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Programmbeschreibung NAOMI 2D und Algebraic Multigrid. September 1997

From 1998 to 2008 technical reports were published by SFB013. Please see
http://www.sfb013.uni-linz.ac.at/index.php?id=reports

From 2004 on reports were also published by RICAM. Please see
http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see
http://www.numa.uni-linz.ac.at/Publications/List/

http://www.sfb013.uni-linz.ac.at/index.php?id=reports
http://www.ricam.oeaw.ac.at/publications/list/
http://www.numa.uni-linz.ac.at/Publications/List/


FETI solvers for non-standard finite element
equations based on boundary integral operators

Clemens Hofreither, Ulrich Langer, and Clemens Pechstein

1 Introduction

This paper is devoted to the construction and analysis of Finite Element Tearing and
Interconnecting (FETI) methods for solving large-scale systems of linear algebraic
equations arising from a new non-standard finite element discretization of the dif-
fusion equation. This discretization technique uses PDE-harmonic trial functions in
every element of a polyhedral mesh. The generation of the local stiffness matrices
is utilized by means of boundary element techniques. For these reasons, this non-
standard finite element method can also be called BEM-based FEM or Trefftz-FEM.

The FETI method was introduced by Farhat and Roux in [1] and has been gen-
eralized and analyzed by many people, see, e.g., [11] and [8] for the corresponding
references. The Boundary Element Tearing and Interconnecting (BETI) method was
later introduced by Langer and Steinbach [6] as the boundary element counterpart
of the FETI method. The analysis of the convergence of the BETI method is heavily
based on the spectral equivalences between FEM- and BEM-approximated Steklov-
Poincaré operators. Similar techniques are used for the analysis of the BEM-based
FETI methods considered in this paper. Due to space constraints, this analysis is
however postponed to a forthcoming article. In the present work, we derive the
solver, state the convergence results without proof, and present numerical results.

2 A skeletal variational formulation

Let Ω ⊂ Rd , d = 2 or 3, be a bounded Lipschitz domain, and let us consider the
following diffusion problem in the standard weak form: find u ∈H1(Ω) such that u
matches the given Dirichlet data gD on ΓD and satisfies the variational equation∫

Ω

α∇u ·∇vdx=
∫

Ω

f vdx+
∫

ΓN

gNvds ∀v∈H1
D(Ω) = {v∈H1(Ω) : v|ΓD = 0} (1)
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2 Clemens Hofreither, Ulrich Langer, and Clemens Pechstein

where α is the uniformly positive and bounded diffusion coefficient, f is a given
forcing term, ΓD ⊆ ∂Ω is the Dirichlet boundary with positive surface measure,
ΓN = ∂Ω \ΓD is the Neumann boundary with prescribed conormal derivative gN .

Consider a decomposition T of the domain Ω into polytopal elements T ∈ T .
In contrast to a standard FEM method, we allow the mesh to consist of a mixture of
rather general polygons (in 2d) or polyhedra (in 3d). We now require that the coeffi-
cient function α is piecewise constant with respect to T , i.e., α|T (x)≡αT ∀T ∈T .

On every element T , we introduce the local harmonic extension operator HT :
H1/2(∂T ) → H1(T ) which maps some gT ∈ H1/2(∂T ) to the unique weak so-
lution uT ∈ H1(T ) of the local PDE −div(αT ∇uT ) = 0 with Dirichlet boundary
condition uT |∂T = gT . Furthermore, we define the local Steklov-Poincaré operator
ST : H1/2(∂T )→H−1/2(∂T ) by ST uT = γ1HT uT , where γ1 is the conormal deriva-
tive operator which takes the form γ1 = n ·α∇ for sufficiently regular arguments.

