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A Robust FEM-BEM Solver for
Time-Harmonic Eddy Current
Problems

Michael Kolmbauer and Ulrich Langer

Abstract This paper is devoted to the construction and analysis of robust
solution techniques for time-harmonic eddy current problems in unbounded
domains. We discretize the time-harmonic eddy current equation by means
of a symmetrically coupled finite and boundary element method, taking care
of the different physical behavior in conducting and non-conducting subdo-
mains, respectively. We construct and analyse a block-diagonal preconditioner
for the system of coupled finite and boundary element equations that is ro-
bust with respect to the space discretization parameter as well as all involved
“bad“ parameters like the frequency, the conductivity and the reluctivity.
Block-diagonal preconditioners can be used for accelerating iterative solution
methods such like the Minimal Residual Method.

1 Introduction

In many practical applications, the excitation is time-harmonic. Switching
from the time domain to the frequency domain allows us to replace ex-
pensive time-integration procedures by the solution of a system of partial
differential equations for the amplitudes belonging to the sine- and to the
cosine-excitation. Following this strategy, Copeland et al. [2011], Kolmbauer
and Langer [2011a] and Bachinger et al. [2005, 2006] applied harmonic and
multiharmonic approaches to parabolic initial-boundary value problems and
the eddy current problem, respectively. Indeed, in Kolmbauer and Langer
[2011a], a preconditioned MinRes solver for the solution of the eddy current
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2 Michael Kolmbauer and Ulrich Langer

problem in bounded domains was constructed that is robust with respect to
both the discretization parameter h and the frequency ω. The key point of
this parameter-robust solver is the construction of a block-diagonal precon-
ditioner, where standard H(curl) FEM magneto-static problems have to be
solved or preconditioned. The aim of this contribution is to generalize these
ideas to the case of unbounded domains in terms of a coupled Finite Element
(FEM) - Boundary Element (BEM) Method. In this case we are also able
to construct a block-diagonal preconditioner, where now standard coupled
FEM-BEM H(curl) problems, as arising in the magneto-static case, have to
be solved or preconditioned.

The paper is now organized as follow. We introduce the frequency domain
equations in Section 2. In the same section, we provide the symmetrically cou-
pled FEM-BEM discretization of these equations. In Section 3, we construct
and analyse our parameter-robust block-diagonal preconditioner used in a
MinRes setting for solving the resulting system of linear algebraic equations.
Finally, we discuss the practical realization of our preconditioner.

2 Frequency domain FEM-BEM

As a model problem, we consider the following eddy current problem:

σ ∂u∂t + curl (ν1(|curl u|) curl u) = f in Ω1 × (0, T ),
curl (curl u) = 0 in Ω2 × (0, T ),

div u = 0 in Ω2 × (0, T ),
u = O(|x|−1) for |x| → ∞,

curl u = O(|x|−1) for |x| → ∞,
u = u0 on Ω1 × {0},

u1 × n = u2 × n on Γ × (0, T ),
ν1(|curl u1|)curl u1 × n = curl u2 × n on Γ × (0, T ),

(1)

where the computational domain Ω = R3 is split into the two non-overlapping
subdomains Ω1 and Ω2. The conducting subdomain Ω1 is assumed to be a
simply connected Lipschitz polyhedron, whereas the non-conducting subdo-
main Ω2 is the complement of Ω1 in R3, i.e R3\Ω1. Furthermore, we denote
by Γ the interface between the two subdomains, i.e. Γ = Ω1 ∩ Ω2. The ex-
terior unit normal vector of Ω1 on Γ is denoted by n, i.e. n points from Ω1

to Ω2. The reluctivity ν1 is supposed to be independent of |curl u|, i.e. we
assume the eddy current problem (1) to be linear. The conductivity σ is zero
in Ω2, and piecewise constant and uniformly positive in Ω1.

