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Abstract

In this work the interior point method is considered for the numerical solution
of the obstacle problem. The scheme follows the predictor-corrector approach.
For the numerical realization the unknowns are approximated by using first order
finite elements. Results for several 2D examples are presented.
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Introduction

The unknown of the obstacle problem is the deflection of the membrane which

is stretched downward under an acting force and the deformation of which is re-

stricted from below by an obstacle. Mathematically this problem can be posed

as a constrained convex minimization problem, as a variational inequality, free

boundary problem or as a linear complementarity problem. The mathematical

formulations of this problem appears in many other applications: fluid filtration

in porous media, elasto-plasticity, optimal control and financial mathematics.

The formulations of the obstacle problem and existence of the solution have

been discussed in many works e.g. by G.Stampacchia, L.A.Caffarelli, A.Friedman.

Although there are results on the existence of the solution, it’s difficult to find the

analytical solution in general case. That’s why the effective methods of the finding

of numerical solution of this problem take important place in applications.

In this work we consider an interior point method for the approximate solution

of the obstacle problem. In chapter 1 we derive the mathematical model and

discuss the existence and uniqueness of the solution. This chapter is based mainly

on the works [3] and [4]. In the chapter 2 we construct the interior point method

for the obstacle problem when it’s considered as a minimization problem. In

the third chapter the algorithm for the implementation is formulated. We use

piecewise linear finite elements for the approximation of the solution. The part of

this chapter about the finite element error estimate is based on the work [8]. And,

finally, we discuss numerical results of several examples.
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Chapter 1

Mathematical modeling of the
obstacle problem

1.1 Statement of the problem

We consider the membrane problem, when an elastic membrane is attached to a

flat wireframe and force is acting on it only in vertical direction. By Ω ⊂ R2 we

denote the domain which is enclosed by the wireframe. We denote by v(x,y) the

deflection of the membrane. We choose the Cartesian coordinate system such that

the Oxy plane coincides with the plane of the wireframe, so v(x,y) = 0 on ∂Ω. We

assume that the rigid body which we call ”the obstacle” in the following is placed

under the membrane. Denoting by ψ(x,y) the surface of the obstacle we make

assumption that ψ(x,y)≤ 0 ∀(x,y) ∈ ∂Ω.

Total energy of the deformed membrane is :

J(v) = P(v)−E(v),

where P(v) - is the potential energy and E(v) is the energy due to the external

forces. Assuming that the potential energy is proportional to the change of the

membrane’s surface area we can approximate it by using of Taylor expansion:

P(v) =
∫

Ω

√
1+

dv
dx

2
+

dv
dy

2
dω−µ(Ω)≈ 1

2

∫
Ω

| ∇v |2 dω,

2
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here and in the following µ stays for the Lebesgue measure. Then the total energy

is:

J(v) =
1
2

∫
Ω

| ∇v |2 dω−
∫

Ω

f vdω.

The ”obstacle problem” consists in finding the equilibrium state of the mem-

brane, i.e. in minimizing the energy functional J(v), when the deflection of the

membrane is restricted from below by the obstacle. Then the set of admissible

deflections is given as :

K = {v ∈ H1
0 (Ω)|v≥ ψ a.e. in Ω}.

We see that the K is not a linear set. Throughout this work we assume that ψ ∈

L2(Ω) and f ∈ H−1(Ω).

Thus, we come up with the following:

Problem 1.1.1 Given a bounded domain Ω⊂ R2 and functions f ∈ H−1andψ ∈

L2(Ω), find a solution u ∈ H1
0 such that

J(u) = min
v∈K

J(v) ∀v ∈ K,

where the functional J(v) : H1
0 → R is represented by :

J(v) =
1
2

∫
Ω

|∇v|2dω−〈 f ,v〉.

1.2 Existence and uniqueness of the solution

For the existence and uniqueness of the solution of the problem (1.1.1) we bring

here the following statement for more general problem:

Theorem 1.2.1 Let H be a Hilbert space, K ⊂ H be closed and convex, the con-

tinuous bilinear form a(·, ·) : H×H→ R be symmetric and coercive, i.e.

∃α > 0 : a(v,v)≥ α‖v‖2 v ∈ H,
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and f ∈ H∗.

Then there exists unique solution to the minimization problem:

to find u ∈ K : J(u) = min
v∈K

J(v) ∀v ∈ K,

where the functional J : H→ R is defined by

J(v) =
1
2

a(v,v)−〈 f ,v〉.

Remark Here 〈 f ,v〉 is the pairing between f and v, i.e. 〈 f ,v〉= f (v).

Definition 1.2.2 The point y ∈ K such that

‖x− y‖ ≤ ‖x− z‖ ∀z ∈ K

is called the projection of x onto K.

For the proof of the theorem we need the following lemma:

Lemma 1.2.3 If K is closed and convex subset of a Hilbert space then each x∈H

admits unique projection on K.

Proof of the lemma (1.2.3) Let d = inf
z∈K
‖x− z‖. Then we can find a sequence

{ηk} ∈ K : lim
k→∞
‖ηk− x‖= d. Since K is convex, for any ηm,ηn ∈ {ηk} it holds

1
2(ηm +ηn) ∈ K and

d2 ≤
∥∥∥x− 1

2
(ηm +ηn)

∥∥∥2
.

Applying the parallelogram law for Hilbert space:

2‖x−ηm‖2 +2‖x−ηn‖2 = ‖ηn−ηm‖2 +2
∥∥∥x− 1

2
(ηn +ηm)

∥∥∥2
.

Hence:

‖ηn−ηm‖2 ≤ 2‖x−ηm‖2 +2‖x−ηn‖2−4d2.
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From this it follows that {ηk} is Cauchy sequence, and since H is complete, it

converges to an element y ∈ H. And, since K is closed, y ∈ K and ‖x− y‖= d.

Now, let’s suppose that there are two projections y1 and y2 of the element x.

Then from the previous discussions it follows that :

‖y1− y2‖2 ≤ 2‖x− y1‖2 +2‖x− y2‖2−4d2 = 0.

Therefore, y1 = y2.�

Proof of the theorem (1.2.1) We can consider the bilinear form a(·, ·) as the

inner product in Hilbert space H, then the norm ‖v‖a =
√

a(v,v) is equivalent to

the given norm in H. By the Riesz representation lemma we can find an element

v∗ ∈ H such that

〈 f ,v〉= a(v∗,v) ∀v ∈ H.

Then

J(v) =
1
2

a(v,v)−a(v∗,v) =
1
2
‖v− v∗‖2

a−
1
2
‖v∗‖2

a.

Thus, the problem of minimization of J(v) reduces to finding of the projection of

v∗ on the closed convex set K. By lemma (1.2.3) there exist unique projection,

therefore unique solution of the minimization problem.�

To apply this theorem for the problem (1.1.1) we need to show respective

properties of the set K and a(u,v) =
∫

Ω

∇u∇vdω.

Lemma 1.2.4 K is convex and closed.

Proof Let u,v ∈ K. Then for 0 < t < 1 : tu + (1− t)v ∈ V and tu + (1− t)v ≥

tψ +(1− t)ψ = ψ. This shows convexity of K.

