
J OH A N NE S K EP L ER
U N I V E RS I T ÄT L I NZ

Ne t zw e r k f ü r F o r s c h u n g , L e h r e u n d P r a x i s

Beam Theory

Bakkalaureatsarbeit

zur Erlangung des akademischen Grades

Bakkalaureus der Technischen Wissenschaften

in der Studienrichtung

Technische Mathematik

Angefertigt am Institut für Numerische Mathematik

Betreuung:

A. Univ. Prof. Dipl. Ing. Dr. Walter Zulehner

Eingereicht von:

Stefan Tyoler

Linz, November 2018

Johannes Kepler Universität
A-4040 Linz · Altenbergerstraße 69 · Internet: http://www.jku.at · DVR 0093696

Abstract

Beam Theory deals with the question if it is possible to calculate the displacement
of a beam when a load is applied to it. Since the 19th century it is an important
part of engineering and even Galileo Galilei or Leonardo da Vinci tried to bring up
a feasible model for beams, but failed to do so due to missing important material
laws (Hooke’s law). Only in the 18th century Leonhard Euler and Daniel Bernoulli
succeeded to develop a useful theory for beam problems, although it should take the
world another 100 years to bring this theory to practical uses. This model is the so
called Euler-Bernoulli model, which was later further generalised in the Timoshenko
model. In this thesis only the Euler-Bernoulli model will be presented and discussed.

Since the 19th century starting during the industrial revolution beam theory, as part of
continuum mechanics, is used in many of the greater building projects of this time, for
example the Eiffel Tower. It is also essential for building bridges and is an important
part of engineering until today.

Zusammenfassung

In der Balkentheorie beschäftigt man sich mit der Frage, ob man modellieren kann wie
sich ein Balken unter Belastung verbiegt. Seit dem 19. Jahrhundert ist es ein wichtiger
Bestandteil des Ingenieurwesens und schon Galileo Galilei oder Leonardo da Vinci
beschäftigten sich mit der Balkentheorie, jedoch führten diese Bemühungen zunächst
zu nichts, da teils wichtige Materialgesetze fehlten (Hooke’sches Gesetz). Erst im 18.
Jahrhundert gelang es Leonhard Euler und Daniel Bernoulli eine brauchbares Modell
aufzustellen, obwohl es noch 100 Jahre länger dauern sollte bis diese Theorie praktische
Anwendung fand. Dieses Modell ist das sogenannte Euler-Bernoulli Modell, das später
im 19. Jahrhundert eine Verallgemeinerung im Timoshenko Modell fand. Weiters wird
in dieser Arbeit nur das Euler-Bernoulli Modell behandelt.

Die Balkentheorie, als Teil der Kontinuumsmechanik, fand im Zuge der industriellen
Revolution Anwendung in vielen größeren Bauprojekten und Konstruktionen des 19.
Jahrhunderts wie zum Beispiel dem Eiffel Turm. Sehr wichtig ist diese Modellierung im
Brückenbau und bis heutzutage ist sie ein wichtiger Bestandteil im Bauingenieurwesen.

i

Acknowledgments
I would like to thank my supervisor A.Univ. Prof. Dipl. Ing. Dr. Walter Zulehner for
letting me write this thesis, the guidance through the theory and answering all my
questions on the matter while working on this thesis.

Special thanks to O.Univ. Prof. Dipl. Ing. Dr. Ulrich Langer and Dipl.-Ing. Dr. Mar-
tin Neumüller for the lectures ’Mathematical Models in Engineering’ and ’Numerical
Methods for Partial Differential Equations’, which helped me a lot in writing this
thesis and understanding the theory.

Also special thanks to my parents and my brother for supporting me during my studies.

And i would like to thank my study colleagues during the last years and also for the
years to come.

Stefan Tyoler
Linz, November 2018

ii

Contents

1 Introduction 1
1.1 Assumptions for the Euler-Bernoulli model 2

2 Deriving an Equation 3
2.1 3D-model . 3
2.2 Reduction of Dimension . 4
2.3 Strong Form . 8

3 Weak Form Analysis 10
3.1 Sobolev Spaces H1 and H2 . 10

3.1.1 Trace Operator . 11
3.1.2 Friedrichs Inequality . 13

3.2 Homogenisation . 14
3.3 Theorem of Lax-Milgram . 15

4 Finite Element Method 17
4.1 Basis Functions . 17

4.1.1 Shape Functions . 18
4.2 Approximate Solution . 22

4.2.1 Stiffness Matrix . 23
4.2.2 Element Load Vector . 27

5 Implementation 31
5.1 Numerical Results . 31

5.1.1 Discretization Error . 31
5.1.2 Condition of Kh . 33

5.2 Examples . 34
5.2.1 Example 1 . 34
5.2.2 Example 2 . 35
5.2.3 Example 3 . 37
5.2.4 Example 4 . 39

6 Conclusion 41

Bibliography 42

iii

1 Introduction

In this thesis the goal is to model a thin beam (length of beam » area of cross section),
on which a transversal load is applied. For thin beams it suffices to use a 1D model.
The function w(x), which we want to compute is the displacement of the beam and
describes the deflection of the beam in transversal direction (direction in which the
load is applied) at some position x. Other than for a beam with longitudinal load, one
will get not a differential equation of order 2 but a differential equation of order 4.

First the 1D model (also called Euler-Bernoulli model) will be derived from the 3D
model. This method is also known as Reduction of Dimension. From this point on
the weak form of the problem will be discussed more precisely and the existence and
uniqueness of a solution will be shown.

Furthermore the Finite Element Method will be applied for this weak problem and
also an algorithm will be presented, which computes an approximate solution to the
function w. This algorithm was implemented in C++ and at last some numerical
results will be shown based on the results of the algorithm.

1

CHAPTER 1. INTRODUCTION 2

1.1 Assumptions for the Euler-Bernoulli model

Further there are some assumptions for the beam, that will be modelled. The x1-axis
will be chosen as the middle line of the beam, the x3-axis will point in the direction
where the load is applied from.

Figure 1.1: Beam model

Assumptions:

• Lines orthogonal to the middle line remain orthogonal after deformation.

• Only small deformations.

• No torsion around the x1-Axis.

• No longitudinal load along the x1-Axis.

One can see that in the Euler-Bernoulli model orthogonality w.r.t the middle line is
preserved, whereas this is not the case in the Timoshenko model, as shown in Figure
1.1 For simplicity we will further assume the cross section of the beam is constant
w.r.t x1 so

Q(x1) = Q

2 Deriving an Equation
To derive a differential equation for the beam problem one can use a direct approach
by deriving an equilibrium with Hooke’s law and the constitutive law in 1D, see e.g.
[2], [3] and [6].

In this chapter a more physical approach will be chosen to derive a 1D-model. First
of all we will look at the 3D-model.

2.1 3D-model

Let Ω ⊂ R3 be the beam as a 3D object. On this beam there is an external force
density vector f(x) for x ∈ Ω applied which can be written as

f(x) =

f1(x)
f2(x)
f3(x)

 .

The function of displacement for x ∈ Ω will be denoted as

u(x) =

u1(x)
u2(x)
u3(x)

 .

For simplicity we will only look at fixed boundary conditions for the beam, i.e. the
displacement of the beam at the sides is 0. (boundary conditions)

We now know from a physical point of view that the displacement function uminimizes
the Ritz-energy functional

J(v) :=
1

2

∫
Ω

σ(x) : ε(x) dx−
∫

Ω

f · v dx,

and

J(u) = min
v
J(v),

where σ ∈ R3×3 is the stress tensor and ε ∈ R3×3 is the strain tensor. The ’:’ - operator
is defined as the euclidean scalar product between 2 matrices, if one considers 3x3
matrices as vectors of length 9.

σ(x) =

 σ11(x) σ12(x) σ13(x)
σ21(x) σ22(x) σ23(x)
σ31(x) σ32(x) σ33(x)

 , ε(x) =

 ε11(x) ε12(x) ε13(x)
ε21(x) ε22(x) ε23(x)
ε31(x) ε32(x) ε33(x)

 .

3

CHAPTER 2. DERIVING AN EQUATION 4

Furthermore there are the material law and the constitutive law for the 3D-model.

Material law:

σ = 2µε+ λtr(ε)I in Ω,

where λ and µ are the so called Lamé-Coefficients, which are closely related to the
elastic modulus. tr(ε) is the trace of the strain tensor and I is the identity matrix.

Constitutive law:

ε =
1

2
(∇u+ (∇u)T) in Ω.

2.2 Reduction of Dimension

By inserting the data from the Euler-Bernoulli beam one gets

f(x) =

 0
0

−f3(x)


for the external force density (force is only applied from the x3-direction), here f3 is
signed as negative because the force is applied from above.

For u(x) we need to take some modelling errors into account. First of all we will denote

u3(x1, x2, x3) = w(x1),

because w is our function for the displacement in x3 direction in the 1D model. But by
making u3 only depend on x1 we are basically assuming every point in a cross section
has the same displacement in x3 direction, which is of course not entirely true.

