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Abstract The paper deals with a new sharp condition ensuring the Aubin property
of solution maps to a class of parameterized variational systems. This class encom-
passes various types of parameterized variational inequalities/generalized equations
with fairly general constraint sets. The new condition requires computation of di-
rectional limiting coderivatives of the normal-cone mapping for the so-called critical
directions. The respective formulas have the form of a second-order chain rule and
extend the available calculus of directional limiting objects. The suggested procedure
is illustrated by means of examples.
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1 Introduction

In [14], the authors have developed a new sufficient condition ensuring the Aubin
property of solution maps to general implicitly defined set-valued maps. This prop-
erty itself has been introduced in [2] and became gradually one of the most important
stability notions for multifunctions. It is widely used in post-optimal analysis, as
a useful qualification condition in generalized differentiation and it is closely con-
nected with several important classical results like, e.g., the theorems of Lyusternik
and Graves [9, pp. 275-276].
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To verify the Aubin property of practically important mappings, various primal
and dual methods have been developed, cf. e.g. [24, Chapter 9], [17, Chapter 4],
[9, Chapters 3, 4], [8] and the references therein. A particularly efficient tool is the
so-called Mordukhovich criterion which characterizes the Aubin property of a set-
valued mapping via the local boundedness of the respective limiting coderivative.
These conditions work typically well, e.g., in case of parameterized constraint or
variational systems whenever one has to do with the ample parameterizations [7,
Definition 1.1]. This is notably the case of a canonically perturbed Karush-Kuhn-
Tucker (KKT) system which has been thoroughly investigated in [3] and [6]. The
parameterizations arising in post-optimal analysis or in problems with equilibrium
constraints are, however, typically non-ample and then the standard characterizations
for the Aubin property of the respective solution maps became only sufficient con-
ditions which may be very far from necessity. This drawback was the main motiva-
tion for the development in [14] where, among other things, substantially weaker yet
sufficient conditions have been derived for the Aubin property of implicitly defined
set-valued maps.

The aim of this paper is to work out a weak (non-restrictive) sufficient condition
from [14] to obtain a workable tool for ensuring the Aubin property of solution maps
to a broad class of parameterized variational systems. This class includes, in partic-
ular, multiplier-free optimality conditions for optimization problems with parameter-
dependent objectives or stationarity conditions of a Nash game with parameters en-
tering the objectives of the single players. Further, our condition is applicable to KKT
systems related to nonlinear programs, where the parameters arise both in the objec-
tive as well as in the constraints. An efficient usage of the new condition requires
our ability to compute graphical derivatives and directional limiting coderivatives of
normal-cone mappings to the considered constraint sets. Unfortunately, the calculus
of directional limiting objects is not yet sufficiently developed and also in computa-
tion of graphical derivatives of normal-cone mappings one often meets various too
restrictive assumptions. In this paper we will compute graphical derivatives and di-
rectional limiting coderivatives of normal cone mappings associated with the sets Γ

of the form
Γ = g−1(D) (1)

under reasonable assumptions imposed on the mapping g and the set D. To this aim
we will significantly improve the results from [19] and [20] concerning the graph-
ical derivative and from [20, Theorem 4.1] concerning the regular coderivative of
the normal-cone mapping associated with (1). The resulting new second-order chain
rules are valid under substantially relaxed reducibility and nondegeneracy assump-
tions compared with the preceding results of this type and are thus important for their
own sake, not only in the context of this paper. Concretely, the new formula for the
graphical derivative could be used, e.g., in testing the so-called isolated calmness of
solution maps to variational systems ([16], [19], [20]).

The main result (Theorem 5) represents a variant of [14, Theorem 4.4] tailored to
the mentioned broad class of parameterized variational systems. As documented by
examples, it substantially improves the efficiency of the currently available sufficient
conditions for the Aubin property in the case when the considered parametrization is
not ample.
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The plan of the paper is as follows. In Section 2 we summarize the needed notions
from variational analysis, state the main problem and recall [14, Theorem 4.4] which
is the basis for our development. Section 3 is devoted to the new results concern-
ing the mentioned graphical derivatives and directional limiting coderivatives of the
normal-cone mapping related to Γ . In Section 4 we formulate the resulting new suffi-
cient condition for the Aubin property of the considered solution maps and illustrate
its application by means of an example, where Γ is given by nonlinear programming
(NLP) constraints. Section 5 contains some amendments which may be useful for
genuine conic constraints. In particular, we consider the case when D amounts to the
Carthesian product of Lorentz cones.

Our notation is standard. For a set A, linA denotes the lineality space of A, i.e.,
the largest linear space contained in A, spA is the linear hull of A and PA(·) stands
for the mapping of metric projection onto A. For a set-valued map F , gphF denotes
its graph and rgeF denotes its range, i.e., rgeF := {y|y ∈ F(x) for x ∈ domF}. For
a cone K,K◦ is the (negative) polar cone, B,S are the unit ball and the unit sphere,
respectively, and for a vector a, [a] stands for the linear subspace generated by a.
Given a vector-valued mapping f : Rn→ Rm, differentiable at x̄, the Jacobian of f at
x̄, denoted by ∇ f (x̄), amounts to the m× n matrix, whose rows are the gradients of
the components fi, i = 1,2, . . . ,m. f ′(x̄;h) stands for the directional derivative of f at

x̄ in direction h. Finally, A→ means the convergence within a set A.

2 Problem formulation and preliminaries

In the first part of this section we introduce some notions from variational analysis
which will be extensively used throughout the whole paper. Consider first a general
closed-graph set-valued map F : Rn ⇒Rz and its inverse F−1 : Rz ⇒Rn and assume
that (ū, v̄) ∈ gphF .

Definition 1 We say that F has the Aubin property around (ū, v̄), provided there are
neighborhoods U of ū, V of v̄ and a constant κ > 0 such that

F(u1)∩V ⊂ F(u2)+κ‖u1−u2‖B for all u1,u2 ∈U.

F is said to be calm at (ū, v̄), provided there is a neighborhood V of v̄ and a constant
κ > 0 such that

F(u)∩V ⊂ F(ū)+κ‖u− ū‖B for all u ∈ Rn.

It is clear that the calmness is substantially weaker (less restrictive) than the Aubin
property. Furthermore, it is known that F is calm at (ū, v̄) if and only if F−1 is met-
rically subregular at (ū, v̄), i.e., there is a neighborhood V of v̄ and a constant κ > 0
such that

d(v,F(ū))≤ κd(ū,F−1(v)) for all v ∈V,
cf. [9, Exercise 3H.4].

To conduct a thorough analysis of the above stability notions one typically makes
use of some basic notions of generalized differentiation, whose definitions are pre-
sented below.
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Definition 2 Let A be a closed set in Rn and x̄ ∈ A.

(i)

TA(x̄) := Limsup
t↘0

A− x̄
t

is the tangent (contingent, Bouligand) cone to A at x̄ and

N̂A(x̄) := (TA(x̄))◦

is the regular (Fréchet) normal cone to A at x̄.
(ii)

NA(x̄) := Limsup
A

x→x̄

N̂A(x)

is the limiting (Mordukhovich) normal cone to A at x̄ and, given a direction d ∈Rn,

NA(x̄;d) := Limsup
t↘0

d′→d

N̂A(x̄+ td′)

is the directional limiting normal cone to A at x̄ in direction d .

