
Eingereicht von
Daniel Jodlbauer

Angefertigt am
Institut für Numerische
Mathematik

Betreuer
o. Univ.-Prof. Dipl.-Ing.
Dr. Ulrich Langer

Mitwirkung
Dr. Thomas Wick

November 2016

JOHANNES KEPLER
UNIVERSITÄT LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Robust Precondition-
ers for Fluid-Structure-
Interaction Problems

Masterarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Masterstudium

Industriemathematik

Abstract

Fluid-structure-interaction problems have a wide range of applications, but their efficient

solution remains challenging. In this work we provide all details necessary for a monolithic

ALE implementation using the finite element library deal.II. Moreover, we show different ways

of incorporating the continuity conditions on the interface on the discrete level. To actually

solve the arising linear systems, we develop a preconditioner based on an approximate block-

wise LU-factorization, splitting the coupled system of equations into its natural fluid, solid

and mesh sub-problems. Numerical results illustrate the robust convergence with respect to

different material parameters and mesh-size h, but with an acceptable dependence on the

time-step size ∆t. Furthermore, we observe that this iterative approach outperforms direct

solvers even for a low number of degrees of freedoms and without parallelization.

Zusammenfassung

Probleme welche das Zusammenspiel von Flüssigkeiten oder Gasen mit Festkörpern beschrei-

ben treten vielfältig auf. Dennoch ist deren Lösung immer noch eine Herausforderung. Wir

beschreiben die notwendigen Schritte, um ein Programm zur monolithischen Lösung eben

jener Probleme zu erstellen. Dies geschieht mit Hilfe der finiten Elemente Bibliothek de-

al.II. Insbesondere erörtern wir verschiedene Möglichkeiten, die Interface Bedingungen in die

diskrete Formulierung einzuarbeiten. Um die entstehenden Gleichungssysteme zu lösen, ent-

wickeln wir einen Vorkonditionierer basierend auf einer näherungsweisen Block-LU-Zerlegung.

Diese spaltet das gekoppelte Problem in ihre natürlichen Bestandteile, den Gleichungen für

die Flüssigkeit, den Festkörper sowie für das Diskretisierungsgitter, auf. Numerische Tests

zeigen die robuste Konvergenz bezüglich der Wahl der Materialparametern und Gittergröße

h, jedoch mit einer akzeptablen Abhängigkeit von der Zeitschrittweite ∆t. Auch ohne par-

allelisierung ist dieser iterative Ansatz deutlich schneller als ein direkter Löser, selbst bei

wenigen Freiheitsgraden.

Contents

1 Introduction 4

2 Prerequisites 6

2.1 Notation . 6

2.2 Function-Spaces . 7

2.3 Continuum Mechanics . 9

2.3.1 Transformations . 11

2.4 Modelling Objects . 13

2.4.1 Fluids . 14

2.4.2 Elastic Materials . 15

3 FSI Equations 16

3.1 Arbitrary-Lagrangian-Eulerian (ALE) Coordinates 16

3.2 ALE Description of the Fluid Equations . 17

3.3 Boundary and Initial Conditions . 18

3.4 Interface Conditions . 19

3.5 Summary . 20

4 Discretization 21

4.1 Weak Formulation . 21

4.1.1 Fluid . 22

1

4.1.2 Solid . 22

4.1.3 Mesh-Motion . 23

4.1.4 Interface . 23

4.1.5 FSI . 23

4.2 Discretization in Time . 24

4.3 Linearization . 26

4.4 Spatial Discretization . 28

4.4.1 Discrete Boundary Conditions . 31

4.4.2 Interface Conditions . 32

4.4.3 Comparison With Other Formulations 38

4.5 Assembling Procedure . 38

4.6 Summary . 39

5 Linear Solvers 42

5.1 Direct Solvers . 42

5.1.1 Reordering Schemes . 43

5.1.2 ILU . 44

5.2 Schur-Complement . 45

5.3 GMRES . 47

5.4 Multi-Grid Methods . 49

6 Preconditioners 53

6.1 Introduction . 53

6.2 First Examples . 54

6.3 LU - Approach . 56

6.4 Solving the Sub-Problems . 60

6.4.1 Mesh . 60

2

6.4.2 Solid . 61

6.4.3 Fluid . 61

7 Numerical Results 63

7.1 FSI Benchmarks . 63

7.2 Using Direct Solvers for the Sub-Problems . 65

7.2.1 Oscillations . 66

7.2.2 Dependence on Refinement and Time-Step Size 66

7.2.3 Dependence on Material Parameters 66

7.3 Iterative Subsolvers . 70

7.3.1 Dependence on Step-Size and Refinement 70

7.3.2 Material Parameters . 70

8 Conclusion 72

8.1 Summary and Comparisons . 72

8.2 Future Work . 73

3

Chapter 1

Introduction

In this work we will present and analyse robust preconditioners for fluid-structure-interaction

(FSI) problems. As the name suggests, these kind of problems consist of two parts, fluid and

solid, that influence each other on a common interface.

A typical example of an FSI problem is the air flow around the wing of an aeroplane. This

flow is certainly influenced by the shape of the wing, which in turn creates forces acting on

it. These further results in a deformation of the wing which again influences the surrounding

flow. This example already indicates one of the difficulties of FSI problems: every change to

either the fluid or the solid part automatically influences the other part.

FSI problems have also been used for computations in hemodynamics, like blood flow in

vessels or the simulation of a whole human heart.

There are basically two different methods of solving such coupled problems:

A very natural attempt follows the description of the wing-flow above: first solve, e.g. the

fluid sub-problem, independent of the solid part, then compute the reaction of the solid sub-

problem and apply these changes again to the fluid part. If we continues to do so, we may

converge to the solution of the whole FSI problem. This technique is called "partitioned" or

"iterative" approach and is very efficient if we can guarantee a fast convergence. However, in

some applications, it may require a lot of iterations in order to converge or even fail completely

to do so. In particular, this is the case if the fluid and solid densities are similar, like for

many examples in hemodynamics. More details about this so-called added-mass effect and

the partitioned method in general can be found in e.g. [7, 6, 19]).

A different approach which overcomes the added-mass effect is the "monolithic" one. Here,

4

one attempts to solve the whole coupled FSI problem at once. While this method tends to be

more robust, it comes at the prize of solving large and ill-conditioned linear systems. For a

small number of degrees of freedom, a direct solver can be used to obtain a solution. However,

as the size of the problem increases, direct solvers will require huge amounts of memory and

additionally suffer from numerical instabilities. Therefore other solution methods have to be

considered.

Since direct solvers are going to fail at some point, we have to consider iterative solvers

like GMRES to solve the occurring linear systems. This class of solvers typically require

less memory storage and are less susceptible to numerical breakdown. The disadvantage

of iterative solvers is, that they require a good preconditioner to converge in a reasonable

number of iterations. While "black-box" preconditioners often work well for simple PDEs

like the Laplace equation, no such general preconditioner works well enough for the fully

coupled fluid-structure-interaction problem. Therefore we are going to have a look at more

sophisticated attempts to precondition the occurring linear systems.

In chapter 2, we will give an introduction to commonly used terms and notations and provide

a small insight into the mathematics of continuum-mechanics. Chapter 3 summarizes these

concepts resulting in the equations for the fluid-structure-interaction problem. The numerical

treatment of FSI is described in chapter 4. The main emphasis of this work focuses on the

chapters 5 and 6, where we will describe methods for the solution of the arising linear systems.

Finally, we will present the numerical results in chapter 7.

5

Chapter 2

Prerequisites

Before we start to give a more mathematical description of fluid-structure-interaction prob-

lems, we will require a few preliminaries. Within the next sections we will summarize the

notations and common definitions used throughout this work. Furthermore, we will give a

short introduction to the required concepts of continuum mechanics, in particular the equa-

tions for fluids and elastic materials.

2.1 Notation

Although we attempt to explain all terms once they occur, we will give a short list of the

notation for completeness.

Notation Description

x, x̂ variable given in Eulerian and ALE coordinates

vf , p fluid velocity and pressure

v̂f , p̂f in ALE-coordinates

ûf fluid (mesh) displacement (ALE)

ûs, v̂s solid displacement and velocity (ALE)

ϕ test-functions

n outer unit-normal vector, time-step

ρ̂f , ρ̂s fluid and solid density (ALE)

νf kinematic viscosity

νs Poisson ratio

6

λ, µ Lamé-coefficients

T̂ transformation mapping

Â ALE-mapping

F̂ transformation / ALE gradient

Ĵ transformation / ALE determinant

Ωs,Ωf solid and fluid domain depending on t

Ω̂s, Ω̂f solid and fluid reference configuration

Γ, Γ̂ boundary (parts) of a domain

Γ̂I fluid-solid-interface

T ⊂ Ω element

dim spatial dimension

∆t time-step size

h := maxk diam(Tk) mesh-size∫
dx domain integral∫
ds boundary integral

∂xp partial derivatives

dt total time derivative

∇p gradient of a (scalar-valued) function (∂xp, ∂yp, . . .)

∇v gradient of a (vector-valued) function (∂jvi)
dim
i,j=1

div(v) divergence of a vector-valued function
dim∑
i=1

∂ivi = tr(∇v)

div(σ) divergence of a matrix-valued function (div(σ1i), div(σ2i), . . .)

4p Laplacian of a scalar-valued function
dim∑
i=1

∂i2p

4v Laplacian of a vector-valued function (4v1,4v2, . . .)

a(u, v) bilinear form, linear wrt. both arguments

A(u)(v, ϕ) bilinear wrt. v and ϕ, non-linear wrt. to u

2.2 Function-Spaces

As usual, we denote by L2(Ω) the set of square-integrable functions with scalar-product

(f, g)Ω :=
∫

Ω f(x)g(x)dx. By 〈x, y〉Γ, we indicate the L2-scalar product over some part of

the boundary. For matrix-valued functions, the corresponding integrals are interpreted as∫
Ω

∑
i,j AijBijdx. Further, H

1(Ω) denotes the usual Sobolev space consisting of L2-functions

7

with derivative in L2 as well [1]. The corresponding vector-valued function spaces are denoted

by L2(Ω)d = L2(Ω)× . . .× L2(Ω), and analogously for all other spaces.

For the discretization, we will use continuous, piecewise polynomial functions, precisely

Q(k) :=


∑
α

max(αi)≤k

cαix
αi
i , cαi ∈ R, α ∈ Ndim0

 (2.1)

on each element. By DGQ we denote the respective discontinuous versions, i.e. there are no

common degrees of freedom between neighbouring cells (see figure 2.1).

Figure 2.1: Degrees of freedom for continuous Q(1) and discontinuous DGQ(1) elements.

8

2.3 Continuum Mechanics

As of today’s knowledge, all kind of objects are basically just a collection of atoms. However,

such a discrete model is very unhandy from a mathematical viewpoint. Therefore, continuum

mechanics seeks to approximate this discrete objects as continuous ones which occupy a whole

region. For macroscopic problems, this approach turns out to be very accurate and easier to

handle. In the next sections we will learn about the basic techniques used to describe the

behaviour of solids and fluids. Since at the very end, we are mainly interested in solving the

resulting equations, we will not focus too much on the details. These may found in e.g. [16,

17, 31, 2, 25].

First of all, we give a rough definition of continuous objects.

Definition 2.3.1 (Object). An object is an open, connected subset of Rd with sufficiently

smooth boundary (e.g. Lipschitz-continuous).

The reference configuration denotes a state of the object that is independent of time. A usual

choice is the object itself in a stress-free state, i.e. where no external forces or deformations

occur, or the object at time zero.

One particular point of interest in continuum mechanics is the question how objects behave if

external forces are applied. Typically, it will result in a mixture of movement and deformation,

which can both be described in terms of the deformation mapping.

Definition 2.3.2 (Deformation mapping). Let Ω̂ be an object in reference configuration.

Then the deformed object Ω(t) at time t is given by the transformation

T̂ : R+ × Ω̂→ Ω(t)

x(t) = T̂ (t, x̂)

Ω(t) = T̂ (t, Ω̂)

(2.2)

Furthermore, we assume that the deformation mapping T̂ (t, x̂) is

1. continuously differentiable and

2. bijective for all times t ≥ 0.

This deformation naturally introduces two different kind of coordinates.

9

First, we have the coordinates belonging to the reference configuration. A point x̂ in this

configuration always refers to same material point. If we think of discrete objects again, this

means that a coordinate in reference configuration always points to the same atom. This

type is called reference or Lagrangian coordinates.

The second way of describing points in space are Eulerian coordinates. A point x in this

configuration refers to a fixed point in space, independent of which "atom" currently occupies

this spot.

Eulerian coordinates are mostly used in fluid dynamics, while solids are usually described

in Lagrangian coordinates. For fluid-structure-interaction problems, we need to couple these

two different coordinate systems. One way of doing so is to formulate all equations in a

common coordinate system, which will be done in section 3.1.

Remark 2.3.3 (Notation). In this work we will use hats to denote reference coordinates.

Further, we omit the time-dependence and use Ω := Ω(t) for simplicity.

0

Â

B̂

A

B

dx̂
dx

x̂ x

x̂+ dx̂ x+ dx

û(Â)

û(Â+ dx̂)

Figure 2.2: Displacements.

The deformation above may also be represented in terms of the displacement:

Definition 2.3.4 (Displacement). The displacement field associated to a deformation is

given by

û(t, x̂) := T̂ (t, x̂)− x̂ = x(t, x̂)− x̂

in Lagrangian coordinates or equivalently

u(x, t) = x− T̂−1(t, x) = x− x̂(t, x)

10

in Eulerian coordinates.

Other frequently required quantities are the transformation gradient and its determinant.

Definition 2.3.5. The transformation gradient F̂ is given by

F̂ (t, x̂) := ∇̂T̂ (t, x̂) = I + ∇̂û(t, x̂)

with determinant

Ĵ(t, x̂) := det(F̂ (t, x̂)).

In addition to the assumption given in definition 2.3.2 we further assume that the determinant

is orientation preserving, i.e. Ĵ > 0 for all x̂ ∈ Ω̂ and times t. This ensures the invertibility

of F̂ .

