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Abstra
t

This diploma thesis is 
on
erned to the development of numeri
al solution methods in


al
ulating so-
alled "dispersion diagrams" of periodi
 surfa
e a
ousti
 wave (SAW) �l-

ter stru
tures. These piezoele
tri
 devi
es are used in tele
ommuni
ations for frequen
y

�ltering.

The mathemati
al problem is governed by two main points, the underlying periodi
 stru
-

ture and the inde�nite 
oupled �eld problem due to the properties of the used piezoele
tri


materials. Floquet-Blo
h theory allows to restri
t the in�nite periodi
 
omputation do-

main to one referen
e 
ell by introdu
ing quasi-periodi
 boundary 
onditions. Due to the

Blo
h-ansatz the dispersion 
ontext between "ex
itation frequen
y" and the "propagation


onstants" of the surfa
e a
ousti
 wave is des
ribed by parameter depending eigenvalue

problems.

Three di�erent solution approa
hes are developed for gaining these non-hermitian eigen-

value problems of generalized linear or quadrati
 form. Expanding the solution methods

of periodi
 stru
tures to the piezoele
tri
 
oupled �eld equations has the 
onsequen
e that

the eigenvalue problems get inde�nite and worse-
onditioned, i.e. spe
ial s
aling meth-

ods, whi
h ensure a

urate numeri
al results, are required. A 
omprehensive 
olle
tion

of abstra
t theory and numeri
al solution methods for the o

uring algebrai
 eigenvalue

problems is provided.

Three di�erent solvers for the numeri
al simulation of the dispersion 
ontext are developed

and implemented. The used eigenvalue solver is 
on
erned with the dire
t QZ-Method or

the iterative Impli
itly Restarted Arnoldi-Method, respe
tively.

The in
uen
e of periodi
 perturbations in the 
omputation geometry is shown in numeri
al

experiment for a pure me
hani
al model problem. Simulation results for the dispersion 
on-

text of simpli�ed periodi
 stru
tures related to real-life TV- and GSM-�lters are presented.



Zusammenfassung

Ziel der vorliegenden Diplomarbeit ist die Entwi
klung numeris
her L

�

osungsmetho-

den zur Bere
hnung sogenannter "Dispersionsdiagramme" von periodis
hen akustis
hen

Oberf

�

a
henwellen�lter-Strukturen (SAW-Filter). Diese piezoelektris
hen Bauteile werden

in der Telekommunikation als Frequenz�lter eingesetzt.

Das dazugeh

�

orige mathematis
he Modell wird dur
h folgende zwei Hauptprobleme be-

stimmt, der Periodizit

�

at der zugrundeliegenden Geometrie und den gekoppelten Feldglei-


hungen zur Bes
hreibung der piezoelektris
hen Eigens
haften des verwendeten Materials.

Mit Hilfe der Floquet-Blo
h-Theorie und Einf

�

uhrung quasi-periodis
her Randbedingun-

gen kann das urspr

�

ungli
h unendli
h (periodis
h) angenommene Bere
hnungsgebiet auf

eine Referenzzelle einges
hr

�

ankt werden, d.h. die Glei
hungen m

�

ussen unter Erf

�

ullung der

speziellen Randbedingungen nur no
h auf einer Periode gel

�

ost werden. Die gesu
hte Di-

spersionsbeziehung, die den funktionalen Zusammenhang zwis
hen

�

Anregungsfrequenz

�

und

�

Ausbreitungskonstanten"bes
hreibt, wird als Parameter-abh

�

angiges Eigenwertproblem for-

muliert.

Es werden drei vers
hiedene L

�

osungsmethoden, die den Dispersionskontext bes
hreiben

und auf ni
ht-hermites
he Eigenwertprobleme verallgemeinerter linearer beziehungswei-

se quadratis
her Form f

�

uhren, entwi
kelt. Na
h Diskretisierung mittels der Methode Ei-

ne Erweiterung der vorgestellten Methoden auf piezoelektris
he Feldglei
hungen hat zur

Konsequenz, dass die resultierenden Eigenwertproblem inde�nit und s
hle
ht-konditioniert

werden. Letzteres erfordert spezielle Skalierungsalgorithmen, um numeris
h zuverl

�

assige

Ergebnisse zu erhalten. Eine Zusammenstellung der abstrakten Theorie und der numeri-

s
hen L

�

osung ni
ht-hermites
her algebrais
her Eigenwertprobleme wird pr

�

asentiert und zur

L

�

osung der modellierten Probleme angewendet und erweitert.

Drei alternative L

�

oser werden enti
kelt und implementiert, wobei die auftretenden Eigen-

wertprobleme unter Verwendung der direkten QZ-Methode beziehungsweise der iterativen

Impli
it-Restarted-Arnoldi-Methode gel

�

ost werden.

Der Ein
uss periodis
her St

�

orungen des Material auf die Dispersionsbeziehung wird im nu-

meris
hen Experiment anhand eines rein me
hanis
hes Problems dargestellt. Abs
hliessend

werden Dispersionsdiagramme von vereinfa
hten periodis
hen Strukturen, unter Verwen-

dung der Daten von praktis
h verwendeten TV-Filtern und GSM-Filtern, simuliert.
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u
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Chapter 1

Introdu
tion

This thesis deals with mathemati
al modeling and numeri
al simulation of periodi
 sur-

fa
e a
ousti
 wave �lters (brie
y SAW-�lters) and results in the 
omputation of so-
alled

"dispersion diagrams", whi
h plays an important role in the tele
ommuni
ation industry.

The prin
iple of surfa
e a
ousti
 wave �lters is based on the physi
al properties of

piezoelel
tri
 materials. The dire
t piezoele
tri
 e�e
t states that a me
hani
al deformation

of a piezoele
tri
 substrate evokes an ele
tri
 �eld, whi
h 
an be measured by 
harges on

the surfa
e. It always appears in 
ombination with the 
onverse e�e
t, i.e. if a piezoele
tri


material is exposed to an ele
tri
 �eld, the material shrinks or stret
hes. This implies that

applying an ele
tri
 signal on a piezoele
tri
 substrate yields a me
hani
al (a
ousti
) wave.

