in \mathbf{V}_{h}^{K} \text { for all } K \in \mathcal{T}_{h}\right\}
$$

and

$$
Q_{h}:=\left\{q \in L_{0}^{2}(\Omega):\left.q\right|_{K} \in Q_{h}^{K} \text { for all } K \in \mathcal{T}_{h}\right\}
$$

Moreover, by construction

$$
\operatorname{div} \mathbf{V}_{h} \subseteq Q_{h}
$$

The discrete bilinearform $b_{h}(.,$.

We do not approximate the bilinearform b, i.e.,

$$
b\left(\mathbf{v}_{h}, q_{h}\right)=\sum_{K \in \mathcal{T}_{h}} b^{K}\left(\mathbf{v}_{h}, q_{h}\right) \quad \text { for all } \mathbf{v}_{h} \in \mathbf{V}_{h}, q_{h} \in Q_{h}
$$

The form above is computable from the degrees of freedom $\mathrm{D}_{\mathrm{V}} 1, \mathrm{D}_{\mathrm{V}} 2$ and $\mathrm{D}_{\mathrm{V}} 4$.

Some important properties I

Observation

The quantity $a^{K}\left(\mathbf{q}_{k}, \mathbf{v}\right)$ is exactly computable for all $\mathbf{q}_{k} \in\left[\mathbb{P}_{k}(K)\right]^{2}$ and for all $\mathbf{v} \in \mathbf{V}_{h}^{K}$.
However, for any $(\mathbf{v}, \mathbf{w}) \in \mathbf{V}_{h}^{K} \times \mathbf{V}_{h}^{K}, a^{K}(\mathbf{v}, \mathbf{w})$ is not computable.

We want do define a computable discrete local bilinearform $a_{h}^{K}(\cdot, \cdot): \mathbf{V}_{h}^{K} \times \mathbf{V}_{h}^{K} \rightarrow \mathbb{R}$.

Some important properties II

Properties of $a_{h}^{K}(.,$.

- \boldsymbol{k}-consistency: for all $\mathbf{q}_{k} \in\left[\mathbb{P}_{k}(K)\right]^{2}$ and $\mathbf{v}_{h} \in \mathbf{V}_{h}^{K}$

$$
a_{h}^{K}\left(\mathbf{q}_{k}, \mathbf{v}_{h}\right)=a^{K}\left(\mathbf{q}_{k}, \mathbf{v}_{h}\right)
$$

■ stability: there exist two positive constants α_{*}, α^{*}, independent of h and K, s.t., for all $\mathbf{v}_{h} \in \mathbf{V}_{h}^{K}$, it holds

$$
\alpha_{*} a^{K}\left(\mathbf{v}_{h}, \mathbf{v}_{h}\right) \leq a_{h}^{K}\left(\mathbf{v}_{h}, \mathbf{v}_{h}\right) \leq \alpha^{*} a^{K}\left(\mathbf{v}_{h}, \mathbf{v}_{h}\right)
$$

Some important properties III

Energy projection operator

For all $K \in \mathcal{T}_{h}$, we introduce the energy projection operator $\Pi_{k}^{\nabla, K}: \mathbf{V}_{h}^{K} \rightarrow\left[\mathbb{P}_{k}(K)\right]^{2}$, defined by

$$
\left\{\begin{array}{l}
a^{K}\left(\mathbf{q}_{k}, \mathbf{v}_{h}-\Pi_{k}^{\nabla, K} \mathbf{v}_{h}\right)=0 \quad \text { for all } \mathbf{q}_{k} \in\left[\mathbb{P}_{k}(K)\right]^{2} \\
P^{0, K}\left(\mathbf{v}_{h}-\Pi_{k}^{\nabla, K} \mathbf{v}_{h}\right)=\mathbf{0},
\end{array}\right.
$$

where $P^{0, K}$ is the L^{2}-projection operator onto the constant functions on K.

Some important properties IV

Stabilizing

We introduce a symmetric stabilizing bilinear form $\mathcal{S}^{K}: \mathbf{V}_{h}^{K} \times \mathbf{V}_{h}^{K} \rightarrow \mathbb{R}$, satisfying

$$
c_{*} a^{K}\left(\mathbf{v}_{h}, \mathbf{v}_{h}\right) \leq \mathcal{S}^{K}\left(\mathbf{v}_{h}, \mathbf{v}_{h}\right) \leq c^{*} a^{K}\left(\mathbf{v}_{h}, \mathbf{v}_{h}\right)
$$

A possible choice is for instance

$$
\mathcal{S}^{K}\left(\mathbf{v}_{h}, \mathbf{w}_{h}\right)=\alpha_{K} \overline{\mathbf{v}}_{h}^{\top} \overline{\mathbf{w}}_{h},
$$

with $\overline{\mathbf{v}}, \overline{\mathbf{w}} \in \mathbb{R}^{N_{K}}$ the vectors of local DoFs and α_{K} a suitably chosen constant.

