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Abstract
We derive a three-dimensional, linearized model for the time-dependent sim-
ulation of free-surface water waves in a test basin. For the numerical solution
of this problem, we apply a Runge-Kutta scheme for time discretization and
show that the problem to be solved at each time step corresponds to the eval-
uation of a Dirichlet-to-Neumann map on the free surface of the domain. We
use the Galerkin Boundary Element Method for the approximate evaluation
of this operator. Data-sparse matrix approximation methods based on hier-
archical matrix representation are used in order to solve the resulting large,
dense linear systems in a quasi-optimal manner. We perform numerical tests
and report results on runtime and accuracy of such an algorithm.
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Chapter 1

Introduction

1.1 Motivation

In hydrodynamic laboratories, new designs for maritime vessels like freight
carriers or ferries are �rst tested at a model scale in a controlled environment.
In order to be able to test ships under realistic wave conditions, the basins in
which these tests are performed are typically equipped with so-called wave
makers along one or more of their sides; these are arrays of independently
movable elements which may be controlled in such a way as to excite waves
at the surface of the water.

Clearly, there are di�erent pro�les of waves under which di�erent kinds of
ships should be tested depending on the environmental factors under which
they are planned to operate in the real world. It is therefore crucial to be
able to create a range of such wave pro�les in a test basin by means of the
wave makers. It is not trivial to determine the movement of the wave makers
required to create a given wave pro�le, nor, inversely, the wave pro�le which
ensues from a certain wave maker con�guration. It is therefore very useful
to have a numerical simulation of the wave behaviour in such a basin for
a predetermined wave maker motion. Using such a simulation, a human
operator may iteratively tune the wave maker parameters in order to create
a desired wave pro�le without taking up valuable testing time in an actual
wave basin. Conceivably, such a simulation could also be used in order to
de�ne an objective function for an optimization problem in order to fully
automatize the process.

Ultimately, one might want to develop so-called Numerical Wave Tanks
(NWTs): here, the goal is no longer the simulation of existing wave basins,
but the complete replacement of these facilities by numerical simulation. To
achieve this, more detailed models which also include wave-body interaction
for the vessel being tested are needed. These developments are however
beyond the scope of this work, and we will here focus on the simulation
of wave generation without paying attention to any interference by bodies
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�oating in the test basin. On the subject of NWTs, we direct the interested
reader to the references in [13].

1.2 Review of previous work

There is a wealth of literature on the topic of simulation of both linear and
nonlinear waves in settings comparable to the one employed herein. We will
only cite a select few which were used for reference during the creation of
this work.

A thorough discussion of various forms of wave phenomena may be found
in [14]; in particular, this book was consulted for the derivation of the gov-
erning equations for the wave basin.

[13] is a quite comprehensive treatment of both the modelling and the
numerical solution of nonlinear waves by the use of a Finite Element Method.

In [12], a discontinuous Galerkin Finite Element Method is developed to
solve the same linearized wave problem formulation that we use here, albeit
in a two-dimensional setting.

In [9], a hp/spectral element method for the solution of both linear and
nonlinear free-surface �ow is described.

[5] describes a Lagrangian approach using a FEM for the fully nonlinear
wave model where the dynamic body of water is transformed onto a �xed
domain.

It should also be noted that this work is a continuation of a project
�nished for a project seminar at the Institute of Computational Mathematics
of the Johannes Kepler University Linz in the summer semester 2007. In
that project, a similar problem to the one described herein was solved, but
restricted to two dimensions.

1.3 Overview of the thesis

This work is for the most part concerned with the instationary solution of
the linearized potential formulation of inviscid, incompressible free-surface
�ow in three dimensions. The major distinguishing factor to the works cited
above is the use of a Galerkin Boundary Element Method for the evaluation
of the Dirichlet-to-Neumann map which arises in every time step. Boundary
Element Methods have long been known as an attractive way to solve such
problems in two-dimensional settings. However, the requirement of solving
linear systems with large dense matrices has long inhibited their use in the
three-dimensional case. Only relatively recently, by the development of so-
called data-sparse approximation techniques, has their use become viable in
these cases. (See [2] and the references therein.)

Chapter 2 presents the derivation of the linearized equations which govern
the �ow of a body of water in a model basin.
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In Chapter 3, we introduce the concepts of the Boundary Element Method
and derive a speci�c symmetric formulation of a Galerkin BEM which will
be used in the numerical solution of the wave problem.

Chapter 4 describes the techniques needed to approximate the BEM sys-
tem matrices in a data-sparse way in order to obtain acceptable run-time
complexity and memory usage.

Chapter 5 presents numerical tests for model boundary value problems in
order to determine the performance of the BEM, as well as for the instation-
ary wave problem iteration itself. Where possible, we give error behaviour
measurements, and we time the execution of the algorithm in dependence of
the grid size.

Chapter 6 summarizes the �ndings of the thesis and sketches possible
further developments.
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Chapter 2

Mathematical Model of the

Test Basin

Let us consider a three-dimensional, simply connected, time-dependent body
of water, Ω(t) ⊂ R3, which is oriented such that gravity applies in negative z
direction; in other words, the unit z vector is considered to point �upwards�.
Some parts of the boundary of Ω(t) represent the walls of the basin and are
therefore stationary. (We neglect for the moment the e�ect of the moving
wave maker elements.) We shall call these parts of the boundary the con-
strained surface. Other parts of the boundary represent the area where the
body of water interfaces with the air above it. These parts will generally be
in motion, and we call them the free surface of Ω(t).

Together, the constrained and the free surface make up the entirety of
the boundary Γ(t) = ∂Ω(t) of our domain. The constrained surface is given,
the free surface is a priori unknown. Determining the location of the free
surface as a function of time is our main objective.

This chapter deals with the derivation of the model problem which will
be used to simulate the motion of the free surface. First, in section 2.1,
we derive general formulae governing the local behaviour of such a body of
water. In section 2.2, we derive appropriate boundary conditions for both
the constrained and the free surface. In section 2.3 we seek to simplify the
resulting model by linearizing it. (More in-depth discussion of the subject
of these three chapters may be found in [14].) Section 2.4 is concerned with
the time discretization of this linearized model. Finally, in section 2.5, we
make some preliminary observations about the evaluation of the Dirichlet-
to-Neumann map which arises during time discretization.
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2.1 Continuum mechanical description of a body of

water

We start our derivation from the well-known equations for an ideal, incom-
pressible �uid,

Dv

Dt
= −1

ρ
∇p− gez, (2.1)

∇ · v = 0, (2.2)
where we use the symbols

v(x, y, z, t) . . . velocity (vector-valued function),
p(x, y, z, t) . . . pressure (scalar-valued function),
ρ . . . . . . . . . . . . .density (constant),
g . . . . . . . . . . . . .gravitational acceleration (constant),
ez . . . . . . . . . . . . unit vector in z-direction

as well as ∇ for the gradient, ∇· for the divergence and D
Dt for the material

derivative of a quantity. (For reference, see e.g. [6]).
Recalling that, by de�nition, the material derivative has the form

Df

Dt
=
∂f

∂t
+ (v · ∇)f

and using the vector identity
(v · ∇)v = (∇× v)× v +∇(

1
2
v2)

(which is easily proved by elementary calculation) we get from (2.1)
∂v

∂t
+ ω × v +∇(

1
2
v2) = −1

ρ
∇p− gez, (2.3)

where we have introduced as a new symbol the vorticity ω = ∇× v. In our
application, it is reasonable to assume irrotational �ow, that is ω = 0, and
(2.3) simpli�es to

∂v

∂t
+∇(

1
2
v2) = −1

ρ
∇p− gez. (2.4)

Since we have assumed Ω(t) to be simply connected, the �ow v is irrota-
tional if and only if v is conservative. Hence we may introduce a potential
v = ∇φ and obtain, by integration,

∂φ

∂t
+

1
2
(∇φ)2 =

p0 − p

ρ
− gz. (2.5)

Here we have introduced an integration constant in the form of a constant
reference pressure p0 ∈ R which will be used in section 2.2 to derive boundary
conditions at the free surface.
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By a simple rewriting of (2.5) and using the incompressibility condition
(2.2), we obtain the basic set of equations for our problem:

4φ = 0 (2.6)
p− p0

ρ
= −∂φ

∂t
− 1

2
(∇φ)2 − gz (2.7)

2.2 Boundary conditions

For our model, we assume that Ω(t) is aligned such that the free surface,
when at rest, aligns with the plane z = 0. We denote this resting free
surface by

Γ̃F ⊂ R2 × {0}.

To describe the time-dependent perturbations of the free surface, we choose
a simple elevation-based parameterization. We introduce a perturbation
function ζ : (x, y, t) 7→ R and assume that the free surface ΓF (t) ⊂ ∂Ω(t) is
given by

ΓF (t) =
{

(x, y, z) ∈ R3 : (x, y, 0) ∈ Γ̃F , z = ζ(x, y, t)
}
.

See �g. 2.1 for a two-dimensional sketch.
ζ(x, y, t)

z = 0

Ω

Figure 2.1: A sketch of the free surface parametrization ζ.

Note that this parameterization is not fully general. In particular, in this
model it is impossible for the crests of waves to travel over the top of troughs
lying ahead of them, thus forming so-called breaking waves. Refer to �g. 2.2
for a sketch of such a situation. A model general enough to handle these
situations would however complicate matters signi�cantly, and for the sake
of simplicity we will stick to the more basic representation.

The constrained surface (which is known in advance) is denoted by ΓC .
As noted in the introduction to this chapter, we have

∂Ω(t) = Γ(t) = ΓF (t) ∪̇ ΓC .
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Figure 2.2: Sketch of �breaking wave� which cannot be represented in sim-
ple elevation-based parameterization.

We now have to consider which boundary conditions to impose on the
di�erent parts of the boundary. On the constrained surface, i. e. the walls
of the basin, we assume that there is a prescribed normal velocity gN :
(x, y, z, t) 7→ R which translates via

gN = v · n = ∇φ · n on ΓC

into a standard Neumann boundary condition for φ at any given time t. In
particular, for those parts of the constrained surface which represent �xed
walls, we will have gN ≡ 0. On the other hand, the parts of the basin wall
which are equipped with wave maker elements may be modelled by varying
the normal velocity at those boundary segments periodically.

The more complicated boundary conditions are of course those on the
free surface. In fact, because of the time-dependence of this surface, we will
require two boundary conditions here instead of just one. These are known
as the kinematic and the dynamic boundary condition.

2.2.1 The kinematic boundary condition

The free surface ΓF (t) may be characterized by the fact that particles which
are on the surface stay on the surface. In other words, for all (x, y, z) ∈ ΓF (t),
we enforce

D

Dt
(ζ(x, y, t)− z) = 0,

which may be rearranged successively to yield
D

Dt
ζ(x, y, t) =

D

Dt
z,

∂ζ

∂t
+ v · ∇ζ = v · ez,

∂ζ

∂t
+∇φ · ∇ζ =

∂φ

∂z
. (2.8)

(2.8) is the kinematic boundary condition for our free surface.

2.2.2 The dynamic boundary condition

From physics, we get that the pressure in the water and the pressure in
the air must be equal at the free surface. Assuming pressure in the air is
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p0 = const., which is a reasonable simpli�cation, we get
p(x, y, z, t) = p0 on ΓF (t).

Recalling (2.7), this yields the dynamic boundary condition
∂φ

∂t
+

1
2
(∇φ)2 + gz = 0 on ΓF (t). (2.9)

2.3 Linearization

For all (x, y, z) ∈ ΓF (t), we have derived the boundary conditions
∂ζ

∂t
+∇φ · ∇ζ =

∂φ

∂z
,

∂φ

∂t
+

1
2
(∇φ)2 + gz = 0.

Assuming that velocities ∇φ and perturbations ζ are small, we may lin-
earize by omitting their products to obtain

∂ζ

∂t
=
∂φ

∂z
,

∂φ

∂t
= −gz.

Recalling that (x, y, z) ∈ ΓF (t) =⇒ z = ζ(x, y, t), we may equivalently
write

∂ζ

∂t
=
∂φ

∂z
,

∂φ

∂t
= −gζ.

Finally, noting that ζ was assumed to be small, we may conclude that
ΓF (t) ≈ Γ̃F .

In other words, for small perturbations, the time-dependent free surface is
well approximated by the free surface at rest. A further step of linearization
may therefore be taken by applying these conditions on z = 0 rather than
on z = ζ(x, y, t), yielding

∂ζ

∂t
=
∂φ

∂n
on Γ̃F ,

∂φ

∂t
= −gζ on Γ̃F

where n denotes the outward unit normal vector to the linearized surface.
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In other words, we approximate the time-dependent domain Ω(t) by the
stationary domain Ω with the boundary ∂Ω = Γ = Γ̃F∪ΓC . The sought-after
wave pro�le is thus no longer encoded in the geometry of our computational
domain, but only in the perturbation function ζ. This will become a great
bene�t later on when numerical methods are applied to the problem, as we
will then be able to use the same space discretization for every time step
instead of using a di�erent discretization in each time step.

To summarize, we have now derived the fully linearized model problem
4φ = 0 in Ω,
∂φ

∂n
= gN on ΓC ,

∂ζ

∂t
=
∂φ

∂n
on z = 0,

∂φ

∂t
= −gζ on z = 0.