Due to the dire
t piezoele
tri
 e�e
t, this wave is always a

ompanied by an ele
tri
 �eld.

The main 
omponents of a SAW �lter are a piezoele
tri
 substrate and an input and an

output interdigital transdu
er (IDT). An IDT is a 
omb of ele
trodes whi
h is evaporated

on the surfa
e of the piezoele
tri
 material. It is used for sending and re
eiving ele
tri


signals. If an ele
tri
 �eld is applied at the input IDT, an a
ousti
 wave is evoked on the

surfa
e of the material due to the piezoele
tri
 e�e
t. We are interested in waves whi
h

propagates along the surfa
e. If su
h a wave, whi
h is always a

ompanied by an ele
tri


�eld due to the dire
t piezoele
tri
 e�e
t, rea
hes the output IDT, the 
hanging ele
tri


�eld evokes surfa
e 
harges at the ele
trodes, i.e. an ele
tri
 signal 
an be re
eived.

The propagating surfa
e wave is 
hara
terized by the frequen
y of the input signal, by

the geometri
al arrangements of the ele
trodes and by the material parameters of the

piezoele
tri
 substrate and ele
trodes. We will show that due to the underlying geometry

no surfa
e wave 
an propagate at spe
ial frequen
y intervals. Therefore these frequen
ies

are missing in the output signal and the devi
e 
an be used for frequen
y �ltering.

The frequen
y domain is parted into pass-bands, i.e. frequen
ies whi
h get trough the

piezoele
tri
 devi
e, and stop-bands, i.e. frequen
ies whi
h get �ltered out. For given

geometry and material parameters the 
ontext between propagating/attenuated a
ousti


waves and the frequen
y 
an be read o� so 
alled "dispersion diagrams".

5



CHAPTER 1. INTRODUCTION 6

In this thesis we fo
us on surfa
e a
ousti
 wave devi
es used for frequen
y �ltering in

wireless 
ommuni
ations, e.g. standard 
omponents in TV-sets and 
ellular phones. But

one has to mention that there are many other appli
ation �elds of SAW-devi
es as in radar

and sensor te
hnology and non-destru
tive evaluation.

We spe
ialize on periodi
 SAW-�lters, i.e. ea
h IDT 
onsists of some hundreds or even

some thousands of ele
trodes, whi
h are arranged periodi
ally.

We assume time-harmoni
 ex
itation with the frequen
y

!

2�

, hen
e all �eld distributions

are time-harmoni


f(x; t) = f(x)e

i!t

: (1.1)

The periodi
al arrangement of the ele
trodes implies that the me
hani
al �eld and the

ele
tri
 potential are quasi-periodi
 in spa
e, i.e. they are of the form

f(x) = f

p

(x)e

(�+i�)x

; (1.2)

where p is the periodi
ity of the material and f

p

(:) denotes a p-periodi
 fun
tion. This

means that all �eld distributions 
an be des
ribed by the frequen
y, a p-periodi
 fun
tion

f

p

(:) and a 
omplex propagation 
onstant � + i�. In this formulation � re
e
ts the

damping of the amplitude per period (ele
trode) and � the phase shift per period.

The graph presenting the fun
tional 
ontext between the ex
itation frequen
y and the

propagation 
onstant is 
alled the diagram of dispersion. This 
ontext is very important

in SAW-�lter design and its 
omputation is the task of this thesis.

A fundamental and re
ommendable introdu
tion to a
ousti
 �eld problems, various

(surfa
e) wave modes and piezoele
tri
ity is provided by Auld in [4℄ and [5℄. The numeri
al

solution of piezoele
tri
 systems via the �nite element method is treated by Ler
h in [27℄.

An overview of the histori
al development of SAW-devi
es is given in [29℄. The prin
iples

of periodi
 SAW-devi
es are treated by some IEEE papers like [17℄, but it has to be

mentioned that in most papers damping e�e
ts (� 6= 0) are not 
onsidered.

The mathemati
al justi�
ation for the quasi-periodi
 �eld distribution (1.2) is given by

Floquet-Blo
h theory, whi
h analyze the spe
tral properties of ordinary and partial dif-

ferential operators in periodi
 stru
tures. This theory was developed for solving spe
ial

problems in quantum me
hani
s, where one deals with periodi
 S
hr�odinger operators, by

Blo
h and for ordinary di�erential equations by Floquet. A des
ription by physi
ists 
an

be found in Madelung [28℄ and in Ash
roft and Mehrmin [3℄. A fun
tional analyti
 
on-

sideration is provided by Simon and Reed [30℄. The generalization to partial di�erential

equations with periodi
 
oeÆ
ients is done by Bensoussan,Lions and Papani
olaou in [9℄

for real and ellipti
 problems and by Ku
hment [19℄, who applied the theory for s
alar

equations on photoni
 and a
ousti
 band-gap devi
es in [6℄.

Blo
h-Floquet theory implies that the solution on periodi
 stru
tures 
an be de
omposited

in quasi-periodi
 fun
tions so-
alled Blo
h waves. Therefore the problem 
an be restri
ted
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to the unit-
ell, i.e. the domain in
luding one ele
trode. Repeating this unit-
ell one gets

the original geometry. In order to des
ribe the original periodi
 system, appropriate quasi-

periodi
 boundary 
onditions have to be established.

The one 
ell problem turns out to be a 
oupled-�eld parameter-depending (on propagation


onstant or frequen
y) eigenvalue problem, whi
h we want to solve numeri
ally by the

method of �nite elements. We introdu
e a detailed stepwise mathemati
al modeling for

the problem of periodi
 stru
tures, i.e. formulating appropriate boundary 
onditions and

a

ording dis
retization methods. We start with a Helmholtz-type problem and establish

three di�erent solution methods for 
omputing the dispersion 
ontext. All these methods

result in non-hermitian eigenvalue problems of linear or quadrati
 form. Applying the

established methods to periodi
 stru
tures on piezoele
tri
 problems, is formally equivalent

to the Helmholtz-model 
ase, but the matri
es get inde�nite and worse 
onditioned due to

piezoele
tri
 properties, whi
h requires spe
ial numeri
al treatment.