For u2 we just get that
u2(x1, x2, x3) = 0,

because if there is only a load applied from x3 then there is no displacement in x2

And finally for u1:

When looking at Figure 2.1 one can see that

w′(x1) = tan(φ(x1)) ≈ φ(x1) for small deformations, i.e. for small φ,

u1(x1, x2, x3) = −x3sin(φ(x1)) ≈ −x3φ(x1) for small deformations, i.e. for small φ,

and we get
u1(x1, x2, x3) ≈ −x3φ(x1) ≈ −x3w

′(x1).

CHAPTER 2. DERIVING AN EQUATION 5

Figure 2.1: sketch

Then the displacement vector is

u(x1, x2, x3) =

−x3w
′(x1)

0
w(x1)

 .

The gradient of u is

∇u(x) =

−x3w
′′(x1) 0 −w′(x1)

0 0 0
w′(x1) 0 0

 .

And by further inserting into the stress- and strain we get

ε(x) =

 −x3w
′′(x1) 0 0

0 0 0
0 0 0

 , σ(x) =

 2µε11(x) + λε11(x) 0 0
0 λε11(x) 0
0 0 λε11(x)

 .

The problem now is that this model is not entirely true for a 1D-model, so it will be
modified a bit by either changing the material law and committing to the constitutive
law or vice versa.
In this case we will omit the constitutive law but keep the material law.
we modify the 3D-model by enforcing a linear stress state

ε(x) =

 ε11 0 0
0 ε22 0
0 0 ε33

 , σ(x) =

 σ11 0 0
0 0 0
0 0 0

 .

CHAPTER 2. DERIVING AN EQUATION 6

With the material law

σ = 2µε+ λtr(ε)I

and by enforcing
σ22 = 0 , σ33 = 0

we will now solve for ε22 and ε33:

σ22 = 2µε22 + λ(ε11 + ε22 + ε33) = 0

σ33 = 2µε33 + λ(ε11 + ε22 + ε33) = 0

⇒ ε22 = ε33

2µε22 + λ(ε11 + 2ε22) = 0

⇒ 2(µ+ λ)ε22 + λε11 = 0

⇒ ε22 = ε33 = − λ

2(λ+ µ)
ε11,

and compute

σ11 = 2µε11 + λtr(ε) = 2µε11 + λ(ε11 −
2λ

2(λ+ µ)
ε11)

= (2µ+ λ(1− λ

λ+ µ
))ε11

=
2µ(λ+ µ) + λµ

λ+ µ
ε11 =

µ(3λ+ 2µ)

λ+ µ︸ ︷︷ ︸
E

ε11.

⇒ σ11 = Eε11

and obtain a linear stress state with factor E (the elastic modulus).
If we now insert u, σ and ε in the energy functional J we get

J(u) =
1

2

∫
Ω

σ11(x) 0 0
0 0 0
0 0 0

 :

ε11(x) 0 0
0 ε22(x) 0
0 0 ε33(x)

 dx−
∫

Ω

 0
0

−f3(x)

 ·
−x3w

′(x1)
0

w(x1)

 dx

=
1

2

∫
Ω

σ11ε11 dx−
∫

Ω

−f3(x)w(x1) dx

=
1

2

∫ L

0

∫
Q

Eε211 dx1 dQ−
∫ L

0

∫
Q

−f3(x)w(x1) dx1 dQ

=
1

2
E

∫ L

0

∫
Q

x2
3 dQ︸ ︷︷ ︸
I

(w′′(x1))2 dx1 −
∫ L

0

−
∫
Q

f3(x) dQ︸ ︷︷ ︸
q(x1)

w(x1) dx1

=
1

2
EI

∫ L

0

(w′′(x1))2 dx1 −
∫ L

0

−q(x1)w(x1) dx1.

CHAPTER 2. DERIVING AN EQUATION 7

Remark 2.1. The function q(x1) can be interpreted as the load applied to a whole
cross section of the beam and depends on x1.

Remark 2.2. I is also called the second moment of area (ger. ’Flächenträgheitsmo-
ment’). It depends on the cross section Q. Since Q is constant here, I is also a constant.

We now define a new energy functional:

J̄(v) :=
1

2
EI

∫ L

0

(v′′(x1))2 dx1 −
∫ L

0

−q(x1)v(x1) dx1

Since u minimizes J , it follows that w is a minimizer for J̄ .
For deriving a weak form we also need the following lemma.

Lemma 2.3. Let V be a Hilbert space, V0 a closed subspace of V , Vg := g + V0 with
g ∈ V , a : V × V → R a bounded symmetric, non-negative bilinear form, Q a bounded
linear functional. Let the energy functional be defined as

J(v) :=
1

2
a(v, v)− 〈Q, v〉 ∀v ∈ V,

then the following equivalence holds for w ∈ Vg

J(w) = min
v∈Vg

J(v) ⇐⇒ a(w, v) = 〈Q, v〉 ∀v ∈ V0.

Remark 2.4. A suitable Hilbert space and subspaces for the solutions of the beam
model will be introduced in chapter 3.

Remark 2.5. A bounded, symmetric, non negative bilinear form a : V × V → R
fulfills the following requirements:

• Linearity and homogeneity in both arguments:

a(v1 + v2, v3) = a(v1, v3) + a(v2, v3)

a(v1, v2 + v3) = a(v1, v2) + a(v1, v3)

a(λv1, v2) = λa(v1, v2) = a(v1, λv2)

• it is symmetric:
a(v1, v2) = a(v2, v1) ∀v1, v2 ∈ V

• it is non negative:
a(v1, v2) ≥ 0 ∀v1, v2 ∈ V

• it is bounded:

∃C > 0 : a(v1, v2) ≤ C‖v1‖‖v2‖ ∀v1, v2 ∈ V.

CHAPTER 2. DERIVING AN EQUATION 8

If we define now

a(u, v) := EI

∫ L

0

u′′(x1)v′′(x1) dx1 and 〈Q, v〉 :=

∫ L

0

−q(x1)v(x1) dx1,

then we can rewrite the energy functional

J̄(v) :=
1

2
EI

∫ L

0

(v′′(x1))2 dx1 −
∫ L

0

−q(x1)v(x1) dx1 =
1

2
a(v, v)− 〈Q, v〉,

and since w minimizes J̄ it follows with Lemma 2.3 that w is solution of

EI

∫ L

0

w′′(x1)v′′(x1) dx1 = −
∫ L

0

q(x1)v(x1) dx1 ∀v ∈ V0, (2.1)

or more abstract: Find w ∈ Vg such that

a(w, v) = 〈Q, v〉 ∀v ∈ V0, (2.2)

and we have finally obtain a weak form for the beam-model. As mentioned above, the
fitting function space will be introduced in the next chapter.

Remark 2.6. The homogeneous boundary conditions of the 3D-model also enforce
homogeneous essential boundary conditions on the 1D- function w, i.e.

w(0) = w(L) = w′(0) = w′(L) = 0.

Remark 2.7. The method of reduction of dimension can also be done for 2D-models,
so called plate-models. The Kirchhoff-Love plate model is the equivalent to the Euler-
Bernoulli model in 1D and leads to a partial differential equation of order 4.

2.3 Strong Form

Under certain requirements for w and q one can derive the strong form of the equation.
But first we need an important lemma.

Lemma 2.8 (Fundamental Lemma of the Calculus of Variations).
Let I = [a, b] ⊂ R be a compact real interval and g : I → R a continuous function. If∫ b

a

g(x)v(x) dx = 0 ∀v ∈ C∞0 (a, b),

then g is the null-function, i.e.

g(x) = 0 ∀x ∈ I.

CHAPTER 2. DERIVING AN EQUATION 9

Now we will have a look at the weak problem (2.1) and demand that w ∈ C4(0, L)
and q ∈ C(0, L)

With partial Integration we can rewrite the weak problem.

EI

∫ L

0

w′′(x)v′′(x) dx = −
∫ L

0

q(x)v(x) dx ∀v ∈ V0

⇒ − EI
∫ L

0

w′′′(x)v′(x) dx+ EIw′′(x)v′(x)

∣∣∣∣L
0

= −
∫ L

0

q(x)v(x) dx

⇒ EI

∫ L

0

w′′′′(x)v(x) dx+ EIw′′(x)v′(x)

∣∣∣∣L
0

− EIw′′′(x)v(x)

∣∣∣∣L
0

= −
∫ L

0

q(x)v(x) dx

By choosing v ∈ C∞0 (0, L) ⊂ V0 we get that

EI

∫ L

0

w′′′′(x)v(x) dx+ EIw′′(x)v′(x)

∣∣∣∣L
0︸ ︷︷ ︸

=0

−EIw′′′(x)v(x)

∣∣∣∣L
0︸ ︷︷ ︸

=0

= −
∫ L

0

q(x)v(x) dx

⇒
∫ L

0

(EIw′′′′(x) + q(x)︸ ︷︷ ︸
∈C(0,L)

)v(x) dx = 0 ∀v ∈ C∞0 (0, L)

⇒ EIw′′′′(x) + q(x) = 0

⇒ − EIw′′′′(x) = q(x).

Together with the essential boundary conditions for w we get an ordinary differential
equation of order 4 with

−EIw′′′′(x) = q(x) ∀x ∈ (0, L),

w(0) = w(L) = w′(0) = w′(L) = 0.