The discrete bilinearform $a_{h}(.,$.

For each polygon K we set

$$
\begin{aligned}
a_{h}^{K}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right):= & a^{K}\left(\Pi_{k}^{\nabla, K} \mathbf{u}_{h}, \Pi_{k}^{\nabla, K} \mathbf{v}_{h}\right) \\
& +\mathcal{S}^{K}\left(\left(I-\Pi_{k}^{\nabla, K}\right) \mathbf{u}_{h},\left(I-\Pi_{k}^{\nabla, K}\right) \mathbf{v}_{h}\right)
\end{aligned}
$$

which is k-consistent and stable.
The global approximated bilinearform is then

$$
a_{h}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right):=\sum_{K \in \mathcal{T}_{h}} a_{h}^{K}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)
$$

Approximation of the right hand side

For $K \in \mathcal{T}_{h}$, let $\Pi_{k-2}^{0, K}:\left[L^{2}(K)\right]^{2} \rightarrow\left[\mathbb{P}_{k-2}(K)\right]^{2}$ be the L^{2}-projection operator. Then

$$
\mathbf{f}_{h}:=\Pi_{k-2}^{0, K} \mathbf{f} \quad \text { for all } K \in \mathcal{T}_{h}
$$

Then the right hand side is given by

$$
\left(\mathbf{f}_{h}, \mathbf{v}_{h}\right)=\sum_{K \in \mathcal{T}_{h}} \int_{K} \mathbf{f}_{h} \cdot \mathbf{v}_{h} \mathrm{~d} K
$$

which consists only of computable terms.

The discrete problem

Find $\left(\mathbf{u}_{h}, p_{h}\right) \in \mathbf{V}_{h} \times Q_{h}$ s.t.

$$
\begin{array}{ll}
a_{h}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)+b\left(\mathbf{v}_{h}, p_{h}\right)=\left(\mathbf{f}_{h}, \mathbf{v}_{h}\right) & \forall \mathbf{v}_{h} \in \mathbf{V}_{h}, \\
b\left(\mathbf{u}_{h}, q_{h}\right)=0 & \forall q_{h} \in Q_{h}
\end{array}
$$

Exact divergence-freeness

Introducing the kernels

$$
\begin{array}{r}
\mathbf{Z}:=\{\mathbf{v} \in \mathbf{V}: b(\mathbf{v}, q)=0 \quad \text { for all } q \in Q\}, \\
\mathbf{Z}_{h}:=\left\{\mathbf{v}_{h} \in \mathbf{V}_{h}: b\left(\mathbf{v}_{h}, q_{h}\right)=0 \quad \text { for all } q_{h} \in Q_{h}\right\},
\end{array}
$$

there holds the inclusion

$$
\mathbf{Z}_{h} \subseteq \mathbf{Z}
$$

\square Continuous Problem

\square Virtual formulation

Approximation and convergence properties

Reduced spaces and reduced problem

Numerical example

An approximation result

Proposition

Let $\mathbf{u} \in \mathbf{V} \cap\left[H^{s+1}(\Omega)\right]^{2}$ with $0 \leq s \leq k$. Under the assumptions (A1) and (A2) on the decomposition \mathcal{T}_{h}, there exist $\mathbf{u}_{I} \in \mathbf{V}_{h}$ s.t.

$$
\left\|\mathbf{u}-\mathbf{u}_{I}\right\|_{0, K}+h_{K}\left|\mathbf{u}-\mathbf{u}_{I}\right|_{1, K} \leq C h_{K}^{s+1}|\mathbf{u}|_{s+1, D(K)}
$$

where C is a constant independent of h, and $D(K)$ denotes the neighbourhood ("diamond") of K.

Proof.

See [1].

