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A ROBUST PRECONDITIONED MINRES-SOLVER FOR

TIME-PERIODIC EDDY CURRENT PROBLEMS

MICHAEL KOLMBAUER AND ULRICH LANGER

Abstract. This work is devoted to fast and parameter-robust iterative solvers
for frequency domain finite element equations, approximating the eddy current

problem with harmonic or multiharmonic excitations in time. We construct

a preconditioned MinRes solver for the frequency domain equations, that is
robust with respect to the discretization parameters as well as all involved

“bad” parameters like the conductivity, the reluctivity and possible regular-

ization parameters.

1. Introduction

The multiharmonic finite element method or harmonic-balanced finite element
method has been used by many authors in different applications (e.g. [3, 16, 20,
45, 52]). Switching from the time domain to the frequency domain allows us to
replace expensive time-integration procedures by the solution of a system of partial
differential equations for the amplitudes belonging to the sine- and to the cosine-
excitation.

Following this strategy, Copeland et al. [10, 11], Bachinger et al. [4, 5], and
Kolmbauer and Langer [30] applied harmonic and multiharmonic approaches to
scalar parabolic and eddy current problems. Indeed, in [30] a preconditioned Min-
Res solver for the solution of time-harmonic eddy current problems is constructed,
that is robust with respect to both, the discretization parameter h and all involved
parameters like frequency, conductivity and reluctivity. This block-diagonal precon-
ditioning technique has already been proposed in [10] for a simple scalar parabolic
problem, and have been used for eddy current problem in [30]. There a rescal-
ing of the unknowns was necessary. Now this rescaling is not necessary anymore.
We mention that block-diagonal preconditioners similar to that in [30] have also
been used and analysed in [5, 9, 12] and in terms of operator preconditioning in
[23, 31, 38]. In this work we extend the results obtained in [30] to various primal
and mixed formulations of the eddy current problem. We analyse various types
of regularization techniques and even extend the theory to the case of vanishing
conductivity.

One technique of construction and analysis of parameter-robust preconditioners
for saddle point problems was introduced by Schöberl and Zulehner in [48], and then
generalized to a more constructive framework by Zulehner in [53]. We mention that
there is also a recent work on this topic by Mardal and Winther [38].

This approach of constructive block-diagonal preconditioning allows us to break
down the inversion of fully coupled block-matrices to the inversion of several simple
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under the grants P19255 and DK W1214. Furthermore the authors thank the Austria Center of
Competence in Mechatronics (ACCM), which is a part of the COMET K2 program of the Austrian
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2 MICHAEL KOLMBAUER AND ULRICH LANGER

problems, that can be replaced by parameter-robust and (almost) optimal precon-
ditioners for standard H(curl) or H1 problems like

(α curl u, curl v)0 + (βu,v)0 and (α∇p,∇q)0 + (βp, q)0,

respectively. Here (·, ·)0 denotes the usual inner product in L2. The coefficient
α and β are positive, piecewise constant functions, that may have large jumps.
These standard problems can be handled by well-known preconditioners like multi-
grid preconditioners [1, 21], auxiliary space preconditioners [24, 51], and domain
decomposition (DD) preconditioners [25, 49, 50] in the H(curl) setting and multi-
grid or multilevel preconditioners [7, 17, 32, 33, 34, 43], and domain decomposition
preconditioners [50] in the H1 setting, respectively.

As a model problem we consider an eddy current problem with homogeneous
Dirichlet boundary conditions and periodicity conditions in time: For given f , find
u, such that

(1)


σ
∂u

∂t
+ curl (ν curl u) = f in Ω× (0, T ],

div(σu) = 0 in Ω× (0, T ],

u× n = 0 on ∂Ω× (0, T ),

u(0) = u(T ) in Ω,

where Ω ⊂ R3 is a simply connected, bounded Lipschitz domain. The reluctiv-
ity ν = ν(x) is supposed to be independent of | curl u|, i.e. we assume that the
eddy current problem (1) is linear. The conductivity σ is piecewise constant. Ad-
ditionally, we assume, that σ ∈ L∞(Ω), and σ ≥ σ > 0, i.e. the conductivity is
strictly positive in the whole computational domain. However, in many practical
applications, the computational domains consist of conducting (σ > 0) and non-
conducting (σ = 0) regions. At the end of this work, we also treat this general
case in § 6.1. Throughout this paper, we assume that the given right-hand side f
is weakly divergence-free, i.e.,

(2) (f ,∇p)0 =, 0 ∀p ∈ H1
0 (Ω).

Moreover, for simplicity, we only consider time-harmonic and multiharmonic, weakly
divergence-free excitations f . The multiharmonic excitations can also be seen as
an approximation of a more general excitations in time. Since we are interested in
the construction and analysis of fast and robust solvers, it is obviously enough to
consider the multiharmonic case.

The outline of this work is the following. In Section 2, we firstly consider our
model problem (1) with a time-harmonic excitation f on the right-hand side. For
the system of frequency domain equations, appropriate primal and mixed vari-
ational formulations are derived, wherein the gauging condition is incorporated
implicitly or explicitly. The section closes with the discretization in space in terms
of a finite element discretization. Section 3 is devoted to the robust iterative so-
lution of the resulting linear systems of equations by means of a preconditioned
MinRes solver. For all the different formulations, we construct parameter-robust
block-diagonal preconditioners and provide quantitative estimates of the condition
numbers yielding the corresponding convergence rate estimates for the precondi-
tioned MinRes solver. In Section 4, we generalize our preconditioners to the more
general time-periodic eddy current problem (1) with a multiharmonic excitation f
in time. In Section 5, we present numerical results confirming the rate estimates
given in Sections 3 and 4. Finally, in Section 6, we discuss the application of the
block-diagonal preconditioning method to the case of inexact regularization tech-
niques and the case of non-symmetric formulations which are important for solving
non-linear eddy current problems.
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2. The time-harmonic case

We assume that f is given by some time-harmonic excitation with frequency
ω > 0 and the amplitudes fc and f s, i.e. f(x, t) = fc(x) cos(ωt) + f s(x) sin(ωt).
Therefore, the solution u is time-harmonic as well, with the same base frequency
ω and amplitudes uc(x) and us(x):

(3) u(x, t) = uc(x) cos(ωt) + us(x) sin(ωt).

In fact, (3) is the real reformulation of a complex time-harmonic approach, where
the source f is given by the real part of a complex time-harmonic excitation,

i.e. f(x, t) = Re[f̂(x)eiωt], and consequently the solution has the form u(x, t) =
û(x)eiωt, with the complex-valued amplitude û = uc− ius (see e.g. [4, 45]). Using
the real-valued time-harmonic representation of the solution (3), we can rewrite the
eddy current problem (1) in the frequency domain as follows:

(4) Find (uc,us):



ωσus + curl(ν curl uc) = fc, in Ω,

ωσuc − curl(ν curl us) = −f s, in Ω,

ω div(σuc) = 0, in Ω,

ω div(σus) = 0, in Ω,

uc × n = 0, on ∂Ω,

us × n = 0, on ∂Ω,

where we have multiplied the gauging equations div(σuj) = 0, j ∈ {c, s}, by the
base frequency ω. This system of partial differential equations is the starting point
for the derivation of a variational formulation and the discretization in space by
means of the finite element method.