The symbol “Limsup” stands for the outer (upper) set limit in the sense of Painlevé-
Kuratowski, cf. [24, Chapter 4B]. If A is convex, then both the regular and the limiting
normal cones coincide with the classical normal cone in the sense of convex analysis.
Therefore we will use in this case the notation NA.

By the definition, the limiting normal cone coincides with the directional limiting
normal cone in direction 0, i.e., NA(x̄) = NA(x̄;0), and NA(x̄;d) = /0 whenever d 6∈
TA(x̄).

The above listed cones enable us to describe the local behavior of set-valued
maps via various generalized derivatives. Consider again the set-valued map F and
the point (ū, v̄) ∈ gphF .

Definition 3 (i) The set-valued map DF(ū, v̄) : Rn ⇒ Rz, defined by

DF(ū, v̄)(d) := {h ∈ Rz|(d,h) ∈ TgphF(ū, v̄)},d ∈ Rn

is called the graphical derivative of F at (ū, v̄);
(ii) The set-valued map D̂∗F(ū, v̄) : Rz ⇒ Rn, defined by

D̂∗F(ū, v̄)(v∗) := {u∗ ∈ Rn|(u∗,−v∗) ∈ N̂gphF(ū, v̄)},v∗ ∈ Rz

is called the regular (Fréchet) coderivative of F at (ū, v̄).
(iii) The set-valued map D∗F(ū, v̄) : Rz ⇒ Rn, defined by

D∗F(ū, v̄)(v∗) := {u∗ ∈ Rn|(u∗,−v∗) ∈ NgphF(ū, v̄)},v∗ ∈ Rz

is called the limiting (Mordukhovich) coderivative of F at (ū, v̄).



On the Aubin property of a class of parameterized variational systems 5

(iv) Finally, given a pair of directions (d,h) ∈ Rn×Rz, the set-valued map
D∗F((ū, v̄);(d,h)) : Rn ⇒ Rz, defined by

D∗F((ū, v̄);(d,h))(v∗) := {u∗ ∈ Rn|(u∗,−v∗) ∈ NgphF((ū, v̄);(d,h))},v∗ ∈ Rz

(2)
is called the directional limiting coderivative of F at (ū, v̄) in direction (d,h).

For the properties of the cones TA(x̄), N̂A(x̄) and NA(x̄) from Definition 2 and
generalized derivatives (i), (ii) and (iii) from Definition 3 we refer the interested
reader to the monographs [24] and [17]. The directional limiting normal cone and
coderivative were introduced by the first author in [13] and various properties of
these objects can be found in [14] and the references therein. Note that D∗F((ū, v̄)) =
D∗F((ū, v̄);(0,0)) and that domD∗F((ū, v̄);(d,h)) = /0 whenever h 6∈ DF(ū, v̄)(d).

Let now M : Rl ×Rn ⇒ Rm be a given set-valued map with a closed graph and
S : Rl ⇒ Rn be the associated implicit set-valued map given by

S(p) := {x ∈ Rm|0 ∈M(p,x)}. (3)

In what follows, p will be called the parameter and x will be the decision variable.
Given a reference pair (p̄, x̄) ∈ gphS, one has the following sufficient condition for
the Aubin property of S around (p̄, x̄).

Theorem 1 ([14, Theorem 4.4, Corollary 4.5]). Assume that

(i)
{u|0 ∈ DM(p̄, x̄,0)(q,u)} 6= /0 for all q ∈ Rl ; (4)

(ii) M is metrically subregular at (p̄, x̄,0);
(iii) For every nonzero (q,u) ∈ Rl ×Rn verifying 0 ∈ DM(p̄, x̄,0)(q,u) one has the

implication
(q∗,0) ∈ D∗M((p̄, x̄,0);(q,u,0))(v∗)⇒ q∗ = 0. (5)

Then S has the Aubin property around (p̄, x̄) and for any q ∈ Rl

DS(p̄, x̄)(q) = {u|0 ∈ DM(p̄, x̄,0)(q,u)}. (6)

The above assertions remain true provided assumptions (ii), (iii) are replaced by

(iv) For every nonzero (q,u) ∈ Rl ×Rn verifying 0 ∈ DM(p̄, x̄,0)(q,u) one has the
implication

(q∗,0) ∈ D∗M((p̄, x̄,0);(q,u,0))(v∗)⇒
{

q∗ = 0
v∗ = 0. (7)

In this paper we will consider the case of variational systems where

M(p,x) := H(p,x)+ N̂Γ (x), Γ = g−1(D). (8)

In (8), H : Rl×Rn→ Rn is continuously differentiable, g : Rn→ Rs is twice contin-
uously differentiable and D⊂ Rs is a closed set.
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Given an optimization problem

minimize f (p,x)
subject to

x ∈ Γ

with a twice continuously differentiable objective, then the corresponding necessary
optimality conditions can be written down in the form (8) with H(p,x) = ∇x f (p,x).
If the constraint set is defined by a parameter-dependent constraint system

d(p,x) ∈ K

with a twice continuously differentiable function d : Rl ×Rn → Ra then, under a
suitable constraint qualification, the respective KKT system attains the form (8) with

H(p,x) =
[

f (p,x)+ 〈λ ,d(p,x)〉
−d(p,x)

]
and Γ = Rn×K◦,

where λ ∈ Rs is the Lagrange multiplier.
As pointed out in [14] and in the Introduction, Theorem 1 improves the currently

available conditions whenever ∇pH(p̄, x̄) is not surjective, i.e., the considered param-
eterization is not ample at (p̄, x̄).

By the continuous differentiability of H one has that for M given in (8) and any
(q,u) ∈ Rl×Rn

DM(p̄, x̄,0)(q,u) =

∇pH(p̄, x̄)q+∇xH(p̄, x̄)u+DN̂Γ (x̄,−H(p̄, x̄))(u,−∇pH(p̄, x̄)q−∇xH(p̄, x̄)u),
(9)

cf. [24, Exercise 10.43]. Likewise, for any v∗ ∈ Rn,

D∗M((p̄, x̄,0);(q,u,0))(v∗) =[
∇pH(p̄, x̄)T v∗

∇pH(p̄, x̄)T v∗+D∗N̂Γ ((x̄,−H(p̄, x̄));(u,−∇pH(p̄, x̄)q−∇xH(p̄, x̄)u))(v∗)

]
,

(10)
cf. [14, Theorem 2.10]. The application of Theorem 1 requires thus the computation
of DN̂Γ (x̄,−H(p̄, x̄))(·, ·) and D∗N̂Γ ((x̄,−H(p̄, x̄));(·, ·))(v∗) for directions generated
by the vectors q,u. This problem will be tackled in the next section.

3 Graphical derivatives and directional limiting coderivatives of N̂Γ

Throughout this section we will impose a weakened version of the reducibility and
the nondegeneracy conditions introduced in [4]. Concretely, in what follows we will
assume that

(A1): There exists a closed set Θ ⊂ Rd along with a twice continuously differentiable
mapping h : Rs → Rd and a neighborhood V of g(x̄) such that ∇h(g(x̄)) is sur-
jective and

D∩V = {z ∈ V |h(z) ∈Θ};
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(A2):

rge∇g(x̄)+ker∇h(g(x̄)) = Rs. (11)

Note that conditions (A1), (A2) amount to the reducibility of D to Θ at g(x̄) and the
nondegeneracy of x̄ with respect to Γ and the mapping h in the sense of [4] provided
the sets D,Θ are convex. The assumptions (A1), (A2) have the following important
impact on the representation of Γ and N̂Γ near x̄.