Geometrical Interpretation The transformation gradient converts the relative positions

between two "atoms" from one coordinate system into the other. This can be seen as follows:

with the definition dû := û(Â+dx̂)−û(Â), we obtain from figure 2.2 that dx = dx̂+dû. Using

a first-order Taylor-series expansion around Â, we further get û(Â+dx̂) = û(Â)+ ∇̂û(Â) ·dx̂
and therefore dx = dx̂+ ∇̂û · dx̂ = F̂ · dx̂.

The transformation determinant Ĵ denotes the change of the area (2d) or volume (3d) at a

given point. A negative determinant would correspond to an object intersecting itself, which

we do not allow by the above assumption.

2.3.1 Transformations

The following lemmas follow directly from the definition of the transformation and show how

to switch between Eulerian and Lagrangian coordinates. Mostly, these are just applications

of the usual chain-rule and integration by substitution, which can be found in the standard

literature. Remember that we have the definition x(t) = T̂ (t, x̂).

Definition 2.3.6 (Function Values). For arbitrary functions f we identify function values

between Eulerian and Lagrangian coordinates as follows:

f(t, x) = f(t, T̂ (t, x̂)) = f̂(t, x̂).

Lemma 2.3.7 (Function Gradients). Using the chain rule, we obtain for vector-valued func-

tions

∇̂f(t, x) = ∇̂f(t, T̂ (t, x̂)) = ∇f(t, x) · F̂ (t, x̂)

11

or equivalently

∇f(t, x) = ∇̂f(t, x) · F̂−1(t, x̂).

Lemma 2.3.8 (Time Derivatives). Similar to the lemma above, the total time derivative in

Lagrangian coordinates reads

D̂tf(t, x) = ∂tf(t, x) +∇f(t, x) · ∂tT̂ (t, x̂).

For the weak formulation, it is also important to transform integrals over the domain and

boundary parts.

Lemma 2.3.9 (Transformation of Integrals). For the domain transformations, we have the

well known substitution rule

∫
Ω
f(x)dx =

∫
Ω̂
Ĵ(x̂)f̂(x̂)dx̂

for continuous functions f .

Nanson’s formulae gives us the corresponding transformation of boundary integrals of tensor

fields σ:

∫
∂Ω
σnds =

∫
∂Ω̂
Ĵ σ̂F̂−T n̂dŝ.

Closely related to Nanson’s formulae is the Piola transform. It allows us to convert Eulerian

stress tensors to its Lagrangian counterparts.

Definition 2.3.10 (Piola Transform). For a deformation T̂ and a tensor field σ defined in

Eulerian coordinates, the Piola transform σ̂ of σ is given as follows:

σ̂(t, x̂) := Ĵ(t, x̂)σ(t, x)F̂−T (t, x̂)

For the divergence of such a tensor, the following statement holds:

Theorem 2.3.11 (Divergence of the Piola transform).

divR(σ̂(t, x̂)) = Ĵ(t, x̂)F̂ (t, x̂)div(σ(t, x)).

Special care has to be taken if densities are involved:

12

Theorem 2.3.12 (Densities). For a mass-conserving object, we have

ρ(x) = ρ̂(x̂)Ĵ(x̂)

Proof. The mass of some part B̂ of object Ω̂ can be written as

mB(t) :=

∫
B
ρ(x)dx

and

m̂B̂(t) :=

∫
B̂
ρ̂(x̂)dx̂

in reference coordinates. Since the mass of these subdomains is preserved under deformation,

we have mB(t) = m̂B̂(t).

However, by integral transformation we obtain∫
B̂
ρ̂(x̂)dx̂ = mB(t) =

∫
B
ρ(x)dx =

∫
B̂
Ĵρ(x̂)dx̂.

for arbitrary parts B̂ ⊆ Ω̂ and therefore ρ(x) = ρ̂(x̂)Ĵ(x̂) holds.

The following theorem allows to differentiate integrals over time-dependent regions, like those

introduced by transformations.

Theorem 2.3.13 (Reynold’s Transport Theorem). Let T̂ be a C2− transformation, B̂ ⊆ Ω̂.

For a C1 scalar-valued Eulerian function f , the following identity holds:

d

dt

∫
T̂ (t,B̂)

f(t, x)dx =

∫
T̂ (t,B̂)

∂tf(t, x) + div(f(t, x) w(t, x))dx, (2.3)

with the flow-velocity w := ∂tT̂ (t, x̂).

2.4 Modelling Objects

Now that we have completed most of the preliminaries, we can have a look at the equations

defining the behaviour of objects. For FSI we need to know, as the name already indicates,

how to model fluids and solid materials. This will be addressed in the following chapters.

Note that for the moment we only pose the equations without boundary or initial conditions.

These will be added later on for the full FSI problem.

13

2.4.1 Fluids

The equations for the fluid velocity vf and pressure p are given by the Navier-Stokes equations,

which are usually formulated in Eulerian coordinates. In this work, we restrict ourselves to

incompressible fluids, which leads to the following system of equations:

ρf∂tvf + ρf∇vf · vf − div(σf) = 0 (2.4)

ρf div(vf) = 0 (2.5)

with the fluid stress tensor given by

σf = −pI + ρfνf (∇vf +∇vTf). (2.6)

Similar to the solid case, equation equation (2.4) stems from the balance of forces and momen-

tum. The main difference here is the convection or transport term ∇vf · vf . This non-linear
part describes the acceleration of fluid particles caused by the motion of the fluid itself. This

may happen because of a change in the geometry, i.e. the velocity increases, if the surrounding

channel narrows down. For a thorough derivation of these equations we refer to [25].

Equation (2.5) is a special case of the continuity equation. Using Reynold’s transport theorem

and the conservation of mass we get

0 =
d

dt
m(t) =

d

dt

∫
Ω
ρf (t, x)dx =

∫
Ω

d

dt
ρf (t, x) + div(ρf vf)dx.

Since this relation holds for all parts B ⊂ Ω as well, we get

d

dt
ρf (t, x) + div(ρ vf) = 0.

For an incompressible fluid (
d

dt
ρf = 0) with constant density, this simplifies to div(vf) = 0.

Assumption 2.4.1. From now on, we will assume that the fluid is constant with respect to

space and time

ρf (t, x) := ρf .

14

2.4.2 Elastic Materials

The key quantity of a solid problem is the displacement ûs. Its equation is given in (2.7) and

can be derived from Newton’s second law (conservation of momentum). More details on the

derivation and physical interpretation of the quantities involved can be found in [16].

ρ̂s∂
2
t ûs − divR(F̂ Σ̂) = 0. (2.7)

The so-called stress tensor Σ̂ is given by a constitutive law, which describes the stress-strain

relation of a material. Throughout this work, we use the Saint-Venant Kirchhoff material

model (STVK), which is given by

Σ̂(Ê) = 2µÊ + λ tr(Ê)Î (2.8)

with constant Lamé parameters λ and µ. The non-linear Right-Cauchy-Green strain tensor

is given by

Ê =
1

2
(∇̂û+ ∇̂ûT + ∇̂û∇̂ûT). (2.9)

Strain measures the deformation of an object. Opposed to the deformation gradient F̂ , it is

related to the "real" deformation of an object independent of translations and rotations.

Roughly speaking, stress determines the internal surface forces (pressure) caused by the

interaction of neighbouring atoms.

The second-order in time equation (2.7) may also be written as a system of first order equa-

tions

ρ̂s∂tv̂s − divR(F̂ Σ̂) = 0

ρ̂s (∂tûs − v̂f) = 0
(2.10)

with the new solid velocity v̂s = ∂tûs.

15

Chapter 3

FSI Equations

The two main ingredients, fluid and solid, have already been described in the previous section.

However, we currently have the solid equations given in Lagrangian coordinates while the

fluid system is described in Eulerian ones. This is problematic since we want to couple these

equations on a common interface. One way of doing so is to convert both equations into a

common coordinate system, the ALE - coordinates [9].

3.1 Arbitrary-Lagrangian-Eulerian (ALE) Coordinates

From the last sections we know, that in the Lagrangian description of the elasticity equa-

tions the computational domain remains fixed and any occurring deformation is represented

through the mapping T̂ (t, x̂) = x̂+ û(t, x̂). The idea behind ALE is to extend this mapping

from the solid into the fluid domain by introducing the fluid-displacement (mesh-motion) ûf
and ALE-mapping Â:

û(t, x̂) :=

ûs(t, x̂) x̂ ∈ Ω̂s

ûf (t, x̂) x̂ ∈ Ω̂f

and Â(t, x̂) := x̂+ û(t, x̂) for x̂ ∈ Ω̂. (3.1)

We can interpret the fluid domain as an artificial structure subject to deformations given by

ûf . After discretization, this would correspond to moving the vertices of the mesh, which

motivates the name "mesh-motion".

Remark 3.1.1 (Clarification). In this work, we are following the ALEfx approach. This

means, that during the computation, the mesh is not moved. This may happen only for

16

visualization purposes to actually see the solid and mesh deformations. A different method

would be ALEdm, where the mesh is indeed updated after every time-step by post-processing.

We still have to clarify how exactly we are going to extend the solid displacement. With the

interpretation above, a natural choice is to do something like

−divR(σ̂MM (t, ûf)) = 0 in Ω̂ (3.2)

ûf = ûs on Γ̂I (3.3)

ûf = 0 on ∂Ω̂f\Γ̂I (3.4)

with an appropriate "mesh-motion stress-tensor" σ̂MM . The simplest choice is σ̂MM := ∇̂ûf ,
which leads to the Laplace equation. However, if the displacements become too large, this

harmonic extension will lead to degenerate meshes with Ĵ ≈ 0. The situation can be improved

by choosing σ̂MM := 1
Ĵ
∇̂ûf leading to a non-linear-harmonic mesh-motion equation. For

more possible extensions and a comparison of these we refer to [30].

With this uniform description of the coordinates at hand we are now able to define the whole

FSI system. Note that due to the definition of the ALE mapping, we can use the equations

for the elasticity problem without change - only the fluid equations have to be adjusted

accordingly.

Remark 3.1.2 (Different Strategies). Several other methods than ALE exist, like fictitious

domain approach, immersed boundary methods and others.

3.2 ALE Description of the Fluid Equations

Since ALE coordinates are just a global version of the Lagrangian ones, all the definitions

and theorems from section 2.3.1 also apply for the new ALE mapping. In this section, we

will use these results to obtain the fluid equations in ALE coordinates.

Summarizing the statements from section 2.3.1 we have the following transformation rules:

• ρf 7→ Ĵ ρ̂f

• vf 7→ v̂f

• ∇vf 7→ ∇̂v̂f F̂−1

17

• ∂tvf 7→ ∂̂tv̂f − ∇̂v̂f F̂−1 · ∂tÂ

• div(σf) 7→ divR(Ĵ σ̂f F̂
−T).

For the incompressibility equation, we further use the identity div(vf) = tr(∇vf).

After applying these rules to the fluid equations given in section 2.4.1 we get:

Ĵ ρ̂f ∂̂tv̂f + Ĵ ρ̂f ∇̂v̂f F̂−1 · (v̂f − ∂tÂ)− divR(Ĵ σ̂f F̂
−T) = 0

Ĵ ρ̂ tr(∇̂v̂f F̂−1) = 0,
(3.5)

with the fluid stress-tensor in ALE coordinates given as

σ̂f := −p̂fI + ρ̂f ν̂f (∇̂v̂f F̂−1 + F̂−T ∇̂v̂Tf).

3.3 Boundary and Initial Conditions

Until now, have successfully avoided to give any boundary or initial conditions, which will

be made up now. Since the precise definition of these conditions is problem-specific, we use

the geometry and definition of the FSI benchmark given in section 7.1 as an example. Most

FSI problems fulfil similar conditions.

Fluid In many FSI applications, the system is driven by the flow of some fluid. Therefore

we pose some given velocity inflow profile on Γ̂in:

v̂f (t, x̂) := v̂in(t, x̂) on Γ̂in,

This also includes the initial condition for the velocity by setting t := 0. For the remaining

boundary parts Γ̂top, Γ̂bottom as well as Γ̂c we use the so-called "no-slip" condition v̂f = 0.

The physical motivation behind this condition is, that fluid particles are stuck to the atoms

of the boundary and therefore do no longer move (adhesion).

Since we can not compute solutions on arbitrary large domains, we sometimes have to truncate

the domain, i.e. a very long channel is represented by a small part of it. However, this leads

18

to question of what kind boundary conditions we should pose on the cut. One widely used

setting is the so-called "do-nothing" condition

Ĵ(−p̂fI + ρ̂f ν̂f ∇̂v̂f F̂−1)F̂−T = 0 on Γ̂out. (3.6)

Solid Since the driving force in our tests will be the fluid, we use homogeneous initial

conditions for the structure displacement and velocity. Furthermore, we have to attach the

flag onto the cylinder, which gives rise to the boundary condition

ûs = v̂s = 0 on Γ̂cf .

Mesh As written in equation (3.2), we restrict the mesh-displacement on the whole bound-

ary Γ̂f , which includes the boundary of the cylinder Γ̂c. However, we could allow move-

ment of the mesh-vertices along the boundary parts for more flexibility, i.e. only ûyf =

0 on Γ̂top ∪ Γ̂bottom.

3.4 Interface Conditions

To realize the interaction between fluid and solid, we have to couple them along the interface.

The geometric coupling has already been discussed in the introduction of the ALE mapping:

ûf = ûs on Γ̂I , (3.7)

although, we introduced it as a boundary condition for the mesh-motion equation. If we

formulate the whole FSI problem using this condition, it may also be interpreted as a condition

for the solid equations. This, however, is not intended, as we only want to have coupling

from the solid to the mesh equations, but not vice-versa. For monolithic approaches, such

a one-sided coupling is achieved by scaling the mesh-motion part by a small factor, e.g.

αu = 10−5.

Similar to boundary conditions from before, we also have the "no-slip" condition between

19

the solid domain and the surrounding fluid, leading to

v̂f = v̂s on Γ̂I . (3.8)

The most important condition is the continuity of stresses, which propagates forces from the

fluid to the solid object and vice-versa. In ALE coordinates, this conditions reads

Ĵ σ̂f F̂
−T n̂f + F̂ Σ̂sn̂s = 0. (3.9)

3.5 Summary

Summarizing the previous results, we obtain the FSI-ALE system in strong formulation.