Mathemati
al modeling results in two reasonable variants of frequen
y-depending eigen-

value problems, one of quadrati
 form and the other one of generalized linear form. This

requires spe
ial theory and numeri
s of algebrai
 eigenvalue problems.

An overview of and motivation for solving eigenvalue problems is provided in [37℄. In

[8℄ a re
ommendable 
olle
tion of state-of-the-art dire
t and iterative methods for large-

s
ale eigenvalue problems is given, the book in
ludes des
ription of improvement tools and

implementational details. Tisseur [36℄ spe
ializes on quadrati
 eigenvalue problems and

Lehouqh et al. [23℄ and Sorensen [35℄ on Arnoldi and Impli
it Restarted Arnoldi methods.

Mehrmann provides a 
olle
tion of stru
ture-preserving methods in [11℄.

The stated eigenvalue problems are solved numeri
ally by using the open-sour
e software

pa
kages Lapa
k [2℄ (dire
t method) and Arpa
k [13℄ (iterative Impli
ite Restarted Arnoldi

method).

On the tasks of this thesis

The 
on
eptual formulation of this thesis is based on a part of the do
tor thesis on Finite-

Element 
al
ulations of SAW-stru
tures [14℄ (to appear) by Manfred Hofer , Department

of Sensor Te
hnology at the University of Erlangen. We 
ooperate in a joint proje
t on

SAW �lters. Two 
onferen
e papers [16℄, [15℄ were published by M. Hofer et al. during the

work on this problem. (
o-authorship)

The main tasks of this thesis 
onsist in the following points:

1. Due to the quasi-periodi
al �eld distribution one 
an restri
t the 
omputation do-

main to one 
ell. This requires to introdu
e appropriate quasi-periodi
al boundary


onditions.

2. In most 
ommon models only pure imaginary propagation 
onstants are 
onsidered,

i.e. � = 0 in (1.2), whi
h has the e�e
t that one only simulates non-attenuated

waves. In real life problems the in
ident surfa
e wave is mostly transmitted in ea
h
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ell, but the amplitude of the propagating wave gets de
reased by re
e
tion at the

ele
trode, material damping, 
onversion to volume waves and thermal losses. In this

thesis material damping and attenuation through re
e
tion at periodi
ally arranged

ele
trodes are 
onsidered.

3. The aim is to 
ompute the diagram of dispersion, whi
h gives the 
ontext between

the 
onstant of propagation � + i� and the frequen
y ! for a given 
ell geometry.

On the organization of this thesis

� Chapter 2

The physi
al 
hara
teristi
s of the problem are provided. The prin
iples of SAW

devi
es are quoted, the terms stop-band diagram of dispersion are explained in detail.

At the end of the 
hapter the piezoele
tri
 e�e
t and its governing equations are

posted.

� Chapter 3

The prin
iple 
on
epts and results of the �nite element method for ellipti
 and 
oupled

�eld problems are given. Moreover, the basi
 ideas, results and an error analysis for

solving eigenvalue problems by the �nite elment method are sket
hed.

� Chapter 4

We provide a detailed mathemati
al modeling, separated in three main points, i.e. in

the theory of periodi
 stru
tures for Helmholtz-type problems, in the 
onsideration of

damping e�e
ts and in expansion of the modeled approa
hes to piezoele
tri
 
oupled

�eld problems. The steps of mathemati
al modeling provide two reasonable methods,

whi
h yield in frequen
y-depending 
omplex non-hermitian eigenvalue problems of

linear or quadrati
 form.

� Chapter 5

We provide the theoreti
al ba
kground and numeri
al solution methods for large-

s
aled non-hermitian linear and quadrati
 algebrai
 eigenvalue problems and �nally

introdu
e open-sour
e software pa
kages, whi
h are used in numeri
al simulation.

� Chapter 6

This 
hapter 
ombines the methods introdu
ed in Chapter 5 with the problems stated

in Chapter 4. The spe
tral properties of the various solution methods are analyzed.

Three alternative solution algorithms using the available software pa
kages Arpa
k

and Lapa
k are stated. At the end, s
aling methods for eigenvalue problems, whi
h

are ne
essary for the 
onvergen
e of piezoele
tri
 problems, are treated and some

implementional aspe
ts are dis
ussed.
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� Chapter 7

Numeri
al results for periodi
ally perturbed model problems (Lapla
e and plane

strain problem) and for piezoele
tri
 real life problems (GSM-�lter and TV-�lter)

are presented. Finally, the three implemented solvers are 
ompared to ea
h other via

the simulation of a piezoele
tri
 problem, whi
h is just 
apable for all three methods.

� Chapter 8

The presented models, theories, methods and algorithms are reviewed. Open prob-

lems, on whi
h further work 
an be done, are dis
ussed.

� Appendix A

The material data used in numeri
al simulation are 
ited.



Chapter 2

Problem formulation and governing

equations

2.1 Problem des
ription

We study a surfa
e a
ousti
 wave (SAW, Rayleigh-wave) devi
e 
onsisting of a piezoele
tri


substrate and evaporated ele
trodes (see Figure 2.1). If an ele
tri
 signal is applied on

the transmitter ele
trodes, an a
ousti
 wave is ex
ited on the surfa
e of the piezoele
tri


medium (
onverse piezoele
tri
 e�e
t). The propagating surfa
e wave is a

ompanied by

an ele
tri
 �eld on its travel trough the material (dire
t piezoele
tri
 e�e
t). This ele
tri


�eld 
an be measured at the re
eiver ele
trodes.

Surface Acoustic Wave (SAW) Filter

Mechanical displacements:

Li Nb 0
Center frequency:
30 MHz - 3 GHz

3

Figure 2.1: SAW �lter [26℄

10
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We are interested in the propagation of Rayleigh-waves at the ele
trodes. These waves

live near the surfa
e, the amplitude de
reases rapidly with depth and be
omes negligibly

small within the depth of a few wavelengths.