Proposition 1 Let b := h◦g. Then there exists neighborhoods U of x̄ and W ⊃ g(U )
of g(x̄) such that

Γ ∩U = {x ∈U |b(x) ∈Θ}, (12)

∇b(x) is surjective for every x ∈U ,∇h(y) is surjective for every y ∈W and

N̂D(y) = ∇h(y)T N̂Θ (h(y)),y ∈W , (13)

N̂Γ (x) = ∇b(x)T N̂Θ (b(x)) = ∇g(x)T N̂D(g(x)),x ∈U . (14)

Proof First we show that (11) is equivalent with the surjectivity of ∇b(x̄) =
∇h(g(x̄))∇g(x̄). Indeed, ∇b(x̄) is surjective if and only if

{0}= ker∇b(x̄)T = ker(∇g(x̄)T
∇h(g(x̄))T ),

which, by the assumed surjectivity of ∇h(g(x̄)), in turn holds if and only if

{0} = ker∇g(x̄)T ∩ rge∇h(g(x̄))T =
(
(ker∇g(x̄)T )⊥+(rge∇h(g(x̄))T )⊥

)⊥
= (rge∇g(x̄)+ker∇h(g(x̄)))⊥

and this is clearly equivalent with (11). Hence ∇b(x̄) is surjective and we can find
open neighborhoods W ⊂ V and U ⊂ g−1(W ) of x̄ such that ∇b(x) is surjective for
all x ∈ U and ∇h(y) is surjective for all y ∈ W , where V is given by assumption
(A1). Hence for every x ∈ U we have g(x) ∈ V and (12) follows from (A1). The
descriptions of the regular normal cones (13), (14) result from [24, Exercise 6.7]. ut

Remark 1 Note that, given a vector x∗ ∈ N̂Γ (x) with x ∈ Γ ∩U , there is a unique
λ ∈ ND(g(x)) satisfying

x∗ = ∇g(x)T
λ . (15)

Indeed, from (14) it follows that there is a unique µ ∈ N̂Θ (b(x)) such that x∗ =
∇b(x)T µ thanks to the surjectivity of ∇b(x). Since λ = ∇h(g(x))T µ , we are done.

The rest of this section is divided to two subsections devoted to the graphical
derivatives and the directional limiting coderivatives of N̂Γ , respectively.
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3.1 Graphical derivatives of N̂Γ

The computation of graphical derivatives of N̂Γ has been considered in numerous
works, see [24] and the references therein. Recently, in [19] and [20] the authors
have derived two different formulas for DN̂Γ by using a strengthened variant of (A1),
(A2) together with some additional assumptions. They include either the convexity
of Γ or a special projection derivation condition (PDC) defined next.

Definition 4 A convex set Ξ satisfies the projection derivation condition (PDC) at
the point z̄ ∈ Ξ if we have

P′Ξ (z̄+b;h) = PK(z̄,b)(h) for all b ∈ NΞ (z̄) and h ∈ Rs,

where K(z̄,b) := TΞ (z̄)∩{b}⊥.

In our case the PDC condition is automatically fulfilled provided D is convex
polyhedral. If D is a non-polyhedral convex cone, then PDC is always fulfilled at the
vertex ([20, Proposition 4.4]) but, typically, not at all other points. In [20] it is further
shown that PDC is implied by the extended polyhedricity and one finds there also
an illustrative example of a non-polyhedral set, satisfying PDC at a particular point.
Throughout Sections 3.1. and 3.2 it is enough to assume, however, the weakened
reducibility and nondegeneracy assumptions (A1), (A2) and we obtain new workable
formulas without any additional requirements.

Theorem 2 Let assumptions (A1), (A2) be fulfilled, x̄∗ ∈ N̂Γ (x̄) and λ̄ be the (unique)
multiplier satisfying

λ̄ ∈ N̂D(g(x̄)), ∇g(x̄)T
λ̄ = x̄∗. (16)

Then

Tgph N̂Γ
(x̄, x̄∗) =

{(u,u∗)|∃ξ : (∇g(x̄)u,ξ ) ∈ Tgph N̂D
(g(x̄), λ̄ ),u∗ = ∇g(x̄)T

ξ +∇
2〈λ̄ ,g〉(x̄)u}.

(17)

Proof Let (u,u∗)∈Tgph N̂Γ
(x̄, x̄∗) and consider sequences tk↘ 0 and (uk,u∗k)→ (u,u∗)

with x∗k := x̄∗ + tku∗k ∈ N̂Γ (xk), where xk := x̄ + tkuk. We can assume that xk ∈ U
and that ∇b(xk) is surjective for all k, where b and U are given by Proposition 1.
Hence we can find multipliers µk ∈ N̂Θ (b(xk)) such that x∗k = ∇b(xk)

T µk. The se-
quence µk is bounded and, after passing to some subsequence, converges to some
µ̄ ∈ N̂Θ (h(g(x̄))) with x̄∗ = ∇b(x̄)T µ̄ . Further, by (13) we have λ̄ = ∇h(g(x̄))T µ for
some µ ∈ N̂Θ (h(g(x̄))) implying x̄∗ = ∇b(x̄)T µ and µ̄ = µ follows from the surjec-
tivity of ∇b(x̄).
Since

tku∗k = x∗k− x̄∗ = ∇b(xk)
T

µk−∇b(x̄)T
µ̄ = tk∇

2〈µ̄,b〉(x̄)uk +∇b(x̄)T (µk− µ̄)+o(tk),

we obtain that

∇b(x̄)T µk− µ̄

tk
= u∗−∇

2〈µ̄,b〉(x̄)u+o(tk)/tk.
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By the surjectivity of ∇b(x̄) we obtain that the sequence ηk :=(µk− µ̄)/tk is bounded
and, after passing to some subsequence, ηk converges to some η fulfilling

∇b(x̄)T
η = u∗−∇

2〈µ̄,b〉(x̄)u.

Denoting λ k = ∇h(g(xk))µ
k we obtain λ k ∈ N̂D(g(xk)) by (13) and

λ
k− λ̄ =

∇h(g(xk))
T

µk−∇h(g(x̄))T
µ̄ = ∇

2〈µ̄,h〉(g(x̄))∇g(x̄)(tkuk)+∇h(g(x̄))T (µk− µ̄)+o(tk),

implying that (λ k− λ̄ )/tk converges to

ξ := ∇
2〈µ̄,h〉(g(x̄))∇g(x̄)u+∇h(g(x̄))T

η . (18)

We conclude (∇g(x̄)u,ξ ) ∈ Tgph N̂D
(g(x̄), λ̄ ) and

u∗ = ∇b(x̄)T
η +∇

2〈µ̄,b〉(x̄)u
= ∇g(x̄)T

∇h(g(x̄))T
η +∇g(x̄)T

∇
2〈µ̄,h〉(g(x̄))∇g(x̄)u+∇

2〈∇h(g(x̄)T
µ̄,g〉(x̄)u

= ∇g(x̄)T
ξ +∇

2〈λ̄ ,g〉(x̄)u

showing

(u,u∗) ∈
T := {(u,u∗) |∃ξ : (∇g(x̄)u,ξ ) ∈ Tgph N̂D

(g(x̄),λ ), u∗ = ∇g(x̄)T
ξ +∇

2〈λ̄ ,g〉(x̄)u}

Thus Tgph N̂Γ
(x̄, x̄∗)⊂T holds.

