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Abstract

This diploma thesis is concerned with the development and analysis of efficient numer-
ical methods for the calculation of induction and eddy currents in electromagnetical
problems. These results are important for reducing eddy current losses in electrical
machines, for example, or contrariwise for the optimization of eddy current welding.

In both issues, interest is directed rather towards a steady state solution than to some
device’s response on closure of the electrical circuit. Consequently, it seems natural to
analyze the unknown quantities in the frequency domain, what reduces the originally
time-dependent problem to a problem in space.

A remarkable feature of eddy current problems is the generally nonlinear relation
between magnetic field and induction. Furthermore, the matter of the extremely
small penetration depth is worth to be mentioned: The magnetic field and the thereby
generated eddy currents hardly penetrate into conducting materials and thus form a
small layer of strong induction at the boundaries of this material. This peculiarity
leads to difficulties in computations, because the skin depth has to be considered in
the discretization.

In addition to some theoretical results – for example on unique solvability and on prop-
erties of the solution – we present an efficient solver for general eddy current problems.
This solver handles the problem of the boundary layers by adaptive refinement and by
an increase of the polynomial degree in the basis functions. The nonlinearity is dealt
with by a Newton iteration.

The capacities of our solver are emphasized on the basis of several tests, even including
the challenging problem of eddy current welding.



Zusammenfassung

Ziel der vorliegenden Diplomarbeit ist die Entwicklung effizienter numerischer Lösungs-
methoden zur Berechnung von Induktion und Wirbelströmen in elektromagnetischen
Problemstellungen. Diese Resultate werden zum Beispiel benötigt, um in elektrischen
Maschinen die Wirbelstromverluste zu reduzieren, oder umgekehrt zur Optimierung
des Schweißens durch Wirbelströme.

In beiden Fällen richtet sich das Interesse eher auf eine eingeschwungene Lösung als
auf das Ansprechen eines Gerätes auf das Schließen des Stromkreises, weshalb es na-
he liegt, die gesuchten Größen im Frequenzbereich zu analysieren. Dadurch wird das
ursprünglich zeitabhängige Problem auf ein Problem im Ort übergeführt.

Besonders zu beachten sind bei Wirbelstromproblem zum einen der im allgemeinen
nichtlineare Zusammenhang zwischen magnetischer Feldstärke und Induktion und zum
anderen die Entstehung von Grenzschichten: Das Magnetfeld und die dadurch er-
zeugten Wirbelströme dringen in leitfähige Materialien kaum ein, wodurch sich am
Rand dieses Materials eine dünne Schicht starker Induktion bildet. In der numeri-
schen Lösung führt dieses Verhalten zu Schwierigkeiten, weil in der Diskretisierung die
geringe Eindringtiefe berücksichtigt werden muss.

Neben theoretischen Resultaten – zum Beispiel zur eindeutigen Lösbarkeit und zu
Eigenschaften der gesuchten Lösung – wird in dieser Arbeit auch ein effizienter Löser
für allgemeine Wirbelstromprobleme präsentiert. Dieser bewältigt das Problem der
Grenzschichten durch adaptive Verfeinerung und Erhöhung des Polynomgrads in den
Ansatzfunktionen, während die Nichtlinearität durch eine Newton-Iteration behandelt
wird.

Die Leistungsfähigkeit des Lösers wird anhand verschiedener Testbeispiele, zum Bei-
spiel auch am anspruchsvollen praktischen Problem des Wirbelstromschweißens, ver-
deutlicht.
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4.2 Nédélec Elements for H(curl)-Problems . . . . . . . . . . . . . . . . . 43
4.3 The Linear Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Mixed Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 The Perturbed Problem . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Newton’s Method for the Solution of the Nonlinear Problem . . . . . . 53
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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Chapter 1

Introduction

This thesis deals with mathematical modeling and numerical simulation of electro-
magnetical problems, with a special focus on eddy current welding. In eddy current
welding, a strong periodical magnetic field induces eddy currents in the material to
weld. These currents in turn heat up the material and thus cause the process of welding
(so the problem we are concerned with can be described as “inductive heating”).
Obviously, this can only work if the material to weld is a good conductor, because
otherwise the currents induced by the magnetic field would be fairly small and would
not be able to raise the temperature by a considerable amount.
In real life application, eddy current welding is generally used to weld ferromagnetic
materials such as iron or steel.

The goal of this work is to develop and analyze new efficient numerical methods for
calculating the induction and the eddy currents for a realistic problem with given
source current in a coil. In our modeling and calculations, we do not consider the
thermic field, i.e. the rise of the temperature caused by the eddy currents.

We emphasize that the methods that we develop can of course be employed for the
solution of all kinds of eddy current problems, not only for inductive heating problems
such as eddy current welding.

Characteristics of eddy current problems:

Before going into detail, we would like to remark on some noteworthy features of the
problem:
In general, the source is harmonic alternating current, what would imply the solution
to be harmonic as well provided the problem was linear. Unfortunately, the magnetic
reluctivity depends on the magnetic field in a nonlinear way, so the solution is usually
not harmonic. However, both induced magnetic field and eddy currents will still be
periodical and can be approximated by a multiharmonic function.

An interesting detail to point out is that the magnetic field does not penetrate very far
into the material to weld, but forms a thin layer of strong induction and consequently
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CHAPTER 1. INTRODUCTION 8

strong eddy currents. Outside of this skin, both magnetic and electric field will be
very small and disappear soon. Note that the penetration depth, i.e. the thickness of
this layer, depends on the conductivity and magnetic permeability of the material and
on the frequency of the current source. With one of these values increasing, the skin
depth decreases and can in practice be as small as 10−4 meters or even less. That,
of course, may cause problems with the discretization for the numerical solution; see
below for the way we deal with this issue.

The mathematical problem:

Electromagnetic problems are described by Maxwell’s equations, a system of partial
differential equations relating magnetic (magnetic field and induction) to electric values
(electric field, dielectric displacement and electric current density). Since in our case
the frequency is fairly small, we can neglect the dielectric displacement. By introducing
a vector potential, we simplify the equations further.

We solve the resulting nonlinear, time-dependent partial differential equation in the
following way: Taking advantage of the expected periodicity of the solution, we reduce
the problem to a space-dependent set of PDEs by applying a multiharmonic ansatz,
i.e. by truncated Fourier expansion. This system of nonlinear equations is then solved
by linearization, more precisely by Newton’s method, where we use finite elements and
a multigrid approach for solving the linear problem in each step.

For the finite element discretization and the multigrid algorithm we must be aware of
the fact that we deal with a problem inH(curl): Firstly, this problem requires special
finite elements (Nédélec elements [35]), and secondly, we will need a smart smoother
for the multigrid method to be efficient, either the one proposed by Hiptmair [25] or
the smoother by Arnold, Falk and Winther [3, 4].

When discretizing the thin layer of strong induction, the number of finite elements and
consequently the size of the linear systems quickly increase. That is why we not only
make use of adaptive refinement strategies, but also increase the polynomial degree in
the elements. As a consequence, the total number of unknowns stays relatively small
while we are able to reach sufficiently good approximation.

A fundamental and recommendable introduction to electromagnetic problems is pro-
vided by Ida and Bastos in [18]; they also give an overview on the finite element method
in the same book. Other very good introductions to the finite element method can be
found e.g. in [9, 11, 29].
Multigrid methods have been widely used for solving the linear systems arising from the
finite element discretization. They have been established as among the most efficient
solvers for discretized elliptic problems. Hackbusch covers a broad range of the theory
in [22]; furthermore he provides a good explanation of the ideas and some applications.
Other standard references on multigrid methods are for example [10, 13, 34, 51].
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There are many works on the numerical solution of eddy current problems or more
generally of electromagnetic problems via the finite element method, e.g. [19, 33, 42],
but it has to be mentioned that most of them neglect the nonlinear behavior of the
magnetic reluctivity and/or reduce the problem to two dimensions.
The simulation of electromagnetic devices in the frequency domain, i.e. by means of
a harmonic or multiharmonic ansatz, has been pursued e.g. by Yamada and Bessho
in [54] or Gyselinck et al. in [21]. Other works on this topic include for example
[7, 19, 37, 52]. Whereas most of these works consider the problem in complex vector
spaces, we propose a real scheme because of the easier linearization: The complex
problem is not differentiable and thus cannot be linearized by the Newton method (cf.
e.g. [19, 27]).

The tasks of this thesis:

Summarizing, the main problems we have to deal with in this thesis are the following:

• The magnetic reluctivity depends on the magnetic field in a nonlinear way.

• Since the source is periodical, the result will be periodical as well.
However, due to the nonlinearity the result will in general not be harmonic, but
can be approximated by a multiharmonic function.

• An H(curl)-problem requires special finite elements and a particular smoother
for the multigrid algorithm.

• For a realistic setup, the penetration depth of the magnetic field is very small.
So the mesh for discretization has to meet special requirements.

The organization of this thesis:

• Chapter 2:
We provide Maxwell’s equations and introduce a vector potential for simplifi-
cation. Moreover, some properties of the nonlinear reluctivity are quoted and
a proof of existence and uniqueness of eddy current problems is given (with
assumptions on the nonlinearity that are a direct consequence of the physical
background).

• Chapter 3:
After proving the existence of a unique periodic steady state solution, we derive
some properties of this solution and characteristics of its representation as a
Fourier series. Motivated by these results, we apply a multiharmonic ansatz to
the original parabolic equation and derive the resulting space-dependent system
of equations.
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• Chapter 4:
The principal concepts and results of the finite element method for linear elliptic
problems are given, and we briefly remark on the peculiarities of edge elements
used for discretizing H(curl)-problems. Moreover, we dwell on the features of
the linear problem and finally focus on the iterative solution of the nonlinear
PDE.

• Chapter 5:
We present the ideas behind multigrid plus the general algorithm. Some theo-
retical results are quoted, and eventually we describe the special smoothers that
are required for edge element discretization.

• Chapter 6:
Numerical results for a shielding problem and for a realistic setup for eddy cur-
rent welding are depicted, including a presentation of the differences between
low and high order finite element spaces as well as a comparison of the results
with different numbers of harmonics in the multiharmonic ansatz. Moreover, we
emphasize the advantages of nested iteration on the basis of several tests.

• Chapter 7:
The presented models, theories and methods are reviewed and open problems
are discussed.

Notation

Concerning notation, we use boldface type for vectors, vector-valued functions, and
spaces of vector-valued functions. Analogously, operators whose values are vector-
valued functions are written in bold style as well.
Norm and scalar product in an arbitrary Hilbert space V are denoted by ‖ · ‖V and
(·, ·)V , respectively, where the subscript is sometimes omitted when the meaning is
unambiguous due to the context.
For the duality product of F ∈ V ∗ with v ∈ V we use the notation 〈F, v〉 = 〈F, v〉V×V ∗ .



Chapter 2

Problem Formulation and Analysis

2.1 Problem Description

One possible way of welding uses the effects of eddy currents, where a strong periodical
magnetic field induces eddy currents in the material to weld. These currents raise the
temperature in the material and thus cause the process of welding. Figure 2.1 shows
an example of a setup used in practice, where a slitted tube is welded by the effects
of eddy currents.

Figure 2.1: Example setup for eddy current welding.

As mentioned before, we disregard the thermic field in this thesis and consider only
the problem of calculating the induction and the eddy currents.

For an introduction to electromagnetics and a detailed explanation of the meaning of
the various quantities, we refer the reader to [18] or [31], for example.
Electromagnetic problems are described by Maxwell’s equations (e.g. [18]) that specify
the relations between magnetic field H , magnetic flux density (induction) B, electric
field E, electric flux density D and electric current density J :

11



CHAPTER 2. PROBLEM FORMULATION AND ANALYSIS 12

curlH = J +
∂D

∂t
, (2.1)

curlE = −
∂B

∂t
, (2.2)

divB = 0 , (2.3)

divD = ρ , (2.4)

where ρ is the electric charge density. These equations are joined by the material
equations

B = µH, (2.5)

D = ǫE, (2.6)

J = σE, (2.7)

with the magnetic permeability µ, electric permittivity ǫ and electric conductivity σ.
Although in general µ, ǫ and σ are tensors, they are scalar in our case, since we consider
only isotropic materials.
Note that these coefficients in general do not only depend on the coordinates in space,
but also on the magnetic and/or electric field. For instance, the permeability is a
function of the magnetic field (µ = µ(|H|)), since we disregard the effects of hysteresis
in this thesis.

We introduce another quantity, the reluctivity ν, as the inverse of the permeability µ.
Then with

ν(|B|) =
1

µ(|H|)
, (2.8)

we have the relation
H = ν(|B|)B. (2.9)

Although Maxwell’s equations are to be considered in the whole space R3, on calcu-
lations one mostly regards the problem only in a bounded region. Of course then one
has to add appropriate boundary conditions.
For the numerical calculation of the eddy current problem that we are concerned with
(cf. Figure 2.1), we also restrict the equations to a finite region Ω. In this domain of
consideration, we obviously include the iron tube, the impeder and the inductor, but
we restrict the surrounding air to a finite box and add the boundary condition

B · n = 0, on Γ = ∂Ω. (2.10)

This approximation to the real situation is justifiable, because both magnetic and
electric field decrease very fast in the surrounding air and are almost equal to zero at
some distance from the inductor.
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2.2 Vector Potential Formulation

For the so-called “quasi-stationary” problem that we consider, the frequencies are
relatively low. Therefore the displacement current is very small in comparison with
the impressed currents and eddy currents, i.e.

∣
∣
∣
∣

∂D

∂t

∣
∣
∣
∣
≪ |J |, (2.11)

(cf. e.g. [18], page 44, [33], page 12, [42], page 15) and can thus be neglected.
Since B is divergence-free (see equation (2.3)), we can express this field in terms of a
vector potential A:

B = curlA . (2.12)

Obviously, A is not unique – any gradient field could be added, because its curl
vanishes.
With the material relation (2.9) and the ansatz (2.12), equation (2.1) now reads as

curl (ν(|curlA|) curlA) = J , (2.13)

where we have neglected the displacement current due to (2.11).

We now consider equation (2.2): With the vector potential (2.12) this equation reads
curlE = −curl ∂A

∂t
. Consequently the electric field can be expressed as

E = −
∂A

∂t
−∇φ , (2.14)

for some integration constant ∇φ.
The two terms on the right hand side of (2.14) and their contributions to the currents
are treated separately. With Ohm’s law (2.7) we get

J = J s + J e with J s = −σ∇φ, J e = −σ
∂A

∂t
, (2.15)

where J s are source and impressed currents and J e are the eddy currents.
Using this splitting of the current (2.15) in (2.13) yields the following equation:

curl (ν(|curlA|) curlA) + σ
∂A

∂t
= Js . (2.16)

(In the following, we will use the letter u for A and f instead of J s.)

So the complete system including homogeneous Dirichlet boundary conditions and an
initial condition (formally, i.e. neglecting interface conditions) reads as follows:

Find u(x, t) :

σ
∂u

∂t
+ curl (ν(|curlu|) curlu) = f , in Ω × [0, T ],

u× n = 0, on Γ × [0, T ],

u = u0, on Ω × {0}.

(2.17)



CHAPTER 2. PROBLEM FORMULATION AND ANALYSIS 14

Here we suppose that Ω ⊂ R3 be a bounded domain with sufficiently smooth boundary
Γ = ∂Ω. n denotes the outer unit normal vector to Γ.
The impressed currents f and the initial condition u0 are given and should both be
divergence-free, i.e.

div f = 0 and divu0 = 0.

Remark 2.1. The impressed currents f are given in the inductor; these are the currents
we measure. Thus, f is the sum of currents produced by the applied voltage and
those induced by the changing magnetic field in the inductor. (Note that the latter
counteract the source current.)
Since the induced currents are already contained in f , we assume the conductivity σ
in the coil to be zero; otherwise we would include these counteracting induced currents
in our model twice.

2.3 ν(|B|) and the B-H-Curve

One of the major tasks that we have to deal with in eddy current problems is the
nonlinear relation between B and H . In practical applications, this relation is given
by a set of discrete data points that provide the connection between |B| and |H|,
cf. Figure 2.2. These data points are approximated [39] or interpolated [26] (e.g. by
splines) to give the B-H-curve |B| = f(|H|). Disregarding the effects of hysteresis,
this curve is strictly monotone.

 0
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 1.4
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 0  20000  40000  60000  80000  100000  120000  140000  160000

|B
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)

|H| (in A/m)

Measured relation between |B| and |H|

Figure 2.2: Example of measured data points for a B-H-curve.1

Obviously, ν can easily be calculated once you know the relation |B| = f(|H|):

ν(s) =
f−1(s)

s
. (2.18)

1The magnetic field intensity |H| is measured in Ampere/meter, the flux density |B| in Tesla.
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Due to the physical background the function ν : R
+
0 → R+ fulfills certain properties:

0 < ν ≤ ν(s) ≤ ν0, ∀ s, (2.19)

lim
s→∞

ν(s) = ν0,

where ν0 is the reluctivity in vacuum (cf. [39]).

Note that, since the B-H-curve is strictly monotone, also its inverse, i.e. the function
s 7→ ν(s) · s is strictly monotone, what will be important in Section 2.4 to prove
existence and uniqueness of a solution.
Furthermore ν can of course be assumed to be continuous (actually in our approxima-
tion, we have even ν ∈ C1(R+

0 )).

For this thesis we use the function shown in Figure 2.3 that was approximated from
measured data for iron according to [39]. As the figure clearly shows, the nonlinearity
is strongest at a magnetic flux density of approximately 1.5 Tesla; for small and very
big inductions |B| the reluctivity ν(|B|) is almost constant.

100

1000

10000

100000

1e+06

0.5 1 1.5 2

nu
(|

B
|)

|B|

Reluctivity

nu(|B|)

Figure 2.3: Reluctivity ν(|B|) for a ferromagnetic material.

2.4 Existence and Uniqueness

In this section, we want to prove existence of a solution of problem (2.17). Furthermore,
we show that the solution is unique in a certain sense.
For analyzing (2.17), we rewrite it in weak formulation and then apply theory of
both linear and nonlinear variational equations to it. For this, we will need some
basic understanding of Sobolev spaces and of functions mapping into a Banach space.
Moreover we will require the notion of integrals and weak derivatives of Banach space
valued functions. An introduction to these concepts can be found e.g. in [1, 16, 56, 57].

This section is arranged in three parts: First we quote some theoretical results that
will be needed later on, then we show that problem (2.17) is uniquely solvable in both
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conducting and non-conducting regions. Finally we conclude that the eddy current
problem we are concerned with is uniquely solvable.

2.4.1 Theoretical Background

Mostly, partial differential equations are treated in some subspace V of the Sobolev
space H1(Ω). In variational form, a general (homogenized) linear problem reads as
follows:

Find u ∈ V : a(u, v) = 〈F, v〉, ∀ v ∈ V, (2.20)

with some bilinear form a(·, ·) and a linear operator F ∈ V ∗. Here, 〈·, ·〉 = 〈·, ·〉V ∗×V

denotes the duality product.
Linear elliptic problems are fully analyzed by the following fundamental theorem:

Theorem 2.1 (Lax-Milgram [16]). Let V be a real Hilbert space with scalar product
(·, ·) and norm ‖ · ‖. If the bilinear form a(·, ·) : V × V → R is

1. elliptic, i.e. there is a constant µ1 > 0 such that

a(v, v) ≥ µ1‖v‖
2, ∀ v ∈ V.

2. continuous = bounded, i.e. for some µ2 > 0 we have

|a(u, v)| ≤ µ2‖u‖‖v‖, ∀u, v ∈ V.

and the linear form F : V → R is continuous, i.e. there is a constant c > 0 such that

|〈F, v〉| ≤ c‖v‖, ∀ v ∈ V,

then there exists a unique u ∈ V which solves (2.20).