2.1. Variational formulations. We investigate both, primal and mixed varia-
tional formulations, wherein the Coulomb gauging condition is incorporated im-
plicitly or explicitly, respectively. All the presented formulations are equivalent in
the sense, that they have the same unique solution for the amplitudes uc and us.
In the variational framework we work on the well-known Hilbert spaces H(curl)
and H1(Ω), as well as their subspaces with vanishing Dirichlet traces, i.e.,

H0(curl) := {u ∈ H(curl) : u× n = 0 on ∂Ω},
H1

0 (Ω) := {p ∈ H1(Ω) : p = 0 on ∂Ω}.

Formulation 1: If we assume, that the source f is weakly divergence free (see (2)),
we observe that the gauging condition div(σuj) = 0 (j ∈ {c, s}) in (4) is fulfilled
naturally. Therefore, it is not necessary to incorporated the gauging condition into
the system (4) explicitly. Therefore, the corresponding variational problem reads
as: Find (uc,us) ∈ H0(curl)2, such that

(5) A1 ((uc,us), (vc,vs)) =

∫
Ω

[fc · vc − f s · vs] dx,

for all test functions (vc,vs) ∈ H0(curl)2. Here the symmetric and indefinite
bilinear form A is given by

(6)
A1 ((uc,us), (vc,vs)) : = (ν curl uc, curl vc)0 + ω(σus,vc)0

− (ν curl us, curl vs)0 + ω(σuc,vs)0.

This variational problem has a unique solution (cf. Lemma 2), and, for a weakly
divergence-free right-hand side f , the solution fulfills the gauge condition div(σuj) =
0 for j ∈ {c, s}.
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Formulation 2: In many cases it is very convenient, to incorporate the gauging con-
ditions div(σuj) = 0 (j ∈ {c, s}) in a mixed variational framework. The correspond-
ing mixed variational problem reads as: Find (uc,us, pc, ps) ∈ H0(curl)2×H1

0 (Ω)2,
such that

(7) B1 ((uc,us, pc, ps), (vc,vs, qc, qs)) =

∫
Ω

[fc · vc − f s · vs] dx,

for all test functions (vc,vs, qc, qs) ∈ H0(curl)2 × H1
0 (Ω)2. Here the symmetric

and indefinite bilinear form B1 is given by

(8)

B1 ((uc,us, pc, ps), (vc,vs, qc, qs)) :=

(ν curl uc, curl vc)0 + ω(σus,vc)0 + ω(σvc,∇pc)0 − ω(σvs,∇ps)0

−(ν curl us, curl vs)0 + ω(σuc,vs)0 + ω(σuc,∇qc)0 − ω(σus,∇qs)0.

There exists a unique solution (uc,us, pc, ps) (cf. Lemma 3). Additionally, if we
assume the right-hand side to be weakly divergence free, the Lagrange parameters
pc and ps vanish at the solution, i.e. pc = 0 and ps = 0.
Formulation 3: Since at the solution of (7), the Lagrange parameters vanish, i.e.
pc = 0 and ps = 0, we can add a suitable bilinear form to B1 in Formulation 2. The
resulting variational problem reads as: Find (uc,us, pc, ps) ∈ H0(curl)2×H1

0 (Ω)2,
such that

(9) B2 ((uc,us, pc, ps), (vc,vs, qc, qs)) =

∫
Ω

[fc · vc − f s · vs] dx,

for all test functions (vc,vs, qc, qs) ∈ H0(curl)2 × H1
0 (Ω)2. Here the symmetric

and indefinite bilinear form B2 is given by
(10)
B2((uc,us, pc, ps), (vc,vs, qc, qs)) :=

(ν curl uc, curl vc)0 + ω(σus,vc)0 + ω(σvc,∇pc)0 − ω(σvs,∇ps)0 − ω(σ∇pc,∇qc)0

−(ν curl us, curl vs)0 + ω(σuc,vs)0 + ω(σuc,∇qc)0 − ω(σus,∇qs)0 + ω(σ∇ps,∇qs)0.

Again, the mixed variational problem has a unique solution (cf. Lemma 4) . Ad-
ditionally, the solution of Formulation 2 also solves Formulation 3, and vice versa.
Therefore these two formulations are equivalent.
Formulation 4: Finally, we give a primal version of Formulation 3. The variational
problem reads: Find (uc,us) ∈ H0(curl)2, such that

(11) A2 ((uc,us), (vc,vs)) =

∫
Ω

[fc · vc − f s · vs] dx,

for all test functions (vc,vs) ∈ H0(curl)2. Here the symmetric and indefinite
bilinear form A2 is given by
(12)
A2 ((uc,us), (vc,vs)) : = (ν curl uc, curl vc)0 + ω(σ∇P(uc),∇P(vc))0 + ω(σus,vc)0

− ((ν curl us, curl vs)0 − ω(σ∇P(us),∇P(vs))0) + ω(σuc,vs)0.

Therein we use the weighted Helmholtz projection P, where for given u ∈ H0(curl),
p := P(u) ∈ H1

0 (Ω) is the unique solution of the variational form:

(13) ω

∫
Ω

σ∇p · ∇q dx = ω

∫
Ω

σu · ∇q dx, ∀q ∈ H1
0 (Ω).

The solution P(u) fulfills the estimate ‖σ1/2∇P(u)‖L2(Ω) ≤ ‖σ1/2u‖L2(Ω). The
additional expression is chosen in such a way, that it does not vanish on the kernel
of the curl operator, and on the other hand P(uc) and P(us) vanish at the solution,
i.e. P(uc) = 0 and P(us) = 0 (see [30, 35]). It can be shown, that Formulation
4 is nothing else, than an equivalent primal formulation of Formulation 3. Indeed,
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from (9), we obtain for j ∈ {c, s} by setting the test functions equal to zero, i.e.,
vj = 0:

ω(σ∇pj ,∇qj)0 = ω(σuj,∇qj)0, ∀qj ∈ H1
0 (Ω),

and therefore by (13) pj = P(uj). Furthermore, for qj = 0, we obtain

B2((uc,us, pc, ps), (vc,vs, 0, 0)) =

= A1 ((uc,us), (vc,vs)) + ω(σvc,∇pc)0 − ω(σvs,∇ps)0

= A1 ((uc,us), (vc,vs)) + ω(σ∇P(vc),∇pc)0 − ω(σ∇P(vs),∇ps)0

= A1 ((uc,us), (vc,vs)) + ω(σ∇P(vc),∇P(uc))0 − ω(σ∇P(vs),∇P(us))0

= A2 ((uc,us), (vc,vs)) .

The first part (uc,us) of the solution (uc,us, pc, ps) of Formulation 3 solves For-
mulation 4, and vice versa. The relation pj = P(uj) = 0 is nothing else than the
weakly divergence-freeness property of the solution (uc,us).

In that sense all the four formulations are equivalent and have the same unique
solution for the amplitudes uc and us.