This is the classical differential equation for the Euler-Bernoulli beam model.

Remark 2.9. One can show that every solution of the classical differential equation
is also a solution of the weak problem by multiplying with a test function and partially
integrating the equation.

As shown above a solution of the weak problem is only a classical solution if it fulfills
a certain degree of smoothness, here being 4 times continuously differentiable.

3 Weak Form Analysis

In this chapter existence and uniqueness of a solution w for (2.1) will be proven,
using the theorem of Lax-Milgram. But first we need a suitable Hilbert space for the
functions in (2.1). This chapter is mainly based on [4].

3.1 Sobolev Spaces H1 and H2

Definition 3.1 (Weak derivative).
The function g is called the weak derivative of f if∫

Ω

fϕ′ = −
∫

Ω

gϕ ∀ϕ ∈ C∞0 (Ω),

Furthermore the second weak derivative g of f is defined as∫
Ω

fϕ′′ =

∫
Ω

gϕ ∀ϕ ∈ C∞0 (Ω).

In this thesis, the weak derivatives will be written in the usual notation f ′ respectively
f ′′.

Definition 3.2 (Sobolev space).
The Sobolev Space H1 over Ω is defined as

H1(Ω) :=
{
v ∈ L2(Ω)

∣∣ v′ ∈ L2(Ω)
}
.

The Sobolev Space H2 over Ω is defined as

H2(Ω) :=
{
v ∈ L2(Ω)

∣∣ v′ ∈ L2(Ω), v′′ ∈ L2(Ω)
}
,

which can be written as

H2(Ω) =
{
v ∈ L2(Ω)

∣∣ v′ ∈ H1(Ω)
}

with

‖v‖H1 :=
√

(v, v)H1(Ω) =
√
‖v‖2

L2(Ω) + ‖v′‖2
L2(Ω) =

√∫
Ω

|v(x)|2 dx+

∫
Ω

|v′(x)|2 dx,

‖v‖H2 :=
√

(v, v)H2(Ω) =
√
‖v‖2

L2(Ω) + ‖v′‖2
L2(Ω) + ‖v′′‖2

L2(Ω) =
√
‖v‖2

L2(Ω) + ‖v′‖2
H1(Ω).

10

CHAPTER 3. WEAK FORM ANALYSIS 11

Additionally we can define semi norms on the Sobolev spaces

|v|H1 := ‖v′‖L2 ,

|v|H2 := ‖v′′‖L2 .

Remark 3.3. The Sobolev spaces Hk form Hilbert spaces.

Remark 3.4. Another useful property of Sobolev spaces is that the function space
Ck(Ω) is dense in Hk(Ω)

Remark 3.5. Since we need for our weak problem (2.1) that∫ L

0

w′′v′′ <∞ ⇐ w′′, v′′ ∈ L2(0, L).

So H2(0, L) would be a fitting function space for our solution and test functions.

3.1.1 Trace Operator

Since functions in Sobolev spaces are L2-functions we cannot evaluate them at some
point x, we have to introduce an operator to do this. Furthermore the trace operator
is linear and bounded.

Lemma 3.6 (Trace operator).
Let γy : H2 ⇒ R and γ′y : H2 ⇒ R with

γy(v) = v(y) , γ′y(v) = v′(y).

Then there exists ctr such that

|v(y)| ≤ ctr‖v‖H2 , |v′(y)| ≤ ctr‖v‖H2

with
ctr =

√
2max(

1√
L
,
√
L).

CHAPTER 3. WEAK FORM ANALYSIS 12

Proof.
Let v ∈ C2

⇒ v(y) = v(x)−
∫ x

y

v′(s) ds x, y ∈ [0, L]

⇒ |v(y)| ≤ |v(x)|+
∫ x

y

|v′(s)| ds
CS

≤ |v(x)|+ ‖1‖L2︸ ︷︷ ︸√
L

‖v′‖L2

⇒
∫ L

0

|v(y)| dx ≤
∫ L

0

|v(x)| dx+
√
L

∫ L

0

‖v′‖L2 dx
CS

≤
√
L‖v‖L2 + L

3
2‖v′‖L2

⇒ L|v(y)| ≤
√
L‖v‖L2 + L

3
2‖v′‖L2

⇒ |v(y)| ≤ 1√
L
‖v‖L2 +

√
L‖v′‖L2 ≤ max(

1√
L
,
√
L)(‖v‖L2 + ‖v′‖L2)

≤
√

2 max(
1√
L
,
√
L) (‖v‖2

L2 + ‖v′‖2
L2)

1
2︸ ︷︷ ︸

‖v‖H1

≤
√

2 max(
1√
L
,
√
L)︸ ︷︷ ︸

ctr

(‖v‖2
L2 + ‖v′‖2

L2 + ‖v′′‖2
L2)

1
2︸ ︷︷ ︸

‖v‖H2

Since C2 is a dense subset of H2 this inequality also holds for all v ∈ H2.
Analogously one can show the same inequality for v’.

v′(y) = v′(x)−
∫ x

y

v′′(s) ds x, y ∈ [0, L]

⇒ |v′(y)| ≤ |v′(x)|+
∫ x

y

|v′′(s)| ds
CS

≤ |v′(x)|+ ‖1‖L2︸ ︷︷ ︸√
L

‖v′′‖L2

⇒
∫ L

0

|v′(y)| dx ≤
∫ L

0

|v′(x)| dx+
√
L

∫ L

0

‖v′′‖L2 dx
CS

≤
√
L‖v′‖L2 + L

3
2‖v′′‖L2

⇒ L|v′(y)| ≤
√
L‖v′‖L2 + L

3
2‖v′′‖L2

⇒ |v′(y)| ≤ 1√
L
‖v′‖L2 +

√
L‖v′′‖L2 ≤ max(

1√
L
,
√
L)(‖v′‖L2 + ‖v′′‖L2)

≤
√

2 max(
1√
L
,
√
L)(‖v′‖2

L2 + ‖v′′‖2
L2)

1
2 ≤
√

2 max(
1√
L
,
√
L)︸ ︷︷ ︸

ctr

(‖v‖2
L2 + ‖v′‖2

L2 + ‖v′′‖2
L2)

1
2︸ ︷︷ ︸

‖v‖H2

Remark 3.7. In the first part of the proof we didn’t use the fact that v is 2-times
differentiable but only that it is differentiable and one can see that we got

|v(y)| ≤ ctr‖v‖H1

in the last line of the proof, so we have also shown this inequality for v ∈ H1.

CHAPTER 3. WEAK FORM ANALYSIS 13

3.1.2 Friedrichs Inequality

Another important inequality that is needed to use the theorem of Lax-Milgram on
(2.1) is Friedrichs inequality.

Lemma 3.8 (Friedrichs inequality).
Let

V0 :=
{
v ∈ H2(0, L)

∣∣ v(0) = v(L) = v′(0) = v′(L) = 0
}
,

then there exist cF1 > 0 and cF2 > 0 such that

‖v‖L2 ≤ cF1|v|H1 and ‖v‖L2 ≤ cF2|v|H2 .

Proof.
Let

C2
0 :=

{
v ∈ C2

∣∣ v(0) = v(L) = v′(0) = v′(L) = 0
}
⊂ V0,

which is dense in V0 and let v ∈ C2
0 :

⇒ v(x) =

∫ x

0

v′(s) ds x ∈ [0, L]

⇒ |v(x)| ≤
∫ x

0

|v′(s)| ds
CS

≤ (

∫ x

0

1 ds)
1
2 |v|H1 =

√
x|v|H1

⇒
∫ L

0

|v(x)|2 dx ≤
∫ L

0

x|v|2H1 dx =
1

2
L2|v|2H1

⇒ ‖v‖L2 ≤
1√
2
L︸ ︷︷ ︸

cF1

|v|H1

If we substitute v with v’ we get an inequality which we later need to use the theorem
of Lax-Milgram:

|v|H1 ≤
1√
2
L|v|H2

CHAPTER 3. WEAK FORM ANALYSIS 14

Furthermore if v ∈ C2
0 :

⇒ v(x) =

∫ x

0

v′(s) ds =

∫ x

0

∫ s

0

v′′(u) du ds

⇒ |v(x)| ≤
∫ x

0

∫ s

0

|v′′(u)| du ds
CS

≤
∫ x

0

(

∫ s

0

1 du)
1
2 |v|H2 ds =

∫ x

0

s
1
2 |v|H2

=
s

3
2

3
2

∣∣∣∣x
0

|v|H2 =
2

3

√
x3|v|H2

⇒
∫ L

0

|v(x)|2 dx ≤
∫ L

0

4

9
x3|v|2H2 dx =

1

9
L4|v|2H2

⇒ ‖v‖L2 ≤
1

3
L2︸︷︷︸

cF2

|v|H2

And by using the density of C2
0 in V0 it also holds for v ∈ V0.

3.2 Homogenisation

In this section we will see that we can transform the abstract problem (2.2) such that
the space for the solution and the space for the test functions will be the same. This
would also be a requirement for the theorem of Lax-Milgram in the next section.