Let us now turn to the analysis of nonlinear variational problems of the form

Find u ∈ V : 〈A(u), v〉 = 〈F, v〉, ∀ v ∈ V, (2.21)

with some operator A : V → V ∗.
Before we can quote the main theorem on existence and uniqueness, we need some
basic definitions.

Definition 2.1 ([57]). Let V be a real Banach space with norm ‖ · ‖ and let A : V →
V ∗ be an operator. Then:

• A is called monotone iff

〈A(u) − A(v), u− v〉 ≥ 0, ∀u, v ∈ V.



CHAPTER 2. PROBLEM FORMULATION AND ANALYSIS 17

• A is called strictly monotone iff

〈A(u) −A(v), u− v〉 > 0, ∀u, v ∈ V, u 6= v.

• A is called strongly monotone iff there is a c > 0 such that

〈A(u) − A(v), u− v〉 > c ‖u− v‖2, ∀u, v ∈ V.

• A is called coercive iff

lim
‖u‖→∞

〈A(u), u〉

‖u‖
= ∞.

• A is said to be hemicontinuous iff the real function

t 7→ 〈A(u+ tv), w〉

is continuous on [0, 1] for all u, v, w ∈ V .

Theorem 2.2 (Browder-Minty [57]). Let A : V → V ∗ be a monotone, coercive and
hemicontinuous operator on the real, reflexive Banach space V . Then the following
assertions hold:

1. For each F ∈ V ∗, the equation (2.21) has a solution. The solution set of (2.21)
is bounded, convex and closed.

2. If in addition A is strictly monotone, then equation (2.21) is uniquely solvable
in V .

In order to obtain existence theorems for parabolic differential equations, we will need
the notion of an evolution triple and the concept of Banach space valued functions.
The latter is required because we think of a function (x, t) 7→ u(x, t) as a function
from a time interval to a Banach space, i.e. t 7→ (x 7→ u(x, t)). In our context, the
spaces L2((0, T ), V ) and L2((0, T ), V ∗) (for some Banach space V ) are sufficient. (See
e.g. [56, 57]).

In the following, we want to analyze (nonlinear) initial value problems of the form

u′(t) + A(u(t)) = b(t), for almost all t ∈ (0, T ), (2.22a)

u(0) = u0 ∈ H, (2.22b)

u ∈ L2((0, T ), V ), u′ ∈ L2((0, T ), V ∗), (2.22c)

with the (possibly nonlinear) operator A : V → V ∗. We suppose furthermore that for
each t ∈ (0, T ), we have b(t) ∈ V ∗.
The initial condition (2.22b) is meaningful, because the embedding {u ∈ L2((0, T ), V ) :
u′ ∈ L2((0, T ), V ∗)} ⊂ C([0, T ], H)} is continuous if V ⊂ H ⊂ V ∗ is an evolution triple
as defined below, cf. [56].
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Definition 2.2 ([56]). We understand an evolution triple

V ⊂ H ⊂ V ∗

to be the following:

1. V is a real, separable and reflexive Banach space.

2. H is a real, separable Hilbert space.

3. The embedding V ⊂ H is continuous, i.e.

‖v‖H ≤ const ‖v‖V , ∀ v ∈ V,

and V is dense in H .

We can now state the main theorem on existence and uniqueness of nonlinear parabolic
problems:

Theorem 2.3 ([57]). Let V ⊂ H ⊂ V ∗ be an evolution triple and let A : V → V ∗

be a hemicontinuous, monotone and coercive operator. Suppose furthermore that A is
bounded, i.e.

∃ c > 0 : ‖A(u)‖V ∗ ≤ c‖u‖V , ∀u ∈ V.

Let u0 ∈ H and b ∈ L2((0, T ), V ∗) (with 0 < T <∞) be given.
Then the initial value problem (2.22) has a unique solution.

2.4.2 Some Results for Conducting and Non-Conducting Re-

gions

In electromagnetic problems, one often deals with conducting (σ > 0) and non-
conducting (σ = 0) regions, for example in the case of some conducting part sur-
rounded by air. The problem that we consider has a significantly different structure
in these two cases. For non-conducting regions, equation (2.17) is a stationary and
elliptic problem:

Find u(x) :

curl (ν curlu) = f , in Ω,

u× n = g, on Γ.

(2.23)

For conductors, on the other hand, we face a parabolic problem:

Find u(x, t) :

σ
∂u

∂t
+ curl (ν curlu) = f , in Ω × [0, T ],

u× n = g, on Γ × [0, T ],

u = u0, on Ω × {0}.

(2.24)
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In general, the relation between the magnetic field H and the induction B could be
nonlinear in both conducting and non-conducting regions. In our case, however, for
the non-conducting part, i.e. in the inductor2, the impeder and the surrounding air,
we have a linear relation between B and H , so there ν = ν(x).
In the conducting region, i.e. in the iron tube, ν(|curlu|) is given by the B-H-curve,
cf. Section 2.3.

We will now prove that both problems are solvable and that the solution is unique in
a certain sense. For this task, we consider the weak formulation of these equations.

Non-Conducting Regions

Let us start out with further analysis of the problem in the non-conducting area:
The weak formulation of (2.23) yields the variational equation

∫

Ω

ν curlu · curlv dx

︸ ︷︷ ︸

=:a(u,v)

=

∫

Ω

f v dx

︸ ︷︷ ︸

=:〈F,v〉

, ∀v ∈ V , (2.25)

with V = H0(curl,Ω) = {v ∈H(curl,Ω) : v × n = 0 on Γ}.
We are looking for a solution u in the linear manifold g̃ + V , where g̃ ∈ H(curl)
should meet the boundary condition g̃ × n = g on Γ. Of course, we can homogenize
the problem, what leads to

Find u ∈ V : a(u,v) = 〈F̃ ,v〉, ∀v ∈ V , (2.26)

with 〈F̃ ,v〉 := 〈F,v〉 − a(g̃,v). The linear form F ∈ V ∗ and the bilinear form
a(·, ·) : H(curl) ×H(curl) → R are those defined in (2.25).

For gradient fields v, the left hand side of (2.25) = (2.26) equals zero, so clearly the
sources f have to be weakly divergence-free in order to ensure solvability. This means
∫

Ω
f · gradφ dx = 0, for all φ ∈ H1

0 (Ω), is a necessary condition for existence of a
solution.

Remark 2.2. Later on, we will consider only divergence-free test functions. With this
reduced set of test functions, no additional conditions for solvability are required, since
the space V then does not contain any gradient fields.
The following considerations will motivate this reduction to solenoidal functions:

Since the curl of a gradient field vanishes, we can add grad φ (for arbitrary φ ∈ H1
0 (Ω))

to u in (2.26) without changing anything:
∫

Ω

ν curlu · curlv dx =

∫

Ω

ν curl (u+ gradφ) · curlv dx. (2.27)

Consequently, the problem is not uniquely solvable; however, we can hope to find a
unique divergence-free, i.e. solenoidal solution. As we will see, this is actually the case.

2See Remark 2.1 for the reason why we assume the inductor to have zero conductivity.
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In general, the domain Ω can be multiply connected3, and in that case, we can add an
even larger set of gradient fields without changing the equation.
For multiply connected domains, we denote the p ≥ 1 components of the boundary
∂Ω by Γi, 1 ≤ i ≤ p. In this general case, the equality (2.27) still holds for arbitrary
φ ∈ H1(Ω) with φ constant on each boundary component, i.e. φ = ci on Γi, 1 ≤ i ≤ p.
This gives rise to the definition

W (Ω) := W := {w = gradφ : φ ∈ H1(Ω) and φ = ci on Γi, 1 ≤ i ≤ p}. (2.28)

Since each solution u of problem (2.26) yields a set of solutions u + W , we factor
the space V by W for proving uniqueness, and restrict equation (2.26) to this factor
space

V̄ := V /W ≃ {v ∈ V : (v,w)L2 = 0, ∀w ∈W }. (2.29)

So the problem that we deal with now reads as follows:

Find u ∈ V̄ : a(u,v) = 〈F̃ ,v〉, ∀v ∈ V̄ . (2.30)

We will see that this variational equation is uniquely solvable by the Lax-Milgram
theorem (Thm. 2.1). For proving existence and uniqueness, we need an important
result on norm equivalence in the spaceH(curl,Ω)∩H(div,Ω) for multiply connected
domains Ω.

Lemma 2.4 ([2]). Let Ω be multiply connected with Lipschitz boundary and bound-
ary components Γi, 1 ≤ i ≤ p, let X(Ω) := H(curl,Ω) ∩H(div,Ω) with the norm
‖v‖2

X(Ω) = ‖v‖2
L2(Ω) + ‖curlv‖2

L2(Ω) + ‖div v‖2
L2(Ω).

Then on the space XN (Ω) = {v ∈ X(Ω) : v × n = 0 on ∂Ω}, the seminorm

v 7→ ‖curlv‖
L2(Ω) + ‖div v‖L2(Ω) +

p
∑

i=1

|〈v · n, 1〉Γi
|

is equivalent to the norm ‖ · ‖X(Ω).

Remark 2.3. As can easily be seen, in V̄ we have that both div v in the domain and
v ·n on each boundary component are zero: By the definition of V̄ = V /W , we have
∫

Ω
v · gradφ dx = 0 for all functions φ ∈ H1(Ω) that are constant on all components

of the boundary. Integration by parts yields

−

∫

Ω

div v · φ dx+
∑

i

ci(φ)

∫

Γi

v · n ds = 0.

Since this equality is satisfied for all φ ∈ H1
0 (Ω), div v equals zero almost everywhere,

and thus also v · n on each boundary component.

3In our problem, for example, we face a multiply connected non-conducting domain, since we
consider the whole region of air, inductor and impeder without the iron tube. (Cf. Figure 2.1)
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Consequently, Lemma 2.4 provides

‖v‖
L2 ≤ c · ‖curlv‖

L2 on V̄ ,

and thus the much-needed equivalence between the full H(curl)-norm and the semi-
norm |u|2 =

∫

Ω
|curlu|2.

Lemma 2.5. For ν ∈ L∞(Ω) with 0 < ν ≤ ν(x) ≤ ν almost everywhere (a.e.) in Ω,
there is a unique u ∈ V̄ which solves

a(u,v) = 〈F̃ ,v〉, ∀v ∈ V̄ . (2.30)

Proof. By Thm. 2.1, it suffices to show that a(·, ·) is bilinear, V̄ -elliptic and V̄ -
continuous and that F̃ ∈ V̄

∗
.

Bilinearity is obvious, the same with linearity of F̃ . V̄ -ellipticity and V̄ -continuity of
a(·, ·) follow immediately from the assumptions on ν and the norm equivalence stated
in Lemma 2.4 and Remark 2.3. This norm equivalence also implies boundedness of
F̃ .

Remark 2.4. Problem (2.30) is uniquely solvable for nonlinear reluctivity ν = ν(|curlu|)
as well, if ν fulfills certain assumptions. For example, s 7→ ν(s)s being strictly mono-
tone and 0 < ν ≤ ν(s) ≤ ν, ∀ s suffices for proving existence and uniqueness by
Browder’s and Minty’s theorem (Thm. 2.2).

Conducting Regions

We continue by analyzing the parabolic problem in the conducting area:
The weak formulation of (2.24) yields the variational equation

∫

Ω

σ
∂u

∂t
v +

∫

Ω

ν(|curlu|) curlu · curlv

︸ ︷︷ ︸

=:〈A(u),v〉

=

∫

Ω

f v

︸ ︷︷ ︸

=:〈F,v〉

, ∀v ∈ V , (2.31)

almost everywhere in (0, T ), with V = H0(curl,Ω) = {v ∈ H(curl,Ω) : v × n =
0 on Γ} as above.

The main differences between this problem and the one considered in the part on
non-conducting regions are the following:

1. The nonlinear reluctivity entails a nonlinear operator A : V → V ∗.

2. Due to the time-dependence, we will embark on a slightly different strategy for
our proof.
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However, the first steps are the same, that is we homogenize the problem as before.
Furthermore, we also restrict our equation to the factor space V̄ as defined in (2.29),
at least at first. Later on, we will see that we get a unique solution in V = H0(curl),
not only in V̄ .

So almost everywhere in (0, T ) the problem we are concerned with reads as follows:

Find u ∈ V̄ : (σ
∂u

∂t
,v)L2 + 〈A(u),v〉 = 〈F̃ ,v〉, ∀v ∈ V̄ . (2.32)

Here, A : V̄ → V̄
∗

is the operator defined in (2.31), and F̃ results from the ho-
mogenization: If we have g̃(t) fulfilling the boundary conditions, we get 〈F̃ ,v〉 :=
〈F,v〉 − (σ ∂g̃

∂t
,v)L2 − 〈A(g̃),v〉 with F as in (2.31).

All this was for a fixed moment in time t. Let us now consider u as a function
u : [0, T ] → V̄ , t 7→ u(·, t) and define the operators Ā : L2((0, T ), V̄ ) → L2((0, T ), V̄

∗
)

and F̄ ∈ L2((0, T ), V̄
∗
) as follows:

〈Ā(u)(t),v〉 :=

∫

Ω

ν(|curlu(t)|) curlu(t) · curlv dx,

∀v ∈ V̄ , u ∈ L2((0, T ), V̄ ), (2.33)

〈F̄ (t),v〉 :=

∫

Ω

f(t) · v dx−

∫

Ω

σ
∂g̃(t)

∂t
· v dx− 〈Ā(g̃)(t),v〉,

∀v ∈ V̄ . (2.34)

Here we require g̃ ∈ L2((0, T ),H(curl)) with ∂g̃

∂t
∈ L2((0, T ),H(curl)∗) for the defi-

nition of F̄ . This prerequisite is met by any reasonable function g(t) in the boundary

condition, e.g. for g ∈ L2((0, T ),H
1
2 (Γ)) with ∂g

∂t
∈ L2((0, T ),H

1
2 (Γ)).

With the above definitions, equation (2.32) together with the initial condition u(x, 0) =
u0(x), i.e. the original equation (2.24) in its weak formulation, can be written as an
operator equation in L2((0, T ), V̄

∗
):

Find u ∈ L2((0, T ), V̄ ) with u̇ ∈ L2((0, T ), V̄
∗
) such that

σ u̇+ Ā(u) = F̄ , (2.35a)

u(0) = u0, (2.35b)

with u0 ∈ L2(Ω).
Note that the initial condition (2.35b) is meaningful, because the Banach space valued
functions {u ∈ L2((0, T ), V̄ ) : u̇ ∈ L2((0, T ), V̄

∗
)} can be continuously embedded into

C([0, T ], L2(Ω)), see [56].

We will see that the operator equation (2.35) is uniquely solvable by Zeidler’s theorem
on nonlinear monotone operators in parabolic equations (Thm. 2.3), as we state in the
following lemma.
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Lemma 2.6. Let s 7→ ν(s) be continuous, 0 < ν ≤ ν(s) ≤ ν, ∀ s ∈ R
+
0 and let the

function s 7→ ν(s)s be monotone.
Let moreover u0 ∈ L2(Ω), f ∈ L2((0, T ), V̄

∗
) and g̃ ∈ L2((0, T ),H(curl)) with

∂g̃

∂t
∈ L2((0, T ),H(curl)∗) be given, and suppose σ ∈ L∞ to be strictly positive.

Then we have a unique u ∈ L2((0, T ), V̄ ) with u̇ ∈ L2((0, T ), V̄
∗
) which solves (2.35),

i.e.

σ u̇+ Ā(u) = F̄ ,

u(0) = u0.

Proof. We show that the assumptions of Thm. 2.3 are fulfilled:

• Evolution triple. V̄ ⊂ L2 ⊂ V̄
∗

is obvious. Clearly, V̄ is separable and reflexive,
the embedding V̄ ⊂ L2 is continuous and V̄ is dense in L2.

• Monotonicity. As can easily be seen, the operator A : V̄ → V̄
∗

as defined in
(2.31), i.e. 〈A(u),v〉 =

∫

Ω
ν(|curlu|) curlu · curlv, is monotone: The function

s 7→ ν(s)s being monotone implies

〈A(u) − A(v),u− v〉 ≥ 0, ∀u,v ∈ V̄ .

• Coerciveness. The norm equivalence in V̄ (Lemma 2.4) and the fact that ν is
strictly positive bring about coerciveness of A, more precisely there is c > 0 such
that

〈A(u),u〉 ≥ c ‖u‖2
V̄

, ∀u ∈ V̄ .

• Boundedness. Since ν is bounded from above and because of the norm equiva-
lence (Lemma 2.4), we have

∃ c > 0 : ‖A(u)‖
V̄

∗ ≤ c ‖u‖
V̄

, ∀u ∈ V̄ .

Furthermore, A is continuous, and the given data also meets the prerequisites of Thm.
2.3. Consequently, we have a unique solution u ∈ V̄ of problem (2.35).

Uniqueness in H0(curl): Our next issue is to show that under certain assumptions
the solution given by Lemma 2.6 is unique in the whole space V = H0(curl). For
this task we consider equation (2.35) with an arbitrary test function w ∈W :

∫

Ω

σ
∂u

∂t
w +

∫

Ω

ν(|curlu|) curlu · curlw

=

∫

Ω

f w −

∫

Ω

σ
∂g̃

∂t
w −

∫

Ω

ν(|curl g̃|) curlu · curlw. (2.36)
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Suppose now, that f (t) is divergence-free for all t, i.e.
∫

Ω

f (t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W ,

where W = {w = gradφ : φ ∈ H1(Ω) and φ = ci on Γi, 1 ≤ i ≤ p} as defined in
(2.28). Assume moreover that the same holds for σ ∂g̃

∂t
(t). Then the right hand side in

(2.36) equals zero, what implies
∫

Ω

σ
∂u

∂t
w = 0, ∀w ∈W , (2.37)

since the curl of a gradient field w ∈W vanishes.
In other words, for constant conductivity σ, the time derivative of the function we are
looking for is divergence-free for all moments in time. This means that – provided
the initial solution u0 is solenoidal as well – all possible solutions u(t) are divergence-
free and thus lie in V̄ , where we have already shown existence and uniqueness in
Lemma 2.6.
We summarize these ideas in the following lemma:

Lemma 2.7. Suppose that the functions f(t) and σ ∂g̃
∂t

(t) are defined for all t ∈ [0, T ]
and divergence-free in the following weak sense:

∫

Ω

f (t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W ,

∫

Ω

σ
∂g̃

∂t
(t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W .

Assume moreover that σu0 is divergence-free as well, i.e.
∫

Ω

σu0 ·w = 0, ∀w ∈W .

Then, if there is a solution u of (2.35) that is defined for all t, we have
∫

Ω

σ u(t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W .

Proof. We have already shown this in the discussion preceding this lemma.

For constant conductivity in the whole domain Ω, we immediately get the following
consequence:

Corollary 2.8. Let the assumptions of the Lemmata 2.6 and 2.7 be satisfied. Suppose
furthermore that σ = const.
Then there exists a unique u ∈ L2((0, T ),V ) with u̇ ∈ L2((0, T ),V ∗) such that

σ u̇+ Ā(u) = F̄ ,

u(0) = u0,

and this solution u is divergence-free for almost all t.
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2.4.3 Application to Eddy Current Problems

Taking advantage of the knowledge we have gained in the previous paragraphs, we can
now prove the main result of this section, to wit existence of a solution of the eddy
current problem and its uniqueness in a certain sense.
The Lemmata 2.5 and 2.6 provide existence and uniqueness of the solution in non-
conducting and conducting regions, respectively. However, we have not treated the
case of domains consisting of parts with positive conductivity and of regions with
σ = 0 yet.
As we know, the domain of the whole eddy current welding problem (2.17) is such a
mixed domain, because the iron tube Ω1 = ΩFe is a conductor, and we have σ = 0 in
Ω2 = Ω \Ω1, i.e. in the inductor, the impeder and the surrounding air. We sketch the
situation of a simple two-dimensional problem in Figure 2.4.