In order to show the reverse inclusion Tgph N̂Γ
(x̄, x̄∗) ⊃ T , consider (u,u∗) ∈ T

together with some corresponding ξ . Then there are sequences tk↘ 0, vk→ ∇g(x̄)u
and ξ k → ξ such that λ̄ + tkξ k ∈ N̂D(g(x̄)+ tkvk) and thus h(g(x̄)+ tkvk) ∈Θ and
λ̄ + tkξ k = ∇h(g(x̄) + tkvk))

T µk with µk ∈ N̂Θ (h(g(x̄) + tkvk) for all k sufficiently
large. Further, the sequence µk is bounded. Since

b(x̄+ tkuk)−h(g(x̄)+ tkvk) = ∇b(x̄)(tkuk)−∇h(g(x̄))(tkvk)+o(tk)

= tk∇h(g(x̄))(∇g(x̄)u− vk)+o(tk) = o(tk)

and ∇b(x̄) is surjective, we can find for each k sufficiently large some xk with b(xk) =
h(g(x̄)+ tkvk) ∈Θ and xk− (x̄+ tkuk) = o(tk). It follows that

∇b(xk)
T

µ
k = ∇g(xk)

T
∇h(g(xk))

T
µ

k ∈ N̂Γ (xk)

and

∇b(xk)
T

µ
k− x̄∗ = ∇g(xk)

T
∇h(g(xk))

T
µ

k− x̄∗

= ∇g(xk)
T (

∇h(g(xk))
T

µ
k− λ̄

)
+∇

2〈λ̄ ,g〉(x̄)(xk− x̄)+o(tk)

= ∇g(xk)
T (

∇h(g(x̄)+ tkvk)
T

µ
k− λ̄ +o(tk)

)
+ tk∇

2〈λ̄ ,g〉(x̄)u+o(tk)

= tk∇g(xk)
T

ξ
k + tk∇

2〈λ̄ ,g〉(x̄)u+o(tk)

= tk
(
∇g(x̄)T

ξ +∇
2〈λ̄ ,g〉(x̄)u

)
+o(tk)

showing (u,u∗) ∈ Tgph N̂Γ
(x̄, x̄∗). ut
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Remark 2 Everything remains true if we replace N̂Γ , N̂D, N̂Θ by NΓ , ND, NΘ ,

Remark 3 Note that to each pair (u,u∗) ∈ Tgph N̂Γ
(x̄, x̄∗) there is a unique ξ satisfying

the relations on the right-hand side of (17). Its existence has been shown in the first
part of the proof and its uniqueness follows from (18) and the uniqueness of η implied
by the surjectivity of ∇b(x̄).

From (17) one can relatively easily derive the formulas from [19] and [20] by im-
posing appropriate additional assumptions. Indeed, let us suppose that, in addition to
(A1), (A2), D is convex and the (single-valued) operator PD is directionally differen-
tiable at g(x̄). Then one has the relationship

TgphND(g(x̄), λ̄ ) =
{
(v,w)

∣∣∣∣[ v+w
v

]
∈ TgphPD(g(x̄)+ λ̄ ,g(x̄))

}
=

{(v,w)|v = P′D(g(x̄)+ λ̄ ;v+w)},

which implies that under the posed additional assumptions the relation

(∇g(x̄)u,ξ ) ∈ TgphND(g(x̄), λ̄ ) (19)

amounts to the equation

∇g(x̄)u = P′D(g(x̄)+ λ̄ ;∇g(x̄)u+ξ ). (20)

Formula (17) attains thus exactly the form from [19, Theorem 3.3]. Note that in this
way it was not necessary to assume the convexity of Γ like in [19]. Thanks to this,
upon imposing the PDC condition on D at g(x̄), one gets from (20) that

∇g(x̄)u = PK(∇g(x̄)u+ξ ), (21)

where K stands for the critical cone to D at g(x̄) with respect to λ̄ , i..e., K =TD(g(x̄))∩
[λ̄ ]⊥. From (21) we easily deduce that

ξ ∈ NK(∇g(x̄)u)

and relation (17) thus simplifies to

Tgph N̂Γ
(x̄, x̄∗) = {(u,u∗)|u∗ ∈ ∇

2〈λ̄ ,g〉(x̄)u+∇g(x̄)T NK(∇g(x̄)u)}. (22)

We have recovered the formula from [20, Theorem 5.2]. This enormous simplification
of the way how this result has been derived is due to Theorem 2 and the equivalence
of relations (19), (20) (under the posed additional assumptions).

As mentioned above, the PDC condition automatically holds whenever D is a
convex polyhedral set. Thus, for instance, in case of variational systems with Γ given
by NLP constraints, one can compute DM(p̄, x̄,0)(q,u) by the workable formula

DM(p̄, x̄,0)(q,u) = ∇pH(p̄, x̄)q+∇xL (p̄, x̄, λ̄ )u+∇g(x̄)T NK(∇g(x̄)u), (23)

where
L (p,x,λ ) := H(p,x)+∇g(x)T

λ

is the Lagrangian associated with the considered variational system.
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3.2 Regular and directional limiting coderivatives of N̂Γ

Theorem 3 Let assumptions (A1), (A2) be fulfilled, x̄∗ ∈ N̂Γ (x̄) and λ̄ be the (unique)
multiplier satisfying (16). Then

N̂gph N̂Γ
(x̄, x̄∗) =

{
(w∗,w) |∃v∗ :

(v∗,∇g(x̄)w) ∈ N̂gph N̂D
(g(x̄), λ̄ ),

w∗ =−∇2〈λ̄ ,g〉(x̄)w+∇g(x̄)T v∗

}
. (24)

Proof First we justify (24) in the case when the derivative operator ∇g(x̄) : Rn→ Rs

is surjective. By the definition we have (w∗,w)∈ N̂gph N̂Γ
(x̄, x̄∗) if and only if 〈w∗,u〉+

〈w,u∗〉 ≤ 0 ∀(u,u∗)∈ Tgph N̂Γ
(x̄, x̄∗), which by virtue of Theorem 2 is equivalent to the

statement that (0,0) is a global solution of the problem

max
u,ξ

γ(u,ξ ) := 〈w∗,u〉+ 〈w,∇g(x̄)T
ξ +∇

2〈λ̄ ,g〉(x̄)u〉

subject to (∇g(x̄)u,ξ ) ∈ Tgph N̂D
(g(x̄), λ̄ ).