2.2. Finite element discretization in space. The variational forms A1, B1,
B1 and A2 are the starting points of a discretization in space. Therefore, we use a
regular triangulation Th, with mesh size h > 0, of the computational domain Ω with
tetrahedral elements. On this mesh we consider Nédélec basis functions of lowest
order ND0(Th), see [41, 42], a conforming finite element subspace of H0(curl).
Furthermore, we use the space of continuous piecewise linear functions S1(Th) as
the conforming finite element subspace of H1

0 (Ω). Let {ϕi}i=1,Nh denote the usual
nodal basis of ND0(Th), and let {ψi}i=1,Mh

denote the basis of S1(Th), respectively.
We define the following matrices:

(Kh)ij = (ν curlϕi, curlϕj)0,

(Kr,h)ij = (ν curlϕi, curlϕj)0 + ω(σ∇P(ϕi),∇P(ϕj))0,

(Mωσ,h)ij = ω(σϕi,ϕj)0,

(Dωσ,h)ij = ω(σϕi,∇ψj)0,

(Lωσ,h)ij = ω(σ∇ψi,∇ψj)0.

The entries of the right-hand side vector are given by the formulas (fc
h)i = (fc,ϕi)0

and (f s
h)i = (f s,ϕi)0. The resulting systems of the finite element equations have

the following structure:
Formulation 1: (

Kh Mωσ,h

Mωσ,h −Kh

)
︸ ︷︷ ︸

=:Ah,1

(
uc

h

us
h

)
=

(
fc
h

−f s
h

)

Formulation 2:
Kh Mωσ,h Dωσ,h

T 0

Mωσ,h −Kh 0 −Dωσ,h
T

Dωσ,h 0 0 0
0 −Dωσ,h 0 0


︸ ︷︷ ︸

=:Bh,1


uc

h

us
h

pc
h

ps
h

 =


fc
h

−f s
h

0
0
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Formulation 3:
Kh Mωσ,h Dωσ,h

T 0

Mωσ,h −Kh 0 −Dωσ,h
T

Dωσ,h 0 −Lωσ,h 0
0 −Dωσ,h 0 Lωσ,h


︸ ︷︷ ︸

=:Bh,2


uc

h

us
h

pc
h

ps
h

 =


fc
h

−f s
h

0
0



Formulation 4: (
Kr,h Mωσ,h

Mωσ,h −Kr,h

)
︸ ︷︷ ︸

=:Ah,2

(
uc

h

us
h

)
=

(
fc
h

−f s
h

)

In fact, the system matrices Ah,i and Bh,i (i = 1, 2) of these systems of algebraic
equations are symmetric and indefinite, and have a saddle-point or double saddle-
point structure, respectively. Since the system matrices are symmetric, the systems
can be solved by a MinRes method, see, e.g. [44]. Anyhow, the convergence rate
of any iterative method deteriorates with respect to the meshsize h and the “bad”
parameters ω, ν and σ, if applied to the unpreconditioned systems. Therefore,
preconditioning is a challenging topic.

3. Block-diagonal preconditioning

It is well known, that block-diagonal preconditioners, where each block represents
the inner product of the Hilbert space, where the corresponding functions are leav-
ing, lead to mesh independent convergence rates, if used in an iterative method.
This result can be extended to obtain even parameter independent convergence
rates, by introducing appropriate scaled inner products in the individual spaces.
Therefore, our ingredients for the construction of parameter-robust precondition-
ers are, on the one hand, a constructive preconditioning strategy based on space
interpolation proposed by Zulehner [53], and, on the other hand, the introduction
of non-standard norms, inspired by the space interpolation technique, and the inf-
sup and sup-sup condition in the theorem of Babuška-Aziz [2]. We mention, that
block-diagonal preconditioners for Formulation 1 have also been used and analysed
in [9, 12, 30] and in the terms of operator preconditioning in [23, 31]. Nevertheless,
we repeat the analysis, since our framework allows to use a constructive approach
that even can be generalized to more involving problems straight forward as done
in [26, 27, 28, 29, 30].

3.1. Abstract preconditioning theory by operator interpolation. For con-
structing block-diagonal preconditioners, we want to use the general space and
operator interpolation framework proposed by Zulehner for saddle point problems
[53]. Let us consider a symmetric and indefinite matrix G, reformulated as a block
matrix of the form

(14) G =

(
A BT

B −C

)
,

where A and C are symmetric and positive n × n matrices. It is well-known (see
e.g. [36, 40]), that the block-diagonal preconditioners

P1 =

(
A 0
0 S

)
and P2 =

(
R 0
0 C

)
,

where S = C + BA−1BT and R = A + BTC−1B denote the negative Schur
complements of (14), yield uniformly bounded spectra of the preconditioned systems
P1
−1G and P2

−1G, i.e., all eigenvalues of the preconditioned system matrices are
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located in the set (−1, 1−
√

5
2 ] ∪ {1} ∪ (1, 1+

√
5

2 ]. Therefore, the following norm
equivalences follow

(15) c1‖x‖P1 ≤ ‖Gx‖P1
−1 ≤ c2‖x‖P1 and c1‖x‖P2 ≤ ‖Gx‖P2

−1 ≤ c2‖x‖P2 ,

with the constants c1 = (
√

5− 1)/2 and c2 = (
√

5 + 1)/2. Here ‖ · ‖Pi
and ‖ · ‖Pi

−1

(i = 1, 2) denote the norms in the Euclidean vector space R2n, induced by the
symmetric and positive definite matrices Pi and Pi

−1, respectively. Indeed, from
these two Schur complement preconditioners, we can derive further block-diagonal
preconditioners by the use of space and operator interpolation theory (see e.g. [6]).
Additionally, the resulting spectral bounds only depend on c1 and c2 and therefore
yield uniformly bounded constants. This approach is summarized in the following
result, for details see [53, Section 3].

Theorem 1. For the interpolation matrix

PI = [P1,P2] 1
2

=

(
[A,R] 1

2
0

0 [S,C] 1
2

)
,

we have the norm equivalence

(16) c1‖x‖PI
≤ ‖Gx‖PI

−1 ≤ c2‖x‖PI
,

where c1 and c2 are the constants of (15), that are obviously independent of any
involved model and discretization parameters.

In the previous theorem, the interpolation of matrices [·, ·] 1
2

is defined by the

relation [M,N] 1
2

:= M
1
2 (M− 1

2 NM− 1
2 )

1
2 M

1
2 . The norm equivalence (16), immedi-

ately imply a bound for the condition number of the preconditioned system PI
−1G,

i.e.

κPI
(PI
−1G) := ‖PI

−1G‖PI
‖G−1PI‖PI

≤ c2
c1

=

√
5 + 1√
5− 1

,

that plays a crucial role for providing convergence rates for iterative methods.
Furthermore, (16) is heavily related the inf-sup and sup-sup conditions in the

well-known theorem of Babuška-Aziz [2]. This observation provides the bridge
between finding robust block diagonal preconditioners for saddle point problems
and providing well-posedness results of the corresponding problem in some non-
standard norm.