✫✪
✬✩

Ω1
(σ > 0)

Ω2
(σ = 0)

❅❅■ ΓI

Figure 2.4: Sketch of the domain Ω = Ω1 ∪ Ω2.

Consequently, our task in the following paragraph consists in assembling the previous
results to the desired theorem.

Let us first consider some fixed moment in time t.
For joining the solutions in the respective domains, we need an interface condition on
ΓI = Ω1 ∩ Ω2: The tangential component of the joined solution should be continuous,
i.e. we should have

u1 × n1 = −u2 × n2, on ΓI , (2.38)

where u1 and u2 are the solutions in Ω1 and Ω2 at the fixed time t, and ni are the
respective outer unit normal vectors at the interface ΓI .
Suppose we knew the solution u1 in the conducting region. Then the interface condi-
tion (2.38) together with the original boundary condition

u× n = 0, on Γ = ∂Ω,

provide the necessary boundary conditions for the equation in the non-conducting
part (2.23). So by Lemma 2.5 we have a unique divergence-free solution u2 ∈ g̃+ V̄ 2,
where g̃ ∈ H(curl,Ω2) satisfies the boundary conditions, and V̄ 2 is the factor space
of divergence-free functions as in (2.29).
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In other words, the solution in the conducting domain Ω1 uniquely determines the
solution in the non-conducting region Ω2.
We summarize these considerations in the following lemma:

Lemma 2.9. Let Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅ and let Ω2 be multiply connected.
Assume ν ∈ L∞(Ω2) with 0 < ν ≤ ν(x) ≤ ν a.e. in Ω2.
Let V = {v ∈ H(curl,Ω2) : v × n = 0 on ∂Ω2} and W = W (Ω2) as in (2.28).
Define V̄ := V /W and let f ∈ V̄

∗
be given.

Then for each u1 ∈H(curl,Ω1) exists exactly one function u2 ∈ g̃ + V̄ such that u2

is the weak solution of

curl (ν curlu2) = f , in Ω2,
u2 × n = 0, on ∂Ω ∩ ∂Ω2,
u2 × n = u1 × n, on ∂Ω1 ∩ ∂Ω2,

(2.39)

where n is the outer unit normal vector to ∂Ω2 and g̃ ∈ H(curl,Ω2) satisfies the
boundary conditions.

Lemma 2.9 shows that u2 = U(u1) for some functionU : H(curl,Ω1) →H(curl,Ω2),
i.e. the solution in Ω2 is uniquely defined by the solution in Ω1. We point out that the
eddy current problem is uniquely solvable in the conducting region Ω1 (Lemma 2.6).
Consequently, the idea to take advantage of the relation u2 = U(u1) for proving
unique solvability of the whole eddy current problem seems obvious.

For our proof, we define a space Ṽ which contains arbitrary divergence-free functions
in Ω1, but only those functions in the non-conducting domain Ω2 that are determined
by the function U : H(curl,Ω1) →H(curl,Ω2). Moreover, we impose homogeneous
Dirichlet boundary conditions as usual:

Ṽ := {v ∈H(curl,Ω) : v|Ω1
∈H(curl,Ω1),

v|Ω2
= U(v|Ω1

),

(v,w)
L2 = 0, ∀w ∈W (Ω1),

v × n = 0, on Γ = ∂Ω},

(2.40)

where W (Ω1) are the gradient fields on Ω1 as defined in (2.28).

Obviously, Ṽ is just another representation of the divergence-free H(curl)-functions
in Ω1 with zero tangential component on the boundary Γ̃ := ∂Ω ∩ ∂Ω1, i.e. Ṽ ≃
H Γ̃(curl,Ω1)/W (Ω1). Since in Ω1 we deal with the nonlinear parabolic problem
(2.35), and since this equation is uniquely solvable by Lemma 2.6, we may hope that
the whole eddy current problem restricted to Ṽ is uniquely solvable as well. As we
see in the following main theorem on unique solvability of eddy current problems, this
is actually the case.

Theorem 2.10. Let s 7→ ν1(s) be continuous, 0 < ν1 ≤ ν1(s) ≤ ν1, ∀ s ∈ R
+
0 and

let the function s 7→ ν1(s)s be monotone. Assume furthermore ν2 ∈ L∞(Ω2) with
0 < ν2 ≤ ν2(x) ≤ ν2 a.e. in Ω2.



CHAPTER 2. PROBLEM FORMULATION AND ANALYSIS 27

Let moreover u0 ∈ L2(Ω) and f ∈ L2((0, T ), Ṽ
∗
) be given, and suppose σ ∈ L∞ to be

strictly positive.

Then there is a unique u ∈ L2((0, T ), Ṽ ) with u̇ ∈ L2((0, T ), Ṽ
∗
) such that u is the

weak solution of (2.17), more precisely of

σ
∂u

∂t
+ curl (ν1(|curlu|) curlu) = f , in Ω1 × [0, T ],

curl (ν2 curlu) = f , in Ω2 × [0, T ],

u× n = 0, on Γ × [0, T ],

u = u0, on Ω × {0},

with a continuos tangential component along the interface Ω1 ∩ Ω2.
This means that we have a unique u ∈ L2((0, T ), Ṽ ) with u̇ ∈ L2((0, T ), Ṽ

∗
) solution

of

σu̇+ A1(u) = F, in Ω1, (2.41a)

A2u = F, in Ω2, (2.41b)

u0 = u0, (2.41c)

with the operators A1, A2 and F as in (2.25) and (2.31), respectively.

Proof. By the choice of the space Ṽ , i.e. by Lemma 2.9, equation (2.41b) is fulfilled
for any u ∈ L2((0, T ), Ṽ ).
Remains to show that equation (2.41a) with the initial condition (2.41c) is uniquely
solvable. We have already proven this fact in Lemma 2.6 for the space V̄ instead of
Ṽ . However, since Ṽ is nothing more than another representation of V̄ , the result
can be carried over to Ṽ one-to-one.
Thus we have proven that (2.41) is uniquely solvable.

Remark 2.5. We mention that no solvability condition for the sources f is required
(cf. Remark 2.2), since the space of test functions does not contain any gradient fields.

Moreover, we stress that the condition f ∈ L2((0, T ), Ṽ
∗
) is satisfied for any reasonable

right hand side. For example, f ∈ L2((0, T ),L2(Ω)) is clearly sufficient.

Under certain assumptions, the solution is not only unique among the divergence-free
functions, but even in the space

V̂ = {v ∈H(curl,Ω) : v|Ω1
∈H(curl,Ω1),

v|Ω2
= U(v|Ω1

),

v × n = 0, on Γ = ∂Ω}.

(2.42)

This means the solution is unique among thoseH(curl)-functions that are divergence-
free in the non-conducting region Ω2 and arbitrary in Ω1.
We summarize this result, which is an immediate consequence of Theorem 2.10 and
Corollary 2.8, in the following corollary:
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Corollary 2.11. Let the assumptions of Thm. 2.10 be satisfied and suppose that σ =
const. Let furthermore f(t) be defined for all t and f (t) and u0 be divergence-free in
Ω1, i.e.

∫

Ω1

f(t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W (Ω1),

∫

Ω1

u0 ·w = 0, ∀w ∈W (Ω1).

Moreover, let V̂ be defined as in (2.42).

Then there exists a unique u ∈ L2((0, T ), V̂ ) with u̇ ∈ L2((0, T ), V̂
∗
) solving (2.41),

and this solution is divergence-free for almost all t.



Chapter 3

Multiharmonic Ansatz

We recall that we are engaged in the solution of the problem

curl (ν curlu) + σ
∂u

∂t
= f , (2.17)

with Dirichlet boundary conditions and an initial condition. In order to solve this
equation numerically, we need a discretization in time and space. Instead of semi-
discretizing the equation in space and solving the resulting ODE by a time-stepping
method, we take advantage of the periodicity of the source current and thus the ex-
pected solution: Since the right hand side of (2.17) is a harmonic current of the form
f̂ · cos(ωt), the ansatz

u(x, t) = uc(x) · cos(ωt) + us(x) · sin(ωt)

seems to be manifest. This would reduce equation (2.17) to an equation for the
coefficients uc(x) and us(x) that only depend on the space coordinates.
In the linear case (i.e. for ν independent of curlu), the solution can be expressed in
terms of the same base frequency ω as the given current source. Due to the nonlinearity,
however, the solution depends on higher harmonics as well, but will still be periodical
and can consequently be approximated by a multiharmonic ansatz.
This ansatz – a truncated Fourier expansion – reduces the original time-dependent
problem (2.17) to a system of equations for the Fourier coefficients.

This chapter is arranged as follows: First, we define the notion of a periodic steady
state solution and then we show the existence and uniqueness of such a solution by
means of Fourier series expansion.
Obviously, the Fourier series

∑
[uck cos(kωt) + usk sin(kωt)] can be written in complex

notation as Re
∑
ûke

ikωt with ûk = uck − iusk as well. Taking advantage of some
properties of the ansatz, we can show that in this notation the projector Re can be
skipped without losing unique solvability. This would allow to rewrite the problem as
a system of complex equations, as is done in [7, 19, 54], for example, or in [27, 33, 37],
where only the base harmonic is considered. Anyhow, we prefer to stay with the real

29
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problem because dealing with the complex problem leads to complications with the
linearization. We will describe these difficulties in Section 3.4.2.
In Section 3.5, we finally write down the system of equations in space that arises from
the multiharmonic ansatz.

3.1 Steady State Solution

In many eddy current problems, we are not so much interested in some device’s re-
sponse on closure of the electrical circuit, but more on its behavior under a harmonic
current for the time t → ∞. So what we really want to calculate is a steady state
solution, i.e. a solution of the original problem (2.17) without the initial condition:

Definition 3.1. The function u(x, t) is called a periodic steady state solution of equa-
tion (2.17), if

1. u satisfies (2.17) (but not necessarily the initial condition),

2. u is periodic, i.e. ∃T ∀ t : u(x, t) = u(x, t+ T ).

For our eddy current problem, we are actually looking for a periodic steady state
solution as defined in Definition 3.1.

Let the right hand side be given as f(x, t) = f̂ (x) · cos(ωt), and suppose we knew a
periodic solution u with the same period T = 2π

ω
. Then we could of course rewrite it

as a Fourier series

u(x, t) =
∞∑

k=0

uck · cos(kωt) + usk · sin(kωt). (3.1)

Hence, the magnetic field H = H(curlu) is periodic as well and can be written in
the form

H(curlu) =

∞∑

k=0

Hc
k(curlu) · cos(kωt) +Hs

k(curlu) · sin(kωt). (3.2)

We consider equation (2.17) in its weak formulation, i.e.

T∫

0

∫

Ω

H(curlu) · curlv + σ
∂u

∂t
· v dx dt

︸ ︷︷ ︸

=:〈A(u),v〉

=

T∫

0

∫

Ω

f · v dx dt

︸ ︷︷ ︸

=:〈F,v〉

, ∀v. (3.3)

Apparently, using (3.1) and (3.2) as ansatz for the solution, the problem consists in
calculating the Fourier coefficients uck and usk. This means that we regard the nonlinear
operator A as defined in (3.3) as

A : l2∗(V ) →
(
l2∗(V )

)∗
, (3.4)
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where V = H0(curl)2 and

l2∗(V ) :=

{

u ∈ V N :
{

k ‖uk‖V = k
(
‖uck‖

2
H(curl) + ‖usk‖

2
H(curl)

) 1
2

}

k∈N
∈ l2

}

. (3.5)

The condition {k ‖uk‖V }k∈N ∈ l2 in the definition of l2∗(V ) implies

T∫

0

∫

Ω

∣
∣
∣
∣

∂u

∂t

∣
∣
∣
∣

2

dx dt =
T

2
ω2

∞∑

k=0

k2

∫

Ω

|uck|
2 + |usk|

2 dx <∞,

so the operator A is well-defined on the space l2∗(V ).
Obviously, l2∗(V ) is a Hilbert space with scalar product

(u,v)l2
∗
(V ) =

∞∑

k=0

(uck,v
c
k)H(curl) + (usk,v

s
k)H(curl), (3.6)

and norm ‖u‖l2
∗
(V ) = (u,u)

1
2

l2
∗
(V ).

3.2 Existence and Uniqueness

With these considerations, we are now able to show the existence of a uniquely defined
periodic steady state solution of the eddy current problem (2.17).

As in Section 2.4, we factor the space V = H0(curl)2 by the irrotational fields and
restrict the problem to the space V̄ = V /W 2, with W = W (Ω) defined as in (2.28).
Consequently, for u = (uc,us)T ∈ V̄ we have the norm equivalence

‖uc‖2
H(curl ) + ‖us‖2

H(curl ) ≃

∫

Ω

|curluc|2 + |curlus|2 dx, (3.7)

cf. Lemma 2.4 and Remark 2.3.
This allows us to prove the following theorem on existence and uniqueness of a periodic
steady state solution:

Theorem 3.1. Let σ ∈ L∞ and let the reluctivity ν be strongly monotone and con-
tinuous. Suppose the source current f =

∑∞
k=0 f

c
k · cos(kωt) + f sk · sin(kωt) satisfies

fk ∈ V̄
∗
, ∀ k.

Then F as defined in (3.3) is in l2∗(V̄ )∗ and the problem

〈A(u),v〉 = 〈F,v〉, ∀v ∈ l2∗(V̄ ),

with A : l2∗(V̄ ) → l2∗(V̄ )∗ as in (3.3), is uniquely solvable, i.e. there exists a unique
divergence-free periodic steady state solution of (2.17).
If moreover we have

∞∑

k=0

uck = u0,

this periodic steady state solution satisfies the initial condition and thus is the unique
solenoidal solution of (2.17).



CHAPTER 3. MULTIHARMONIC ANSATZ 32

Proof. By Browder’s and Minty’s Theorem (Thm. 2.2) it suffices to show that A is
strictly monotone, coercive and hemicontinuous.
Due to the assumptions on ν we know that

[H(B1) −H(B2)]
T [B1 −B2] ≥ c |B1 −B2|

2, (3.8)

for all inductions B1,B2 and the magnetic field H(B) = ν(|B|) ·B.
We first show strict monotonicity and coerciveness ofA by proving strong monotonicity
and then deducing the required properties:

〈A(u) − A(v),u− v〉 =
T∫

0

∫

Ω

[
H(curlu(t)) −H(curlv(t))

]T [
curlu(t) − curlv(t)

]
+

+ σ

[
∂

∂t
(u(t) − v(t))

]T
[
u(t) − v(t)

]
dx dt ≥

(3.8),(3.10)

≥

T∫

0

∫

Ω

∣
∣curlu(t) − curlv(t)

∣
∣2 dx dt. (3.9)

Here we use our knowledge about the strongly monotone B-H-curve (3.8) and the
readily identifiable fact that the time derivative of any u =

∑
uck cos(kωt)+usk sin(kωt)

is orthogonal to the original function:
∫ T

0

∂u

∂t
· u = 0. (3.10)

Since we have

T∫

0

∫

Ω

∣
∣curlu(t) − curlv(t)

∣
∣2 dx dt =

=

T∫

0

∫

Ω

∣
∣
∣
∣

∞∑

k=0

[
curl (uck − v

c
k) cos(kωt) + curl (usk − v

s
k) sin(kωt)

]
∣
∣
∣
∣

2

dx dt =

=
T

2

∞∑

k=0

∫

Ω

∣
∣curl (uck − v

c
k)
∣
∣2 +

∣
∣curl (usk − v

s
k)
∣
∣2 dx, (3.11)

strong monotonicity is proved with (3.9), the norm equivalence (3.7) and the definition
of the norm in l2∗(V̄ ) (3.6).
Strict monotonicity follows easily, and coerciveness is an immediate consequence as
well:

〈A(u),u〉 = 〈A(u) −A(0),u〉 + 〈A(0),u〉 ≥ c‖u‖2 − ‖A(0)‖ · ‖u‖

=⇒ lim
‖u‖→∞

〈A(u),u〉

‖u‖
= ∞.
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So, since continuity of ν obviously implies hemicontinuity of A, we gain existence and
uniqueness due to Browder’s and Minty’s Theorem.
Clearly, if we have

∑
uck = u0, this unique divergence-free periodic steady state so-

lution satisfies the initial condition and consequently is the unique divergence-free
solution of (2.17).

3.3 Reduction to Odd Harmonics

Theorem 3.1 states that for given current source f , there is exactly one periodic steady
state solution u ∈ l2∗(V̄ ) for the factor space V̄ as defined in the previous section. In
the following, we will use this result to show that we do not require the even coefficients
in the Fourier series for u.
In order to keep notation simple, we use u to denote the sequence of Fourier coeffi-
cients and u(t) to signify the periodic function that is determined by these coefficients
according to (3.1), and similarly for f .

Since odd modes cos((2k+1)ωt), sin((2k+1)ωt), k ∈ N, change the sign when shifted
by half a period, the condition

v
(
t+

π

ω

)
= −v(t), ∀ t, (3.12)

obviously is an equivalent characterization of the property vc2k = vs2k = 0, ∀ k ∈ N,
for any function v =

∑
vck cos(kωt) + vsk sin(kωt). The current source f = f̂ · cos(ωt)

apparently satisfies (3.12).

Due to the unique solvability of (2.17) in the space of divergence-free functions, it is
fairly easy to see that f satisfying (3.12) implies the same property for the periodic
steady state solution:
For a given right hand side f(·), we get the unique solution u. Shifting the right hand
side to f̃ (·) = f

(
· + π

ω

)
, we obtain the solution ũ. On the other hand, f̄ = −f leads

to the result ū.
Note that, since f

(
· + π

ω

)
= −f (·), we have ũ = ū.

Clearly, u
(
· + π

ω

)
is a periodic steady state solution of (2.17) with right hand side f̃ .

Because of Thm. 3.1, we have ũ(·) = u
(
· + π

ω

)
.

On the other hand, −u apparently solves (2.17) with right hand side f̄ and so −u = ū

because of the uniqueness.

Consequently,

u
(
· +

π

ω

)
= ũ(·) = ū(·) = −u(·),

i.e. u satisfies (3.12) and can thus be described by odd harmonics.

We summarize this discussion in the following theorem.



CHAPTER 3. MULTIHARMONIC ANSATZ 34

Theorem 3.2. Let the current source f satisfy (3.12). Then the unique periodic
steady state solution of (2.17) with right hand side f satisfies (3.12) as well and can
accordingly be entirely represented by odd harmonics, i.e.

u(x, t) =
∞∑

k=0

[
uc2k+1(x) · cos((2k + 1)ωt) + us2k+1(x) · sin((2k + 1)ωt)

]
.

Remark 3.1. Since the solution u(x, t) depends only on odd harmonics, the magnetic
field H(curlu) has the same property:

H
(
t+

π

ω

)
= ν

(∣
∣curlu

(
t+

π

ω

)∣
∣
)
· curlu

(
t+

π

ω

)
=

= ν(| − curlu(t)|) · (−curlu(t)) = −H(t).

3.4 The Complex Problem

Clearly, the Fourier series (3.1) can also be written in complex notation as

u(x, t) = Re

∞∑

k=0

ûk · e
ikωt, (3.13)

with ûk = uck − iusk.
In this section, we show that the problem can be regarded as a complex one, i.e. that
the projector Re can be skipped without losing unique solvability. Furthermore, we
point out the difficulties that arise when complex Fourier coefficients ûk are considered
and the problem is regarded in complex vector spaces.

3.4.1 Uniqueness over C

We are concerned with the equation

curl (ν curlu) + σ
∂u

∂t
= f . (2.17)

By Fourier series expansion of the desired periodic steady state solution, we can rewrite
it as

Re

(

curl

∞∑

k=0

Ĥk(curlu) · eikωt + iωσ

∞∑

k=0

kûk · e
ikωt

)

= Re

∞∑

k=0

f̂ k · e
ikωt, (3.14)

where we know that the coefficients f̂ k, ûk and Ĥk are zero for even k.
In (3.14) we have expressed the magnetic fieldH and the right hand side f as complex
Fourier series, just like we did for u in (3.13).