Since the objective can be rewritten as γ(u,ξ )= 〈w∗+∇2〈λ̄ ,g〉(x̄)w,u〉+〈∇g(x̄)w,ξ 〉,
this is in turn equivalent to the statement

(w∗+∇
2〈λ̄ ,g〉(x̄)w,∇g(x̄)w) ∈C◦

where C := {(u,ξ ) |(∇g(x̄)u,ξ ) ∈ Tgph N̂D
(g(x̄), λ̄ )}. By surjectivity of ∇g(x̄) the lin-

ear mapping (u,ξ )→ (∇g(x̄)u,ξ ) is surjective as well and we can apply [24, Exercise
6.7] to obtain

C◦ = N̂C(0,0) = {(∇g(x̄)T v∗,v) |(v∗,v) ∈ N̂Tgph N̂D
(g(x̄),λ̄ )(0,0)}

= {(∇g(x̄)T v∗,v) |(v∗,v) ∈ N̂gph N̂D
(g(x̄), λ̄ )}.

Now formula (24) follows.
It remains to replace the surjectivity of ∇g(x̄) by the weaker nondegeneracy as-

sumption from (A2). To proceed, we employ the local representation of D provided
by its reducibility at g(x̄), see assumption (A1). By Proposition 1 we have Γ ∩U =
{x ∈ U |b(x) ∈Θ} and by assumption (A1) we have D∩V = {z ∈ V |h(z) ∈Θ},
where U and V denote neighborhoods of x̄ and g(x̄), respectively. Since both ∇b(x̄)
and ∇h(g(x̄)) are surjective, we can apply (24) twice to obtain

N̂gph N̂Γ
(x̄, x̄∗) =

{
(w∗,w) |∃z∗ :

(z∗,∇b(x̄)w) ∈ N̂gph N̂Θ
(b(x̄), µ̄),

w∗ =−∇2〈µ̄,b〉(x̄)w+∇b(x̄)T z∗

}
(25)

and

N̂gph N̂D
(g(x̄), λ̄ ) =

{
(v∗,v) |∃z∗ :

(z∗,∇h(g(x̄))v) ∈ N̂gph N̂Θ
(h(g(x̄)), µ̄),

v∗ =−∇2〈µ̄,h〉(g(x̄))v+∇h(g(x̄))T z∗

}
, (26)

where µ̄ is the unique multiplier satisfying λ̄ = ∇h(g(x̄))T µ̄ . By the classical chain
rule we have ∇b(x̄) = ∇h(g(x̄))∇g(x̄) and

∇
2〈µ̄,b〉(x̄) = ∇g(x̄)T

∇
2〈µ̄,h〉(g(x̄))∇g(x̄)+∇

2〈∇h(g(x̄))T
µ̄,g〉(x̄)

= ∇g(x̄)T
∇

2〈µ̄,h〉(g(x̄))∇g(x̄)+∇
2〈λ̄ ,g〉(x̄).
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Now consider (w∗,w) ∈ N̂gph N̂Γ
(x̄, x̄∗) and let z∗ be chosen such that (z∗,∇b(x̄)w) ∈

N̂gph N̂Θ
(b(x̄), µ̄) and w∗ =−∇2〈µ̄,b〉(x̄)w+∇b(x̄)T z∗. By substituting v := ∇g(x̄)w,

v∗ :=−∇2〈µ̄,h〉(g(x̄))q+∇h(g(x̄))T z∗ we obtain (z∗,∇h(g(x̄))v)∈ N̂gph N̂Θ
(h(g(x̄)), µ̄)

implying (v∗,v) = (v∗,∇g(x̄)w) ∈ N̂gph N̂D
(g(x̄), λ̄ ) by (26) and

w∗ = −∇
2〈λ̄ ,g〉(x̄)w+∇g(x̄)T (−∇

2〈µ̄,h〉(g(x̄))∇g(x̄)w+∇h(g(x̄))T z∗
)

= −∇
2〈λ̄ ,g〉(x̄)w+∇g(x̄)T v∗.

Thus

(w∗,w) ∈N :=
{
(w∗,w) |∃v∗ :

(v∗,∇g(x̄)w) ∈ N̂gph N̂D
(g(x̄), λ̄ ),

w∗ =−∇2〈λ̄ ,g〉(x̄)w+∇g(x̄)T v∗

}
establishing the inclusion N̂gph N̂Γ

(x̄, x̄∗)⊂N . To establish the reverse inclusion con-
sider (w∗,w) ∈N together with the corresponding element v∗. By (26) we can find
some z∗ such that (z∗,∇h(g(x̄))∇g(x̄)w) = (z∗,∇b(x̄)w) ∈ N̂gph N̂Θ

(h(g(x̄)), µ̄) and
v∗ =−∇2〈µ̄,h〉(g(x̄))∇g(x̄)w+∇h(g(x̄))T z∗. Hence

w∗ = −∇
2〈λ̄ ,g〉(x̄)w+∇g(x̄)T v∗

= −(∇2〈λ̄ ,g〉(x̄)+∇g(x̄)T
∇

2〈µ̄,h〉(g(x̄))∇g(x̄))w+∇g(x̄)T
∇h(g(x̄))T z∗

= −∇
2〈µ̄,b〉(x̄)w+∇b(x̄)T z∗

and we conclude (w∗,w) ∈ N̂gph N̂Γ
(x̄, x̄∗) by (25). Hence N̂gph N̂Γ

(x̄, x̄∗) =N and this
finishes the proof. ut

By the definition of the regular coderivative we obtain the following Corollary.

Corollary 1 Under the assumptions of Theorem 3 one has

D̂∗N̂Γ (x̄, x̄∗)(w) = ∇
2〈λ̄ ,g〉(x̄)w+∇g(x̄)T D̂∗N̂D(g(x̄), λ̄ )(∇g(x̄)w), w ∈ Rn. (27)

In order to show the following result on the directional limiting coderivative note
that assumptions (A1) and (A2) hold for all x ∈ Γ near x̄. In fact, by taking into
account Proposition 1 and its proof, we have that ∇h(g(x) and ∇b(x) are surjective
for all x near x̄ and the latter is equivalent with validity of the condition rge∇g(x)+
ker∇h(g(x)) = Rn for those x.

Theorem 4 Let assumptions (A1), (A2) be fulfilled, x̄∗ ∈ N̂Γ (x̄) and λ̄ be the (unique)
multiplier satisfying (16). Further we are given a pair of directions (u,u∗) ∈
Tgph N̂Γ

(x̄, x̄∗). Then for any w ∈ Rn

D∗N̂Γ ((x̄, x̄∗);(u,u∗))(w) (28)
= ∇

2〈λ̄ ,g〉(x̄)w+∇g(x̄)T D∗N̂D((g(x̄), λ̄ );(∇g(x̄)u, ξ̄ ))(∇g(x̄)w),

where ξ̄ ∈ Rs is the (unique) vector satisfying the relations

(∇g(x̄)u, ξ̄ ) ∈ Tgph N̂D
(g(x̄), λ̄ ), u∗ = ∇g(x̄)T

ξ̄ +∇
2〈λ̄ ,g〉(x̄)u. (29)
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Proof In the first step we observe that for arbitrary sequences ϑk↘ 0,uk→ u,u∗k →
u∗ and wk→ w such that (xk,x∗k) := (x̄+ϑkuk, x̄∗k +ϑku∗k) ∈ gph N̂Γ and k sufficiently
large one has

D̂∗N̂Γ (xk,x∗k)(wk) = ∇
2〈λk,g〉(xk)wk +∇g(xk)

T D̂∗N̂D(g(xk),λk)(∇g(xk)wk),

where λk is the (unique) multiplier satisfying the relations

∇g(xk)
T

λk = x∗k , λk ∈ N̂D(g(xk)). (30)

Indeed, this follows immediately from Corollary 1 due to the mentioned robustness
of assumptions (A1), (A2). Moreover, we know that λk → λ̄ which is the unique
multiplier satisfying (16). Next we observe that

g(xk) = g(x̄)+ϑkhk with hk =
g(xk)−g(x̄)

ϑk
→ ∇g(x̄)u

and

λk = λ̄ +ϑkξk with ξk =
λk− λ̄

ϑk
.