(2.10)

2.4 Time discretization

It is not immediately obvious how (2.10) can be e�ciently solved. Let us
�rst note that the time dependence enters only at the (linearized) free sur-
face, z = 0. Here we have functions ζ(x, y, t) and φ(x, y, 0, t) =: φD(x, y, t)
whose time derivatives are described in dependence of the respective other
function; however, ∂ζ

∂t depends not on the values of φD itself, but on the
normal derivative ∂φ

∂n of the potential at the free surface.
In order to make this structure more clear, we now attempt a rewriting

of the problem in the form of an Ordinary Di�erential Equation (ODE). To
this end, we introduce the Dirichlet-to-Neumann map or Steklov-Poincaré
operator S(t) which maps some Dirichlet data gD on Γ̃F to the Neumann
data as follows:

S(t) : gD 7→ ∂u

∂n


Γ̃F

where u : Ω → R such that 4u = 0 in Ω,
∂u

∂n
= gN (t) on ΓC ,

u = gD on Γ̃F .

(2.11)

Using this operator, the model problem may now be rewritten in the
form of a system of two coupled ODEs,

∂

∂t

(
φD

ζ

)
=

(
0 −g
S(t) 0

) (
φD

ζ

)
. (2.12)
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We note that S(t) is in general a nonlinear operator, thus making the
ODE system (2.12) nonlinear as well.

From the basic theory of ODEs, it should now be clear that in addition
to the conditions speci�ed so far, we will also require initial conditions for ζ
and φD. We will simply use constant zero functions for both initial values.
In the context of our model problem, this means that the free surface is
non-disturbed and at rest initially.

For the solution of this ODE system in a time interval [0, T ], we introduce
a discretization of the time axis 0 = t0 < t1 < . . . < tN = T and the notations

φ
(n)
D (x, y) := φD(x, y, tn),

ζ(n)(x, y) := ζ(x, y, tn),

τ (n) := tn+1 − tn.

The �nite series of functions (φ(n)
D )n=0,...,N and (ζ(n))n=0,...,N are thus time-

discretized versions of our free surface functions φD and ζ, respectively.
We then apply a classical explicit fourth-order Runge-Kutta method,

which has the following Butcher tableau:
0
1
2

1
2

1
2 0 1

21 0 0 1
1
6

1
3

1
3

1
6

The resulting method, when written out in full, may be seen in �g. 2.3 on
page 14. Note that by suitable dimensional transformations, we may assume
g = 1.

2.5 Evaluating the Dirichlet-to-Neumann map

Examining �g. 2.3, the only part missing in order to be able to actually solve
our problem is a method to evaluate the Dirichlet-to-Neumann operator S(t).
However, upon inspection of its de�nition (see (2.11)), it becomes clear that
evaluation of S(t) is at its core equivalent to the solution of Laplace's equa-
tion 4φ = 0 in Ω with mixed Dirichlet and Neumann boundary conditions.
This is a standard problem in the theory of partial di�erential equations and
quite thoroughly studied. For its numerical solution, several well-established
methods are available. Certainly the most widely-used of these methods is
the Finite Element Method (FEM). One alternative is the Finite Volume
Method (FVM), which is especially popular in the computational �uid dy-
namics community. For very simple geometry as we will employ later in our
numerical example, even a simple Finite Di�erence Method (FDM) would
be applicable.
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S1 = S(tn)(φ(n)
D )

g1,φD
= φ

(n)
D − τ (n)

2
ζ(n)

g1,ζ = ζ(n) +
τ (n)

2
S1

S2 = S(tn +
τ (n)

2
)(g1,φD

)

g2,φD
= φ

(n)
D − τ (n)

2
g1,ζ

g2,ζ = ζ(n) +
τ (n)

2
S2

S3 = S(tn +
τ (n)

2
)(g2,φD

)

g3,φD
= φ

(n)
D − τg2,ζ

g3,ζ = ζ(n) + τS3

S4 = S(tn + τ)(g3,φD
)

φ
(n+1)
D = φ

(n)
D − τ (n)

6

(
ζ(n) + 2g1,ζ + 2g2,ζ + g3,ζ

)
ζ(n+1) = ζ(n) +

τ (n)

6
(S1 + 2S2 + 2S3 + S4)

Figure 2.3: The full explicit fourth-order Runge-Kutta time integration
scheme for (2.12).
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All these methods share the property that the entire volume Ω has to
be discretized into a grid of some form. Likewise, they all produce as their
solution the values of the potential φ over the entire grid. Looking again
at (2.11), we see that our requirements are di�erent: we actually need the
normal velocities ∂φ

∂n , and we only need them on the Dirichlet boundary. In
particular, we do not require the calculation of the values of φ at any point
within Ω. For the afore-mentioned methods, there are ways to recover the
normal velocities given the potential �eld φ; a naive approach however incurs
a loss of accuracy, thus creating a need for more sophisticated, nontrivial
velocity recovery techniques.

It might therefore be advantageous to employ a method which operates
directly on the boundary values of φ and ∂φ

∂n . Such a method, namely the
Boundary Element Method (BEM), is in fact available. The next chapter
is concerned with introducing the general concepts behind this method and
with developing a particular instance of the BEM which will be used to solve
the problem at hand.
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Chapter 3

The Boundary Element

Method

3.1 Motivation and overview

Given is an elliptic di�erential equation in some domain Ω,
(Lu)(x) = f(x) ∀x ∈ Ω,

with appropriate boundary conditions of the �rst, second and/or third kind.
It is our goal to determine u in dependence of the right-hand side f and
the boundary conditions. The basic idea of the Boundary Element Method
(BEM) is to reformulate this problem as an integral equation on the bound-
ary Γ = ∂Ω of the domain.

The main tools to accomplish this are the third Green's identity, also
known as the representation formula, and the fundamental solution of the
elliptic di�erential operator L. By the use of these tools, we derive an identity
for the Cauchy data, u|Γ and ∂u

∂n |Γ, on the boundary. By inserting the known
boundary conditions for the corresponding parts of the Cauchy data, we
obtain an integral equation over Γ which can then be solved using any of the
known techniques from the study of such problems.

In this way, we can calculate the missing parts of the Cauchy data. If the
solution is required in the entire domain Ω, it may be obtained by means of
the representation formula.

The advantages of the BEM over a standard Finite Element Method
(FEM) may be summarized as follows:

• By only considering the boundary, the dimension of the problem is re-
duced by one. For instance, a two-dimensional problem will be reduced
to a one-dimensional one over the curve representing the boundary of
the domain. We will however see that this advantage is counterbal-
anced by other factors.
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• Similarly, instead of discretizing the entire domain, we only have to
discretize its lower-dimensional boundary, which is an immediate sim-
pli�cation during the meshing phase.

• In some applications, the Cauchy data is really what one is interested
in. In those cases, the BEM has a certain advantage over a FEM,
especially if the normal derivative ∂u

∂n |Γ is of interest: with a FEM, this
quantity has to be recovered in a nontrivial way from the known values
of u in order to avoid a loss of accuracy. This advantage applies to the
problem we have established in Chapter 2.

• If required, both the solution and its derivative can be obtained with
the same accuracy in the entire domain Ω by means of the representa-
tion formula.

• Both inner and outer boundary value problems (i. e. those in the com-
plement of some bounded domain Ω) can be treated using the same
general technique.

Naturally, the BEM also has certain disadvantages as compared to the
FEM:

• As hinted at above, the BEM relies not only on the existence, but also
the explicit knowledge of the fundamental solution of the di�erential
operator de�ning the boundary value problem. This immediately pre-
cludes problems where the fundamental solution is not known from
being treated with such a method.

• The integral kernels arising in the formulation of such boundary inte-
gral equations are singular. While this is certainly an advantage with
respect to unique solvability of the resulting integral equations, it leads
to complications when generating the system matrices numerically.

• There are certain theoretical and practical di�culties associated with
the treatment of singularities on edges and corners of the domain,
especially for the collocation boundary element technique.

• As we shall see, the system matrices arising from discretizing bound-
ary integral equations are dense, not sparse as in common FEM ap-
proaches. This greatly o�sets the above-mentioned advantage of di-
mensional reduction and renders the treatment of three- or higher-
dimensional problems using a naive approach nearly intractable. This
particular disadvantage can be remedied by the use of data-sparse ap-
proximations of the dense BEM matrices; we will elaborate on this in
Chapter 4.
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In the following, we will expand on the concepts mentioned in this in-
troduction. Section 3.2 describes the transformation of the boundary value
problem into an in�nite-dimensional boundary integral equation. Section 3.3
then introduces a Galerkin approximation for this integral equation. Sec-
tion 3.4 is concerned with the details of computing the BEM matrix entries.
Finally, in section 3.5, we expend some notes on the properties of BEM
matrices and on how to solve the resulting linear system.

3.2 Boundary integral equations

From now on, in accordance with problem (2.10), we will restrict ourselves to
the three-dimensional case; the two-dimensional derivation is largely analo-
gous. Furthermore, we assume that Ω ⊂ R3 is a bounded, simply connected
Lipschitz domain with boundary Γ = ∂Ω ∈ C0,1 and outward unit normal
vector n. As mentioned in section 3.1, outer boundary value problems on ΩC

could be treated in much the same fashion, but again we stick to the relevant
problem at hand. A comprehensive treatment of both interior and exterior
problems for various di�erential operators using the BEM can be found in
[8].

3.2.1 Fundamental solutions

We shall �rst introduce the notion of the fundamental solution of a di�eren-
tial operator.
De�nition 3.2.1. Let L ≡ Lx be a di�erential operator. E(x, y) is called
fundamental solution of L if and only if for all x, y ∈ R3,

LxE(x, y) = δ(x− y) in D′(Ω). (3.1)
The right-hand side δ here refers to the Dirac delta distribution, and

therefore this relation is to be satis�ed in the distributional space D′(Ω).
Let us brie�y reiterate the precise meaning of this identity.

For bounded domains Ω, we can set D(Ω) = C∞
0 (Ω), that is, the space

of all in�nitely continuously di�erentiable functions with compact support
in Ω. For a sequence (φn)n∈N in C∞

0 (Ω) we de�ne convergence by
φn → 0 in C∞

0 (Ω) ⇔ a) ∃K ⊂ Ω compact : supp(φn) ⊆ K ∀n ∈ N and
b) ∂αφn → 0 uniformly on K ∀ multi-indices α;

φn → φ in C∞
0 (Ω) ⇐⇒ φn − φ→ 0 in C∞

0 (Ω).

The distributional space D′(Ω) is then de�ned as the space of linear
continuous functionals on D(Ω). For such a functional l ∈ D′(Ω), we adopt
the notation

〈l, φ〉 := l(φ) ∀φ ∈ D(Ω),
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and de�ne its distributional derivative as〈
∂l

∂xi
, φ

〉
:= −

〈
l,
∂φ

∂xi

〉
∀φ ∈ D(Ω).

We assume our di�erential operator L of degree m has the general shape

Lu =
m∑

i=0

∑
|α|=i

lα
∂|α|

∂xα
u

with α = (α1, α2, α3) representing a multi-index of nonnegative integers and
lα the coe�cient associated with the multi-index α. The de�ning relation
(3.1) for the fundamental solution may then be rewritten

m∑
i=0

(−1)i
∑
|α|=i

lα

〈
E(·, y), ∂

|α|

∂xα
φ

〉
=

{
φ(y), y ∈ Ω,
0, else.

After this brief excursion, let us give some examples of fundamental so-
lutions of the Laplace operator in di�erent dimensions.
Example 3.2.1. Let Lx = −4x. Then,

• in 1D, E(x, y) = 1
2(1− |x− y|),

• in 2D, E(x, y) = − 1
2π ln |x− y|,

• in 3D, E(x, y) = 1
4π

1
|x−y| .

We have only given the de�nition of the fundamental solution for the three-
dimensional case, but of course it is de�ned completely analogously in any
dimension d ∈ N. Nonetheless, as this example shows, the speci�c fun-
damental solutions in di�erent dimensions may exhibit di�erent forms. In
particular, they vary in the degree of their singularity along the diagonal
E(x, x).

In order to demonstrate the relevance of the concept of fundamental
solutions to the solution of partial di�erential equations, let us consider a
simple application of fundamental solutions to the solution of di�erential
equations.
Example 3.2.2. Consider the problem

Lxu = f in R3,

where Lx is a di�erential operator and u and f are functions in a suitable
function space over R3. With a fundamental solution E(x, y) of Lx, we may
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de�ne u := E(·, 0) ∗ f (where ∗ represents the convolution operator) and
obtain

Lxu = Lx(E(·, 0) ∗ f) = (LxE(·, 0)) ∗ f =
= δ(· − 0) ∗ f = δ ∗ f = f.