We show now that the projector Re is injective for these Fourier series and can thus
be skipped without losing unique solvability.
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Lemma 3.3. For Fourier series u =
∑

k≥0 ûk · e
ikωt with û0 = 0, the projector Re is

injective, i.e.
Reu = 0 =⇒ ûk = 0, ∀ k.

Proof. We have

Reu =
∞∑

k=1

Re ûk cos(kωt) − Im ûk sin(kωt),

and the functions {cos(kωt), sin(kωt)}k≥1 are linearly independent.

Consequently, the complex problem

curl
∞∑

k=0

Ĥk(curlu) · eikωt + iωσ
∞∑

k=0

kûk · e
ikωt =

∞∑

k=0

f̂k · e
ikωt, (3.15)

i.e. problem (3.14) without the projector Re, is uniquely solvable as well:

Lemma 3.4. Under the assumptions of Theorem 3.1 and Theorem 3.2, equation (3.15)
with Dirichlet boundary conditions

ûk × n = 0, ∀ k,

is uniquely solvable in the space l2∗(V̄ ).

Proof. Since Re is injective (Lemma 3.3), any solution of (3.14) with homogeneous
Dirichlet boundary conditions solves equation (3.15). Uniqueness is guaranteed by the
unique solvability of (3.14) (provided by Theorem 3.1) and again by Lemma 3.3.

3.4.2 Difficulties because of the Complex Notation

Although some might prefer to regard equation (3.3) in complex vector spaces, we will
consider the real problem in the rest of this thesis, because the solution of (3.15) leads
to some complications:

Denote by û = (û1, û3, . . .) the sequence of complex Fourier coefficients of u(x, t),
where we exploit the knowledge that û2k = 0, ∀ k ∈ N according to Theorem 3.2. We
introduce the notation

Hcurlu(curlw) = ν(|curlu|) · curlw.

Accordingly, let Ĥk,curlu(curlw) be the k-th Fourier coefficient of Hcurlu(curlw)

and let Ĥcurlu(curlw) denominate the sequence of these coefficients.
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Consider the nonlinear operator

〈A
û

(ŵ), v̂〉 =

T∫

0

∫

Ω

∑

k∈Nodd

Ĥk,curlu(t)(curlw(t)) eikωt · curl
∑

l∈Nodd

v̂l eilωt+

+ iωσ
∑

k∈Nodd

kûk e
ikωt ·

∑

l∈Nodd

v̂l eilωt dx dt =

=T

∫

Ω

Ĥcurlu(t)(curlw(t)) · curl v̂ + iωσDû · v̂ dx,

(3.16)

with the linear operator D defined by Dû = (û1, 3û3, . . . , kûk, . . .), and where by
Nodd we mean the set of all odd numbers.

The usual approach for solving a nonlinear problem

〈A
û

(û), v̂〉 = 〈F, v̂〉, ∀ v̂, (3.17)

would be linearization. However, here this leads to the following difficulties:

• The operator A : û 7→ A
û

(û) is not differentiable, so we cannot apply the
Newton method for the solution of (3.17). This method is locally superlinearly
convergent (cf. Lemma 4.10) and thus would be the preferred way to solve the
nonlinear problem.

• Another idea is the solution by means of a fixed point iteration. This seems well
suited for our problem, since equation (2.17) is quasi-linear. Unfortunately, A is
not quasi-linear, and so the natural “linearization” A

û

(ŵ) is not linear in w:

The Fourier coefficient Ĥk,curlu(curlw) can be calculated by

Ĥk,curlu(curlw) =
1

T

T∫

0

ν(|curlu(t)|) curlw(t) · eikωt dt.

This expression is not linear in the coefficients ŵ, since for λ ∈ C with Imλ 6= 0
we have

T∫

0

ν(|curlu(t)|) curl Re

(
∑

l

(λŵl) e
ilωt

)

· eikωt dt

6= λ

T∫

0

ν(|curlu(t)|) curl Re

(
∑

l

ŵl e
ilωt

)

· eikωt dt.

For these reasons, we prefer the notation with real coefficients uck and usk. We will
now derive the space-dependent equations that arise from this ansatz:
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3.5 Time Discretization by means of a Multihar-

monic Ansatz

For numerical calculations, we do not use the whole Fourier series, but only a finite
sum

u(x, t) ∼
N∑

k=0

[
uck(x) · cos(kωt) + usk(x) · sin(kωt)

]
. (3.18)

We use this so-called multiharmonic ansatz for the current source f and for the mag-
netic field H(curlu) as well, i.e. we truncate the Fourier series expansion at the N -th
coefficient. Consequently, the problem that we deal with reads

curl
N∑

k=0

[
Hc

k(curlu) · cos(kωt) +Hs
k(curlu) · sin(kωt)

]
+

+ ωσ

N∑

k=0

k
[
usk · cos(kωt) − uck · sin(kωt)

]
=

N∑

k=0

[
f ck · cos(kωt) + f sk · sin(kωt)

]
.

(3.19)

We test this equation with cos(mωt) and sin(mωt) and integrate by t, taking advantage
of the orthogonality

ω

π

∫ 2π
ω

0

cos(kωt) cos(mωt) dt = δkm,

ω

π

∫ 2π
ω

0

cos(kωt) sin(mωt) dt = 0,

ω

π

∫ 2π
ω

0

sin(kωt) sin(mωt) dt = δkm.

Together with the fact that all even harmonics are zero (cf. Theorem 3.2), this leads
to the following system of equations in space:
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ω

π

∫ 2π
ω

0
(3.19) ·

{
cos(mωt)

sin(mωt)

}

dt =⇒

curl










Hc
1(curlu)

Hs
1(curlu)

...
Hc

2n+1(curlu)
Hs

2n+1(curlu)










+

+ ωσ










0 1
−1 0

. . .

0 2n + 1
−(2n + 1) 0










︸ ︷︷ ︸

=:D










uc1
us1
...

uc2n+1

us2n+1










=










f c1
f s1
...

f c2n+1

fs2n+1










, (3.20)

where we assume N = 2n+ 1.
For the sake of better readability, we introduce the abbreviation H = (Hc

1, H
s
1, . . . ,

Hs
2n+1)

T for the Fourier coefficients of the magnetic field, and analogously we write
u for (uc1, . . . , u

s
2n+1)

T and f for (f c1, . . . , f
s
2n+1)

T . Now the problem that we have
to solve, i.e. (3.20) together with homogeneous Dirichlet boundary conditions, can be
written in a more compact way:

curlH(curlu) + ωσDu = f , in Ω,
u× n = 0, on Γ,

(3.21)

with the matrix D from (3.20).



Chapter 4

The Finite Element Method

The finite element method (FEM) is a powerful method for the numerical solution of
partial differential equations.
In this chapter we summarize the main results of finite element analysis that will
be needed for mathematical modeling of the inductive heating problem that we are
concerned with. To give some ideas, we start with FEM for linear elliptic problems.
After that, we point out the most important properties of the edge-based Nédélec
elements that we need for approximating H(curl).
The interested reader will find a more detailed introduction to the finite element
method in [9, 11, 14, 29], for example.

After this part that deals with the discretization of the eddy current problem, we
analyze the corresponding harmonic linear problem. Whereas the original variational
equation is uniquely solvable only in the factor space of divergence-free functions,1

we show that a slightly perturbed problem is uniquely solvable in the whole space
H(curl). As a consequence, we solve the perturbed problem in our numerical calcu-
lations.

Finally, we turn to the nonlinear multiharmonic problem and show how to calculate
the derivative of the nonlinear operator that we need for Newton’s iteration.

4.1 Overview on the Method of Finite Elements

The finite element method is used to approximate the solution of boundary and initial
value problems that are given in variational formulation over a space V . Because of this
weak formulation, the solution appears in the integral of a quantity over a domain. This
is a crucial property, because the integral of a measurable function over an arbitrary
domain can be broken up into the sum of integrals over disjoint subdomains whose
union is the original domain. Consequently, the analysis of a problem can be done
locally.

1Compare the results of Chapter 2, notably Lemma 2.5 and Theorem 2.10.

39
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On sufficiently small subdomains, the so-called finite elements, the solution is ap-
proximated by polynomial functions. Apparently, the quality of the approximation is
enhanced with decreasing mesh size and with increasing degree of the polynomials.
Accordingly, there are different ways for improving approximation: Whereas tradi-
tional theory mostly analyzes convergence on refinement of the mesh for a constant
polynomial degree (h version) (e.g. [9, 14]), there have been published many results on
the augmentation of local refinement with ansatz functions of higher order (hp-FEM)
in recent years (e.g. [5, 6, 36, 48, 49]).

The weak formulation Let Ω ⊂ Rd be a sufficiently smooth domain. We assume
a given problem in weak formulation, which is already homogenized, i.e. the Dirichlet
boundary conditions are homogeneous. The problem can be stated in abstract form
as follows:

Find u ∈ V : a(u, v) = 〈F, v〉, ∀ v ∈ V. (4.1)

For second-order problems, the space V often is some subspace of H1(Ω) that includes
the homogeneous Dirichlet boundary conditions.2 In our case the variational problem
is defined in H(curl), and we have V = {v ∈ H(curl,Ω) : v × n = 0 on ∂Ω} =
H0(curl,Ω).

If a(·, ·) is bilinear, elliptic and continuous and if F ∈ V ∗, existence and uniqueness of
the solution of (4.1) is guaranteed by the Lax-Milgram theorem (Thm. 2.1).

Discretization by the Galerkin method The Galerkin method for approximating
the solution of a variational problem consists in defining similar problems in finite-
dimensional spaces Vh.
We only consider so-called conforming methods, i.e. methods where the discrete prob-
lem is stated in a subspace Vh ⊂ V .
The subscript h is the discretization parameter and denotes that with h→ 0 we want
to achieve convergence of the approximate solution uh ∈ Vh against the exact solution
u ∈ V .

We state the discrete problem in Vh ⊂ V as

Find uh ∈ Vh : a(uh, vh) = 〈F, vh〉, ∀ vh ∈ Vh. (4.2)

Since we have Vh ⊂ V , Lax’ and Milgram’s theorem still holds for the discrete problem,
i.e. there is a unique uh ∈ Vh solving (4.2).

We choose a basis (p(i))i∈ωh
of Vh and can thus represent uh ∈ Vh by the linear combi-

nation
uh =

∑

i∈ωh

u(i)p(i), (4.3)

with u(i) ∈ R (or u(i) ∈ C, if V is a space over C).

2For instance in the Poisson problem −∆u = f in Ω, u = 0 on ∂Ω, we would have V = H1
0 (Ω).
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Obviously, since a(·, ·) and F are linear, the discrete problem (4.2) is fulfilled, if we
have a(uh, p

(j)) = 〈F, p(j)〉 for all j ∈ ωh.
This leads to the Galerkin system

Find uh = (u(i))i∈ωh
∈ R

Nh : Kh uh = f
h
, (4.4)

with Nh = #ωh = dim Vh, Kh,ij = a(p(j), p(i)), ∀ i, j ∈ ωh and f
h,j

= 〈F, p(j)〉, ∀ j ∈ ωh.

Cea’s Lemma answers the natural question how well the solution of the discrete prob-
lem approximates the solution of the continuous problem: it states that the discretiza-
tion error can be bounded by the approximation error, to wit by the distance between
the function u ∈ V and the subspace Vh ⊂ V .

Lemma 4.1 (Cea [9]). Let F ∈ V ∗ and suppose a(·, ·) is bilinear, elliptic and bounded:

a(v, v) ≥ µ1‖v‖
2, ∀ v ∈ V and a(u, v) ≤ µ2‖u‖‖v‖, ∀u, v ∈ V.

Assume furthermore that u ∈ V is the solution of (4.1) and uh ∈ Vh ⊂ V its approxi-
mation satisfying (4.2).
Then we have

‖u− uh‖V ≤
µ2

µ1
inf
vh∈Vh

‖u− vh‖V .

We have estimated the discretization error of the variational problem by the best
approximation error to the continuous solution u. The next step is to find some
estimate for the approximation error. This question can be decided by properties of
the space Vh and additional knowledge about the smoothness of the true solution.

Finite element subspaces The finite element method is a special case of the
Galerkin method, i.e. a special choice of the subspaces Vh. The construction of the
space Vh is characterized by the following three basic aspects:

• First, a triangulation Th is established over the given domain Ω ⊂ Rd, i.e. Ω is
written as a finite union of subdomains (called elements) T ∈ Th, in such a way
that some properties are satisfied:

1. ∀T ∈ Th : T = T ,
◦

T 6= ∅ and connected,

2. ∀T ∈ Th : ∂T is Lipschitz-continuous,

3.
⋃

T∈Th

= Ω,

4. ∀T1, T2 ∈ Th : T1 6= T2 ⇒ T1 ∩ T2 =







∅,

vertex,

edge,

face (if d = 3).

• Secondly, the functions vh ∈ Vh are piecewise polynomials, i.e. for each T ∈ Th,
the spaces PT = {vh|T : vh ∈ Vh} consist of polynomials.
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• Thirdly, there should exist a basis in the space Vh whose functions have small
supports.

Many approximation estimates depend on properties of the triangulation such as shape
regularity.

Definition 4.1. A family of triangulations {Th}h is called shape regular if there exists
κ > 0 such that each T ∈

⋃

h Th contains a sphere of radius ρT with

hT
ρT

≤ κ,

where hT is the diameter of T .
A family of triangulations {Th}h is quasi-uniform if it is shape regular and there is a
constant ν such that for all Th we have

h

hT
≤ ν, ∀T ∈ Th,

where the mesh size h is defined as h = maxT∈Th
hT .

The following theorem provides estimates for the approximation error in the case of
a smooth solution u and for a shape regular triangulation. So together with Cea’s
Lemma (Lemma 4.1) it ensures convergence for h→ 0.

Theorem 4.2 ([9]). Let t ≥ 2 and Th a shape regular triangulation of Ω. Suppose
u ∈ H t(Ω). Then there exists a constant c = c(Ω, κ, t) such that

‖u− Ihu‖m,h ≤ c · ht−m|u|t,Ω, 0 ≤ m ≤ t, (4.5)

where Ih : H t(Ω) → Vh denotes the interpolation by piecewise polynomials of degree
t− 1 and the mesh dependent norm ‖ · ‖m,h is defined as follows:

‖v‖m,h :=

√
∑

T∈Th

‖v‖m,T . (4.6)

Example. If we deal with a problem in V = H1
0 (Ω) with smooth solution u ∈ H2(Ω),

Theorem 4.2 and Cea’s Lemma provide the estimate

‖u− uh‖1 ≤ c inf
vh∈Vh

‖u− vh‖1 ≤ c‖u− Ihu‖1,h ≤ c̃h|u|2,

for interpolation with piecewise linear functions. That means, if we choose polynomials
of at least degree 1 as ansatz functions in the finite element space Vh, convergence is
ensured.
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Our case is slightly more difficult, because the problem that we are concerned with is
defined in H(curl). Consequently, we need estimates for

inf
vh∈V h

‖u− vh‖V = inf
vh∈V h

[
(u− vh,u− vh)

2
L2

+ (curl (u− vh), curl (u− vh))
2
L2

] 1
2 .

For this task we require the interpolation operator Πh mapping adequately smooth
functions into the Nédélec finite element space, which will be introduced in Section
4.2. Then we have the following result for a sufficiently smooth solution u:

Lemma 4.3. Let u ∈H1(Ω) with curlu ∈H(div), suppose we have a shape regular
triangulation Th of Ω. Then

‖u−Πhu‖L2 ≤ c · h ‖u‖
H

1 .

If moreover curlu ∈H1, we have

‖curl (u−Πhu)‖
L2 ≤ c · h ‖curlu‖

H

1.

Proof. The proof can be found in [4], or – for the case of a Clément-type quasi inter-
polation operator – in [45].

4.2 Nédélec Elements for H(curl)-Problems

Finally, we go into more detail and describe the finite element space V h that we use
to approximate H(curl,Ω).
One important property of H(curl), that will immediately give rise to ideas for dis-
cretization, is the following: If we have two adjacent domains Ω1 and Ω2 and a vector
p ∈ H(curl,Ω1 ∪ Ω2), then the tangential component of p is continuous along the
interface between the two domains (e.g. [35]). Consequently, the degrees of freedom
in the finite element space are exactly the tangential components of edges and faces
(as well as interior moments for higher order elements).
Nédélec introduced these edge elements in [35]; see also [24] for the connection between
conforming spaces for discretization of H(curl) and H(div) and differential forms.

Suppose we have a triangulation of Ω ⊂ R3 consisting of closed tetrahedra, and fix an
integer k ≥ 0. We define V h to be the Nédélec edge discretization of H(curl,Ω) of
index k. That means, restricted to a tetrahedron T , the elements of V h are functions
of the form p(x) + r(x) with p ∈ Pk(T ) and r ∈ Pk+1(T ) such that r · x ≡ 0.
The degrees of freedom of vh ∈ V h are

• the moments of vh · s of order at most k on each edge, where s denotes the unit
tangent vector to the edge,

• the moments of vh×n of order at most k−1 on each face, where n is the normal
to the face,
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Figure 4.1: Degrees of freedom for the Nédélec edge discretization in the case k = 0.

• the moments of vh of order at most k − 2 on each tetrahedron.

In the lowest order case k = 0, the degrees of freedom for the space V h are the
tangential components of the edges, cf. Figure 4.1.
The finite element space V h corresponding to the Nédélec edge discretization is con-
forming in the space H(curl) [35].

4.3 The Linear Problem

For the numerical solution of equation (3.21), we discretize the problem using the
method of finite elements and solve the resulting system of nonlinear equations by
means of Newton’s method.
However, before we turn to the nonlinear problem, we will discuss the main features
of the corresponding linear problem. For the sake of simplicity, we restrict ourselves
to one harmonic in this section, i.e. we apply the ansatz

u(x, t) = uc(x) · cos(ωt) + us(x) · sin(ωt),

to the problem

curl (ν curlu) + σ
∂u

∂t
= f ,

with homogeneous Dirichlet boundary conditions. We suppose that the reluctivity
ν = ν(x) does not depend on the induction B = curlu.
As we have seen in Chapter 3, this leads to the following equation:

∫

Ω

ν curl (vc,vs)curl

(
uc

us

)

+ ωσ(vc,vs)

(
0 1
−1 0

)(
uc

us

)

dx =

=

∫

Ω

(vc,vs)

(
f c

f s

)

dx, ∀

(
vc

vs

)

∈H0(curl)2. (4.7)

In Theorem 3.1 we have shown that there exists a unique divergence-free periodic
steady state solution of the eddy current problem (2.17). Since for linear problems and
harmonic source current, this solution obviously depends only on the base frequency,
equation (4.7) is uniquely solvable in the space of divergence-free functions.
Anyhow, we will show existence and uniqueness of this linear problem again by em-
ploying the knowledge about mixed finite element methods and saddle point problems.
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4.3.1 Mixed Problems

Mixed finite element methods are concerned with the solution of problems of the
following form:

Find (u, φ) ∈ V ×W :
a(u, v) + b(v, φ) = 〈F, v〉, ∀ v ∈ V,
b(u, ψ) = 〈G,ψ〉, ∀ψ ∈W.

(4.8)

We introduce the space

Vb := {v ∈ V : b(v, ψ) = 0, ∀ψ ∈W}. (4.9)

Remark 4.1. Note that, if a pair (u, φ) satisfies (4.8) with G = 0, then the first
argument u obviously is a solution of the variational problem

Find u ∈ Vb : a(u, v) = 〈F, v〉, ∀ v ∈ Vb. (4.10)

The following theorem answers the question about unique solvability of the mixed
problem (4.8):

Theorem 4.4 ([12]). Suppose that the bilinear form a(·, ·) is continuous on V × V
and Vb-elliptic, i.e.