It follows that

D̂∗N̂Γ (x̄+ϑkuk, x̄∗+ϑku∗k)(wk) (31)
= ∇

2〈λk,g〉(xk)wk +∇g(xk)
T D̂∗N̂D(g(x̄)+ϑkhk, λ̄ +ϑkξk)(∇g(xk)wk).

We may now use the argumentation from the proof of Theorem 2 to show that ξk
converges to the unique ξ̄ satisfying (29). Taking now the outer set limits for k→ ∞

on both sides of (31), we obtain that w∗ ∈ D∗N̂Γ ((x̄, x̄∗);(u,u∗))(w) if and only if it
admits the representation

w∗ ∈ ∇
2〈λ̄ ,g〉(x̄)w+∇g(x̄)T D∗N̂D((g(x̄), λ̄ );(∇g(x̄)u, ξ̄ ))(∇g(x̄)w)

with λ̄ and ξ̄ specified above. ut

Remark 4 Setting (u,u∗) = (0,0), we recover in this way the formula

D∗N̂Γ (x̄, x̄∗)(w) = ∇
2〈λ̄ ,g〉(x̄)w+∇g(x̄)T D∗N̂D(g(x̄), λ̄ )(∇g(x̄)w),

which has been derived in [21] under the standard reducibility and nondegeneracy
assumptions from [4]. This formula thus holds also under the weakened assumptions
(A1), (A2).

Under the additional assumptions, mentioned in Section 3.1, relations (29) can be
simplified. In particular, under the PDC condition at g(x̄), the first relation from (29)
reduces to (21) (with ξ replaced by ξ̄ ).
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4 Main results

On the basis of Theorems 1, 2 and 4 we may now state our main result - a new condi-
tion for the Aubin property of the solution map of a variational system, given by (3),
(8) around a specified reference point.

Theorem 5 Let 0 ∈M(p̄, x̄) with M specified by (8), the assumptions (A1), (A2) be
fulfilled and let λ̄ be the (unique) multiplier satisfying (16) with x̄∗ =−H(p̄, x̄). Fur-
ther assume that

(i) for any q ∈ Rl the variational system

0 = ∇pH(p̄, x̄)q+∇xL (p̄, x̄, λ̄ )u+∇g(x̄)T
ξ

(∇g(x̄)u,ξ ) ∈ Tgph N̂D
(g(x̄), λ̄ )

(32)

has a solution (u,ξ ) ∈ Rn×Rs;
(ii) M is metrically subregular at (p̄, x̄), and

(iii) for any nonzero (q,u) satisfying (with a corresponding unique ξ ) relations (32)
one has the implication

0 ∈ ∇xL (p̄, x̄,λ̄ )T v∗+∇g(x̄)T D∗N̂D((g(x̄), λ̄ );(∇g(x̄)u, ξ̄ ))(∇g(x̄)v∗)

⇒ v∗ ∈ ker∇pH(p̄, x̄)T .
(33)

Then the respective S has the Aubin property around (p̄, x̄) and for any q ∈ Rl

DS(p̄, x̄)(q) = {u|∃ξ : (∇g(x̄)u,ξ ) ∈ Tgph N̂D
(g(x̄), λ̄ ),

0 = ∇pH(p̄, x̄)q+∇xL (p̄, x̄, λ̄ )T u+∇g(x̄)T
ξ}.

(34)

The above assertions remain true provided assumptions (ii), (iii) are replaced by

(iv) for any nonzero (q,u) satisfying (with a corresponding unique ξ ) relations (32)
one has the implication

0 ∈ ∇xL (p̄, x̄, λ̄ )T v∗+∇g(x̄)T D∗N̂D((g(x̄), λ̄ );(∇g(x̄)u, ξ̄ ))(∇g(x̄)v∗)

⇒ v∗ = 0.
(35)

The proof follows easily from Theorems 1, 2 and 4 and relations (9), (10). By im-
posing the additional assumptions, mentioned in Section 3.1, formulas (32) and (34)
can be appropriately simplified. In particular, when D is convex polyhedral, then (32)
attains the form of the generalized equation (GE)

0 = ∇pH(p̄, x̄)q+∇xL (p̄, x̄, λ̄ )u+∇g(x̄)T
ξ , ξ ∈ NK(∇g(x̄)u). (36)

Denoting now w := (q,u) and Λ := Rl × (∇g(x̄))−1K, (36) amounts to the homoge-
nous affine variational inequality

0 ∈
[

0 0
∇pH(p̄, x̄), ∇xL (p̄, x̄, λ̄ )

]
w+NΛ (w). (37)
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Indeed, thanks to the polyhedrality of D, K is also polyhedral and

NΛ (w) = NRl (q)×∇g(x̄)T NK(∇g(x̄)u)

without any qualification conditions. This case will now be illustrated by an academic
example.

Example 1 Consider the solution map S : R⇒ R2 of the GE

0 ∈M(p,x) =
[

x1− p
−x2 + x2

2

]
+ N̂Γ (x) (38)

with Γ given by D = R2
− and

g(x) =
[

g1(x)
g2(x)

]
=

[
0.5x1−0.5x2

1− x2
0.5x1−0.5x2

1 + x2

]
.

Clearly, Γ is a nonconvex set depicted in Fig,1. Let (p̄, x̄) = (0,(0,0)) be the ref-
erence point. Since Γ fulfills LICQ at x̄, we conclude that assumptions (A1), (A2)
are fulfilled. Clearly, x∗ =−H(p̄, x̄) = (0,0) and λ̄ = (0,0) as well. By virtue of the
polyhedrality of D the variational system (32) attains the form (36). In our case it
amounts to

0 =

[
−q

0

]
+

[
u1
−u2

]
+

[
0.5 0.5
−1 1

]
ξ , ξ ∈ NR2

−

([
0.5u1−u2
0.5u1 +u2

])
, (39)

because K = TD(g(x̄))∩ [λ̄ ]⊥ = D.
It is not difficult to compute that for q≤ 0 one has three different solutions (u,ξ )

of (39), namely

u1 = q, u2 = 0, ξ1 = 0, ξ2 = 0 (40)

u1 =
4
3

q, u2 =−
2
3

q, ξ1 = 0, ξ2 =−
2
3

q (41)

u1 =
4
3

q, u2 =
2
3

q, ξ1 =−
2
3

q, ξ2 = 0, (42)

and for q≥ 0 we have the unique solution

u1 = u2 = 0, ξ1 = ξ2 = q. (43)

So, assumption (i) of Theorem 5 is fulfilled and we know the critical directions
(q,u) 6= 0 for which the implication (35) will be examined. Starting with (40), one
has ∇g(x̄)u = (0.5q,0.5q) and