If we introduce the skeleton ΓS :=
⋃

T∈T ∂T and denote by H1/2(ΓS) the trace
space of H1(Ω)-functions onto the skeleton, we can formulate the skeletal varia-
tional problem: find u ∈ H1/2(ΓS) with u|ΓD = gD such that

a(u,v) = 〈F, v〉 ∀v ∈WD = {v ∈W = H1/2(ΓS) : v|ΓD = 0}, (2)

where the bilinear from a(u,v) and the linear form 〈F, v〉 are defined by a(u,v) =

∑T∈T 〈ST u|∂T , v|∂T 〉 and 〈F, v〉 = ∑T∈T

[∫
T f HT (v|∂T )dx+

∫
∂T∩ΓN

gNvds
]
, re-

spectively. It is easy to see that the skeletal variational formulation (2) is equivalent
to the standard variational formulation (1) in the sense that the solution of the former
is the skeletal trace of the solution of the latter [3].

3 Approximation of the Steklov-Poincaré operator

It is well-known [10] that the Steklov-Poincaré operator ST can be expressed as

ST = αT (V−1
T ( 1

2 I +KT )) = αT (DT +( 1
2 I +K′T )V

−1
T ( 1

2 I +KT ))

in terms of the boundary integral operators defined on every element boundary ∂T ,

VT : H−1/2(∂T )→ H1/2(∂T ), KT : H1/2(∂T )→ H1/2(∂T ),

K′T : H−1/2(∂T )→ H−1/2(∂T ), DT : H1/2(∂T )→ H−1/2(∂T ),

called, in turn, the single layer potential, double layer potential, adjoint double layer
potential, and hypersingular operators. They are defined by means of the fundamen-
tal solution of the Laplace equation.

We construct a computable approximation as follows. We assume that each el-
ement boundary ∂T has a shape-regular mesh FT which consists of line segments
in R2 and of triangles in R3, and that these local meshes are matching across ele-
ments. On this mesh, we construct a space Z h

T of piecewise constant functions and
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define, given u ∈ H1/2(∂T ), the discrete variable wh
T ∈Z h

T by solving the discrete
variational problem 〈VT wh

T , zh
T 〉= 〈( 1

2 I +KT )u, zh
T 〉 for all zh

T ∈Z h
T . A computable

approximation to ST is then given by S̃T u := αT (DT u+( 1
2 I+K′T )w

h
T ). The approxi-

mation S̃T remains self-adjoint and its kernel is given by the constant functions, just
as for ST . Furthermore, it satisfies the spectral equivalence

c̃T 〈ST v, v〉 ≤ 〈S̃T v, v〉 ≤ 〈ST v, v〉 ∀v ∈ H1/2(∂T ) (3)

with c̃T ∈ (0, 1
4 ]. Replacing, in (2), ST by its approximations S̃T , we obtain the inex-

act skeletal variational formulation: find u ∈ H1/2(ΓS) with u|ΓD = gD such that

ã(u,v) := ∑
T∈T
〈S̃T u|∂T , v|∂T 〉= 〈F, v〉 ∀v ∈WD.

The positive constant c̃T in (3) depends on the geometry of the element T . For robust
error estimates, it is necessary to bound c̃T from below uniformly for all elements.
Recently, explicit bounds for these constants have been obtained, starting with a
paper by Pechstein [7] which relied on the Jones parameter and a constant in an
isoperimetric inequality. These results were employed in the rigorous a priori error
analysis of the BEM-based FEM [3, 2] and have later been simplified in [4].

Theorem 1 ([4]). Let Ω ⊂ R3. Assume that there exists a shape-regular simplicial
mesh Ξ(Ω ′) of an open, bounded superset Ω ′ ⊃Ω of Ω such that each element T ∈
T is a union of simplices from Ξ(Ω ′), and the number of simplices per element T
is uniformly bounded. Furthermore, assume that the boundary meshes FT , T ∈T ,
are shape-regular.

Then, the contraction constants c̃T , T ∈ T , are uniformly bounded away from 0
in terms of the mesh regularity parameters.

4 Discretization

By assumption, F :=
⋃

T∈T FT describes a shape-regular triangulation of the
skeleton ΓS. On this mesh, we construct the discrete trial space W h ⊂ H1/2(ΓS)
of piecewise linear, continuous functions on the skeleton and set W h

D := W h∩WD.
After this discretization, we aim to find uh ∈W h with uh|ΓD = gD such that

ã(uh,vh) = 〈F, vh〉 ∀vh ∈W h
D . (4)

Rigorous error estimates of optimal order for this discretized variational problem
can be found in [3, 2]. Equivalently, (4) can be written as an operator equation

Auh = F (5)
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with A : W h→ (W h
D )∗. The associated stiffness matrix in the canonical nodal basis

shares many properties with the stiffness matrix obtained from a standard finite
element method like sparsity, symmetry and positive definiteness.