∃α > 0 : a(v, v) ≥ α‖v‖2
V , ∀ v ∈ Vb.

Assume moreover that the bilinear form b(·, ·) is continuous on V × W and that it
satisfies the so-called inf-sup-condition

∃ β > 0 : inf
ψ∈W,ψ 6=0

sup
v∈V, v 6=0

b(v, ψ)

‖v‖V ‖ψ‖W
≥ β.

Then, for each F ∈ V ∗ and G ∈W ∗, problem (4.8) has a unique solution.

We now want to rewrite the variational equation (4.7) as an equivalent saddle point
problem. For this task, we define V := H0(curl)2 and, as in Chapter 2, the space of
all gradient fields in the general multiply connected domain Ω:3

W̃ := {w = grad φ : φ ∈ H1(Ω) and φ = ci on Γi, 1 ≤ i ≤ p}, (4.11)

W := W̃
2
. (4.12)

If we define the bilinear form b(·, ·) as

b(v,φ) :=

∫

Ω

(vc,vs)

(
φc

φs

)

dx, ∀v ∈ V , φ ∈W , (4.13)

the space V b (4.9) introduced for the analysis of mixed finite element methods equals
exactly the space of all weakly divergence-free functions in V = H0(curl)2. As we

3Compare the definition (2.28) on page 20 (Chapter 2).
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have seen in the discussion about existence and uniqueness in Chapter 2, this space
is essential for eddy current problems, since in non-conducting regions uniqueness can
only be guaranteed up to the set of gradient fields.

Let us now define

a(u,v) :=

∫

Ω

ν curl (vc,vs) curl

(
uc

us

)

+ ωσ(vc,vs)

(
0 1
−1 0

)(
uc

us

)

dx, (4.14)

for u,v ∈ V , and consider the mixed formulation

a(u,v) + b(v,φ) =

∫

Ω

(vc,vs)

(
f c

f s

)

dx, ∀v ∈ V ,

b(u,ψ) = 0, ∀ψ ∈W .
(4.15)

For the following, we denote the right hand side of the first equation,
∫
vTf , by 〈F,v〉.

By Remark 4.1 we know that, if the pair (u,φ) ∈ V ×W satisfies (4.15), u is a
solution of equation (4.7) with test functions v ∈ V b. However, since the source
current is divergence-free, i.e. (f ,ψ)

L2 = 0, ∀ψ ∈W , u also satisfies equation (4.7)
for gradient fields as test functions, as can easily be seen.
On the other hand, if we have a divergence-free solution u of (4.7), obviously the pair
(u, 0) solves problem (4.15).
In this sense, the mixed problem (4.15) and the equation (4.7) (in the space of
solenoidal functions V b) are equivalent.

Finally, we will show that the assumptions of Theorem 4.4 are fulfilled, i.e. that equa-
tion (4.15) is uniquely solvable.

Lemma 4.5. The mixed problem (4.15) has a unique solution (u,φ) ∈ V ×W , where
moreover, we have u ∈ V b, i.e. u is divergence-free, and φ = 0.

Proof. The proof splits in two parts: First, we show the assumptions of Thm. 4.4, and
secondly, we prove the additional properties of the solution.

1. Existence and uniqueness.
Obviously, a(·, ·) is bilinear and continuous. V b - ellipticity follows from the norm
equivalence

∫
|curl · |2 ≃ ‖ · ‖2

H(curl) in the space of divergence-free functions V b

(cf. Lemma 2.4 and Remark 2.3).

Remains to show the inf-sup-condition:
Let ψ ∈W be given. We have to find v ∈ V such that

b(v,ψ) =

∫

Ω

vTψ dx ≤ β‖v‖
V

‖ψ‖
W

.

Choose v = ψ. This choice is possible because ψ ∈ H0(curl)2 = V : Firstly,

curlψ = 0 and thus ψ ∈ H(curl)2, and secondly, since ψ = grad (φ1, φ2)
T
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with φj = cji on Γi, the tangential component ψ × n obviously equals zero on
Γi, what implies ψ ∈ V . Finally we have

‖ψ‖
V

‖ψ‖
W

=
(
‖ψ‖2

L2
+ ‖curlψ‖2

L2

) 1
2 ‖ψ‖

L2
= ‖ψ‖2

L2
= b(ψ,ψ),

thus the inf-sup-condition is fulfilled with β = 1.

2. Additional properties.
The second part of (4.15), b(u,ψ) = 0, ∀ψ ∈ W , is the defining equation of
u ∈ V b, so this property is clear.

It is easy to see that (u, 0) solves (4.15). Consequently, due to the uniqueness,
we have φ = 0.

By the discussion on equivalence between the mixed problem (4.15) and the variational
equation (4.7), we have the following corollary:

Corollary 4.6. Problem (4.7) is uniquely solvable in the space of weakly divergence-
free functions V b, even with test functions v ∈ V = H0(curl)2.

4.3.2 The Perturbed Problem

For the numerical solution of the variational equation (4.7), one can try to tackle the
problem in the factor space V /W , or work with the saddle point problem (4.15).
However, we prefer to follow a different approach: We slightly perturb the problem
by introducing a small regularization parameter ǫ > 0 in the non-conducting regions,
more precisely by replacing the conductivity coefficient σ by

σǫ(x) = max{σ(x), ǫ}. (4.16)

This perturbed problem is uniquely solvable not only in V b = H0(curl)2/W , but the
solution is unique in the whole space H0(curl)2. Of course, we expect this uniqueness
by the discussion and results on conducting regions in Chapter 2 (cf. Corollary 2.8
and 2.11), but naturally we will prove this property of the linear problem (4.7) arising
from the harmonic ansatz.
First, though, we point out that the perturbed problem is close to the original equation
and that its solution converges to the original solution for ǫ → 0. In order to clarify
this proposition, we define the bilinear form

aǫ(u,v) :=

∫

Ω

ν curl (vc,vs) curl

(
uc

us

)

+ ωσǫ(v
c,vs)

(
0 1
−1 0

)(
uc

us

)

dx. (4.17)

The perturbed problem

Find (uǫ,φǫ) ∈ V ×W :
aǫ(uǫ,v) + b(v,φǫ) = 〈F,v〉, ∀v ∈ V ,
b(uǫ,ψ) = 0, ∀ψ ∈W ,

(4.18)
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with the linear form F as in (4.15), satisfies the assumptions of Theorem 4.4 and thus
is well posed in H0(curl)2 ×W , just like the original problem (4.15).

For elliptic variational problems, the situation of a perturbed bilinear form is covered
by Strang’s Lemmata on variational crimes [50]. These can be generalized to mixed
problems, what provides an estimate of the error ‖u− uǫ‖:

Lemma 4.7. Suppose that both the problem (4.8) and the problem

aǫ(uǫ, v) + b(v, φǫ) = 〈F, v〉, ∀ v ∈ V,
b(uǫ, ψ) = 0, ∀ψ ∈W,

(4.19)

with a perturbed bilinear form aǫ(·, ·) satisfy the assumptions of Theorem 4.4. Then
there exists a constant C such that

‖u− uǫ‖V ≤ C inf
v∈Vb

(

‖u− v‖V + sup
w∈Vb

a(v, w) − aǫ(v, w)

‖w‖V

)

,

where u is the solution of (4.8) and uǫ the solution of (4.19).

Proof. By the assumptions, we know

aǫ(v, v) ≥ αǫ‖v‖
2
V , ∀ v ∈ Vb, (4.20)

for some αǫ > 0, and
a(u, v) ≤ µ‖u‖V ‖v‖V , ∀u, v ∈ V,

for a constant µ. Obviously,

‖u− uǫ‖V ≤ ‖u− v‖V + ‖v − uǫ‖V , (4.21)

for arbitrary v ∈ Vb. Define w := uǫ − v ∈ Vb. Then we have

αǫ‖uǫ − v‖2
V ≤ aǫ(uǫ − v, w) =

= aǫ(uǫ, w)
︸ ︷︷ ︸

=〈F,w〉

− aǫ(v, w) + a(u− v, w) − a(u, w)
︸ ︷︷ ︸

=〈F,w〉

+ a(v, w) ≤

≤ a(v, w) − aǫ(v, w) + µ‖u− v‖V ‖w‖V .

Dividing by ‖w‖ = ‖uǫ− v‖ and αǫ and taking the supremum over all w ∈ Vb leads to

‖uǫ − v‖V ≤
µ

αǫ
‖u− v‖V +

1

αǫ
sup
w∈Vb

a(v, w) − aǫ(v, w)

‖w‖V
, ∀ v ∈ Vb. (4.22)

The combination of (4.21) and (4.22) yields the desired result

‖u− uǫ‖ ≤ inf
v∈Vb

(

(1 +
µ

αǫ
)‖u− v‖V +

1

αǫ
sup
w∈Vb

a(v, w) − aǫ(v, w)

‖w‖V

)

,

so the lemma is proved with C = max{(1 + µ

αǫ
), 1
αǫ
}.
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Remark 4.2. The constant C in Lemma 4.7 depends on αǫ, the Vb-ellipticity constant
of the perturbed bilinear form aǫ(·, ·) (4.20). We emphasize that in our case, i.e. with
aǫ(·, ·) as defined in (4.17), αǫ does not depend on ǫ, since we have

aǫ(v,v) =

∫

Ω

ν |curlv|2 + ωσǫ(v
cvs − vsvc) dx =

=

∫

Ω

ν |curlv|2 dx ≥ c ‖v‖2
V

, ∀v ∈ V b. (4.23)

Indeed, in the space of divergence-free functions V b we have equivalence between the

seminorm ‖curlv‖
L2 and the full norm ‖v‖

V

=
(
‖v‖2

L2
+ ‖curlv‖2

L2

) 1
2 according

to Lemma 2.4 and Remark 2.3. Since ν is assumed to be bounded from below, i.e.
ν(x) ≥ ν > 0 almost everywhere, the estimate (4.23) holds.

Remark 4.3. As a consequence, the solution of the corresponding variational problem

Find uǫ ∈ V b : aǫ(uǫ,v) = 〈F,v〉, ∀v ∈ V = H(curl)2,

converges to the solution of (4.7) for ǫ→ 0.
This is due to the fact that the difference between perturbed and original bilinear form
can be easily estimated in the following way:

|a(v,w) − aǫ(v,w)| =

∣
∣
∣
∣

∫

Ω

ω(σ − σǫ)(v
c,vs)

(
0 1
−1 0

)(
wc

ws

)

dx

∣
∣
∣
∣
≤

≤ ǫω ‖v‖
L2

‖w‖
L2
.

With this estimate and the knowledge that u ∈ V b (cf. Lemma 4.5), we have

‖u− uǫ‖V ≤ C inf
v∈Vb

(

‖u− v‖
V

+ sup
w∈Vb

ǫω ‖v‖
L2

‖w‖
L2

‖w‖
V

)

≤

≤ ǫ ω C‖u‖
L2 ,

according to Lemma 4.7, so convergence for ǫ→ 0 is ensured.

Ultimately, we show that the perturbed problem is uniquely solvable in H(curl)2:

Lemma 4.8. There exists a unique solution uǫ ∈ V of the variational equation

aǫ(uǫ,v) = 〈F,v〉, ∀v ∈ V , (4.24)

and uǫ is divergence-free, i.e. uǫ ∈ V b.

Proof. Existence of a solution uǫ ∈ V b and uniqueness in V b is guaranteed by the
equivalence with the mixed problem. Suppose now that ũ = uǫ +w solves (4.24) for
some w ∈W . Then we have

0 = aǫ(uǫ +w,v) − 〈F,v〉 = aǫ(uǫ,v) + aǫ(w,v) − 〈F,v〉 = aǫ(w,v), ∀v ∈ V .
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For gradient fields w ∈W , aǫ(w,v) reduces to

∫

Ω

ωσǫ(w
cvs −wsvc) dx.

Since ω 6= 0 and σǫ(x) 6= 0, ∀x,

aǫ(w,v) = 0, ∀v ∈ V ,

implies w = 0. Consequently, uǫ is unique in V = H0(curl)2.

The results of this section, especially the Lemmata 4.7 and 4.8, motivate and justify
our procedure of solving a perturbed problem with conductivity σǫ instead of σ.

4.3.3 Preconditioning

For some given finite element space V h, the discretization of the perturbed linear
harmonic problem leads to a system of the form

(
A M

−M A

)

︸ ︷︷ ︸

=:K

(
uc

us

)

=

(
f c

f s

)

. (4.25)

Here the matrix A = Ah is the discretization of the operator

〈Au,v〉 =

∫

Ω

ν curlvTcurlu dx,

and M = Mh results from

〈Mu,v〉 =

∫

Ω

ωσǫ v
Tu dx,

where in (4.25) as well as in the sequel we omit the subscript h.
By uc ∈ Rn we mean the discretization of uc, and analogously for us, f c and f s.

Before we remark on the solution of the system (4.25), we point out that on refinement
of the discretization, the condition number of the matrix K in (4.25) deteriorates: We
have

κ(K) = O(h−2),

where h is the mesh size and the condition number is defined as κ(K) := ‖K‖ · ‖K−1‖
with an arbitrary (fixed) matrix norm ‖ · ‖ in R2n×2n.

For the solution of large linear systems, iterative solvers seem to be most appropriate.
Their convergence speed, however, depends strongly on the spectrum of the system
matrix.
In the case of a symmetric system, the condition number κ reveals the essential struc-
ture of the spectrum and consequently provides information about the convergence of
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an iterative solver. The issue is more complicated for non-symmetric matrices, since
they generally have complex eigenvalues, wherefore the condition number is not fully
sufficient to illustrate the distribution of the eigenvalues.
Anyhow, even for non-symmetric problems, the condition number hints on the con-
vergence properties of iterative solvers.

Since the dimension of the finite element space and consequently the condition number
κ(K) can be fairly large, preconditioning is vital in order to keep the number of steps
in the iterative solution at an acceptable level.
The essence of preconditioning is to construct a matrix C such that the operation

w = C−1d (4.26)

can be carried out at low computational costs, and such that at the same time C
approximates the system matrix K: We want to achieve

κ(C−1K) = const,

or even better, the eigenvalues of C−1K should cluster around 1.

In this context, the question arises how to choose C. Multigrid methods (cf. Chapter
5) have proven to yield good preconditioners, while the computational work in their
application (4.26) is of optimal order, namely proportional to the number of unknowns.
Since multigrid theory mostly deals with symmetric problems, we prefer to apply a
multigrid iteration to a symmetric system and by this means construct a preconditioner
for the non-symmetric system K as defined in (4.25).
More precisely, we propose to choose C by

C−1 =
1

2

(
(A+M)−1 0

0 (A+M)−1

)(
I I
I −I

)

, (4.27)

where the inverse of A+M is approximated by a symmetric multigrid iteration (e.g. [28,
30]).

This choice is justified because we can show that for exact inversion of A + M , the
condition number is bounded by 2.

Lemma 4.9. With K ∈ R2n×2n defined as in (4.25) and C−1 as in (4.27), we have

κ(C−1K) ≤ 2,

if we choose the vector norm in R2n by ‖u‖A+M = ‖(uc, us)T‖A+M :=
[(

(A+M)uc, uc
)

+
(
(A +M)us, us

)] 1
2 .

Proof. In the following, we refer to (uc, us)T ∈ R2n by u. We introduce – both for
v ∈ Rn and v ∈ R2n – the abbreviation (v, v)1 := (v, v)A+M = ((A + M)v, v), where
(·, ·) denotes the Euclidean scalar product. The same notation is used for the norm.
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The condition number is calculated by

κ(C−1K) = ‖C−1K‖1 · ‖(C
−1K)−1‖1. (4.28)

The first factor equals

‖C−1K‖1 = sup
u

‖C−1Ku‖1

‖u‖1
= sup

u,v

(C−1Ku, v)1

‖u‖1‖v‖1
,

and we have
(C−1Ku, v)1 = ((A+M)C−1Ku, v) = (Bu, v), (4.29)

with the matrix

B =
1

2

(
A−M A+M
A +M M − A

)

.

Consequently, (4.29) is bounded from above by ‖u‖1 · ‖v‖1, since

(Bu, v) =
1

2

[
((A−M)uc, vc) + (us, vc)1 + (uc, vs)1 + ((M −A)us, vs)

]
, (4.30)

and because an elementary discussion shows

(4.30) ≤
1

2

[
‖uc‖1 ‖v

c‖1 + ‖us‖1 ‖v
c‖1 + ‖uc‖1 ‖v

s‖1 + ‖us‖1 ‖v
s‖1

]

≤
[

‖uc‖2
1 + ‖us‖2

1

] 1
2
·
[

‖vc‖2
1 + ‖vs‖2

1

] 1
2

= ‖u‖1 · ‖v‖1.

So we have ‖C−1K‖1 ≤ 1. Remains to analyze the second term in (4.28):

‖(C−1K)−1‖1 = sup
u

‖u‖1

‖C−1Ku‖1
, (4.31)

and

‖C−1Ku‖1 = sup
v

(C−1Ku, v)1

‖v‖1
= sup

v

(Bu, v)

‖v‖1
≥

(
B
(
uc

us

)
,
(
us

uc

))

‖u‖1
.

Simple calculation yields
(
B
(
uc

us

)
,
(
us

uc

))
= 1

2
‖u‖2

1 and consequently (4.31) ≤ 2. So
altogether we have the result

κ(C−1K) = ‖C−1K‖1 · ‖(C
−1K)−1‖1 ≤ 1 · 2 = 2.

As mentioned above, for non-symmetric problems the condition number is not fully
sufficient to illustrate the convergence properties of iterative solvers. Consequently,
we also demonstrate the quality of the preconditioner (4.27) for the solution of the
system

Find u =

(
uc

us

)

∈ R
2n : Ku =

(
A M

−M A

)(
uc

us

)

=

(
f c

f s

)

, (4.25)
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by numerical computations: We solve the non-symmetric linear system (4.25) by the
quasi-minimal residual method (QMR) [17] with the preconditioner (4.27). Table 4.1
presents the number of steps needed to reach a relative accuracy ǫ = 10−6 for different
parameter settings and dimensions of the finite element space.

All these examples are test cases of the shielding problem that is described in Section
6.3 on page 69. The parameter σFe denotes the conductivity in the iron plate (measured
in C2

Nm2s
), ǫ refers to the regularization parameter – we use the conductivity ǫ · σFe for

the non-conducting regions – and ω means the angular frequency 2πf . In all these
cases, the reluctivity ν is set to νFe = 1

µ0 µF e
= 1

4π·10−4 ∼ 8 · 102 m
H

in the iron domain

and to ν0 = 1
µ0

= 1
4π·10−7 ∼ 8 · 105 m

H
in the coil and the surrounding air.

As can be seen in Table 4.1, the number of QMR iterations is independent of both
dimension of the FE-space and choices of the parameters.

nParameters 1627 4942 19407 44306 68363 105225

σFe = 104, ǫ = 10−7, ω = 102π 10 10 12 12 12 12

σFe = 105, ǫ = 10−7, ω = 102π 14 11 12 12 13 13

σFe = 105, ǫ = 10−7, ω = 103π 16 14 14 14 14 14

σFe = 105, ǫ = 10−7, ω = 104π 14 14 14 14 14 16

σFe = 106, ǫ = 10−7, ω = 103π 14 14 14 14 14 16

σFe = 106, ǫ = 10−9, ω = 103π 14 14 14 14 16 16

σFe = 106, ǫ = 10−11, ω = 103π 15 15 14 14 14 14

Table 4.1: QMR steps for the solution of the linear problem, for different dimensions
and parameter settings.

4.4 Newton’s Method for the Solution of the Non-

linear Problem

Newton’s method and variants seem to be the most widely used iterative procedures
for the solution of nonlinear problems. The widespread use of this technique is due to
its fast convergence: Newton’s method is locally superlinearly (or even quadratically)
convergent.