Ĵ ρ̂f ∂̂tv̂f + Ĵ ρ̂f ∇̂v̂f F̂−1 · (v̂f − ∂tÂ)− divR(Ĵ σ̂f F̂
−T) = 0

Ĵ ρ̂ tr(∇̂v̂f F̂−1) = 0

ρ̂s∂tv̂s − divR(F̂ Σ̂) = 0

ρ̂s (∂tûs − v̂f) = 0

−αudivR(σ̂MM) = 0

(3.10)

with the additional conditions

Ĵ σ̂f F̂
−T n̂f + F̂ Σ̂s = 0 on Γ̂I v̂f = 0 on Γ̂top ∪ Γ̂bottom ∪ Γ̂c (3.11)

v̂f − v̂s = 0 on Γ̂I v̂f = g on Γ̂in (3.12)

ûf − ûs = 0 on Γ̂I ûf = 0 on Γ̂top ∪ Γ̂bottom ∪ Γ̂in ∪ Γ̂out ∪ Γ̂c (3.13)

ûs = 0 on Γ̂cf (3.14)

v̂s = 0 on Γ̂cf (3.15)

and

Ĵ(−p̂fI + ρ̂f ν̂f ∇̂v̂f F̂−1)F̂−T = 0 on Γ̂out. (3.16)

20

Chapter 4

Discretization

For the discretization of the fluid-structure-interaction equations, we have to consider several

things. As usual, we require a variational formulation, but additionally, we have to take care

of the time-derivatives and the occurring non-linearities. Although we we formally apply

time-discretization first it is easier to present it in the opposed direction.

4.1 Weak Formulation

For the numerical treatment of partial differential equations, we need a variational formula-

tion. As usual, we first multiply each equation with a corresponding test-functions, integrate

over the respective reference domain and perform integration by parts. The following para-

graphs show the results of this procedure for the solid, fluid and mesh-motion equations.

Special care has to be taken on the interface when defining the test and ansatz-functions.

For all time-steps n, we have

21

(ûs, ûf) ∈ Vu := {ûs ∈ H1(Ω̂s)
dim, ûf ∈ H1(Ω̂f)dim :

ûs = 0 on ∂Ω̂s\Γ̂I ,

ûf = 0 on ∂Ω̂f\Γ̂I ,

ûs = ûf on Γ̂I},

(v̂s, v̂f) ∈ Vv := {v̂s ∈ H1(Ω̂s)
dim, v̂f ∈ H1(Ω̂f)dim :

v̂s = 0 on ∂Ω̂s\Γ̂I ,

v̂f = 0 on ∂Ω̂f\(Γ̂I ∪ Γ̂in),

v̂f = g(t) on Γ̂in,

v̂s = v̂f on Γ̂I}

and

p̂f ∈ Vp := L2(Ω̂f).

The test-spaces for (ϕ̂us , ϕ̂
u
f) and ϕ̂pf are the same, only for (ϕ̂vs , ϕ̂

v
f) we get the homogeneous

version (ϕ̂vs , ϕ̂
v
f) ∈ V 0

v , with the velocity test-space

V 0
v := Vv with g(t) ≡ 0. (4.1)

After the usual steps, we arrive at the following weak formulation for the FSI problem:

4.1.1 Fluid(
Ĵ ρ̂f ∂̂tv̂f , ϕ̂vf

)
Ω̂f

+
(
Ĵ ρ̂f ∇̂v̂f F̂−1 · (v̂f − ŵ) , ϕ̂vf

)
Ω̂f

+
(
Ĵ σ̂f F̂

−T , ∇̂ϕ̂vf
)

Ω̂f

−
〈
Ĵ σ̂f F̂

−T · n̂f , ϕ̂vf
〉

Γ̂I

−
〈
ρ̂f ν̂f Ĵ F̂

−T ∇̂v̂Tf F̂−T · n̂f , ϕ̂vf
〉

Γ̂out

= 0(
Ĵ tr(∇̂v̂f F̂−1) , ϕ̂pf

)
Ω̂f

= 0.

(4.2)

4.1.2 Solid (
ρ̂s∂̂tv̂s , ϕ̂vs

)
Ω̂s

+
(
F̂ Σ̂s , ∇̂ϕ̂vs

)
Ω̂s

−
〈
F̂ Σ̂s · n̂s , ϕ̂vs

〉
Γ̂I

= 0(
∂̂tûs − v̂s , ϕ̂us

)
Ω̂s

= 0
(4.3)

22

4.1.3 Mesh-Motion

αu

(
1

Ĵ
∇̂ûf , ∇̂ϕ̂uf

)
Ω̂f

= 0. (4.4)

4.1.4 Interface

Since the test-functions ϕ̂vf and ϕ̂vs are equal on the interface, we can write the continuity of

stresses (3.9) as:

〈
Ĵ σ̂f F̂

−T n̂f , ϕ̂vf
〉

Γ̂I

+
〈
F̂ Σ̂sn̂s , ϕ̂vs

〉
Γ̂I

= 0. (4.5)

These terms already appear in equations (4.2) and (4.3). Hence we can incorporate condition

(3.9) by neglecting these interface terms in the fluid and solid equations.

Remark 4.1.1 (Do-Nothing Condition). Without the do-nothing condition, we still get

contributions from the term
(
Ĵ σ̂f F̂

−T , ∇̂ϕ̂vf
)

Ω̂f

on the outflow boundary. Since σf ≈ −pI+

∇vf +∇vTf , this term coincides with the do-nothing condition if we remove the transposed

part. This leads to 〈
ρ̂f ν̂f Ĵ F̂

−T ∇̂v̂Tf F̂−T · n̂f , ϕ̂vf
〉

Γ̂out

within the fluid equations (4.2).

4.1.5 FSI

Summarizing the last sections, we finally get the weak formulation for the full FSI problem:

Problem 4.1.2 (Weak formulation of FSI-ALE). Find ((ûs, ûf), (v̂s, v̂f), p̂f) in Vu×Vv ×Vp
such that for all test-functions

(
(ϕ̂us , ϕ̂

u
f), (ϕ̂vs , ϕ̂

v
f), ϕ̂pf

)
in Vu×V 0

v ×Vp the following equations

23

are satisfied for almost all times t:

(
ρ̂s∂̂tv̂s , ϕ̂vs

)
Ω̂s

+
(
F̂ Σ̂s , ∇̂ϕ̂vs

)
Ω̂s

= 0(
∂̂tûs − v̂s , ϕ̂us

)
Ω̂s

= 0(
Ĵ ρ̂f ∂̂tv̂f , ϕ̂vf

)
Ω̂f

+
(
Ĵ ρ̂f ∇̂v̂f F̂−1 · (v̂f − ŵ) , ϕ̂vf

)
Ω̂f

+
(
Ĵ F̂−T σ̂f , ∇̂ϕ̂vf

)
Ω̂f

−
〈
ρ̂f ν̂f Ĵ F̂

−T ∇̂v̂Tf F̂−T · n̂f , ϕ̂vf
〉

Γ̂out

= 0(
Ĵ tr(∇̂v̂f F̂−1) , ϕ̂pf

)
Ω̂f

= 0

αu

(
1

Ĵ
∇̂ûf , ∇̂ϕ̂uf

)
Ω̂f

= 0

(4.6)

Remark 4.1.3. Instead of converting the strong fluid equations from the Eulerian system into

ALE coordinates and then deriving the weak formulation, we could have also gone the other

way: first compute the weak Eulerian formulation and then apply the ALE transformations. If

we use this approach, we must not forget to transform the test-functions into ALE coordinates

as well. With the simple identity (A ·B) : C = A : (C ·BT) for square-matrices, we arrive at

the same result.

4.2 Discretization in Time

In the next step, we want to get rid of the time-derivatives within the FSI equations. This is

achieved using the one-step-theta scheme given below.

Definition 4.2.1 (One-Step-Theta Scheme). Given a differential equation a(u)∂tu+A(u) =

0, the one-step-theta scheme reads

(
θ a(un) + (1− θ) a(un−1) (u(tn)− u(tn−1)

)
−∆t θ A(un)−∆t (1− θ) A(un−1) = 0

with θ ∈ [0, 1] and ∆t := tn − tn−1.

Different values of θ result in time-stepping schemes with different properties. Popular choices

are (see [33]):

• θ = 0, which corresponds to the first order explicit Euler scheme. This scheme requires

extremely small time-step sizes for convergence. Thus, it is not feasible for FSI.

24

• θ = 0.5 leads to the second order Crank-Nicholson scheme (CN). This scheme is A-

stable, however, for long-run simulations of the FSI 2 benchmark described in sec-

tion 7.1, it breaks down after some time.

• θ = 0.5 + ∆t attempts to repair the CN scheme by shifting it to the implicit side. It is

second order as well but now additionally strictly A-stable. No breakdown occurs for

longer simulations (at least for FSI 2).

• θ = 1 equals to the first order Implicit (Backward) Euler (BE) scheme, which is strongly

A-stable. However, this time-stepping scheme introduces a lot of damping, therefore it

its not applicable for the FSI 2 benchmark, as no oscillations would occur.

Applying this scheme to the fluid-structure-interaction equations (3.10) yields (modified equa-

tions only)

(
Ĵθρ̂f (v̂nf − v̂n−1

f) , ϕ̂vf
)

Ω̂f

−
(

(Ĵ ρ̂f ∇̂v̂f F̂−1)θ · (ûnf − ûn−1
f) , ϕ̂vf

)
Ω̂f

+

∆t

[(
Ĵ ρ̂f ∇̂v̂f F̂−1 · v̂f , ϕ̂vf

)
Ω̂f

+
(
Ĵ σ̂vf F̂

−T , ∇̂ϕ̂vf
)

Ω̂f

]θ
−∆t

[〈
ρ̂f ν̂f Ĵ F̂

−T ∇̂v̂Tf F̂−T · n̂f , ϕ̂vf
〉

Γ̂out

]θ
+(

Ĵ(−p̂f)F̂−T , ∇̂ϕ̂vf
)

Ω̂f

= 0

(
ρ̂s(v̂

n
s − v̂n−1

s) , ϕ̂vs
)

Ω̂s
+ ∆t

(
F̂ Σ̂s , ∇̂ϕ̂vs

)θ
Ω̂s

= 0(
(ûns − ûn−1

s)−∆t v̂θs , ϕ̂us
)

Ω̂s

= 0

(4.7)

with the modification

σ̂vf := ρ̂f ν̂f (∇̂v̂f F̂−1 + F̂−T ∇̂v̂Tf)

as explained below. Further, we use the abbreviation Aθ := θAn + (1 − θ)An−1. The

superscripts n and n−1 denote the evaluation at times tn and tn−1 respectively. For simplicity,

we will skip the n superscripts from now on.

Remark 4.2.2 (Implicit Pressure). The pressure term contained in σ̂f is always treated fully

implicitly, i.e. any appearing pressure variable within the fluid stress tensor is treated as if

25

θ = 1 holds. Other terms are not affected by this modification. The reasoning behind this

comes from the theory of differential algebraic equations (DAE), see for example [29].

4.3 Linearization

In order to obtain the bilinear form required for discretization, we have to get grid of the

non-linearities within the FSI equations (4.6, 4.7). A common way to do so is to linearize

the equations using Newton’s method [11].

Algorithm 1 Newton Linearization
Let A(u)(ϕ) be a semi-linear form (linear with respect to the second argument), F (ϕ) a linear

form. Then the solution of A(u)(ϕ) = F (ϕ) can be obtained by the following iteration:

1: Initial guess u0

2: for k = 0, 1, . . . until convergence do

3: Solve A′(uk)(ϕ, δuk) = F (ϕ)−A(uk)(ϕ) for δuk
4: Update uk+1 := uk + δuk

5: end for

Remark 4.3.1 (Convergence Properties of Newton’s Method). Under several conditions on

the differentiability and boundedness of the semi-linear form A, Newton’s method converges

quadratically if provided with a good starting value. For details on the assumptions and

precise statement of the convergence property, see e.g. the Newton-Kantorovich theorem in

[21].

The term A′(u)(ϕ, δu) denotes the directional derivative of A into the direction of the function

δu (similar to classical directional derivative in Rn). This Jacobian is a bilinear form wrt.

(ϕ, δu), which is exactly what we need for discretization. For infinite dimensional function

spaces, this derivative is typically called Gâteaux -differential.

Definition 4.3.2 (Gâteaux -Derivative). The directional derivative of a semi-linear form A

is defined as

A′(u)(δu, ϕ) := lim
ε→0

1

ε
(A(u+ εδu)(ϕ)−A(u)(ϕ)) =

d

dε
A(u+ εδu)(ϕ)|ε=0

Let us continue with some simple examples before we attempt to linearise the whole FSI

equations. We will always assume that the necessary requirements for all those operations

are fulfilled.

26

Example 4.3.3. We start with the most simple example A(u) := u. Using the definition

above, we get

A′(u)(δu) :=
d

dε
A(u+ εδu)|ε=0 =

d

dε
(u+ εδu)|ε=0 = δu. (4.8)

Example 4.3.4. Similarly we obtain for A(u) := ∇u:

A′(u)(δu) =
d

dε
∇(u+ εδu)|ε=0 = ∇δu. (4.9)

Example 4.3.5. For non-linear expressions like A(u) := ∇u · u, we get:

A′(u)(δu) =
d

dε
[∇(u+ εδu) · (u+ εδu)]|ε=0

=
d

dε
[∇ · u+∇u · εδu+ ε∇δu · u+ ε∇δu · εδu]|ε=0

= ∇δu · u+∇u · δu.

(4.10)

Note that this corresponds to the usual product-rule for derivatives.

For the differentiation of the whole FSI operator (4.12), we need the derivatives of quantities

like Ĵ , F̂ , F̂−1 and others. Since we will use the notation A′ for the full Jacobian, we denote

the following derivatives by e.g. ∂uF̂ (u) or simply ∂F̂ , if it is clear by which variable we are

differentiating.