In general, surfa
e waves are 3 dimensional, but Rayleigh-waves polarize (parti
le dis-

pla
ement) only in the plane spanned up by the dire
tion of propagation (x) and the

surfa
e normal (y). This plane is 
alled the sagittal plane. Therefore displa
ement and

ele
tri
 �elds only depend on x and y 
oordinates and we 
an restri
t the 
omputational

geometry to the sagittal plane.

Sin
e in devi
s used in pra
tise there are some hundred ele
trodes, extending the ele
-

trodes periodi
ally to in�nity is a suitable approximation. We get an in�nite domain of a

piezoele
tri
 substrate with periodi
ally arranged ele
trodes. See Figure 2.2.

piezoelectric substrate

period p

electrodes

x

y

Figure 2.2: Periodi
 geometry

Properties of waves in a periodi
 geometry We assume a time-harmoni
 ex
itation

of the wave. This implies harmoni
 �eld quantities (me
hani
al displa
ement and ele
tri


potential).

Due to the periodi
ity of the material the �eld distribution is quasi-periodi
al, that means

periodi
al irrespe
tive damping

u(x+ p) = u(x)e

(�+i�)p

: (2.1)

The following notation is used:

p ... period of the material (i.e. the distan
e between the 
enters of two su

essive ele
trodes),

� ... attenuation of the propagating wave per period,

� ... phase shift per period.

The 
ondition (2.1) is equivalent to the existen
e of a p-periodi
 fun
tion u

p

(x) = u

p

(x+p)

su
h that

u(x) = u

p

(x)e

(�+i�)x

: (2.2)
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The diagram of dispersion The aim is to 
ompute the diagram of dispersion, whi
h

gives the 
ontext between the 
onstants of propagation �; � and the frequen
y ! for a given


ell geometry. See Figure 2.3.

Figure 2.3: Diagram of dispersion: stru
ture with periodi
al arranged ele
trodes [16℄, [15℄

In this diagram we are mainly interested in the stopband regions (!

1

; !

2

), see stop band

attenuation. The damping term starting at the frequen
y (!




) is produ
ed by the fa
t that

above a parti
ular frequen
y a part of the re
e
ted wave is 
onverted to volume waves.

This loss of energy implies a damping of the surfa
e wave. This e�e
t will not be 
onsidered

in the model presented here (see Chapter 8).

The doted straight green line in Figure 2.3 shows the dispersion 
ontext, if there are no

periodi
 disturban
es.

Stop-band attenuation A wave traveling in x-dire
tion will be partially re
e
ted

at the ele
trodes. If p is a multiple of

�

2

with � denoting the wavelength, the re
e
ted

amplitudes are all in phase and 
an interfere 
onstru
tively. For a huge number of �ngers

there are many waves adding 
onstru
tively and the sum of re
e
ted waves intera
ts with

the propagating wave. Then even if the re
e
ted part per 
ell is small and it impedes the

propagation.

If the length of period of the material is equal the wavelength of the wave propagating

in x-dire
tion, the wave 
annot propagate. Moreover it turns out that the wave 
annot

propagate in a whole frequen
y interval. This interval is 
alled the stop-band. The width

of this stop-band gives information on the quantity of the re
e
tion at the ele
trodes.

This e�e
t o

urs independently of the 
onsideration of material damping in the model.
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2.2 The piezoele
tri
 e�e
t and governing equations

A material possesses piezoele
tri
 properties, if it produ
es an ele
tri
al polarization under

the appli
ation of me
hani
al stress or deformations. The polarization is measurable by

produ
ed 
harges on the surfa
e. This phenomenon is 
alled the dire
t piezoele
tri
 e�e
t.

The e�e
t is reversible, it is always a

ompanied by the 
onverse piezoele
tri
 e�e
t. If an

ele
tri
 �eld is applied to a piezoele
tri
 medium, there is an elasti
 deformation.

Piezoele
tri
 e�e
ts result from spe
ial asymmetries o

urring in some 
rystalline materials

( e.g. in quartz by nature or in industrial produ
ed 
erami
s). These e�e
ts 
annot exist

in isotropi
 media. For more details see [4℄ pages 102{103.

The piezoele
tri
 e�e
t is des
ribed by a 
oupling of elasti
 and ele
tri
 �eld quantities in

a medium. We 
an assume this 
oupling to be linear sin
e nonlinear 
oupling terms are

negligible small. To get the governing equations we state the un
oupled �eld properties

and equations �rst:

2.2.1 The equations of elasti
ity

Let 
 � R

d

with d = 1; 2; 3 be a bounded domain whi
h des
ribes the referen
e 
on�g-

uration (original state) of a deformable body, and let �
 be the boundary of 
 whi
h is

supposed to be suÆ
iently smooth (polygonal in our appli
ations).

The deformation of the body is represented by the mapping

P :

�


� R

+

0

! R

d

(x; t) ! P (x; t);

whi
h is assumed to be inje
tive, suÆ
iently smooth, orientation preserving.

At t = 0 the body is in referen
e 
on�guration,i.e. P (x; 0) = x 8x 2 
.

Let a volume for
e

f(:; t) : P (
; t) ! R

d

and a surfa
e tra
tion

g(:; t) : P (�

1

; t) ! R

d

with �

1

� �


be given in the domain 
 and at the Neumann part �

1

of the boundary �
, respe
tively.

The fundamental axiom of 
ontinuum me
hani
s states the existen
e of a stress �eld t(x; n)

(a
ting on the surfa
e �P (A; t) with a

ording normal ve
tor n for any subdomain A � 
),

whi
h satis�es 
onservation of momentum and angular momentum in A.
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One of the main results in 
ontinual me
hani
s (Ciarlet [12℄) states that the stress ve
tor

is linear in n and 
an be represented by a (di�erentiable) stress tensor T (x) 2 R

d

d

of the

form

t(x; n) = T (x):n 8 x 2 P (
; t) (2.3)

satisfying the Cau
hy equations of motion

div

x

T (x; t) + f(x; t) = �(x; t)

�

2

u

�t

2

(x; t) t 2 I; x 2 P (
; t)

T (x; t) = T

T

(x; t) t 2 I; x 2 P (
; t)

T (x; t):n = g(x; t) t 2 I; x 2 P (�

1

; t)

: (2.4)

�(x; t) denotes the mass density and I = [0; t

e

℄ the time-interval in R

+

0

.