Let V be a Hilbert space and w ∈ Vg ⊂ V such that

a(w, v) = 〈Q, v〉 ∀v ∈ V0 ⊂ V.

If there exists a function g ∈ Vg such that Vg = g + V0,

⇒ w ∈ Vg ⇒ w = w0 + g for a w0 ∈ V0

⇒ a(w, v) = a(w0 + g, v) = 〈Q, v〉

⇒ a(w0, v) = 〈Q, v〉 − a(g, v)︸ ︷︷ ︸
〈Q̃,v〉

.

So we have transformed the problem:

Find w0 ∈ V0 such that
a(w0, v) = 〈Q̃, v〉 ∀v ∈ V0.

CHAPTER 3. WEAK FORM ANALYSIS 15

In our case for

V0 :=
{
v ∈ H2(0, L)

∣∣ v(0) = v(L) = v′(0) = v′(L) = 0
}
,

it will always be possible to find a piecewise cubic function g such that

g(0) = g0 , g(L) = gL , g′(0) = d0 , g′(L) = dL,

where g0,gL,d0,dL are the essential boundary conditions for the wanted function w.

3.3 Theorem of Lax-Milgram

In this chapter we will finally be able to give an answer about the existence and
uniqueness of a solution for (2.1). Essential is the following theorem.

Theorem 3.9 (Lax-Milgram).
Let H be a Hilbert space, V ⊂ H a closed subspace of H. Let a : H × H ⇒ R be a
bilinear form. Let Q : H ⇒ R be a linear functional in H.

If there are constants ca1,ca2,c > 0 such that

• |a(u, u)| ≥ ca1‖u‖
2 ∀u ∈ V (elliptic bilinear form).

• |a(u, v)| ≤ ca2‖u‖‖v‖ ∀u, v ∈ V (bounded bilinear form).

• |〈Q, v〉| ≤ c‖v‖ ∀v ∈ V (bounded functional).

Then the equation
a(u, v) = 〈Q, v〉 ∀v ∈ V

has a unique solution u ∈ V.

Claim 3.10. The weak problem (2.1) fulfills the requirements of the theorem of Lax-
Milgram.

Proof.

• Closed subspace:
We start by checking if V0 is a closed subspace of H2. Trivially it is a subspace
of H2.

For the trace operators we have the upper bounds

|v(y)| ≤ ctr‖v‖H2 ,

|v′(y)| ≤ ctr‖v‖H2 .

CHAPTER 3. WEAK FORM ANALYSIS 16

Since the trace operators are bounded, it follows that they are continuous and
therefore the kernels for the respective trace operators at the boundary are closed.

ker1 =
{
v ∈ H2(0, L)

∣∣ v(0) = 0
}

ker2 =
{
v ∈ H2(0, L)

∣∣ v(L) = 0
}

ker3 =
{
v ∈ H2(0, L)

∣∣ v′(0) = 0
}

ker4 =
{
v ∈ H2(0, L)

∣∣ v′(L) = 0
}

Finally we can see that

V0 = ker1 ∩ ker2 ∩ ker3 ∩ ker4

and thus V0 is a closed subspace of H2.

• Elliptic bilinear form:

For the H2-Norm the following inequality holds for all u ∈ V0:

‖u‖2
H2 = ‖u‖2

L2 + |u|2H1 + |u|2H2 ≤ c2
F2
|u|2H2 +c2

F1
|u|2H2 + |u|H2 = (c2

F2
+c2

F1
+1)|u|2H2

and for the bilinear form we have

|a(u, u)| = EI

∫ L

0

|u′′(x)|2 dx = EI|u|2H2 ≥ EI
1

c2
F2

+ c2
F1

+ 1︸ ︷︷ ︸
ca1

‖u‖2
H2 .

• Bounded bilinear form:

|a(u, v)| = EI

∫ L

0

u′′v′′ dx
CS

≤ EI|u|H2 |v|H2 ≤ EI‖u‖H2‖v‖H2

• Bounded functional:

|〈Q, v〉| = |〈Q, v〉 − a(g, v)|

≤
∫ L

0

|qv| dx+ |a(g, v)|
CS

≤ ‖q‖L2‖v‖L2 + EI‖g‖H2‖v‖H2 ≤ (‖q‖L2 + EI‖g‖H2)‖v‖H2

So the weak problem (2.1) satisfies the requirements for the theorem of Lax-Milgram
and has a unique solution w.

4 Finite Element Method

In this chapter the Finite Element Method will be applied to the weak problem (2.1).
The main goal is to define a subspace Vh ⊂ H2 with a finite basis and solve the problem
over this subspace instead of the infinite dimensional space H2. We will see that this
will lead to a linear equation system, see e.g. [4] and [1].

4.1 Basis Functions

The subspace will be created by discretizing the interval [0, L], choosing nodes and
defining polynomial basis functions on these nodes. This will lead to piecewise poly-
nomial functions which will later interpolate our solution w.

Of course one has to make sure that this piecewise polynomial functions are H2-
functions. The following lemma will help to decide which basis functions we need.

Remark 4.1. The set of nodes used to discretize the beam is called a mesh, the inter-
vals in between those nodes are called elements.

Lemma 4.2.
For a piecewise differentiable function f it holds that

f continuous ⇐⇒ f ∈ H1.

It follows for a piecewise 2-times differentiable function f that

f ’ continuous ⇐⇒ f ′ ∈ H1 ⇐⇒ f ∈ H2.

This means we need piecewise polynomial basis functions which are continuously dif-
ferentiable. We will create those basis functions in such a way that one type of basis
function (ϕ) will be used to interpolate the function values of w and the other type of
basis functions (ψ) will be used to interpolate the function values of the derivative.

In other words

ϕi(xj) =

{
1 if i = j

0 else
, ϕ′i(xj) = 0 ∀j,

ψi(xj) = 0 ∀j , ψ′i(xj) =

{
1 if i = j

0 else
.

We now need to check how to compute those basis functions and how they will be
defined in between 2 nodes. For this we will look at the so called shape functions.

17

CHAPTER 4. FINITE ELEMENT METHOD 18

4.1.1 Shape Functions

Shape functions are basically the basis functions defined in between 2 nodes, i.e. on
one element of the discretization. One could say a basis function is composed of 2
shape functions. For one interval there are 4 different shape functions.

For simplicity we will compute the shape functions only on the interval [0, 1], the
reference interval. The corresponding shape functions for arbitrary elements can be
computed by using a transformation from the reference element.

The definition of the basis functions above will yield for the 4 shape functions ϕ̂0, ϕ̂1,
ψ̂0, ψ̂1 ∈ P3(0, 1). That means a shape function has 4 degrees of freedom.

• ϕ̂0(x) = ax3 + bx2 + cx+ d

ϕ̂0(0) = 1 ϕ̂0(1) = 0

ϕ̂′0(0) = 0 ϕ̂′0(1) = 0

ϕ̂0(0) = d = 1

ϕ̂′0(0) = c = 0

ϕ̂0(1) = a+ b+ c+ d = 0 ⇒ a+ b+ 1 = 0

ϕ̂′0(1) = 3a+ 2b+ c = 0 ⇒ 3a+ 2b = 0

}
⇒ b = −3 , a = 2.

⇒ ϕ̂0(x) = 2x3 − 3x2 + 1

• ϕ̂1(x) = ax3 + bx2 + cx+ d

ϕ̂0(0) = 0 ϕ̂0(1) = 1

ϕ̂′0(0) = 0 ϕ̂′0(1) = 0

ϕ̂0(0) = d = 0

ϕ̂′0(0) = c = 0

ϕ̂0(1) = a+ b+ c+ d = 1 ⇒ a+ b = 0

ϕ̂′0(1) = 3a+ 2b+ c = 0 ⇒ 3a+ 2b = 0

}
⇒ b = 3 , a = −2.

⇒ ϕ̂1(x) = −2x3 + 3x2

CHAPTER 4. FINITE ELEMENT METHOD 19

• ψ̂0(x) = ax3 + bx2 + cx+ d

ψ̂0(0) = 0 ψ̂0(1) = 0

ψ̂′0(0) = 1 ψ̂′0(1) = 0

ψ̂0(0) = d = 0

ψ̂′0(0) = c = 1

ψ̂0(1) = a+ b+ c+ d = 0 ⇒ a+ b+ 1 = 0

ψ̂′0(1) = 3a+ 2b+ c = 0 ⇒ 3a+ 2b+ 1 = 0

}
⇒ b = −2 , a = 1.

⇒ ψ̂0(x) = x3 − 2x2 + x

• ψ̂0(x) = ax3 + bx2 + cx+ d

ψ̂1(0) = 0 ψ̂1(1) = 0

ψ̂′1(0) = 0 ψ̂′1(1) = 1

ψ̂1(0) = d = 0

ψ̂′1(0) = c = 0

ψ̂1(1) = a+ b+ c+ d = 0 ⇒ a+ b = 0

ψ̂′1(1) = 3a+ 2b+ c = 1 ⇒ 3a+ 2b = 1

}
⇒ b = −1 , a = 1.