5 A FETI solver

In the following, we derive a solution method for (5) based on the ideas of the FETI
substructuring approach, originally proposed by Farhat and Roux [1]. Our derivation
closely follows that of the classical FETI method. Thus, we refer to the monographs
[11] and [8] and the references therein for further details and proofs.

Fig. 1 Sketch of domain decomposition approach in 2D for a rectangular domain with N = 2
subdomains. Left: FETI substructuring. Right: FETI-like substructuring for the BEM-based FEM.

We decompose Ω into non-overlapping subdomains (Ωi)
N
i=1 in agreement with

the polyhedral mesh T , that is, Ω i =
⋃

T∈Ti
T with an according decomposition

(Ti)
N
i=1. We set Hi := diamΩi and H := maxN

i=1 Hi. Every subdomain Ωi has an as-
sociated skeleton

⋃
T∈Ti

∂T and discrete skeletal trial spaces W h(Ωi) and W h
D (Ωi),

constructed as in Section 4. In the following, we assume that the problem has been
homogenized with respect to the given Dirichlet data gD, such that uh ∈W h

D .
Both the operator A and the functional F in (5) can be written as a sum of local

contributions Ai : W h(Ωi)→W h(Ωi)
∗ and fi ∈W h(Ωi)

∗ such that ∑
N
i=1 Ai(u|Ωi) =

∑
N
i=1 fi, where here and in the sequel we drop the superscript h since all functions are

discrete from now on. Indeed, all relevant functions live in spaces of piecewise lin-
ear functions which have natural nodal bases. Therefore, we will not distinguish in
the following between functions and the coefficient vectors representing them with
respect to the nodal basis, nor between operators and their matrix representations.

We introduce the Schur complement S̃i = Ai,Γ Γ −Ai,Γ IA−1
i,IIAi,IΓ of the subdo-

main stiffness matrix Ai. The blocks Ai,Γ Γ ,Ai,Γ I ,Ai,IΓ ,Ai,II are chosen such that the
subscripts Γ and I correspond to the boundary and inner degrees of freedom, i.e.,

Aiw =

[
Ai,Γ Γ Ai,Γ I
Ai,IΓ Ai,II

][
wΓ

wI

]
.

Eliminating the interior unknowns in (5) yields the equivalent minimization problem
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u = argminv∈W h
D (Γ H

S )

1
2

N

∑
i=1
〈S̃iv|∂Ωi , v|∂Ωi〉−

N

∑
i=1
〈gi, v|∂Ωi〉, (6)

where Γ H
S =

⋃N
i=1 ∂Ωi is the coarse skeleton, W h

D (Γ H
S ) is the trace space of discrete

functions W h
D (Ω) onto Γ H

S , and gi is a suitably adjusted forcing term.
Let W h(∂Ωi) := {v|∂Ωi : v∈W h(Ωi)} denote a space of discrete boundary func-

tions. We then introduce the broken space Y := ∏
N
i=1 Yi with Yi := {v ∈W h(∂Ωi) :

v|ΓD = 0}. In order to enforce continuity of the functions in Y , we introduce the
jump operator B : Y → RNΛ , where NΛ ∈ N is the total number of constraints. Here
we assume fully redundant constraints, i.e., for every node on a subdomain inter-
face, constraints corresponding to all neighboring subdomains are introduced. This
choice implies that B is not surjective, and we define the space of Lagrange multi-
pliers as the range Λ := RangeB⊆ RNΛ and consider B as a mapping Y →Λ .