We assume elasti
 deformation i.e. releasing the external for
es the medium returns 
om-

pletely in its original referen
e state. Deformations imply strains in the deformed medium.

Let u(x) des
ribe the displa
ement ve
tor of a parti
le through deformation, i.e.

u(x; t) := P (x; t)� x 8 x 2 
 (2.5)

Green's strain tensor des
ribes the 
hange in lengths between two parti
les:

"

ij

:=

1

2

(

�u

i

�x

j

+

�u

j

�x

i

+

d

X

k=1

�u

k

�x

j

�u

k

�x

i

) 8 i; j = 1; : : : ; d (2.6)

If we assume small deformations j

�u

k

�x

j

j � 1, we get negligible quadrati
 terms. In linear

elasti
 theory we use the (linearized) Cau
hy-Green strain tensor by

S

ij

:=

1

2

(

�u

i

�x

j

+

�u

j

�x

i

) 8 i; j = 1; : : : ; d

S :=

1

2

(ru+ (ru)

T

) =: Bu

: (2.7)

Hook's law states that in linear elasti
 materials there is a linear 
onne
tion between stresses

and strains of the form

T

ij

=

P

d

k;l=1




ijkl

S

kl

8 i; j = 1; : : : ; d

T = 
S

: (2.8)

There are 81 elasti
 sti�ness 
oeÆ
ients 


ijkl

whi
h des
ribe the elasti
 properties of the

material. The material is 
alled homogeneous if 


ijkl

6= 


ijkl

(x).
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It turns out that only 21 elasti
 sti�ness 
oeÆ
ients are independent. Under spe
ial material

properties the number of independent 
oeÆ
ients 
an be further de
reased:

1. Isotropi
 materials are materials 
hara
terized by possessing equal properties in all

dire
tions. It turns out that there are only two independent 
oeÆ
ients �(x); �(x) > 0

known as Lam�e-
onstants with




ijkl

= �Æ

ij

Æ

kl

+ �(Æ

ik

Æ

jl

+ Æ

il

Æ

jk

) (2.9)

and Hook's law simpli�es to

T

ij

= �

d

X

k=1

S

kk

Æ

ij

+ 2�S

ij

8 i; j = 1; : : : ; d (2.10)

2. Anisotropi
 materials have in general 21 independent sti�ness 
oeÆ
ients. Some


rystals possess symmetry axes or two di�erent dire
tions whi
h have equal material

properties. Therefore the number of independent 
oeÆ
ients redu
es as well in su
h


rystals.

The linearized strain tensor S and the a

ording stress tensor T are symmetri
.

2.2.2 The ele
trostati
 �eld in a diele
tri
 medium

We assume a diele
tri
 medium whi
h has the properties to be polarizable and is insulating,

i.e. there are no free volume 
harges. Applying an ele
tri
 �eld to a diele
tri
a implies a

distortion of the dipoles within the material resulting in a surfa
e 
harge. Internal the

dipoles sum up to zero, ie. inside it is neutral. The polarization P a
ts against the ele
tri


�eld E whi
h leads to the diele
itri
 displa
ement �eld D ( the �eld was initially introdu
ed

to explain the fa
t that the ele
tri
 �eld of a 
apa
itor de
reases if a diele
tri
 is put in

between). Sin
e the polarization depends on the ele
tri
 �eld as well one gets:

D = "

0

E + P = "E (2.11)

with "

0

the diele
tri
 permittivity of va
uum and " the diele
tri
 permittivity tensor of

the material.
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The fourth law of Maxwell equations (Gauss law of diele
tri
 �elds) states in integral form

Z

�A

D

T

n ds =

Z

A

q

free

(x) dx 8 proper A � 
 (2.12)

or, in di�erential form,

div

x

D(x) = q

free

(x) 8 x 2 
; (2.13)

where q

free

(x) denotes the free volume 
harge density in x.

We 
onsider an insulating material, i.e. q

free

= 0 in 
, and we get

div

x

D(x) = 0: (2.14)

In ele
trostati
s, the ele
tri
 �eld 
an be expressed by the s
alar potential �eld �(x) as

E(x) = �r�(x): (2.15)

2.2.3 The piezoele
tri
 equations

The piezoele
tri
 e�e
t states a liner 
oupling between strain �eld and ele
tri
 �eld. The

linearity is des
ribed by a 
oupling 
oeÆ
ient tensor e whi
h is equal for dire
t and 
onverse

e�e
t.

Expansion of Hook's law and the ele
trostati
 equation by the dire
t and the 
onverse

piezoele
tri
 e�e
t gives the 
onstitutive piezoele
tri
 equations:

T = 


E

S � e

T

E

D = eS + "

S

E

: (2.16)




E

... me
hani
al sti�ness matrix (measured at 
onstant ele
tri
 �eld E)

"

S

... permittivity matrix (measured at 
onstant me
hani
al strain S)

e ... piezoele
tri
 
oupling 
oeÆ
ient matrix

The me
hani
al sti�ness matrix and the permittivity matrix are symmetri
 matri
es.

The displa
ement �eld u and the potential �eld � in a piezoele
tri
 material (with no

impressed volume for
es) are governed by

div

x

[(


E

S � e

T

E)(x; t)℄ = �(x; t)

�

2

u

�t

2

(x; t)

div

x

[(eS + "

S

E)(x; t)℄ = 0

with

S =

1

2

(ru+ (ru)

T

)

E = �r�

(2.17)

with still open boundary 
onditions (stated in the se
tion of mathemati
al modeling).

We refer the readet to [4℄ and [5℄ for more detailed information.



Chapter 3

The Finite Element Method

The �nite elment method is a powerful method for solving partial di�erential equations

numeri
ally.

In this 
hapter the main results of �nite element analysis, whi
h are required in mathemat-

i
al modeling of 
hapter 4, are provided. We start with FEM for ellipti
 sour
e problems,

whi
h o

ur in model problems for periodi
 stru
tures. Then mixed FE-approximation,

whi
h is required for solving piezoele
tri
 problems, i.e. 
oupled �eld problems, is intro-

du
ed.