Theorem 4.3.6 (FSI-Related Derivatives).

∂F̂ = ∇̂δû

∂Ĵ = Ĵtr(F̂−1∇̂δû)

∂F̂−1 = −F̂−1∇̂δûF̂−1

∂F̂−T = (∂F̂−1)T

∂tr(E) = tr(∂E)

(4.11)

Proof. unless trivial, see for example [16, 2].

Now we have the necessary ingredients to tackle the FSI problem. Its semi-linear form

A(U)(Φ) and linear form F (Φ) are given as the sum of all equations in (4.7). Note that the

derivative only applies to functions evaluated at time-step n. Functions from previous time-

steps are constant with respect to δU and therefore belong to the right-hand side F . With

27

this in mind, we can define the FSI operator A and right-hand side F after time-discretization

as

A(U)(Φ) =
(
ρ̂f Ĵ

θ(v̂f − v̂n−1
f) , ϕ̂vf

)
Ω̂f

−
(
Ĵ ρ̂f F̂

−1∇̂v̂f · ûf , ϕ̂vf
)

Ω̂f

+ ∆t θ

[(
Ĵ ρ̂f F̂

−1∇̂v̂f · v̂f , ϕ̂vf
)

Ω̂f

+
(
Ĵ σ̂vf F̂

−T , ∇̂ϕ̂vf
)

Ω̂f

]
−∆t θ

〈
ρ̂f ν̂f Ĵ F̂

−T ∇̂v̂Tf F̂−T · n̂f , ϕ̂vf
〉

Γ̂out

+
(
Ĵ(−p̂f)F̂−T , ∇̂ϕ̂vf

)
Ω̂f

+ (ρ̂sv̂
n
s , ϕ̂vs)Ω̂s

+ ∆t θ
(
F̂ Σ̂s , ∇̂ϕ̂vs

)
Ω̂s

+ (ûs , ϕ̂us)Ω̂s
−∆t θ (v̂s , ϕ̂us)Ω̂s

+ αu

(
1

Ĵ
∇̂ûf , ∇̂ϕ̂uf

)
Ω̂f

(4.12)

and

F (Φ) =
(
ρ̂sv̂

n−1
s , ϕ̂vs

)
Ω̂s
−∆t (1− θ)

(
F̂n−1Σ̂n−1

s , ∇̂ϕ̂vs
)

Ω̂s

+
(
ûn−1
s , ϕ̂us

)
Ω̂s

+ ∆t (1− θ)
(
v̂n−1
s , ϕ̂us

)
Ω̂s

−
(
Ĵ ρ̂f F̂

−1∇̂v̂f · ûn−1
f , ϕ̂vf

)
Ω̂f

−∆t (1− θ)
[(
Ĵ ρ̂f F̂

−1∇̂v̂f · v̂f , ϕ̂vf
)

Ω̂f

+
(
Ĵ σ̂vf F̂

−T , ∇̂ϕ̂vf
)

Ω̂f

]n−1

+ ∆t (1− θ)
[〈
ρ̂f ν̂f Ĵ F̂

−T ∇̂v̂Tf F̂−T · n̂f , ϕ̂vf
〉

Γ̂out

]n−1

(4.13)

with the test-function Φ := (ϕ̂vf , ϕ̂
u
f , ϕ̂

p
f , ϕ̂

v
s , ϕ̂

u
s) and solution variable U := (v̂f , ûf , p̂f , v̂s, ûs).

Due to the nested non-linearities, which all require multiple applications of the product

rule, the computation of all single terms of the Jacobian is quite lengthy. However, when

implementing the derivatives we do not actually need to expand all terms, therefore we do

not write them down explicitly here.

4.4 Spatial Discretization

Now we are ready to discretize the Jacobian and the Newton residual given in algorithm 1.

We are going to use a quadrilateral subdivision Ω̂ =
⋃
i Ti of the reference domain with Q(k)

28

shape functions for displacements and velocities and discontinuous Q(k− 1) elements for the

pressure. The subdivision matches the interface, i.e. every Ti is either part of the fluid or the

solid domain, but not both.

Note that since A′ is bilinear wrt. δU and test functions Φ, we have to represent the Newton

correction δU using discrete subspaces, not the solution U itself.

As indicated above we use the following discrete function spaces

V s
h :=

{
v ∈ H1(Ω̂s) : v|Ti ∈ Q(k) ∀Ti ∈ Ω̂s

}
V f
h :=

{
v ∈ H1(Ω̂f) : v|Ti ∈ Q(k) ∀Ti ∈ Ω̂f

}
Lfh :=

{
v ∈ L2(Ω̂f) : v|Ti ∈ P (k − 1) ∀Ti ∈ Ω̂f

} (4.14)

with the nodal basis functions

V s
h = span{ϕvs,h[j], j = 1, . . . , Nvs} = span{ϕus,h[j], j = 1, . . . , Nus}

V f
h = span{ϕvf,h[j], j = 1, . . . , Nvf } = span{ϕuf,h[j], j = 1, . . . , Nuf }

Lfh = span{ϕpf,h[j], j = 1, . . . , Npf }.

(4.15)

This leads to the space X := (V f
h)dim × (V f

h)dim × Lfh × (V s
h)dim × (V s

h)dim for the discrete

Newton correction δU . The basis functions for the whole space X are the combinations of

the basis functions of the components in the following way:

Φj =
(
ϕvf,h[j], 0, 0, . . . , 0

)
, j = 1, . . . Nvf

Φj+Nvf
=
(
0, ϕvf,h[j], 0, 0, . . . , 0

)
, j = 1, . . . Nvf

Φj+2Nvf
=
(
0, 0, ϕuf,h[j], 0, . . . , 0

)
, j = 1, . . . Nuf

. . . and so on.

(4.16)

Note that Φj has 4·dim+1 components since we require the basis functions for displacements

and velocities dim-times.

Using the ansatz

δU :=

NFSI∑
j=1

δUjΦj

29

for the equation at each Newton step k leads to

A′(Uk)(

NFSI∑
i=1

Φi,

NFSI∑
j=1

δUjΦj) = F (

NFSI∑
i=1

Φi)−A(Uk)(

NFSI∑
i=1

Φi)

⇔
NFSI∑
i,j=1

A′(Uk)(Φi,Φj))δUj =

NFSI∑
i=1

(F (Φi)−A(Uk)(Φi)) .

AhδUh = Fh

(4.17)

with

δUh := (δU1, . . . , δUNFSI
) ∈ RNFSI ,

Ah =
(
A′(Uk)(Φi,Φj)

)NFSI

i,j=1
∈ RNFSI×NFSI and

Fh = (A(Uk)(Φi)− F (Φi))
NFSI
j=1 ∈ RNFSI

(4.18)

Please note that we omitted the index k for the Newton corrections δU for simplicity.

Assembling Ah leads to a matrix of the form


M 0 0

0 S 0

B 0 F

 , (4.19)

whereM,S and F denote the discrete versions of the mesh-motion, solid and fluid equations

respectively. The coupling terms B simply arise because of the ALE transformation of the

fluid equations.

Up to now, we have not yet included any boundary or interface conditions in our discrete

formulation. This issue will be tackled in the next sections. Therein, we differentiate between

degrees of freedom located on the interface (denoted by I) and dofs in the interior (Ω).

Furthermore, we split the fluid and solid variables into v̂f , p̂f and ûs, v̂s. Note that we do not

have pressure dofs on the interface because we are using discontinuous elements. This leads

30

to the more detailed description of the Jacobian



MΩΩ MΩI

MIΩ MII

SΩΩ
uu SΩI

uu SΩΩ
uv SΩI

uv

SIΩuu SIIuu SIΩuv SIIuv
SΩΩ
vu SΩI

vu SΩΩ
vv SΩI

vv

SIΩvu SIIvu SIΩvv SIIvv
BIΩfm BIIfm FIIvv FIΩvv FIvp
BΩΩ
fm BΩI

fm FΩI
vv FΩΩ

vv FΩ
vp

BΩ
pm BIpm FIpv FΩ

pv 0



. (4.20)

4.4.1 Discrete Boundary Conditions

Basically, we have to differentiate between boundary conditions subject to the solution vari-

able Uh and those that apply to the Newton corrections δUh.

It is important to keep in mind that any constraints incorporated into the matrix Ah and

right-hand side Fh only directly affect the Newton update and not the actual solution.

The first type of boundary conditions are the initial conditions applied to the solution itself.

Typical examples include a given inflow velocity at some part of the boundary and zero values

for the mesh displacement (e.g. fixed channel). These conditions are directly incorporated

into the solution vector Uh (more specifically into the initial guess U0 of the Newton algorithm

at each time-step):

Uh(i) := g(i), for all degrees of freedom i subject to given initial conditions g.

Boundary conditions applied to the Newton correction are nothing else than homogeneous

versions of the previous conditions.

After some Newton iterations, we have for the solution vector

Uh = U0 + δU0 + δU1 +

To retain the conditions imposed on U0, we have to make sure that these are not disturbed

by the following corrections. Therefore we have to apply homogeneous boundary conditions

to δUk in every Newton step for all those degrees of freedom, that are set in U0.

31

In the following part, we will investigate how to apply these homogeneous Dirichlet conditions.

Notation 4.4.1. Let BC denote the set of all degrees of freedom for which such constraints

should be imposed.

One way to incorporate the constraints is by the following modification of the matrix Ah and

right-hand-side Fh:

∀i ∈ BC, j = 1, . . . , NFSI : set

Ah(i, i) := 1,

Ah(i, j) := 0,

Ah(j, i) := 0

Fh(i) := 0.

(4.21)

Trivially, the solution of Ahx = Fh will have zero values for all constrained degrees of freedom.

The diagonal element Ah(i, i) may in fact be chosen arbitrarily non-zero, for example one

could chose Ah(i, i) as the average value of the eliminated values. This makes particular sense

if the values around Ah(i, i) are much larger or smaller than 1 as the matrix structure will

not be as severely destroyed.

The obvious disadvantage of this method is that we have to modify each row and column

subject to constraints, which might be costly, depending on the representation of the sparse

matrix.

A simpler variant of the above method would be

∀i ∈ BC : set Ah(i, i) := β, with β sufficiently large.

The penalty parameter β has to be chosen such that it dominates the corresponding row and

column of the original matrix. Then, the solution will be approximately the same as if we

had eliminated these entries.

4.4.2 Interface Conditions

Without interface conditions, the fluid and solid equations would be completely independent

of each other and no interaction would take place. Therefore we will now have a look at the

most important part of fluid-structure-interaction .

32

As given in section 3.4 we have three interface conditions given on the continuous level:

1. continuity of stresses,

2. continuity of velocities and

3. continuity of displacements.

For the continuous problem, the continuity of stresses (1) is implicitly fulfilled, if the test

functions for the velocities match on the interface. Therefore we only have to care about

conditions (2) and (3), as long as the discrete velocity test-functions have the same property.

Weak Coupling

Again, there are several possibilities of incorporating these coupling constraints. One way to

do so, is to treat the interface conditions as additional equations and test them with according

functions. This approach is closely related to Nitsche’s method used in DG formulations (see

e.g. [28]).

Lemma 4.4.2 (Weak Coupling). Enforcing the identities ûf = ûs and v̂f = v̂s on Γ̂I is

realized by the additional equations

αu
〈
ûs − ûf , ϕ̂us − ϕ̂uf

〉
Γ̂I

= 0 and〈
F̂ Σ̂sn̂s − Ĵ σ̂f F̂−T n̂f , ϕ̂vs − ϕ̂vf

〉
Γ̂I

− αv
〈
v̂s − v̂f , ϕ̂vs − ϕ̂vf

〉
Γ̂I

= 0,
(4.22)

with the penalty parameters αu and αv sufficiently large. Note that these additional equations

have to be linearized and adapted to the θ-time-stepping scheme as well.

The big advantage of this method is that it can be easily implemented and no special care

has to be taken if different elements for ûf and ûs or v̂f and v̂s are used. The disadvantage is,

that we have to chose an appropriate penalty parameter. If we chose αv too low, the coupling

error increases, whereas a large value has a negative impact on the iterative GMRES solver.

In figure 4.1 we observe the coupling error depending on different penalty parameters and

figure 4.2 shows the effect on the required number of GMRES iterations.

For the displacement coupling, we could also use a slightly modified variant of this method

(see e.g. [22]). Instead of using test functions ϕ̂uf for the mesh-motion part as given before, we

33

1e-02

1e-01

1e+00

1e+01

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

E
rr
or

αv

R = 0
R = 1
R = 2
R = 3

Figure 4.1: Velocity-coupling error depending on the choice of the penalty parameter αv for

different refinement levels R. The error was computed as (
∫

Γ̂I
|v̂s − v̂f |2dŝ)1/2.

chose them to be zero on the interface Γ̂I . Doing so eliminates the second row of the matrix

(4.20). This row is then populated with the displacement coupling matrices by assembling

the equation

〈
ûf − ûs , ϕ̂uf

〉
Γ̂I

= 0.

This leads to the modified Jacobian



MΩΩ MΩI

Umm −Ums
SΩΩ
uu SΩI

uu SΩΩ
uv SΩI

uv

SIΩuu SIIuu SIΩuv SIIuv
SΩΩ
vu SΩI

vu SΩΩ
vv SΩI

vv

SIΩvu SIIvu + Vvu SIΩvv SIIvv+Vvv Vvv Vvp
BIΩfm BIIfm Vvu Vvv Vvv + FIIvv FIΩvv Vvp + FIvp
BΩΩ
fm BΩI

fm FΩI
vv FΩΩ

vv FΩ
vp

BΩ
pm BIpm FIpv FΩ

pv 0



(4.23)

34

0

5

10

15

20

25

30

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

It
er
at
io
ns

αv

R = 0
R = 1
R = 2
R = 3

Figure 4.2: Effect of αv on the convergence of the GMRES solver using the 21 preconditioner

with direct solvers for the sub-problems for different refinement levels R. Again, the FSI 2

benchmark was considered.

Note that for simplicity of notation, the velocity coupling blocks V should only indicate that

we get contributions at these places, but they are not meant to be equal.

