Exercise sheet 2

1. (Lax-Milgram) Let X be a separable and reflexive Banach space. Let $A: X \rightarrow X^{*}$ be a linear, continuous and coercive operator, i.e., it holds

$$
\begin{array}{ll}
\langle A u, v\rangle_{X} \leq C\|u\|_{X}\|v\|_{X} & \forall u, v \in X, \\
\langle A u, u\rangle_{X} \geq C\|u\|_{X}^{2} & \forall u \in X .
\end{array}
$$

Prove that for every $b \in X^{*}$ there exists a unique solution $u \in X$ to the operator equation $A u=b$ by using the Browder-Minty theorem.
2. (Quasilinear PDE on intersection space) Let $s \geq 0, p>1, f \in X^{*}$ for $X=$ $W_{0}^{1, p}(\Omega) \cap L^{2}(\Omega)$. Show that the quasilinear $\mathrm{PDE}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+s u=f$ with homogeneous Dirichlet boundary has a unique solution on X.
3. (Auxiliary inequality) Let $p>1$. Show that there are constant $c(p), C(p)$ depending only on p such that it holds

$$
c(p)(|\xi|+|\eta|)^{p-2} \leq \int_{0}^{1}|\xi+\tau(\eta-\xi)|^{p-2} \mathrm{~d} \tau \leq C(p)(|\xi|+|\eta|)^{p-2}
$$

for every $\xi, \eta \in \mathbb{R}^{n}$ fulfilling $|\xi|+|\eta|>0$.
4. (Fundamental theorem of calculus for Sobolev functions)
(a) Let $g \in L^{1}(a, b)$ and $C \in \mathbb{R}$. Consider the function f defined by

$$
f(t)=C+\int_{a}^{t} g(s) \mathrm{d} s
$$

Then f is continuous on $[a, b]$ and $f \in W^{1,1}(a, b)$ with $f^{\prime}=g$ in weak sense.
(b) Any function $f \in W^{1,1}(a, b)$ is equal a.e. to a continuous function \tilde{f} on $[a, b]$ and we have for any $x, y \in[a, b]$

$$
\tilde{f}(y)=\tilde{f}(x)+\int_{x}^{y} f^{\prime}(s) \mathrm{d} s ;
$$

in other words, we have for a.a. $x, y \in[a, b]$

$$
f(y)=f(x)+\int_{x}^{y} f^{\prime}(s) \mathrm{d} s .
$$

Hint: You may use that $f^{\prime}=0$ in weak sense implies $f=c$ a.e. for some constant c.