Modeling the dispersion relation will lead to variational eigenvalue problems. FE-solutions

of these problems are 
onne
ted to sour
e problems, but need a separate (error-) analysis.

Therefore, we �nish this 
hapter with a brief sket
h of �nite element methods for eigenvalue

problems.

3.1 The method of �nite elements

The Finite Element Method (FEM) is used to approximate the solution of se
ond order

problems, whi
h are posed in variational form in some subspa
e V

0

of the Sobolev spa
e

H

1

(
).

We start with the weak formulation 
oupled with the fundamental theorem of Lax-Milgram

for ellipti
 problems, introdu
e the Galerkin-method and then spe
ialize on FEM.

The weak formulation Let 
 � R

d

be a bounded suÆ
iently smooth domain. We

assume a given problem in weak formulation, whi
h is already homogenised, i.e. the Diri
h-

let 
onditions on �

D

� �
 are homogeneous. We de�ne V

0

:= fv 2 V : vj

�

D

= 0g � H

1

(
).

17
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We state the weak problem in abstra
t form as follows

Find u 2 V

0

: a(u; v) = F (v) 8 v 2 V

0

: (3.1)

For ellipti
 problems existen
e and uniqueness of a weak solution is provided by the theorem

of Lax-Milgram.

Theorem 3.1.1 (Lax-Milgram) [10℄

Let V

0

� H

1

(
). If the bilinear form a(:; :) : V

0

� V

0

! R is

1. ellipti
, i.e. there is a 
onstant �

1

> 0 su
h that

a(v; v) � �

1

kvk

2

1

8 v 2 V

0

; (3.2)

where k:k

1

= k:k

H

1

(
)

denotes the norm of H

1

on 
.

2. 
ontinuous, i.e. there is a 
onstant �

2

> 0 su
h that

ja(w; v)j � �

2

kwk

1

kvk

1

8w; v 2 V

0

; (3.3)

and the linear form F : V

0

! R is 
ontinuous, i.e. there is a 
onstant 
 > 0 su
h that

j

~

F (v)j � 
kvk

1

8 v 2 V

0

; (3.4)

then there exists a unique solution u 2 V

0

whi
h solves

a(u; v) = F (v) 8v 2 V

0

:

The Galerkin Method - Dis
retization The Galerkin method states the approxi-

mative solution of the weak problem by solving the problem only over �nite-dimensional

subspa
es V

h

� V . The index h is the dis
retization parameter and denotes that with

h ! 0 we want to a
hieve 
onvergen
e of the approximate solution u

h

2 V

h

against the

exa
t solution u 2 V .

We state the dis
rete problems in V

h

� V

Find u

h

2 V

0h

: a(u

h

; v

h

) = F (v

h

) 8 v

h

2 V

0h

: (3.5)

with the �nite-dimensional subspa
e V

0h

:= V

0

\ V

h

.

Due to V

0h

� V

0

the Lax-Milgram theorem still holds for the dis
rete problem, i.e. there is

a unique u

h

2 V

0h

solving (3.5).
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We 
hoose a base (p

(i)

)

i2!

h

of V

h

su
h that

V

0h

= spanfp

(i)

; i 2 !

h

g;

i.e. u

h

2 V

0h

is represented by the linear 
ombination u

h

=

P

i2!

h

u

(i)

p

(i)

with u

(i)

2 R. By

!

h

and !

h

we denote index sets for the 
hosen bases of V

h

and V

0h

. The dis
rete problem

is ful�lled, if (3.5) holds forall p

(j)

with j 2 !

h

. Choosing v

h

= p

(j)

for all j 2 !

h

leads to

the Galerkin system

Find u

h

= (u

(i)

)

i2!

h

2 R

N

h

: K

h

u

h

= f

h

(3.6)

with N

h

= dim!

h

and K

h;ij

= a(p

(i)

; p

(j)

), 8 i; j 2 !

h

, f

h

j

= f(p

(j)

), 8 j 2 !

h

:

Cea's Lemma states [10℄ that the dis
retization error 
an be bounded by the approximation

error, i.e. under the assumptions of the theorem of Lax-Milgram the estimate

ku� u

h

k

1

�

�

2

�

1

inf

w

h

2V

0h

ku� v

h

k

1

(3.7)

holds for the solution u 2 V

0

of (3.1) and its approximation u

h

satisfying (3.5) .

Finite element subspa
es The �nite element method is a spe
ial 
ase of the Galerkin

method, i.e. a spe
ial 
hoi
e of the subspa
es V

h

. There are three main aspe
ts in 
on-

stru
ting su
h a subspa
e V

h

:

1. The triangulation �

h

of the given geometry 
 in subdomains (
alled elements) T 2 �

h

satis�es

(a) 8T 2 �

h

: T = T and

Æ

T

6= ;;

(b)

S

T2�

h

T = 
;

(
) for T

1

; T

2

2 �

h

: T

1

6= T

2

) T

1

\ T

2

=

8

>

>

<

>

>

:

;

vertex

edge

fa
e (if d=3)

2. All v

h

2 V

h

are pie
ewise polynomials, i.e. P

T

= fv

h

j

T

: v

h

2 V

h

g is a polynomial set.

is set of polynomials of degree k.

3. A base of V

h

with base fun
tions having small support exist.
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Con
erning the model problem, whi
h will be stated in Chapter 4, 
 is de�ned on R

2

and triangles or re
tangles are used for triangulation. The set of verti
es of all T in �

h

is

des
ribed by the nodes fx

(i)

; i 2 !

h

g. We will use linear elements, i.e. the ansatz fun
tions

v

h

j

T

are linear for triangles and bilinear for re
tangles.

For the 
onstru
tion of the base fun
tions p

(i)

of V

h

we 
hoose

p

(j)

(x

i

) = Æ

ij

8 i; j 2 !

h

; (3.8)

whi
h are well-de�ned for p

(i)

j

T

linear or respe
tively bilinear.