Now let {vk} ∈ K be a convergent sequence. Since from the convergence

in V follows convergence in L2(Ω), it contains an a.e. pointwise convergent

subsequence {vkn}. Let {vkn} −→ v pointwise. Suppose that v is not from K.
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Then there exist subset A ⊂ K : µ(A) > 0 such that v < ψ on A, more precisely,

∃ε > 0 : v≤ ψ− ε on A. But then∫
Ω

|vkn− v|2dxdy≥
∫

A
|vkn− v|2dxdy≥ ε

2
µ(A) > 0.

This contradicts to the above mentioned a.e. pointwise convergence. �

a(u,v) =
∫

Ω

∇u∇vdω is bilinear and symmetric. It’s continuous:

∫
Ω

∇u∇vdω ≤ |u|1,Ω|v|1,Ω ≤ ‖u‖1,Ω‖v‖1,Ω,

and it’s coercitivity follows from Poincaré-Friedrichs inequality:

∃C(Ω) > 0 : a(v,v) = |v|21,Ω ≥C(Ω)‖v‖2
1,Ω ∀v ∈ H1

0 .

Thus, we have all prerequisites for the following statement:

Theorem 1.2.5 Assume that ∃ ũ ∈H1
0 : ũ≥ ψ a.e. in Ω. Then there exists unique

solution ū to the problem (1.1.1).

1.3 Alternative equivalent formulations

1.3.1 Variational inequality

One of the most useful approaches to obtain the properties of the solution to the

problem (1.1.1) is using its equivalent formulations by variational inequality. The

problem (1.1.1) can be reformulated as follows:

Problem 1.3.1 Let K ⊂ H1
0 be closed and convex and f ∈ H−1. To find:

u ∈ K :
∫

Ω

∇u∇(v−u)dω ≥ 〈 f ,v−u〉 ∀v ∈ K.

Theorem 1.3.2 u ∈ K solves (1.1.1) if and only if it solves (1.3.1).
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Proof Let u ∈ K be the solution to the minimization problem (1.1.1). Then for

t ∈ [0,1] : u+ t(v−u)∈K ∀v∈K. Function defined by φ(t) = J(u+ t(v−u)), t ∈

[0,1] attains its minimum at the point t = 0, i.e.

φ(0)≤ φ(t) ∀t ∈ [0,1].

Then

0≤ lim
t→0+

φ(t)−φ(0)
t

=
∫

Ω

∇u∇(v−u)dω−〈 f ,v−u〉.

Let u ∈ K be such that
∫

Ω

∇u∇(v−u)dω ≥ 〈 f ,v−u〉 ∀v ∈ K. Then for any

v ∈ K it holds :

J(v)−J(u)= φ(1)−φ(0)=
∫

Ω

∇u∇(v−u)dω−〈 f ,v−u〉+ 1
2

∫
Ω

|∇(v−u)|2dω ≥ 0.

�

The next theorem states about the well-posedness of the problem:

Theorem 1.3.3 There exist unique solution to the problem (1.3.1). In addition,

the mapping f → u is Lipschitz, that is, if u1,u2 are solutions to the problem

(1.3.1) corresponding to f1, f2 ∈ H−1, then

‖u1−u2‖ ≤ L‖ f1− f2‖H−1, (1.1)

where L > 0 constant.

Proof Existence of the unique solution results from the previous discussions,

namely, from the equivalence of the variational inequality (1.3.1) to the mini-

mization problem (1.1.1).

We demonstrate validity of (1.1). We set v = u2 in the variational inequality

for the solution u1 and v = u1 in the inequality for u2. Upon adding we obtain:∫
Ω

|∇(u1−u2)|2dω ≤ 〈 f1− f2,u1−u2〉.

From the coercitivity of the form a(u,v) =
∫

Ω
∇u∇vdω, it follows that

C(Ω)‖u1−u2‖2 ≤ 〈 f1− f2,u1−u2〉 ≤ ‖ f1− f2‖H−1‖u1−u2‖. �
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1.3.2 Free boundary problem

Now we assume that u ∈ H2(Ω)∩K is the solution of the obstacle problem. We

divide domain Ω into the set Ω+ = {x ∈Ω : u(x) > ψ(x)}, which we call nonco-

incidence set, and coincidence set Ω0 = {x ∈Ω : u(x) = ψ(x)}.

Since u solves the variational inequality (1.3.1), applying Green’s formula to

the left hand side of the inequality we obtain

−
∫

Ω

∆u(v−u)dω +
∫

∂Ω

∂u
∂n

(v−u)ds≥
∫

Ω

f (v−u)dω ∀v ∈ K. (1.2)

Both u,v ∈ K ⊂ H1
0 , so the boundary term vanishes. Let’s take any nonnegative

function ζ ∈C∞
0 (Ω). Then v = u+εζ ∈ K for ε ≥ 0. Substituting this in the latter

inequality, we obtain:

−
∫

Ω

∆uζ dω ≥
∫

Ω

f ζ dω, ∀ζ ∈C∞
0 , ζ ≥ 0.

From this it follows that :

−∆u≥ f a.e. in Ω.

Let’s assume that ψ ∈ C(Ω). Then the set Ω+ is open, since u ∈ H2 ↪→ C(Ω).

We consider a point x ∈ Ω+, for which we can choose a neighborhood Uδ (x)

such that Uδ (x) ⊂ Ω+. For any ζ ∈ C∞
0 (Uδ (x)) we may find an ε > 0 such that

v = u+ εζ ∈ K. Substituting this v in (1.2) and dividing by ε we find that

−
∫

Uδ (x)
∆uζ dω ≥

∫
Uδ (x)

f ζ dω ∀ζ ∈C∞
0 (Uδ (x).)

In particular this holds for −ζ , therefore

−∆u = f in Uδ (x),

and also a.e. in Ω+.

The function u−ψ ∈ H2(Ω), where u ∈ K is the solution of the obstacle

problem, attains its minimum in Ω in the coincidence set Ω0. Thus, using the
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Figure 1.1: Free boundary for 1D problem.

necessary condition for extremal point, we have then:

u = φ on Γ
∗,

∇u = ∇φ on Γ
∗,

where Γ∗ = ∂Ω+∩Ω is called the free boundary of the problem.

We have shown that the solution of the obstacle problem with the appropriate

data corresponds to the formal solution of the following boundary problem:

−∆u≥ f a.e. in Ω,
u≥ ψ a.e. in Ω,
if u(x) > ψ(x) then −∆u(x) = f (x),
u = φ on Γ∗,
∇u = ∇φ on Γ∗,
u = 0 on ∂Ω.

Note that the free boundary of the problem is not known in advance. This kind

of formulations may be useful only in the one-dimensional case of the problem,

since we don’t know about the smoothness of the Γ∗.
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1.3.3 Linear complementarity problem

We can reformulate the free boundary problem so that the free boundary condi-

tions need not be handled explicitly as follows:
−∆u≥ f a.e. in Ω,
u≥ ψ a.e. in Ω,
(u−ψ)(−∆u− f ) = 0 a.e. in Ω,
u = 0 on ∂Ω.

(1.3)

Some results for this form of the obstacle problem interested reader can find

in the work of Brézis and Stampacchia: if f ∈ L2(Ω), and ψ ∈ H2(Ω) then the

problem (1.3.1) has a unique solution u ∈ H2(Ω) and it satisfies (1.3).



