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Robust Multigrid for Isogeometric Analysis Based

on Stable Splittings of Spline Spaces

Clemens Hofreither Stefan Takacs

June 13, 2016

Abstract

We present a robust and efficient multigrid method for isogeometric
discretizations using tensor product B-splines of maximum smoothness.
Our method is based on a stable splitting of the spline space into a large
subspace of “interior” splines which satisfy a robust inverse inequality, as
well as one or several smaller subspaces which capture the boundary ef-
fects responsible for the spectral outliers known to occur in Isogeometric
Analysis. We then construct a multigrid smoother based on a subspace
correction approach, applying a different smoother to each of the sub-
spaces. For the interior splines, we use a mass smoother, whereas the
remaining components are treated with suitably chosen Kronecker prod-
uct smoothers or direct solvers.

We prove that the resulting multigrid method exhibits iteration num-
bers which are robust with respect to the spline degree and the mesh size.
Furthermore, it can be efficiently realized for discretizations of problems
in arbitrarily high geometric dimension. Some numerical examples illus-
trate the theoretical results and show that the iteration numbers also scale
relatively mildly with the problem dimension.

1 Introduction

Isogeometric Analysis (IgA) is method for the numerical solution of partial dif-
ferential equations (PDEs) introduced in the seminal paper [17] which has since
attracted a sizable research community. Spline spaces, such as spaces spanned
by tensor product B-splines or NURBS, are commonly used for geometry repre-
sentation in industrial CAD systems. The foundational idea in IgA is to use such
spline spaces both for the representation of the computational domain and for
the discretization of the quantities of interest when solving a PDE. The overall
goal is to create a tighter integration between geometric design and analysis.

Our interest lies in building efficient solvers for the large, sparse linear sys-
tems which arise when applying isogeometric discretizations to boundary value
problems. By now, most established solution strategies known from the Fi-
nite Element literature have been applied in one way or another to IgA: among
these, direct solvers [2], non-overlapping and overlapping domain decomposition
methods [18, 4, 5, 6], and multilevel and multigrid methods [1, 11, 16, 10, 14].
A recent contribution [19] constructs preconditioners based on fast solvers for
Sylvester equations. The above list is certainly not comprehensive.
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In IgA, we typically encounter as discretization parameters the mesh size
and the spline degree. In the early IgA solver literature, the focus was on
translating solvers from the FEM world to IgA with minimal adaptations. As
a rule, it was found that such an approach results in methods that work well
for low spline degrees, but deteriorate in performance as the degree is increased;
often dramatically so. This motivated the search for IgA solvers that are robust
not only with respect to the mesh size (which is often easy to achieve), but also
with respect to the spline degree.

Within the class of multigrid methods for IgA, advances towards a robust
method were made using two approaches. In [9], a careful analysis of the sym-
bol of isogeometric stiffness matrices served as the basis for the construction of
multigrid methods. This theoretical approach is somewhat related to the tech-
nique known as Local Fourier Analysis (LFA) in the multigrid literature (see,
e.g., [21]). It appears that the method presented in [9] is roughly comparable
to the one studied in [15], which uses mass matrices as multigrid smoothers,
an approach that was itself motivated by LFA. For both methods, an increase
in the number of smoothing steps, roughly linearly with the spline degree, is
required in order to maintain robust convergence. They can thus not be con-
sidered totally robust and efficient in the strict meaning that we will use in the
present work.

A second approach towards robust and efficient multigrid was presented in
[14]. Based on a robust inverse inequality and approximation error estimate in a
large subspace of maximally smooth spline spaces derived in [20], it was shown
that mass matrices can be used as robust smoothers in this large subspace.
For the remaining, relatively few degrees of freedom, a low-rank correction was
constructed. (These degrees of freedom are associated with the boundary of
the domain and cannot be captured by LFA, which assumes periodic boundary
conditions.) This approach resulted in a provably robust and efficient multigrid
method for two-dimensional problems with splines of maximum smoothness.
It was however not clear how to extend this approach efficiently to three and
higher dimensions.

The present work can be viewed as a continuation of [14]. Based on the
theoretical results from [20], we construct a splitting of the tensor product spline
space into a large, regular interior part and several smaller spaces which capture
boundary effects. The splitting is L2-orthogonal and H1-stable with respect to
both the mesh size and the spline degree. This stability enables us to construct a
multigrid smoother based on an additive subspace correction approach, applying
a different smoother in each of the subspaces. In the regular interior subspace,
we use a mass smoother. In the other subspaces, we construct smoothers which
exploit the particular structure of the subspaces while still permitting an efficient
application through a Kronecker product representation. In one small subspace
associated with the corners of the domain, we apply an exact solver.

Unlike the low-rank correction approach from [14], the subspace correction
approach generalizes easily to three-dimensional problems, and indeed to prob-
lems of arbitrary space dimension. We show that the method converges robustly
with respect to mesh size and spline degree, and that one iteration is asymptot-
ically not more expensive than an application of the stiffness matrix. The result
is a quasi-optimal solution method for problems of arbitrary space dimensions.

We emphasize that the stable splitting presented in Section 3 is an interesting
theoretical result in its own right, and we anticipate future applications of this
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idea to different solution strategies, or to the solution of eigenvalue problems
while avoiding the spectral outliers commonly observed in IgA (cf. [3]).

The remainder of the paper is organized as follows. In Section 2, we intro-
duce the needed spline spaces and present an isogeometric model problem. We
also present an algorithmic multigrid framework and an abstract convergence
result which forms the basis of our later analysis. In Section 3, we derive the
main new theoretical result used in our construction: the L2-orthogonal and H1-
stable splitting of the spline space into a large, regular interior part and smaller
spaces which capture boundary effects. In Section 4, we use this space split-
ting to construct a multigrid smoother based on the idea of additive subspace
correction and show that it results in a robust solver. In Section 5, we present
details on the numerical realization of the proposed smoother and show that it
permits an efficient implementation in arbitrary space dimensions. In Section 6,
we present numerical experiments which demonstrate the performance of the
proposed method in practice.