D∗NR2
−

([
0
0

]
,

[
0
0

])
;
([

0.5q
0.5q

]
,

[
0
0

])([
0.5v∗1− v∗2
0.5v∗1 + v∗2

])
=

[
D∗NR−((0,0);(0.5q,0))(0.5v∗1− v∗2)
D∗NR−((0,0);(0.5q,0))(0.5v∗1 + v∗2)

]
=

[
0
0

]
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Fig. 1 Set Γ .

by virtue of the definition and [24, Proposition 6.41]. The left-hand side of (35) re-
duces to the linear system in variables (v∗,η) ∈ R2×R2

0 =

[
v∗1
−v∗2

]
+

[
0.5 0.5
−1 1

]
η , η = 0,

verifying the validity of implication (35). In the case (41), ∇g(x̄)u = ( 4
3 q,0) and

D∗NR2
−

(([
0
0

]
,

[
0
0

])
;
([ 4

3 q
0

]
,

[
0
− 2

3 q

]))([
0.5v∗1− v∗2
0.5v∗1 + v∗2

])
= {0}×R

provided v∗2 =−0.5v∗1. The respective linear system in variables (v∗,η) reduces to

0 =

[
v∗1

0.5v∗1

]
+

[
0.5 0.5
−1 1

][
0
η

]
,

verifying again the validity of (35). In the same way we compute that in the case (42)
one has ∇g(x̄)u = (0, 4

3 q)T and

D∗NR2
−

(([
0
0

]
,

[
0
0

])
;
([

0
4
3 q

]
,

[
− 2

3 q
0

]))([
0.5v∗1− v∗2
0.5v∗1 + v∗2

])
= R×{0}

provided v∗2 = 0.5v∗1. Taking this into account, we arrive at the linear system

0 =

[
v∗1

−0.5v∗1

]
+

[
0.5 0.5
−1 1

][
η

0

]
,
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showing that v∗ = 0. Finally, concerning the last case (43), ∇g(x̄)u = (0,0) and

D∗NR2
−

(([
0
0

]
,

[
0
0

])
;
([

0
0

]
,

[
q
q

]))([
0.5v∗1− v∗2
0.5v∗1 + v∗2

])
= R×R,

provided v∗1 = 0.5v∗2 and, at the same time, v∗1 =−0.5v∗2. This imediately implies that
v∗ = 0 and we are done. On the basis of Theorem 5 we have shown that the implicit
set-valued map S generated by (38) has the Aubin property around (0,0) and, for a
given q, DS(0,0)(q) is the set of solutions to (39).

Next we show that this result cannot be obtained via the Mordukhovich criterion
and the standard calculus, which amounts to proving that the “standard” adjoint GE
(cf.[17, Corollary 4.61]) possesses only the trivial solution. Indeed, this GE amounts
in our case to

0 ∈
[

v∗1
−v∗2

]
+

[
0.5 0.5
−1 1

]
D∗NR2

−

([
0
0

]
,

[
0
0

])([
0.5v∗1− v∗2
0.5v∗1 + v∗2

])
(44)

and it is easy to check that, e.g., v∗ = (−0.5,1)T is a solution of (44). Consequently,
the Aubin property of S cannot be detected in this way. 4

The preceding example indicates the difficulties which arise at the numerical ver-
ification of the conditions of Theorem 5. First, for the solution of (37) one has to use
a numerical method which is able to compute all critical directions (q,u). Various
candidates for such a method can be found, e.g., in [11]. Concerning conditions (iii)
or (iv), for D = Rs

− (Γ given by inequality constraints) the directional normal cones
to gph N̂D for nonzero directions amount to linear subspaces. Therefore, the verifica-
tion of the validity of implications (33), (35) consists in analysis of linear systems of
equations, which is definitely numerically tractable. However, if D amounts to a more
complicated set (e.g. the Lorentz cone discussed in Section 5), then the verification
of (33), (35) could be more demanding.

5 Variational systems with conic constraint sets

In this concluding section we will consider a variant of Theorem 5 under the addi-
tional assumption that D is a closed convex cone with vertex at 0 and PD(·) is direc-
tionally differentiable over Rs. As implied by (20), the variational system (32) attains
then the form

0 =∇pH(p̄, x̄)q+∇xL (p̄, x̄, λ̄ )u+∇g(x̄)T
ξ

∇g(x̄)u = P′D(g(x̄)+ λ̄ ;∇g(x̄)u+ξ )
(45)

which, under the PDC condition at g(x̄), further simplifies to the form (36). If D is the
Carthesian product of Lorentz cones or the Löwner cone ([4]), then we dispose with
an efficient formula for P′D(·; ·) which depends on the position of (g(x̄), λ̄ ) in gphND,
cf. [22, Lemma 2] and [25, Theorem 4.7].
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Concerning the GE on the left-hand side of (33) or (35), it is advantageous to
rewrite it in terms of PD (instead of ND). Let (ā, b̄) ∈ gphND. Since

gphND =

{
(a,b) ∈ Rs×Rs

∣∣∣∣(a+b
a

)
∈ gphPD

}
,

one has, by virtue of [17, Theorem 1.17], that

p ∈ D̂∗ND(a,b)(q)⇐⇒−q ∈ D̂∗PD(a+b,a)(−q− p)

for any (p,q) ∈ Rs×Rs. It follows that the GE on the left-hand side of (33) can be
equivalently written down as the system

0 = ∇xL (p̄, x̄, λ̄ )T v∗+∇g(x̄)T (d−∇g(x̄)v∗) (46)

−∇g(x̄)v∗ ∈ D∗PD((g(x̄)+ λ̄ ,g(x̄));(∇g(x̄)u+ξ ,∇g(x̄)u))(−d) (47)

in variables (v∗,d) ∈ Rn×Rs. If D is the Carthesian product of Lorentz cones or the
Löwner cone, then the directional limiting coderivative of PD can be computed by
using Definition 2(ii) and the formulas for regular coderivatives of PD in [22] and [5],
respectively. For illustration consider the case when D amounts to just one Lorentz
cone in Rs, i.e.,

D = K := {(z0, z̄) ∈ R×Rs−1|z0 ≥ ‖z̄‖}.

We will analyze here only the most difficult situation when g(x̄) = 0 and λ̄ = 0 and
provide formulas for the directional limiting coderivatives of PK at (0,0) for all
possible nonzero directions from

TgphPK
(0,0) = {(h,k)|k ∈ PK (h)}, (48)

see [22, Lemma 2(iv)]. We have thus to distinguish between the following five situa-
tions:

• h ∈ intK , k = h; (49)
• h ∈ intK ◦, k = 0; (50)
• h 6∈K ∪K ◦,k = PK (h); (51)
• h ∈ bdK , k = h; (52)
• h ∈ bdK ◦, k = 0. (53)

In the cases (49), (50) we get immediately from [22, Lemma 1(iv)] the formulas

D∗PK ((0,0);(h,k))(u∗) = u∗, (54)
D∗PK ((0,0);(h,k))(u∗) = 0, (55)

respectively. Likewise, in the case (51) one has

D∗PK ((0,0);(h,k))(u∗) = {C(w,α)u∗|w ∈ Sn−1,α ∈ [0,1]}, (56)

where

C(w,α) =
1
2

[
2αI +(1−2α)wwT w

wT 1

]
.
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Concerning the case (52), by passing to subsequences if necessary, one may have

sequences (hi,ki)
gphPK−→ (h,k),λi↘ 0 such that for i sufficiently large one of the fol-

lowing three situations occurs:

∗ hi 6∈ K ∪K 0 (ki = PK (hi));
∗ hi ∈ int K (ki = hi);
∗ hi ∈ bd K (ki = hi).