Using the jump operator, we rewrite (6) as u = argminy∈kerB
1
2 ∑

N
i=1〈S̃iyi, yi〉 −

∑
N
i=1〈gi, yi〉. Introducing Lagrange multipliers to enforce the constraint By = 0, we

obtain the saddle point formulation[
S̃ B>

B 0

][
u
λ

]
=

[
g
0

]
, (7)

for u ∈ Y and λ ∈ Λ , with the block matrices and vectors S̃ = diag(S̃1, . . . , S̃N),
B = (B1, . . . ,BN), u = (u1, . . . ,uN)

>, g = (g1, . . . ,gN)
>. From (7), we see that the

local skeletal functions ui satisfy the relationship

S̃iui = gi−B>i λ . (8)

For a non-floating domain Ωi, that is, one that shares a part of the Dirichlet bound-
ary such that ∂Ωi∩ΓD 6= /0, S̃i is positive definite and thus invertible. For a floating
domain Ωi, the kernel of S̃i consists only of the constant functions, and we parame-
terize it by the operator Ri :R→ ker S̃i⊂Yi which maps a scalar to the corresponding
constant function. Under the condition that the right-hand side is orthogonal to the
kernel, i.e.,

〈gi−B>i λ , Riζ 〉= 0 ∀ζ ∈ R, (9)

the local problem (8) is solvable and we have ui = S̃†
i (gi−B>i λ )+Riξi with some

ξi ∈ R. Here, S̃†
i denotes a pseudo-inverse of S̃i. For non-floating domains Ωi, we

set S̃†
i = S̃−1

i .
We set Z := ∏

N
i=1Rdim(ker S̃i) and introduce the operator R : Z→Y by (Rξ )|Ωi :=

Riξi for floating Ωi and (Rξ )|Ωi := 0 for non-floating Ωi. The local solutions u can
then be expressed by

u = S̃†(g−B>λ )+Rξ (10)

under the compatibility condition R>B>λ = R>g derived from (9). Inserting (10)
into the second line of (7) yields BS̃†g−BS̃†B>λ +BRξ = 0, and together with the
compatibility condition and using the notations F = BS̃†B> and G = BR, we obtain
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the dual saddle point problem[
F −G

G> 0

][
λ

ξ

]
=

[
BS̃†g
R>g

]
. (11)

With a self-adjoint operator Q : Λ → Λ which is assumed to be positive definite
on the range of G and which will be specified later, we define the projector P =
I−QG(G>QG)−1G> from Λ onto the subspace Λ0 := kerG> ⊂ Λ of admissible
increments. The choice λg := QG(G>QG)−1R>g ∈ Λ ensures that G>λg = R>g,
and thus, with λ = λ0 +λg, we can homogenize (11) such that we only search for a
λ0 ∈Λ0 with

Fλ0−Gξ = BS̃†g−Fλg. (12)

Applying the projector P> to this equation and noting that P>G = 0, we obtain the
following formulation of the dual problem: find λ0 ∈Λ0 such that

P>Fλ0 = P>(BS̃†g−Fλg) = P>BS̃†(g−B>λg). (13)

It can be shown that P>F is self-adjoint and positive definite on Λ0. Thus, the
problem (13) has a unique solution which may be computed by CG iteration in
the subspace Λ0. Once λ = λ0 + λg has been computed, we see that applying
(G>QG)−1G>Q to (12) yields ξ = (G>QG)−1G>QBS̃†(B>λ −g). The unknowns
ui may then be obtained by solving the local problems (10), and the unknowns in
the interior of each Ωi may be recovered by solving local Dirichlet problems.

Preconditioners for FETI are typically constructed in the form PM−1 with a suit-
able operator M−1 : Λ → Λ . The FETI Dirichlet preconditioner adapted to our set-
ting, is given by the choice M−1 = BS̃B> and works well for constant or mildly
varying coefficient α . In this case, the choice Q = I works satisfactorily.

To deal with coefficient jumps, we need to employ a scaled or weighted jump
operator as introduced in [9] and analyzed in [5]. We restrict ourselves to the case
of subdomain-wise constant coefficient α , i.e., α(x) = αi for x ∈Ωi.