The discrete inf - sup condition

Proposition

Given the discrete spaces \mathbf{V}_{h} and Q_{h}, there exists a positive $\bar{\beta}$, independent of h, such that

$$
\sup _{0 \neq \mathbf{v}_{h} \in \mathbf{V}_{h}} \frac{b\left(\mathbf{v}_{h}, q_{h}\right)}{\left\|\mathbf{v}_{h}\right\|_{1}} \geq \bar{\beta}\left\|q_{h}\right\|_{Q} \quad \text { for all } q_{h} \in Q_{h} .
$$

Proof.

Via a Fortin operator π_{h}.

Existence

Theorem

The approximate problem has a unique solution $\left(\mathbf{u}_{h}, p_{h}\right) \in \mathbf{V}_{h} \times Q_{h}$, verifying the estimate

$$
\left\|\mathbf{u}_{h}\right\|_{1}+\left\|p_{h}\right\|_{Q} \leq C\|\mathbf{f}\|_{0}
$$

Moreover, the inf-sup condition implies

$$
\operatorname{div} \mathbf{V}_{h}=Q_{h}
$$

Convergence

An observation

If $\mathbf{u} \in \mathbf{V}$ is the velocity solution of the continuous problem, then it also solves:
Find $\mathbf{u} \in \mathbf{Z}$

$$
a(\mathbf{u}, \mathbf{v})=(\mathbf{f}, \mathbf{v}) \quad \text { for all } \mathbf{v} \in \mathbf{Z}
$$

Analogously, if $\mathbf{u}_{h} \in \mathbf{V}_{h}$ is the velocity solution of the approximate problem, then it also solves:
Find $\mathbf{u}_{h} \in \mathbf{Z}_{h}$

$$
a_{h}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)=\left(\mathbf{f}_{h}, \mathbf{v}_{h}\right) \quad \text { for all } \mathbf{v}_{h} \in \mathbf{Z}_{h} .
$$

Convergence

Theorem

Let $\mathbf{u} \in \mathbf{Z}$ be the solution of the problem on the kernel of b(.,.) and $\mathbf{u}_{h} \in \mathbf{Z}_{h}$ be the solution of the problem on the kernel of $b_{h}(.,$.$) . Then it holds:$

$$
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{1} \leq C h^{k}\left(|\mathbf{f}|_{k-1}+|\mathbf{u}|_{k+1}\right) .
$$

Theorem

Let $(\mathbf{u}, p) \in \mathbf{V} \times Q$ be the solution of the continuous problem and $\left(\mathbf{u}_{h}, p_{h}\right) \in \mathbf{V}_{h} \times Q_{h}$ be the solution of the approximate problem. Then it holds:

$$
\left\|p-p_{h}\right\|_{Q} \leq C h^{k}\left(|\mathbf{f}|_{k-1}+|\mathbf{u}|_{k+1}+|p|_{k}\right) .
$$

\square Continuous Problem

\square Virtual formulation

\square Approximation and convergence properties

Reduced spaces and reduced problemNumerical example

Reduced spaces

For $k \geq 2$, we define the local VEM spaces
$\widehat{\mathbf{V}}_{h}^{K}:=\left\{\mathbf{v} \in\left[H^{1}(K)\right]^{2}:\left.\mathbf{v}\right|_{\partial K} \in\left[\mathbb{B}_{k}(\partial K)\right]^{2},\left\{\begin{array}{l}-\nu \boldsymbol{\Delta} \mathbf{v}-\nabla s \in \mathcal{G}_{k-2}(K)^{\perp}, \\ \operatorname{div} \mathbf{v} \in \mathbb{P}_{0}(K),\end{array}\right.\right.$ for some $\left.s \in H^{1}(K)\right\}$
and

$$
\widehat{Q}_{h}^{K}:=\mathbb{P}_{0}(K)
$$

The global spaces are then

$$
\widehat{\mathbf{V}}_{h}:=\left\{\mathbf{v} \in\left[H_{0}^{1}(\Omega)\right]^{2}:\left.\mathbf{v}\right|_{K} \in \widehat{\mathbf{V}}_{h}^{K} \text { for all } K \in \mathcal{T}_{h}\right\}
$$

and

$$
\widehat{Q}_{h}:=\left\{q \in L_{0}^{2}(\Omega):\left.q\right|_{K} \in \widehat{Q}_{h}^{K} \text { for all } K \in \mathcal{T}_{h}\right\}
$$

A reduced set of DoFs

For $\mathbf{v} \in \widehat{\mathbf{V}}_{h}^{K}$ we have the linear operator $\widehat{\mathbf{D}}_{\mathbf{V}}$ for the local degrees of freedom