3.2. Preconditioning the primal problems. The requirement, that the blocks
A and C have to be positive definite, limits the application of Theorem 1 to the dif-
ferent formulations (1, 2, 3, 4) in the previous section. In fact, due to the non-trivial
kernel of the curl operator, it can only be applied to Formulation 4. Nevertheless,
from there, we learn how to construct the block-diagonal preconditioners in the
remaining cases.
Formulation 4: We explore the 2× 2 block-structure of our system matrix

Ah,2 =

(
Kr,h Mωσ,h

Mωσ,h −Kr,h

)
.

Due to the exact regularization, the matrix Kr,h is positive definite. Hence we can

build the Schur complements given by Sh = Rh = Kr,h + Mωσ,hK−1
r,hMωσ,h. Due

to [53] a candidate for a parameter-independent block-diagonal preconditioners is
an interpolant of the previous standard Schur complement preconditioners. Hence
we interpolate to obtain a new preconditioner

diag ([Kr,h,Sh] 1
2
, [Sh,Kr,h] 1

2
).
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The following computations are straight-forward, using the simple spectral inequal-
ity

1√
2

(1 +
√
x) ≤

√
1 + x ≤ 1 +

√
x, ∀x ∈ R+.

in the context of matrix functions, abbreviated by the notation (1+
√
x) ∼

√
1 + x.

Consequently, we obtain

[Kr,h,Sh] 1
2

= [Sh,Kr,h] 1
2

= K
1
2

r,h

(
K
− 1

2

r,h (Kr,h + Mωσ,hK−1
r,hMωσ,h)K

− 1
2

r,h

) 1
2

K
1
2

r,h

∼ Kr,h + K
1
2

r,h

(
K
− 1

2

r,h Mωσ,hK−1
r,hMωσ,hK

− 1
2

r,h

) 1
2

K
1
2

r,h

= Kr,h + K
1
2

r,h

(
K
− 1

2

r,h Mωσ,hK
− 1

2

r,h

)
K

1
2

r,h = Kr,h + Mωσ,h.

Hence, we have, that the preconditioner Ph,2, given by the block-diagonal matrix

(17) Ph,2 = diag (Kr,h + Mωσ,h,Kr,h + Mωσ,h),

fulfills the norm equivalence

c1‖uh‖Ph,2
≤ ‖Ah,2uh‖Ph,2

−1 ≤ c2‖uh‖Ph,2
, ∀uh ∈ R2n.

where the constants c1 and c2 are independent of the meshsize and the involved
parameters. In the next step we improve the quantitative estimate of the condi-
tion number. Inspired by the structure of the preconditioner (17), obtained by a
constructive approach, we introduce the non-standard norm ‖ · ‖P2

in H0(curl)2

by

‖(us,uc)‖2P2
=

∑
j∈{c,s}

(ν curl uj, curl uj)0 + ω(σ∇P(uj),∇P(uj))0 + ω(σuj,uj)0.

The main result is summarized in the following lemma, that claims that an inf-sup
condition (estimate from below) and a sup-sup condition (estimate from above) are

fulfilled with parameter-independent constants, namely 1/
√

2 and 1.

Lemma 1. We have

(18)
1√
2
‖(uc,us)‖P2 ≤ sup

06=(vc,vs)∈H0(curl)2

A2((uc,us), (vc,vs))

‖(vc,vs)‖P2

≤ ‖(uc,us)‖P2 ,

for all (uc,us) ∈ H0(curl)2.

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower
estimate can be attained by choosing vc = us +uc and vs = uc−us. Note that, for
this special choice of the test function, we have ‖(vc,vs)‖P2

=
√

2‖(uc,us)‖P2
. �

In general, an inf-sup bound for H0(curl)2 does not imply such a lower bound on
a subspace ND0(Th)2. However, in this case the inequalities (18) remain also valid
for the Nédélec finite element subspace ND0(Th)2, since the proof can be repeated
for the finite element functions step by step. Therefore, the weighted Helmholtz-
projection P defined in (13) has to be replaced by a discrete weighted Helmholtz-
projection Ph, solving the discrete version of (13). Hence, it follows by the theorem
of Babuška-Aziz, that there exists a unique solution of the corresponding variational
problem (5), and that the solution continuously depends on the data, uniformly in
all involved parameters.
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Formulation 1: In order to construct a robust preconditioner for Formulation 1,
we can not use Theorem 1, since the (1, 1)-bock Kh is not positive definite and
therefore not invertible. Nevertheless, we can repeat the procedure of the previous
paragraph of constructing non-standard norms in H0(curl)2 and proving the inf-
sup and sup-sup conditions, appearing in the theorem of Babuška-Aziz. Inspired
by the structure of the preconditioner (17), obtained by a constructive approach
for Formulation 4, we introduce the non-standard norm ‖ · ‖P1

in H0(curl)2:

‖(us,uc)‖2P1
=

∑
j∈{c,s}

(ν curl uj, curl uj)0 + ω(σuj,uj)0.

Since σ is assumed to be strictly positive, this expression is really a norm. Addi-
tionally, the P1- and the P2-norm are equivalent, with constants independent of the
involved parameters, i.e., ‖(uc,us)‖P1

≤ ‖(uc,us)‖P2
≤ 2‖(uc,us)‖P1

. The main
result is summarized in the following lemma, that claims that an inf-sup condition
and a sup-sup condition are fulfilled with parameter-independent constants, namely
1/
√

2 and 1.

Lemma 2. We have

(19)
1√
2
‖(uc,us)‖P1

≤ sup
06=(vc,vs)∈H0(curl)2

A1((uc,us), (vc,vs))

‖(vc,vs)‖P1

≤ ‖(uc,us)‖P1
,

for all (uc,us) ∈ H0(curl)2.

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower
estimate can be attained by choosing vc = us +uc and vs = uc−us. Note that, for
this special choice of the test function, we have ‖(vc,vs)‖P1

=
√

2‖(uc,us)‖P1
. �

Furthermore, the inequalities (19) remain valid for the Nédélec finite element
subspace ND0(Th)2, since the proof can be repeated for the finite element functions
step by step. This result gives rise to the block-diagonal preconditioner

(20) Ph,1 = diag (Kh + Mωσ,h,Kh + Mωσ,h).

Remark 1. Using this special norm ‖·‖P1
, an optimal discretization error estimate

can be obtained, meaning, that the discretization error can be estimated by the
approximation error, uniformly in the involved parameters, i.e.

‖(uc,us)− (uc
h,u

s
h)‖P1 ≤ (1 +

√
2) inf

(vc
h,v

s
h)∈ND0(Th)2

‖(uc,us)− (vc
h,v

s
h)‖P1 .

The discretization error follows by the approximation properties of the finite element
space ND0(Th) in H0(curl) (see e.g. [39]).