2 Preliminaries

2.1 Spline spaces and B-splines

Consider a subdivision of the interval (0, 1) into m ∈ N intervals of length
h = 1/m. We introduce the spline space of degree p ∈ N with maximum
smoothness,

S := {u ∈ Cp−1(0, 1) : u|((j−1)h,jh) ∈ Pp ∀j = 1, . . . ,m},

where Cp−1(0, 1) are the p − 1 times continuously differentiable functions on
(0, 1) and Pp are the polynomials of degree at most p. We have

n := dimS = m+ p.

Whenever we require a basis for S, we will use the normalized (i.e., satisfying a
partition of unity) B-splines (see, e.g., [8]) and denote them by

B := {ϕ1, . . . , ϕn}.

In higher dimensions d > 1, we introduce the space of tensor product splines
and the tensor product B-spline basis

Sd := S ⊗ . . .⊗ S, ϕj1,...,jd(x) := ϕj1(x1) · · ·ϕjd(xd), jk ∈ {1, . . . , n},

defined over (0, 1)d. For notational convenience, we assume that the same spline
space is used in each of the d coordinate directions. Both our construction and
our analysis are however straightforward to generalize to the case where different
spline spaces are used in different coordinate directions.

2.2 Isogeometric model problem

Let Ω = (0, 1)d with d ∈ N. As a model problem for d-dimensional bound-
ary value problems for elliptic second-order partial differential equations, we
consider the following: find u ∈ H1(Ω) such that

a(u, v) = 〈f, v〉 ∀v ∈ H1(Ω), (1)
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where

a(u, v) =

∫
Ω

(∇u · ∇v + uv) dx ∀u, v ∈ H1(Ω) (2)

and f is a linear functional on H1(Ω). This is the variational formulation of
a pure Neumann boundary value problem for the partial differential operator
−∆u+u. In the following, we will sometimes refer to the operator A : H1(Ω)→
H1(Ω)′ given by Av = a(v, ·). Also note that ‖v‖2A = a(v, v) = ‖v‖2H1(Ω).

Discretizing (1) using tensor product B-splines, we obtain the discrete prob-
lem: find uh ∈ Sd such that

a(uh, vh) = 〈f, vh〉 ∀vh ∈ Sd. (3)

We are interested in robust and efficient iterative solvers for the discrete
problem (3). Here, by “robust” we mean that the number of iterations to solve
the problem should stay uniformly bounded with respect to both the mesh size
h and the spline degree p, and by “efficient” we mean that one iteration of
the method should not be asymptotically more expensive than one application
of the stiffness matrix. Combined, these properties allow us to solve (3) in
quasi-optimal time.

In IgA, it is common to introduce a bijective geometry map from Ω to
the actual domain of interest in order to be able to treat more complicated
computational domains. Basis functions on the transformed domain are defined
by composing the basis functions on the reference domain with the inverse of
the geometry map. Furthermore, one often considers more general PDEs with
varying and possibly matrix-valued coefficients. Discretizations for such more
general problems can be preconditioned with a solver for the model problem
(3), and the resulting condition number depends only on the geometry map and
the coefficient functions, but not on discretization parameters like the mesh size
h or the spline degree p. This principle has been widely used in the literature
on IgA solvers (see, e.g., [9, 14]) and formalized in [19]. Therefore, a robust
and efficient solver for the model problem (3) immediately yields robust and
efficient solvers for a more general class of problems with “benign” geometry
maps and mildly varying coefficients. This justifies the study of solvers for the
model problem.

Three different refinement strategies for IgA discretizations were proposed in
[17]: h-refinement (reducing the mesh size), p-refinement (increasing the spline
degree), and the so-called k-refinement. In the latter, the idea is to refine a spline
space by inserting only single new knots at the midpoints of the knot spans to
be refined. This strategy maintains the maximum possible smoothness Cp−1 for
the spline space of degree p. Already in [17], it was observed that this strategy
exhibits favorable practical performance since it allows the use of a high spline
degree (and the associated high approximation power) while keeping the number
of degrees of freedom relatively low. In the wider IgA literature, k-refinement
appears to be the most popular refinement strategy, which motivates the study
of solvers for spline spaces with maximum smoothness.

2.3 A multigrid method framework

Given a discretization space V and a coarse space Vc ⊂ V , we denote by P :
Vc → V the canonical embedding. Let A : V → V ′ denote the operator in a
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(discretized) equation
Au = f

to be solved for u ∈ V . The corresponding coarse-space operator is given by
Ac := P ′AP . Furthermore, we assume that we are given a self-adjoint and
positive definite smoothing operator L : V → V ′.

Given a previous iterate u(k), we let u(k,0) := u(k) and perform ν ∈ N
smoothing steps given by

u(k,j) := u(k,j−1) + τL−1(f −Au(k,j−1)), j = 1, . . . , ν,

where τ > 0 is a damping parameter. Then, we perform one coarse-grid correc-
tion step given by

u(k+1) := u(k,ν) + PA−1
c P ′(f −Au(k,ν)).

Together, these updates describe one iteration u(k) 7→ u(k+1) of a two-grid
method. Given an entire sequence of nested spaces V0 ⊂ . . . ⊂ VL = V , we
can replace the exact inversion of Ac in the coarse-grid correction step by one
or two recursive applications of the two-grid method on the next coarser level
VL−1, and so on until we reach the coarsest level V0, where an exact solver is
used. Using one respectively two recursive iteration steps results in the V-cycle
respectively W-cycle multigrid method.

An abstract convergence result for the two-grid method is given below. It
was derived in [14] using relatively standard arguments based on the multigrid
theory as developed by Hackbusch [13]. Under the same assumptions, it was
shown in [14] that convergence of the W-cycle multigrid method follows as well.
Therefore, we restrict ourselves to the analysis of the two-grid method in the
present work.

Theorem 1 ([14]). Assume that there are constants CA and CI such that the
inverse inequality

‖u‖2A ≤ CI‖u‖2L ∀u ∈ V (4)

and the approximation property for the A-orthogonal projector Πc : V → Vc

‖(I −Πc)u‖2L ≤ CA‖u‖2A ∀u ∈ V (5)

hold. Then the two-grid method converges for any damping parameter τ ∈
(0, C−1

I ] and any number of smoothing steps ν > ν0 := τ−1CA with rate q =
ν0/ν < 1.