Therefore, u is a solution of the di�erential equation. Usually, though, we
want to solve such equations in a bounded domain and to prescribe boundary
conditions on the boundary of this domain; using this simple technique, there
are no degrees of freedom left to ful�ll such conditions. Clearly, we need more
sophisticated methods for the solution of our problem, but this basic result
might at least indicate the rationale behind the term �fundamental solution.�

3.2.2 Green's identities

The third Green's identity will ultimately allow us to represent any value of
the solution u within Ω in terms of the Cauchy data, u|Γ and ∂u

∂n |Γ.We will �rst state the ubiquitous �rst Green's identity and use it as
a starting point to obtain the remaining two identities. A more detailed
derivation can be found in [11], as can the de�nition and the properties of
the Hilbert spaces Hk(Ω) which we use without further introduction.
Theorem 3.2.1 (First Green's identity). For all u ∈ H1(Ω) and v ∈
H2(Ω), we have ∫

Ω
u4v dx =

∫
Γ
u
∂v

∂n
ds−

∫
Ω
∇u · ∇v dx. (3.2)

By reversing the role of u and v in (3.2) and subtracting from the original
formula, we lose the symmetric term and obtain the following result.
Theorem 3.2.2 (Second Green's identity). For all u, v ∈ H2(Ω), we
have ∫

Ω
(u4v − v4u) dx =

∫
Γ

(
u
∂v

∂n
− v

∂u

∂n

)
ds. (3.3)

Finally, by choosing an arbitrary source point y from Ω and inserting
the fundamental solution of our di�erential operator into the second Green's
identity via v(x) = E(x, y), we can derive the third Green's identity or
representation formula.
Theorem 3.2.3 (Third Green's identity). For all u ∈ H2(Ω) and all
y ∈ Ω, we have

σ(y)u(y) =−
∫

Γ
u(x)

∂E(x, y)
∂nx

dsx +
∫

Γ

∂u

∂n
(x)E(x, y) dsx

−
∫

Ω
4u(x)E(x, y) dx

(3.4)
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where
σ(y) = lim

ε↓0

1
4πε2

∫
x∈Ω,|x−y|=ε

1 dsx.

Remark. The function σ in (3.4) has the following property:

σ(y) =

{
1, y ∈ Ω,
1
2 , almost everywhere on Γ.

In particular, σ is equal to 1
2 on every smooth part of the boundary.

It is important to note the justi�cation for the term �representation for-
mula.� Given the values of 4u within Ω as well as the full Cauchy data,
u|Γ and ∂u

∂n |Γ, all terms on the right-hand side of (3.4) are known. Thus,
we can then use this formula in order to calculate the term σ(y)u(y) for all
y; in particular, for y ∈ Ω, we have σ(y) ≡ 1 and can thus evaluate the
representation formula in order to obtain the value of the solution u at any
desired point within Ω.

Of course, in typical boundary value problems, we are not given the full
Cauchy data (as such a problem would be overdetermined), but only, in
some sense, �half� of it. For instance, in the pure Dirichlet problem, we are
given the full Dirichlet data, but none of the Neumann data; in some mixed
boundary value problems, we are given the Dirichlet data on one part of the
boundary and the Neumann data on the other one.

Our goal is therefore to obtain the unknown parts of the Cauchy data
from the given parts. Once this is accomplished, the solution u may be
evaluated at arbitrary points y ∈ Ω. As mentioned before, however, in our
model problem we are only interested in the Cauchy data itself.

Before we continue, we apply some simpli�cations in notation. As we
will only be dealing with the Laplace equation, 4u = 0, we drop the last
term in (3.4). Furthermore, we will henceforth use the abbreviation

v(y) :=
∂u

∂n
(y) ∀y ∈ Γ

for the normal derivative of the solution on the boundary. Hence we obtain
the simpli�ed representation formula

σ(y)u(y) = −
∫

Γ
u(x)

∂E(x, y)
∂nx

dsx +
∫

Γ
v(x)E(x, y) dsx ∀y ∈ Ω′. (3.5)

3.2.3 Boundary integral operators

In order to obtain a boundary integral equation involving only the Cauchy
data from (3.5), we will choose the source point y from the boundary Γ. As
σ ≡ 1

2 almost everywhere on Γ, we will from now on also equate σ with 1
2 .This is not in general justi�ed for approaches where the pointwise values of

22



σ must be taken into account. However, for the Galerkin method we will
employ for discretization later on, only integrals over Γ will play a role, hence
this is a reasonable simpli�cation. We thus obtain

1
2
u(y) = −

∫
Γ
u(x)

∂E(x, y)
∂nx

dsx +
∫

Γ
v(x)E(x, y) dsx ∀y ∈ Γ. (3.6)

We now formally apply the di�erential operator ∂
∂ny

to this equation. It is
not obvious that this is a mathematically sound operation, however it can
be shown that the resulting equality does in fact hold. From this we get

1
2
v(y) = −

∫
Γ
u(x)

∂2E(x, y)
∂nx∂ny

dsx +
∫

Γ
v(x)

∂E(x, y)
∂ny

dsx, ∀y ∈ Γ. (3.7)

The last two identities are integral equations over the boundary Γ involv-
ing four di�erent integral operators. We introduce abbreviations for these
four operators and then examine their mapping properties.
De�nition 3.2.2. We de�ne the boundary integral operators

(V v)(y) :=
∫

Γ
E(x, y)v(x) dsx, (single layer potential)

(Ku)(y) :=
∫

Γ

∂E(x, y)
∂nx

u(x) dsx, (double layer potential)

(K ′v)(y) :=
∫

Γ

∂E(x, y)
∂ny

v(x) dsx, (adjoint double layer potential)

(Du)(y) :=−
∫

Γ

∂2E(x, y)
∂nx∂ny

u(x) dsx. (hypersingular)

The integrals must be interpreted in a weak sense; cf. [11].
Theorem 3.2.4. The boundary integral operators from de�nition 3.2.2 are
linear mappings between the following spaces:

V : H−1/2(Γ) → H1/2(Γ),

K : H1/2(Γ) → H1/2(Γ),

K ′ : H−1/2(Γ) → H−1/2(Γ),

D : H1/2(Γ) → H−1/2(Γ).

The single layer potential operator V is bounded and H−1/2(Γ)-elliptic:

cV1 ‖w‖
2
H−1/2(Γ) ≤ 〈V w,w〉 , ‖V w‖H1/2(Γ) ≤ cV2 ‖w‖H−1/2(Γ) ∀w ∈ H

−1/2(Γ).

The double layer potential operator K is bounded:

‖Kv‖H1/2(Γ) ≤ cK2 ‖v‖H1/2(Γ) ∀v ∈ H1/2(Γ).
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The adjoint double layer potential operator K ′ is bounded:∥∥K ′w
∥∥

H−1/2(Γ)
≤ cK

′
2 ‖w‖H−1/2(Γ) ∀w ∈ H−1/2(Γ).

The hypersingular operator D is bounded and H1/2(Γ)-semielliptic:

cD1 |v|
2
H1/2(Γ) ≤ 〈Dv, v〉 , ‖Dv‖H−1/2(Γ) ≤ cD2 ‖v‖H1/2(Γ) ∀v ∈ H1/2(Γ).

Proof. The proofs for these statements are rather involved; see Appendix
A.3 in [8].

Using these de�nitions, eqs. (3.6) and (3.7) may now be rewritten
1
2
u = V v −Ku on Γ,

1
2
v = K ′v +Du on Γ

with u ∈ H1/2(Γ) and v ∈ H−1/2(Γ). By another simple reformulation, we
get (

u
v

)
=

(
1
2I −K V
D 1

2I +K ′

)
︸ ︷︷ ︸

=:C

(
u
v

)
(3.8)

with the two by two block operator C, the so-called Calderón projector. It
can indeed be shown that C is a projector, that is, C2 = C.

3.2.4 Boundary integral equations for the Laplace equation

We �rst state the standard mixed Dirichlet/Neumann boundary value prob-
lem for the Laplace equation.
Problem 3.2.1. Assume that we have a partitioning of the boundary into
two nontrivial open subsets, Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ with |ΓD| > 0
and |ΓN | > 0. Further assume that we are given the Dirichlet data gD ∈
H1/2(ΓD) and the Neumann data gN ∈ H−1/2(ΓN ). We seek a function
u : Ω → R such that

−4u(x) = f(x), x ∈ Ω,
u(x) = gD(x), x ∈ ΓD,

u(x) = gN (x), x ∈ ΓN .
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We de�ne extensions of the Dirichlet and Neumann data to the entire
boundary; in other words, we seek functions with the properties

g̃D ∈ H1/2(Γ), g̃D|ΓD
≡ gD,

g̃N ∈ H−1/2(Γ), g̃N |ΓN
≡ gN .

For the full Dirichlet and Neumann data u and v, respectively, we choose
the ansatz

u = g̃D + uN , uN ∈ H1/2(Γ),

v = g̃N + vD, vD ∈ H−1/2(Γ)

with unknowns uN ∈ H1/2(Γ) and vD ∈ H−1/2(Γ). These ansatz functions
for u and v are now inserted into (3.8). Exploiting the linearity of the
boundary integral operators, we obtain the formulae

V vD −KuN − 1
2
uN =

1
2
g̃D +Kg̃D − V g̃N on Γ,

K ′vD +DuN − 1
2
vD =

1
2
g̃N −Dg̃D +K ′g̃N on Γ.

This system of equations is overdetermined: intuitively speaking, we have
one unknown per point y ∈ Γ, either uN (y) or vD(y) depending on the part
of the boundary y is located on, but two full integral equations over Γ. There
are multiple ways to proceed; for example, it is possible to completely drop
the second equation and use only the �rst equation for solving the system.
We will however choose an approach which leads to the so-called symmetric
formulation of the boundary integral equation. This is done by restricting
the �rst equation to ΓD and the second to ΓN . Recalling the de�nition of
the extended boundary data above, we see that we have

uN |ΓD
= u|ΓD

− g̃D|ΓD
= gD − g̃D|ΓD

= 0,
vD|ΓN

= v|ΓN
− g̃N |ΓN

= vN − g̃N |ΓN
= 0

(3.9)

and the restricted boundary integral equations thus take the form
V vD −KuN =

1
2
g̃D +Kg̃D − V g̃N on ΓD,

K ′vD +DuN =
1
2
g̃N −Dg̃D +K ′g̃N on ΓN .

As all terms on the right-hand side are known, we introduce abbreviations
for the sake of brevity,

fD :=
1
2
g̃D +Kg̃D − V g̃N ,

fN :=
1
2
g̃N −Dg̃D +K ′g̃N ,
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and write
V vD −KuN = fD,

K ′vD +DuN = fN .
(3.10)

Our next aim is to solve this system of equations numerically by the
use of an appropriate discretization scheme. There are several such schemes
available. Widely used for its comparable ease of implementation is the col-
location method where the integral equations are sought to be satis�ed only
in a discrete set of points located on the boundary, the so-called colloca-
tion points. While this method often yields satisfactory results in practice,
there is no general theory of convergence available. We will therefore employ
a Galerkin method which shares a common foundation with the schemes
commonly used in �nite element discretizations. This has the enormous ad-
vantage that the major convergence results from the very well-studied theory
of Finite Element Methods become available for the treatment of the BEM
as well.

3.3 Galerkin discretization

As in any Galerkin method, we �rst have to derive a variational formulation
of the operator equation (3.10). We therefore introduce the trial space

Λ := H̃−1/2(ΓD)× H̃1/2(ΓN )

from which candidate solutions (vD, uN ) are to be drawn.
The spaces H̃s used here are de�ned as follows. Let Γ′ ⊂ Γ be open.

Then, for any s ∈ R+
0 ,

H̃s(Γ′) :=
{
v = ṽ|Γ′ : ṽ ∈ Hs(Γ), supp ṽ ⊂ Γ′

}
,

H̃−s(Γ′) :=
(
Hs(Γ′)

)′
,

H−s(Γ′) :=
(
H̃s(Γ′)

)′
.

In particular, this de�nition ensures that the uN ∈ H̃1/2(ΓN ) may be
extended with zero to the entire boundary Γ, as required by (3.9).

We now take arbitrary test functions (s, t) ∈ Λ and multiply the �rst and
the second operator equation by s and t respectively.

〈V vD, s〉ΓD
− 〈KuN , s〉ΓD

= 〈fD, s〉ΓD
,〈

K ′vD, t
〉
ΓN

+ 〈DuN , t〉ΓN
= 〈fN , t〉ΓN

.

The products used here are the duality products
〈·, ·〉ΓD

: H1/2(ΓD)× H̃−1/2(ΓD) → R,

〈·, ·〉ΓN
: H̃−1/2(ΓN )×H1/2(ΓN ) → R
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since H̃1/2(ΓD) ⊂ H1/2(ΓD) and H̃1/2(ΓN ) ⊂ H1/2(ΓN ). We again refer to
[11] for a more in-depth discussion of the involved spaces.

We can thus represent the operator equation (3.10) in a variational form.
Problem 3.3.1. Find (vD, uN ) ∈ Λ such that for all (s, t) ∈ Λ, there holds

a(uN , vD; s, t) = F (s, t)

with
a(u, v; s, t) = 〈V v, s〉ΓD

− 〈Ku, s〉ΓD
+

〈
K ′v, t

〉
ΓN

+ 〈Du, t〉ΓN
,

F (s, t) =
1
2
〈g̃D, s〉ΓD

+ 〈Kg̃D, s〉ΓD
− 〈V g̃N , s〉ΓD

+
1
2
〈g̃N , t〉ΓN

− 〈Dg̃D, t〉ΓN
−

〈
K ′g̃N , t

〉
ΓN

.

Note that we have combined both lines of the equation into one here.
Of course, by setting either of the test functions s and t to zero, we can
reconstruct the individual lines of the original equation.