4.4.1 Introduction

We briefly describe and motivate the general procedure before we turn to our special
problem.
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Assume we have two Banach spaces X and Y and a general nonlinear map F : X → Y
that is Fréchet-differentiable (at least in some set D ⊂ X). We want to solve the
nonlinear problem

F (x) = y, (4.32)

for some y ∈ Y .
We denote the exact solution by x∗ and suppose that we have some approximation xk.
Since F is Fréchet-differentiable, we know

F (x) = F (xk) + F ′(xk)(x− xk)
︸ ︷︷ ︸

=:L(x)

+o(‖x− xk‖).

Consequently, we expect to get a better approximation of the solution x∗ by solving

L(xk+1) = y,

i.e. by the assignment

xk+1 = xk + F ′(xk)
−1(y − F (xk)). (4.33)

The question whether and how fast the iterates xk converge to the solution x∗ is
answered in the following lemma:

Lemma 4.10 ([15]). Let X and Y be Banach spaces, let D ⊂ X be non-empty and
open. Suppose the map F : D → Y is Fréchet-differentiable in D, and let x∗ ∈ D be
a solution of F (x) = y with regular derivative F ′(x∗).
Then,

• if F ′ is continuous in x∗, the Newton iteration

xk+1 = xk + F ′(xk)
−1(y − F (xk)), k = 0, 1, . . . (4.33)

is locally, i.e. for a sufficiently good initial guess x0, superlinearly convergent.

• if there exists a constant γ > 0 such that

‖F ′(x) − F ′(x∗)‖ ≤ γ ‖x− x∗‖, ∀x ∈ U(x∗) ⊂ D,

the Newton iteration (4.33) is locally quadratically convergent.

4.4.2 The Fréchet Derivative

In order to implement Newton’s method for the nonlinear multiharmonic eddy current
problem (3.21), we need to calculate the Fréchet derivative of the operators A and M
that are defined as follows (cf. (3.21)):

〈A(u),v〉 :=

∫

Ω

H(curlu) · curlv dx, ∀u,v ∈H0(curl)N+1, (4.34)

〈Mu,v〉 :=

∫

Ω

ωσǫDu · v dx, ∀u,v ∈H0(curl)N+1, (4.35)
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where an element v ∈H0(curl)N+1 is a vector of Fourier coefficients v = (vc1, v
s
1, v

c
3,

. . .vcN , v
s
N)T . Here N is the (odd) number of harmonics, and the superscripts c and

s indicate the coefficient of cosine and sine, respectively. D is the matrix defined in
(3.20), i.e.

D =










0 1
−1 0

. . .

0 N
−N 0










,

and H(curlu) denotes the Fourier coefficients of the magnetic field H(curlu(t)).

As in Chapter 3, we mean by u the vector of Fourier coefficients, and by u(t) the mul-
tiharmonic function that is determined by these coefficients. So we have, for example,

curlu(t) =
∑

l

(curlucl cos(lωt) + curlusl sin(lωt)) .

Additionally, we mention that the coefficients H(curlu) can be calculated by Fourier
transformation in the following way:

Hc
k(curlu) =

2

T

∫ T

0

ν(|curlu(t)|) · curlu(t) · cos(kωt) dt, (4.36)

Hs
k(curlu) =

2

T

∫ T

0

ν(|curlu(t)|) · curlu(t) · sin(kωt) dt. (4.37)

Now we turn to the calculation of the Fréchet derivative of the operators A and M .
This is easy for M since it is a linear operator – the derivative is just M again. For
the nonlinear operator A, we first calculate the Gateaux differential:

〈δ
w

A(u),v〉 = lim
t→0

1

t

∫

Ω

[H(curl (u+ tw)) −H(curlu)] · curlv dx =

=

∫

Ω

[
∂H

∂B
(curlu) · curlw

]

· curlv dx. (4.38)

Remains to clarify what we mean by the derivative ∂H
∂B

:

∂Hc
k

∂Bc
l

(B) =
∂

∂Bc
l






2

T

T∫

0

ν(|B(t)|)B(t)
︸ ︷︷ ︸

=H(B(t))

cos(kωt) dt




 =

=
2

T

T∫

0

∂H(B(t))

∂B(t)
cos(lωt) cos(kωt) dt = (4.39a)

=
2

T

T∫

0

[

ν ′(|B(t)|)
B(t)B(t)T

|B(t)|
+ ν(|B(t)|)I

]

cos(lωt) cos(kωt) dt, (4.39b)
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with the 3 × 3 - identity matrix I. It should be mentioned that B(t)B(t)T is a
3 × 3 - matrix as well.
We remark that for points in time with B(t) = 0, the derivative

∂H(B(t))

∂B(t)
,

in (4.39a) actually reduces to

lim
|B|→0

H(|B|) −H(0)

|B| − 0
= lim

|B|→0

H(|B|)

|B|
= ν(0)I.

So the integrand in the explicit calculation of the derivative (4.39b) is meant as ν(0)I
for B(t) = 0.

Similarly, the other derivatives
∂Hc

k

∂Bs
l

,
∂Hs

k

∂Bc
l

and
∂Hs

k

∂Bs
l

can be calculated. Note that all of

them exist, since the B-H-curve is differentiable.

Example. For better understanding what the complete matrix ∂H
∂B

in (4.38) looks like,
we quote the example of one harmonic. In this case we have

u = (uc,us)T , H = (Hc,Hs)T .

The derivative then is the matrix

∂H

∂B
(curlu) =

(
∂Hc

∂Bc (curlu) ∂Hc

∂Bs (curlu)

∂Hs

∂Bc (curlu) ∂Hs

∂Bs (curlu)

)

,

with each of its entries being calculated as derived in (4.39).

Clearly, the Gateaux differential δ
w

A(u) (4.38) is linear and continuous in w, so A is
Gateaux differentiable in u with Gateaux derivative A′(u) defined by

A′(u)w := δ
w

A(u). (4.40)

Since the Gateaux derivative A′(u) exists for all u and obviously is continuous in u
(ν ∈ C1), A′ as defined in (4.40) is the Fréchet derivative.

The algorithm Recapitulating, the whole Newton iteration for the multiharmonic
eddy current problem reads as follows:

Let some initial solution u0 be given. This initial guess can be, for example,
the solution of the linear problem, or – in the case of a multigrid iteration,
see Chapter 5 – the prolongated solution of a coarser level.

For k = 0, 1, . . .
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• Calculate the defect

Dk = F − (A(uk) +Muk) in
(
H0(curl)N+1

)∗
.

• Solve the variational problem

〈(
A′(uk) +M

)
wk,v

〉
= 〈Dk,v〉, ∀v ∈H0(curl)N+1, (4.41)

where the operator A′(uk) is defined as in (4.38) and (4.40).

• Obtain the new iterate

uk+1 = uk +wk.

Remark 4.4. (1) We have quoted the algorithm for the continuous problem, i.e. before
discretization. Of course, Newton’s method could equally be stated for the discretized
problem. As can easily be seen, finite element discretization after Newton linearization
leads to the same problem as applying Newton’s method to the discretized nonlinear
problem.
(2) Since in practice we cannot guarantee that the initial guess is sufficiently close to
the solution for the iteration to converge, we add a damping parameter:

uk+1 = uk + τkwk.

The parameter τk ∈ (0, 1] is determined by line search.
(3) As mentioned before (cf. Section 4.3), we actually solve a perturbed problem with
conductivity ǫ > 0 in the originally non-conducting regions. As a consequence, we can
solve the linear problem (4.41) in the space H0(curl)N+1 and do not have to restrict
ourselves to the factor space of divergence-free functions.



Chapter 5

Multigrid

Multigrid methods are among the most efficient solvers for discretized partial differen-
tial equations. Their convergence speed does not deteriorate when the discretization is
refined, whereas classical iterative methods slow down for decreasing mesh size. More
precisely, their complexity is optimal – the computational work is proportional to the
number of unknowns –, and furthermore the constant of proportionality is so small
that other methods can hardly outperform the efficiency of multigrid algorithms.

The ideas of multigrid rely on the observation that low and high frequency parts of
the error function should be treated by two different methods: Many classical iterative
methods (e.g. damped Jacobi, Gauss-Seidel) have smoothing effects, i.e. quickly reduce
the oscillating parts of the error. Low frequency components on the other hand can
already be approximated well on coarser grids. So the essence of multigrid is smoothing
and coarse grid correction.

In this chapter, we provide a short introduction to multigrid methods and point out the
sufficient conditions for convergence of the two-grid iteration. Furthermore, we quote
a result on convergence of the multigrid V-cycle. Thereafter, we describe smoothers
for an H(curl)-problem with Nédélec edge discretization and show that they satisfy
the required smoothing property for convergence.

For further details on the topic, we refer to [10, 13, 22, 34, 51]. A short, comprehensive
overview can also be found in [9]. The special case of multigrid methods for Maxwell’s
equations, to wit the correct choice of the smoother, is treated in [4] and [25].

5.1 Introduction to Multigrid Methods

5.1.1 Smoothing Effects of Classical Iterations

Many classical iterative methods for solving systems of linear equations

Au = f, (5.1)

58
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quickly reduce oscillating components of the error, but have problems when dealing
with slowly varying functions. This rapid convergence with respect to the high fre-
quencies is called smoothing effect, because the error is smoother after the iteration.

Example. In order to clarify what we mean by that, we consider the one-dimensional
model problem

−u′′(x) = f(x), in (0, 1), u(0) = u(1) = 0.

Let Al be the matrix arising from its discretization by finite differences on a uniform
grid. fl is the discretization of f(x).
Figure 5.1 shows the smoothing effect of the damped Jacobi iteration

uj+1
l = ujl − θD−1

l (Al u
j
l − fl), (5.2)

for θ = 1
2
, where Dl is the diagonal of Al. In the figure, ul denotes the exact discrete

solution, and ujl (j = 0, 1, 2) are the iterates of the Jacobi iteration. The meaning of
the function u3

l , which signifies the result of the coarse-grid correction, will become
clearer in the following paragraphs.

Figure 5.1: Smoothing effect of the damped Jacobi iteration.1

The figure plots the initial error u0
l − ul and illustrates the increasing smoothness of

ujl − ul after j = 0, 1, 2 steps of the damped Jacobi iteration. Apparently, the error
u2
l − ul is smoother than u0

l − ul; therefore, the iteration (5.2) serves as a smoothing
iteration.

5.1.2 Idea and Algorithm

The simple damped Jacobi iteration (5.2) reduces high-frequency components of the
error quite efficiently. Convergence is only lacking with respect to smooth components.
These, however, can be approximated well on a coarser grid, where the problem is easier
to solve. This leads to the following idea:
Given some initial guess, apply some smoothing steps in order to damp oscillating
components of the error. Then restrict the problem to a coarser grid and calculate the

1Source: W. Hackbusch, Multi-Grid Methods and Applications [22], page 20.
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remaining smooth part. This information can now be used to update the approximate
solution on the fine grid.

Although smoothing iteration and coarse-grid correction by themselves converge slowly
or not at all, the combination of both components is rapidly convergent. Compare
again Figure 5.1, where the fourth graph shows the error after coarse grid correction,
u3
l −ul, that has been significantly reduced by two smoothing steps and the coarse-grid

correction.

Clearly, the system on the coarser grid is already easier to solve because of the smaller
number of unknowns. However, in general the procedure of smoothing and restriction
to a coarser grid is repeated recursively several times.

The Algorithm

Finally we turn to the algorithm of a multigrid method with several levels. A precise
formulation is easiest for conforming finite elements with nested grids.
We consider the problem

Find u ∈ V : a(u, v) = 〈F, v〉, ∀ v ∈ V, (5.3)

for bilinear, continuous and elliptic a(·, ·), and discretize it by means of conforming
finite elements.
Choose nested triangulations T0, T1, . . .Tlmax of the domain Ω, where T0 is the coarsest
and Tlmax the finest grid. Let the finite element spaces Vl correspond to the triangula-
tions Tl:

V0 ⊂ V1 ⊂ . . . ⊂ Vlmax. (5.4)

The actual goal is the calculation of the finite element solution ul for the finest grid.

We denote the smoothing operator by S, and the subscript l always indicates the level
number. The superscript k is the iteration counter.

Multigrid - Algorithm MGMl (k-th cycle at level 1 ≤ l ≤ lmax)

Let ukl be a given approximation in Vl.

1. Pre-smoothing. Apply ν1 smoothing steps:

ūkl = Sν1ukl .

2. Coarse-grid correction. Let wl−1 denote the solution of the defect
problem on level l − 1, i.e. of

a(wl−1, v) = 〈F, v〉 − a(ūkl , v), ∀ v ∈ Vl−1. (5.5)

• If l = 1, calculate the exact solution of (5.5), set ŵl−1 = wl−1.
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• If l > 1, determine an approximation ŵl−1 of wl−1 by applying µ
steps of MGMl−1 with the initial value u0

l−1 = 0.

Set
ũkl = ūkl + ŵl−1. (5.6)

3. Post-smoothing. Apply ν2 smoothing steps:

uk+1
l = Sν2 ũkl .

Remark 5.1. (1) In the case of only 2 levels, the coarse-grid correction is always calcu-
lated exactly. With more than 2 levels, the solution on the coarse grid is determined
only approximately, and in convergence theory a multigrid iteration is often treated
as a perturbed two-grid iteration.
(2) The parameter µ, which determines the effort for coarse-grid correction, is usually
chosen to be 1 or 2. The case µ = 1 is called V-cycle, µ = 2 is the W-cycle.
(3) The multigrid iteration can of course be written in matrix-vector-form as well. For
this task (and for the actual implementation) one needs restriction- and prolongation-
matrices for the transition between RNl and RNl−1 , where Nl and Nl−1 are the dimen-
sions of Vl and Vl−1, respectively.

5.1.3 Convergence of the Two-Grid Iteration

A multigrid iteration is called convergent, if the error is reduced by a factor ρ < 1 in
each iteration cycle, and if ρ is independent of the grid size h. The factor ρ is called
contraction number.

Many proofs of convergence have a very similar structure: They combine a smoothing
property

‖Sνvl‖X ≤ ch−β
1

νγ
‖vl‖Y , (5.7)

with an approximation property

‖vl − vl−1‖Y ≤ chβ‖vl‖X , (5.8)

where vl−1 is the coarse-grid approximation of vl, i.e. vl−1 is the solution of

a(vl−1, w) = a(vl, w), ∀w ∈ Vl−1.

The product of both factors then does not depend on the mesh size h and is smaller
than 1 for sufficiently large ν.
These two properties lead to convergence in the norm ‖ · ‖Y , as can be seen in the
following theorem. For a specific problem, it remains to choose the norms ‖ · ‖X and
‖ · ‖Y and to show the properties (5.7) and (5.8).
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Theorem 5.1 ([9],[22]). Let S be a linear smoother with ‖S‖Y ≤ 1 and Su = u
for the solution u, assume that the smoothing property (5.7) and the approximation
property (5.8) are satisfied.
Then the two-grid iteration MGM1 is convergent in the norm ‖ · ‖Y for sufficiently
large ν1, more precisely the estimate

‖uk+1
1 − u1‖Y ≤

c

ν1

‖uk1 − u1‖Y ,

holds, where u1 is the exact solution on level l = 1, i.e. on the fine grid. Here c is a
constant independent of h, and ν1 is the number of pre-smoothing steps.

For a proof of convergence in the case of more levels, the algorithm is mostly regarded
as a two-grid iteration with non-exact, i.e. perturbed coarse-grid correction. Conse-
quently, an additional requirement for this proof is an estimate of the magnitude of
the perturbation.

5.1.4 Convergence of the Multigrid V-Cycle

For details on convergence of the general multigrid method, the reader is referred to
one of the standard works [10, 13, 22, 51].
At this place, we only quote a result on convergence of the multigrid V-cycle that will
be needed in Section 5.2 for the analysis of the smoothers for H(curl)-problems.

Again, let V0 ⊂ V1 ⊂ . . . ⊂ Vlmax be a sequence of nested finite element subspaces of
the Hilbert space V as in (5.4), and let a(·, ·) be a symmetric positive definite bilinear
form. Our goal is to solve or precondition equation (5.3) by a multigrid iteration.

On each level j, we define the operator Aj : Vj → Vj by

(Aju, v) = a(u, v), ∀u, v ∈ Vj.

Equally we define A : V → V by the equation (Au, v) = a(u, v).
Let Sj : Vj → Vj denote the smoother on level j, and denominate the a-orthogonal
projection onto Vj by Pj , i.e. define Pj : V → Vj by the relation

a(u, v) = a(Pju, v), ∀u ∈ V, ∀ v ∈ Vj. (5.9)

We define Θ : Vlmax → Vlmax by the standard multigrid V-cycle with ν pre- and post-
smoothing steps. This means that in the multigrid algorithm MGMlmax (page 60)
we choose ν1 = ν2 = ν and perform a V-cycle by the choice µ = 1. Thus we have
Θ = (I −Mlmax)A

−1
lmax

with the multigrid iteration operator Mlmax .

With the above definitions, we have the following theorem on convergence of the V-
cycle:
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Theorem 5.2 ([3, 4, 10]). Suppose that for each j = 1, 2, . . . , lmax, the smoother Sj
is symmetric and positive semidefinite and satisfies the conditions

a([I − SjAj ]v, v) ≥ 0, ∀ v ∈ Vj , (5.10)

and
(S−1

j v, v) ≤ αa(v, v), ∀ v ∈ (I − Pj−1)Vj , (5.11)

for some constant α. Then

0 ≤ a([I − ΘAlmax ]v, v) ≤
α

α + 2ν
a(v, v), ∀ v ∈ Vlmax . (5.12)

This means that for ν ≥ 1 the multigrid V-cycle is convergent.

We remark that – although the assumptions of Theorem 5.2 do not exactly fit into the
scheme presented by (5.7) and (5.8) – we have again a smoothing and an approximation
property: Condition (5.11) describes the interaction between smoothing and coarse-
grid correction, while condition (5.10) is a smoothing property.

5.2 A Multigrid Method designed for Problems in

H(curl)

Unfortunately, some of the simplest and most frequently used smoothers for elliptic
problems do not yield efficient multigrid iterations when applied to the problem con-
sidered here. Compare Arnold, Falk and Winther [4], who note that this failure is due
to a basic difference between the operator

Λ(u,v) = ρ2(u,v)
L2 + κ2(curlu, curlv)

L2 , (5.13)

on the one hand and elliptic operators on the other: The point is that the eigenspace
associated with the smallest eigenvalue of the operator Λ contains many eigenfunctions
which cannot be represented well on a coarse mesh. (For standard elliptic operators,
however, low eigenvalue functions are always slowly varying.)
This property of Λ follows from the fact that the operator reduces to the identity when
applied to gradient fields (because curl gradφ = 0, ∀φ), although it behaves like a
second order elliptic operator when applied to solenoidal, i.e. divergence-free vector
fields. Hence, it is not surprising that the Helmholtz decomposition of an arbitrary
vector field into irrotational and solenoidal components plays an important role in the
understanding and analysis of this problem.

We mostly follow Arnold, Falk and Winther [4] in this section, who propose additive
and multiplicative Schwarz smoothers based on a decomposition of the Nédélec edge
space. They suggest to break down the finite element space into local patches consist-
ing of all elements surrounding a vertex, or to use a decomposition arising from the
Helmholtz decomposition, as is proposed by Hiptmair [25] as well.
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5.2.1 Additive and Multiplicative Schwarz Smoothers

In order to obtain smoothers which satisfy the prerequisites of Theorem 5.2, we con-
sider Schwarz smoothers. To describe these, we assume that for each level j, there
exists a decomposition of Vj into spaces V k

j ⊂ Vj, such that each v ∈ Vj can be written
in the form

v =
K∑

k=1

vk, with vk ∈ V k
j .