In particular, the above result states that if CA and CI do not depend on the
mesh size h and the spline degree p, then the two-grid method converges with
a rate q < 1 which does not depend on h and p. In other words, the two-grid
method is then robust.

In addition to properties (4) and (5), care must be taken that the smoother
can be realized efficiently. In other words, it should be possible to apply the
inverse L−1 with a computational complexity which is roughly comparable to
that for applying A.
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3 Stable splittings of spline spaces

Consider first the univariate case, d = 1, with Ω = (0, 1). In [20], the subspace

S0 :=
{
u ∈ S : u(2l+1)(0) = u(2l+1)(1) = 0 ∀l ∈ N0 with 2l + 1 < p

}
of splines with vanishing odd derivatives of order less than p at the boundaries
was introduced (denoted there by S̃p,h(Ω)). It is a large subspace of S in the
sense that

dimS0 ≥ dimS − p.
The subspace S0 has the very desirable property of satisfying both a (first-

order) approximation property and an inverse inequality, both with constants
which are independent of the spline degree p. To formulate these results, we
let Π0 : H1(Ω) → S0 and Q0 : L2(Ω) → S0 denote the H1-orthogonal and the
L2-orthogonal projector into S0, respectively.

Theorem 2 ([20]). For any spline degree p ∈ N, we have the inverse inequality

|u|H1(Ω) ≤ 2
√

3h−1‖u‖L2(Ω) ∀u ∈ S0.

Theorem 3 ([20, 14]). For any spline degree p ∈ N and any u ∈ H1(Ω), we
have the approximation error estimates

‖(I −Q0)u‖L2(Ω) ≤
√

2h|u|H1(Ω),

‖(I −Π0)u‖L2(Ω) ≤ 2
√

2h‖u‖H1(Ω).

Contrast these properties with the entire spline space S, which does satisfy
a robust approximation property, but whose inverse inequality deteriorates with
increasing degree p ([20]). On the other hand, a smaller space of only “interior”
splines, built by discarding the p leftmost and p rightmost B-splines, does satisfy
a robust inverse inequality but loses the approximation property.

We remark that the non-robustness of the inverse inequality in S is the root
cause of the spectral “outliers” commonly observed when solving eigenvalue
problems using IgA (cf. [3]). No such outliers appear in the space S0.

3.1 A stable splitting in 1D

Let S1 := S
⊥L2
0 denote the L2-orthogonal complement of S0 in S. Consider the

splitting of S into the direct sum

S = S0 ⊕ S1 ←→ u = Q0u+ (I −Q0)u

of S0 and its complement, illustrated in Figure 1. Due to orthogonality, we have

‖u‖20 = ‖Q0u‖20 + ‖(I −Q0)u‖20.

Crucially, we can prove that this splitting is stable also in the H1-norm. This
is a direct result of the space S0 satisfying both an approximation property and
an inverse inequality.

Here and in the sequel, we abbreviate the L2(Ω)-norm by ‖ · ‖0, and the full
H1(Ω)-norm and the seminorm, respectively, by ‖ · ‖1 and | · |1. Furthermore,
we write c for a generic positive constant which does not depend on the mesh
size h or the spline degree p.
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Figure 1: Bases for the space S0 (left) and its orthogonal complement S1 (right)
for p = 4, h = 1/20. Here, dimS0 = 20 and dimS1 = 4.

Theorem 4. For any spline u ∈ S, we have

c−1‖u‖21 ≤ ‖Q0u‖21 + ‖(I −Q0)u‖21 ≤ c‖u‖21.

Proof. The left inequality follows immediately from the Cauchy-Schwarz in-
equality with c = 2. For the right inequality, we observe that

‖Q0u‖1 ≤ ‖Π0u‖1 + ‖(Π0 −Q0)u‖1
≤ ‖u‖1 + ch−1 (‖(I −Π0)u‖0 + ‖(I −Q0)u‖0) ,

where we used the triangle inequality, stability of the H1-projector Π0 in the H1-
norm and the robust inverse inequality in S0 (Theorem 2). Due to Q0 producing
the best L2-approximation in S0, we have ‖(I −Q0)u‖0 ≤ ‖(I −Π0)u‖0. Thus,
with the approximation result Theorem 3 we obtain H1-stability of the L2-
projector,

‖Q0u‖1 ≤ c‖u‖1.

Using the triangle inequality, the desired result follows from

‖(I −Q0)u‖1 ≤ ‖u‖1 + ‖Q0u‖1 ≤ (1 + c)‖u‖1.

Theorem 5. We have stability of the above splitting in the H1-seminorm, that
is, for any spline u ∈ S,

c−1|u|21 ≤ |Q0u|21 + |(I −Q0)u|21 ≤ c|u|21.

Proof. By definition, the constant functions are contained in S0, and therefore
Q0u = u and (I − Q0)u = 0 for any u ∈ R. In the following, we choose the
mean value u :=

∫
Ω
u =

∫
Ω
Q0u. By Theorem 4, we have

|u|21 = |u− u|21 ≤ c
(
‖Q0(u− u)‖21 + ‖(I −Q0)(u− u)‖21

)
= c

(
‖Q0u− u‖21 + ‖(I −Q0)u‖21

)
.

Due to the Poincaré inequality and u =
∫

Ω
Q0u, we have

‖Q0u− u‖1 ≤ c|Q0u− u|1 = c|Q0u|1.

For the second term, we have from Theorem 3

‖(I −Q0)u‖21 = ‖(I −Q0)(I −Q0)u‖20 + |(I −Q0)u|21 ≤ (1 + ch)|(I −Q0)u|21.

Since h ≤ 1, we obtain overall

|u|21 ≤ c
(
|Q0u|21 + |(I −Q0)u|21

)
.
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For the second inequality, we obtain from Theorem 4

|Q0u|21 + |(I −Q0)u|21 = |Q0(u− u)|21 + |(I −Q0)(u− u)|21 ≤ c‖u− u‖21.

Again with the Poincaré inequality, we obtain

|Q0u|21 + |(I −Q0)u|21 ≤ c|u|21.