The main concept behind the Galerkin method is now to choose a �nite-
dimensional subspace Λh ⊂ Λ of our trial space. To this end, we introduce
a triangular mesh approximating the boundary Γ consisting of NT ∈ N
triangular boundary elements (τk)k=1,...,NT

.

Γ ≈ Γh =
NT⋃
k=1

τk

The vertices of the mesh are denoted by (xi)i=1,...,NV
. Without loss of gen-

erality, we assume that the triangles are ordered in such a way that the �rst
NDT < NT boundary elements make up the Dirichlet part of the boundary,
that is,

Γh = ΓDh ∪ ΓNh where

ΓDh =
NDT⋃
k=1

τk, ΓNh =
NT⋃

k=NDT +1

τk.

Similarly, we assume that the �rst NNV < NV vertices are those which are
located on the interior of the Neumann boundary:

xi ∈

{ ◦
ΓNh, 1 ≤ i ≤ NNV ,

ΓDh, NNV < i ≤ NV .

Let |τk| denote the area of the triangle τk. We then de�ne the local mesh
size

hk :=
√
|τk|,

27



the global mesh sizes
h = hmax = max

1≤k≤NT

hk, hmin = min
1≤k≤NT

hk

and the element diameter
dk := sup

x,y∈τk

|x− y| .

Assume that the mesh Γh is drawn from a family of meshes (Γh)h>0 with
corresponding mesh sizes h. We then require this family to be

• globally quasi-uniform, that is, the ratio
hmax

hmin
≤ cG

should be bounded by a number cG > 0 independent of the mesh size,
and

• uniformly shape-regular, that is, we want to have
dk ≤ cBhk ∀k ∈ {1, . . . , NT }

with some number cB > 0 which is independent of the mesh size.
For the Neumann data, we now de�ne basis functions

ψk := χτk
∀k ∈ {1, . . . , NT }

where χτk
denotes the characteristic function of the triangle τk. In other

words, ψk is the discontinuous, piecewise constant function which is identi-
cally 1 on τk and identically 0 everywhere else.

For the Dirichlet data, we de�ne basis functions φi characterized by
φi|τk

∈ P1(τk), φi(xj) = δij ∀i, j ∈ {1, . . . , NV }, k ∈ {1, . . . , NT }

where δij denotes the Kronecker delta. In other words, φi is the continuous,
piecewise linear function which is 1 in xi and 0 in all other points xj , j 6= i.

Our �nite-dimensional trial spaces are thus given by
S0

h(ΓD) := span {ψk}NDT
k=1 ⊂ H̃−1/2(ΓD),

S1
h(ΓN ) := span {φi}NNV

i=1 ⊂ H̃1/2(ΓN ),

Λh := S0
h(ΓD)× S1

h(ΓN ) ⊂ Λ

with the dimensions
dim Λh = dimS0

h(ΓD) + dimS1
h(ΓN ) = NDT +NNV = O

(
h−2

)
.
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We have the approximation properties (see [8])
∀w ∈ Hs

pw(Γ), s ∈ [0, 1], σ ∈ [−1, 0] :

inf
wh∈S0

h(Γ)
‖w − wh‖Hσ(Γ) ≤ chs−σ |w|Hspw(Γ) (3.11)

for the piecewiese constant basis functions and
∀v ∈ Hs

pw(Γ), s ∈ [1, 2], σ ∈ [−2, 1] :

inf
vh∈S1

h(Γ)
‖v − vh‖Hσ(Γ) ≤ chs−σ |v|Hspw(Γ) (3.12)

for the piecewise linear basis functions. Here Hs
pw(Γ) is the space of all

piecewise (per triangle) Hs functions on Γ for s ≥ 0, that is,
Hs

pw(Γ) := {v ∈ L2(Γ) : v|τk
∈ Hs(τk), k = 1, . . . , NT }

and ‖v‖2
Hspw(Γ) :=

∑NT
k=1 ‖v|τk

‖2
Hs(τk).

It is now trivial to formulate a discretized version of problem 3.3.1.
Problem 3.3.2. Find (vDh, uNh) ∈ Λh such that for all (sh, th) ∈ Λh, there
holds

a(uNh
, vDh; sh, th) = F (sh, th).

By Céa's lemma and application of the Aubin-Nitsche trick as well as an
inverse equality argument [8], the following error estimates are obtained.
Theorem 3.3.1 (Galerkin BEM error estimate). If u ∈ Hs(Ω) for
some s ∈ [1, 5

2 ] is the solution of the boundary value problem 3.2.1, (vD, uN )
is the exact solution of the variational problem 3.3.1 and (vDh, uNh) is the
solution of problem 3.3.2, then, for any σ ∈ [−2, 0], we have

‖vD − vDh‖2
Hσ(ΓD) + ‖uN − uNh‖2

Hσ+1(ΓN ) ≤ ch2(s−σ)−3 |u|2Hs(Ω) .

In particular, for u ∈ H2(Ω), we obtain

‖vD − vDh‖L2(ΓD) ≤ ch1/2 |u|H2(Ω) , (3.13)
‖uN − uNh‖L2(ΓN ) ≤ ch3/2 |u|H2(Ω) . (3.14)

3.4 Calculation of the system matrices

The next step towards solving a boundary value problem using a BEM is
rewriting problem 3.3.2 in the form of a matrix equation and calculating
the entries of the system matrix. This system can then be tackled using a
suitable method for the solution of linear systems.
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First we write down an explicit representation of the discretized solution,
namely

uNh =
NNV∑
j=1

ujφj , vDh =
NDT∑
`=1

v`ψ`.

We insert these representations into problem 3.3.2. Because of the linearity of
all involved operators, it is su�cient to test with the basis functions (ψk)

NDT
k=1

and (φi)
NNV
i=1 instead of general test functions (sh, tt) ∈ Λh. This yields

NDT∑
`=1

〈V ψ`, ψk〉ΓD
v` −

NNV∑
j=1

〈Kφj , ψk〉ΓD
uj = F (ψk, 0), k = 1, . . . , NDT ,

NDT∑
`=1

〈
K ′ψ`, φi

〉
ΓN

v` +
NNV∑
j=1

〈Dφj , φi〉ΓN
uj = F (0, φi), i = 1, . . . , NNV

(where we have separated the two equations again). This may be written in
matrix notation as (

Vh −Kh

KT
h Dh

) (
vDh

uNh

)
=

(
f

Dh
f

Nh

)
(3.15)

with the entities
Vh ∈ RNDT×NDT ,

Kh ∈ RNDT×NNV ,

Dh ∈ RNNV ×NNV ,

vDh, fDh
∈ RNDT ,

uNh, fNh
∈ RNNV

given by
vDh = (vk)

NDT
k=1 ,

uNh = (ui)
NNV
i=1 ,

Vh[k, `] =
1
4π

∫
τk

∫
τ`

1
|x− y|

dsy dsx, (3.16)

Kh[k, j] =
1
4π

∫
τk

∫
ΓN

(x− y, n(y))
|x− y|3

φj(y) dsy dsx, (3.17)

Dh[i, j] =
1
4π

∫
ΓN

∫
ΓN

(curlΓφj(y), curlΓφi(y))
|x− y|

dsy dsx. (3.18)
This representation for the entries of Dh is obtained by applying integra-

tion by parts to the original de�nition of D, described in detail in [8]. We
use here the surface curl operator de�ned as

curlΓu(x) = n(x)×∇xũ(x) for x ∈ Γ
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where ũ denotes a locally de�ned extension of u into the neighborhood of Γ.
Noting that curlΓφi is piecewise constant per triangle, we see that the entries
of Dh may in fact be computed as a straightforward linear combination of
the entries of Vh.

In order to compute the discretized right-hand side, we �rst approximate
the given Cauchy data within the �nite-dimensional space Γh, that is,

g̃D ≈ g̃Dh =
NV∑

i=NNV +1

gDiφi,

g̃N ≈ g̃Nh =
NT∑

k=NDT +1

gNkψk.

We then insert these approximations into the equation for the right-hand
side and obtain(

f
Dh
f

Nh

)
=

(
1
2M̄1h + K̄1h V̄h

D̄h
1
2M̄

T
2h + K̄T

2h

) (
g

Dh
g

Nh

)
(3.19)

with
g

Dh
= (gDi)i=NNV +1,...,NV

,

g
Nh

= (gNk)k=NDT +1,...,NT
,

M̄1h[k, j] =
∫

τk

φj(x) dsx, 1 ≤ k ≤ NDT , NNV < j ≤ NV ,

V̄h[k, `] = 〈V ψ`, ψk〉 , 1 ≤ k ≤ NDT , NDT < ` ≤ NT ,

K̄1h[k, j] = 〈Kφi, ψk〉 , 1 ≤ k ≤ NDT , NNV < j ≤ NV ,

M̄2h[k, j] =
∫

τk

φj(x) dsx, NDT < k ≤ NT , 1 ≤ j ≤ NNV ,

K̄2h[k, j] = 〈Kφi, ψk〉 , NDT < k ≤ NT , 1 ≤ j ≤ NNV ,

D̄h[i, j] = 〈Dφj , φi〉 , 1 ≤ i ≤ NNV , NNV < j ≤ NV .

The entries may be evaluated in the same form as in eqs. (3.16)�(3.18).
The di�erence to those equations lies merely in the ranges of indices on which
the matrices are de�ned.

The entries of the BEM matrices cannot simply be computed by the use
of a quadrature rule because of the singular kernels of the integral operators.
A combination of numerical and analytic methods is commonly used for
the evaluation of these integrals. We refer the reader to [8] for a detailed
derivation of such schemes. Also, there are software libraries available which
can compute these entries in a black-box fashion (see [10]), and such a library
was used for the software implementation described in Chapter 5.
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3.5 Properties of the Galerkin BEM matrix

From inspection (and as a result of the symmetry of the underlying oper-
ators), it is clear that both matrices Vh and Dh are symmetric. Also, the
ellipticity of the single layer potential operator V translates directly into
positive de�niteness of the matrix Vh.

The question remains which method to choose in order to solve this
system. In any such decision, the properties of the system matrix of course
play a principal role. In our case, an inspection of the boundary element
integrals reveals that we cannot hope for a sparse matrix structure as is the
case in a comparable Finite Element Method. In general, we will therefore
have to contend with a linear system with dim Λh = O

(
h−2

) unknowns and
a full matrix with O (

h−4
) non-zero entries. Solution of such a system via a

standard direct solver takes on the order of O (
h−6

) operations. Clearly, this
is intractable even for moderate-sized problems. Commonly used iterative
methods have similar problems: even if we were to �nd a method which
converges in O (1) iterations, we still have to perform at least one matrix-
vector product per iteration, which makes the total number of operations at
least O (

h−4
). This is still quadratic in the number of unknowns and hence

not suitable for large-scale problems.
If we compare this to the use of a Finite Element Method, we see that

in this case we have to discretize the entire computational domain Ω, thus
resulting in O (

h−3
) unknowns for a mesh size of h. Although this means

that a FEM has to operate on a number of unknowns which is larger by an
order of h−1, there are quasi-optimal solvers available which solve such FEM
systems in slightly more than O (

h−3
) operations, thus being more e�cient

than the basic BEM approach outlined above.
This situation has long posed a hindrance for the application of the BEM

to three-dimensional problems of any relevant size. Relatively recent devel-
opments have however produced techniques which do allow the solution of
such systems in a reasonable timeframe. The core idea behind these methods
is the approximation of the system matrix by so-called data-sparse matrices,
in particular by hierarchical matrix representations. The ultimate goal is
the solution of BEM systems in a quasi-optimal manner, that is, with only
slightly more than O (

h−2
) operations. We investigate these techniques in

Chapter 4.
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Chapter 4

Data-sparse Matrix

Approximation

The basic concept behind data-sparse matrix approximation is to approx-
imate a large matrix by another matrix which requires signi�cantly fewer
data points to represent. Similarly, typical matrix operations (e.g. applying
the matrix to a given vector or solving a linear system with the matrix as
its coe�cient matrix) should require signi�cantly less numerical e�ort for
the approximated matrix. In particular, the techniques presented in this
chapter are built upon two ideas: hierarchical representation and low-rank
approximation of matrices.

As this chapter deals a lot with matrices of a given maximum rank, we
introduce notation for such classes of matrices.
De�nition 4.0.1. Let m,n ∈ N, k ∈ N0. We denote the set of all m-by-n
matrices with rank at most k by

R(k,m, n) := {M ∈ Rm×n : rank M ≤ k}.

Note that for a matrix A ∈ R(k,m, n), there is always a representation
as a sum of rank one outer products of vectors, i. e.

A =
k∑

i=1

uiv
T
i

with vectors ui ∈ Rm, vi ∈ Rn. Such a representation requires km + kn =
k(m + n) �oating point storage cells, as opposed to storing all mn entries
of the full matrix A. Thus, assuming for simplicity that m = n, if we can
�nd a low-rank approximation of reasonable accuracy with rank k � n

2 , wesave a lot of space and can also perform the matrix-vector product Ax in
O (k(m+ n)) operations.

Not all matrices permit such an e�cient approximation. In section 4.1,
we will investigate experimentally some cases to determine when this may
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be possible. Section 4.2 introduces the concept of hierarchical matrices.
In section 4.3, we study various methods to approximate matrix blocks in
a low-rank fashion. Section 4.4 introduces some operations which may be
performed on hierarchical matrices. Finally, in section 4.5, we investigate
how these methods may be applied to the BEM system derived in Chapter 3.