- $\widehat{\mathbf{D}}_{\mathbf{V}} \mathbf{1}$: the values of \mathbf{v} at the vertices of K
- $\widehat{\mathbf{D}}_{\mathbf{V}} \mathbf{2}$: the values of \mathbf{v} at $k-1$ distinct points of every edge $e \subset \partial K$
- $\widehat{\mathbf{D}}_{\mathbf{V}} \mathbf{3}$: the moments of \mathbf{v}

$$
\int_{K} \mathbf{v} \cdot \mathbf{g}_{k-2}^{\perp} \mathrm{d} K \quad \text { for all } \mathbf{g}_{k-2}^{\perp} \in \mathcal{G}_{k-2}(K)^{\perp}
$$

For $q \in \widehat{Q}_{h}^{K}$ we have the local degrees of freedom

- $\widehat{\mathbf{D}}_{\mathbf{Q}}$: the moment of q in K,

$$
\int_{K} q \mathrm{~d} K
$$

A reduced set of DoFs II

DoFs for $k=2, k=3$. We denote $\widehat{\mathbf{D}}_{\mathbf{V}} \mathbf{1}$ with the black dots, $\widehat{\mathbf{D}}_{\mathbf{V}} \mathbf{2}$ with the red squares, $\widehat{\mathbf{D}}_{\mathbf{V}} \mathbf{3}$ with the green rectangles.

The reduced discrete problem

Find $\left(\widehat{\mathbf{u}}_{h}, p_{h}\right) \in \widehat{\mathbf{V}}_{h} \times \widehat{Q}_{h}$ s.t.

$$
\begin{array}{ll}
a_{h}\left(\widehat{\mathbf{u}}_{h}, \widehat{\mathbf{v}}_{h}\right)+b\left(\widehat{\mathbf{v}}_{h}, \widehat{p}_{h}\right)=\left(\mathbf{f}_{h}, \widehat{\mathbf{v}}_{h}\right) & \forall \widehat{\mathbf{v}}_{h} \in \widehat{\mathbf{V}}_{h}, \\
b\left(\widehat{\mathbf{u}}_{h}, \widehat{q}_{h}\right)=0 & \forall \widehat{q}_{h} \in \widehat{Q}_{h},
\end{array}
$$

All terms involved are computable wrt to the reduced basis!
Moreover, there exists a $\widehat{\beta}>0$ such that

$$
\sup _{0 \neq \widehat{\mathbf{v}}_{h} \in \widehat{\mathbf{V}}_{h}} \frac{b\left(\widehat{\mathbf{v}}_{h}, \widehat{q}_{h}\right)}{\left\|\widehat{\mathbf{v}}_{h}\right\|_{1}} \geq \widehat{\beta}\left\|\widehat{q}_{h}\right\|_{Q} \quad \text { for all } \widehat{q}_{h} \in \widehat{Q}_{h}
$$

Proposition

Let $\left(\mathbf{u}_{h}, p_{h}\right)$ be the solution of the full scheme and $\left(\widehat{\mathbf{u}}_{h}, \widehat{p}_{h}\right)$ be the solution of the reduced scheme. Then

$$
\widehat{\mathbf{u}}_{h}=\mathbf{u} \quad \text { and }\left.\quad \widehat{p}_{h}\right|_{K}=\Pi_{0}^{0, K} p_{h} \quad \text { for all } K \in \mathcal{T}_{h} .
$$

Proof.

See [1].

		$k=2$	$k=3$	$k=4$	$k=5$
\mathcal{V}_{h}	$h=1 / 4$	34.408%	43.715%	48.484%	51.494%
	$h=1 / 8$	30.260%	39.506%	44.547%	47.863%
	$h=1 / 16$	28.460%	37.624%	42.753%	46.185%
\mathcal{T}_{h}	$h=1 / 32$	27.634%	36.749%	41.911%	45.392%
	$h=1 / 2$	49.230%	56.737%	59.751%	61.369%
	$h=1 / 4$	47.761%	55.427%	58.616%	60.377%
	$h=1 / 8$	45.937%	53.889%	57.314%	59.253%
\mathcal{Q}_{h}	$h=1 / 16$	45.171%	53.243%	56.767%	58.780%
	$h=1 / 4$	43.835%	52.287%	56.031%	58.181%
	$h=1 / 16$	39.875%	48.706%	52.892%	55.411%
	$h=1 / 32$	37.066%	47.041%	51.417%	54.098%
			37.202%	46.238%	50.701%
					53.458%

Percentage saving of DoFs in the reduced problem with respect the original one [1].