3.2 A stable splitting in 2D

The two-dimensional tensor product spline space is given by S2 = S ⊗ S, and
since the tensor product distributes over direct sums, we obtain the splitting

S2 = (S0 ⊗ S0)⊕ (S0 ⊗ S1)⊕ (S1 ⊗ S0)⊕ (S1 ⊗ S1) = S00 ⊕ S01 ⊕ S10 ⊕ S11

with the abbreviations

Sα1,α2
:= Sα1

⊗ Sα2
(αj ∈ {0, 1}).

A visualization of this splitting is shown in Figure 2. Note that the shaded
regions do not correspond to the supports of the function spaces; in fact, each
of the subspaces has global support. However, the shaded regions roughly cor-
respond to regions where the corresponding functions are “largest”, and their
areas roughly correspond to the space dimensions. In view of this, it makes
sense to think of S00 as an “interior” space, of S01 and S10 as “edge” spaces,
and of S11 as a “corner” space.

S00

⊕

S01

⊕

S10

⊕

S11

Figure 2: Visualization of the splitting in 2D.

Again, we can prove that the splitting is H1-stable. In the following, we let
M : S → S′, K : S → S′ denote the operators in the univariate spline space
associated with the bilinear forms

〈Mu, v〉 :=

∫ 1

0

u(x)v(x) dx, 〈Ku, v〉 :=

∫ 1

0

u′(x)v′(x) dx ∀u, v ∈ S,

that is, the one-dimensional mass and stiffness operators, respectively. For any
(α1, α2) ∈ {0, 1}2, we furthermore introduce the abbreviations

Q1 := I −Q0 : S → S1, Qα1,α2 := Qα1 ⊗Qα2 : S2 → Sα1,α2

Kαj := Q′αjKQαj : Sαj → S′αj , Mαj := Q′αjMQαj : Sαj → S′αj .

As tensor products of L2(0, 1)-orthogonal projectors, the projectors Qα1,α2
are

L2(Ω)-orthogonal, as one easily verifies. Thus the splitting of S2 given above is
a direct sum of L2-orthogonal subspaces, and we have

‖u‖20 =
∑

(α1,α2)

‖Qα1,α2u‖20, (6)
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where here and below sums over (α1, α2) are taken to run over the set {0, 1}2.

Theorem 6. For any tensor product spline u ∈ S2, we have

c−1|u|21 ≤
∑

(α1,α2)

|Qα1,α2u|21 ≤ c|u|21,

c−1‖u‖21 ≤
∑

(α1,α2)

‖Qα1,α2u‖21 ≤ c‖u‖21.

Proof. We begin with the first statement. The left inequality again follows by
the Cauchy-Schwarz inequality. For the right one, fix (α1, α2) ∈ {0, 1}2 and
observe that the H1-seminorm can be written using tensor products of one-
dimensional operators as

|Qα1,α2
u|21 = |Qα1,α2

u|2K⊗M + |Qα1,α2
u|2M⊗K . (7)

The first term can be rewritten, using the definitions and basic identities for
tensor products of operators, as

|Qα1,α2
u|2K⊗M = 〈Q′α1,α2

(K ⊗M)Qα1,α2
u, u〉 = 〈(Kα1

⊗Mα2
)u, u〉.

Due to orthogonality and Theorem 5, we have

M0 +M1 = M, K0 +K1 ≤ cK,

where all summands are positive semidefinite operators. This implies that we
can estimate, in the spectral sense, Kα1

≤ cK and Mα2
≤M , and we obtain

|Qα1,α2
u|2K⊗M ≤ c|u|2K⊗M .

Treating the second term in (7) analogously, we obtain

|Qα1,α2u|21 ≤ c(|u|2K⊗M + |u|2M⊗K) = c|u|21.

The first statement now follows by summing up over all (α1, α2). The second
statement follows by adding the identity (6).

3.3 Stable splitting in arbitrary dimensions

For any d ∈ N, we define multiindices α ∈ {0, 1}d and generalize the notations
from Section 3.2 in the straightforward way to higher dimensions. We obtain
the splitting into the direct sum of 2d subspaces

Sd =
⊕
α

Sα, where Sα = Sα1
⊗ . . .⊗ Sαd .

The L2-orthogonal projectors into the subspaces are given by

Qα = Qα1
⊗ . . .⊗Qαd : Sd → Sα.

We obtain that the splitting is H1-stable completely analogously to the two-
dimensional case.

Theorem 7. For any d-dimensional tensor product spline u ∈ Sd, we have

c−1‖u‖21 ≤
(1,...,1)∑

α=(0,...,0)

‖Qαu‖21 ≤ c‖u‖21.

The same statement holds in the H1-seminorm.

Proof. Completely analogous to Theorem 6.
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4 Construction of a robust multigrid method

Recall that S was a spline space of degree p and mesh size h. Let Sc ⊂ S be the
analogous spline space with uniform mesh size 2h. For the construction of our
two-grid method in d dimensions in accordance with the framework introduced
in Section 2.3, we let

V := Sd, Vc := (Sc)
d ⊂ V.

The prolongation P : Vc → V is the canonical embedding of the coarse tensor
product spline space in the fine one. It can be represented as the d-fold tensor
product of prolongations for the univariate spline spaces, I : Sc → S.

The following result states that a robust approximation error estimate holds
for the Galerkin projector to the coarse spline space. It was proved for d = 1
and d = 2 in [14]. We extend the proof to arbitrary dimensions in the Appendix.

Lemma 8. The A-orthogonal projector Πc : Sd → (Sc)
d satisfies the approxi-

mation error estimate

‖(I −Πc)u‖L2(Ω) ≤ ch‖u‖A ∀u ∈ Sd

with a constant c which is independent of h and p (but may depend on d).

In the following subsections, we construct a smoother for the two-grid method
on these nested spline spaces which leads to a robust and efficient iterative
method.

4.1 A multigrid smoother based on subspace correction

In each of the 2d subspaces Sα ⊂ Sd, α ∈ {0, 1}d, we prescribe a local, symmetric
and positive definite smoothing operator Lα : Sα → S′α. The overall smoothing
operator is then given by the additive subspace operator

L :=
∑
α

Q′αLαQα : Sd → Sd
′
, (8)

and its inverse has the form

L−1 =
∑
α

L−1
α Q′α : Sd

′
→ Sd.