The exposition in this chapter follows quite closely that in the excellent
lecture notes by Börm, Grasedyck and Hackbusch [4]. For a more detailed
discussion of the topics presented here, we also refer the reader to the mono-
graph [2] by Bebendorf.

4.1 An introductory example

For our �rst experiments in approximating matrices by a low-rank represen-
tation, we use the truncated singular value decomposition. It is well known
that any m-by-n matrix A can be represented in the form

A = UΣV T

with orthogonal matrices U ∈ Rm×m and V ∈ Rn×n as well as the matrix
Σ ∈ Rm×n with the entries

Σij =

{
σi, for i = j < rank A,
0, else.

The real numbers σ1 ≥ σ2 ≥ . . . ≥ σrank A > 0 are called the singular values
of A. The vectors ui ∈ Rm, 1 ≤ i ≤ m and vj ∈ Rn, 1 ≤ j ≤ n which make
up the columns of U and V respectively are called singular vectors of A.
De�nition 4.1.1. Given a singular value decomposition UΣV T of the ma-
trix A ∈ Rm×n, the truncated singular value decomposition with rank r ∈
{1, . . . , rank A} of A is given by

Ã(r) := U Σ̃(r)V T ∈ R(r,m, n)

with
Σ̃(r)ij =

{
Σij , i = j ≤ r,

0, else.

In other words, the truncated singular value decomposition (TSVD for
short) disregards all but the largest r singular values. Note that we can
equivalently write

Ã(r) =
r∑

i=1

σiuiv
T
i

and thus the TSVD �ts neatly into the framework for low-rank matrix ap-
proximation outlined in the introduction of this chapter.
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It can be shown that Ã(r) is the best approximation of rank r to A in
the sense that it minimizes the error in the Frobenius norm. That is,∥∥∥A− Ã(r)

∥∥∥
F

= min {‖A−B‖F : B ∈ R(r,m, n)} ,

‖B‖F =

 m∑
i=1

n∑
j=1

B2
ij

 1
2

for any B ∈ Rm×n.

In fact, by using the fact that the Frobenius norm is unitarily invariant,
it is easy to calculate the exact approximation error:

∥∥∥A− Ã(r)
∥∥∥2

F
=

∥∥∥U(Σ− Σ̃(r))V T
∥∥∥2

F
=

∥∥∥Σ− Σ̃(r)
∥∥∥2

F
=

rank A∑
i=r+1

σ2
i .

Therefore, analyzing the magnitude of the singular values of some matrix
gives us a very good idea about how well it may be approximated by a low-
rank matrix via the use of the TSVD. In the following, we perform such
an analysis on a matrix which shares some crucial features with the BEM
system matrices given in Chapter 3.

We assume that we are given a kernel function
K : [0, 1]2 → R,

(x, y) 7→ 1
α+ |x− y|2

with some small parameter α > 0, a regular grid of m · n (m,n ∈ N) dis-
cretization points{

(xi, yj) ∈ [0, 1]2 : xi =
i− 1
m− 1

, yj =
j − 1
n− 1

, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
}

and a matrix A ∈ Rm×n obtained by discretizing the kernel K,
Aij = K(xi, yj), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Note that the matrix A obtained in this way is similar in structure to
the BEM matrices given in eqs. (3.16)�(3.18), although for simplicity we
have employed here a simple Nystrøm-like discretization scheme instead of
the Galerkin discretization used in Chapter 3. The parameter α > 0 is thus
required to obtain �nite pointwise values on the diagonal of the kernel K;
for our examples, we choose α = 10−4. Figure 4.1 gives a sample plot of the
entries of the matrix A for m = n = 32; each colored box corresponds to one
entry of the matrix, and the color of each box was chosen from a colormap
according to the logarithmic value of the corresponding matrix entry. The
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Figure 4.1: A logarithmically color-coded plot of the matrix A for m =
n = 32, α = 10−4.

near-singularity along the diagonal can be plainly seen, as can the rapidly
decaying entries as the distance to the diagonal increases.

In order to determine the quality of a low-rank TSVD approximation of
this matrix, we calculate the singular values and display them in a semi-
logarithmic plot, given in �g. 4.2 for m = n = 1024.

As we can see, both the singular values and the relative error for the
TSVD approximation decrease exponentially. However, we recall that we
require a truncation index of r � n

2 for an e�cient low-rank representation;
let us for the sake of argument �x r = n

4 = 256. The right-hand plot in
�g. 4.2 then indicates that we have to contend with a relative error on the
order of

∥∥∥A− Ã(r)
∥∥∥

F
≈ 10−4. This is clearly inacceptable for the solution of

a linear system with A as its coe�cient matrix when we take the condition
number κ(A) ≈ 1013 into account.

It is conceivable that the strong singularity along the diagonal of A is to
blame for the poor results. The starting point for the technique of hierarchi-
cal matrix approximation is thus the following idea: we split the matrix A
into several submatrices such that at least some of them can be approximated
e�ciently. Let us explore this idea experimentally.

We split the matrix A into four equally-sized blocks. Instead of the full
matrix A, we now examine only one of the two o�-diagonal blocks. The
resulting matrix is visualized in �g. 4.3.

The singularity now only occurs in one corner of this submatrix instead
of along the diagonal. We calculate the singular values and the TSVD ap-
proximation error for this matrix block and display them in �g. 4.4.

Indeed, the splitting of the matrix results in much more favourable be-
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Figure 4.2: Left: Semi-logarithmic plot of the singular values of A.
Right: Semi-logarithmic plot of the relative error for TSVD
with varying truncation index r.
Both plots were created with m = n = 1024.
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Figure 4.3: A logarithmically color-coded plot of one o�-diagonal block of
A for m = n = 32, α = 10−4.
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Figure 4.4: Left: Semi-logarithmic plot of the singular values of one o�-
diagonal block of A.
Right: Semi-logarithmic plot of the relative error for TSVD
with varying truncation index r.
Both plots were created with m = n = 1024, and thus a sub-
matrix of size 512.

haviour of the singular values; we can see that only very few singular values
are signi�cant for the approximation of the submatrix. Fixing again r at
a quarter of the matrix size, i. e. in this case r = 128, we obtain for the
TSVD approximation a relative error on the order of 10−18, a much more
reasonable error than for the full matrix.

Hence, we are now able to approximate the two o�-diagonal blocks of A
in an e�cient manner by a low-rank representation. The two diagonal blocks
of A, however, resist such treatment as they possess qualitatively the same
structure as A, having a singularity along the diagonal. However, we can
apply the idea of subdivision recursively: we again split each of the diagonal
blocks into four smaller blocks, thus obtaining new diagonal and o�-diagonal
blocks. The latter may again be approximated e�ciently as outlined above
for the �rst level of subdivision. If necessary, the new, smaller diagonal
blocks are subdivided recursively in this fashion until the parts of the matrix
which can not be approximated well are small enough to be stored in a full
matrix format. This is the key concept of hierarchical matrix approximation.

Let us carry out such a scheme for the matrix A with m = n = 256 for
the purpose of demonstration. We also choose now α = 2−9 and a desired
approximation error ε = 10−6 for each matrix block. The result of three
iterations of recursive subdivision can be seen in �g. 4.5. Here, the numbers
in the matrix blocks indicate the rank r of a TSVD which would be required
to approximate the corresponding block to an accuracy of ε. The blocks
whose approximation rank exceeds a given maximum rank rmax = 12 are
shown in red; these are the blocks which will be subdivided again in the
next iteration. The blocks who may be approximated accurately enough
with r < rmax are shown in green and are not modi�ed further in the next
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Figure 4.5: A recursive approximation scheme for m = n = 256.

iteration.
After three iterations, this scheme has produced a hierarchical matrix

where all blocks require a rank less or equal to rmax to approximate. The
rightmost matrix in �g. 4.5 requires 18,432 words of memory to store, as
opposed to the 2562 = 65, 536 words of memory required for the original
full matrix A. This corresponds roughly to a reduction to a quarter of the
original memory usage.

Clearly, this simple subdivision scheme is tailored quite speci�cally to
the simple structure of the matrix used as an example here. It is however
possible to generalize the concept to matrices obtained by the discretization
of higher-dimensional kernels. The next section is concerned with such a
generalization.

4.2 Hierarchical matrix subdivision

4.2.1 Cluster trees

As the structure of a hierarchical matrix subdivision is essentially that of a
tree, we introduce some notation for dealing with trees. We will use most of
the properties of trees in a rather intuitive fashion; see [4] for a more rigorous
exposition with proofs for all nontrivial tree properties.
De�nition 4.2.1 (Trees). Let N 6= ∅ be a �nite set, let r ∈ N and let
S : N → P(N) be a mapping from N into subsets of N . For any t ∈ N , a
sequence (t0, . . . , tm) with t0 = r, tm = t and ti+1 ∈ S(ti) for 0 ≤ i < m is
called a sequence of ancestors of t.

The triple T = (N, r, S) is called a tree if and only if there is exactly one
sequence of ancestors for every t ∈ N .

For a tree T = (N, r, S), the elements of N are called nodes, the element
r is called the root node or simply root and is denoted by r = root(T ), and
the set sonsT (t) := S(t) is called the set of sons of t. The subscript T may
be omitted if the tree in question is clear from the context.

We de�ne the set of descendants of a node t ∈ N recursively as follows:

sons∗(t) :=

{
{t}, if sons(t) = ∅,
{t} ∪

⋃
s∈sons(t) sons∗(s), otherwise.
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A node t ∈ N is called a leaf of T if and only if sons(t) = ∅. The set of
leaves is thus de�ned as

L(T ) := {t ∈ N : sons(t) = ∅}.

De�nition 4.2.2 (Tree level). Let T = (N, r, s) be a tree. Let t ∈ N ,
and let (t0, . . . , tm) be its (by de�nition uniquely determined) sequence of
ancestors. Then the number m ∈ N0 is called the level of the node t, and we
denote

levelT (t) := m

where again the subscript T may be omitted where appropriate. The depth
of the tree T is de�ned as

depth(T ) := max{level(t) : t ∈ N}.

De�nition 4.2.3 (Labeled trees). Let (N, r, S) be a tree. Furthermore,
let L 6= ∅ be a �nite set and let m : N → L be a mapping. Then,

T = (N, r, S,m,L)

is called a labeled tree and L is called its label set. For each node t ∈ N , m(t)
is called the label of t and is abbreviated by t̂ := m(t).

Let us assume that we have a family of basis functions
φi : Rd → R, i ∈ I

with an index set I. Typically, the index set would simply consist of a
contiguous sequence of integers, e.g. I = {1, . . . ,m}, although we do not
require this here. Also, the basis functions (φi)i∈I are not speci�ed in more
detail here, but in practice the piecewise constant or continuous piecewise
linear basis functions introduced earlier are common choices. Other choices
are possible, but we do require the basis functions to possess local support
supp(φi).

We now de�ne a structure which represents a hierarchical subdivision of
such a family of basis functions represented by their index set I.
De�nition 4.2.4 (Cluster trees). A labeled tree TI = (N, r, S,m,P(I)) is
called a cluster tree for I if and only if the following conditions are satis�ed:

• ̂root(TI) = I,
• for all t ∈ N with sons(t) 6= ∅, we have

t̂ =
⋃

s∈sons(t)
ŝ,
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• for all t ∈ N and all s1, s2 ∈ sons(t) with s1 6= s2, we have
ŝ1 ∩ ŝ2 = ∅.

The nodes t ∈ N of a cluster tree are called clusters, and for short we simply
write t ∈ TI .
Remark. The previous de�nition may be summarized in words as follows:
every node t of a cluster tree is associated with some subset of the complete
index set, t̂ ⊂ I. The root of a cluster tree represents the complete index
set, and the sons of every non-leaf node t form a partition of t's index set.

As a notational convention, in practice we will often use a leaf s synony-
mously with its label ŝ whenever the distinction is not vital.
Lemma 4.2.1 (Properties of cluster trees). Let TI be a cluster tree.
Then the following statements hold:

1. for all t, s ∈ TI with t 6= s and level(t) = level(s), we have ŝ ∩ t̂ = ∅;

2. for all t, s ∈ TI with level(t) ≤ level(s) and t̂ ∩ ŝ 6= ∅, we have s ∈
sons∗(t);

3. for all i ∈ I, there is a leaf t ∈ L(TI) with i ∈ t̂;

4. I =
⋃̇

t∈L(TI)t̂.

Proof. For a proof, see lemma 2.2 in section 2.1 of [4].
We now consider ways to construct such cluster trees. Let us introduce

a very simple framework in which several clustering strategies can be ex-
pressed.
Procedure subdivide_cluster(t, cmax)

Input: a cluster t, a maximum cluster size cmax

if #t̂ > cmax then
children := split(t̂) ;
foreach I ∈ children do

add new cluster s with indices I as a son to t ;
recursively invoke subdivide_cluster(s, cmax) ;

end
end
This procedure is initially invoked on a trivial tree consisting only of a

root node which comprises the full index set I. It then recursively splits
nodes until each leaf node contains at most cmax indices. The actual details
of how to split a cluster into two or more children are abstracted into the
procedure split, which returns a partition of the index set it is passed.
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There are several strategies available for performing this; in the following,
we will present two such strategies.