Chapter 2

Interior point method for the
numerical solution of the obstacle
problem

2.1 The central path

The idea of the interior point methods is to replace the constrained minimization

problem by a sequence of unconstrained minimization problems, for solving of

which we can use Newton’s method. An objective functional of the unconstrained

problem we generate by adding barrier functional to the objective functional of the

original constrained problem. Barrier function serves as barrier against leaving of

the elements the feasible region K. Each of the problems in the sequence cor-

responds to the objective functional Jκ(v) depending on the nonnegative penalty

parameter κ. For our problem we construct Jκ(v) in the following way:

Jκ(v) = J(v)−κ

∫
Ω

ln(v−ψ)dω.

We extend the definition of the ln to the whole real domain axis by setting lnz =

−∞, z ≤ 0. Then barrier function approaches infinity as the elements from the

interior approach the boundary. Thus we obtained the family of the following

unconstrained minimization problem:

11
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Problem 2.1.1 Given a bounded domain Ω⊂ R2 and functions f ∈ H−1andψ ∈

L2(Ω), find a solution uκ ∈ H1
0 (Ω) such that

Jκ(uκ) = min
v∈H1

0 (Ω)
Jκ(v) ∀v ∈ H1

0 (Ω),

where the functional Jκ(v) : H1
0 → R is represented by :

Jκ(v) =
1
2

∫
Ω

|∇v|2dω−〈 f ,v〉−κ

∫
Ω

ln(v−ψ).

Now we will determine the existence and uniqueness of the solution for the aux-

iliary problems (2.1.1). We use the following theorem:

Theorem 2.1.2 Let V be a Hilbert space and let F : V → R∪{±∞} be a proper

lower semicontinuous function. If F is coercive, i.e. that

lim
‖u‖→∞

F(u) = ∞,

then the problem

min
u∈V

F(u)

has at least one solution. If F is strictly convex, then the solution is unique.

Proof Let {un} ∈V be the minimizing sequence :

c = lim
n→∞

F(un) = inf
u∈V

F(u).

Since c < +∞ and F(u) is coercive:

‖un‖< const.

Then we can find subsequence {unk} ⊂ {un} weakly converging in V :

unk ⇀ ū ∈V.
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By virtue of lower semicontinuity of F(u):

lim
n→∞

F(un)≥ F(ū).

Then it holds that

F(ū)≤ inf
u∈V

F(u),

so u = ū is the solution to the problem.

Let now u1,u2 ∈ V be two solutions to the problem. Then 1
2(u1 + u2) ∈ V. If

F(u) is strictly convex function, then

F
(

1
2
(u1 +u2)

)
< min

u∈V
F(u),

so only one solution exists for the strictly convex F(u). �

We make an assumption (A1):

∃ũ ∈ H1
0 (Ω) : −

∫
Ω

ln(ũ−ψ)dω < ∞.

Theorem 2.1.3 With the assumption (A1) for each κ > 0 the problem (2.1.1) has

a unique solution uκ .

Proof Let κ > 0 be an arbitrary fixed number. We apply theorem 2.1.2 with

V = H1
0 (Ω) and F(u) = Jκ(u). Jκ(u) is the sum of the strictly convex continuous

function J(u) and the function φ(u) =−
∫

Ω

ln(u−ψ)dω. It’s clear that φ(u) is a

convex function and consequently Jκ(u) is strictly convex. Using the inequality

lnz≤ z for z > 0 we obtain

φ(u)≥−
∫

Ω

max{u−ψ,0} ≥ −‖u−ψ‖L2(Ω)µ(Ω)
1
2 .

Since ‖u−ψ‖ ≥ ‖u−ψ‖L2(Ω), together with the assumption (A1) it follows that

φ and hence also Jκ is proper. Moreover, we obtain

Jκ(u)≥ c‖u‖2−‖ f‖‖u‖−κ‖u−ψ‖µ(Ω)
1
2
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for some c > 0. Hence

lim
‖u‖→∞

Jκ(u) = ∞

follows. It remains to show lower semicontinuity of Jκ . It suffices to show that φ

is lower semicontinuous.

From the definition of the Lebesgue integral,

φ(u) = sup
ε>0

φε(u)

follows, where φε(u) = −
∫

Ω

ln(max{u−ψ,ε})dω. Since the pointwise supre-

mum of a family of continuous functions is lower semicontinuous, lower semi-

continuity of φ follows. �

Definition 2.1.4 The mapping κ → uκ is called the central path.

The idea behind the interior point method is to follow the central path. This

means we begin with some value of κ and find the solution to the corresponding

unconstrained problem. Then we decrease κ and solve again the auxiliary prob-

lem, and so on. Next theorem states about the convergence of uκ to ū as κ → 0.

Theorem 2.1.5 For all κ > 0 one has J(uκ)≤ J(ū)+κµ(Ω).

Proof We denote again by φ(u) =−
∫

Ω

ln(u−ψ)dω.

For fixed κ > 0, let η(t) = Jκ(vt) for t ∈ [0,1), where vt = tū + (1− t)uκ .

Since

vt−ψ = t(ū−ψ)+(1− t)(uκ −ψ)≥ (1− t)(uκ −ψ)≥ 0 a.e. in Ω,

together with the monotonicity of ln, we have η(0) ≤ η(t) ≤ J(vt)+ κφ(uκ)−

κ ln(1− t)µ(Ω) < +∞, t ∈ [0,1). It’s easy to see that η(t) is convex on [0,1).
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Then the function θ(t) = η(t)−η(0)
t is monotone nondecreasing and it’s bounded

from below by 0. Hence there exists

η
′(0) = lim

t→0+

η(t)−η(0)
t

≥ 0, t ∈ (0,1).

Further we have

0≤ η
′(0) =

∫
Ω

∇uκ∇(ū−uκ)dω + 〈 f , ū−uκ〉+κ lim
t→0

φ(vt)−φ(0)
t

.

It also follows

φ(vt)−φ(v0)
t

= κ

∫
Ω

t−1(ln(v0−ψ)− ln(vt−ψ))dω.

As t→ 0, the integrand converges to uκ−ū
uκ−ψ

a.e. in Ω. Further, on the set {uκ ≥

ū} we have

0≤ t−1(ln(v0−ψ)− ln(vt−ψ))≤ uκ − ū
vt−ψ

≤ uκ −ψ

vt−ψ
≤ 1

1− t
,

and hence, by theorem of dominated convergence, we obtain

lim
t→0+

∫
{uκ≥ū}

t−1(ln(v0−ψ)− ln(vt−ψ))dω =
∫
{uκ≥ū}

uκ − ū
uκ −ψ

dω.

On the other hand, on the set uκ < ū we have

t−1(ln(v0−ψ)− ln(vt−ψ))↘ uκ − ū
uκ −ψ

< 0, for t→ 0+ .

Since

lim
t→0+

∫
{uκ<ū}

ln(v0−ψ)− ln(vt−ψ)
t

dω =

=
η ′(0)−

∫
Ω

∇uκ∇(ū−uκ)dω−〈 f , ū−uκ〉
κ

−
∫
{uκ≥ū}

uκ − ū
uκ −ψ

dω

we have

0≥ lim
t→0+

∫
{uκ<ū}

ln(v0−ψ)− ln(vt−ψ)
t

dω =
∫
{uκ<ū}

uκ − ū
uκ −ψ

dω >−∞
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by the theorem of Beppo-Levi. Hence,
∫

Ω

uκ − ū
uκ −ψ

dω exists and

0≤ η
′(0) =

∫
Ω

∇uκ∇(ū−uκ)dω + 〈 f , ū−uκ〉+κ

∫
Ω

uκ − ū
uκ −ψ

dω.