Sin
e a(p

(i)

; p

(j)

) = 0 if meas

R

2

(supp(p

(i)

) \ supp(p

(j)

)) 6= 0, 
hoosing base fun
tions with

small support (whi
h will lead to nodal basis fun
tions) implies that the sti�ness matrix

K

h

in the Galerkin system (3.6) be
omes sparse.
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3.2 FEM for 
oupled �eld problems

The weak formulation of piezoele
tri
 problems yields in a mixed variational problem of

the form:

Find u 2 X and � 2M whi
h satisfy

a(u; v) + b(v; �) = f(v) 8 v 2 X

b(u;  ) � 
(�;  ) = g( ) 8 2 M

Theorem 3.2.1 Let us assume that

f and g are bounded linear forms, i.e. f 2 X

�

, g 2M

�

,

1.2. the bilinear forms a(:; :) : X �X ! R and b(:; :) : X �M ! R are 
ontinuous,i.e.

9�

2

> 0 : ja(w; v)j � �

2

kwk

X

kvk

X

8w; v 2 X

9�

2

> 0 : jb(v;  )j � �

2

kvk

X

k k

M

8 v 2 X; 8 2 M;

3. the bilinear form b(:; :) ful�lls the inf-sup-
ondition, i.e.

9�

1

> 0 : inf 2M

 6=0

sup v2X

v 6=0

b(v;  )

kvk

X

k k

M

� �

1

:

4. a(:; :) is ellipti
 on V

0

= Ker b = fv 2 Xjb(v;  ) = 0 8 2Mg,i.e.

9�

1

: a(v; v) � �

1

kvk

X

8 v 2 V

0

;

5. a(:; :) is non-negative on X , i.e.

a(v; v) � 0 8 v 2 X;

6. The bilinear form 
(:; :) :M �M ! R ful�lls the 
onditions


( ;  ) � 0 8 2 M;


( ; �) = 
(�;  ) 8 ; � 2 M::

Then the weak 
oupled-�eld problem

Find u 2 X and � 2M su
h that

a(u; v) + b(v; �) = f(v) 8 v 2 X

b(u;  ) � 
(�;  ) = g( ) 8 2 M

(3.9)

has a unique solution (u; �) 2 X �M .

Proof: see Remark 10:8 in [31℄ p.572-573.
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Remark 3.2.2 Theory of problems of the form (3.9) are derived form the theory of sad-

dle point problems (
(.,.)=0). The assumption (1)-(4) are nothing but the assumptions of

Brezzi's theorem.

Dis
retization of mixed problems Choosing �nite-dimensional subspa
es X

h

� X

and M

h

�M the dis
rete mixed problem reads as follows:

Find u

h

2 X

h

; �

h

2M

h

su
h that

a(u

h

; v

h

) + b(v

h

; �

h

) = f(v

h

) 8 v

h

2 X

h

b(u

h

;  

h

) � 
(�

h

;  

h

) = g( 

h

) 8 

h

2 M

h

:

(3.10)

In 
ontrast to ellipti
 problems, the assumptions posed for existen
e and uniqueness results

are not all automati
ally implied on the dis
rete spa
es. Sin
e in general V

0h

:= fv

h

2

X

h

j b(v

h

;  

h

) = 0 8 

h

2M

h

g 6� V

0

, the ellipti
ity of a(:; :) has to be expli
itly required for

the dis
rete problem as well as the dis
rete inf-sup-
ondition.

Theorem 3.2.3 Under the assumptions of theorem 3.2.1 and the dis
rete 
onditions

1. a(:; :) is V

0h

-ellipti
,

2. the dis
rete inf-sup-
ondition is ful�lled, i.e.

9

~

�

1

6=

~

�

1

(h) > 0 : inf 

h

2M

h

 6=0

sup v

h

2X

h

v 6=0

b(v

h

;  

h

)

kv

h

k

X

h

k 

h

k

M

h

�

~

�

1

;

the dis
rete problem (3.10) has one and only one solution u

h

2 X

h

;  

h

2M

h

.

Finite Element Dis
retisization We assume two �nite element subspa
es X

h

� X and

M

h

� M with the nodal bases p

(i)

of X

h

and 	

(i)

of M

h

a

ording to the node x

i

2 !

h

,

i.e. p

(i)

(x

j

) = Æ

ij

and 	

(i)

(x

j

) = Æ

ij

:

With u

h

=

P

n

i=1

u

i

h

p

(i)

and �

h

=

P

n

i=1

�

h

	

(i)

we a
hieve the Galerkin-problem

�

A B

�

B �C

��

u

h

�

h

�

=

�

f

h

g

h

�

; (3.11)

where the matri
es are de�ned by A

ij

= a(p

(i)

; p

(i)

), B

i;j

= b(p

(i)

;	

(i)

), B

�

= B

T

and

C

ij

= 
(	

(i)

;	

(i)

).

The system matrix

�

A B

�

B �C

�

is regular, but inde�nite. Due to the small support of the

base fun
tions, the system matrix is sparse.

For further information we refer the reader to [10℄ and [31℄.
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3.3 Finite element method for eigenvalue problems

In this se
tion the following questions will be sket
hed : What happens if one solves

eigenvalue problems via �nite-element method? Whi
h eigenvalues will be approximated,

how are the 
onvergen
e properties adn how a

urate is this approximation?

The statements and results of the following se
tion stem from "Finite Element Meth-

ods - Eigenvalue problems" by Babuska and Osborn [7℄ and 
an be found there with proofs.

Sin
e we want to apply �nite element te
hniques on eigenvalue problems we assume a given

eigenvalue problem of weak form. The theroy of approximating variational formulated

eigenvalue problems will be tra
ed ba
k on spe
tral theroy of 
ompa
t operators. Then

�nite element te
hniques are applied analogous to the sour
e variational problems. The

dis
retized eigenvalue problems 
an be again tra
ed ba
k on 
ompa
t operators. Then an

error estimate for the approximated eigenvalues will be given.

More detailed spe
tral analysis is known for self-adjoint ellipti
 problems. Sin
e in Chapter

4 we will state self-adjoint ellipti
 problems in the �rst phases of modeling, some results

for these spe
ial type of eigenvalue problems will be given.

Detailed spe
tral theory for 
oupled �eld problems (espe
ially piezoele
tri
 problems) will

be left open within this thesis, for further information and referen
es see [7℄.