The coupling mass matrices Umm and Ums could be replaced by "identity" matrices. However,

one has to be extremely careful when modifying the Jacobian by hand, as one has to account

for possibly different elements, refinement levels and orderings of the degrees of freedom.

In the general case, these "identity" matrices would be some kind of interpolation and/or

reordering operators.

Due to the negative effect on the required number of GMRES iterations, we use a different

way of coupling the displacement and velocity, which is presented in the next section. This

method is already implemented in deal.II and shows a very convenient way of implementing

a wide range of constraints.

deal.II Constraint Matrix

In this section, we describe the behaviour of the deal.II ConstraintMatrix class. The name

already indicates the general usage uf this object: incorporating constraints.

Definition 4.4.3 (Constraints). Linear constraints on a degree of freedom xi can be repre-

35

sented as

xi =
∑
j 6=i

cijxj

or equivalently C ·X = 0 with X = (x1, x2, . . .).

Incorporating the constraints C into the solution of A ·X = b stemming from a continuous

problem a(ϕi, ϕj) = f(ϕj) leads to the following equations to be solved:

AX = b

CX = 0.
(4.24)

However, it is not clear whether this system has a solution at all. A different and very general

approach coming from hp-discretization methods is presented in [3]. The overall idea is to

replace the original, unconstrained shape-functions by conforming modifications carrying the

constraints. In particular, the following changes are incorporated:

ϕ̃j = ϕj +
∑

xi constr

cijϕi (4.25)

Ãij =


a(ϕ̃i, ϕ̃i), i, j unconstrained

1, i = j constrained

0, i or j unconstrained

F̃i =

(f, ϕ̃i), i unconstrained

0, i constrained
(4.26)

At first glance, this method seems to be very costly as it involves a lot of manipulations of

matrix entries. However, one can overcome this issue by applying these modifications when

distributing the local contributions from each cell into the global matrix and vector. The

only remaining thing to take care of are the additional entries in the sparsity pattern.

In the simplest case of uniform refinement (no hanging-nodes) and equal elements for the

fluid and solid pairs of displacement and velocity, the interface coupling is a simple 1-to-1

coupling of degrees of freedom (see figure 4.3). Therefore, we only have constraints of the

form xfi = xsj for corresponding degrees of freedom on the fluid and solid side. For the general

case, we have to represent one set of basis-functions by linear combinations of the others.

36

Fluid

u2

u7

u4

Γ̂I

Solid
u11

u14

u17

Figure 4.3: 1-to-1 interface coupling for Q2-elements.

Using this approach leads to the following modified Jacobian



MΩΩ 0 MΩI

0 I

SΩΩ
uu SΩI

uu SΩΩ
uv SΩI

uv

MIΩ SIΩuu SIIuu +MII SIΩuv SIIuv
SΩΩ
vu SΩI

vu SΩΩ
vv SΩI

vv

BIΩfm SIΩvu SIIvu SIΩvv SIIvv + FIIvv FIΩvv FIvp
0 0 I 0 0

BΩΩ
fm 0 BΩI

fm FΩI
vv 0 FΩΩ

vv FΩ
vp

BΩ
pm 0 BIpm FIpv 0 FΩ

pv 0



(4.27)

Note that the moved matrix blocks are only equal if the corresponding degrees of freedom

have the very same ordering. Otherwise, the ordering of the rows and columns within these

blocks is different.

Remark 4.4.4.

• Incorporating homogeneous Dirichlet constraints as presented in equation (4.21) is a

special case of this method. Therefore the deal.II Constraint-Matrix may be used for

interface coupling as well as boundary conditions.

• While we focused solely on homogeneous constraints, this class can also deal with

inhomogeneous ones. Also, the modification of the sparsity pattern and the distribution

of local contributions is already included in deal.II.

• We will refer to the this type of interface coupling as "strong", whereas the Nitsche

approach presented in section 4.4.2 will be called "weak" coupling.

37

4.4.3 Comparison With Other Formulations

For the formulation and discretization of fluid-structure-interaction problems several different

variants exist. In [22, 32], the velocity and displacement variable is defined in the whole

domain Ω̂. This makes the interface coupling a lot easier, since essentially nothing has to be

done. The drawback of such a formulation is that one has to use the same finite elements

for the respective fluid and solid parts, whereas the approach presented in this work allows

different choices.

The final preconditioner presented in this work will be closely related to the one presented

in [20, 18], adapted to the slightly different discretizations. In [20], the second order solid

equations are treated by the Newmark scheme, while we split it into a first order system and

tackle it by the One-Step-θ method. This further leads to different coupling strategies on the

interface and moreover to a different block-structure of the Jacobian.

All of these formulations include the mesh-motion equation via ALE transformations. A

different approach is utilized in [14]. Therein, the mesh is moved in every step via post-

processing. Therefore, the Jacobian misses the fluid displacement variable completely.

4.5 Assembling Procedure

Finally, we are able to assemble the matrix and right-hand side vector. A procedure similar

to algorithm 2 is typically used in all finite element codes.

Algorithm 2 Assembling of the Jacobian (example: a(û, v̂) = (∇̂û, ∇̂v̂))

for all cells T̂k do
Mlocal := 0

for all quadrature points q do

for all local degrees of freedom i do

for all local degrees of freedom j do

Mlocal(j, i) += ∇̂Φ̂i(q) ∗ ∇̂Φ̂j(q) ∗ JxW (q)

end for

end for

end for

end for

38

Remark 4.5.1.

• The column index i corresponds to the ansatz-function while the row index j denotes

the test-function.

• Quadrature points are chosen on a unit cell as Gauss-Legendre points of order k+ 1 for

Qk elements.

• The term JxW (q) denotes the weight of quadrature point q taking into account the

deformation of the cell compared to the unit cell (please note that this deformation is

not directly related to the deformation caused by the displacements ûf or ûs!).

• For multi-valued problems like FSI, it makes sense to split the innermost loop depending

on the component associated to dof j in the following way:

1: for all local degrees of freedom j do

2: if j ' ûf then

3: Mlocal(j, i) += (mesh-motion-equation) ∗ ∇̂ϕ̂uj (q) ∗ JxW (q)

4: else if j ' v̂f then

5: Mlocal(j, i) += (fluid-momentum-equation) ∗ ∇̂ϕ̂vj (q) ∗ JxW (q)

6: else if j ' p̂f then

7: Mlocal(j, i) += (incompressibility-equation) ∗ ϕ̂pj (q) ∗ JxW (q)

8: end if

9: end for

This avoids the unnecessary computation of lots of zeros.

Assembling the Jacobian for the FSI 2 benchmark leads to the sparsity pattern presented in

figure 4.4. Here, Q(2) elements for the displacements and velocities and DGQ(1) elements

for the pressure were used.

4.6 Summary

Now we conclude this chapter by giving a rough overview of the necessary steps in a program

solving the FSI equations in algorithm 3.

Remark 4.6.1 (Initial Guess). At the first time-step, we chose a zero initial guess with

appropriate initial conditions for the solution U . For larger time-step sizes this may lead to

39

Figure 4.4: Sparsity pattern with 4148 dofs and 0.88 % (151, 530) non-zero entries. Blocks

correspond to fluid-displacement (interior, interface), solid-displacement (interior, interface),

solid-velocity (interior, interface), fluid-velocity (interface, interior) and pressure. Block-wise

ordering using Cuthill-McKee (see section 5.1.1)

more Newton iterations at the beginning. For all subsequent time-steps, we can reuse the

solution from the previous time-step with adjusted initial conditions as a starting value for

the Newton iteration.

If we use an iterative solver like GMRES for the solution of the linear system, we also require

an initial guess for the Newton update. In contrast to the previous situation, we have no

good candidate from the time-step before, since the corrections are more or less "random".

Therefore we use δU0 = 0, which is a good choice for the last couple of Newton steps, as we

would expect that δU → 0.

Remark 4.6.2 (Quasi-Newton-Method). Within the Newton iterations, the Jacobian is not

necessarily assembled in every single step. If the iteration makes good progress in reducing the

residual, we can assume that we are already very close to the eventual solution. Therefore, the

Jacobian from the previous Newton step might be a good enough approximation to continue

with (Quasi-Newton method). This saves us some computational work for assembling the

matrix and initializing the linear solver and preconditioner. In particular, if we use a direct

solver, we can reuse the previous LU factorization and get the solution of the current iteration

almost for free.

40

Algorithm 3 FSI program.
1: Define problem parameters (∆t, θ, material parameters, ...)

2: Create mesh

3: Assign degrees of freedom

4: Set-up constraints (hanging nodes, homogeneous boundary conditions, interface coupling)

5: Initialize sparsity pattern, Jacobian A and vectors for the right-hand-side rhs, solution

U , newton update δU and previous solution U−1

6:

7: t := 0

8: Initial guess for current and previous solution U := 0, U−1 := 0

9:

10: while t < T do

11: Apply initial conditions of time t to U

12: while not converged do

13: Assemble rhs

14: (if necessary): assemble Jacobian A

15: Solve AδU = rhs

16: Update U := U + δU

17: end while

18: Optional:

19: - evaluate functionals (drag, lift, displacement, ...)

20: - output results for current time-step

21: t := t+ ∆t

22: U−1 := U

23: end while

41

Chapter 5

Linear Solvers

The most challenging remaining question is: how do we solve the linear system in every

Newton step? While for a low number of degrees of freedom a direct solver is a suitable

choice, it will eventually become to expensive once the size of the problem increases (compare

figure 5.3). This will become even worse for problems in three dimensions. As already

mentioned before, iterative solvers will come to the rescue.

5.1 Direct Solvers

Although direct solvers are quite costly in terms of computational effort and memory usage,

they also have some very big advantages (if applicable). First of all, the solution is more

or less "exact" in a numerical sense. This may lead to fewer Newton-steps per time-step,

depending on the convergence criterion of the iterative solver in use. More important, direct

solvers are very robust. As long as the matrix is non-singular, direct methods will find the

solution to the linear system independent of the choice of the parameters in the underlying

PDEs.

Most available direct solvers perform a variant of the usual (sparse) LU-decomposition

A = LU with lower- and upper-triangular matrices L and U . Once we have such a fac-

torization, we can easily solve the initial system Ax = b by solving Ly = b and Ux = y by

forward and backward-substitution. The general algorithm of the LU-decomposition (without

optimizations) is given in algorithm 4.

Remark 5.1.1. Since we know that Lii = 1, we can merge the triangular factors L and U

42

Algorithm 4 LU decomposition of n× n matrix A, zero-based indexing.
1: for j = 0, . . . , n− 1 do

2: Ljj = 1

3: for i = 0, . . . , j do

4: Uij = Aij −
∑i−1

k=0 LikUkj

5: end for

6: for i = j, . . . , n− 1 do

7: Lij = (Aij −
∑j−1

k=0 LikUkj)/Ujj

8: end for

9: end for

into one matrix without losing information.

Unfortunately, the LU-decomposition of a sparse matrix is in general dense. This effect, also

called fill-in, depends heavily on the ordering of the rows and columns of A (respectively the

ordering of the underlying dofs). A somewhat extreme example is given in 5.1. There, the

LU-factorization of the original matrix A is dense, whereas for the inverse-ordered matrix Ã,

the LU-factors have the same sparsity pattern as Ã.

A =



∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗


Ã =



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗


(5.1)

5.1.1 Reordering Schemes

The previous section gives an immediate starting point for optimizations of direct solvers:

ordering the degrees of freedom in such a way that the fill-in is minimized. Many reordering

methods have been developed, but unfortunately their analysis is mostly heuristically. An

introduction and comparison of these schemes as well as implementational issues for direct

solvers can be found in [13, 10]. For uncoupled problems, such reordering methods can lead to

significant improvements. However, one has to be careful: while the minimal-degree ordering

is very efficient for the Laplace equation, it falls far behind the Cuthill-McKee algorithm

for FSI problems (see table 5.1 for a comparison). Further we have to be aware that many

43

Laplace Cuthill-McKee Minimal Random

nnz 670,856 236,947 8,400,900

nnz % 3.7 1.3 47.0

fill-in 10.9 3.8 137.1

FSI Cuthill-McKee Minimal Random

nnz 1,360,599 15,067,630 17,177,010

nnz % 7.9 87.5 99.8

fill-in 8.9 99.4 113.3

Table 5.1: Effect of reordering on the LU-decomposition of the FSI 2 system-matrix (top)

using Q(2) − P (1) elements and the Laplace equation on the same geometry using Q(2)

elements. Both tests were done with roughly 4000 degrees of freedom. The rows "nnz" and

"nnz %" denote the number of non-zero entries in the L and U matrices and fill-in corresponds

to the factor
nnz

nnz of original matrix
.

available direct solvers perform their own reordering, therefore the effect of manually applying

such schemes is not immediately obvious.

Remark 5.1.2 (Complexity). Following [13], the application of direct solvers to a 2 − d

problem requires about O(n log n) memory and O(n3/2) operations. For 3 − d problems,

these complexity bounds are O(n2) and O(n4/3). As we can see in figures 5.3 and 5.4, the

UMFPACK solver performs slightly worse for the FSI 2 test case.

5.1.2 ILU

A variant of the LU-decomposition that "avoids" the fill-in, is the so-called incomplete LU

factorization. This method follows the same algorithm as the LU-decomposition given in

algorithm 4. The only difference is, that the computation of the LU-factors is restricted to

entries available in the sparsity pattern of A. Clearly, such an incomplete factorization will

not lead to the exact solution in general, but it can be useful as a preconditioner for iterative

solvers. As we saw in the previous sections, the efficiency of ILU can be improved for simple

problems by choosing a suitable ordering.

Remark 5.1.3 (Variants). Another possibility for the improvement of ILU is the use of larger

44

Figure 5.1: Matrix patterns for the Laplace equation using Cuthill-McKee (top-left), minimal-

degree (top-right), and random ordering of the degrees of freedom.

sparsity patterns. Typically one uses a pattern generated by one of the matrices A2, A3,

These matrices are still sparse but have significantly more entries. These modifications are

denoted by ILU(k) when using the pattern from A1+k, i.e. ILU(0) denotes the "classical"

ILU decomposition.