It follows that t = 0 is the solution of the optimization problem

min
t≥0

J(vt)+κt
∫

Ω

uκ − ū
uκ −ψ

dω.

Therefore,

J(v0)≤ J(v1)+κ

∫
Ω

1− ū−ψ

uκ −ψ
dω ≤ J(v1)+κµ(Ω)

and since v0 = uκ , v1 = ū, the theorem is proved. �

Using in this inequality Taylor expansion of J(uκ) at the point ū, we obtain:

1
2

∫
Ω

|∇(uκ − ū)|2dω ≤ κµ(Ω),

or, equivalently,

‖uκ − ū‖H1
0 (Ω) = O(

√
κ).

2.2 A predictor-corrector approach for the follow-
ing the central path

All the results from the preceding section remain valid if we replace H1
0 (Ω) by a

closed subspace V ⊂ H1
0 (Ω), e.g. if ∃ ũ ∈V :

∫
Ω

ln(ũ−ψ)dω < ∞ then for each

κ > 0 the problem

min
v∈V

Jκ(v) ∀v ∈V,

with

Jκ(v) =
1
2

∫
Ω

|∇v|2dω−〈 f ,v〉−κ

∫
Ω

ln(v−ψ),

has a unique solution which is again denoted by uκ .
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2.2.1 The corrector step

For given κ > 0 we are given an approximation u ∈ V of uκ and we want to find

a better approximation u+ by means of Newton’s method, i.e. u+ = u+δu where

the so called Newton corrector δu is a solution of the problem

min
v∈V

φκ,u(v) (2.1)

with

φκ,u(v) = Jκ(u)+ J′κ(u)v+
1
2

J′′κ(v,v).

Here J′κ(u) : V → R, and J′′κ(u) : V ×V → R are

J′κ(u)v =
∫

Ω

∇u∇vdω−〈 f ,v〉−κ

∫
Ω

v
u−ψ

dω

and

J′′κ(u)(v,w) =
∫

Ω

∇v∇wdω +κ

∫
Ω

vw
(u−ψ)2 dω.

For ease of presentation we assume that u−ψ ≥ ε > 0 a.e. in Ω. Then J′(u) and

J′′(u) are well defined. Further, it easily follows that φκ,u is a continuous strictly

convex functional on V and a unique minimizer δu of φκ,u exists and satisfies

J′′κ(u)(δu,v) =−J′κ(u)v, ∀v ∈V.

So at this step we replaced the objective functional Jκ by its quadratic approx-

imation φκ,u. Since we used the logarithmic barrier functions it’s sufficient here

to use Taylor expansion up to the second order. Thus we can rely on Newton’s

method for solving this problem.

Now let us analyze the next corrector step given by the unique solution δu+

of the optimization problem

min
v∈V

φκ,u+(v).
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Since

J′κ(u+)v =
∫

Ω

∇u+
∇vdω−〈 f ,v〉−κ

∫
Ω

v
u+−ψ

dω

= J′κ(u)v+ J′′κ(u)(δu,v)−κ

∫
Ω

(
v

u+−ψ
− v

u−ψ
+

δu v
(u−ψ)2

)
dω

= −κ

∫
Ω

(δu)2v
(u+−ψ)(u−ψ)2 dω

we obtain

J′′κ(u+)(δu+,v) =−J′κ(u+)v = κ

∫
Ω

(δu)2v
(u+−ψ)(u−ψ)

dω, ∀v ∈V.

By taking v = δu+ it follows that∫
Ω

|∇δu+|2dω +κ

∫
Ω

(δu+)2

(u+−ψ)2 dω = κ

∫
Ω

δu+(δu)2

(u+−ψ)(u−ψ)2 dω. (2.2)

Using the Cauchy-Schwartz inequality we conclude that

κ

∫
Ω

(δu+)2

(u+−ψ)2 dω ≤ κ

(∫
Ω

(δu+)2

(u+−ψ)2 dω

) 1
2
(∫

Ω

(δu)4

(u−ψ)4 dω

) 1
2

and ∫
Ω

(δu+)2

(u+−ψ)2 dω ≤
∫

Ω

(δu)4

(u−ψ)4 dω. (2.3)

Now consider Newton’s step defined by un+1 = un +δun, n = 0,1,2, ..., where

δun is the unique minimizer of φκ,un(·).

Definition 2.2.1 We say the sequence {γn} converges R-superlinearly to γ if

lim
n→∞

n
√
‖γn− γ‖= 0.

Theorem 2.2.2 Let κ > 0 be fixed and assume that there exist some reals C > 0

such that ∥∥∥ δu
u−ψ

∥∥∥
L∞(Ω)

≤C
∥∥∥ δu

u−ψ

∥∥∥
L2(Ω)

∀u > ψ.

Then for all starting points u0 > ψ with ‖ δu0

u0−ψ
‖L2(Ω) < 1

C Newton iterations con-

verge to uκ . Moreover, the convergence is R-superlinear.
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Proof From (2.3) we obtain∥∥∥ δun+1

un+1−ψ

∥∥∥
L2(Ω)

≤
∥∥∥ δun

un−ψ

∥∥∥
L∞(Ω)

∥∥∥ δun

un−ψ

∥∥∥
L2(Ω)

≤C
∥∥∥ δun

un−ψ

∥∥∥2

L2(Ω)
.

With the starting point
∥∥∥ δu0

u0−ψ

∥∥∥
L2(Ω)

< τ

C , 0 < τ < 1 it follows then

∥∥∥ δun

un−ψ

∥∥∥
L2(Ω)

<
τ2n

C
.

From (2.2) we obtain for ∇δun+1∫
Ω

|∇δun+1|2 ≤ κ

∫
Ω

δun+1(δun)2

(un+1−ψ)(un−ψ)2 dω

⇒ |δun+1|21,Ω ≤ κ

∥∥∥ δun+1

un+1−ψ

∥∥∥
L2(Ω)

∥∥∥ δun

un−ψ

∥∥∥
L2(Ω)

∥∥∥ δun

un−ψ

∥∥∥
L∞(Ω)

⇒ |δun+1|1,Ω ≤
√

κ

C
τ

2n+1

This implies that ‖δun+1‖ → 0 as n→ ∞, so the sequence {un} is Cauchy se-

quence and it converges to some element ū ∈V :

ū = lim
n→∞

un.

Due to the strict convexity of Jκ it holds:

Jκ(v)≥ Jκ(un)+ J′κ(un)(v−un) ∀v ∈V. (2.4)

Consider J′κ(un)(v−un) :

J′κ(un)(v−un) = −J′′κ(δun,v−un)

=
∫

Ω

∇δun
∇(v−un)+κ

∫
Ω

δun(v−un)
(un−ψ)2

≤ |δun|1,Ω‖v−un‖1,Ω +κ

∥∥∥ δun

un−ψ

∥∥∥
L2(Ω)

∥∥∥ v−un

un−ψ

∥∥∥
L2(Ω)

.

From this we can conclude that J′κ(un)(v−un)→ 0 as n→ ∞. Taking the limit in

(2.4) we obtain

J(v)≥ J(ū) ∀v ∈V,
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thus ū = uκ .