First, some preliminaries. A splitting strategy has to take the relative
positions of the basis function supports (supp(φi))i∈I into consideration. In
practice, however, working with the exact support sets is too complicated
to be feasible, and we therefore choose a representative xi ∈ supp(φi) for
each index i ∈ I. Since our basis functions (φi)i∈I are assumed to have
local support, this is a reasonable simpli�cation. A possible choice for xi is
e.g. the center of mass of the basis support.

Axis-aligned bounding box splitting
Given an index set I ⊂ I, determine the extents of an axis-aligned bounding
box,

al := min{(xi)l : i ∈ I}, bl := max{(xi)l : i ∈ I} for 1 ≤ l ≤ d.

Thus, xi ∈ A for all i ∈ I with the box A := [a1, b1] × . . . × [ad, bd]. Now
determine the axis along which A has its maximum extent,

k := arg max
1≤l≤d

(bl − al),

and split A into two subsets along this axis:

A1 := {x ∈ A : xk ≤
bk − ak

2
}, A2 := A \A1.

The partition of the index set I is then given by
I1 := {i ∈ I : xi ∈ A1}, I2 := {i ∈ I : xi ∈ A2}.

As a variation, it is possible to split the box A along every axis simulta-
neously which yields a partition of 2d subsets instead of 2 as in the original
variant.

Principal component analysis
Given an index set I ⊂ I, we �rst compute the center of mass of the repre-
sentatives,

x̄ :=
1

#I

∑
i∈I

xi,

and the (symmetric) covariance matrix Σ ∈ Rd×d with the entries

Σjk =
1

#I

∑
i∈I

((xi)j − x̄j)((xi)k − x̄k).
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One then computes the eigenvector v1 belonging to the largest (in magnitude)
eigenvalue of Σ by a von Mises iteration. This vector points in the direction
of the principal component of the given cluster. A partition of the index set
I is then constructed by putting elements of I into either one of two subsets
I1 and I2 according to on which side of the plane through x̄ with normal
vector v1 they lie. Expressed symbolically, we get

I1 := {i ∈ I : (xi − x̄) · v1 ≤ 0}, I2 := I \ I1.

Similar to the previous method, this strategy splits the given cluster
along its �longest� component, but in a fashion that is not constrained to
the coordinate axes and that is weighted with respect to the positions of the
representatives (xi).

4.2.2 Block cluster trees

Let us assume that we have some kernel function
K : Rd × Rd → R

which we want to discretize with the help of two (possibly identical) families
of basis functions,

(φi)i∈I , (ψj)j∈J

with index sets I and J . As in the previous section, we assume local support
for the basis functions φi and ψj , but leave them otherwise unspeci�ed.
Assuming a Galerkin discretization, we obtain a matrix A ∈ RI×J with the
entries

Aij =
∫
supp(φi)

∫
supp(φj)

φi(x)K(x, y)ψj(y) dsy dsx, i ∈ I, j ∈ J .

Remark. Note that we use a slightly more general notion of a matrix here
than is common: we de�ne a matrix A ∈ RI×J to be a mapping

A : I × J → R,

but do not require the row and column index sets I and J to be contiguous
sets of integers starting with 1. This simpli�es the notation for sub-blocks
of such a matrix A.

Let us now consider a sequence of sub-matrix blocks
Ak ∈ Rsk×tk , 1 ≤ k ≤ NB.

Each block Ak is constructed by choosing subsets of the index sets,
sk ⊂ I, tk ⊂ J for 1 ≤ k ≤ NB,
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and cropping A so as to contain only the entries which lie on any of the rows
indicated by sk and on any of the columns indicated by tk. Using the notion
of a matrix as a mapping mentioned above, we may simply write

Ak := A|sk×tk .

The set
{sk × tk : 1 ≤ k ≤ NB}

is called the set of block clusters. In order for the sequence Ak to be a
partition of the matrix A, the following condition obviously has to hold:

I × J =
⋃̇

k∈{1,...,NB}
sk × tk.

We encode these requirements in the following de�nition.
De�nition 4.2.5 (Block cluster trees). Let TI and TJ be cluster trees
for I and J , respectively. A labeled tree TI×J with the label set P(I × J )
is called block cluster tree for TI and TI if and only if

• root(TI×J ) = (root(TI), root(TJ ));
• each node b ∈ TI×J has the form b = (s, t) with clusters s ∈ TI and
t ∈ TJ ;

• for each node b = (s, t) ∈ TI×J with sons(b) 6= ∅, we have

sons(b) =


{(s, t′) : t′ ∈ sons(t)}, sons(s) = ∅ ∧ sons(t) 6= ∅,
{(s′, t) : s′ ∈ sons(s)}, sons(s) 6= ∅ ∧ sons(t) = ∅,
{(s′, t′) : s′ ∈ sons(s), t′ ∈ sons(t)}, else;

• the label of a node b = (s, t) ∈ TI×J is given by b̂ = ŝ× t̂ ⊂ I × J .

Note that a block cluster tree TI×J is in fact a special cluster tree for
I×J where the splitting of nodes may only occur along the rows and columns
of the matrix A, so to speak. This is required so that A is partitioned into
the sequence Ak of rectangular submatrices. The block clusters (sk, tk) used
to represent A hierarchically are thus given by the labels of the leaves of the
block cluster tree TI×J .

Note that, for given cluster trees TI and TJ , de�nition 4.2.5 does not
leave much freedom for constructing a block cluster tree TI×J . If we start
with the prescribed root node and apply a recursive subdivision algorithm
as we did for cluster trees (cf. procedure subdivide_cluster on page 41),
then in fact the only choice left is when to stop the subdivision. This choice
is in�uenced by the vaguely formulated requirements that
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• as many of the sub-matrix blocks Ak as possible should be well-approxi-
mable by a low-rank matrix,

• the approximable sub-matrix blocks should be as large as possible,
• the non-approximable sub-matrix blocks should be as small as possible.
This leads to the question of how to determine whether some matrix

block Ak can be �well� approximated or not. Clearly, the naive approach of
generating both the full matrix block and its low-rank approximation and
calculating the relative error of the approximation is infeasible for reasons of
computational e�ort. Hence, we will introduce a heuristic which allows us
to assess the quality of the approximation a priori. For this, we assume that
the kernel K(x, y) has a singularity for x = y (which is indeed the case for all
three boundary integral kernels we have encountered; cf. eqs. (3.16)�(3.18)).
Looking back at the example presented in section 4.1, we may conjecture that
the well-approximable block clusters are those for which there is a certain
amount of separation between the support of the row basis functions and the
column basis functions.

Let us denote the support of a given cluster s ∈ TI with associated basis
functions (φi)i∈I by

ΩI,s :=
⋃
i∈ŝ

supp(φi).

De�nition 4.2.6 (Admissibility). We call a block cluster (s, t) with s ∈ TI
and t ∈ TJ admissible with parameter η > 0 if and only if

min{diam(ΩI,s), diam(ΩJ ,t)} ≤ η dist(ΩI,s,ΩJ ,t)

where diam(X) refers to the Euclidean diameter of a set X ⊂ Rd and
dist(X,Y ) refers to the Euclidean distance between two sets X,Y ⊂ Rd.
Remark. Calculating the diameter of a cluster and the distance between
clusters exactly may be di�cult in practice. We therefore introduce bounding
boxes for all clusters, that is, axis-parallel boxes QI,s and QJ ,t with the
property

ΩI,s ⊆ QI,s, ΩJ ,t ⊆ QJ ,t ∀s ∈ TI , t ∈ TJ .

We may then replace the admissibility condition by the stronger condition
min{diam(QI,s), diam(QJ ,t)} ≤ η dist(QI,s, QJ ,t).

With the concept of admissibility as a good indicator of the approx-
imability of a given block cluster, we may now formulate a straightforward
algorithm for the construction of a block cluster tree.
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Procedure subdivide_blockcluster((s, t), η)
Input: a block cluster (s, t), an admissibility parameter η > 0
if (s, t) not η-admissible ∧¬(s leaf ∧ t leaf) then

if s leaf then
children := {s} × sons(t) ;

else if t leaf then
children := sons(s)× {t} ;

else
children := sons(s)× sons(t) ;

end
foreach (s′, t′) ∈ children do

add new block cluster (s′, t′) as a son to (s, t) ;
recursively invoke subdidive_blockcluster((s′, t′), η) ;

end
end
As with procedure subdivide_cluster, this algorithm works recursively

and is initially invoked on the trivial block cluster tree consisting only of the
root node (root(TI), root(TJ )). For each block cluster (s, t), we �rst check
whether it is already admissible. If so, we stop the subdivision in order to
satisfy the requirement that well-approximable sub-matrix blocks should be
as large as possible. Otherwise, and if at least one of the clusters s and t can
be further split, we subdivide the block cluster into a number of child block
clusters according to the cross product of the sons of s and t. The hope is
that one or more of these child block clusters is admissible, resulting in a
decrease in the size of the non-approximable matrix blocks.

With this algorithm in hand, we can now de�ne a hierarchical matrix
approximation for A. We �rst de�ne

Ãk :=

{
lrapprox(Ak), if (sk, tk) is admissible,
Ak, else,

where lrapprox(Ak) represents a suitable low-rank approximation for the
admissible sub-matrix block Ak. We have already seen one such method,
the truncated SVD, in section 4.1, and discuss this issue further in sec-
tion 4.3. Thus, as we have mentioned before, admissible blocks of A will be
approximated whereas inadmissible blocks will simply be stored as-is. The
hierarchical approximation Ã of A is then simply given by

(Ã)ij = (Ãk)ij for k such that (i, j) ∈ sk × tk.

Example 4.2.1. We choose a unit hemisphere as our geometry and dis-
cretize it into a triangular quasi-uniform mesh consisting of 923 triangles.
We choose piecewise constant ansatz functions on these triangles for both
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Figure 4.6: Hierarchical subdivision of the single layer potential matrix for
a hemisphere.
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(φi)i∈I and (ψj)j∈J and create a cluster tree TI = TJ by applying the
principal component analysis splitting strategy with a maximum cluster size
cmax = 15. This cluster tree is then supplied to the block cluster tree algo-
rithm presented above; for the admissibility parameter, we choose η = 1.1.
The resulting block cluster tree is used to generate a hierarchical matrix
approximation Ṽh to the single layer potential matrix Vh as given in (3.16).
The structure of Ṽh is represented graphically in �g. 4.6, where red blocks
are inadmissible and green blocks are admissible. The numbers in the green
blocks represent the rank of the low-rank approximation obtained for the
admissible blocks. Storing the full matrix would require about 3.25 Mb of
memory, while the hierarchical approximation requires only 1.18 Mb. This
corresponds to a reduction in memory usage to approximately 38% of the
original.

4.3 Low-rank matrix approximation

We will now concern ourselves with the question of how to generate a low-
rank approximation Ãk ∈ Rsk×tk to some given matrix Ak ∈ Rsk×tk . For ease
of notation, we will from now on denote the index sets by s and t and write
M ∈ Rs×t and M̃ ∈ Rs×t for the matrix and its approximation, respectively.

In section 4.1, we have discussed one possible method for generating a
low-rank approximation, namely, the truncated singular value decomposi-
tion. While this method yields very good results and is even optimal in
the sense of the error in the Frobenius norm, calculating the singular value
decomposition of a matrix M ∈ Rs×s numerically requires O (

#s3
) �oating

point operations and is thus rather slow. This is mitigated by the fact that,
for hierarchical approximation, low-rank approximation is only performed on
the sub-matrix blocks (Ak)1≤k≤NB

of the full matrix A: these blocks are typi-
cally much smaller than A itself. Still, for our goal of obtaining quasi-optimal
performance for common matrix operations, an algorithm with lower time
complexity would be desirable. Ideally, we would like an algorithm which
operates in O (#s) operations, i. e. linear in the number of unknowns, and
produces similarly good results as the TSVD.

Our investigations will be based on the framework of skeletal or cross
approximation ([7]). The idea is to choose small sets s̃ ⊂ s and t̃ ⊂ t of pivot
rows and pivot columns, respectively, and represent the approximation as a
matrix product

M̃ = M |s×t̃ · S ·M |s̃×t

with a coe�cient matrix S ∈ Rt̃×s̃. This may be viewed as constructing M̃
as a linear combination of all possible rank one outer products of the pivot
rows and columns, i. e.

M̃ ∈ span{
M |s×{j} ·M |{i}×t : (i, j) ∈ s̃× t̃

}
.
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Every such rank one product M |s×{j} ·M |{i}×t ∈ Rs×t is called a cross; we
shall denote it by C(M, i, j).

The following result states that for any low-rank approximation, there is
a cross approximation of similar quality.
Theorem 4.3.1 (Existence of cross approximations). Let M,R ∈ Rs×t

be matrices with ‖M −R‖ ≤ ε and rank R ≤ k. Then there exist subsets
s̃ ⊂ s and t̃ ⊂ t and a matrix S ∈ Rt̃×s̃ such that∥∥M − (M |s×t̃ · S ·M |s̃×t)

∥∥
2
≤ ε(1 + 2

√
k(

√
#s̃+

√
#t̃)).

Proof. See [7].
We now present heuristic algorithms which can be used to compute such

cross approximations.