We assume that the source f is given by a time-harmonic excitation with
the frequency ω > 0 and amplitudes fc and f s in the conducting domain
Ω1. Therefore, the solution u is time-harmonic as well, with the same base
frequency ω, i.e.
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u(x, t) = uc(x) cos(ωt) + us(x) sin(ωt). (2)

Using the time-harmonic representation (2) of the solution, we can state the
eddy current problem (1) in the frequency domain as follows:

Find u = (uc,us) :


ω σ us + curl (ν1 curl uc) = fc in Ω1,

curl curl uc = 0 in Ω2,
−ω σ uc + curl (ν1 curl us) = f s in Ω1,

curl curl us = 0 in Ω2,

(3)

with the corresponding decay and interface conditions from (1). Deriving the
variational formulation and integrating by parts once more in the exterior
domain yields: Find (uc,us) ∈ H(curl, Ω1)2 such that{

ω(σus,vc)L2(Ω1) + (ν1curl uc, curl vc)L2(Ω1) − 〈γNuc, γDvc〉τ = 〈fc,vc〉,
−ω(σuc,vs)L2(Ω1) + (ν1curl us, curl vs)L2(Ω1) − 〈γNus, γDvs〉τ = 〈f s,vs〉,

for all (vc,vs) ∈ H(curl, Ω1)2. Here γD and γN denote the Dirichlet trace
γD := n× (u× n) and the Neumann trace γN := curlu× n on the interface
Γ . 〈·, ·〉τ denotes the L2(Γ )-based duality product. In order to deal with the
expression on the interface Γ , we use the framework of the symmetric FEM-
BEM coupling for eddy current problems (see Hiptmair [2002]). So, using the
boundary integral operators A, B, C and N, as defined in Hiptmair [2002],
we end up with the weak formulation of the time-harmonic eddy current
problem: Find (uc,us) ∈ H(curl, Ω1)2 and (λc,λs) ∈ H−

1
2
‖ (divΓ 0, Γ )2 such

that

ω(σus,vc)L2(Ω1)+(ν1curl uc, curl vc)L2(Ω1),

−〈N(γDuc), γDvc〉τ + 〈B(λc), γDvc〉τ = 〈fc,vc〉,
〈µc, (C− Id)(γDuc)〉τ − 〈µ

c,A(λc)〉τ = 0,
−ω(σuc,vs)L2(Ω1)+(ν1curl us, curl vs)L2(Ω1),

−〈N(γDus), γDvs〉τ + 〈B(λs), γDvs〉τ = 〈f s,vs〉,
〈µs, (C− Id)(γDus)〉τ − 〈µ

s,A(λs)〉τ = 0,

(4)

for all (vc,vs) ∈ H(curl, Ω1)2 and (µc,µs) ∈ H−
1
2
‖ (divΓ 0, Γ )2. This vari-

ational form is the starting point of the discretization in space. Therefore,
we use a regular triangulation Th, with mesh size h > 0, of the domain
Ω1 with tetrahedral elements. Th induces a mesh Kh of triangles on the
boundary Γ . On these meshes, we consider Nédélec basis functions of order p
yielding the conforming finite element subspace NDp(Th) of H(curl, Ω1), see
Nédélec [1986]. Further, we use the space of divergence free Raviart-Thomas
basis functions RT 0

p(Kh) := {λh ∈ RT p(Kh),divΓλh = 0} being a conform-

ing finite element subspace of H−
1
2
‖ (divΓ 0, Γ ). Let {ϕi} denote the basis of
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NDp(Th), and let {ψi} denote the basis of RT 0
p(Kh). Then the matrix entries

corresponding to the operators in (4) are given by the formulas

(K)ij := (ν curlϕi, curlϕj)L2(Ω1) − 〈N(γDϕi), γDϕj〉τ ,
(M)ij := ω(σϕi,ϕj)L2(Ω1),

(A)ij := 〈ψi,A(ψj)〉τ ,
(B)ij := 〈ψi, (C− Id)(γDϕj)〉τ .

The entries of the right-hand side vector are given by the the formulas
(fc)i := (fc,ϕi)L2(Ω1) and (f s)i := (f s,ϕi)L2(Ω1). The resulting system
Ax = f of the coupled finite and boundary element equations has now the
following structure:

M 0 K BT

0 0 B −A
K BT −M 0
B −A 0 0




us

λs

uc

λc

 =


fc

0
f s

0

 . (5)

In fact, the system matrix A is symmetric and indefinite and obtains a double
saddle-point structure. Since A is symmetric, the system can be solved by a
MinRes method, see, e.g., Paige and Saunders [1975]. Anyhow, the conver-
gence rate of any iterative method deteriorates with respect to the meshsize
h and the “bad” parameters ω, ν and σ, if applied to the unpreconditioned
system (5). Therefore, preconditioning is a challenging topic.