5.2 Schur-Complement

Closely related to the LU-decomposition is the Schur-complement. Considering a (n+m)×
(n+m) block-system

A B

D C

v
p

 =

f
g

 (5.2)

45

Figure 5.2: Matrix patterns for the FSI equation using Cuthill-McKee (top-left), minimal-

degree (top-right), and random ordering of the degrees of freedom.

1× 108

1× 109

1× 1010

1× 1011

1× 1012

1× 1013

1000 10000 100000 1× 106

F
lo
ps

Dofs

O(n3/2)
Direct solver

Figure 5.3: Required flops for the sparse direct solver UMFPACK.

46

1× 106

1× 107

1× 108

1× 109

1000 10000 100000 1× 106

M
em

or
y

Dofs

O(n log(n))
Direct solver

Figure 5.4: Memory usage for the sparse direct solver UMFPACK.

with a non-singular matrix A, we obtain by Gaussian elimination (multiplying the first row

by −DA−1 and add to the second row)

A B

0 C −DA−1B

v
p

 =

 f

g −DA−1f,

 (5.3)

if S := C − DA−1B ∈ Rm×m is invertible. This is matrix is usually called the Schur-

complement. The modified system can now be solved by computing Sp = g − DA−1f and

Av = f − Bp. Therefore, the solution of the original (n + m) × (n + m) system reduces to

the solution of a m×m and n× n system, which is generally cheaper.

5.3 GMRES

In our application, we will use a preconditioned GMRES method [23] for solving the linear

systems Ax = b, A ∈ Rn×n, x, b ∈ Rn. In the following section, we will have a short look at

the algorithm and some theoretical properties of this method.

Similar to many powerful iterative methods (like CG), the Generalized Minimal Residual

Method (GMRES) is a Krylov subspace method. This means, that in every iteration the

residual is minimized over an increasing subspace. More precisely, for the m-th step, the

computed solution xm is a minimizer of ‖Ax− b‖l2 over the space

47

x0 +Km(A, r0) = x0 + span{r0, Ar0, A
2r0, . . . , A

m−1r0},

leading to the exact solution after at most n steps when using exact arithmetic. The big

advantage of GMRES compared to CG is, that it can also cope with matrices that are not

necessarily symmetric or positive definite.

Algorithm 5 GMRES without preconditioning for solving Ax = b

1: x0 = initial guess, r0 = b−Ax0, γ1 = ‖r0‖, v1 =
r0

γ1
2: for j = 1, 2, . . . do until convergence

3: hi,j = (Avj , vi), for i = 1, . . . , j

4: wj = Avj −
j∑
i=1

hi,jvi

5: hj+1,j = ‖wj‖
6: for i = 1, . . . , j − 1 do

7:

 hi,j

hi+1,j

 =

 ci+1 si+1

−si+1 ci+1

 ·
 hi,j

hi+1,j


8: end for

9: β =
√
h2
j,j + h2

j+1,j

10: sj+1 =
hj+1,j

β

11: cj+1 =
hj,j
β

12: hj,j = β

13: γj+1 = −sj+1γj

14: γj = cj+1γj

15: if |γj+1 > TOL| then vj+1 =
wj

hj+1,j
16: else

17: for i = j, . . . , 1 do

18: yi =
1

hj,j

(
γi −

j∑
k=i+1

hi,kyk

)
19: x = x0 +

j∑
i=1

yivi

20: end for

21: end if

22: end for

As we can see from algorithm 5, the required memory storage and computational effort

increases in every iteration. One way to limit the amount of work is to restart the algorithm

48

after a fixed number of iterations m (denoted by GMRES(m)). Typical values for m are

around 20 − 50. However, by doing so, one loses the theoretical minimization property and

convergence can no longer be guaranteed. Therefore any used preconditioner should keep the

number of required iterations as low as possible such that a restart is not necessary.

Remark 5.3.1 (Flexible GMRES). The algorithm presented above assumes that a possible

preconditioner is constant for all iterations. This prohibits the use of many iterative methods,

like GMRES itself, within the preconditioner. The Flexible GMRES takes such non-linear

preconditioners into account, which comes at the cost of higher memory requirements.

From now on, we refer to the flexible variant when talking about GMRES, unless explicitly

specified.

Remark 5.3.2 (Convergence Criterion). For the GMRES solver we use a relative reduction

of ‖r‖l∞< 10−9 as stopping criterion. This is good enough for the Newton solver to converge

without too many additional iterations, compared to using a direct solver. Convergence of

the Newton solver is achieved once we obtain a residual with ‖r‖l∞< 10−8.

5.4 Multi-Grid Methods

A different kind of solvers are the so called multi-grid methods. The main idea among them

is to solve the linear system Ax = b rising from the FE discretization on a sequence of grids.

Within those, the results from coarser grids are used to enhance the solution on finer grids.

To construct such multi-grid methods, we require a few things.

First of all, we need a hierarchy of grids. One way to obtain them is via the refinement

of a given grid, which will then be used as the coarsest mesh. Since this method is based

on availably geometric information, it is called "Geometric Multi-Grid" (GMG). A different

approach is to construct coarser "grids" using only information provided by the matrix A

itself, which leads to the "Algebraic Multi-Grid" (AMG) methods. The construction of such

algebraic coarsening schemes is a topic on its own, therefore we refer to [24] for an introduction

on this issue.

The advantage of AMG over GMG is its flexibility. For GMG, one requires to create the

necessary data structures to hold the information from all levels of refinement. Depending

on the code, this may be difficult to incorporate later on. AMG methods do not require

these structures, since these methods are able to compute the necessary information itself.

49

However, GMG methods are, if applicable, generally more efficient then AMG.

Once we have a hierarchy from either AMG or GMG, we need to be able to represent the

residual of a linear system stemming from the finer grids in terms of coarser grids and vice-

versa. The responsible operators for this procedure are the restriction and prolongation

operators (matrices)

Rl : RNl 7→ RNl−1 and Pl : RNl−1 7→ RNl (5.4)

where Nl denotes the number of degrees of freedom on level l. For GMG methods, these

operators can be naturally defined using standard FE interpolation.

However, if we just project the residual onto a coarser mesh, we lose a lot of accuracy if the

residual shows a highly oscillating behaviour. The idea is to reduce these high-frequency parts

first. If this is successful, we can assume that the vector can be represented on the coarser

grid without too much loss of information. An illustrative example is given in figure 5.5.

Damping of the oscillations within the residual is achieved via so called smoothers. Mostly,

these are iterative solvers lacking a good overall convergence rate but with the property,

that they reduce the error in the high-frequency parts very fast. Typical examples of such

smoothers include the Jacobi method, (symmetric) Gauss-Seidel, polynomial smoothers like

Chebyshev or MLS, but also methods like ILU can be used within multi-grid methods. Once

we are on the coarsest mesh, we solve the problem exactly using a (sparse) LU-decomposition

described in section 5.1.

A frequently used smoother (in sequential environments) is the Gauss-Seidel method, which

we will also use later on. Its application to the linear system Ax = b can be written as

xk+1 = (D + L)−1(b− Uxk), (5.5)

with the decomposition A = L + U + D into a lower-, upper-triangular and diagonal part

and some initial guess x0.

Combining all the single components introduced above, we can now state a general recursive

multi-grid application in algorithm 6. Here, S(Al, xl, bl) denotes the smoother depending on

the level l matrix Al, an initial guess and output xl and corresponding right-hand-side rl.

Typical values for γ are 1 or 2. The resulting cycles are referred to as V-cycle and W-cycle

due to its characteristic shape as seen in figure 5.6.

50

Figure 5.5: Schematic 1-d Multi-grid illustration of a non-smooth residual (top row) and

smoothed version (bottom row) on the fine grid (left) and coarse grid (right). Most of the

behaviour of the non-smoothed function cannot be represented on the coarser grid.

Level 0

Level 1

Level 2

Figure 5.6: V- and W-cycle. Circles denote an application of the smoother, squares corre-

spond to the solution on the coarsest grid.

Similar to the smoothers listed above, multi-grid methods can solve linear systems on their

own, yet they are mostly used as efficient preconditioners. In our application, we use the

AMG-implementation provided by the Trilinos package ML [12, 15]. Treatment of a geometric

multigrid preconditioner for fluid-structure-interaction can be found in e.g. [22].

51

Algorithm 6 Multi-Grid Method for Solving Ax = b.
1: procedure MGl(xl, bl)

2: if l = 0 then

3: Solve coarsest level Alxl = bl

4: return

5: end if

6: Pre-smoothing: xl = S(Al, xl, bl), rl = bl −Alxl
7: Restriction: rl−1 = Rlrl
8: Coarse-grid approximation: wl−1 = 0

9: for i = 1 to γ do

10: MGl−1(wl−1, rl−1)

11: end for

12: Prolongation: wl = Plwl−1

13: Correction: xl = xl + wl

14: Post-smoothing: xl = S(Al, xl, bl)

15: end procedure

52

Chapter 6

Preconditioners

Iterative solvers like GMRES become most powerful if they are combined with a good pre-

conditioner. The development of such a preconditioner depends very much on the structure

of the underlying problem. However, AMG methods turned out to be efficient "black-box"

preconditioners. Unfortunately, such purely algebraic methods often do not work well for

complicated coupled problems like FSI. Therefore, we can not avoid spending some time into

the development of preconditioners that specifically target FSI problems.

Before we present the final results of this work, we will have a look at some general ideas

that apply to many different preconditioners. Then we combine some of these ideas into a

first simple working preconditioner before we finally arrive at a more sophisticated one.

6.1 Introduction

The principal idea of preconditioners is, that a system of linear equations Ax = b can be

rewritten as P−1Ax = b (left preconditioning) or AP−1u, x = P−1u (right preconditioning),

with an arbitrary but non-singular operator P . However, there is no need to compute P or

P−1 explicitly. It suffices to be able to compute the action of P−1 to a given vector.

Now we can chose P−1 such that the preconditioned systems P−1A or AP−1 are "easier" to

solve, i.e. we would like to have something like P−1A ≈ I. Of course, this can be achieved

by using P−1 = A−1, which leads to a trivially solvable equation. However, the application

of this preconditioner would correspond to solving the original equation, so we do not gain

anything from that. The other extremal case would be to chose P−1 = I. This preconditioner

53

100

1000

10000

100000

0 1 2 3

It
er
at
io
ns

Refinement

GMRES
GMRES(30)

Figure 6.1: Number of iterations using GMRES and restarted GMRES(30) with ILU(0)-

preconditioning.

is of course very cheap to apply, but it does not make the linear system easier to solve. While

these two choices for P−1 have no practical use, they illustrate the problem of a good choice

of the preconditioner:

On the one hand, its application should be as cheap as possible while on the other hand, it

should "simplify" the equations a lot.

Remark 6.1.1. The meaning of "simplify" depends on the actual solver used. For example

a direct solver benefits from a block-diagonal structure and low bandwidth of P−1A (see

section 5.1.1), whereas iterative solvers like GMRES work best if the eigenvalues are clustered

into just a few blocks

6.2 First Examples

First of all, we require a handleable block representation of the Jacobian, since the structure

given in 4.23 is way to detailed to work with. This step already differs depending on how the

resulting preconditioner is supposed to work. Some examples of different block notations of

54

the same matrix are given below (see [14, 20]):

A ≡


M Cms 0

Csm S Csf
Cfm Cfs F

 (6.1)

or

A ≡


S Csf Csp
Cfs F Cfp
Cps Cpf 0

 (6.2)

Note that the first representation differentiates between mesh, solid and fluid (velocity and

pressure) while the latter splits the degrees of freedom into solid, pressure and fluid (including

mesh displacement and velocity).

A first idea shown in [14] considers replacing such a block matrix by an approximation.

Several possibilities for such an approximation of (6.2) are given. All of these neglect some

parts of the coupling terms to obtain the simpler systems (6.3).

Pdiag :=


S 0 0

0 F Cfp
0 Cpf 0

 Psup :=


S 0 0

Cfs F Cfp
Cps Cpf 0

 Psub :=


S Csf Csp
0 F Cfp
0 Cpf 0

 (6.3)

These simplified block systems can be solved a lot easier than the original one. For example,

the application of P−1
sup on a vector r = (rs, rf , rp) is given in algorithm 7.

Algorithm 7 Evaluation of x = P−1
supr

1: Solve

 F Cfp
Cpf 0

 ·
xf
xp

 =

rf
rp


2: Update rs = rs− Csfxf − Cspxp
3: Solve Sxs = rs

This approximate solver can then be used as a preconditioner for the original system (6.2)

inside GMRES. However, it remains to find the solutions or some approximations of the

occurring fluid and solid subsystems.

55

If we naively apply this technique using our ALE-formulation, this preconditioner is less

useful, as we have the variables for the mesh-motion as a part of the fluid block. For problems

like the FSI benchmark given in section 7.1, this is less useful as we have a very small solid

system S (only the thin flag) but a very big fluid system.

Remark 6.2.1. In [14], it is also considered to replace the exact Jacobian A by one of its

approximations, i.e. some kind of quasi-Newton method. However, this requires a lot more

Newton iterations and is hence not considered in this work.

6.3 LU - Approach

A generalization of the above method is based on a block-wise approximate LU-decomposition.

For a first starting point, we have a look at the LU-factorization of a 3x3 matrix with a zero

entry in the top-right corner given in equation (6.4). This corresponds to the same structure

as our FSI-matrix (6.1).

L =


A11 0 0

A21 −A12A21
A11

+A22 0

A31 −A12A31
A11

+A32 −
A23

(
−A12A31

A11
+A32

)
−A12A21

A11
+A22

+A33



U =


1 A12

A11
0

0 1 A11A23
−A12A21+A11A22

0 0 1


(6.4)

Remark 6.3.1 (Computation). The factorization was computed using a computer algebra

system. This program assumes that the entries of the matrix are scalars, therefore we have to

interpret fractions as multiplications with the inverse of the denominator. Further, we have

to multiply the matrices in the correct order, which is not the case in equation (6.4).