It remains to justify R-superlinear convergence:

|un− ū|1,Ω ≤
∞

∑
k=n
|δuk|1,Ω ≤

√
κ

C

∞

∑
k=n

τ
2k
≤
√

κ

C
τ2n

1− τ2 .

Consequently,

lim
n→∞

n
√
‖un− ū‖= 0.

�

2.2.2 The predictor step

For κ > 0 let u+ = u+δu be the result of one corrector step. Under the assump-

tions of theorem 2.2.2 u+ is sufficiently near uκ , when
∥∥∥ δu

u−ψ

∥∥∥
L2(Ω)

≤ τ

C for some

τ < 1.

Now we want to approximate uκ+ for the smaller penalty parameter κ+ =

(1−ρ)κ. To do this we compute a predictor p as the unique solution of the mini-

mization problem

min
v∈V

J(u+)+ J′(u+)v+
1
2

J′′κ(u+)(v,v) (2.5)

and take ũ = u+ + ρ p as starting point for the next Newton’s method to approx-

imate uκ+. We want to stay near the central path by performing single Newton’s

step. For a given accuracy of the Newton method τ , in view of theorem 2.2.2 we

want to choose ρ such that the next corrector δ ũ satisfies∥∥∥ δ ũ
ũ−ψ

∥∥∥
L2(Ω)

≤ τ

C
.

We present now an analysis for a proper choice of ρ. As the solution to the mini-

mization problem (2.5) the predictor p satisfies

J′′κ(u+)(p,v) =−J′(u+)v ∀v ∈V. (2.6)
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And for the next corrector step it holds

J′′κ(ũ)(δ ũ,v) =−J′κ(ũ)v ∀v ∈V. (2.7)

We have

J′(ũ)v = J′(u+)v+ρ

∫
Ω

∇p∇vdω ∀v ∈V,

then by use of (2.6) we obtain

∀v ∈V J′(ũ)v = J′(u+)v+ρ

(
−J′(u+)v−κ

∫
Ω

pv
(u+−ψ)2 dω

)
= (1−ρ)J′(u+)v−ρκ

∫
Ω

pv
(u+−ψ)2

= (1−ρ)
(

J′κ(u+)v+κ

∫
Ω

v
u+−ψ

dω

)
−ρκ

∫
Ω

pv
(u+−ψ)2

=
∫

Ω

−κ
+ (δu)2v

(u+−ψ)(u−ψ)2 +κ
+ v

u+−ψ
−ρκ

pv
(u+−ψ)2 dω

and consequently, denoting by ξ = δu
u−ψ

, :

∀v ∈V − J′
κ+(ũ)v = −J′(ũ)v+κ

+
∫

Ω

v
ũ−ψ

dω

=
∫

Ω

κ
+
(

ξ 2v
u+−ψ

− v
u+−ψ

+
v

ũ−ψ

)
+ρκ

pv
(u+−ψ)2 dω

=
∫

Ω

κ
+ ξ 2v

u+−ψ
−ρκ

+ pv
(u+−ψ)(ũ−ψ)

+ρκ
pv

(u+−ψ)2 dω

=
∫

Ω

κ
+ ξ 2v

u+−ψ
+ρ

2
κ

p(u+ + p−ψ)v
(u+−ψ)2(ũ−ψ)

dω.

Then using (2.7) with v = δ ũ and application of the Cauchy-Schwartz inequality

yield

∫
Ω

|∇δ ũ|2dω +κ
+
∫

Ω

(δ ũ)2

(ũ−ψ)2 dω ≤ κ
+
(

Ξ

∫
Ω

(δ ũ)2

(ũ−ψ)2 dω

) 1
2

,

where

Ξ =
∫

Ω

(
ξ

2(1+ρ
p

u+−ψ
)+

ρ2

1−ρ

p
u+−ψ

(
1+

p
u+−ψ

))2

dω.
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It follows then ∫
Ω

(δ ũ)2

(ũ−ψ)2 dω ≤ Ξ.

Thus we constructed a policy for a choice of a suitable decreasing parameter ρ for

κ: ρ should satisfy the following conditions

1. ρ < 1

2. u+−ψ +ρ p > 0 in Ω

3. Ξ≤
(

τ

C

)2
.



Chapter 3

Numerical implementation

3.1 Algorithm

Interior point method consists of outer cycle : corrector-predictor steps and inner

cycle for solely corrector step. As starting point for the approximate solution we

can choose uh = 0.

As we already noted the principle of the interior point method is to follow the

central path. Ideally, we would like the iterations ui corresponding to κi would

lie on the central path, i.e. ui = uκi, where uκi is the exact solution of the corre-

sponding UP. But to achieve high accuracy on each corrector step would cost us

a number of iterations. So, instead, we try our approximate solutions in each cor-

rector step to remain in the predefined neighborhood of the exact solution (picture

3.1).

Under the assumption that
∥∥∥ δu0

u0−ψ

∥∥∥
L2(Ω)

< τ

C , from the proof of theorem 2.2.2

we have: ∥∥∥ δun+1

un+1−ψ

∥∥∥
L∞(Ω)

≤ C
∥∥∥ δun+1

un+1−ψ

∥∥∥
L2(Ω)

≤ C
∥∥∥ δun

un−ψ

∥∥∥
L∞(Ω)

∥∥∥ δun

un−ψ

∥∥∥
L2(Ω)

≤ τ
2n
∥∥∥ δun

un−ψ

∥∥∥
L∞(Ω)

23
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Figure 3.1: Staying close to the central path by single Newton iterations

Thus, if we choose at each predictor step decreasing factor ρ of the κ such that

the starting point ũ for the next Newton iterations satisfies
∥∥∥ δ ũ

ũ−ψ

∥∥∥
L2(Ω)

< τ

C and

define to stop Newton iterates as the condition
∥∥∥ δu

u−ψ

∥∥∥
L2(Ω)

< τ is satisfied, then

we reach this kind of accuracy τ for the corrector step just in single step:∥∥∥ δu1

u1−ψ

∥∥∥
L∞(Ω)

≤C
∥∥∥ δu0

u0−ψ

∥∥∥
L∞(Ω)

∥∥∥ δu0

u0−ψ

∥∥∥
L2(Ω)

≤C2 τ2

C2 < τ.

We also need to determine the constant C for the assumptions of the theorem

2.2.2 to be fulfilled. This constant can be found by updating it at each Newton

iterate as the maximal value of the old one and the ratio
∥∥∥ δu

u−ψ

∥∥∥
L∞(Ω)

/
∥∥∥ δu

u−ψ

∥∥∥
L2(Ω)

.