\square Continuous Problem

\square Virtual formulation
\square Approximation and convergence properties
\square Reduced spaces and reduced problem
\square Numerical example

Error computation I

We do not know the approximate solution \mathbf{u}_{h} point-wise inside the elements. Hence we need a suitable (computable) polynomial projection of the VEM solution \mathbf{u}_{h}.

tensor-valued L^{2}-projection

For $K \in \mathcal{T}_{h}$ and $k \geq 2$, we introduce the L^{2}-projection operator $\boldsymbol{\Pi}_{k-1}^{0, K}:\left[L^{2}(K)\right]^{2 \times 2} \rightarrow\left[\mathbb{P}_{k-1}(K)\right]^{2 \times 2}$, defined by

$$
\int_{K}\left(\mathbf{A}-\boldsymbol{\Pi}_{k-1}^{0, K} \mathbf{A}\right): \mathbf{P}_{k-1} \mathrm{~d} x=0
$$

for all $\mathbf{A} \in\left[L^{2}(K)\right]^{2 \times 2}$ and $\mathbf{P}_{k-1} \in\left[\mathbb{P}_{k-1}(K)\right]^{2 \times 2}$.

Error computation II

Error measure

$$
\begin{gathered}
\delta(\mathbf{u}):=\left(\sum_{K \in \mathcal{T}_{h}}\left\|\nabla \mathbf{u}-\boldsymbol{\Pi}_{k-1}^{0, K}\left(\nabla \mathbf{u}_{h}\right)\right\|^{2}\right)^{1 / 2} \\
\delta(p):=\left\|p-p_{h}\right\|_{0}
\end{gathered}
$$

Four meshes

Example of polygonal meshes: $\mathcal{V}_{1 / 32}, \mathcal{T}_{1 / 16}, \mathcal{Q}_{1 / 32}, \mathcal{W}_{1 / 20}$.

Example 1

We consider the unit square $\Omega=[0,1]^{2}$. The functions

$$
\mathbf{u}(x, y)=\binom{-\frac{1}{2} \cos ^{2}(x) \cos (y) \sin (y)}{\frac{1}{2} \cos ^{2}(y) \cos (x) \sin (x)} \quad p(x, y)=\sin (x)-\sin (y)
$$

are chosen as exact solutions, with the load vector \mathbf{f} computed accordingly. Furthermore, we have homogeneous boundary conditions on the whole $\partial \Omega$.

Behaviour of $\delta(\mathbf{u})$ and $\delta(p)$ for the sequence of meshes \mathcal{V}_{h} with $k=2$.

Behaviour of $\delta(\mathbf{u})$ and $\delta(p)$ for the sequence of meshes \mathcal{V}_{h} with $k=3$.

Behaviour of $\delta(\mathbf{u})$ and $\delta(p)$ for the sequence of meshes \mathcal{T}_{h} with $k=2$.

Behaviour of $\delta(\mathbf{u})$ and $\delta(p)$ for the sequence of meshes \mathcal{T}_{h} with $k=3$.

Behaviour of $\delta(\mathbf{u})$ and $\delta(p)$ for the sequence of meshes \mathcal{Q}_{h} with $k=2$.

Behaviour of $\delta(\mathbf{u})$ and $\delta(p)$ for the sequence of meshes \mathcal{Q}_{h} with $k=3$.

Behaviour of $\delta(\mathbf{u})$ and $\delta(p)$ for the sequence of meshes \mathcal{W}_{h} with $k=2$.

Behaviour of $\delta(\mathbf{u})$ and $\delta(p)$ for the sequence of meshes \mathcal{W}_{h} with $k=3$.

Example 2

Numerical check of equality

We consider the unit square $\Omega=[0,1]^{2}$. The polynomial functions

$$
\mathbf{u}(x, y)=\binom{y^{4}+1}{x^{4}+2} \quad p(x, y)=x^{3}-y^{3}
$$

are chosen as exact solutions, with the load vector \mathbf{f} computed accordingly.