While this exact LU-decomposition is too complicated to apply to the FSI block-matrix, we

can simplify it in the same manner as before by dropping one of the off-diagonal blocks.

In [20], the coupling block Csm (corresponding to A21) does not appear, which leads to the

56

factorization

A ≈ P21 :=


M Cms 0

0 S Csf
Cfm Cfs F

 =


M 0 0

0 S 0

Cfm C̃fs X



I M−1Cms 0

0 I S−1Csf
0 0 I

 =: LU (6.5)

with

C̃fs = Cfs − Cfm M−1 Cms (6.6)

and the fluid Schur complement

X = F − C̃fs S−1 Csf = F − (Cfs − Cfm M−1 Cms) S−1 Csf . (6.7)

Now that we have such a decomposition it is easy to compute the action of the inverse. From

linear algebra we know that P−1r = U−1L−1r. Consecutively solving with L and U finally

leads to algorithm 8.

Algorithm 8 Evaluation of (LU)−1r.
1: Solve xm =M−1rm

2: Solve xs = S−1rs

3: Update rf = rf − Cfmxm − Cfsxs
4: Solve xf = X−1rf

5: Update xs = xs − S−1Csfxf
6: Update xm = xm −M−1Cmsxs

Remark 6.3.2 (Connection to Partitioned Methods). Such preconditioners based on a LU-

factorization can be seen as one (approximate) iteration of a partitioned solver. The off-

diagonal coupling blocks correspond to the incorporation of the results from one sub-problem

into the other. Depending on which block we neglect, we get slightly different preconditioners.

In this work, we will have a look at the preconditioners resulting from dropping Csm(A21),

Csf (A23) and Cms(A12). We will denote these preconditioners by the indices 21, 23 and 12

respectively.

57

While this is basically the final preconditioner, we still have to clarify several things. First of

all, we do not necessarily require the exact solution of the interior sub-problems - a "good-

enough" approximation may be enough. Nevertheless, we can use a direct solver for these

sub-problems in order to get a first idea of the capabilities of the preconditioner. It is

reasonable to assume that the required GMRES iterations when using direct solvers are the

lowest we can get from this particular preconditioner. Any approximate sub-solution will

most likely increase the number of iterations. However, as observed in [14], it is possible that

the approximate version performs better than the exact one. (Un)fortunately, we were not

able to observe such a behaviour in any of the tests.

Although using direct solvers is not what we want at the very end due to their huge memory

requirements, we still gain something. Since the computational effort of direct methods

increases in a non-linear fashion, solving three smaller systems is cheaper than computing

the solution of the whole system. Hence we might be able to solve larger problems than

previously before we run out of memory. Further, this preconditioner with direct solvers for

the sub-problems is already significantly faster than a direct solver alone (see figure 6.2).

0.01

0.1

1

10

100

1000

0 1 2 3

C
P
U
-t
im

e

Refinement

Direct
GMRES-12
GMRES-21
GMRES-23
O(dofs)

Figure 6.2: Required time using a direct solver and GMRES with direct sub-solvers.

A small benefit when using direct solvers is that we only have to factorize the sub-problems

once every time the matrix changes. Thus, only the very first GMRES iteration is costly,

while the effort for all subsequent iterations (and probably the next Newton steps as well) is

relatively low (matrix-vector products and forward / backward substitution).

58

If we used iterative solvers for the approximation, every application of the preconditioner has

approximately equal cost (there are still things that can be precomputed, like the coarsening

strategy in AMG methods, but these do not contribute as much as a complete factorization).

A closer look on the approximate solution of the sub-problems follows in section 6.4.

Another point worth a closer look is the computation of C̃fs and the Schur complement X .
Both involve matrix-matrix multiplications and even-worse, require the inverse ofM and S.
If we use a direct solver or AMG method for the Schur complement, we have to compute

it explicitly since we need to access single entries of the matrix. Thus, we would also need

M−1 and S−1 in explicit form! Of course, this is not feasible to do, since the inverse is in

general not sparse any more and the computational effort is way to much. The solution to

this problem is the same as in the previous sections: we have to approximate these matrices

respectively its inverses. One possible way of doing so is to chose a diagonal approximation

like

Ã(i, i) :=
∑
c

|A(i, c)| (6.8)

forM and S, which can then be easily inverted. Another choice proposed in [20] is a block-

diagonal version of the original matrix with low enough block-size (e.g. 3), such that each

diagonal block can still be inverted explicitly. The drawback of this approach is that the

resulting approximation depends on the ordering of the degrees of freedom, which is not the

case for the diagonal row-sum approximation. Also, the diagonal approach seems to perform

better in most of our tests.

It turns out that we can approximate the Schur complement even more by neglecting the

perturbation term C̃fs S−1 Csf completely. As shown in figure 6.3, the average number of

GMRES iterations is almost the same whether we compute the Schur complement or simply

take the fluid matrix F . The computations were done for the FSI 2 benchmark with time-

step-size ∆t = 0.01 using direct solvers for the sub-problems. This approximation saves us

the expensive matrix-matrix multiplication for the Schur complement. However, it is unclear

whether this rough approximation will do well for all kind of different problems.

59

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000 1200

A
vg

.
G
M
R
E
S
It
er
at
io
ns

Timestep

With schur
Without schur

Figure 6.3: Similiar number of GMRES iterations with and without computing the Schur

complement for the FSI 2 benchmark at each time-step.

6.4 Solving the Sub-Problems

In the following sections we will have a look at the approximate solution of the arising

sub-problemsM,S and X . Ideally, we want to obtain a good approximation with low com-

putational effort that can eventually be run in parallel. Unfortunately, it is quite challenging

to find solvers that fit all these requirements.

6.4.1 Mesh

For the solution of the mesh system, we apply a few AMG v-cycles with Gauss-Seidel smooth-

ing. This is motivated by the fact that for small deformations, the Jacobian of the mesh-

equation reduces to
(
∇̂ϕ̂uf , ∇̂ϕ̂uf

)
Ω̂f

. This then corresponds to the usual Laplace equation in

weak form, which is known to be efficiently solved by this method. The approximation above

is quite accurate, as the mesh-deformation takes place close to the interface and vanishes

further away. For large displacements, we may use the AMG cycles as a preconditioner for

another GMRES solver, to improve the convergence.

60

6.4.2 Solid

For the solution of the elasticity problem, we perform a Schur complement approach as

described in section 5.2, by splitting the degrees of freedom into velocity in displacement

parts. This yields the modified solid system

S =

Suu Suv
Svu Svv

xu
xv

 =

ru
rv


⇔ PS :=

Suu Suv
0 XS

xu
xv

 =

 ru

rv − Svuru

 (6.9)

with the Schur complement (approximation) XS = Svv−SvuS−1
uu Suv. Again, we approximate

S−1
uu by a diagonal version, but this time we just extract the diagonal element S̃uu(i, i) :=

Suu(i, i). Now we can apply AMG v-cycles to the "sub-sub-problems" Suu and Svv. To

improve the approximation, we do not use this decomposition PS directly, but employ it as

a preconditioner inside an additional GMRES solver. Note that most of the time we only

need a few iterations to significantly enhance the quality of the approximation. Contrary to

the previous global Schur-complement, we can not neglect the computation of XS without

requiring a lot more iterations.

Remark 6.4.1 (Nested Schur-Complements). Principally, we could perform another decom-

position for the matrices Suu and Svv by separating between interface and interior degrees of

freedom (or even further, differentiating between single coordinates). However, this worsens

the approximation quality and leads to a significant increase in the number of outer GMRES

iterations, even when direct solvers are used for the smallest problems.

6.4.3 Fluid

The most challenging part is the robust solution of the fluid equations. Solving this linear

system requires special care as this matrix is indefinite and includes a zero block. Precisely,

we have to solve the following equation

F :=

FΩΩ FΩ
vp

FΩ
pv C

xv
xp

 =

rv
rp

 .
61

Several methods have been developed for the (linear) Stokes problem, like Vanka-type meth-

ods, Braess-Sarazin smoother and Uzawa-like methods (see e.g. [5, 34, 26]). All of these

methods are closely related to the Schur-complement, and differ mainly in the choice of

arising approximations.

In our application, we will use the same approach as for the solid equations. This provided the

most robust results, but there are still situations where this does not yield a good convergence.

62

Chapter 7

Numerical Results

Last but not least, we present some numerical results for the preconditioned solver. Here,

we mainly focus on the well-known 2-d FSI benchmarks and some variations. These test-

problems are presented in the next section. The implementation uses the deal.II FE-library

[4] and the Trilinos [15, 12] packages therein for the AMG method. For the direct solution

of linear systems the package UMFPACK [8] was used. The basis of the FSI implementation

was provided by Thomas Wick in [32] and was adapted using a hp-element formulation for

more flexibility.

7.1 FSI Benchmarks

Frequently used test cases for FSI solvers are the benchmarks proposed by Turek and Hron

in [27]. These problems consist of an incompressible laminar channel flow around a cylinder,

with an elastic beam (flag) attached to it (see figure 7.1).

Figure 7.1: Meshed computational domain with the fluid domain (blue) and solid domain

(red). Cylinder (grey) is not part of the domain.

Originally, three problems with different choices for the fluid and structure parameters were

defined:

63

Parameter Symbol / Unit FSI 1 FSI 2 FSI 3

Structure density ρs[kg/m
3] 103 104 103

Poisson ratio νs 0.4 0.4 0.4

Lamé coefficient µs[kg/m
2] 0.5× 106 0.5× 106 2.0× 106

Fluid density ρf [kg/m3] 103 103 103

Kinematic viscosity νf [m2/s] 10−3 10−3 10−3

Inflow velocity vin[m/s] 0.2 1.0 2.0

Channel length L := 2.5m

height H := 0.41m

Cylinder center M := (0.2m, 0.2m)

radius r := 0.05m

Flag width w := 0.35m

height h := 0.02m

Measurement point A := (0.6m, 0.2m)

The point A denotes the right-most point of the flag at which the displacements are measured.

The initial condition is given as the inflow profile at the left boundary

v(0, y) := 1.5 vin
4y(H − y)

H2
,

with an additional smoothing of the form

v(t, 0, y) :=

v(0, y)
1

2

(
1− cos(π

2
t)
)

for t < 2

v(0, y) for t ≥ 2

for FSI 2 and 3. This enhances the convergence of the Newton-solver for the first time-steps.

Furthermore we have no-slip conditions vf = 0 on the top and bottom boundary part of the

channel, the circle boundary and on the fluid-solid interface. On the outflow boundary, we

have the do-nothing condition as described in section 3.3.

The flag is not exactly centred in y-direction, which leads to differences in the forces acting

on the flag from above and below. For FSI 3, the inflow velocity is large enough such that the

fluid develops oscillations on its own. Within the FSI 2 benchmark, this behaviour results

from the interaction between fluid and solid, i.e. the small pressure differences caused by the

fluid move the flag, which in turn increases these differences even more. Figure 7.2 shows this

64

displacement of the flag as well as the velocity profile and figure 7.3 gives a more detailed

view of the periodic behaviour.

For FSI 1, (almost) no such oscillations occur, which makes it a lot easier to solve. The

solution of this benchmark converges to a stationary solution.

The most challenging benchmark is FSI 2, since the inflow velocity is quite high but the

structure is still very flexible. This leads to large deformations, which can be problematic

for many solution methods. For FSI 3, the Lamé-coefficient µ is larger, leading to smaller

deformation despite having the highest flow velocity.

Remark 7.1.1 (Time-Step Sizes). Due to its different characteristics, the various FSI bench-

marks require according time-step sizes. For FSI 1, ∆t = 1.0 is good enough, since this

simulation is almost stationary. FSI 2 demands ∆t ≈ 0.01 in order to produce the correct

results, whereas step-sizes for the last benchmark should be around ∆t ≈ 0.001 to cope with

the high velocity and fast oscillations.

Figure 7.2: Velocity profile of FSI 2 at approx. t = 9s.

−0.1
−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08
0.1

0 2 4 6 8 10 12 14

y-
di
sp
la
ce
m
en
t

Time

Figure 7.3: y-displacement of the flag for FSI 2.

7.2 Using Direct Solvers for the Sub-Problems

In our first tests, we solve the sub-problems with a direct solver to get an idea of the behaviour

of the preconditioners.

65

7.2.1 Oscillations

As it can be seen in figure 7.4, the GMRES iterations tend to mimic the oscillatory behaviour

of the flag for the FSI 2 benchmark.

−1

0

1

2

3

4

5

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

G
M
R
E
S
It
er
at
io
ns

Time

avg
Displacement x10

Figure 7.4: GMRES iterations for the FSI 2 benchmark and the 21-preconditioner. The

number of iterations behaves similar as the y-displacement of the flag. Displacement has

been scaled by a factor of 10.

7.2.2 Dependence on Refinement and Time-Step Size

One important property of a preconditioner is its robustness with respect to the mesh-size

h and time-step size ∆t. As we can observe in figure 7.5, the number of GMRES iterations

remains almost constant after spatial refinement, but show a small dependence on ∆t. All

these tests shown were done for the FSI 2 benchmark.

7.2.3 Dependence on Material Parameters

Furthermore, we need to be able to run tests with different kind of material configurations.

Due to its relation to partitioned methods, it is also interesting to investigate the added-mass

effect on the preconditioner. As we can see in figure 7.6, we are not completely independent

of the choice of parameters. Nevertheless the number of required iterations remains quite

small.

66

1

2

3

4

5

6

7

0 1 2 3

G
M
R
E
S
It
er
at
io
ns

Refinement

21, ∆t = 0.001
21, ∆t = 0.01
21, ∆t = 0.1
21, ∆t = 1.0

23, ∆t = 0.001
23, ∆t = 0.01
23, ∆t = 0.1
23, ∆t = 1.0

12, ∆t = 0.001
12, ∆t = 0.01
12, ∆t = 0.1
12, ∆t = 1.0

Figure 7.5: Number of GMRES iterations under h-refinement for different time-step values

using the 21/23/21-preconditioners with direct solvers for sub-problems.