The assumptions of Theorem 1 for L, and thus the convergence of the two-grid
method with such a smoother, can be guaranteed under simple assumptions on
the subspace operators Lα, as the following two lemmas show. The stability of
the space splitting is crucial to both proofs.

Lemma 9. Assume that for every α ∈ {0, 1}d, we have

〈Avα, vα〉 ≤ c〈Lαvα, vα〉 ∀vα ∈ Sα.

Then the subspace correction smoother satisfies

〈Av, v〉 ≤ c〈Lv, v〉 ∀v ∈ Sd.

10



Proof. Due to Theorem 7 and the assumption, we have

〈Av, v〉 ≤ c
∑
α

〈AQαv,Qαv〉 ≤ c
∑
α

〈LαQαv,Qαv〉 = c〈Lv, v〉.

Lemma 10. Assume that for every α ∈ {0, 1}d, we have

〈Lαvα, vα〉 ≤ c〈(A+ h−2Md)vα, vα〉 ∀vα ∈ Sα,

where Md : Sd → Sd
′

is the mass operator in the tensor product spline space.
Then the subspace correction smoother satisfies

‖(I −Πc)v‖L ≤ c‖v‖A ∀v ∈ Sd.

Proof. From the assumption and Theorem 7, we obtain

〈Lv, v〉 ≤ c
∑
α

〈(A+ h−2Md)Qαv,Qαv〉 ≤ c〈(A+ h−2Md)v, v〉.

Thus, it follows

‖(I −Πc)v‖2L ≤ c‖(I −Πc)v‖2A + ch−2‖(I −Πc)v‖2Md ≤ c‖v‖2A,

where we used the stability of the coarse grid projector and the coarse grid
approximation property Lemma 8.

4.2 Construction in 2D

In the two-dimensional case, the operator associated with the bilinear form (2)
admits the representation

A = K ⊗M +M ⊗K +M ⊗M

in terms of the stiffness and mass operators for the univariate case. Restricting
A to a subspace Sα = Sα1,α2 , we obtain

Aα := Q′αAQα = Kα1
⊗Mα2

+Mα1
⊗Kα2

+Mα1
⊗Mα2

.

The inverse inequality in S0 (Theorem 2) allows us to estimate

K0 ≤ ch−2M0.

Using this inequality, we obtain subspace smoothers by estimating

A00 . h−2M0 ⊗M0 =: L00,

A01 .M0 ⊗ (h−2M1 +K1) =: L01,

A10 . (h−2M1 +K1)⊗M0 =: L10,

A11 = Q′11AQ11 =: L11.

By construction, the operators Lα satisfy the assumption of Lemma 9,

〈Avα, vα〉 ≤ c〈Lαvα, vα〉 ∀vα ∈ Sα.

Furthermore, it is easy to see that each Lα can be spectrally bounded from above
by a constant times Q′α(A + h−2M ⊗M)Qα, which proves the assumption of
Lemma 10. This proves the sufficient conditions for two-grid convergence from
Theorem 1 and thus the following result.

11



Theorem 11. There exist choices for τ and ν, independent of h and p, such that
the two-grid method in S2 with the smoother induced by the subspace operators
Lα as given above converges with a rate q < 1 which does not depend on the
grid size h or the spline degree p.

4.3 Construction in 3D

In the three-dimensional case, we have

A = K ⊗M ⊗M +M ⊗K ⊗M +M ⊗M ⊗K +M ⊗M ⊗M.

Analogously to Section 4.2, we use the inverse inequality in S0 to estimate

A000 . h−2M0 ⊗M0 ⊗M0 =: L000,

A001 .M0 ⊗M0 ⊗ (h−2M1 +K1) =: L001,

A010 .M0 ⊗ (h−2M1 +K1)⊗M0 =: L010,

A100 . (h−2M1 +K1)⊗M0 ⊗M0 =: L100,

A011 .M0 ⊗ (h−2M1 ⊗M1 +K1 ⊗M1 +M1 ⊗K1) =: L011,

A110 . (h−2M1 ⊗M1 +K1 ⊗M1 +M1 ⊗K1)⊗M0 =: L110,

A101 . K1 ⊗M0 ⊗M1 + h−2M1 ⊗M0 ⊗M1 +M1 ⊗M0 ⊗K1 =: L101,

A111 = Q′111AQ111 =: L111.

We point out that, whereas L011 and L110 permit a tensor product factoriza-
tion, the operator L101 cannot directly be factorized due to the ordering of the
involved spaces. However, the tensor product space S101 is isomorphic to S011

by a simple swapping of the order of the involved tensor products. We exploit
this in Section 5.3 below by a simple renumbering of the degrees of freedom in
order to obtain an efficient method for inverting L101.

By the same arguments as in Section 4.2, we see that the resulting subspace
correction smoother satisfies the assumptions of Theorem 1 and thus that the
resulting two-grid method converges robustly with respect to h and p.

Using the technique of reordering the tensor products, this construction
extends in a straightforward manner to higher space dimensions d. Furthermore,
the proof of robustness for arbitrary d proceeds using the same arguments.

5 Numerical realization

In Section 4, we have constructed a multigrid smoother and shown that it leads
to a robust two-grid method. In this section, we provide details on the numerical
realization of the method and show that it permits an efficient implementation.

5.1 Computation of a basis for S0 and S1

In order to be able to work with the space S0 and its orthogonal complement,
we require bases for them. The aim of this subsection is to provide an algorithm
for computing such bases as linear combinations of B-splines.
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Recall that the univariate spline space S with m knot spans of width h =
1/m, degree p and maximum smoothness Cp−1 has dimension n = m+ p. Let

B := {ϕ1, . . . , ϕn}

denote the normalized (i.e., satisfying a partition of unity) B-spline basis of S.
We have suppϕj = [(j − p− 1)h, jh] ∩ [0, 1]. All interior B-splines

BI := {ϕp+1, . . . , ϕn−p}

vanish with all their derivatives up to the p − 1st at the boundaries of the
interval [0, 1] and therefore lie in S0. (Here and in the following we assume that
p+ 1 ≤ m such that BI is nonempty.)