3 A parameter-robust preconditioning technique

In this section, we investigate a preconditioning technique for double saddle-
point equations with the block-structure (5). Due to the symmetry and coer-
civity properties of the underlying operators, the blocks fulfill the following
properties: K = KT ≥ 0, M = MT > 0 and A = AT > 0.

Zulehner [2010] constructed a parameter-robust block-diagonal precondi-
tioner for the distributed optimal control of the Stokes equations. The struc-
tural similarities to that preconditioner gives us a hint how to choose the
block-diagonal preconditioner in our case. Therefore, we propose the follow-
ing preconditioner

C = diag (IFEM , IBEM , IFEM , IBEM ) ,

where the diagonal blocks are given by IFEM = M + K and IBEM = A +
BI−1

FEMBT . Being aware that IFEM and IBEM are symmetric and positive
definite, we conclude that C is also symmetric and positive definite. Therefore,
C induces the energy norm ‖u‖C =

√
uTCu. Using this special norm, we
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can apply the Theorem of Babuška-Aziz Babuška [1971] to the variational
problem:

Find x ∈ RN : wTAx = wT f , ∀w ∈ RN .

The main result is now summarized in the following lemma.

Lemma 1. The matrix A satisfies the following norm equivalence inequali-
ties:

1√
7
‖x‖C ≤ sup

w 6=0

wTAx
‖w‖C

≤ 2 ‖x‖C ∀x ∈ RN .

Proof. Throughout the proof, we use the following notation: x = (x1,x2,x3,x4)T

and y = (y1,y2,y3,y4)T . The upper bound follows by reapplication of
Cauchy’s inequality several time. The expressions corresponding to the Schur
complement can be derived in the following way:

y1
TBTx4 = y1I1/2

FEMI
−1/2
FEMBTx4 ≤ ‖I1/2

FEMy1‖l2‖I
−1/2
FEMBTx4‖l2

Therefore, we end up with an upper bound with constant 2.
In order to compute the lower bound, we use a linear combination of special

test vectors. For the choice w1 = (x1,x2,−x3,−x4)T , we obtain

w1
TAx = x1

TMx1 + x3
TMx3;

for w2 = (x3,−x4,x1,−x2)T , we get

w2
TAx = x1

TKx1 + x3
TKx3 + x2

TAx2 + x4
TAx4;

for w3 = ((x4
TB(K + M)−1)T ,0, (x2

TB(K + M)−1)T ,0)T , we have

w3
TAx = x4

TB(K + M)−1BTx4 + x2
TB(K + M)−1BTx2

+ x4
TB(K + M)−1Mx1 + x4

TB(K + M)−1Kx3

+ x2
TB(K + M)−1Kx1 − x2

TB(K + M)−1Mx3;

for w4 = (−(x3
TK(K + M)−1)T ,0,−(x1

TK(K + M)−1)T ,0)T , we get

w4
TAx =− x3

TK(K + M)−1Mx1 − x3
TK(K + M)−1Kx3

− x3
TK(K + M)−1BTx4 − x1

TK(K + M)−1Kx1

− x1
TK(K + M)−1BTx2 + x1

TK(K + M)−1Mx3;

and, finally, for the choice w5 = (−(x1
TM(K + M)−1)T ,0, (x3

TM(K +
M)−1)T ,0)T , we obtain

w5
TAx = −x1

TM(K + M)−1Mx1 − x1
TM(K + M)−1Kx3

− x1
TM(K + M)−1BTx4 + x3

TM(K + M)−1Kx1

+ x3
TM(K + M)−1BTx2 − x3

TM(K + M)−1Mx3.
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Therefore, we end up with the following expression

(w1 + w2 + w3 + w4 + w5)TAx = x1
TMx1 + x3

TMx3

+ x1
TKx1 + x3

TKx3 + x2
TAx2 + x4

TAx4

+ x4
TB(K + M)−1BTx4 + x2

TB(K + M)−1BTx2

− x3
TK(K + M)−1Kx3 − x1

TK(K + M)−1Kx1

− x3
TM(K + M)−1Mx3 − x1

TM(K + M)−1Mx1

− 2x3
TK(K + M)−1Mx1 + 2x1

TK(K + M)−1Mx3.