4.3.1 Cross approximation with full pivoting

This algorithm is based on �nding the entry Mij of M with maximum mod-
ulus |Mij | and choosing i and j as pivot row and column, respectively. The
cross C(M, i, j) is then added to the cross approximation, and the process
is repeated on the matrix M − C(M, i, j).
Algorithm 3: Cross approximation with full pivoting
Input: a matrix M ∈ Rs×t, a maximum rank k ∈ N
Output: low-rank approximation Rk =

∑k
ν=1 a

ν(bν)T

for ν = 1, . . . , k do
(iν , jν) := arg max(i,j) |Mij | ;
δ := Miνjν ;
if δ = 0 then

terminate with exact rank ν − 1 representation Rν−1 of M ;
else

pivot column vector (aν)i := Mijν for i ∈ s ;
pivot row vector (bν)j := 1

δMiνj for j ∈ t ;
Mij := Mij − (aν)i(bν)j for (i, j) ∈ s× t ;

end
end
This algorithm is easy to implement and has the following interesting

properties.
Lemma 4.3.2. Let M ∈ Rs×t be a matrix with rank M = k. Then algo-
rithm 3 terminates after exactly k iterations and �nds an exact representation

k∑
ν=1

aν(bν)T = M.
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Proof. See [4].

Lemma 4.3.3. Let M ∈ Rs×t be a matrix with rank M ≥ 1 and let Rk be
the cross approximation computed by algorithm 3. Then for any pivot row iν

or column jν , 1 ≤ ν ≤ k, we have

Rk|s×{jν} = M |s×{jν},

Rk|{iν}×t = M |{iν}×t.

In other words, Rk reproduces all pivot rows and pivot columns of M exactly.

Proof. See [4].
Algorithm 3 however still su�ers from quadratic runtime complexity;

more precisely, it requires O (k#s#t) operations. Next we consider an al-
gorithm which does not su�er from this problem.

4.3.2 Cross approximation with partial pivoting

In every iteration ν = 1, . . . , k of algorithm 3, we have to
• determine the pivot point (iν , jν) (O (#s#t) operations),
• compute the vectors aν and bν (O (#s+ #t) operations) and
• update the matrix M (O (#s#t) operations).

Clearly, the �rst and third steps are the bottlenecks bringing the algorithm
to quadratic complexity. Note that even having to precompute all entries
of the matrix M before the algorithm starts makes the algorithm inherently
quadratic, but since we access every entry of M in every iteration, this
requirement can hardly be eliminated in algorithm 3.

The third step above can easily be reduced to linear complexity by storing
not the complete residuum M −Rk, but instead only the vectors aν and bν
and computing the entries Rk =

∑k
ν=1 a

ν(bν)T as needed on the �y. The
remaining question, then, is how to choose pivot points in an e�cient manner.

Here we introduce the concept of partial pivoting whereby the modulus
|Mij | is not maximized over both i and j, but instead one index is held �xed.
This corresponds to �nding the maximum modulus only along one row or
column instead of over the entire matrix. For any given row index i∗ ∈ s, we
need O (#t) operations to compute the corresponding matrix row and the
row maximizer

j∗ = arg max
j∈t

|Mi∗j | .

The algorithm in full is given below.
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Algorithm 4: Cross approximation with partial pivoting
Input: a matrix M ∈ Rs×t, a maximum rank k ∈ N
Output: low-rank approximation Rk =

∑k
ν=1 a

ν(bν)T

set i∗ := min(s), ν := 1,P := ∅ ;
while ν ≤ k do

j∗ := arg maxj∈t |Mij | ;
δ := Mi∗j∗ −

∑ν−1
µ=1(a

µ)i∗(bµ)j∗ ;
if δ = 0 then

if #P = n− 1 then
terminate with exact rank ν− 1 representation Rν−1 of M ;

end
else

(aν)i := Mij∗ −
∑ν−1

µ=1(a
µ)i(bµ)j∗ for i ∈ s ;

(bν)j := 1
δ

(
Mi∗j −

∑ν−1
µ=1(a

µ)i∗(bµ)j

)
for j ∈ t ;

ν := ν + 1 ;
end
P := P ∪ {i∗} ;
choose i∗ ∈ s \ P, e.g. i∗ = arg maxi∈s\P |(bν)ij∗ | ;

end
If we can guarantee δ 6= 0 at every iteration, then algorithm 4 completes

after O (
k2(#s + #t)

) operations and the statement of lemma 4.3.2 remains
valid. For sparse matrices, �nding a row with δ 6= 0 may take several itera-
tions which can bring the algorithm to quadratic complexity. For our dense
boundary element matrices, however, the method may be well-suited.

4.3.3 Adaptive Cross Approximation (ACA)

In both algorithm 3 and algorithm 4, we have always speci�ed a predeter-
mined rank k which should be used for the approximation of the matrix
M . One might wish for a variant of these algorithms where only a desired
accuracy ε has to be speci�ed; the algorithm should terminate once this
accuracy has been achieved, thus not using a higher rank than necessary.
For this, some method for estimating the approximation error ‖M −Rk‖ (or
the corresponding relative error) for a given k is required. Clearly, doing
this exactly is bound to make the cross approximation at least quadratic in
runtime complexity and should thus be avoided if possible.

We therefore use the heuristic of estimating the error ‖M −Rk‖ by a
rank one approximation,

‖M −Rk‖ . ‖M −Rk−1‖ ≈ ‖Rk −Rk−1‖ =
∥∥∥ak(bk)T

∥∥∥ =
∥∥∥ak

∥∥∥
2

∥∥∥bk∥∥∥
2

(which is valid in both the spectral and the Frobenius norm). Hence we may
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estimate the absolute and relative errors in the Frobenius norm by
εFabs(k) :=

∥∥∥ak
∥∥∥

2

∥∥∥bk∥∥∥
2
,

εFrel(k) :=

∥∥ak
∥∥

2

∥∥bk∥∥
2√∑k

ν=1 ‖aν‖2
2 ‖bν‖

2
2 + 2

∑
1≤µ<ν≤k(aµ)Taν(bµ)T bν

where the denominator of εFrel(k) is the Frobenius norm ofRk =
∑k

ν=1 a
ν(bν)T

and serves as an approximation of ‖M‖F .The criterion �ν ≤ k� in algorithm 3 or algorithm 4 which determines
whether another iteration should be performed is then replaced by

ε(ν − 1) > ε

where ε is either of the functions εFabs or εFrel, and we set ε(0) := ∞. Because
the rank is determined adaptively, these variants are called adaptive cross
approximation (ACA).

Convergence cannot always be guaranteed for this formulation of the
algorithm. In particular, Example 4.9 in [4] demonstrates that for certain
con�gurations of clusters on geometry with discontinuous normals, we can
have ε → 0 while ‖M −Rk‖ = O (1) when generating the double layer
potential matrix Kh. Thus, we cannot bound the error in the matrix block
being generated and the low-rank approximation fails to give meaningful
results.

Therefore, a modi�cation of the algorithm is required in order to deal with
these situations. A simple heuristic which seems to work reliably in practice
is to keep track of the number of successful approximations performed on
each individual row and prefer rows with smaller counts as pivot rows. The
details are described in [2].

4.4 Operations on hierarchical matrices

By applying the methods described in the previous sections, we ultimately
obtain a hierarchical matrix Ã ∈ RI×J with

(Ã)ij = (Ãk)ij for k such that (i, j) ∈ sk × tk

where (sk, tk) for 1 ≤ k ≤ NB are the leaves of a block cluster tree TI×J .
Each block Ãk ∈ Rsk×tk is stored in low-rank form if (sk, tk) is admissible
and in standard dense matrix form otherwise. Formally, we denote the set
of hierarchical matrices by

H(TI×J , r) := {M ∈ RI×J : rank M |s×t ≤ r

for all admissible leaves (s, t) of TI×J }.
In the following, we give several operations on a hierchical matrices in

this form.
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4.4.1 Matrix truncation

We �rst de�ne truncation for individual matrix blocks.
De�nition 4.4.1 (Truncation). Let M ∈ Rm×n. For a �xed r ∈ N, we
de�ne the truncation operator

Tr : Rm×n → R(r,m, n)

M 7→ M̃ = arg min
X∈R(r,m,n)

‖X −M‖ .

We might also wish to perform truncation to a predetermined accuracy
without �xing the approximation rank r.
De�nition 4.4.2 (Adaptive truncation). Let M ∈ Rm×n. For a �xed
ε > 0, we de�ne the adaptive truncation operator

Tε(M) := Tr(M) where
r = min

{
r̃ ∈ N0 | ∃M̃ ∈ R(r̃,m, n) :

∥∥∥M − M̃
∥∥∥ ≤ ε ‖M‖

}
.

We now extend the de�nition of truncation to hierarchical matrices.
De�nition 4.4.3 (Hierarchical truncation). LetM ∈ RI×J be a matrix
and TI×J a block cluster tree for the index sets I and J . For any r ∈ N,
we de�ne the hierarchical truncation operator

Tr : RI×J → H(TI×J , r)

M 7→ M̃

where for all leaves (s, t) ∈ TI×J , we have

M̃ |s×t =

{
Tr(M |s×t), if (s, t) admissible,
M |s×t otherwise.

The adaptive hierarchical truncation Tε(M) is de�ned analogously.

4.4.2 Matrix addition and multiplication

Given two hierarchical matrices A,B ∈ H(TI×J , r), in general we have A+
B ∈ H(TI×J , 2r). Hence, in order to keep the rank constant, we de�ne the
formatted addition of H-matrices by

A⊕B := Tr(A+B).

The product AB for matrices A,B ∈ H(TI×I , r) has a more complicated
structure than the addition (where simply corresponding blocks of A and B
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are added), and again the result will in general not lie in H(TI×I , r). We
therefore de�ne the formatted multiplication as

A⊗B := Tr(AB).

Note that calculating the best truncated representation Tr is usually too
expensive in practice, and therefore approximations are used. The details
are quite involved and beyond the scope of this work, and we refer the reader
to [4] for reference.

4.4.3 Matrix-vector multiplication

Given a hierarchical matrix A ∈ H(TI×J , r) with blocks (Ak)1≤k≤NB
and a

vector x ∈ RJ , we wish to compute the product Ax ∈ RI . We denote the
restriction of the vector x to the cluster tk by x|tk ∈ Rtk , and the extension
of a vector yk ∈ Rsk to s by

(yk|s)i =

{
(yk)i, i ∈ sk,

0, otherwise for i ∈ I.

It is easy to see that the product Ax can then be computed by

Ax =
NB∑
k=1

(Akx|tk)|s.

For inadmissible blocks (sk, tk), the multiplication Akx|tk is a standard
dense matrix-vector multiplication. For admissible blocks, we have the low-
rank representation

Ak =
rk∑

ν=1

aν
k(b

ν
k)

T

with vectors aν
k ∈ Rsk and bνk ∈ Rtk for every ν ∈ {1, . . . , rk} and hence

(Akx|tk)i =
rk∑

ν=1

(aν
k)i

∑
j∈tk

(bνk)jxj , ∀i ∈ sk.

Computing the product Akx|tk thus requires O (rk #sk #tk) operations.

4.4.4 Solving a triangular system

Given a lower triangular hierarchical matrix L ∈ H(TI×I , r), we may wish
to solve a system

Lx = y

with given y ∈ RI for x ∈ RI . This is accomplished recursively:
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• If L is not subdivided, solve Lx = y by a standard dense triangular
solver.

• If L is subdivided, say for simplicity into two by two blocks

L =
[
L11 0
L21 L22

]
, x =

[
x1

x2

]
, y =

[
y1

y2

]
,

solve (recursively) �rst
L11x1 = y1

and then
L22x2 = y1 − L21x1.

This scheme may be generalized to handle matrix equations
LX = Y

with X,Y ∈ RI×J . Upper triangular systems are of course treated analo-
gously.

4.4.5 Cholesky and LU factorization

In a similar way, we may compute an LU factorization of a hierarchical
matrix A ∈ H(TI×I , r) by a recursive procedure:

• If A is not subdivided, compute LU = A by a standard dense LU
factorization routine.

• If A is subdivided, say for simplicity into two by two blocks

A =
[
A11 A12

A21 A22

]
,

then we (recursively) compute the factorization
L11U11 = A11,

solve the triangular systems
L11U12 = A12 and L21U11 = A21

for U12 and L21 as described in section 4.4.4 and �nally compute again
a factorization

L22U22 = A22 − L21U12.

We thus obtain all components of the factors

L =
[
L11 0
L21 L22

]
and U =

[
U11 U12

0 U22

]
.
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For symmetric matrices one can compute a Cholesky factorization in an
analogous way.

Note that the data-sparse matrix product L21U11 is in fact computed by
the formatted multiplication L21 ⊗ U11 as de�ned in section 4.4.2. Thus,
accuracy may be speci�ed either in the form of a �xed rank k or of an
adaptive error bound ε. This gives us the possibility to compute approximate
matrix decompositions for use in preconditioning. We will make use of this
in section 4.5.

4.5 Application to the BEM system

Consider again the BEM matrix equation (3.15),(
−Vh Kh

KT
h Dh

) (
vDh

uNh

)
=

(
−f

Dh
f

Nh

)
(4.1)

with
Vh ∈ RNDT×NDT ,

Kh ∈ RNDT×NNV ,

Dh ∈ RNNV ×NNV ,

vDh, fDh
∈ RNDT ,

uNh, fNh
∈ RNNV .