We denote the a-orthogonal projection onto the space V k
j by P k

j , just as in (5.9). Now
we can define the unscaled additive Schwarz smoother by

Saj :=

K∑

k=1

A−1
j P k

j , (5.14)

and the smoother Sj := η Saj for some scaling factor η.
Moreover, we denote the usual multiplicative Schwarz smoother associated with the
spaces V k

j by Smj . This means, for f ∈ Vj , Smj f is defined by the iteration

u0 = 0,

uk = uk−1 + A−1
j P k

j (f − Aju
k−1), k = 1, . . . , K,

uk = uk−1 + A−1
j P 2K+1−k

j (f − Aju
k−1), k = K + 1, . . . , 2K,

Smj f = u2K .

We have the following theorem, which gives conditions on the decompositions of the
spaces Vj under which the Schwarz smoothers fulfill the assumptions of Theorem 5.2
and consequently lead to a convergent multigrid iteration.

Theorem 5.3 ([4]). Suppose that we have

K∑

k=1

K∑

l=1

|a(uk, vl)| ≤

[
K∑

k=1

a(uk, uk)

] 1
2
[

K∑

l=1

a(vl, vl)

] 1
2

, ∀uk ∈ V k
j , v

l ∈ V l
j , (5.15)

and

inf
vk∈V k

j

v=
P

vk

K∑

k=1

a(vk, vk) ≤ γ a(v, v), ∀ v ∈ (I − Pj−1)Vj , (5.16)

for some constants β > 0, γ > 0. Then,

• if η ≤ 1
β
, the scaled additive smoothers Sj = η Saj satisfy the hypotheses of

Theorem (5.2) with α = γ

η
.

• the multiplicative smoothers Sj = Smj satisfy the hypotheses of Theorem (5.2)
with α = β2γ.
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5.2.2 Decomposition of the Nédélec FE-Space

Eventually, we return to the H(curl)-problem with the general bilinear form Λ(·, ·)
as defined in (5.13). In this section we propose a decomposition of the spaces V j in
order to define the Schwarz smoothers.
For the moment, we consider a fixed level j. Suppose we have a triangulation Tj of
the domain Ω, and let the finite element space V j be the Nédélec edge discretization
of H(curl) as introduced in Section 4.2.

We denote by Vj and Ej the sets of vertices and edges of the mesh Tj , respectively.
For each vertex or edge ν ∈ Vj ∪ Ej, we define subdomains

T ν
j := {T ∈ Tj : ν ⊂ T}, Ων

j :=
⋃

T ν
j . (5.17)

The splitting of Ω into subdomains Ων
j leads to a decomposition of the finite element

space V j in a natural way: Define

V ν
j := {v ∈ V j : supp v ⊂ Ων

j }, ν ∈ Vj ∪ Ej. (5.18)

By means of these subspaces V ν
j that are supported in a small patch of elements, we

can decompose the space V j:

V j =
∑

v∈Vj

V v
j . (5.19)

This decomposition of the finite element space was proposed by Arnold, Falk and
Winther [4]; we will see in Lemma 5.4 that it defines an efficient Schwarz smoother.

A second possibility to decompose the space V j into a sum of subspaces, which also
leads to a convergent multigrid iteration, is due to Hiptmair [25]. For this second idea,
which is inspired by the Helmholtz decomposition of a vector field into gradient fields
and solenoidal components, we need to define another finite element space Wj as the
space of continuous piecewise polynomials. If V j is the Nédélec edge discretization of
index k, the elements of Wj should be polynomials of degree at most k + 1 in each
element T ∈ Tj .
As in (5.18), we define

W v
j := {v ∈Wj : supp v ⊂ Ωv

j}, v ∈ Vj . (5.20)

We can then decompose the space V j as follows:

V j =
∑

e∈Ej

V e
j +

∑

v∈Vj

gradW v
j . (5.21)

In a triangulation by means of tetrahedra, no point belongs to more than six of the
edge patches Ωe

j or four of the vertex patches Ωv
j . Consequently, both of the proposed

decompositions satisfy the condition (5.15) of Theorem 5.3 with β independent of the
mesh size hj and the parameters ρ and κ (β never exceeds 10).
The following lemma states that both decompositions (5.19) and (5.21) also fulfill
condition (5.16) and thus lead to an efficient multigrid algorithm. For this lemma we
require only the bounded refinement hypothesis hj−1 ≤ c hj .
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Lemma 5.4 ([4]). Assume that hj−1 ≤ c hj and that v ∈ (I − P j−1)V j be given.
Then there exists a decomposition v =

∑

v∈Vj
vv and a constant γ depending on c but

independent of hj, ρ and κ such that

∑

v∈Vj

Λ(vv,vv) ≤ γ Λ(v,v).

Similarly, a decomposition v =
∑

e∈Ej
ve+

∑

v∈Vj
gradwv and a constant γ̃ exist such

that the estimate (5.16) is satisfied.

We summarize this lemma and the preceding discussion in the following theorem.

Theorem 5.5. Assume that we have hj−1 ≤ c hj, ∀ j for some c independent of the
level j.
Then for both decompositions of the finite element spaces (5.19) and (5.21), the multi-
plicative and – for η ≤ 1

10
– the additive Schwarz smoother lead to convergent multigrid

V-cycles.



Chapter 6

Numerical Results

In this chapter we present results of simulations of diverse eddy current problems. We
start with some notes on eddy current problems and on our implementation. Then we
proceed with calculations on a comparatively simple problem, where we also present
some results on the solution of the linearized problems and on convergence of the
Newton iteration. Moreover, we compare low and high order approximation and we
show the results for different numbers of harmonics in the multiharmonic ansatz.
Finally we turn to the challenging task of the eddy current welding problem in Section
6.4 and present the results of our simulation on this subject.

6.1 A Note on the Penetration Depth

A remarkable feature of eddy current problems is the fact that both magnetic field and
eddy currents scarcely penetrate into conducting materials. The skin depth depends
on permeability and conductivity of the material and on the frequency of the source
current. This phenomenon is described by the following formula for the penetration
depth, which gives the depth where the magnetic field will have declined to an e−1-th
of its original value, i.e. by more than 60 % (see e.g. [18], page 151):

δ =

√
2

ωµσ
. (6.1)

For usual ferromagnetic materials we face conductivities of approximately σ ∼ 106 C2

Nm2s

and – at least for small inductions, where ν(|B|) = µ−1(|H|) ∼ const – permeabilities
µ ∼ 4π · 10−4 H

m
. Already in the case of a frequency f = 50 Hz, i.e. ω = 100π, this

results in a penetration depth of

δ ∼ 0.00225m.

This means that even for low frequencies we can observe the formation of a skin at
the boundaries of conducting materials. The situation is even more dramatic for the
problem of eddy current welding, where we usually are concerned with a source current

67
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of 200 kHz. In this case a skin of approximately δ ∼ 0.0000356 meters occurs, or even
worse, since in the realistic setup we have a conductivity of σ = 9.3 · 106, what leads
to

δ ∼ 1.17 · 10−5 m.

As it is obviously necessary to mesh this skin adequately, we will have to face a
substantial number of unknowns. However, we are able to keep their amount at an
acceptable level by adaptive refinement of this small layer and by increasing the degree
of the basis functions in the finite element space.
A two-dimensional sketch of a mesh in such a boundary layer is depicted in Figure 6.1.
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Figure 6.1: Sketch of adaptively refined mesh at a boundary layer.

6.2 Remarks Concerning Implementation

The mesh for discretization is generated by the Advancing Front Mesh Generator
NETGEN [46] that has been developed at the University of Linz. The whole solver is
implemented as an enhancement of the finite element solver NGSolve [47] (developed
at the University of Linz as well).

As we have seen in Chapter 4, in each step of the Newton iteration a linear problem
with system matrix A′(u) +M has to be solved. A′(u) consists of entries

∂Hc
k

∂Bc
l

(curlu) =
2

T

T∫

0

∂H(curlu(t))

∂B(t)
cos(lωt) cos(kωt) dt,

that have to be calculated for the assembly of the linearized matrix. We evaluate
these integrals numerically by Simpson’s integration rule, although a faster integration
based on fast Fourier transformation could be envisaged. This, however, seems to be
of secondary importance, since the solution of the linear systems is much more time
consuming than their assembly.

The linearized problem in each Newton step is solved by a QMR iteration [17] which
is preconditioned by a multigrid preconditioner. More precisely, we use the non-
symmetric preconditioner that was proposed for the linear problem in (4.27). Obvi-
ously, this choice is suboptimal since the linearized matrices slightly differ from the
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linear system. For example, the ν ′-term

2

T

T∫

0

[

ν ′(|B(t)|)
B(t)B(t)T

|B(t)|

]

cos(lωt) cos(kωt) dt, (6.2)

is not considered in the preconditioner (4.27). Consequently, the QMR iteration for
the solution of the linearized problems somewhat slows down. However, computations
showed that the increase in the number of QMR steps is acceptable, cf. Table 6.1.

For the general procedure of solution, we apply a so-called nested iteration (cf. [22]).
This means we start on the coarse grid and calculate an approximate solution u0 of
the nonlinear problem on this level. Then the mesh is refined adaptively and the
prolongation of u0 to the next level yields a good initial guess for u1, the approximate
solution on level 1. This algorithm is continued until a sufficiently fine level is reached.
Since the approximations on the coarser grids are only used as initial guesses for the
Newton iteration on the finer levels, it suffices to solve the corresponding problems
with less accuracy. For instance, we have achieved good results for a relative accuracy
ǫl = 10−2 · 10−l in the Newton iteration on level l. Other attempts such as ǫl = 10−3

for l < lmax and ǫlmax = 10−8 seem even more promising.

We mention that the adaptive refinement is done by means of the Zinkiewicz-Zhu error
estimator [58, 59]. In this context we additionally refer to other works on a-posteriori
error estimation and adaptive refinement, e.g. [8, 53].

These remarks about QMR-convergence and nested iteration are concretized in the
following section on the basis of numerical computations for several parameter set-
tings. Moreover, we present results for different numbers of harmonics and different
polynomial degrees of the basis functions.

6.3 A Shielding Problem

In this section, we analyze the efficiency of our solver at the example of a shielding
problem, the geometry of which is depicted in Figure 6.2. For given current in the coil,
we calculate the induction and the eddy currents in coil, iron plate and surrounding
air. Here the iron plate works as a shield that hinders the magnetic field from entering
the region behind it (or – for our geometrical layout – below the plate).
Unless mentioned otherwise, we use the following parameter setting: conductivity of
the iron plate σFe = 106 C2

Nm2s
, in the rest of the domain σ = ǫ · σFe with ǫ = 10−9,

frequency f = 50 Hz.
For the current in the coil, we use different values in order to obtain results with
variable maximal induction |B|. For reaching a saturated layer (i.e. a layer with
ν(|B|) ∼ ν0, what means |B| close to 2 Tesla), an extremely strong current of approx-
imately 5 · 105 Ampere is required. Since we are mainly interested in the influences of
the nonlinearity, we mostly consider currents of this order of magnitude.

1In the figure, the domains are colored as follows: coil = red, iron = green, air = blue (transparent).
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Figure 6.2: Geometry of the shielding problem.1

Convergence of the QMR iteration We have noted in the previous section that
the preconditioner (4.27) for the QMR solver still has room for improvement, especially
since we neglect the influence of the ν ′-term (6.2). However, our choice is justifiable,
because the number of steps for the iterative solution of the linearized problems stays
fairly small. Even when ν ′ reaches large values, i.e. for |B| ∼ 1.5 (cf. Figure 2.3 on
page 15), we observe fairly good convergence properties of the QMR iteration. This
fact is illustrated in Table 6.1, where we depict the number of steps needed to reach
a relative accuracy of ǫ = 10−6 for three different meshes and various strength of the
source current, i.e. for different induction in the solution.
The second column in the table shows the iterative solution of the linear problem,
while the subsequent columns display the Newton iteration and the number of QMR
steps for the solution of the linearized problems. In these columns we also quote
the maximal induction |B| in the point of linearization, because this value reveals
information about the impact of the nonlinearity.
The table demonstrates again that the iterative solution of the linear problem is not
influenced neither by the dimension2 nor by the right hand side. However, the number
of steps for solving the Newton systems slightly depends on the induction |B| of the
point of linearization.
Although in Table 6.1, we present results for the shielding problem with the afore-
said parameter setting, we remark that other examples and different choices of the
parameters have shown similar QMR convergence.

2The number n in Table 6.1 refers to the number of unknowns per Fourier coefficient. For the case
of one harmonic, for instance, the dimension of the complete system would then be 2 · n, because we
have the coefficients uc

1,u
s

1.
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lin. Newton 1 2 3 4 5 6 7

n = 44306. Steps: 14 18 16
max |B| 0.31 0.3

Steps: 14 21 19 17 17
max |B| 1.54 1.39 1.38 1.38

Steps: 14 65 34 33 32 31 31
max |B| 2.3 1.7 1.94 1.64 1.62 1.61

Steps: 14 125 48 54 49 47 40 38
max |B| 2.76 1.72 2.39 1.77 1.76 1.76 1.76

n = 68363. Steps: 14 18 17
max |B| 0.44 0.41

Steps: 14 19 18 16
max |B| 1.32 1.21 1.2

Steps: 14 52 35 31 31 28 28
max |B| 2.2 1.65 1.73 1.69 1.68 1.68

Steps: 14 116 60 50 42 43 41 43
max |B| 2.64 1.78 2.16 1.79 1.75 1.75 1.75

n = 105225. Steps: 14 18 18
max |B| 0.39 0.39

Steps: 14 19 19 17
max |B| 1.38 1.33 1.33

Steps: 14 42 28 28 27 27
max |B| 1.97 1.69 1.68 1.67 1.67

Steps: 14 86 47 45 38 40 40 35
max |B| 2.37 1.74 2.11 1.77 1.74 1.74 1.74

Table 6.1: QMR steps for the solution of the linearized problems in the Newton
iteration.

Moreover, we note that these results were achieved for only one harmonic. Since in
the linear problem – and thus in the preconditioner – the harmonics are completely
independent of each other, the results shown in Table 6.1 cannot be immediately
transferred to the case of more modes. Given that the nonlinearity couples the different
harmonics, one would expect the preconditioner to worsen, if we consider three or more
modes in the multiharmonic ansatz. However, as long as the induction |B| stays small,
the coupling between the modes is almost negligible. Consequently this case does not
show any remarkable differences in QMR convergence for different numbers of modes.
Anyhow, one can observe a minor slowdown in convergence when |B| and with it
the influence of the nonlinearity increases. This pejoration is displayed in Table 6.2,
where we present results of computations on a mesh with 44306 unknowns per Fourier
coefficient (compare the first rows in Table 6.1) for three harmonics.
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lin. Newton 1 2 3 4 5 6 7 8 9

Steps: 14 18 18
max |B| 0.3 0.3

Steps: 14 26 19 21 21
max |B| 1.54 1.37 1.36 1.36

Steps: 14 95 57 43 37 35 30 30
max |B| 2.3 1.79 1.67 1.74 1.66 1.6 1.57

Steps: 14 198 100 82 62 67 65 60 61 50
max |B| 2.76 1.92 1.77 1.73 2.11 1.81 1.73 1.73 1.73

Table 6.2: QMR steps for the solution of the linearized problems, three harmonics.

Multigrid preconditioner In practice, we do not calculate the inverse of (A+M)
(cf. (4.27) on page 51) for the application of the preconditioner, but we approximate
it by a multigrid V-cycle. Consequently, we have exact inversion only for the lowest
order degrees of freedom on the coarse grid; the higher order degrees of freedom are not
inverted in our implementation, but only smoothed. So for higher order and on finer
levels, the non-symmetric preconditioner (4.27) is constructed by an approximation of
(A+M)−1 and thus might deteriorate.
For low order finite element spaces, the multigrid iteration yields a very good precon-
ditioner

C̃−1
MG ∼ (A+M)−1.

As a consequence, the QMR iteration with the non-symmetric preconditioner

C−1 =
1

2

(
C̃−1
MG 0

0 C̃−1
MG

)(
I I
I −I

)

, (4.27)

converges (almost) as fast as on the coarse grid. Unfortunately, in higher order FE-
spaces already the multigrid preconditioner for the symmetric system degrades, and
with it (4.27) as well.
Table 6.3 presents the number of QMR steps needed to reach a relative accuracy
ǫ = 10−6 in the solution of the linear problem on some levels. These results were
achieved for the shielding problem with a multigrid V-cycle with 3 pre- and post-
smoothing steps.
The table shows iteration numbers for different parameter settings and various in-
dices of the Nédélec finite element space, combined with the condition number of the
symmetric preconditioned system κ(C̃−1

MG(A +M)).
The abbreviations t.1 and t.2 in the first column of Table 6.3 refer to the linear Nédélec
FE-space of type 1 and 2, respectively. Linear elements of type 1 have exactly one
degree of freedom per edge, namely the tangential component of a function along this
edge. By type 2 we mean the finite element space with linear basis functions that have
two degrees of freedom per edge.
Since already for second order basis functions the quasi-minimal residual method con-
verges fairly slowly, we mostly employ the linear Nédélec FE-space of type 2.



CHAPTER 6. NUMERICAL RESULTS 73

Order Level 0 Level 1 Level 2 Level 3
1 (t.1) (P1), Steps: 15 [1] 18 [1.15] 16 [1.19] 17 [1.31]

n = 1627 12168 43343 81480

(P2), Steps: 14 [1] 16 [1.53] 16 [1.42] 18 [1.54]
n = 1627 12255 43735 86545

1 (t.2) (P1), Steps: 16 [1.28] 17 [1.46] 19 [1.52] 24 [2.1]
n = 3254 24568 82246 148404

(P2), Steps: 18 [1.77] 30 [2.29] 32 [2.46] 28 [2.49]
n = 3254 24726 87412 166436

2 (P1), Steps: 71 [5.28] 92 [7.81] 108 [8.19] 124 [8.18]
n = 5244 41499 102330 111312

(P2), Steps: 75 [6.18] 86 [7.58] 110 [7.57] 145 [11.16]
n = 5244 41499 102024 139632

Parameters: (P1) . . . σFe = 106, ǫ = 10−11, ω = 103π

(P2) . . . σFe = 105, ǫ = 10−7, ω = 102π

In square brackets []: κ(C̃−1
MG(A + M))

Table 6.3: QMR steps for the solution of the linear problem, for different polynomial
degree of the basis functions.

Convergence of the Newton iteration As mentioned previously, we solve the
nonlinear problem iteratively by Newton’s method. The convergence speed of this
iteration obviously is influenced by the properties of the nonlinear reluctivity ν. Since
the relation between B and H is close to linear for small inductions |B| (cf. Figure
2.3), the iteration converges faster in this case. When the maximal induction in the
solution approaches 2 Tesla, the method moderately slows down. Figure 6.3 shows the
convergence of the iteration for different maximal |B| at the example of the shielding
problem. The figure also shows that, even with strong influences of the nonlinearity,
the Newton method converges very fast.

Nested iteration Actually, we are not interested in the solution on the coarser levels
but only need them as an initial guess for the Newton iteration on the finest grid, plus
for the adaptive refinement. Consequently, it seems excessive to solve the problem
exactly on each level. In this context, different strategies of adaptive refinement can
be considered – inexact solution on each of the coarse levels, while the fine level is solved
more accurately, for example, or a consistent increase in accuracy after each refinement
step. Another idea that crosses one’s mind is to solve the linearized systems less
exactly, since for achieving a Newton accuracy of 10−3, for instance, it is unnecessary
to push the QMR iteration to a relative accuracy of 10−6.
In the following, we compare the strategies of nested iteration that are described in
Table 6.4, where, when we proceed according to (S0), we do not use the prolongated
solution of the coarser level as initial guess for the Newton iteration, but the solution
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Figure 6.3: The Newton convergence depends on the maximal induction |B|.

of the linear problem. So (S0) is actually not a nested iteration.