If we use direct solvers for the sub-problems, we are also very robust with respect to a

wide range of material parameters (although a lot of those combinations do not make much

sense). In figure 7.7 the distribution of iterations among all combinations of parameters given

in table 7.1 is shown. The computation was done on the usual FSI mesh with one refinement

and the CN time-stepping scheme. We can observe, that the majority of tests require less

than 10 iterations. Also, the added-mass effect does not seem to have a large impact on the

solver, as indicated by the green bars. All tests requiring more than 20 iterations include the

almost incompressible polybutadiene material.

67

2

3

4

5

6

7

8

0 1 2 3

G
M
R
E
S
It
er
at
io
ns

Refinement

23-FSI 1
23-FSI 2
23-FSI 3

Figure 7.6: Number of GMRES iterations for the different FSI benchmarks using ∆t as

proposed in remark 7.1.1 and the 23-preconditioner. The 21 and 12-preconditioners behave

similar.

Parameter Values

Inflow velocity 1.0

Fluid { air, water, glycerol, mercury }

Solid { polybutadiene, polypropylene, cork, fsi2 }

Time-step size {10−3, 10−2, 10−1, 1.0}

Name Density Poisson Ratio Lamé-µ

Polybutadiene 103 0.499 105

Polypropylene 103 0.4 108

Cork 200 0.25 107

FSI2 104 0.4 0.5 · 106

Table 7.1: Test parameters and materials. The names just indicate a material that fits

roughly for the given parameters.

68

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

N
um

be
r
of

te
st
-c
as
es

GMRES Iterations

Figure 7.7: Distribution of the number of iterations for all kinds of different parameters on

a single refined FSI mesh using direct solvers for the sub-problems. Green bars denote those

configurations where ρf = ρs. The 21-preconditioner performs slightly worse.

69

7.3 Iterative Subsolvers

In this section we finally use a fully iterative solver, replacing the direct solvers for the

sub-sub-systems of the Schur-complement by iterative variants as described previously.

7.3.1 Dependence on Step-Size and Refinement

As we can see in figure 7.8, the time-step size ∆t has a larger impact for the fully iterative

solver. Nevertheless, the number of iterations is still within reasonable bounds.

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3

G
M
R
E
S
It
er
at
io
ns

Refinement

21, ∆t = 0.001
21, ∆t = 0.01
21, ∆t = 0.1
21, ∆t = 1.0

23, ∆t = 0.001
23, ∆t = 0.01
23, ∆t = 0.1
23, ∆t = 1.0

12, ∆t = 0.001
12, ∆t = 0.01
12, ∆t = 0.1
12, ∆t = 1.0

Figure 7.8: Number of GMRES iterations under h-refinement for different time-step values

using the 21/23/21-preconditioners with iterative solvers for the sub-problems.

7.3.2 Material Parameters

In the next test, we vary the structural density of the FSI 2 benchmark by using ρs ∈
{103, . . . , 108}. Figure 7.9 shows that we require more iterations for ρs ≈ ρf , indicating that

the added-mass effect has some influence on the preconditioner.

Comparing figure 7.7 and figure 7.10, we clearly see that we require more GMRES iterations

than with direct solvers. In particular there are more configurations that reach the maximum

number of iterations (= 30) at some point without convergence. Using iterative methods for

70

2

3

4

5

6

7

8

9

1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08

G
M
R
E
S
It
er
at
io
ns

ρs

Iterative
Subdirect

Figure 7.9: Iterations depending on the solid density ρs (ρf = 1000).

the solution of the sub/sub-problems, the GMRES solver faces additional difficulties for

several configurations, in particular those with ∆t = 1.0.

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35

N
um

be
r
of

te
st
-c
as
es

GMRES Iterations

Figure 7.10: Distribution for the completely iterative solution using the 12-preconditioner.

71

Chapter 8

Conclusion

8.1 Summary and Comparisons

In this work we adapted the idea presented in [20] to our FSI formulation and discretization.

Contrary to [20], we splitted the second order solid equations into a system of first order

equations and discretize it using the One-Step-θ-scheme instead of the Newmark scheme. Due

to the different interface-coupling strategies used, we do not immediately arrive at a block-

structure leading to a usable block-LU factorization. This issue is overcome by neglecting one

of the coupling terms, similar to the idea presented in [14], yielding three slightly different

preconditioners. From a variety of tests done, the 12-preconditioner seems to be the most

robust one. This is particularly interesting, as this one is also the cheapest one to apply.

Furthermore, we neglect the computation of the global Schur-complement completely. This

splits the coupled system into its natural sub-problems, which can then be solved by avail-

able techniques similar to the partitioned approach. However, it is unclear whether this

approximation works for all kind of problem configurations.

The solution of the fluid and solid sub-problems remain challenging. In particular, the robust-

ness of the preconditioner depends very much on the robustness of the solvers for the fluid

and structural sub-problems. This makes direct solvers for the sub/sub-problems a viable

option. Nevertheless, we were able to reduce the computational time significantly compared

to a plain direct solver. The computations were done on a 8 GB laptop, which was just about

enough for 3-times refinement (≈ 250.000 dofs) when using a direct solver.

72

0.1

1

10

100

1000

0 1 2 3 4

C
P
U
-t
im

e

Refinement

Direct
Sub-direct
Iterative
O(dofs)

Figure 8.1: Comparison of the computational time for various solution strategies. "Direct"

refers to the use of a direct solver for the whole matrix, "sub-direct" denotes the solution of

the sub-problems with direct methods, whereas "iterative" solves all these systems iteratively.

8.2 Future Work

There are several aspects that can be improved. The most important one is to incorpo-

rate more efficient iterative solvers for the fluid and solid sub-problems, that work robustly

with respect to different material parameters, h and ∆t. Several ideas are presented in [19,

26].Furthermore, one could adapt the preconditioner for different mesh-motion techniques

like a biharmonic version. This should be straight-forward, but one will most likely have to

replace the AMG mesh-solver by a different method.

Currently, only global refinements are done in our application. It would be interesting to see

the effect of local refinements on the preconditioner.

Another interesting point would be to have an adaptive control of the convergence criteria for

the nested iterative sub-solvers, that attempts to minimize the computational time. During

testing, it was always some kind of guessing game to find a balance between speed and

accuracy.

A very important issue is the parallelization on distributed memory machines. The limiting

factor here is probably the scalability of the matrix-matrix multiplication required for the

Schur-complements. One may overcome this by using local approximations of the Schur-

complement or different solution techniques.

73

Bibliography

[1] Robert A. Adams. Sobolev spaces. Pure and applied mathematics ; 65. New York, NY

[u.a.]: Acad. Press, 1975.

[2] Stuart S. Antman. Nonlinear problems of elasticity. Applied mathematical sciences ;

107. New York, NY [u.a.]: Springer, 1995.

[3] Wolfgang Bangerth and Oliver Kayser-Herold. “Data Structures and Requirements for

hp Finite Element Software”. In: ACM Trans. Math. Softw. 36.1 (2009), pp. 4/1–4/31.

[4] W. Bangerth et al. “The deal.II Library, Version 8.4”. In: Journal of Numerical Math-

ematics 24 (2016).

[5] D. Braess and R. Sarazin. “An Efficient Smoother for the Stokes Problem”. In: Appl.

Numer. Math. 23.1 (1997-02), pp. 3–19.

[6] Hans-Joachim Bungartz, MiriamMehl, and Michael Schäfer. Fluid Structure Interaction

II: Modelling, Simulation, Optimization. Vol. 73. Springer Science & Business Media,

2010.

[7] P. Causin, J.-F. Gerbeau, and F. Nobile. “Added-mass effect in the design of partitioned

algorithms for fluid-structure problems”. In: Comput. Methods Appl. Mech. Engrg. 194

(2005), pp. 4506–4527.

[8] Timothy A. Davis. “Algorithm 832: UMFPACK V4.3—an Unsymmetric-pattern Mul-

tifrontal Method”. In: ACM Trans. Math. Softw. 30.2 (2004-06), pp. 196–199.

[9] J. Donea, S. Giuliani, and J.P. Halleux. “An arbitrary Lagrangian-Eulerian finite ele-

ment method for transient dynamic fluid-structure interactions”. In: Comput. Methods

Appl. Mech. Engrg. 33 (1982), pp. 689–723.

[10] Iain S Duff, Albert Maurice Erisman, and John Ker Reid. Direct methods for sparse

matrices. Clarendon press Oxford, 1986.

74

[11] Miguel Ángel Fernández and Marwan Moubachir. “A Newton method using exact jaco-

bians for solving fluid–structure coupling”. In: Computers & Structures 83.2–3 (2005).

Advances in Analysis of Fluid Structure InteractionAdvances in Analysis of Fluid Struc-

ture Interaction, pp. 127–142.

[12] M.W. Gee et al. ML 5.0 Smoothed Aggregation User’s Guide. Tech. rep. SAND2006-

2649. Sandia National Laboratories, 2006.

[13] Alan George and Joseph Liu. Computer Solution of Sparse Linear Systems. 1994.

[14] Matthias Heil. “An efficient solver for the fully coupled solution of large-displacement

fluid-structure interaction problems”. In: Computer Methods in Applied Mechanics and

Engineering 193.1?2 (2004), pp. 1–23.

[15] Michael Heroux et al. An Overview of Trilinos. Tech. rep. SAND2003-2927. Sandia

National Laboratories, 2003.

[16] Gerhard A. Holzapfel. Nonlinear solid mechanics; a continuum approach for engineer-

ing. Reprint. Chichester [u.a.]: Wiley, 2010.

[17] Stefan Kindermann. “Lecture Notes: An introduction to mathematical methods for

continuum-mechanics”. 2014.

[18] U. Langer and H. Yang. “Numerical Simulation of Fluid-Structure Interaction Problems

with Hyperelastic Models: A Monolithic Approach”. In: Mathematics and Computers

in Simulation (2016). accepted for publication.

[19] U. Langer and H. Yang. “Numerical Simulation of Fluid-Structure Interaction Problems

with Hyperelastic Models I: A Partitioned Approach”. In: Journal of Computational and

Applied Mathematics 276 (2015), pp. 47–61.

[20] U. Langer and H. Yang. “Robust and efficient monolithic fluid-structure-interaction

solvers”. In: International Journal for Numerical Methods in Engineering 108.4 (2016),

pp. 303–325.

[21] J. M. Ortega. “The Newton-Kantorovich Theorem”. In: The American Mathematical

Monthly 75.6 (1968), pp. 658–660.

[22] Thomas Richter. “A monolithic geometric multigrid solver for fluid-structure interac-

tions in ALE formulation”. In: International Journal for Numerical Methods in Engi-

neering 104.5 (2015). nme.4943, pp. 372–390.

[23] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd. Philadelphia, PA, USA:

Society for Industrial and Applied Mathematics, 2003.

75

[24] K. Stüben. Algebraic Multigrid (AMG): An Introduction with Applications. GMD-

Report. GMD-Forschungszentrum Informationstechnik, 1999.

[25] Roger Temam. Navier-Stokes equations; theory and numerical analysis. Reprint. with

corr. AMS Chelsea publishing. Providence, RI: American Math. Soc., 2001.

[26] Stefan Turek. “Efficient solvers for incompressible flow problems: An algorithmic ap-

proach”. In: Lecture Notes in Computational Science and Engineering. 1999.

[27] Stefan Turek and Jaroslav Hron. “Proposal for Numerical Benchmarking of Fluid-

Structure Interaction between an Elastic Object and Laminar Incompressible Flow”. In:

Fluid-Structure Interaction: Modelling, Simulation, Optimisation. Ed. by Hans-Joachim

Bungartz and Michael Schäfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

pp. 371–385.

[28] Hongwu Wang and Ted Belytschko. “Fluid–structure interaction by the discontinuous-

Galerkin method for large deformations”. In: International Journal for Numerical Meth-

ods in Engineering 77.1 (2009), pp. 30–49.

[29] Jörg Weickert and Jorg Weickert. Navier-Stokes equations as a differential-algebraic

system. 1996.

[30] Thomas Wick. “Fluid-structure interactions using different mesh motion techniques”.

In: Computers & Structures 89.13–14 (2011), pp. 1456–1467.

[31] Thomas Wick. “Lecture Notes: Modeling, Discretization, Optimization, and Simulation

of Fluid-Structure Interaction”. 2015-09-29.

[32] Thomas Wick. “Solving Monolithic Fluid-Structure Interaction Problems in Arbitrary

Lagrangian Eulerian Coordinates with the deal.II Library”. In: Archive of Numerical

Software 1.1 (2013), pp. 1–19.

[33] W.L. Wood. Practical Time-stepping Schemes. Clarendon Press, 1990.

[34] Walter Zulehner. “A Class of Smoothers for Saddle Point Problems”. In: Computing

65.3 (2000), pp. 227–246.

76

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw.

die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die

vorliegende Diplomarbeit ist mit dem elektronisch übermittelten Textdokument identisch.

Linz, November 2016

————————————————

Daniel Jodlbauer

	Introduction
	Prerequisites
	Notation
	Function-Spaces
	Continuum Mechanics
	Transformations

	Modelling Objects
	Fluids
	Elastic Materials

	FSI Equations
	Arbitrary-Lagrangian-Eulerian (ALE) Coordinates
	ALE Description of the Fluid Equations
	Boundary and Initial Conditions
	Interface Conditions
	Summary

	Discretization
	Weak Formulation
	Fluid
	Solid
	Mesh-Motion
	Interface
	FSI

	Discretization in Time
	Linearization
	Spatial Discretization
	Discrete Boundary Conditions
	Interface Conditions
	Comparison With Other Formulations

	Assembling Procedure
	Summary

	Linear Solvers
	Direct Solvers
	Reordering Schemes
	ILU

	Schur-Complement
	GMRES
	Multi-Grid Methods

	Preconditioners
	Introduction
	First Examples
	LU - Approach
	Solving the Sub-Problems
	Mesh
	Solid
	Fluid

	Numerical Results
	FSI Benchmarks
	Using Direct Solvers for the Sub-Problems
	Oscillations
	Dependence on Refinement and Time-Step Size
	Dependence on Material Parameters

	Iterative Subsolvers
	Dependence on Step-Size and Refinement
	Material Parameters

	Conclusion
	Summary and Comparisons
	Future Work