3.3. Preconditioning the mixed problems. In order to construct robust pre-
conditioners for the mixed problems, we heavily take advantage, that we already
have constructed a robust preconditioner for the upper left two-times-two block of
the four-times-four block matrices.
Formulation 2: We propose the following block-diagonal preconditioner

(21) Qh = diag (Hh,Hh,Dωσ,hHh
−1Dωσ,h

T ,Dωσ,hHh
−1Dωσ,h

T ),

where we use the abbreviation Hh := Kh + Mωσ,h. Indeed, this block-diagonal
preconditioner exhibits high structural similarities to a standard Schur complement
preconditioner. Since the matrix Dωσ,h has full rank, the block Dωσ,hHh

−1Dωσ,h
T

is positive definite and therefore the whole preconditioner Qh is positive definite.
According to the choice of the block-diagonal preconditioner (21), we introduce the
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non-standard norm ‖ · ‖Q in the product space H0(curl)2 ×H1
0 (Ω)2:

‖(uc,us, pc, ps)‖2Q :=
∑

j∈{c,s}

(ν curl uj, curl uj)0 + ω(σuj,uj)0

+ sup
vj∈H0(curl)

ω2(σvj,∇pj)2
0

(ν curl vj, curl vj)0 + ω(σvj,vj)0
.

Therein, the sup-expression, is nothing else than the continuous representation of
the Schur complement in (21). The main result is summarized in the following
lemma, that claims that an inf-sup condition and a sup-sup condition are fulfilled
with parameter-independent constants, namely 1/(3

√
2) and (1 +

√
5)/2.

Lemma 3. We have
(22)

1

3
√

2
‖(uc,us, pc, ps)‖Q ≤ sup

0 6=(vc,vs,qc,qs)

B1((uc,us, pc, ps), (vc,vs, qc, qs))

‖(vc,vs, qc, qs)‖Q
1 +
√

5

2
‖(uc,us, pc, ps)‖Q ≥ sup

0 6=(vc,vs,qc,qs)

B1((uc,us, pc, ps), (vc,vs, qc, qs))

‖(vc,vs, qc, qs)‖Q
,

for all (uc,us, pc, ps) ∈ H0(curl)2 ×H1
0 (Ω)2.

Proof. For the proof, let us split the bilinear form B1 as follows:

B1((uc,us, pc, ps), (vc,vs, qc, qs) = a((uc,us), (vc,vs)) + b((vc,vs), (pc, ps))

+ b((uc,us), (qc, qs))

with

a((uc,us), (vc,vs)) : = (ν curl uc, curl vc)0 + ω(σus,vc)0

− (ν curl us, curl vs)0 + ω(σuc,vs)0 and

b((vc,vs), (pc, ps)) := ω(σvc,∇pc)0 − ω(σvs,∇ps)0,

and verify the conditions in the theorem of Brezzi (cf. [8]). The bilinear form a(·, ·)
is bounded with constant 1 and fulfills an inf-sup condition with constant 1/

√
2

(see proof of Lemma 2). Boundedness of b(·, ·) follows by Cauchy’s inequality and
the expression of the norm as a supremum

ω(σuj,∇pj)0 ≤ ‖
√
ωσuj‖0 ‖

√
ωσ∇pj‖0

≤ ‖
√
ωσuj‖0 sup

vj∈H0(curl)

ω(σ∇pj ,vj)0√
ω‖
√
σvj‖20 + ‖

√
ν curl vj‖20

.

Therefore, boundedness of b(·, ·) follows with constant 1. Finally, the bilinear form
b(·, ·), satisfies an inf-sup condition with constant 1/2:

sup
(vc,vs)

b((vc,vs), (pc, ps))√∑
j∈{c,s}(ν curl vj, curl vj)0 + ω(σvj,vj)0

≥ 1

2

∑
j∈{c,s}

sup
vj

ω(σvj,∇pj)0√
(ν curl vj, curl vj)0 + ω(σvj,vj)0

.

Consequently, the inf-sup and sup-sup condition can be derived by combining the
estimates. �

Furthermore, the inequalities (22) remain valid for the finite element subspace
ND0(Th)2×S1(Th)2, since the proof can be repeated for the finite element functions
step by step.
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Formulation 3: We propose the following block-diagonal preconditioner

(23) Rh = diag (Kh + Mωσ,h,Kh + Mωσ,h,Lωσ,h,Lωσ,h).

The big advantage of this preconditioner is, that instead of the inversion of a Schur
complement, a scaled H1

0 stiffness matrix has to be inverted. According to the
choice of the block-diagonal preconditioner (23), we introduce the non-standard
norm ‖ · ‖R in the product space H0(curl)2 ×H1

0 (Ω)2:

‖(uc,us, pc, ps)‖2R :=
∑

j∈{c,s}

(ν curl uj, curl uj)0 + ω(σuj,uj)0 + ω(σ∇pj ,∇pj)0.

The main result is summarized in the following lemma, that claims that an inf-sup
and a sup-sup condition are fulfilled with parameter-independent constants, namely
1√
2

and 2.

Lemma 4. We have

1√
2
‖(uc,us, pc, ps)‖R ≤ sup

0 6=(vc,vs,qc,qs)

B2((uc,us, pc, ps), (vc,vs, qc, qs))

‖(vc,vs, qc, qs)‖R
(24)

2‖(uc,us, pc, ps)‖R ≥ sup
0 6=(vc,vs,qc,qs)

B2((uc,us, pc, ps), (vc,vs, qc, qs))

‖(vc,vs, qc, qs)‖R
,(25)

forall (uc,us, pc, ps) ∈ H0(curl)2 ×H1
0 (Ω)2.

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower
estimate can be attained by choosing vc = uc − us, vs = us + uc, qc = ps − pc
and qs = ps + pc. Note that, for this special choice of the test function, we have
‖(vc,vs, qc, qs)‖R =

√
2‖(uc,us, pc, ps)‖R. �

Furthermore, the inequalities (24) remain valid for the finite element subspace
ND0(Th)2×S1(Th)2, since the proof can be repeated for the finite element functions
step by step.

Remark 2. Using this special norm ‖·‖R, an optimal discretization error estimate
can be obtained, meaning, that the discretization error can be estimated by the
approximation error, uniformly in the involved parameters, i.e.

‖(uc,us, pc, ps)− (uc
h,u

s
h, p

c
h, p

s
h)‖R

≤ (1 + 2
√

2) inf
(vc

h,v
s
h,q

c
h,q

s
h)∈ND0(Th)2×S1(Th)2

‖(uc,us, pc, ps)− (vc
h,v

s
h, q

c
h, g

s
h)‖R.

The discretization error follows by the approximation properties of the finite element
space ND0(Th) in H0(curl) and S1(Th) in H1

0 (Ω) (see e.g. [39]).

3.4. MinRes convergence analysis. The next theorem collects the key results of
this work, that the spectral condition number of the preconditioned system matrices
can be estimated by constants independent of any involved model or discretization
parameters.