After solving of the elliptic equations for the corrector δu we need to choose

the step-size α such that updated value of the approximate solution would be fea-

sible, i.e. it should hold u+αδ > ψ. This is equivalent to α
δu

u−ψ
>−1, and since

under the appropriate assumptions
∥∥∥ δu

u−ψ

∥∥∥
L∞(Ω)

≤ τ holds, for the implementation

we write it as
∥∥∥α

δu
u−ψ

∥∥∥
L∞(Ω)

< 1.
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Algorithm 1 Interior points method

1: precision ε , precision τ , κ , u(0)

2: k=0
3: repeat
4: u← u(k)

5: repeat
6: solve for δu : J′′κ(u)(δu,v) =−J′κ(u)v ∀v ∈V

7: C = max
{

C,
∥∥∥ δu

u−ψ

∥∥∥
L∞(Ω)

/
∥∥∥ δu

u−ψ

∥∥∥
L2(Ω)

}
8: choose step-size 0 < α ≤ 1 such that :

∥∥∥α
δu

u−ψ

∥∥∥
L∞(Ω)

≤ 0.99

9: u = u+αδu
10: until ‖ δu

u−ψ
‖L∞(Ω) ≤ τ

11: solve for a predictor p : J′′κ(u)(p,v) =−J′(u)v, ∀v ∈V.
12: choose 0 < ρ < 0.99 such that :

•
∥∥∥ρ

δu
u−ψ

∥∥∥
L∞(Ω)

≤ 0.99

• Ξ≤
(

τ

C

)2

13: κ = (1−ρ)κ
14: k=k+1
15: u(k+1) = u+ρ p
16: until κ ≤ ε

As we established in the preceding section we also need choose the step-size

ρ for the predictor such that the condition

Ξ≤
(

τ

C

)2

with

Ξ =
∫

Ω

((
δu

u−ψ

)2(
1+ρ

p
u+−ψ

)
+

ρ2

1−ρ

p
u+−ψ

(
1+

p
u+−ψ

))2

dω

(3.1)

would be satisfied. For realization of this condition we set the ρ = 0.99, and then

decrease it consecutively until it’s appropriate. For the saving of the computation
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time it makes sense to divide the integral (3.1) into the several parts as follows:

Ξ = I1 +2ρI2 +ρ
2I3 +2

ρ2

1−ρ
I4 +2ρ

ρ2

1−ρ
I5 +

ρ4

(1−ρ)2 I6,

where

I1 =
∫

Ω

(
δu

u−ψ

)4

dω

I2 =
∫

Ω

(
δu

u−ψ

)4 p
u+−ψ

dω

I3 =
∫

Ω

(
δu

u−ψ

)4( p
u+−ψ

)2

dω

I4 =
∫

Ω

(
δu

u−ψ

)2 p
u+−ψ

(
1+

p
u+−ψ

)
dω

I5 =
∫

Ω

(
δu

u−ψ

)2( p
u+−ψ

)2(
1+

p
u+−ψ

)
dω

I6 =
∫

Ω

(
p

u+−ψ

)2(
1+

p
u+−ψ

)2

dω

3.2 Finite element discretization

3.2.1 Corrector step

At the corrector step we solve the variational elliptic problem for the unknown

corrector:

find δu ∈ H1
0 : J′′κ(u)(δu,v) =−J′κ(u)v ∀v ∈ H1

0 .

If we write it explicitly :

find δu∈H1
0 :
∫

Ω

∇δu∇vdω +κ

∫
Ω

δuv
(u−ψ)2 dω =−

∫
Ω

∇u∇vdω +
∫

Ω

f vdω +κ

∫
Ω

v
u−ψ

dω.

(3.2)

According to Lax-Milgram Lemma there exist unique solution for this variational

problem.
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We use standard Galerkin method. Let Th be regular triangulation of Ω̄ :

Ω̄ = ∪T∈ThT , T - triangle of the mesh;

for any two distinct triangles T1 and T2 : intT1∩ intT2 = ∅;

any non-empty intersections of two distinct triangles equals one common edge

E ∈ E (Th) or a node x ∈N (Th).

Let Vh =
{

vh ∈C(Ω̄)| vh

∣∣∣
T
∈ P1(T ) ∀T ∈Th, vh

∣∣∣
∂Ω

= 0
}
⊂V = H1

0 (Ω).

Let {φ j}, j = 1,N be piecewise linear basis functions in Vh with compact support:

∀xi ∈N (Th) φ j(xi) = δi j; N < ∞ number of nodes in the mesh, dimension of

Vh. Then we can use the representation

uh = ∑
j

u jφ j, δuh = ∑
j

δu jφ j.

Substituting this in (3.2) we obtain the linear system of equations :

Aδuh = b,

where A ∈ RN×N : Vh→ RN has components:

Ai j =
∫

Ω

∇φi∇φ jdω +κ

∫
Ω

φiφ j

(uh−ψ)2 dω,

b ∈ RN with components

bi =−∑
j

u j

∫
Ω

∇φi∇φ jdω +
∫

Ω

f φidω +κ

∫
Ω

φi

uh−ψ
dω,

and δuh ∈ RN with components δu j.

Assembling the stiffness matrix

For a triangular element T ∈Th let (x1,y1),(x2,y2),(x3,yx) be the vertices and φ1,

φ2, φ3 be the corresponding basis functions in Vh. We denote by |T | the area of the

triangle. Then

|T |= 1
2

 1 1 1
x1 x2 x3
y1 y2 y3
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Since φ1(x,y)
φ2(x,y)
φ3(x,y)

=

λ1
λ2
λ3

=

 1 1 1
x1 x2 x3
y1 y2 y3

−11
x
y

 ,

where λ1, λ2, λ3 are the corresponding barycentric coordinates at (x,y)∈ T, it can

be easily computed that

∇φi(x,y) =
1
2

(
yi+1− yi+2
xi+2− xi+1

)
.

Here, the indices are to be understood modulo 3.

Then∫
T

∇φi∇φ jdω =
1

4|T |
(yi+1− yi+2,xi+2− xi+1)

(
y j+1− y j+2
x j+2− x j+1

)
.

Thus, using this, for the first term
∫

T ∇φi∇φ jdω of the local stiffness matrix we

can write as

M1 =
|T |
2

GGT with G =

 1 1 1
x1 x2 x3
y1 y2 y3

−10 0
1 0
0 1


Using the trapezoidal rule for integration, we obtain for the second term of the

local stiffness matrix:

M2 =
κ|T |

3


1

(u1−ψ1)2 0 0
0 1

(u2−ψ2)2 0
0 0 1

(u3−ψ3)2

 ,

where u1, u2, u3 and ψ1, ψ2 ,ψ3 values of uh and ψ respectively at the corre-

sponding nodes of the triangle.

Assembling the right hand side

For the terms of the right-hand side we easily obtain using the trapezoidal rule∫
T

f φidω =
|T |
3

f (xi,yi),

κ

∫
T

φi

uh−ψ
dω =

κ|T |
3

1
ui−ψ(xi,yi)

.
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3.2.2 Predictor step

At the predictor step we need to solve for p the following variational problem:

J′′κ(u+)(p,v) =−J′(u+)v ∀v ∈V.

Writing explicitly,

find p ∈V :
∫

Ω

∇p∇vdω +κ

∫
Ω

pv
(u+−ψ)2 dω =−

∫
Ω

∇u+
∇vdω +

∫
Ω

f vdω.

Discretization by using piecewise linear functions leads to the system:

A+ph = b+,

where A+ ∈ RN×N : Vh→ RN has components:

A+
i j =

∫
Ω

∇φi∇φ jdω +κ

∫
Ω

φiφ j

(u+
h −ψ)2 ,

b+ ∈ RN with components

b+
i =−∑

j
u+

j

∫
Ω

∇φi∇φ jdω +
∫

Ω

f φidω,

and ph ∈ RN with components p j.

3.3 Error estimate for Finite Element solution

First we bring the theorem about the error estimate for the approximation which

is valid for a general class of approximations schemes for variational inequalities.