Note that we have reversed the sign on the �rst equation in order to obtain
a symmetric system.

Denote by (ψi)i∈I with I = {1, . . . , NDT } the piecewise constant basis
functions over the Dirichlet triangles, and by (φj)j∈J with J = {1, . . . , NNV }
the piecewise linear ansatz functions for the Neumann vertices, as described
in section 3.3. We thus have

Vh ∈ RI×I , Kh ∈ RI×J , Dh ∈ RJ×J .

We construct appropriate cluster trees TI and TJ for the Dirichlet triangles
and Neumann vertices, respectively, as well as block cluster trees TI×I , TI×J
and TJ×J . These are then used to create hierarchical matrix approximations

Ṽh ∈ H(TI×I , rV ), K̃h ∈ H(TI×J , rK), D̃h ∈ H(TJ×J , rD).

While the admissibility parameter η can be chosen more or less independently
of the mesh size h, matters are slightly more complicated concerning the
approximation accuracy ε. Let us consider the approximation property

inf
xh∈Γh

‖x− xh‖Γ ≤ hr ‖v‖Ξ ∀v ∈ Ξ

56



in some appropriate norm and with a space Ξ ⊂ Γ of higher regularity.
Bebendorf [2] suggests that choosing ε on the order of hr is su�cient for the
approximation error not to dominate the other error terms. For su�ciently
smooth functions v, our basis functions achieve an approximation order of
r = 2 as indicated by (3.11), and hence we choose ε = O

(
h2

).
For the solution of the linear system, we employ an iterative solver,

namely the MINRES method. The following preconditioning scheme (due
to [2]) is employed. The system matrix in (4.1) has the factorization(

−Vh Kh

KT
h Dh

)
=

(
I 0

−KT
h V

−1 I

) (
−Vh Kh

0 KT
h V

−1
h Kh +Dh

)
which could already be used for preconditioning. Computing the Schur com-
plement KT

h V
−1
h Kh + Dh can however be expensive even when using hi-

erarchical matrices. It is therefore approximated by Dh which yields the
preconditioner

C =
(

I 0
−KT

h V
−1 I

) (
−Vh Kh

0 Dh

)
.

For the evaluation of C−1, we compute the approximate (hierarchical)
Cholesky factorizations

C̃T
V C̃V ≈ Ṽh,

C̃T
DC̃D ≈ D̃h

as described in section 4.4.5. As mentioned there, we may specify the de-
sired accuracy of the decomposition by limiting the rank of the formatted
multiplication used during the Cholesky factorization. For preconditioning,
a rather low accuracy is su�cient in order to obtain a spectrally equivalent
preconditioner without expending too much computational e�ort. In our
numerical examples we use an adaptive accuracy of ε = 0.05.

We furthermore compute the matrix
X̃ = C̃−T

V K̃h

by solving the matrix equation C̃T
V X̃ = K̃h as described in section 4.4.4.

The preconditioner can then be evaluated by solving the system(
C̃T

V 0
−X̃T C̃T

D

) (
−C̃V X̃

0 C̃D

) (
v
u

)
=

(
x
y

)
.

The system matrix itself is evaluated by computing four hierarchical
matrix-vector products, (

−Ṽh K̃h

K̃T
h D̃h

) (
v
u

)
.

Analogously, we compute data-sparse approximations for the matrices
occurring on the right-hand side (3.19) (except the mass matrices M̄1h and
M̄2h which are naturally sparse) in order to be able to evaluate the right-hand
side terms e�ciently.
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Chapter 5

Numerical Results

The concepts detailed in the previous chapters were implemented in a C++
program in order to be able to perform numerical tests. There are sev-
eral software libraries available which are concerned with the generation and
manipulation of hierarchical matrices. Two of these were taken into consid-
eration for integration into our program: HLib [3] by Börm and Grasedyck
and ahmed [1] by Bebendorf. After a cursory inspection, we found that
the sample programs included with ahmed were a more convenient starting
point for our aims, and it was thus chosen as the basis of our BVP solver
implementation. No detailed comparison of the two libraries was however
performed, and no statement about their relative merits is implied.

5.1 Data-sparse approximation results

We �rst experimentally determine the approximation properties of hierar-
chical approximation by partially pivoted ACA as described in Chapter 4.
As a model matrix, we choose the single layer potential matrix (3.16), and
for the geometry, a quasi-uniform triangular approximation of the boundary
of the unit sphere which is generated by tesselating a regular icosahedron.

During testing, it became apparent that the bounding box based admis-
sibility condition underestimated distances quite dramatically in many cases,
which is why a larger admissibility parameter η = 5 has been chosen. For
the accuracy parameter, ε = h2 was chosen as rationalized in section 4.5.

Figure 5.1 depicts the relative error of the hierarchically approximated
matrix with these parameters as compared to the full matrix Vh. We see that
as we increase the number of boundary elements, the approximation quality
improves. More precisely, one can observe convergence of (approximately)
the order of O (

h2
)

= O
(
N−2

T

), i. e. linear convergence in the number of
unknowns.

Next, we measure the time taken for the construction of the matrix ap-
proximation. Figure 5.2 shows the execution time for the hierarchical ap-
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Figure 5.1: Convergence of hierarchical approximation. x-axis: number of
boundary elements. y-axis: relative error in Frobenius norm.
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Figure 5.2: Time for hierarchical approximation. x-axis: number of bound-
ary elements. y-axis: execution time in seconds.
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Figure 5.3: Memory usage. x-axis: number of boundary elements. y-axis:
required storage in bytes.
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proximation and, for reference, the time needed to construct the full ma-
trix. The latter unsurprisingly exhibits quadratic behaviour in the number
of boundary elements as Vh ∈ RNT×NT . The times for hierarchical approx-
imation show better asymptotic behaviour except for very small problems;
their complexity corresponds to about O (

N1.35
T

) for this example.
We also summarize these numbers in the following table. The second and

third columns give the execution time for full and approximated computa-
tion of the matrix respectively, and the last column gives the ratio between
approximation time and full time. Note that full computation of the largest
matrix would have required about 1.6 GB of memory. The projected com-
putation time would have been about 75 minutes, whereas the hierarchical
approximation was computed in a mere 5 minutes.

NT full time (s) approx. time (s) ratio
80 0.078 0.078 1.00
320 1.11 1.125 1.01
1280 17.703 6.609 0.76
5120 284.031 42.531 0.15
20480 n/a 300.20 n/a

Finally, we examine the memory requirements for the full matrix and its
hierarchical approximation, depicted in �g. 5.3. Here, the estimated com-
plexity is O (

N1.15
T

). We again summarize the numbers in a table.
NT full memory (MB) approx. memory (MB) ratio
80 0.0247 0.0249 1.0037
320 0.3918 0.3659 0.6948
1280 6.2549 1.7243 0.2658
5120 100.02 10.076 0.0932
20480 1600.1 61.595 0.0385

5.2 Laplace mixed BVP results

We now evaluate the performance of the BEM implementation for the mixed
boundary value problem for the Laplace equation. For the geometry, we
again choose the unit sphere. We prescribe Dirichlet boundary conditions on
the hemisphere ΓD = {x ∈ Γ : x2 ≥ 0} and Neumann boundary conditions
on its complement ΓN = {x ∈ Γ : x2 < 0}. In order to be able to compare
the numerical solution to the exact one, we specify the analytic solution

u(x) =
1

‖x− y‖

with the �xed source point y = (−3, 2, 4)T . The admissibility parameter
η = 5 was used for the single layer and double layer matrices, and η = 2 for
the hypersingular matrix. As above, we set ε = h2.
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Figure 5.4: Error for unknown Dirichlet and Neumann values. x-axis:
mesh size h. y-axis: relative error in L2-norm.
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Figure 5.5: Total time for solution of BVP. x-axis: number of unknowns.
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We �rst examine the relative errors of the computed Dirichlet and Neu-
mann data as compared to the exact solution. Figure 5.4 shows this infor-
mation in dependence of the mesh size h. For reference, we have added a
line with the behaviour O

(
h

3
2

)
as this seems to match the error behaviour

most closely. This shows that the Dirichlet error behaves according to the er-
ror estimate (3.14) while the Neumann error exhibits better behaviour than
(3.13) predicts, which may be due to additional smoothness of the solution.

We also examine the total time taken for the solution of the bound-
ary value problem, depicted in �g. 5.5 in dependence of the number of un-
knowns N = O

(
h−2

). Speci�cally, we time all operations necessary for
solving the problem, including construction of the data-sparse system matri-
ces, their factorization as well as MINRES iteration. The reference line with
slope O

(
N

3
2

)
corresponds to the number of operations a hypotethical FEM

solver with perfectly linear complexity operating on NFEM = O
(
h−3

) could
achieve. For small numbers of unknowns, our implementation evidently does
not perform signi�cantly better than such a scheme. As the number of un-
kowns increases, though, we can see that the algorithm is able to improve
upon the FEM bound, albeit not dramatically. It is conceivable that with a
more �nely tuned admissibility condition and approximation accuracy even
better results would be possible. Bebendorf [2] gives a theoretical bound
of O

(
N logN |ε|6

)
for the construction of the hierarchical matrices (which

takes up the largest part of the run time by far). With our parameters,
this corresponds to O (

N(logN)7
), although with a very large multiplica-

tive constant.

5.3 Wave maker results

In the following, we lift a numerical example from [12] and transfer it into
three dimensions. We assume that we have a test basin with the dimensions

Ω = (0, 10)× (−1, 0)× (−1, 0).

The free surface at rest is the quadrilateral ΓD = (0, 10)× (−1, 0)×{0}. On
the remaining walls ΓN , we prescribe the normal velocities

gN (x, y, z, t) =

{
(1 + z)a sin(ωt), x ∈ {0} × (−1, 0)× (−1, 0),
0, otherwise.

That is, the left basin wall is assumed to be equipped with a wave maker
which exhibits periodic oscillations with maximum amplitude a = 0.02 and
frequency ω = 1.8138, and the other walls are assumed to be stationary.
Note that the oscillations exhibit maximum amplitude at the top of the
basin and vanish at the bottom.
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The surface Γ is discretized by triangles using the software package net-
gen. In particular, we use a re�ned mesh with the following number of
triangles and vertices:

11264 = NT = NDT +NNT = 2560 + 8704,
5634 = NV = NDV +NNV = 1377 + 4257.

For time discretization, we use a �xed time step τ = 0.1 over the time
interval [0, 80.0]. This results in 800 time iterations each of which requires 4
solutions of the mixed boundary value problem on the domain Ω. The entire
scheme took about 71

2h to complete on a system with a single-core Athlon
XP 3200+ processor and 2 GB of RAM. This results in an amortized cost of
about 8.4s per solution of the BVP. Note that there is a a large cost for the
generation of the system matrices which however has to be performed only
once at startup. The scheme is thus better suited for long simulations where
many time iterations are to be performed.

The �gures on pages 65-68 depict the progression of the wave simulation.
Every �gure shows the wave pro�le over the free surface of the basin at a
�xed point in time. Initially, the free surface is at rest (�g. 5.6). We then
observe that the wave front induced by the wave maker begins to traverse the
basin (�g. 5.7). At around t = 28, the wave front has reached the rear wall
of the basin (�g. 5.8). It then re�ects o� this wall, and interference ensues
between the original wave and its re�ection (�g. 5.9). At about t = 60,
the re�ected wave has travelled through the entire basin back to the wave
maker, and a standing wave pattern develops (�g. 5.10). Figures 5.11�5.13
show the peak, �at and inverted peak con�gurations of this standing wave,
respectively.

We note that a slight asymmetry along the width of the basin (the y
axis) develops which is not accounted for by the model. Presumably, this is
an artifact of the asymmetric discretization of the basin boundary obtained
via netgen. This deviation however apparently does not impede stability
and seems to stay within the bounds of the expected numeric error.
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Figure 5.6: Wave pro�le at t = 0.0.

Figure 5.7: Wave pro�le at t = 10.0.
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Figure 5.8: Wave pro�le at t = 28.0.

Figure 5.9: Wave pro�le at t = 43.7.
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Figure 5.10: Wave pro�le at t = 60.0.

Figure 5.11: Wave pro�le at t = 67.0.
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Figure 5.12: Wave pro�le at t = 68.0.

Figure 5.13: Wave pro�le at t = 68.8.
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Chapter 6

Conclusion and outlook

We have presented a Galerkin Boundary Element Method for the solution of
the time-dependent, linearized free surface �ow problem in three dimensions.
Data-sparse matrix approximation techniques were used for accelerating the
solution of the boundary value problem. The results in Chapter 5 indicate
that an improvement in runtime and memory complexity over a standard
optimally preconditioned FEM is achievable.

There are several directions in which the work presented herein could be
expanded. Among these are

• comparison of the obtained results to those of previously implemented
methods and/or to real-world measurements;

• a full derivation of the underlying theory and a complete error analysis;
• further improvements to the data-sparse approximation algorithm and
implementation in order to obtain a more clear-cut advantage over the
FEM;

• generalization to the nonlinear case, where both the linearization of
the boundary conditions and the approximation of the time-dependent
domain Ω(t) by the stationary domain Ω may be undone;

• the incorporation of �oating bodies into the mathematical model and
thus a move towards the Numerical Wave Tank brie�y described in the
introduction.
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