⇒ ψ̂1(x) = x3 − x2

These 4 polynomials are also called the Hermite basis functions:

ϕ̂0(x) = 2x3 − 3x2 + 1

ϕ̂1(x) = −2x3 + 3x2

ψ̂0(x) = x3 − 2x2 + x

ψ̂1(x) = x3 − x2

CHAPTER 4. FINITE ELEMENT METHOD 20

Figure 4.1: Hermite basis functions

Remark 4.3.
The function

Fk : [0, 1]→ [xk−1, xk]

with
Fk(x) := xk−1 + (xk − xk−1︸ ︷︷ ︸

hk

)x

will be the transformation from the reference element and will be used to define the
shape functions on all elements in the discretization. One can define the inverse trans-
formation as well:

F−1
k (x) :=

x− xk−1

xk − xk−1

Also important to note is that

F ′k(x) = hk , (F−1
k)′(x) =

1

hk
.

We will now define the shape functions of an arbitrary element Tk = [xk−1, xk] in the
mesh of our beam:

ϕk−1(x) := ϕ̂0(F−1
k (x))

ϕk(x) := ϕ̂1(F−1
k (x))

ψk−1(x) := hkψ̂0(F−1
k (x))

ψk(x) := hkψ̂1(F−1
k (x))

∀x ∈ Tk.

CHAPTER 4. FINITE ELEMENT METHOD 21

Respectively the whole basis functions can be defined as

ϕk−1(x) :=


ϕ̂0(F−1

k (x)) x ∈ [xk−1, xk]

ϕ̂1(F−1
k−1(x)) x ∈ [xk−2, xk−1)

0 else
,

ψk−1(x) :=


hkψ̂0(F−1

k (x)) x ∈ [xk−1, xk]

hk−1ψ̂1(F−1
k−1(x)) x ∈ [xk−2, xk−1)

0 else
.

It is easily checked that ϕ satisfies the requirements we proposed for a nodal basis for
the function values namely

ϕi(xj) =

{
1 if i = j

0 else
, ϕ′i(xj) = 0 ∀j.

The additional factor hk in the definition of ψ is needed to guarantee the derivative
value of 1 when ’stretching’ the interval. Since we stretch the interval by the factor hk
we need to multiply the function with hk.

ψ′k−1(xk−1) = ��hk ψ̂0

′
(F−1

k (xk−1)) (F−1
k)′(xk−1)︸ ︷︷ ︸

��
1
hk

= ψ̂0

′
(0) = 1

Therefore ψ also satisfies

ψi(xj) = 0 ∀j , ψ′i(xj) =

{
1 if i = j

0 else
.

Remark 4.4. We will denote the basis functions exactly as the corresponding shape
functions.

With this basis we can now define the subspace Vh ⊂ H2 and for every vh ∈ Vh we can
write

vh =
n∑

i=0

viϕi +
n∑

i=0

v′iψi , vi, v′i ∈ R ∀i.

Remark 4.5. The major advantage when choosing a nodal basis is that

vh(xj) = vj , v′h(xj) = v′j.

so the coordinates in this basis are exactly the function values/derivative values.

With this subspace we can now define the approximate solution for the weak problem
(2.1)

CHAPTER 4. FINITE ELEMENT METHOD 22

4.2 Approximate Solution

Definition 4.6. For the weak problem (2.1)

a(w, v) = 〈Q, v〉 ∀v ∈ V0

the approximate solution wh ∈ Vg,h to the solution w is defined as the solution to the
problem

a(wh, vh) = 〈Q, vh〉 ∀vh ∈ V0,h. (4.1)

To solve this problem we will make use of the representation of wh and vh as lin-
ear combination of the basis functions. As boundary conditions we will choose only
essential boundary conditions (g0,gL,d0,dL).

Let

wh =
n−1∑
i=1

wiϕi +
n−1∑
i=1

w′iψi︸ ︷︷ ︸
w0,h∈V0,h

+ g0ϕ0 + d0ψ0 + gLϕn + dLψn︸ ︷︷ ︸
gh

, vh =
n−1∑
i=1

viϕi +
n−1∑
i=1

v′iψi.

a(wh, vh) = 〈Q, vh〉 ∀vh ∈ V0,h

⇐⇒
n−1∑
i=1

via(wh, ϕi) +
n−1∑
i=1

v′ia(wh, ψi) =
n−1∑
i=1

vi〈Q,ϕ〉+
n−1∑
i=1

v′i〈Q,ψ〉 ∀vi, v′i ∈ R

Now we can choose the vi,v′i such that
⇐⇒ a(wh, ϕi) = 〈Q,ϕi〉 ∀i = 1, ..., n− 1

a(wh, ψi) = 〈Q,ψi〉 ∀i = 1, ..., n− 1

⇐⇒
n−1∑
j=1

(wja(ϕj, ϕi) + w′ja(ψj, ϕi)) = 〈Q,ϕi〉 − a(gh, ϕi) ∀i = 1, ..., n− 1

n−1∑
j=1

(wja(ϕj, ψi) + w′ja(ψj, ψi)) = 〈Q,ψi〉 − a(gh, ψi) ∀i = 1, ..., n− 1

CHAPTER 4. FINITE ELEMENT METHOD 23

⇐⇒


a(ϕ1, ϕ1) a(ψ1, ϕ1) a(ϕ2, ϕ1) a(ψ2, ϕ1) · · ·
a(ϕ1, ψ1) a(ψ1, ψ1) a(ϕ2, ψ1) a(ψ2, ψ1) · · ·
a(ϕ1, ϕ2) a(ψ1, ϕ2) a(ϕ2, ϕ2) a(ψ2, ϕ2) · · ·
a(ϕ1, ψ2) a(ψ1, ψ2) a(ϕ2, ψ2) a(ψ2, ψ2) · · ·

...
...

...
... . . .


︸ ︷︷ ︸

Kh



w1

w′1
w2

w′2
...

wn−1

w′n−1


︸ ︷︷ ︸

wh

=



〈Q,ϕ1〉 − a(gh, ϕ1)
〈Q,ψ1〉 − a(gh, ψ1)

〈Q,ϕ2〉
〈Q,ψ2〉

...
〈Q,ϕn−2〉
〈Q,ψn−2〉

〈Q,ϕn−1〉 − a(gh, ψn−1)
〈Q,ψn−1〉 − a(gh, ϕn−1)


︸ ︷︷ ︸

qh

⇐⇒ Khwh = qh

Remark 4.7. The matrix Kh is called the stiffness matrix and the vector qh is called
the load vector

Remark 4.8. Since gh is a linear combination of basis functions on the first and last
element it follows that

a(gh, ϕi) = 0 ∀i, 1 < i < n− 1,

a(gh, ψi) = 0 ∀i, 1 < i < n− 1.

So the additional terms in the load vector disappear, except for the first 2 and last 2
elements of the vector.

4.2.1 Stiffness Matrix

In this section we will compute the stiffness matrix which is needed for the linear
equation system. One may notice that

a(fi, gj) = EI

∫ L

0

f ′′i (x)g′′j (x) dx = 0 for |i− j| > 1 and f, g ∈ {ϕ, ψ}

because the basis functions are defined on 2 neighbouring intervals, therefore only
neighbouring basis functions have intersecting supports.

It follows that Kh is a band matrix with bandwidth 3. The computation of such
a matrix will be done by first computing the element matrices, which will then be
assembled into the global stiffness matrix.

CHAPTER 4. FINITE ELEMENT METHOD 24

As the name suggests the element matrices describe the values of the global stiffness
matrix on one particular element.

The kth element matrix has the form

K
(k)
h = EI

∫
Tk


(ϕ′′k−1)2 ψ′′k−1ϕ

′′
k−1 ϕ′′kϕ

′′
k−1 ψ′′kϕ

′′
k−1

ψ′′k−1ϕ
′′
k−1 (ψ′′k−1)2 ϕ′′kψ

′′
k−1 ψ′′kψ

′′
k−1

ϕ′′kϕ
′′
k−1 ϕ′′kψ

′′
k−1 (ϕ′′k)2 ψ′′kϕ

′′
k

ψ′′kϕ
′′
k−1 ψ′′kψ

′′
k−1 ψ′′kϕ

′′
k (ψ′′k)2

 dx.