We consider in the Hilbert space V the problem :

find u ∈ K : a(u,v−u)≥ 〈 f ,v−u〉 ∀v ∈ K, (3.3)

where K ⊂V is a convex set, a(·, ·) is continuous bilinear form, f ∈V ∗.
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Let Vh be a finite-dimensional subspace of the space V. We replace K by a

convex set Kh ⊂Vh. The corresponding discrete problem is

find uh ∈ Kh : a(uh,vh−uh)≥ 〈 f ,vh−uh〉 ∀vh ∈ Kh, (3.4)

We define the linear mapping : A : V →V ∗ such that 〈Au,v〉= a(u,v) ∀v ∈V.

Theorem 3.3.1 If u and uh satisfy (3.3) and (3.4) respectively, then

a(u−uh,u−uh)≤ a(u−uh,u− vh)+ 〈Au− f ,vh−uh〉 ∀vh ∈ Kh (3.5)

a(u−uh,u−uh)≤ a(u−uh,u− vh)+ 〈Au− f ,vh−u〉+ 〈Au− f ,v−uh〉 (3.6)

vh ∈ Kh, ∀v ∈ K

Proof We have

a(u−uh,u−uh) = a(u−uh,u− vh)+a(u−uh,vh−uh)

= a(u−uh,u− vh)+ 〈Au− f ,vh−uh〉+ 〈 f ,vh−uh〉−a(uh,vh−uh)

(from (3.4)) ≤ a(u−uh,u− vh)+ 〈Au− f ,vh−uh〉. (3.7)

(3.3) implies 〈Au− f ,v−u〉 ≥ 0 ∀v ∈ K, then

〈Au− f ,vh−uh〉 = 〈Au− f ,vh−u〉+ 〈Au− f ,u− v〉+ 〈Au− f ,v−uh〉

≤ 〈Au− f ,vh−u〉+ 〈Au− f ,v−uh〉.

From this and (3.7) follows (3.6). �

Now, we replace Ω with its polygonal approximation Ωh. We choose shape

regular triangulation of Ωh such that all the vertices of Th which are on the bound-

ary of the set Ωh are also on ∂Ω. Let h be triangulation parameter, i.e. the diameter

of the biggest triangle is less than h. With such a triangulation Th we associate

subspace Vh ⊂ H1
0 (Ω) with piecewise linear elements defined by function values

at the triangle vertices. We denote by Πhu piecewise linear interpolate of u.
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Figure 3.2: The set Kh is not in general contained in the set K.

Let Kh be approximation of the convex set K :

Kh = {vh ∈Vh|∀b ∈Nh : vh(b)≥ ψ(b), vh = Πhu on Ω−Ωh}.

Note that the set Kh is not in general contained in the set K.

Theorem 3.3.2 Assume that the solution u is in the space H2(Ω). Then the con-

tinuous piecewise linear approximation uh satisfies ‖uh−u‖1,Ω = O(h).

Proof Using integration by parts and denoting by µ =−(∆u+ f ), we find

〈Au− f ,v〉 =
∫

Ω

∇u∇vdω−〈 f ,v〉

= −
∫

Ω

∆u vdω−〈 f ,v〉

= 〈µ,v〉.

Taking in (3.5) instead of vh = Πhu gives:

|u−uh|1,Ω ≤ a(u−uh,u−Πhu)+ 〈µ,Πhu−uh〉Ωh, (3.8)

since uh = Πhu on Ω−Ωh.

From [7] the variational inequality (3.3) implies the following pointwise rela-

tions: µ ≥ 0 and µ(ψ−u) = 0 a.e. on Ω.
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Hence

〈µ,Πhu−uh〉Ωh = 〈µ,Πh(u−ψ)− (u−ψ)〉Ωh + 〈µ,u−ψ〉+ 〈µ,Πhψ−uh〉Ωh

≤ 〈µ,Πh(u−ψ)− (u−ψ)〉Ωh (3.9)

≤ ‖µ‖L2(Ωh)‖Πh(u−ψ)− (u−ψ)‖L2(Ωh) = O(h2). (3.10)

Here (3.9) was derived from the observation: from uh(b) ≥ Πhψ(b) ∀b ∈ Nh

follows that uh ≥Πhψ on Ωh; hence 〈µ,Πhψ−uh〉Ωh ≤ 0.

Thus, from (3.8) we can conclude:

‖u−uh‖2
1,Ω ≤C‖u−uh‖1,Ω‖u−Πhu‖1,Ω +O(h2).

Taking into account that linear interpolate is of the first order approximation in

H1, we obtain the error estimate

‖u−uh‖1,Ω = O(h). �

3.4 Numerical experiments

In this section we present results for several examples. For all these examples the

initial iterate was taken u(0) = 0.

We know that the convergence rate of the solutions of the sequence of uncon-

strained minimization problems (UP) to the solution of the original problem is

‖uκ − ū‖= O(
√

κ). And accuracy of approximation by using piecewise finite el-

ements will not be better than O(h). Consequently, we should relate the tolerance

ε for κ with h in a proper way: e.g. ε = 0.1/N, where N - number of unknowns.

Initial barrier parameter was chosen κ0 = 1.

For Newton iterations stopping criterion was
∥∥∥ δu

u−ψ

∥∥∥
L∞(Ω)

≤ 0.5.

For the integrations in computing of L2(Ω)-norms and checking of the condi-

tions Ξ≤
(

τ

C

)2 trapezoidal rule was used.
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Implementations were performed on WindowsXP platform with the 1595 MHz

speed Intel x86 processor by using MatLab@ programming language.

3.4.1 Example 1

In this example : domain Ω is a unit circle; force acting on the membrane is

constant: f =−32; and obstacle is a plane z =−1.

The exact solution to this problem is :

u =
{
−1, if r < 0.7374
8r2−8.699lnr−8, if r ≥ 0.7374

In table 3.4.1 N means number of nodes in the triangulation mesh, the column

’iterations’ shows the number of predictor-corrector steps; the next column - the

number of Newton steps at the first iteration (at the other iterations we have only

one Newton corrector step). The error is considered in H1-norm; eh = |u− uh|,

where u is the exact solution. The column ’κ’ shows the final value of κ when

iterations stopped.

Table 3.1: Results for the flat obstacle
Newton

N iter. steps CPU, s ‖u−uh‖1,Ω max j eh κ C
(first it.)

144 5 6 0.437 0.48196 0.06951 0.0079 4.316
544 6 6 1.31 0.15497 0.01686 0.00235 9.2418
1130 6 6 2.75 0.10952 0.00974 0.00236 9.9739
1506 6 6 3.718 0.08702 0.00666 0.00219 16.9396
2173 7 6 6.062 0.08183 0.00625 0.00065 14.4017
4421 7 6 13.422 0.03599 0.00312 0.00066 20.6203
8257 8 6 40.437 0.01516 0.00167 0.00054 26.3749
17489 8 6 121.68 0.01338 0.00104 0.0005 19.3735
33985 9 6 335.4 0.01137 0.0007 0.00031 34.9717

From this table we see that the number of iterations do not increase unpre-

dictably as the number of unknowns is increased, and the number of Newton iter-
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ations for the correction of solution at the first iterate is the same for all considered

here cases.