Theorem 2. The following condition number estimates are valid:

κPh,1
(Ph,1

−1Ah,1) := ‖Ph,1
−1Ah,1‖Ph,1

‖Ah,1
−1Ph,1‖Ph,1

≤
√

2 ≈ 1.41421,

κQh
(Qh

−1Bh,1) := ‖Qh
−1Bh,1‖Qh

‖Bh,1
−1Qh‖Qh

≤ 3
√

2(1 +
√

5)

2
≈ 6.86474,

κRh
(Rh

−1Bh,2) := ‖Rh
−1Bh,2‖Rh

‖Bh,2
−1Rh‖Rh

≤ 2
√

2 ≈ 2.82843,

κPh,2
(Ph,2

−1Ah,2) := ‖Ph,2
−1Ah,2‖Ph,2

‖Ah,2
−1Ph,2‖Ph,2

≤
√

2 ≈ 1.41421,

where the constants are obviously independent of the space and time-discretization
parameters h and ω, as well as the involved model parameters ν and σ.
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Proof. The proof immediately follows from Lemma 2, Lemma 3, Lemma 4 and
Lemma 1. �

The condition number estimates of the preconditioned systems immediately yield
the convergence rate estimate of the MinRes method (see e.g. [19]). Therefore, the
number of MinRes iterations required for reducing the initial error by some fixed
factor δ > 0 is independent of the space and time discretization parameters h and
ω and the involved model parameters ν and σ. The MinRes convergence analysis
is summarized for Formulation 1, 2, 3 and 4, i.e. for

(A,P) ∈ {(Ah,1,Ph,1), (Bh,1,Qh), (Bh,2,Rh), (Ah,2,Ph,2)} ,

in the following corollary.

Corollary 1. The MinRes method applied to the preconditioned systems converges
for arbitrary initial guess w0. At the m-th iteration, the preconditioned residual
rm := P−1(f −Awm) is bounded as

(26)
∥∥r2m

∥∥
P
≤ 2qm

1 + q2m

∥∥r0
∥∥

P
where q =

κP(P−1A)− 1

κP(P−1A) + 1
.

The estimates of the condition numbers κP(P−1A) are according to Theorem 2.

3.5. Practical block-diagonal preconditioning. The application of the pro-
posed block diagonal preconditioners involves the solution of systems with the di-
agonal blocks of (17), (20), (21) and (23). However, in large-scale computations,
these diagonal blocks have to be replaced by easy “invertible” symmetric and pos-
itive definite preconditioners. Therefore, we introduce a common notation for the
preconditioners (17), (20), (21) and (23). Let us define P ∈ Rn×n by

P = diag (Di)i=1,...,m,

with Di ∈ Rni×ni , such that n = n1 + . . . + nm. Here m = 2 for Formulation 1
and 4 and m = 4 for Formulation 2 and 3. Depending on the preconditioner, Di

is either Kh + Mωσ,h or Lωσ,h or the Schur complement expression Dωσ,h(Kh +

Mωσ,h)−1Dωσ,h
T . If the diagonal blocks Di are replaced by spectral equivalent

preconditioners D̃i, i.e.

ci x
T D̃ix ≤ xTDix ≤ ci xT D̃ix, ∀x ∈ Rni ,

the block-diagonal matrix P̃ := diag (D̃i)i=1,...,m obviously fulfills the spectral
equivalence inequality

min{c1, . . . , cm}xT P̃x ≤ xTPx ≤ max{c1, . . . , cm}xT P̃x, ∀x ∈ Rn.

Consequently, a bound for the condition number of the new preconditioned system
matrix P̃−1A is given by

κP̃(P̃−1A) ≤ κP(P−1A)
max{c1, . . . , cm}
min{c1, . . . , cm}

.

Therefore, it remains to discuss possible parameter-robust and optimal or almost-
optimal preconditioners for the diagonal blocks Di. Basically, we are dealing with
three different types of problems:

Kh + Mωσ,h: The solution of the system with this block corresponds to the
solution of a standard H(curl) problem. Depending on the parameter set-
ting, candidates for robust and (almost) optimal preconditioners are multi-
grid preconditioners [1, 21], auxiliary space preconditioners [24, 51], and
domain decomposition preconditioners [25, 50, 49].
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Lωσ,h: The solution of the system with this block corresponds to the solution
of a standard H1 problem. Depending on the parameter setting, candidates
for robust and (almost) optimal preconditioners are multigrid or multilevel
preconditioners [7, 17, 32, 33, 34, 43], and domain decomposition precon-
ditioners [50].

Dωσ,h(Kh + Mωσ,h)−1Dωσ,h
T : In practical applications it is not very conve-

nient to work with this Schur complement preconditioner. Anyhow, it is
possible to derive a closed expression for the Schur complement. Using
Cauchy’s inequality, the following estimate follows:

sup
vj∈H0(curl)

ω(σvj,∇pj)0√
(ν curl vj, curl vj)0 + ω(σvj,vj)0

≤
√
ω(σ∇pj ,∇pj)0.

Furthermore, for the choice vj = ∇pj ∈ H0(curl), there holds

sup
vj∈H0(curl)

ω(σvj,∇pj)0√
(ν curl vj, curl vj)0 + ω(σvj,vj)0

≥
√
ω(σ∇pj ,∇pj)0.

Consequently, we obtain the identity

(27) sup
vj∈H0(curl)

ω(σvj,∇pj)0√
(ν curl vj, curl vj)0 + ω(σvj,vj)0

=
√
ω(σ∇pj ,∇pj)0.

Furthermore, the equality (27) is also valid for the finite element spaces
ND0(Th) and S1(Th), since the estimates can be repeated for the finite
functions step by step. Consequently, we obtain the identity

Dωσ,h(Kh + Mωσ,h)−1Dωσ,h
T = Lωσ,h.

Hence, we can use the same preconditioners as for Lωσ,h.

Now it is clear, that the results of Corollary 1 remain valid with P replaced by P̃.
Depending on the robustness and optimality conditions of the chosen precondition-
ers for the diagonal blocks, we obtain a robust and optimal solver.

4. The multiharmonic case

Let us now assume that the right-hand side f is multiharmonic, i.e. f has the
form

f(x, t) =

N∑
k=0

fc
k(x) cos(kωt) + f s

k(x) sin(kωt),

with some given natural number N . We mention that the multiharmonic represen-
tation (4) can also be seen as an approximation of a general periodic right-hand
side f by a truncated Fourier series. Due to the linearity of (1), the solution has
the same structure, i.e.

uN(x, t) =

N∑
k=0

uc
k(x) cos(kωt) + us

k(x) sin(kωt).

Again, due to the linearity, the huge (2N + 1)× (2N + 1) system decouples into N
2 × 2 systems of partial differential equations for the two Fourier coefficients of u
belonging to the mode k, and a 1×1 system of partial differential equations for the
mode k = 0. Clearly, we do not have to solve for the us

0, since sin(0ωt) = 0. Hence
we have to solve the following decoupled system of partial differential equations in
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the frequency domain: Find u = (uc
1,u

s
1, . . . ,u

c
N,u

s
N), such that

(28)



ωkσus
k + curl(ν curl uc

k) = fc
k , in Ω,

ωkσuc
k − curl(ν curl us

k) = −f s
k, in Ω,

ωk div(σuc
k) = 0, in Ω,

ωk div(σus
k) = 0, in Ω,

uc
k × n = 0, on ∂Ω,

us
k × n = 0, on ∂Ω.