It remains to find linear combinations of the first and last p B-splines which
complete BI to a basis of S0. Recall that u ∈ S lies in S0 iff

u(2l+1)(0) = u(2l+1)(1) = 0 ∀l ∈ N0 with 2l + 1 < p.

Consider first the left boundary. We need to satisfy k := bp/2c conditions on
the derivatives of the splines. Let

D̃ =
(
h2i−1ϕ

(2i−1)
j (0)

)
i=1,...,k, j=1,...,p

∈ Rk×p

denote the matrix of the relevant B-spline derivatives at 0, scaled with a suitable
power of h in order to avoid numerical instabilities. We pad D̃ with zero rows to
obtain a square matrix D ∈ Rp×p. Computing the singular value decomposition
(SVD), we obtain

D = UΣV >

with U, V ∈ Rp×p orthogonal and Σ ∈ Rp×p diagonal. By construction, Σ
contains k nonzero and p − k zero singular values. Therefore, the rightmost
p− k columns of V span the kernel of D, and the linear combinations

BL0 :=

{
p∑
i=1

Vi,jϕi : j = p− k + 1, . . . , p

}

lie in S0. By the analogous procedure at the right boundary, we compute a set
BR0 of p− k linear combinations of the last p B-splines. Then, the functions in
the set

B0 := BL0 ∪BI ∪ BR0
are by construction linearly independent and lie in S0. Since n0 := |B0| =
n− 2k = dimS0, we have

spanB0 = S0.

In practice, we collect the coefficients in a sparse block diagonal matrix

P0 =

V L[:, p− k + 1 : p]
In−2p

V R[:, p− k + 1 : p]

 ∈ Rn×n0 ,

where V L[:, p−k+1 : p] ∈ Rp×(p−k) denotes the last p−k columns of the matrix
V computed for the left boundary, analogously V R that for the right boundary,
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and Id is the d× d identity matrix. Then clearly, splines in S0 can be uniquely
represented in terms of the B-spline basis as

u ∈ S0 ⇐⇒ ∃u ∈ Rn0 : u =

n∑
j=1

(P0u)jϕj .

Due to the SVD producing an orthonormal basis, collecting the remaining
columns of V L and V R in a second sparse block matrix

P⊥ =

V L[:, 1 : k] 0
0 0
0 V R[:, 1 : k]

 ∈ Rn×2k

satisfies P>0 P⊥ = 0. In fact, the columns of the concatenation
[
P0 P⊥

]
form

an orthonormal basis of Rn. Let

P1 := M−1P⊥ ∈ Rn×2k,

where M denotes the B-mass matrix. Note that P1 is no longer sparse. Fur-
thermore, let u ∈ Rn0 and v ∈ R2k with associated splines

u =

n∑
j=1

(P0u)jϕj , v =

n∑
j=1

(P1v)jϕj .

By construction, u ∈ S0. We have

〈u, v〉L2(Ω) = 〈MP0u,M
−1P⊥v〉 = u>P>0 P⊥v = 0,

which means that v lies in the L2-orthogonal complement of S0. All in all, we
have constructed basis representations or “prolongation matrices”

P0 ∈ Rn×(n−2k), P1 = M−1P⊥ ∈ Rn×2k

for S0 and its L2-orthogonal complement S1, respectively.
For d > 1, we let α ∈ {0, 1}d and introduce the Kronecker products

Pα := Pα1 ⊗ . . .⊗ Pαd ∈ Rn
d×nα ,

where nα = dimSα, which represent bases for the spaces Sα in terms of the
coefficients of linear combinations of the tensor product B-spline basis B⊗d.

5.2 Implementation of the subspace correction smoother

For α ∈ {0, 1}d, let the symmetric and positive definite matrix Lα ∈ Rnα×nα
be the matrix representation of Lα : Sα → S′α with respect to the basis for Sα
given by Pα as defined in Section 5.1. Then the matrix representation of

L−1 =
∑
α

L−1
α Q′α =

∑
α

ISα→SdL
−1
α ISd′→S′αQ

′
αISd′→S′α

is given by

L−1 =
∑
α

PαL
−1
α P>α MPαM

−1
α P>α =

∑
α

PαL
−1
α P>α , (9)
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where we used that the matrix representation of the embedding ISα→Sd is Pα
and the matrix representation of the L2-projector Qα is

M−1
α P>α M, where Mα = P>α MPα.

Hence (9) can be used to implement the subspace correction smoother using
only the prolongation matrices Pα and a fast method for applying L−1

α . It is
never necessary to explicitly apply the L2-projectors Qα. Furthermore, due to
the use of additive subspace correction, the residual needs to be computed only
once, and the individual subspace corrections may be done in parallel.

5.3 Inversion of the subspace operators

The final required algorithmic component is a fast method for applying the
inverse of the local smoothing matrices Lα ∈ Rnα×nα . We illustrate this in the
three-dimensional setting as described in Section 4.3, but the principles are the
same regardless of dimension. A detailed discussion of the computational costs
for arbitrary dimension is given in Section 5.4.

Interior space and face spaces. The interior space S000 and the face
spaces S001, S010, S100 contain the complement space S1 as a factor space at
most once, and thus the matrices associated with their smoothing operators can
be represented as Kronecker products of three one-dimensional discretization
matrices, e.g.,

L000 = h−2M0 ⊗M0 ⊗M0, L001 = M0 ⊗M0 ⊗ (h−2M1 +K1).

Here the symmetric matrices Mβ ,Kβ ∈ RdimSβ×dimSβ , β ∈ {0, 1}, are the
matrix representations of Mβ and Kβ , respectively, with respect to the bases
described by Pβ as computed in Section 5.1 above. For β = 0, they have
dimension O(n) and are banded, whereas for β = 1 they have dimension O(p)
and are dense.

Since the Kronecker product can be inverted componentwise, we obtain, e.g.,

L−1
001 = M−1

0 ⊗M
−1
0 ⊗ (h−2M1 +K1)−1.

Instead of computing this (dense) inverse explicitly, we employ the algorithm
described by de Boor [7] for computing the application of a Kronecker product of
matrices to a vector, given only routines for applying the individual Kronecker
factors. For the latter, we use Cholesky factorization.