For estimating the non-symmetric terms, we use the following result:

−2x3
TK(K + M)−1Mx1 ≥ −2‖(K + M)−1/2Kx3‖l2‖(K + M)−1/2Mx1‖l2

≥ −‖(K + M)−1/2Kx3‖2l2 − ‖(K + M)−1/2Mx1‖2l2
= −x3

TK(K + M)−1Kx3 − x1
TM(K + M)−1Mx1.

Analogously, we obtain

2x1
TK(K + M)−1Mx3 ≥ −x1

TK(K + M)−1Kx1 − x3
TM(K + M)−1Mx3.

Hence, putting all terms together, we have

(w1 + w2 + w3 + w4 + w5)TAx = xTCx
− 2x3

TK(K + M)−1Kx3 − 2x1
TK(K + M)−1Kx1

− 2x3
TM(K + M)−1Mx3 − 2x1

TM(K + M)−1Mx1.

In order to get rid of the four remaining terms, we use, for i = 1, 3,

xi
TK(K + M)−1Kxi ≤ xi

TKxi and xi
TM(K + M)−1Mxi ≤ xi

TMxi.

Hence by adding w1 and w2 twice more, we end up with the desired result

(3w1 + 3w2 + w3 + w4 + w5)T︸ ︷︷ ︸
:=wT

Ax ≥ xTCx + x2
TAx2 + x4

TAx4 ≥ xTCx.

The next step is to compute (and estimate) the C norm of the special test
vector. Straightforward estimations yield

‖w‖2C = ‖3w1 + 3w2 + w3 + w4 + w5‖2C ≤ 7 ‖x‖2C .

This completes the proof.

Now, from Lemma 1, we obtain that the condition number of the precon-
ditioned system can be estimated by the constant c = 2

√
7 that is obviously

independent of the meshsize h and all involved parameters ω, ν and σ, i.e.
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κC(C−1A) := ‖C−1A‖C‖A−1C‖C ≤ 2
√

7. (6)

The condition number defines the convergence behaviour of the MinRes
method applied to the preconditioned system (see e.g. Greenbaum [1997]),
as stated in the following theorem:

Theorem 1 (Robust solver). The MinRes method applied to the precondi-
tioned system C−1Au = C−1f converges. At the 2m-th iteration, the precon-
ditioned residual rm = C−1f − C−1Aum is bounded as

∥∥r2m∥∥C ≤ 2qm

1 + q2m
∥∥r0∥∥C , where q =

2
√

7− 1
2
√

7 + 1
. (7)

4 Conclusion, Outlook and Acknowledgments

The method developed in this work shows great potential for solving time-
harmonic eddy current problems in an unbounded domain in a robust way.
The solution of a fully coupled 4 × 4 block-system can be reduced to the
solution of a block-diagonal matrix, where each block corresponds to standard
problems. We mention, that by analogous procedure, we can state another
robust block-diagonal preconditioner C̃ = diag (ĨFEM , ĨBEM , ĨFEM , ĨBEM ),
with ĨFEM = M + K + BT Ĩ−1

BEMB and ĨBEM = A.
Of course this block-diagonal preconditioner is only a theoretical one,

since the exact solution of the diagonal blocks corresponding to a standard
FEM discretized stationary problem and the Schur-complement of a standard
FEM-BEM discretized stationary problem are still prohibitively expensive.
Nevertheless, as for the FEM discretized version in Kolmbauer and Langer
[2011a], this theoretical preconditioner allows us replace the solution of a
time-dependent problem by the solution of a sequence of time-independent
problems in a robust way, i.e. independent of the the space and time dis-
cretization parameters h and ω and all additional “bad” parameters. There-
fore, the issue of finding robust solvers for the fully coupled time-harmonic
system matrix A can be reduced to finding robust solvers for the blocks IFEM
and IBEM , or ĨFEM and ĨBEM . By replacing these diagonal blocks by stan-
dard preconditioners, it is straight-forward to derive mesh-independent con-
vergence rates, see, e.g., Funken and Stephan [2009]. Unfortunately, the con-
struction of fully robust preconditioners for the diagonal blocks is not straight
forward and has to be studied. Candidates are H matrix, multigrid multi-
grid and domain decomposition preconditioners, see, e.g. Bebendorf [2008],
Arnold et al. [2000] and Hu and Zou [2003], respectively.

The preconditioned MinRes solver presented in this paper can also be
generalized to eddy current optimal control problems studied in Kolmbauer
and Langer [2011b] for the pure FEM case in bounded domains.
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