Since we have a symmetric bilinear form, we only need to compute the upper triangle
of the matrix. Before integrating we need the following relation:

ϕ̂0
′′(x) = (ϕk−1(Fk(x)))′′ = (ϕ′k−1(Fk(x))F ′k(x)︸ ︷︷ ︸

hk

)′ = hk(ϕ′k−1(Fk(x))′ = h2
kϕ
′′
k−1(Fk(x))

⇒ ϕ′′k−1(Fk(x)) =
1

h2
k

ϕ̂0
′′(x)

analogous

⇒ ϕ′′k(Fk(x)) =
1

h2
k

ϕ̂1
′′(x)

ψ̂0

′′
(x) = (

1

hk
ψk−1(Fk(x)))′′ = (

�
�
�1

hk
ψ′k−1(Fk(x))F ′k(x)︸ ︷︷ ︸

��hk

)′ = (ψ′k−1(Fk(x))′ = hkψ
′′
k−1(Fk(x))

⇒ ψ′′k−1(Fk(x)) =
1

hk
ψ̂0

′′
(x)

analogous

⇒ ψ′′k(Fk(x)) =
1

hk
ψ̂1

′′
(x)

The second derivatives of the shape functions on the reference element:

ϕ̂0
′′(x) = (2x3 − 3x2 + 1)′′ = (6x2 − 6x)′ = 12x− 6

ϕ̂1
′′(x) = (−2x3 + 3x2)′′ = (−6x2 + 6x)′ = −12x+ 6

ψ̂0

′′
(x) = (x3 − 2x2 + x)′′ = (3x2 − 4x+ 1)′ = 6x− 4

ψ̂1

′′
(x) = (x3 − x2)′′ = (3x2 − 2x)′ = 6x− 2

CHAPTER 4. FINITE ELEMENT METHOD 25

k11 =

∫
Tk

(ϕ′′k−1(x))2 dx =

∫ 1

0

(ϕ′′k−1(Fk(x)))2 F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h4
k

hk

∫ 1

0

(ϕ̂0
′′(x))2 dx

=
1

h3
k

∫ 1

0

(12x− 6)2 dx =
1

h3
k

∫ 1

0

144x2 − 144x+ 36 dx =
1

h3
k

(
144x3

3
− 144x2

2
+ 36x)

∣∣∣∣1
0

=
1

h3
k

12

k22 =

∫
Tk

(ψ′′k−1(x))2 dx =

∫ 1

0

(ψ′′k−1(Fk(x)))2 F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h2
k

hk

∫ 1

0

(ψ̂0

′′
(x))2 dx

=
1

hk

∫ 1

0

(6x− 4)2 dx =
1

hk

∫ 1

0

36x2 − 48x+ 16 dx =
1

hk
(
36x3

3
− 48x2

2
+ 16x)

∣∣∣∣1
0

=
1

hk
4

k33 =

∫
Tk

(ϕ′′k(x))2 dx =

∫ 1

0

(ϕ′′k(Fk(x)))2 F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h4
k

hk

∫ 1

0

(ϕ̂1
′′(x))2 dx

=
1

h3
k

∫ 1

0

(−12x+ 6)2 dx =
1

h3
k

∫ 1

0

(12x− 6)2 dx =
1

h3
k

12

k44 =

∫
Tk

(ψ′′k(x))2 dx =

∫ 1

0

(ψ′′k(Fk(x)))2 F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h2
k

hk

∫ 1

0

(ψ̂1

′′
(x))2 dx

=
1

hk

∫ 1

0

(6x− 2)2 dx =
1

hk

∫ 1

0

36x2 − 24x+ 4 dx =
1

hk
(
36x3

3
− 24x2

2
+ 4x)

∣∣∣∣1
0

=
1

hk
4

k12 =

∫
Tk

ψ′′k−1(x)ϕ′′k−1(x) =

∫ 1

0

ψ′′k−1(Fk(x))ϕ′′k−1(Fk(x))F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h3
k

hk

∫ 1

0

ψ̂0

′′
(x)ϕ̂0

′′(x) dx

=
1

h2
k

∫ 1

0

(6x− 4)(12x− 6) dx =
1

h2
k

∫ 1

0

(6x− 4)(12x− 6) dx =
1

h2
k

∫ 1

0

72x2 − 84x+ 24 dx

=
1

h2
k

(
72x3

3
− 84x2

2
+ 24x)

∣∣∣∣1
0

=
1

h2
k

6

CHAPTER 4. FINITE ELEMENT METHOD 26

k13 =

∫
Tk

ϕ′′k(x)ϕ′′k−1(x) =

∫ 1

0

ϕ′′k(Fk(x))ϕ′′k−1(Fk(x))F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h4
k

hk

∫ 1

0

ϕ̂1
′′(x)ϕ̂0

′′(x) dx

=
1

h3
k

∫ 1

0

(−12x+ 6)(12x− 6) dx = − 1

h3
k

∫ 1

0

(12x− 6)2 = − 1

h3
k

12

k14 =

∫
Tk

ψ′′k(x)ϕ′′k−1(x) =

∫ 1

0

ψ′′k(Fk(x))ϕ′′k−1(Fk(x))F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h2
k

hk

∫ 1

0

ψ̂1

′′
(x)ϕ̂0

′′(x) dx

=
1

h2
k

∫ 1

0

(6x− 2)(12x− 6) dx =
1

h2
k

∫ 1

0

72x2 − 60x+ 12 dx

=
1

h2
k

(
72x3

3
− 60x2

2
+ 12x)

∣∣∣∣1
0

=
1

h2
k

6

k23 =

∫
Tk

ϕ′′k(x)ψ′′k−1(x) =

∫ 1

0

ϕ′′k(Fk(x))ψ′′k−1(Fk(x))F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h3
k

hk

∫ 1

0

ϕ̂1
′′(x)ψ̂0

′′
(x) dx

=
1

h2
k

∫ 1

0

(−12x+ 6)(6x− 4) dx =
1

h2
k

∫ 1

0

−72x2 + 84x− 24 dx

=
1

h2
k

(−72x3

3
+

84x2

2
− 24x)

∣∣∣∣1
0

= − 1

h2
k

6

k24 =

∫
Tk

ψ′′k(x)ψ′′k−1(x) =

∫ 1

0

ψ′′k(Fk(x))ψ′′k−1(Fk(x))F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h2
k

hk

∫ 1

0

ψ̂1

′′
(x)ψ̂0

′′
(x) dx

=
1

hk

∫ 1

0

(6x− 2)(6x− 4) dx =
1

hk

∫ 1

0

36x2 − 36x+ 8 dx

=
1

hk
(
36x3

3
− 36x2

2
+ 8x)

∣∣∣∣1
0

=
1

hk
2

k34 =

∫
Tk

ψ′′k(x)ϕ′′k(x) =

∫ 1

0

ψ′′k(Fk(x))ϕ′′k(Fk(x))F ′k(x)︸ ︷︷ ︸
hk

dx =
1

h2
k

hk

∫ 1

0

ψ̂1

′′
(x)ϕ̂1

′′(x) dx

=
1

hk

∫ 1

0

(6x− 2)(−12x+ 6) dx =
1

hk

∫ 1

0

−72x2 + 60x− 12 dx

=
1

hk
(−72x3

3
+

60x2

2
− 12x)

∣∣∣∣1
0

= − 1

hk
6

So the k-th element matrix is

K
(k)
h =

EI

h3
k


12 6hk −12 6hk
6hk 4h2

k −6hk 2h2
k

−12 −6hk 12 −6hk
6hk 2h2

k −6hk 4h2
k

 .

CHAPTER 4. FINITE ELEMENT METHOD 27

The global stiffness matrix will now be assembled by taking every element matrix
and adding them into the global stiffness matrix, but the k-th element matrix will
be diagonally shifted (k-1)*2 slots. This way the integrals of the basis functions with
same index will be added to the integrals from the last element matrix (which is what
we want because 2 basis functions with same index share 2 elements) and the integrals
of the basis functions with mixed index will only have values from one element.

For the boundary conditions one has to edit the stiffness matrix. In our case for only
essential boundary conditions we need to cut out the first 2 rows/columns and 2 last
rows/columns of the matrix, because we already know w0,w′0,wn,w′n. Depending on
the boundary conditions the stiffness matrix has to be configured individually.

Remark 4.9.
The stiffness matrix Kh is positive definite since one can show that

〈Khuh, uh〉R2n−2 = a(uh, uh) ≥ ca1‖uh‖
2
V > 0 ∀uh ∈ Vh ←→ ∀uh ∈ R2n−2,

whereas uh is the coordinate vector of uh in the nodal basis functions. Therefore all
eigenvalues of Kh are greater than 0 and Kh is positive definite.

4.2.2 Element Load Vector

In the same manner the global load vector can be assembled by computing the element
vectors and adding them shiftwise to the global load vector.
But to integrate the arbitrary function q one must approximate the integral numeri-
cally. We will do this by using the 3

8
-formula of the Newton Cotes formulas.

Remark 4.10. 3
8
-formula

h =
(b− a)

3∫ b

a

f(x) dx ≈ (b− a)(
1

8
f(a) +

3

8
f(a+ h) +

3

8
f(a+ 2h) +

1

8
f(b))

A useful property of the 3
8
-formula is that polynomials of degree 3 or less are integrated

exactly. So if the load q on the beam is constant we will only integrate the basis
functions, which are of degree 3 and thus we integrate exactly.

The k-th element vector is of the form

q(k)
h = −

∫
Tk

q(x)


ϕk−1(x)
ψk−1(x)
ϕk(x)
ψk(x)

 dx.