Edge spaces. The spaces S011, S110, S101 contain the complement space S1

as a factor twice. In S011, the matrix to be inverted has the form

L011 = M0 ⊗ (h−2M1 ⊗M1 +K1 ⊗M1 +M1 ⊗K1).

It again has Kronecker product structure and can be inverted using the algo-
rithm described in the previous case. The same holds for S110.

In the case of the space S101, the associated matrix

L101 = K1 ⊗M0 ⊗M1 + h−2M1 ⊗M0 ⊗M1 +M1 ⊗M0 ⊗K1

does not permit a Kronecker product factorization due to the order of the in-
volved spaces. However, by a simple renumbering of the degrees of freedom,
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S101 can be identified with S011, and then L011 can be applied as above. Al-
ternatively, the matrix L101 with dimension O(np2) can be directly computed
and inverted in its entirety using Cholesky factorization. This has the higher
computational complexity O(n3p6) but remains quasi-optimal in n since n3 is
the total number of degrees of freedom.

Corner space. The space S111 is the tensor product of the three comple-
ment spaces and has dimension dim(S1)3 ≤ p3. The associated matrix

L111 = P>111AP111

is dense and is inverted by means of Cholesky factorization.

5.4 Computational costs

We now study the computational complexity for applying the subspace correc-
tion smoother in the general d-dimensional setting. In our analysis, we ignore
multiplicative constants which depend only on d. Repeatedly, we make use of
the fact that the Cholesky factorization of a symmetric matrix of dimension n
and bandwidth p � n can be computed in O(np2) operations, and its inverse
can then be applied in O(np) operations. If the matrix is not banded but dense,
the factorization and inversion require O(n3) and O(n2) operations, respectively
(cf. [12]).

By the renumbering of degrees of freedom described in Section 5.3, we can
always rearrange the factor spaces in such a way that we only need to consider
spaces of the form

S0 ⊗ . . .⊗ S0︸ ︷︷ ︸
k times

⊗S1 ⊗ . . .⊗ S1︸ ︷︷ ︸
d−k times

.

The matrices to be inverted in these spaces, constructed as in Section 5.3, have
the form

L{k,d−k} := M0 ⊗ . . .⊗M0︸ ︷︷ ︸
k times

⊗Xd−k,

where Xj ∈ R(dimS1)j×(dimS1)j is a dense and symmetric matrix. Recall that

dimS1 = dimS
⊥L2
0 ≤ p is the size of the complement space.

Setup costs. The computation of the basis for S0 and its L2-orthogonal
complement as described in Section 5.1 requires computing the SVD of two
matrices of dimension O(p) as well as O(p) applications of the inverse of M ,
which has dimension n and bandwidth O(p). The costs for this step are thus
O(p3 + np2).

The one-dimensional mass matrix in S0, M0, has dimension O(n) and band-
width O(p) and thus requires O(np2) operations to factorize.

The matrices Xj , j = 1, . . . , d, are dense and therefore require O(p3j) oper-
ations to factorize.

The overall setup costs are therefore O(np2 + p3d). For d ≥ 2, this is no
more than the cost O(ndpd) for applying the stiffness matrix if p2 . n.

Application costs. After factorization, the cost for applying the inverse
M−1

0 is O(np), and for X−1
j , it is O(p2j). To apply L−1

{k,d−k} using the Kronecker

product algorithm from [7], we need to perform nd−1 applications of each of the k
factors M−1

0 and nk applications of X−1
j . Thus, the cost is O(kndp+nkp2(d−k)).
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The inverse of L{k,d−k} needs to be applied
(
d
k

)
times since that is the num-

ber of multiindices α ∈ {0, 1}d which permute to (0, . . . , 0, 1, . . . , 1) with exactly
k leading zeros. The binomial coefficient satisfies

(
d
k

)
= O(2d/

√
d) and in par-

ticular can be bounded from above by a constant which depends only on d. The
overall cost for one application of the subspace correction smoother is then

d∑
k=0

(
d

k

)
O(kndp+ nkp2(d−k)) = O

(
ndp+ max

k=0,...,d
nkp2(d−k)

)
.

The first term is less than the cost O(ndpd) for applying the stiffness matrix,
and so is the second under the assumption p . n.

Overall costs. In summary, if d ≥ 2 and p2 . n, both setup and application
of the smoother are asymptotically not more expensive than one application of
the stiffness matrix, which has complexity O(ndpd).

6 Numerical experiments

We solve the model problem

−∆u+ u = f in Ω = (0, 1)d,

∂nu = 0 on ∂Ω

for d = 1, 2, 3 with the right-hand side

f(x) = dπ2
d∏
j=1

sin(π(xj + 1
2 )).

We perform a (tensor product) B-spline discretization using equidistant knot
spans and maximum-continuity splines for varying spline degrees p. We refer to
the coarse discretization with only a single interval as level ` = 0 and perform
uniform, dyadic refinement to obtain the finer discretization levels ` with 2`d

elements and knot spacing h = 2−`.
We set up a V-cycle multigrid method as described in Section 2.3 and using

on each level the proposed smoother (8) as constructed in Section 4. We always
use one pre- and one post-smoothing step. The iteration is stopped once the
`2-norm of the initial residual has been reduced by a factor of 10−8.

The method was implemented in C++ based on the G+SMO library1 which
is developed in the framework of the National Research Network “Geometry
+ Simulation” at Johannes Kepler University, Linz. The results have been
obtained on a standard Linux workstation with an Intel R© CoreTM i7-2600 CPU
with 3.40GHz and 8GB RAM. A single CPU core was used per experiment.

The V-cycle multigrid iteration numbers for the 1D, 2D and 3D problem are
given in Tables 1–3. For the construction of the smoother, we required that
the space S0 be non-empty. This is the reason that for higher degrees p, the
coarse space requires additional refinement steps in some cases. In each column,
the bottom-most iteration number corresponds to a two-grid method, the next
higher one to a three-grid method, and so on. In the 3D case, memory was
insufficient to complete some experiments on level ` = 6.

1http://www.gs.jku.at/gismo
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` � p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9 27 33 34 34 33 33 33 32 31 31 31 28 28 29 29
8 27 33 34 34 32 33 33 31 30 30 31 28 28 27 28
7 27 33 34 34 32 33 33 31 28 30 29 28 25 26 26

Table 1: V-cycle iteration numbers: 1D.