Let xh ∈ ∂Ωi refer to a boundary node. We introduce weighted counting functions
δ j via piecewise linear interpolation on the facets of the coarse skeleton Γ H

S of the
nodal values defined by δ j(xh) = α j/(∑k∈{1,...,N}:xh∈∂Ωk

αk) for xh ∈ ∂Ω j and 0
otherwise, j = 1, . . . ,N. We introduce diagonal scaling matrices Di : Λ → Λ , i =
1, . . . ,N, operating on the space of Lagrange multipliers. Consider two neighboring
domains Ωi and Ω j sharing a node xh ∈ ∂Ωi∩∂Ω j. Let k ∈ {1, . . . ,NΛ} denote the
index of the Lagrange multiplier associated with this node and pair of subdomains.
Then, the k-th diagonal entry of Di is set to δ j(xh), and the k-th diagonal entry of D j
to δi(xh). Diagonal entries of Di not associated with a node on ∂Ωi are set to 0.

The weighted jump operator BD :Y→Λ is now given by BD = [D1B1, . . . ,DNBN ],

and the weighted Dirichlet preconditioner by M−1
D = BDS̃B>D . In this case, a possi-

ble choice for Q is simply Q = M−1
D . Alternatively, Q can be replaced by a suitable

diagonal matrix as described in [5].



FETI solvers for BEM-based FEM 7

6 Convergence Analysis

The convergence analysis proceeds by the idea of spectral equivalences between the
BEM-based FEM Schur complements S̃i and the Schur complements which occur
in a standard one-level FETI method, allowing us to transfer the known condition
estimates from the FETI literature to our case. This is similar to the approach used in
the analysis of the BETI method [6]. For space reason, we cannot give this analysis
here, and it must be postponed to a forthcoming paper. Here we only state the main
results. Under standard assumptions, we can prove the condition number estimate

κ(P>F |Λ0)≤C(α/α)maxi=1,...,N(Hi/hi)

for the non-preconditioned case, where α = maxx∈Ω α(x), α = minx∈Ω α(x), and
the constant C depends only on mesh regularity parameters. For the preconditioned
case, with the choice Q = M−1

D , we have the condition number estimate

κ(PM−1
D P>F |Λ0)≤C (1+ log(maxi=1,...,N(Hi/hi)))

2.

7 Numerical experiments

We solve the pure Dirichlet boundary value problem −∆u = 0 in Ω and u(x) =
−(2π)−1 log |x− x?| on ∂Ω . The 2d domain Ω (Figure 2, left) is discretized by an
irregular polygonal mesh. The source point x? = (−1,1) lies outside of Ω .

Fig. 2 Left: Ω partioned into N = 400 subdomains. Right: Zoom into the polygonal mesh.

The polygonal mesh T is constructed by applying the graph partitioner METIS
to a standard triangular mesh consisting of 524,288 triangles, resulting in a polyg-
onal mesh with 99,970 elements, most of which are unions of 5 or 6 triangles, cf.
Figure 2, right. The domain decomposition {Ωi} is obtained by applying METIS a
second time on top of the mesh T , see Figure 2, left.
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We use the Dirichlet preconditioner with multiplicity scaling and a suitable diag-
onal matrix for Q as described in [5], and solve the dual system by the corresponding
PCG iteration. In Table 1, we give the number of CG iterations required to reduce
the initial residual by a factor of 10−8 without and with Dirichlet preconditioner,
and provide some CPU times for varying number N of subdomains.

N total time avg. loc. time #iter # Lagrange
25 32.23 / 20.49 0.0776 / 0.0759 133 / 29 5875
50 30.19 / 19.10 0.0317 / 0.0310 135 / 30 8962

100 26.64 / 17.70 0.0135 / 0.0131 131 / 31 13012
200 23.69 / 17.41 0.0059 / 0.0057 134 / 36 19056
400 21.06 / 16.13 0.0027 / 0.0026 123 / 34 27324
800 20.23 / 17.68 0.0013 / 0.0013 109 / 36 39304

1600 22.19 / 20.96 0.0006 / 0.0006 095 / 35 56632

Table 1 Results of the non-preconditioned (left) / preconditioned (right) CG solver. Columns:
number of subdomains, total CPU time for the solution in seconds, averaged time for solving the
local problems in seconds, number of iterations, number of Lagrange multipliers.

Acknowledgements The authors gratefully acknowledge the financial support by the Austrian
Science Fund (FWF) under the grant DK W1214, project DK4.
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