In the picture 3.3 the final iterate of the solution u is depicted. In the picture 3.4

on the left : the red zone is the coincidence set and the blue zone - non-coincidence

set. On the right distribution of error eh = |u− uh| is depicted. We observe that

the approximate solution is well-behaved in the contact zone and the larger values

of errors come to the non-coincidence set.

Figure 3.3: Approximate solution for the plane-obstacle

Figure 3.4: On the left: coincidence and non-coincidence sets, on the right: error
distribution.
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3.4.2 Example 2

We consider another radially symmetric problem when: Ω is a unit circle, constant

force is acting on the membrane f =−10, and the obstacle is described as

ψ(x,y) =
{ √

R2− x2− y2−R−1, if x2 + y2 ≤ R2,
−5, if x2 + y2 > R2

where R = 0.7

The exact solution to this problem is :

u =
{ √

R2− x2− y2−R−1, if x2 + y2 < r
5(x2 + y2)/2−a lnr−5/2, if x2 + y2 ≥ r

where r = 0.3976, a = r2(5+1/
√

R2− r2).

Figure 3.5 depicts the final iterate of the approximate solution.

Figure 3.5: Approximate solution for the obstacle with the spherical surface

The table 3.4.2 reports the results when the stopping criterion for the Newton

iterations was changed to δu
u−ψ
≤ 0.1. It illustrates that stricter stopping criterion

doesn’t improve the accuracy of the solution for the original constrained prob-

lem, but only increases the number of iterations. This confirms the fact that we

don’t need to solve each corrector problem with high accuracy but it’s sufficient
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Table 3.2: Results for the example 2
Newton

N iter. steps CPU, s ‖u−uh‖1,Ω max j eh κ C
(first it.)

144 10 6 0.841 0.11367 0.01785 0.0055 5.4551
544 12 6 1.8 0.05661 0.00797 0.00203 7.5279
1130 13 6 4.65 0.04224 0.00439 0.00104 11.7238
1506 13 6 6.125 0.03597 0.00358 0.0011 17.0023
2173 14 6 9.656 0.03439 0.003395 0.00145 15.4000
4421 15 6 17.828 0.02136 0.00240 0.00067 17.9878
8257 15 6 47 0.01776 0.00170 0.00053 25.6321
17489 16 6 114 0.01966 0.00114 0.0007 34.7167
33985 16 6 379.8 0.02171 0.00136 0.00028 40.4416

Table 3.3: Results for the example 2 with τ = 0.1
N iter. Newton st. ‖u−uh‖1,Ω

(first iter.)
144 23 7 0.11973
544 28 7 0.05667
1130 29 7 0.04222
1506 29 7 0.03589
2173 31 7 0.03426
4421 32 7 0.02135
8257 33 7 0.01772
17489 35 7 0.01964
33985 37 7 0.02169

the approximate solutions to remain in the predefined neighborhood of the corre-

sponding point on the central path. Figure 3.6 demonstrates how ‖u− uh‖1,Ω

changes with iterations for different number of nodes in the mesh. We can ob-

serve that below the some value of κ it doesn’t decrease further with the next

iterations. Thus, sufficient number of iterations was done in order to approximate

the solution for the given mesh size.
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Figure 3.6: Convergence of the solution for a: N = 144, b: N = 544, c: N = 1130,
d: N = 2173, e: N = 4421, f: N = 33985
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In the picture 3.7 on the left coincidence (in red) and non-coincidence (in blue)

sets are shown. On the right distribution of the error considered as the absolute of

the difference between exact and approximate solutions value is shown. We see

that again the highest values of such error comes to the region in non-coincidence

set closer to the free boundary.

Figure 3.7: On the left: coincidence and non-coincidence sets, on the right: error
distribution.

3.4.3 Example 3

For this example we take Ω as unit circle, obstacle is described as

ψ(x,y) =
{ √

0.64− (x+0.3)2−1, if |x+0.3| ≤ 0.8,
−1, if |x+0.3|> 0.8

We considered this problem with different constant forces: f =−5, f =−10, f =

−30 and f =−100 (pictures 3.8, 3.9, 3.10, 3.11) and observed that the number of

iterations remains stable also with respect to the number of contact points.
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Figure 3.8: f = −5, 13 corrector-predictor iterations, 2 Newton iterations at the
first corrector step

Figure 3.9: f =−10, 14 corrector-predictor iterations, 4 Newton iterations at the
first corrector step

Figure 3.10: f =−30, 18 corrector-predictor iterations, 7 Newton iterations at the
first corrector step

Figure 3.11: f =−100, 13 corrector-predictor iterations, 13 Newton iterations at
the first corrector step



3.4 Numerical experiments 40

3.4.4 Example 4

In this example Ω is a unit circle, force has intensity f =−30 and discontinuous

obstacle:

ψ(x,y) =
{
−1, if |x−0.3| ≤ 0.3 and |y| ≤ 0.4,
−100, otherwise

Here we can motivate our choice of trapezoidal rule for the integration: using this

rule the method copes with such discontinuous obstacles as well.

The picture 3.12 depicts the result of the final iteration, the picture 3.13 illus-

trates Lagrange multipliers and picture 3.14 – subdivision of Ω into coincidence

and non-coincidence sets. Lagrange multipliers computed as µ = κ

u−ψ
at the final

iteration can be interpreted as the reaction forces at the corresponding points of

the obstacle.

Figure 3.12: Numerical solutions for the discontinuous obstacle
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Figure 3.13: Lagrange multipliers

Figure 3.14: In red is coincidence set and and in blue is non-coincidence set



Conclusion

In this work we considered the mathematical model of the obstacle problem for

the numerical simulation of it by using the interior point method. We discussed

the existence and uniqueness of the solution of the primal formulation of the ob-

stacle problem. Constrained minimization problem was replaced by a sequence

of unconstrained minimization problems (UP) by adding the barrier function mul-

tiplied with the barrier parameter and showed that the solution of the sequence

of UP converges to the solution of the original problem as the barrier parameter

converges to zero.

The algorithm for the implementation follows the predictor-corrector method:

we begin with a feasible guess of the solution of UP for the current value of the

barrier parameter and correct that ’guess’ by using of Newton method. For the

numerical implementation of the method we used finite element discretization

with piecewise linear elements.

We performed several numerical tests which gave satisfactory results. We

observed that the number of iteration doesn’t increase unpredictably with the in-

crease of the mesh nodes or contact points. We observed also that numerical

solution behaves well in the coincidence set and higher values of error occur in

the non-coincidence set near the free boundary. Thus, for the improvement of the

accuracy it seems to be of interest using of adaptive finite elements for refining

the mesh in the region where the solution is of least accuracy.
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Appendix A

List of notations

v(·), v(·, ·) function v of one variable, two variables

intA interior of A

J′(u)v first Fréchet derivative of a functional J at a point u along v

J′′(u)(v,w) second Fréchet derivative of a functional J at a point u

Hm(Ω) = {v ∈ L2(Ω)|∀α : |α| ≤ m, ∂ αv ∈ L2(Ω)}

H1
0 (Ω) = {v ∈ H1|v = 0 on ∂Ω}

H∗ dual of a space H

H−1 dual of the space H1

↪→ continuous embedding

‖v‖m,Ω =
(
∑|α|≤m

∫
Ω
|∂ αv|2

)1/2

|v|m,Ω =
(
∑|α|=m

∫
Ω
|∂ αv|2

)1/2
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