` � p 1 2 3 4 5 6 7 8 9 10

8 34 38 39 39 39 38 38 37 37 36
7 34 38 39 39 38 38 37 36 36 34
6 34 38 38 38 37 37 35 34 34 32
5 34 36 37 34 34 32 30 28 26 24
4 34 33 32 28 25 21 19 16 13 11
3 38 25 21 15 11 9 7 - - -
2 40 14 10 - - - - - - -
1 43 - - - - - - - - -

Table 2: V-cycle iteration numbers: 2D.

` � p 2 3 4 5 6 7

6 46 44 43
5 44 43 42 39 38 35
4 39 36 32 29 25 23
3 30 42 18 23 12 17
2 16 23 - - - -

Table 3: V-cycle iteration numbers: 3D.
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We observe that the iteration numbers are robust with respect to both the
discretization level ` (and thus h) and the spline degree p. They do increase
with the space dimension d, but this dependence, which we have not fully an-
alyzed, appears to be relatively mild. In particular, the 2D iteration numbers
are significantly lower than those obtained using the boundary-corrected mass
smoother in [14].
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Appendix

The aim of this section is to prove Lemma 8, an approximation result for the
coarse spline space Galerkin projector in d dimensions. It was shown in [14] for
d = 1 and d = 2, and here we extend it to arbitrary dimensions by induction.

Before we give the proof, we need an auxiliary lemma which is a variant of
the Aubin-Nitsche duality argument in a finite-dimensional Hilbert space V . By
the choice of a suitable basis, we can identify V with Rn, and operators A on
V with matrices. We use this matrix representation implicitly in the following,
and operations like A1/2 and A> are to be understood in the matrix sense.

Lemma 12. Let A and M be self-adjoint and positive definite linear operators
on V , Π : V → V an A-orthogonal projector, and θ > 0. Then, the statements

‖Πu‖M ≤ θ‖u‖A ∀u ∈ V (10)

and
‖Πu‖A ≤ θ‖u‖AM−1A ∀u ∈ V. (11)

are equivalent.

Proof. We first observe that (10) and (11) are equivalent to

‖M1/2ΠA−1/2‖ ≤ θ, ‖A1/2ΠA−1M1/2‖ ≤ θ, (12)

respectively. Since Π is self-adjoint in the scalar product (·, ·)A, we have that
AΠ = Π>A and therefore

ΠA−1 = A−1Π>. (13)

Using the self-adjointness of M and A as well as (13), we obtain

‖A1/2ΠA−1M1/2‖ = ‖(A1/2ΠA−1M1/2)>‖
= ‖M1/2A−1Π>A1/2‖ = ‖M1/2ΠA−1/2‖.

This proves that the two statements in (12) are equivalent.
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Proof of Lemma 8. Within this proof, we denote the dimensions explicitly and
use a recursive representation of the stiffness operator,

Md := M ⊗ . . .⊗M (d times),

A1 := K +M,

Ad := Ad−1 ⊗M +Md−1 ⊗K.

Furthermore we let Πd denote the Ad-orthogonal projector into (Sc)
d.

In [14], the desired result was proved for d = 1, namely,

‖(I −Π1)u‖M ≤ ch‖u‖A1 ∀u ∈ S. (14)

By Lemma 12, this is equivalent to

‖(I −Π1)u‖A1
≤ ch‖u‖A1M−1A1

∀u ∈ S. (15)

Stability of the A1-orthogonal projector means that

‖(I −Π1)u‖A1
≤ ‖u‖A1

∀u ∈ S. (16)

We now show the desired result using induction. Assume that we have already
shown, for some d > 1,

‖(I −Πd−1)u‖Md−1
≤ ch‖u‖Ad−1

∀u ∈ Sd−1. (17)

Using Lemma 12, this implies

‖(I −Πd−1)u‖Ad−1
≤ ch‖u‖Ad−1M

−1
d−1Ad−1

∀u ∈ Sd−1. (18)

Stability of the Ad−1-orthogonal projector means that

‖(I −Πd−1)u‖Ad−1
≤ ‖u‖Ad−1

∀u ∈ Sd−1. (19)

Using equations (14)–(19) and the fact that the operator norm of a tensor
product is the product of the individual operator norms, we obtain for all u ∈ Sd

‖(I −Πd−1)⊗ (I −Π1)u‖Ad−1⊗M+Md−1⊗A1
≤ ch‖u‖Ad−1⊗A1

,

‖(I −Πd−1)⊗ Iu‖Ad−1⊗M+Md−1⊗A1
≤ ch‖u‖Ad−1M

−1
d−1Ad−1⊗M+Ad−1⊗A1

,

‖I ⊗ (I −Π1)u‖Ad−1⊗M+Md−1⊗A1 ≤ ch‖u‖Ad−1⊗A+Md−1⊗A1M−1A1
.

As

I −Πd−1 ⊗Π1 = (I −Πd−1)⊗ I + I ⊗ (I −Π1)− (I −Πd−1)⊗ (I −Π1),

this implies using the triangle inequality

‖(I −Πd−1 ⊗Π1)u‖Ad−1⊗M+Md−1⊗A1

≤ ch‖u‖Ad−1M
−1
d−1Ad−1⊗M+Ad−1⊗A1+Md−1⊗A1M−1A1

.

As the norm on the left-hand side is bounded from below by ‖ · ‖Ad and the
norm on the right-hand side is bounded from above by c‖·‖AdM−1

d Ad
, we further

obtain
‖(I −Πd−1 ⊗Π1)u‖Ad ≤ ch‖u‖AdM−1

d Ad
∀u ∈ Sd.
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Both Πd−1 ⊗ Π1 and Πd are projectors into (Sc)
d. Since the latter projector

produces the best approximation in the Ad-norm, we have

‖(I −Πd)u‖Ad ≤ ch‖u‖AdM−1
d Ad

∀u ∈ Sd,

which by Lemma 12 is equivalent to the desired result

‖(I −Πd)u‖Md
≤ ch‖u‖Ad ∀u ∈ Sd.
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