The finite element discretization of each block (k = 1, . . . , N) leads to a 2×2 block-
matrix Ak

h,i or a 4 × 4 block-matrix Bk
h,i, for the primal or mixed formulations of

Section 2, respectively, that formally have the same structure as Ah,i and Bh,i in
Section 2 with ω replaced by kω. For the resulting system of linear equations, we
obtain the same condition number estimates as in Theorem 2, where the condition
numbers are additionally independent of the modes k and the total number of
modes N . The case k = 0 has to be treated separately. Find uc

0, such that
curl(ν curl uc

0) = fc
0 , in Ω,

div(σuc
0) = 0, in Ω,

uc
0 × n = 0, on ∂Ω.

Again, a similar analysis as in Section 2 can be done. The finite element discretiza-
tion of the resulting mixed problem leads to the following system of linear equations,
given by (

Kh Dσ,h
T

Dσ,h −Lσ,h

)(
uc

h,0

pc
h,0

)
=

(
fc
h,0

0

)
.

This system can directly be tackled, e.g., by using a domain decomposition precon-
ditioner, cf. [25].

Remark 3. By approximating a general right-hand side f in terms of a Fourier
series, i.e.,

f(x, t) =

∞∑
k=0

fc
k(x) cos(kωt) + f s

k(x) sin(kωt),

it follows, that the solution u has the same structure. For numerical approximation,
the infinite series is truncated at a finite number N , i.e.,

uN(x, t) =

N∑
k=0

uc
k(x) cos(kωt) + us

k(x) sin(kωt).

The error due to the truncation of the Fourier series has been analyzed in [4], where
it is shown, that under certain regularity assumptions on f , the error ‖u − uN‖
behaves like O(N−1).

5. Numerical results

In order to confirm our theoretical results numerically, we report on our first
numerical tests for an academic example, namely for the simple time-harmonic
case. The numerical results presented in this section were attained using ParMax1.
First, we demonstrate the robustness of the block-diagonal preconditioners with
respect to the frequency ω and the conductivity σ. Therefore, for the solution of
the preconditioning equations arising from the diagonal blocks, we use the sparse
direct solver UMFPACK that is very efficient for several thousand unknowns in the

1 http://www.numa.uni-linz.ac.at/P19255/software.shtml
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Table 1. Formulation 1, parameter setting: ν = 1, σ = 1.

log10 ω CPU FAC

DOF -10 -8 -6 -4 -2 0 2 4 6 8 10

38 4 4 2 3 3 9 16 8 4 4 2 0.001007 0.000259
196 6 4 2 3 3 9 16 10 6 4 4 0.007135 0.000509
1208 6 4 4 2 3 9 19 14 6 4 4 0.065675 0.004476
16736 6 4 4 2 3 9 20 20 8 4 4 0.645854 0.10463
62048 8 4 4 2 3 7 19 22 8 4 4 7.11876 3.46829

Table 2. Formulation 1, parameter setting: ν = 1, σ1 = 1, ω = 1.

log10 σ2 CPU FAC

DOF -10 -8 -6 -4 -2 0 2 4 6 8 10

38 7 7 7 7 7 9 18 14 6 4 4 0.001269 0.000218
196 4 5 5 7 7 9 17 9 9 9 9 0.006714 0.000576
1208 6 5 5 7 7 9 19 12 9 9 9 0.055624 0.004189
16736 6 5 5 5 7 9 18 17 9 9 9 0.496736 0.109205
62048 8 4 5 5 7 7 17 18 8 7 7 6.17143 3.53488

case of three-dimensional problems [13, 14, 15]. We provide academic test cases for
Formulation 1, Formulation 3 and Formulation 4.

5.1. Formulation 1. Table 1 and Table 2 provide the number of MinRes iterations
needed for reducing the initial residual by a factor 10−8 for different ω, σ and
h for Formulation 1. These numerical experiments were performed for a three-
dimensional linear problem on the unit cube Ω = (0, 1)3, discretized by tetrahedra
for the case ν = 1 (Due to scaling arguments, it can always be achieved, that ν = 1).
Furthermore the piecewise constant conductivity σ is given by

(29) σ =

{
σ1 in Ω1 = {(x, y, z)T ∈ [0, 1]3 : z > 0.5}
σ2 in Ω2 = {(x, y, z)T ∈ [0, 1]3 : z ≤ 0.5} .

These experiments demonstrate the independence of the MinRes convergence rate
on the parameters ω and σ, and the mesh size h since the number of iterations is
bounded by 22 for all computed constellations. Furthermore, we table the CPU
time of MinRes solver (CPU) and the factorization time for the preconditioner
(FAC) in seconds.

5.2. Formulation 3. Table 3 and Table 4 provide the same experiments for For-
mulation 3. Again, the numerical results show robustness of our preconditioner,
since the number of iterations is bounded by 31 for all computed constellations..

5.3. Formulation 4. Table 5 and Table 6 provide the same experiments for For-
mulation 4. Instead of the preconditioner Ph,2, we use the spectral equivalent pre-
conditioner Ph,1. Furthermore, the application of the Helmholtz projector Ph is

realized via the Schur complement DT
ωσ,hL−1

ωσ,hDωσ,h. Again, the numerical results
show robustness of our preconditioner, since the number of iterations is bounded
by 27 for all computed constellations.

6. Generalizations

6.1. The case of vanishing conductivity. Eddy current problems are essentially
different in conducting (σ > 0) and non-conducting regions (σ = 0). In order to
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Table 3. Formulation 3, parameter setting: ν = 1, σ = 1.

log10 ω CPU FAC

DOF -10 -8 -6 -4 -2 0 2 4 6 8 10

54 13 13 14 14 14 16 23 17 15 13 13 0.003093 0.000215
250 25 23 23 21 21 22 27 25 25 25 25 0.021179 0.000596
1458 19 19 19 21 21 21 27 25 23 21 21 0.152970 0.005349
9826 25 25 25 25 25 25 30 31 29 29 29 1.40394 0.115046
71874 25 19 19 19 19 20 26 29 25 23 23 13.6531 3.51824

Table 4. Formulation 3, parameter setting: ν = 1, σ1 = 1, ω = 1.

log10 σ2 CPU FAC

DOF -10 -8 -6 -4 -2 0 2 4 6 8 10

54 31 27 23 22 18 16 23 23 19 19 17 0.004050 0.000298
250 11 12 15 17 19 22 25 22 22 20 18 0.019550 0.000662
1458 19 15 15 16 20 21 26 21 18 16 15 0.140093 0.005013
9826 23 19 19 21 22 25 28 25 22 22 21 1.25811 0.112381
71874 25 17 14 14 18 20 25 25 22 22 20 12.0554 3.55502

Table 5. Formulation 4, parameter setting: ν = 1, σ = 1.

log10 ω CPU FAC

DOF -10 -8 -6 -4 -2 0 2 4 6 8 10

38 5 5 5 5 6 10 17 8 6 6 6 0.002435 0.000217
196 9 8 8 8 8 12 22 13 10 10 10 0.018868 0.000375
1208 11 9 9 9 10 14 24 17 11 11 11 0.148059 0.004035
16736 12 10 10 10 10 14 27 25 13 13 13 1.38511 0.102779
62048 13 9 8 8 8 12 24 25 13 9 9 13.0067 3.35732

Table 6. Formulation 4, parameter setting: ν = 1, σ1 = 1, ω = 1.

log10 σ2 CPU FAC

DOF -10 -8 -6 -4 -2 0 2 4 6 8 10

38 22 20 16 14 10 10 20 14 9 8 8 0.003126 0.000235
196 6 7 8 10 10 12 21 14 13 12 12 0.017918 0.000370
1208 9 8 10 10 12 14 24 16 12 12 12 0.148247 0.004143
16736 11 8 10 12 12 14 24 22 12 12 12 1.25063 0.104136
62048 13 8 9 10 10 12 22 22 12 12 12 11.6058 3.38669

gain uniqueness in the non-conducting regions, we introduce some regularization.
Candidates are elliptic and parabolic regularization. Since, for preconditioning pur-
pose, both of them can be handled in the same framework, we start with introducing
formal regularization parameters (i = 1, 2).