Example 2

Numerical check of equality

Discrepancy measure

$$
\begin{gathered}
\varepsilon(\mathbf{u}):=\left(\sum_{K \in \mathcal{T}_{h}}\left\|\boldsymbol{\Pi}_{k-1}^{0, K} \nabla\left(\mathbf{u}_{h}-\widehat{\mathbf{u}}_{h}\right)\right\|^{2}\right)^{1 / 2} \\
\varepsilon(p):=\left(\sum_{K \in \mathcal{T}_{h}}\left\|\Pi_{0}^{0, K} p_{h}-\widehat{p}_{h}\right\|^{2}\right)^{1 / 2}
\end{gathered}
$$

Example 2

Numerical check of equality

$k=2$									
	$\varepsilon(\mathbf{u})$						$\varepsilon(p)$	$\varepsilon(\mathbf{u})$	$\varepsilon(p)$
\mathcal{V}_{h}	$h=1 / 4$	$1.8366063 \mathrm{e}-13$	$1.2397027 \mathrm{e}-13$	$9.9584405 \mathrm{e}-12$	$9.5750683 \mathrm{e}-13$				
	$h=1 / 16$	$5.6291757 \mathrm{e}-13$	$1.7037760 \mathrm{e}-13$	$1.0257081 \mathrm{e}-11$	$6.4888535 \mathrm{e}-13$				
	$h=1 / 32$	$3.5162644 \mathrm{e}-12$	$5.2896229 \mathrm{e}-13$	$2.7289064 \mathrm{e}-11$	$9.7059278 \mathrm{e}-12$				
\mathcal{T}_{h}	$h=1 / 2$	$1.6148091 \mathrm{e}-13$	$2.7158830 \mathrm{e}-14$	$5.3139688 \mathrm{e}-12$	$9.5716694 \mathrm{e}-13$				
	$h=1 / 4$	$4.1349069 \mathrm{e}-13$	$6.9691214 \mathrm{e}-14$	$9.1204063 \mathrm{e}-11$	$4.8537564 \mathrm{e}-13$				
	$h=1 / 8$	$1.3353440 \mathrm{e}-12$	$1.0109968 \mathrm{e}-13$	$2.7989324 \mathrm{e}-11$	$8.0028046 \mathrm{e}-12$				
	$h=1 / 16$	$3.1038037 \mathrm{e}-12$	$2.3636051 \mathrm{e}-13$	$2.4258164 \mathrm{e}-11$	$1.4188633 \mathrm{e}-11$				
\mathcal{Q}_{h}	$h=1 / 4$	$1.6747387 \mathrm{e}-13$	$8.0270859 \mathrm{e}-14$	$8.0510701 \mathrm{e}-12$	$2.1761282 \mathrm{e}-13$				
	$h=1 / 8$	$4.3127288 \mathrm{e}-13$	$1.7217954 \mathrm{e}-13$	$2.9673107 \mathrm{e}-12$	$1.5735525 \mathrm{e}-13$				
	$h=1 / 16$	$1.0294053 \mathrm{e}-12$	$2.2290502 \mathrm{e}-13$	$4.2024937 \mathrm{e}-12$	$7.9220732 \mathrm{e}-13$				
	$h=1 / 32$	$2.4711285 \mathrm{e}-12$	$2.4074145 \mathrm{e}-13$	$7.6167571 \mathrm{e}-12$	$5.9492426 \mathrm{e}-13$				
\mathcal{W}_{h}	$h=4 / 10$	$9.1587957 \mathrm{e}-13$	$7.5286364 \mathrm{e}-14$	$1.6072996 \mathrm{e}-11$	$1.0673512 \mathrm{e}-13$				
	$h=2 / 10$	$1.3107628 \mathrm{e}-12$	$1.1154735 \mathrm{e}-13$	$1.2916868 \mathrm{e}-11$	$2.8184370 \mathrm{e}-13$				
	$h=1 / 10$	$4.0885427 \mathrm{e}-12$	$3.8760675 \mathrm{e}-13$	$5.2532025 \mathrm{e}-11$	$7.5670394 \mathrm{e}-13$				
	$h=1 / 20$	$7.2877771 \mathrm{e}-12$	$6.6196792 \mathrm{e}-13$	$8.4382876 \mathrm{e}-11$	$1.6915676 \mathrm{e}-12$				

$\varepsilon(\mathbf{u})$ and $\varepsilon(p)$ for the meshes $\mathcal{V}_{h}, \mathcal{T}_{h}, \mathcal{Q}_{h}, \mathcal{W}_{h}$ with $k=2,3$.

[1] Beirão da Veiga, L., Lovadina, C. and Vacca, G. Divergence free virtual elements for the stokes problem on polygonal meshes. ESAIM: M2AN 51, 2 (2017), 509-535.

Thank you!