Strategy: Newton accuracy on level l QMR accuracy on level l

(S0) ǫNl = ǫN = 10−8 ǫQl = ǫQ = 10−6

non-nested

(S1) ǫNl = ǫN = 10−8 ǫQl = ǫQ = 10−6

(S1’) ǫNl = ǫN = 10−8 ǫQl = ǫQ = 10−4

(S2) ǫNl = 10−2 · 10−l, for l < lmax, ǫQl = max{ǫNl , 10−6}

ǫNlmax
= 10−8

(S3) ǫNl = 10−3, for l < lmax, ǫQl = max{ǫNl , 10−6}

ǫNlmax
= 10−8

(S4) ǫN0 = 10−6, ǫQl = max{ǫNl , 10−6}

ǫNl = 10−3, for 0 < l < lmax,

ǫNlmax
= 10−8

Table 6.4: Different strategies of nested iteration.

Table 6.5 compares the accumulated number of QMR iterations on each level together
with the time needed for the solution. Again, we consider a current of 5 · 105 A in
the coil, i.e. we observe a maximal induction |B| ∼ 1.83 T in the solution. Although
this table presents results for one harmonic, we emphasize that we observe analogous
results for a different number of modes. We remark that the computations which are
shown in Table 6.5 are achieved by lowest order Nédélec edge discretization. Anyhow,
even though the results for higher order basis functions differ slightly from those in
the table, the general superiority of inexact solution on coarser levels is exactly the
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same.

For Table 6.5, we begin with a coarse grid with n = 4942 degrees of freedom, and then
adaptively refine the mesh. The different strategies of nested iteration yield comparable
sequences of grids – strategies (S0), (S1), (S1)’, (S3) and (S4) yield n = 31255 on level
1, n = 78665 on level 2, n = 91851 on level 3 and finally with 92211 degrees of freedom
on the finest mesh, level 4, while (S2) results in the sequence n = 31264 / 78631 /
91823 / 92013.

Strategy Level 0 Level 1 Level 2 Level 3 Level 4 Total Time
n = 4942 31255 78665 91851 92013

(S0) 46 134 630 638 619
14.32 s 334.08 s 3841.21 s 6619.52 s 9084.26 s 19893.39 s

(S1) 46 131 594 356 166
14.37 s 346.15 s 3651.97 s 3727.81 s 2468.43 s 10208.73 s

(S1’) 34 93 442 235 105
12.28 s 284.58 s 2813.37 s 2563.32 s 1591.22 s 7264.77 s

(S2) 4 44 349 236 100
1.33 s 167.82 s 2229.77 s 2543.37 s 1490.21 s 6432.5 s

(S3) 17 44 240 90 174
6.43 s 167.29 s 1580.31 s 1006.59 s 2582.48 s 5343.1 s

(S4) 30 44 235 84 172
8.71 s 166.8 s 1535.77 s 949.58 s 2515.76 s 5176.62 s

Table 6.5: Total number of QMR steps per level and solution time for various strategies
of nested iteration.3

The table impressively demonstrates the superiority of nested iterations over the non-
nested strategy (S0), as well as the preeminence of procedures that solve less accurately
on the coarser levels. A comparison of (S3), where we solve fairly inexactly on all the
coarse levels, with the approach (S4) displays that more effort on the first comparably
coarse grid pays off in the end.

In Figure 6.4, we compare the relative residuals |f−A(uk)|
|f |

of the strategies (S1), (S2)

and (S4). The plots show for example that – even for inexact solution of the linearized
systems – we have superlinear convergence of the Newton iteration. Moreover, we
observe that even for very exact solution, the relative residual grows considerably due
to the prolongation.

Number of harmonics needed for the multiharmonic ansatz We have seen
in Chapter 3 that the solution of the eddy current problem can be represented by
means of a Fourier series. However, in the actual calculation we truncate this series

3The computations were done on an AMDTM AthlonTM CPU with 1800 MHz.
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Figure 6.4: Relative residuals of three approaches of nested iteration.

and only consider the first few harmonics. Clearly, now the question arises how many
harmonics we have to consider in the computations. For small inductions |B|, the
relation between B and H is close to linear, so we expect that in this case the base
harmonic of the solution already contains significant information. For |B| approaching
2 Tesla in some part of the iron domain, the influence of the nonlinearity grows stronger
and more harmonics are required. These thoughts are validated in Figure 6.5, where
we depict the eddy current density

∫

ΩF e

E · J e dx =

∫

ΩF e

σ

∣
∣
∣
∣

∂u(t)

∂t

∣
∣
∣
∣

2

dx,

for different maximal induction max
x,t |B| and for computation with seven harmonics,

where in each case the influence of the different modes is plotted separately. We
emphasize that the even harmonics are not needed in the calculation due to Theorem
3.2.
Figure 6.5 presents results for the shielding problem, but the general tendency can
immediately be transferred to other examples, as we will see for example in Section
6.4.
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Figure 6.5: Eddy current density for different max |B|, analyzed by the first seven
harmonics.4

4Note the logarithmic scale in the figures!
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Especially in the right plot in Figure 6.5 the higher harmonics might seem to have
great influence on the result. In order to emphasize that a small number of harmonics
in the multiharmonic ansatz is sufficient, we present the results for computations with
several numbers of modes in Figure 6.6. Here, the parts of each harmonic are not
depicted separately as in Figure 6.5, but we show the eddy current density for various
N in the ansatz (3.18).
The figure conspicuously demonstrates that – even for strong influences of the non-
linearity – very accurate results can actually be achieved with a small number of
harmonics: 3 or 5 harmonics are often sufficient.
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Figure 6.6: Eddy current density for different numbers of harmonics.

Results Finally, we present some results for the shielding problem, where we concen-
trate on changes in the parameter setting that imply various depths of the boundary
layer.
In Figure 6.7, we show the eddy currents and their absolute value in a clipping plane,
for time t = 0. We also present a zoom of the currents in the iron plate at this clipping
plane in Figure 6.8. The result in both figures clearly demonstrates the boundary
layer, which was mentioned in Section 6.1 – we observe strong eddy currents only in a
small skin at the edge of the iron plate.

We remark that the results depicted in Figures 6.7 and 6.8 were achieved on a fine
grid with 81750 edges and by Nédélec discretization of order 1, type 2, i.e. by a total
amount of 163500 unknowns per Fourier coefficient.
It is worth mentioning that – as long as the boundary layer is properly discretized –
a smaller number of unknowns is by far sufficient. Calculations on a comparatively
coarse grid with only 11060 edges for the same Nédélec elements of order 1, type 2 have
shown practically the same result. This is affirmed in the second picture in Figure 6.9,
where we plot the absolute value of eddy currents for this FE-space with only 22120
unknowns per Fourier coefficient; there is practically no visible difference between this
picture and Figure 6.7.
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Figure 6.7: Eddy currents and their absolute value (at t = 0).

Figure 6.8: Eddy currents in a clipping plane, zoomed (at t = 0).

The computations for Figures 6.7 and 6.8 were done with the standard parameter
setting σFe = 106, ǫ = 10−9, frequency f = 50 Hz and a current of 5 · 105 A in the
inductor. In the following, we show results for the same conductivity and current, but
for different frequencies, what implies different thickness of the boundary layer.
Recall from the formula for the penetration depth (6.1) that an increase in the fre-
quency decreases the skin depth. Figure 6.9 shows results for the frequencies f = 12.5
Hz, f = 50 Hz and f = 200 Hz. Since in the last case we multiply the frequency by
4 with respect to the original setup (Figure 6.7 and the central picture of Figure 6.9),
we expect the layer to shrink to 1

2
of the size that is depicted in the central image,

while in the first picture we expect a doubling of the saturated layer. This effect can
be observed quite conspicuously in Figure 6.9.
We should mention that the same current of 5 · 105 A generates eddy currents of
different magnitude in dependence on the frequency: In Figure 6.7 and in the middle
of Figure 6.9, the maximal value is 3.8 · 106 A

m2 , while in the right part of Figure 6.9,
the scale reaches 1.5 · 107 A

m2 , and with a frequency of 12.5 Hz (left part of Figure 6.9),
we observe eddy currents of 4.5 · 105 A

m2 at the most.

6.4 Eddy Current Welding

In this section, we present the results of our computations on the eddy current welding
problem, whose geometry has already been illustrated in Figure 2.1 on page 11. For
this setup with the slitted iron tube, the eddy currents can only close around the tip
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Figure 6.9: Absolute value of eddy currents for various frequencies.

of the cut, where they considerably rise the temperature of the material.
As mentioned previously, the penetration depth is extremely small in the real life
application – with a conductivity σ = 9.3 · 106 and a frequency f = 2 · 105 Hz, we face
a skin depth of approximately 10−5 meters (cf. Section 6.1). Consequently, we expect
to observe large currents only at the edges of the slit and around the tip of the cut.
In our calculations, we were able to solve the problem with the aforesaid realistic pa-
rameter setting; for the right hand side, we always consider a current of 2000 Ampere,
which is used in the practical application as well.

Before illustrating our results by some figures, we underline that all the conclusions
of Section 6.3 are equally valid for the welding problem – we observe analogous (or
even better) convergence of the QMR iteration, for example. Furthermore, a nested
nonlinear iteration that approximates the solution on intermediate levels only fairly
inexactly seems best suited for this problem as well. As far as the number of harmonics
is concerned, we conclude that three or five modes are sufficient, just as in the previous
section.

For documenting these conclusions, we first present the number of QMR steps for the
solution of the linearized problems in the Newton iteration, just as in Table 6.1 on
page 71. The results are summarized in Table 6.6, where we also quote the maximal
induction |B| in the respective point of linearization. We are interested in the maximal
induction because it hints on the influence of the nonlinearity.
The computations for Table 6.6 were effectuated in a finite element space with n =
73033 degrees of freedom per Fourier coefficient, and for only one harmonic; we con-
sidered a relative accuracy of ǫ = 10−6 for the QMR iteration, just as in Table 6.1.

In contrast to Table 6.1, we observe in Table 6.6 that the preconditioned QMR iter-
ation almost does not deteriorate even for large contributions of ν ′. This seemingly
astonishing fact can be attributed to the higher frequency in eddy current welding
problems: In conducting regions we have ωσ ∼ 1013, while the reluctivity ν is bounded
by ν0 ∼ 8 · 105 and – for the B-H-curve shown in Figure 2.3 – ν ′ is of the same order
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of magnitude. Consequently, the mass term (cf. (4.35))
∫

Ω

ωσǫDu · v dx,

is dominant even for strong influences of the nonlinearity.

lin. Newton 1 Newton 2 Newton 3

Steps: 18 18
max |B| 0.39

Steps: 18 18 16
max |B| 1.55 1.55

Steps: 18 18 16 16
max |B| 1.94 1.93 1.93

Steps: 18 17 18 18
max |B| 2.33 2.29 2.29

Table 6.6: QMR steps for the solution of the linearized problems in the Newton
iteration.

The dominance of the mass term equally accelerates QMR convergence in the case of a
larger number of harmonics in the multiharmonic ansatz. As mentioned in Section 6.3,
the nonlinearity couples the different harmonics. Since in the preconditioner we neglect
this coupling – remember that we use the preconditioner for the linear problem –, an
increase in the number of QMR steps could be expected (cf. Table 6.2). However,
in the realistic eddy current welding problem the dominant mass brings about fast
convergence of the QMR iteration even in the case of several modes.
This statement is underlined in Table 6.7, where we present the number of QMR steps
needed to reach a relative accuracy ǫ = 10−6 in the solution of the linearized problems,
for the case of three harmonics. Computations for this table were effectuated in the
same finite element space as for Table 6.6, i.e. with 73033 degrees of freedom per
coefficient.

lin. Newton 1 Newton 2 Newton 3

Steps: 18 18
max |B| 0.44

Steps: 18 18 18
max |B| 1.09 1.08

Steps: 18 20 20 20
max |B| 2.19 2.15 2.15

Table 6.7: QMR steps for the solution of the linearized problems, three harmonics.

In Table 6.8, we compare some strategies of nested iteration, just as in Table 6.5
on page 75. In this table, the accumulated number of QMR steps on each level
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together with the solution time is depicted for the strategies (S1), (S2), (S3) and (S4)
(cf. Table 6.4). These results were achieved by computations on a coarse grid with
n = 9437 degrees of freedom for the lowest order Nédélec edge discretization. Adaptive
refinement then yields the same sequence of grids for all three strategies: n = 40832
on level 1, n = 82279 for level 2, and finally we have 181779 degrees of freedom on the
finest mesh (level 3).

Strategy Level 0 Level 1 Level 2 Level 3 Total Time
n = 9437 40832 82279 181779

(S1) 32 105 364 920
33.81 s 541.76 s 4154.2 s 23562.26 s 28292.03 s

(S2) 6 35 232 778
5.51 s 235.19 s 2563.76 s 18375.95 s 21180.41 s

(S3) 9 37 167 814
6.99 s 241.2 s 2035.57 s 19116.48 s 21400.24 s

(S4) 32 35 188 862
33.76 s 235.44 s 2194.29 s 20091.89 s 22555.38 s

Table 6.8: Total number of QMR steps per level and solution time for various strategies
of nested iteration.5

Table 6.8 reveals that the choice of the optimal strategy of nested iteration is not
obvious for the eddy current welding problem; however, we notice that procedures
that solve less accurately on the coarser levels easily outperform the approach (S1).
We remark that the relatively long time needed for solution on the finest grid is largely
due to the huge difference between level 2 and 3. This rise in the number of unknowns
brings about a suboptimal initial guess – we need some damped Newton steps in all
strategies – and a pejoration of the multigrid preconditioner for the symmetric system.
Consequently, some improvements of convergence are imaginable by a better ad-
justment of the adaptive refinement process, for example by an intermediate mesh
of approximately 120000 degrees of freedom between level 2 (n = 82279) and 3
(n = 181779).

As in Section 6.3, we present a figure that analyzes the part of the different harmonics
in the eddy current density (comparable to Figure 6.5), namely Figure 6.10. The
results shown in this plot were achieved by computations with seven harmonics, and
for a solution with maximal induction |B| ∼ 1.73 Tesla.
Similar to Figure 6.5, we observe in Figure 6.10 that the contribution of the higher
harmonics to the total eddy current density is of some orders of magnitude smaller
than the share of the base harmonic. For this example, the difference is even more
explicit than in Figure 6.5.

5The computations were done on an AMDTM AthlonTM CPU with 1800 MHz.



CHAPTER 6. NUMERICAL RESULTS 82

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0  5e-07  1e-06  1.5e-06  2e-06  2.5e-06  3e-06  3.5e-06  4e-06  4.5e-06  5e-06

E
dd

y 
C

ur
re

nt
 D

en
si

ty

Time

Mode 1
Mode 3
Mode 5
Mode 7

Figure 6.10: Eddy current density, analyzed by the first seven harmonics.

Now, we can finally manifest our results by some figures. In Figure 6.11 we show
the absolute value of the eddy currents in a plane that clips the slitted tube, for
the parameter setting mentioned previously. Due to the extremely small penetration
depth, we present a zoom of the region close to the tip of the cut.
The figure depicts the currents for different time t, where T indicates the length of the
period, i.e. T = 1

f
= 5 · 10−6 s, since the frequency equals f = 2 · 105 Hz.

Computations for this figure were done on a fine grid with 58907 edges, again with
Nédélec discretization of order 1, type 2, i.e. with 117814 degrees of freedom per Fourier
coefficient.

t = 0. t = T
8 .

t = T
4 . t = 3T

8 .

Figure 6.11: Absolute value of eddy currents in the slitted tube, for various t.



Chapter 7

Conclusions

This thesis covers the full range of mathematical problem solving at the example
of eddy current welding: Starting from the electromagnetical problem formulation,
we have rewritten the governing equations in the abstract mathematical framework
and proven unique solvability of general eddy current problems in the subspace of
divergence-free functions. This result was achieved by a combination of prior analysis
for both conducting and non-conducting regions.

Then, taking into consideration that we are interested in a periodic steady state so-
lution, we have presented the idea of Fourier series expansion, which reduces the
originally time-dependent problem to a system of equations in space. Again, we have
provided a proof of existence and uniqueness of such a periodic solution and have
demonstrated some of its properties. In contrast to other authors who often prefer
complex notation, we have chosen real Fourier coefficients and justified this choice by
pointing out the difficulties that the complex problem entails.

These questions settled, we could finally apply the multiharmonic ansatz – a truncated
Fourier series expansion – to the eddy current problem. The resulting system of PDEs
was linearized by a Newton iteration and discretized by means of the finite element
method.

In order to enforce unique solvability of the linear systems that arise in each step,
we have introduced a regularization parameter, what allowed us to directly solve the
variational problem instead of tackling the problem in the factor space of divergence-
free functions or working with the mixed formulation. This procedure was vindicated
by providing an estimate of the error that was incorporated by the perturbation.

For facilitating the faster solution of the linearized problems, a preconditioner was
proposed and analyzed. The symmetric part of this preconditioner was realized by
a multigrid iteration, wherefore some general results on multigrid convergence were
quoted and the way to treat the peculiarities connected with electromagnetical prob-
lems was mentioned.

Finally, we have presented the results of our computations, where we were able to
solve the challenging problem of eddy current welding with realistic geometry and

83
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parameters. In the extremely fine saturated layer, a sufficiently good approximation
of the solution was achieved by adaptive refinement strategies.

As a matter of course, the work can still be continued into different directions. Some
issues of further research are for example

• anisotropic meshing in the small layer of strong induction in order to reduce the
number of unknowns even more,

• the theoretical analysis and implementation of multigrid methods for non-symmetric
systems, what would accelerate the solution of the linearized problems,

• the possibility to choose higher polynomial degrees in the saturated layer than
in other elements, what should again lower the total amount of unknowns,

• a complete analysis of the combined discretization error in the mesh size h and
the number of harmonics N in the multiharmonic ansatz.
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[35] J. C. Nédélec. A New Familiy of Mixed Finite Elements in R
3, Numer. Math. 50

(1986), pp. 57-81.

[36] J. T. Oden. Optimal hp-Finite Element Methods, Comp. Meth. Appl. Mech. Engg.
112 (1994), pp. 309-331.

[37] G. Paoli, O. B́ıro, G. Buchgraber. Complex representation in nonlinear time har-
monic eddy current problems, IEEE Transactions on Magnetics 34 (1998), pp.
2625-2628.

[38] S. Reitzinger. Algebraic Multigrid Methods for Large Scale Finite Element Equa-
tions, PhD thesis, Schriften der Johannes Kepler Universität Linz, Reihe C -
Technik und Naturwissenschaften 36, Universitätsverlag Rudolf Trauner, Linz,
2001.

[39] S. Reitzinger, B. Kaltenbacher, M. Kaltenbacher. A Note on the Approximation
of B-H Curves for Nonlinear Magnetic Field Computations, Johannes Kepler Uni-
versität Linz, SFB “Numerical and Symbolic Scientific Computing”, SFB-Report
No. 02-30, 2002.

[40] S. Reitzinger, U. Schreiber, U. von Rienen. Algebraic Multigrid for Complex Sym-
metric Matrices: Numerical Studies, Johannes Kepler Universität Linz, SFB “Nu-
merical and Symbolic Scientific Computing”, SFB-Report No. 02-01, 2002.



BIBLIOGRAPHY 88

[41] J. E. Roberts, J.-M. Thomas. Mixed and Hybrid Methods, in: P. G. Ciarlet, J. L.
Lions [eds]. Handbook of Numerical Analysis II: Finite Element Methods (Part 1),
North-Holland, Amsterdam, 1991.

[42] M. Schinnerl. Numerische Berechnung magneto-mechanischer Systeme mit Mehr-
gitterverfahren, PhD thesis, Fortschritt-Berichte VDI Reihe 21 Nr. 308, VDI Ver-
lag, Düsseldorf, 2001.
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