Correspondingly, we obtain from [22, Lemma 1(iv) and Theorem 4], that

D∗PK ((0,0);(h,k))(u∗)= {C(w,α)u∗|w∈Sn−1,α ∈ [0,1]} ∪
⋃

A∈A (u∗)

conv{u∗,Au∗},

(57)
where

A (u∗) :=
{

I +
1
2

[
−wwT w

wT −1

]∣∣∣∣w ∈ Sn−1,

〈[
−w
1

]
,u∗
〉
≥ 0
}
.

Analogously, in the case (53), by passing to subsequences if necessary, one may

have sequences (hi,ki)
gphPK−→ (h,k),λi↘ 0 such that for i sufficiently large one of the

following three situations occurs:

∗ hi 6∈ K ∪ K 0 (ki = PK (hi));
∗ hi ∈ int K 0 (ki = 0);
∗ hi ∈ bd K0 (ki = 0).

Correspondingly, we obtain from [22, Lemma 1(iv) and Theorem 4] that

D∗PK ((0,0);(h,k))(u∗)= {C(w,α)u∗|w∈Sn−1,α ∈ [0,1]} ∪
⋃

B∈B(u∗)

conv{u∗,Bu∗},

(58)
where

B(u∗) :=
{

1
2

[
wwT w
wT 1

]∣∣∣∣w ∈ Sn−1,

〈[
w
1

]
,u∗
〉
≥ 0
}
.

Next we illustrate the above described procedure via a conic reformulation of [14,
Example 5].

Example 2 Consider the solution map S : R⇒ R2 of the GE given by (3), (8) with

H(p,x) =
[

x1− p
−x2

]
, g(x) =

[
2x2
−x1

]
and D = K being the Lorentz cone in R2. Let (p̄, x̄) = (0,(0,0)) be the reference
point so that λ̄ = (0,0). It is easy to see that assumptions (A1), (A2) are fulfilled and,
since the Lorentz cone in R2 is a polyhedral set, instead of (45) we can compute the
“critical” directions via (36). The variational system (36) attains the form

0 =

[
−q

0

]
+

[
u1
−u2

]
+

[
0 −1
2 0

]
ξ , ξ ∈ NK

([
2u2
−u1

])
. (59)
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It is not difficult to compute that for q≤ 0 one has three different solutions (u,ξ ) of
(59), namely

u1 = q, u2 = 0, ξ1 = 0, ξ2 = 0 (60)

u1 =
4
3

q, u2 =−
2
3

q, ξ1 =−
1
3

q, ξ2 =
1
3

q (61)

u1 =
4
3

q, u2 =
2
3

q, ξ1 =
1
3

q, ξ2 =
1
3

q (62)

and for q≥ 0 one has the unique solution

u1 = u2 = 0, ξ1 = 0, ξ2 =−q. (63)

So, assumption (i) of Theorem 5 is fulfilled and we will check assumption (iv). Start-
ing with (60), system (46), (47) attains the form

0 =

[
v∗1
−v∗2

]
+

[
0 −1
2 0

][
1 0
0 4

]
v∗ =

[
−d2
−5v∗2 +2d1

]
(64)[

−2v∗2
v∗1

]
∈ D∗PK

(
(0,0);

([
0
−q

]
,

[
0
−q

]))
(−d). (65)

By virtue of formula (54) this system reduces to the equations

d2 = 0, d1 =
5
2

v∗2, v∗1 = 0, 2v∗2 = d1,

verifying that v∗ = 0. In the case (61), one arrives at the equation (64) together with
the relation [

−2v∗2
v∗1

]
∈ D∗PK

(
(0,0);

([
− 5

3 q
−q

]
,

[
− 4

3 q
− 4

3 q

]))
(−d). (66)

Now we have to employ formula (56). For w=−1 one obtains from (66) the equation[
−2v∗2

v∗1

]
=−

[
0.5 −0.5
−0.5 0.5

]
d

which, together with (64), implies that v∗ = 0. For w = 1 one obtains from (66) the
equation [

−2v∗2
v∗1

]
=−

[
0.5 0.5
0.5 0.5

]
d

that again implies that v∗ = 0. Thus the case (61) is completed. Likewise, in the
remaining cases (62), (63) we apply the formulas (56) and (55), respectively, and
verify again that in all solutions of the respective system (46), (47) one has v∗ = 0.
The examined solution map S has thus the Aubin property around (p̄, x̄). Note that, as
in Example 1, this conclusion cannot be made on the basis of the standard conditions.

4



On the Aubin property of a class of parameterized variational systems 21

6 Concluding remarks

The advantage of the sufficient condition stated in Theorem 5 with respect to stan-
dard conditions consists in the fact that they take into account the specific way how
the parameters (entering via H) influence the solutions of the considered variational
system. The gain is especially dramatic, if the difference between the dimensions l
and n is large. So, the main application area of the achieved results lies in the post-
optimal analysis of optima or equilibria with just a few unknown problem data (taking
the roles of parameters) but a considerable number of decision variables. Moreover,
formula (34) can very well be used in continuation methods [15].

In [6] the authors have shown that for a variational system given by the GE

p ∈ F(x)+NΓ (x)

with Γ being a convex polyhedron the Aubin property of S around a given reference
point amounts in fact to the strong regularity [9, Chapter 3]. This is, however, not true
in the case of variational systems considered here, when one admits a general param-
eterization and Γ is given by (1). To ensure the strong regularity within our approach,
one has to impose, in addition to the assumptions of Theorem 5, the local unique-
ness of S around (p̄, x̄). To this aim one could employ, e.g., a suitable monotonicity
assumption,

In general, the metric subregularity of M (assumption (ii) in Theorem 5) is not
easy to verify. Apart from the “polyhedral” case, when this assumption holds thanks
to [23], there are various other sufficient conditions tailored mostly to some specific
classes of mappings. In our case one could use, for instance, the first- or the second-
order sufficient condition for metric subregularity ([12]), or the conditions concerning
subdifferential mappings see, e.g., [1] or [10]. On the other hand, even the variant of
Theorem 5, based on assumption (iv), seems to be an efficient new condition for the
Aubin property.

Concerning a future research in this area, observe that the formulas, provided in
the second part of Section 5 for D being the Lorentz cone, could easily be extended
to the case when D amounts to the Carthesian product of several Lorentz cones. Fur-
ther, on the basis of [5] one could compute the directional limiting coderivatives of
the projection mapping onto the Löwner cone which would enable us to apply the pre-
sented theory also to parameterized semidefinite programs. Finally, one could think
of variational systems, not having the (relatively simple) structure (8). For example,
p could arise also in the constraints or one could consider implicit constraints like in
quasi-variational inequalities ([18]).
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19. B.S. MORDUKHOVICH, J.V. OUTRATA, H. RAMIRÉZ C., Second-order variational analysis in conic
programming with application to optimality and stability, SIAM J. Optimization 25 (2015), 76-101.
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