CHAPTER 4. FINITE ELEMENT METHOD 28

qh
(k)
1 = −

∫
Tk

q(x)ϕk−1(x) dx = −
∫ 1

0

q(Fk(x))ϕk−1(Fk(x))F ′k(x) dx = −hk
∫ 1

0

q(Fk(x))ϕ̂0(x) dx

≈ −hk(
1

8
q(Fk(0)) ϕ̂0(0)︸ ︷︷ ︸

=1

+
3

8
q(Fk(

1

3
)) ϕ̂0(

1

3
)︸ ︷︷ ︸

= 20
27

+
3

8
q(Fk(

2

3
)) ϕ̂0(

2

3
)︸ ︷︷ ︸

= 7
27

+
1

8
q(Fk(1)) ϕ̂0(1)︸ ︷︷ ︸

=0

)

= −hk(
1

8
q(xk−1) +

5

18
q(xk−1 +

hk
3

) +
7

72
q(xk−1 +

2hk
3

))

qh
(k)
2 = −

∫
Tk

q(x)ψk−1(x) dx = −
∫ 1

0

q(Fk(x))ψk−1(Fk(x))F ′k(x)︸ ︷︷ ︸
hk

dx = −h2
k

∫ 1

0

q(Fk(x))ψ̂0(x) dx

≈ −h2
k(

1

8
q(Fk(0)) ψ̂0(0)︸ ︷︷ ︸

=0

+
3

8
q(Fk(

1

3
)) ψ̂0(

1

3
)︸ ︷︷ ︸

= 4
27

+
3

8
q(Fk(

2

3
)) ψ̂0(

2

3
)︸ ︷︷ ︸

= 2
27

+
1

8
q(Fk(1)) ψ̂0(1)︸ ︷︷ ︸

=0

)

= −h2
k(

1

18
q(xk−1 +

hk
3

) +
1

36
q(xk−1 +

2hk
3

))

qh
(k)
3 = −

∫
Tk

q(x)ϕk(x) dx = −
∫ 1

0

q(Fk(x))ϕk(Fk(x))F ′k(x) dx = −hk
∫ 1

0

q(Fk(x))ϕ̂1(x) dx

≈ −hk(
1

8
q(Fk(0)) ϕ̂1(0)︸ ︷︷ ︸

=1

+
3

8
q(Fk(

1

3
)) ϕ̂1(

1

3
)︸ ︷︷ ︸

= 7
27

+
3

8
q(Fk(

2

3
)) ϕ̂1(

2

3
)︸ ︷︷ ︸

= 20
27

+
1

8
q(Fk(1)) ϕ̂1(1)︸ ︷︷ ︸

=1

)

= −hk(
7

72
q(xk−1 +

hk
3

) +
5

18
q(xk−1 +

2hk
3

) +
1

8
q(xk))

qh
(k)
4 = −

∫
Tk

q(x)ψk(x) dx = −
∫ 1

0

q(Fk(x))ψk(Fk(x))F ′k(x)︸ ︷︷ ︸
hk

dx = −h2
k

∫ 1

0

q(Fk(x))ψ̂1(x) dx

≈ −h2
k(

1

8
q(Fk(0)) ψ̂1(0)︸ ︷︷ ︸

=0

+
3

8
q(Fk(

1

3
)) ψ̂1(

1

3
)︸ ︷︷ ︸

=− 2
27

+
3

8
q(Fk(

2

3
)) ψ̂1(

2

3
)︸ ︷︷ ︸

=− 4
27

+
1

8
q(Fk(1)) ψ̂1(1)︸ ︷︷ ︸

=0

)

= h2
k(

1

36
q(xk−1 +

hk
3

) +
1

18
q(xk−1 +

2hk
3

))

So the element load vectors are

q(k)
h =


−hk(1

8
q(xk−1) + 5

18
q(xk−1 + hk

3
) + 7

72
q(xk−1 + 2hk

3
))

−h2
k(1

18
q(xk−1 + hk

3
) + 1

36
q(xk−1 + 2hk

3
))

−hk(7
72
q(xk−1 + hk

3
) + 5

18
q(xk−1 + 2hk

3
) + 1

8
q(xk))

h2
k(1

36
q(xk−1 + hk

3
) + 1

18
q(xk−1 + 2hk

3
))

 .

CHAPTER 4. FINITE ELEMENT METHOD 29

The global load vector can then be assembled by again adding the element vectors
shiftwise together. If one considers essential boundary conditions (i.e. boundary con-
ditions for the function values and derivative values) the first 2 and the last 2 elements
need to be cut. The additional terms are computed by

a(gh, ϕ1) = a(g0ϕ0 + d0ψ0 + gLϕn + dLψn, ϕ1) = g0 a(ϕ0, ϕ1)︸ ︷︷ ︸
−EI

h31
12

+d0 a(ψ0, ϕ1)︸ ︷︷ ︸
−EI

h21
6

,

a(gh, ψ1) = g0 a(ϕ0, ψ1)︸ ︷︷ ︸
EI

h21
6

+d0 a(ψ0, ψ1)︸ ︷︷ ︸
EI
h1

2

,

a(gh, ϕn−1) = gL a(ϕn, ϕn−1)︸ ︷︷ ︸
−EI

h3n
12

+dL a(ψn, ϕn−1)︸ ︷︷ ︸
EI

h2n
6

,

a(gh, ψn−1) = gL a(ϕn, ψn−1)︸ ︷︷ ︸
−EI

h2n
6

+dL a(ψn, ψn−1)︸ ︷︷ ︸
EI
hn

2

.

So for essential boundary conditions the global load vector needs to be configured even
further.

qh =



qh1 − EI(−g0
12
h3
1
− d0

6
h2
1
)

qh2 − EI(g0
6
h2
1

+ d0
2
h1

)

qh3
...

qh2n

qh2n−1 − EI(−g0
12
h3
n

+ d0
6
h2
n
)

qh2n−2 − EI(−g0
6
h2
n

+ d0
2
hn

)



CHAPTER 4. FINITE ELEMENT METHOD 30

Remark 4.11. For natural boundary conditions the load vector must be configured dif-
ferently. For example, if we would have only natural boundary conditions (d(2)

0 ,d(3)
0 ,d(2)

L ,d(3)
L)

then the linear functional Q would change to

〈Q, v〉 = −
∫ L

0

q(x)v(x) dx− EI w′′′(L)︸ ︷︷ ︸
d
(3)
L

v(L) + EI w′′′(0)︸ ︷︷ ︸
d
(3)
0

v(0) + EI w′′(L)︸ ︷︷ ︸
d
(2)
L

v′(L)− EI w′′(L)︸ ︷︷ ︸
d
(2)
L

v′(0).

And by deriving to a linear equation system as shown above the load vector would
change to

qh =



〈Q,ϕ0〉
〈Q,ψ0〉
〈Q,ϕ1〉
〈Q,ψ1〉

...
〈Q,ϕn−1〉
〈Q,ψn−1〉
〈Q,ϕn〉
〈Q,ψn〉


=



−
∫ L

0
qϕ0 dx+ EId

(3)
0

−
∫ L

0
qψ0 dx− EId(2)

0

−
∫ L

0
qϕ1 dx

−
∫ L

0
qψ1 dx
...

−
∫ L

0
qϕn−1 dx

−
∫ L

0
qψn−1 dx

−
∫ L

0
qϕn dx− EId(3)

0

−
∫ L

0
qψn dx+ EId

(2)
0


.

One can also mix essential and natural boundary conditions and configure the stiffness
matrix and load vector accordingly.

5 Implementation
For this thesis an algorithm to compute an approximate solution to the weak problem
(2.1) was implemented in C++.

It first assembles the stiffness matrix and the load vector by a user defined mesh of
nodes for the interval (0, L). The stiffness matrix and the load vector are further edited
for different boundary conditions, which the user is able to configure.

The resulting linear equation system will either be solved directly via Gauß-algorithm
(LU-decomposition) or iteratively via CG-method.

5.1 Numerical Results

5.1.1 Discretization Error

Since we now have an algorithm to compute an approximate solution for the weak
problem, we can check how much closer we get to the real solution if we choose a finer
mesh and estimate the discretization error.

To be able to do this we need to choose a load q such that we can solve the differential
equation analytically and compare the exact solution w to our approximate solution
wh.

It is also important to note in which norm we will compare the 2 functions, in our
case we will choose the L2-norm. In the program the integral in the L2-norm is
approximated by the middle point formula.

Let q ≡ 1 then the differential equation can be solved analytically.

− EIw′′′′(x) = 1 , w(0) = w(L) = w′(0) = w′(L) = 0

⇒ EIw′′′(x) = −x+ c1

⇒ EIw′′(x) = −x
2

2
+ c1x+ c2

⇒ EIw′(x) = −x
3

6
+ c1

x2

2
+ c2x+ c3

⇒ EIw(x) = −x
4

24
+ c1

x3

6
+ c2

x2

2
+ c3x+ c4

By inserting the boundary conditions one gets a linear equation system for the con-
stants c1,c2,c3,c4 and the final exact solution w is

w(x) =
1

EI
(−x

4

24
+
x3

12
− x2

24
).

31

CHAPTER 5. IMPLEMENTATION 32

We can now compare the computed approximate solution to the exact solution and
watch how the error evolves when we choose a finer mesh. We will choose a uniform
mesh with 2n elements. For E = 2.15 ∗ 1011 (structural steel) , I = 1

120000
(10x10cm2

rectangle cross section) and L = 1. The linear equation system will be solved by Gauß
Algorithm.
Output:

Figure 5.1: Discretization Error

As we can see if h is is divided by 2 (twice the number of nodes) the error is reduced
by a factor ∼ 16.
So we can assume that for the L2-norm holds

‖w − wh‖L2 = O(h4).