Ri(σ) :=

{
σε := max(σ, ε), i = 1

σ i = 2
, Qi(u) :=

{
0, i = 1 (parabolic)

εu, i = 2 (elliptic)
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Here ε > 0 is a small regularization parameter. We mention, that for the parabolic
and elliptic regularization technique, we have to deal with an additional error of
order O(ε) (see [4] and [46]). Therefore, we are dealing with the following perturbed
problem:

Ri(σ)
∂u

∂t
+ curl (ν curl u) +Qi(u) = f in Ω× (0, T ],

u× n = 0 on ∂Ω× (0, T ),

u(0) = u(T ) in Ω.

Performing the same time-harmonic finite element discretization as in Section 2,
for i = 1, 2, we end up with the system matrices

Ah,ε :=

(
Kh + εMh Mωσ,h

Mωσ,h −(Kh + εMh)

)
and Ah,σε :=

(
Kh Mωσε,h

Mωσε,h −Kh

)
.

By a similar procedure, we can show, that the block-diagonal preconditioners

Ph,ε := diag (Kh + εMh + Mωσ,h,Kh + εMh + Mωσ,h) and

Ph,σε := diag (Kh + Mωσε,h,Kh + Mωσε,h),

lead to parameter-independent condition number estimates:

κPh,ε
(Ph,ε

−1Ah,ε) := ‖Ph,ε
−1Ah,ε‖Ph,ε

‖Ah,ε
−1Ph,ε‖Ph,ε

≤
√

2 ≈ 1.41421,

κPh,σε
(Ph,σε

−1Ah,σε) := ‖Ph,σε
−1Ah,σε‖Ph,σε

‖Ah,σε
−1Ph,σε‖Ph,σε

≤
√

2.

In these cases, the condition number estimates are even independent of the small
regularization parameter ε.

Remark 4. It is very common to discretize the time-harmonic eddy current prob-
lems in terms of symmetrically coupled finite and boundary element method (e.g.
[22]), taking care of the different physical behavior in the conducting and non-
conducting subdomains, respectively. Also in this case the resulting symmetric sys-
tem of linear equations can be preconditioned by block-diagonal preconditioner, that
involves the evaluation of standard H0(curl) inner products, see [28]. Beside the
fact, that we do not have to deal with a regularization error, the main advantage
of the finite element - boundary element approach is the treatability of possible un-
bounded domains.

6.2. A block-diagonal preconditioner for a non-symmetric system. Through-
out this work, we use a symmetric reformulation of the original frequency domain
equations. However, in the non-linear case, the Newton linearization yields to a
non-symmetric Jacobi system, that cannot be reformulated as symmetric system
as in the linear case. Therefore, it is important to investigate the non-symmetric
system

(30)

(
Kh Mωσ,h

−Mωσ,h Kh

)
︸ ︷︷ ︸

=:Āh

(
uc

h

us
h

)
=

(
fc
h

f s
h

)
,

that reflects the structure of the Jacobi system in the non-linear case. Due to the
non-symmetry the MinRes method is no longer applicable, but we can use, for in-
stance, the GMRes method [47] or QMR method [18]. Indeed, such a kind of system
has already be considered in [5], wherein a multigrid-preconditioned QMR solver is

proposed. The main ingredient of this solver is a specific block preconditioner Ĉh,
that only involves the inversion of H(curl) standard problems

Ĉ−1
h :=

1

2

(
(Kh + Mωσ,h)−1 0

0 (Kh + Mωσ,h)−1

)(
I I
I −I

)
.
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This preconditioner leads to a parameter-robust bound for the condition number
of the preconditioned system, i.e.

κPh,1
(Ĉ−1

h Āh) := ‖Ĉ−1
h Āh‖Ph,1

‖Ā−1
h Ĉh‖Ph,1

≤ 2.

Following the approach of Section 2, we can even do better. Inspired by the
parameter-robust preconditioner (17) we propose the following preconditioner for
the non-symmetric case

C̄h =

(
Kh + Mωσ,h 0

0 −(Kh + Mωσ,h)

)
.

Again we can verify an inf-sup condition and a sup-sup condition in a non-standard
norm, and analogous to the symmetric case we obtain the condition number esti-
mate

(31) κPh,1
(C̄−1

h Āh) := ‖C̄−1
h Āh‖Ph,1

‖Ā−1
h C̄h‖Ph,1

≤
√

2.

Anyhow, a condition number estimate is not enough for GMRes convergence (we
need a field of value estimate, see e.g. [37]). Nevertheless, the condition number
estimate indicates, that the preconditioner C̄h is the right one to be used in the
GMRes or QMR method applied to (30).

7. Conclusion

The method developed in this work shows great potential for solving time-
harmonic and time-periodic eddy current problems in an efficient and optimal
way. The key ingredients of our method are the usage of a non-standard time
discretization technique in terms of a truncated Fourier series, and the construc-
tion of parameter-independent solvers for the resulting system of equations in the
frequency domain by a special operator interpolation technique. The theory devel-
oped in this paper allows us to establish a theoretical estimate of the convergence
rate of MinRes as a solver when our proposed preconditioners are applied. Nu-
merical experiments confirm these convergence rate estimates. Due to the natural
decoupling of the frequency domain equations an efficient parallel implementation
of the solution procedure is straight-forward.

In the non-linear case, i.e. ν = ν(|curl u|), it turns out, that even for a harmonic
excitation of the right-hand side, we have to take all other frequencies kω into
account, see e.g. [3, 45, 16]. Additionally, due to the nonlinearity, we lose the
advantageous block-diagonal structure, and, therefore, we have to deal with a fully-
coupled system of non-linear equations in the Fourier coefficients. Since the Fréchet
derivative of the non-linear frequency domain equations is explicitly computable,
the nonlinearity can easily be overcome by applying Newton’s method. Anyhow,
at each step of Newton’s iteration, a huge and fully block-coupled Jacobi system
with sparse blocks has to be solved. It turns out, that the Jacobi system is not
symmetric, and therefore the preconditioned MinRes method is not suitable any
more. Anyhow, due to § 6.2 the preconditioners developed in this work are very
promising to be usable also in the non-linear case.
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