CHAPTER 5. IMPLEMENTATION 33

5.1.2 Condition of Kh

One can rigorously show what the bounds for the condition of the stiffness matrix
are, but in this thesis we will only look at the numerical results when we compute the
solution of the linear equation system by CG-method, inspect the number of iterations
needed and based on this estimate the condition κ(Kh) of the stiffness matrix.

We will look at the same configuration as shown above, but this time the linear equa-
tion system will be solved by CG-method. For the CG-method we have that

#CG-Iterations ≈
√
κ(Kh).

Figure 5.2: CG-method results

As seen in Figure 5.2 if h is divided by 2, the number of Iterations needed is multiplied
by a factor ∼ 4. From this we can assume that

#CG-Iterations ≈ 1

h2
.

So we can estimate the condition of Kh by

κ(Kh) ≈ 1

h4
.

Obviously the condition of the matrix increases with the 4th power the smaller we
choose h. This is not preferable, so most of the time preconditioning to reduce the
condition of Kh is used.

Remark 5.1.
Preconditioning is an important part when solving linear equation systems numerically.
In the case of numerically solving differential equations, special methods were developed
for preconditioning these stiffness matrices, so called multigrid methods.

CHAPTER 5. IMPLEMENTATION 34

5.2 Examples

5.2.1 Example 1

The first example is not really a practical example but more a test if the boundary
conditions are built into the algorithm correctly. We will again choose q(x) = 1 and
L = 1 with the following boundary conditions.

−EIw′′′′(x) = 1

w(0) = 0 w′(1) = 1 w′′(0) = 5 w′′′(1) = 3

The exact solution is

w(x) =
1

EI
(−x

4

24
+

(3EI + 1)

6
x3 + (−11

2
EI − 1

3
)x) +

5

2
x2

For simplicity we will just choose

E = 1 I = 1

When computing the approximate solution and comparing it to the exact solution
with respect to the L2-norm one can see that the approximate solution converges to
the exact solution, so the boundary conditions were built in correctly.

Figure 5.3: Discretization error for example 1

CHAPTER 5. IMPLEMENTATION 35

Figure 5.4: solution of example 1

5.2.2 Example 2

For the second example we will again take a steel beam with cross section 10∗10 cm2.
The beam will be 15 meters long. The most basic load on a beam would be its own
weight. So first we have to compute the load distribution q.

For the volume of the beam we get

V = 3 ∗ 0, 1 ∗ 0, 1m3 =
15

100
m3

For the density of steel we have

ρ(structural steel) = 7856 kg/m3

and thus
M = 7856 ∗ 15

100
= 15 ∗ 78.56 kg

and for the weight

FG = M ∗ g = 78.56 ∗ 15 ∗ 9.81 = 15 ∗ 770.6736 N

where g is the gravitational acceleration on Earth. For the distributed load q that
yields

q(x) =
FG

L
=

15 ∗ 770.6736

15
= 770.6736 N

CHAPTER 5. IMPLEMENTATION 36

For the constants E and I we get

E = 215 GPa = 2.15 ∗ 1011 Pa

I =

∫
Q

z2dQ =

∫ b
2

− b
2

∫ h
2

−h
2

z2 dz dy = b

∫ h
2

−h
2

z2 dz = b
z3

3

∣∣∣∣h2
−h

2

= b
h3

8
+ h3

8

3
= b

h3

12

and for our case b = h = 1
10

I =
1

120000

with these values the approximate solution can be computed via FEM and be visualized
with MATLAB.

Figure 5.5: Deflection of example 2

CHAPTER 5. IMPLEMENTATION 37

5.2.3 Example 3

For example 3 we will look at a more practical beam. The most common form of a
steel beam are I-beams. As the name suggests the cross section of these beams looks
like an ’I’. We will look at an I-beam with length 15 m. The measurements for the
cross section can be looked up in Figure 5.6

Figure 5.6: Measurements of the I-beam

For E we have again

E = 215 GPa = 2.15 ∗ 1011 Pa

To compute I we can use the formula for rectangles we derived in the last example.
Therefore we have the integral over the big rectangle minus the integral over the parts
we don’t need (since the integrand does not depend on y, integrals over these rectangles
can be shifted to the left and right and stay the same so we can again use the rectangle
formula for the smaller parts)

I =
1

12
(BH3 − bh3)

whereas B = 0.5 m, H = 0.6 m, h = 0.4 m, b = 0.4 m.

I =
103

15000

To compute the weight force density we have

V = 15 ∗ (0.05 + 0.05 + 0.04) = 15 ∗ 0.14 = 2.1m3

M = 7856 ∗ 2.1 = 16497.6kg

FG = M ∗ 9.81 = 161841.456N

fG =
FG

15
= 10789.4304N

CHAPTER 5. IMPLEMENTATION 38

and for the load q we will choose the weight force density and some additional load.

q(x) = 10789.4304︸ ︷︷ ︸
fG

+ 5000000 ∗ sin(
πx

15
)︸ ︷︷ ︸

additional load

Figure 5.7: Load on I-beam

As seen in Figure 5.7 in the middle of the beam (x = 7.5) the additional load is about
500-times heavier than the weight force density of the beam.
The deflection of the beam can be seen in Figure 5.8.

Figure 5.8: Deflection of example 3

CHAPTER 5. IMPLEMENTATION 39

5.2.4 Example 4

It is also possible to model a beam which has a fixed end on one side and a free end on
the other side. A free end is characterized by w′′(L) = w′′′(L) = 0 for the deflection w.
This time we will look at a beam made out of oak wood with length 5m and again a
cross section of 10 ∗ 10cm2. This situation is similar to applying a load to the branch
of a tree and seeing how much it bends. For this configuration we get

E = 1.3 ∗ 1010 Pa (Oak wood) , I =
1

120000

and for the weight force density

V =
5

100
m3

ρ(oak) = 670kg/m3

M = 670 ∗ 5

100
= 5 ∗ 6.7kg

FG = 5 ∗ 6.7 ∗ 9.81 = 5 ∗ 65.727N

fG =
5 ∗ 65.727

5
= 65.727N

and for the load density we choose

q(x) = 65.727 + 200x

so the additional load increases linearly until it reaches 1000N at the end. The deflec-
tion of the beam can be seen in Figure 5.10

CHAPTER 5. IMPLEMENTATION 40

Figure 5.9: Load of example 4

Figure 5.10: Deflection of example 4

6 Conclusion

We started to derive a model for our beam (which we wanted to be 1D) with only a
transversal load by looking at the 3D-model of our beam, inserting these special values
into the 3D-model and slightly modifying the known material law and constitutive law
for 3D to derive a weak equation for the deflection of the beam in 1D. We further
discussed how to derive the strong form of this equation by enforcing some requirements
on the deflection w.

Additionally we showed the existence and uniqueness of a solution of the weak problem
by using special function spaces for the solution space and the testfunction space,
which were subspaces of the Sobolev space H2. We showed that for this problem all
requirements for the theorem of Lax-Milgram were satisfied and therefore existence
and uniqueness of a solution followed.

The next step was to attempt to solve the weak problem by numerically approximate
the solution, using a discretization of the the beam and defining basis functions on
these nodes along the beam. By reducing the solution space and test space to subspaces
with a finite basis (these nodal basis functions) we transformed the weak problem to
a linear equation system where we introduced and computed the stiffness matrix and
the load vector. Furthermore we discussed how to implement boundary conditions in
this linear equation system.

As part of this thesis, an algorithm based on the theory that was presented was im-
plemented in C++ and the resulting approximate solution visualized with MATLAB.
At the end some basic examples were presented.

41

Bibliography

[1] D. Braess. Finite Elemente, Theorie, schnelle Löser und Anwendungen in der
Elastizitätstheorie (4. Auflage). Springer-Verlag Berlin Heidelberg, 2007.

[2] A. Öchsner Theorie der Balkenbiegung, Einführung und Modellierung der statis-
chen Verformung und Beanspruchung. Springer Vieweg, 2016.

[3] U. Langer. Lecture on ’Mathematical Models in Engineering’. Johannes Kepler
University 2017.

[4] M. Neumüller. Lecture on ’Numerical Methods for Partial Differential Equations’.
Johannes Kepler University 2017.

[5] http://www.wikiwand.com/en/Timoshenko_beam_theory

[6] https://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory

42

Eidesstattliche Erklärung
Ich, Stefan Tyoler, erkläre an Eides statt, dass ich die vorliegende Bachelorarbeit
selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als
solche kenntlich gemacht habe.

Linz, November 2018

————————————————
Stefan Tyoler

Curriculum Vitae

Name: Stefan Tyoler

Nationality: Austria

Date of Birth: 17 October, 1995

Place of Birth: Linz, Austria

Education/Work:
2002–2006 Bertha von Suttner Schule VS2

Linz, Urfahr

2006–2014 Georg von Peuerbach Bundesrealgymnasium
Linz, Urfahr

2014–2015 Zivildienst
Samariterbund Linz

2015–2018 Studies in Technical Mathematics,
Johannes Kepler University Linz