Abstra
t eigenvalue problem We start with a variationally posed eigenvalue problem

on 
omplex Hilbert-spa
es (H

1

; k:k

1

; (:; :)

1

); (H

2

; k:k

2

; (:; :)

2

): A s
alar � 2 C is 
alled an

eigenvalue of the bilinar form a with respe
t to the bilinear form b if there is an eigenve
tor

u 6= 0 2 H

1

ful�lling

a(u; v) = �b(u; v) 8v 2 H

2

: (3.12)

Let a(:; :) be a bilinear form on H

1

�H

2

whi
h 
ontinuous

9�

2

> 0 : ja(w; v)j � �

2

kwk

1

kvk

2

8w 2 H

1

8 v 2 H

2

(3.13)

and satis�es the inf-sup 
onditions

inf

u2H

1

;

kuk

1

=1

sup

v2H

2

;

kvk

2

=1

ja(u; v)j = � > 0; (3.14)

sup

u2H

1

ja(u; v)j > 0 8v 6= 0 2 H

2

: (3.15)

The bilinear form b(:; :), de�ned on W

1

� W

2

with H

1

� W

1


ompa
t and H

2

� W

2

bounded, is assumed to be 
ontinuous in W

1

�W

2

, i.e.

9�

2

> 0 : jb(w; v)j � �

2

kwk

W

1

kvk

W

2

8w 2 W

1

8 v 2 W

2

: (3.16)
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The main idea of spe
tral theory of variationally posed eigenvalue problems

The assumptions (3.13)-(3.16) for a(:; :); b(:; :) imply the the existen
e of unique 
ompa
t

operators

T : H

1

! H

1

and T

�

: H

2

! H

2

;

whi
h hold

a(Tu; v) = b(u; v) 8 u 2 H

1

8 v 2 H

2

a(u; T

�

v) = b(u; v) 8 u 2 H

1

8 v 2 H

2

kTuk

1

�

�

2

�

kuk

W

1

8 u 2 H

1

:

(3.17)

Theorem 3.3.1 (�; u) is an eigenpair of (3.12) if and only if (

1

�

; u) is an eigenpair of T ,

i.e. Tu =

1

�

u.

Therefore the analysis of variationally formulated eigenvalue problems is given by spe
tral

theory of 
ompa
t operators.

De�nition 3.3.2 The eigenvalue � of the variational eigenvalue problem is of multipli
ity

m by de�nition, if �

�1

is a m-multiple eigenvalue of T .

The �nite element method for approximating eigenproblems

The �nite element method of eigenvalue problems is formally equal to FEM of sour
e

problems. We 
hoose �nite element spa
es H

1h

� H

1

and H

2h

� H

2

of equal dimension,

i.e. dimH

1;h

= dimH

2;h

= N , for whi
h

inf

u2H

1h

;

kuk

1

=1

sup

v2H

2;h

;

kvk

2

=1

ja(u; v)j = �

h

= �(h) > 0 (3.18)

and

lim

h!0

�

�1

h

inf

w

h

2H

1

ku� w

h

k

1

= 0 (3.19)

is valid.

Then we formulate the weak eigenvalue problem (3.12) on the FE-subspa
es and get the

�nite element Galerkin eigenvalue problem

Sear
h (�

h

; u

h

) 2 (C ; H

1h

); u

h

6= 0 : a(u

h

; v

h

) = �

h

b(u

h

; v

h

) 8 v

h

2 H

2h

: (3.20)

Let (�

1

; :::�

N

) and (	

1

; :::;	

N

) be bases of the subspa
es H

1h

and H

2h

.

By 
hoosing A

ij

= a(�

i

;	

j

), B

ij

= b(�

i

;	

j

) and u

h

= (u

i

)

i=1;N

with u

h

=

P

N

i=1

u

i

�

i

, we

get the algebrai
 eigenvalue problem

Sear
h �

h

2 C and u

h

2 C

N

: Au

h

= �

h

Bu

h

; (3.21)

whi
h is equivalent the Galerkin eigenvalue problem (3.20).
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The analysis of Galerkin eigenvalue problems 
an be again redu
ed to spe
tral theory of


ompa
t operators.

For every h we de�ne an operator T

h

: H

1

! H

1h

by

a(T

h

u; v

h

) = b(u; v

h

) 8 u 2 H

1

8 v

h

2 H

2h

:

T

h


an be written as P

h

T with P

h

denoting the proje
tion of H

1

on H

1h

,i.e.

a(P

h

u; v

h

) = a(u; v

h

) 8 u 2 H

1

8 v

h

2 H

1h

:

The 
ompa
tness of T and the proje
tion property of P

h

imply that T

h

= P

h

T ! T in

k:k

1

.

Again (�

h

; u

h

) is an eigenpair of (3.20) if and only if (�

�1

h

; u

h

) is an eigenpair of T

h

.

Error analysis Before giving a result on the quality of eigenvalue aproximation by the

�nite element method some notational work is required.

The (generalized) eigenspa
es a

ording to an eigenvalue � of (3.12) are denoted by

E(�) := fuj(�; u) solves (3.12) with kuk

1

= 1g;

E

�

(�) := fvj(�; v) adjoint eigenpair of (3.12) with kuk

2

= 1g:

If (�) is of multipli
ity m, there are m 
orresponding eigenvalues �

1

(h); :::; �

m

(h) for ea
h

�nite element subspa
es H

1h

; H

2h

with �

j

(h)! � for h! 0, sin
e T

h

! T .

The eigenspa
e of (3.20) a

ording to � of (3.12),i.e. �

j

(h) ! �, is the sum of the m

eigenspa
es of �

j

(h), (j = 1; :::; m). We denote this eigenspa
e with E

h

(�) and assume the

eigenve
tors of E

h

(�) be normalized in k:k

1

.

Moreover, we de�ne the approximation error in respe
t to the eigenspa
es by

"

h

(�) := sup

u2E(�)

inf

w

h

2H

1h

ku� w

h

k

1

;

"

�

h

(�) := sup

u2E

�

(�)

inf

w

h

2H

2h

kv � w

h

k

2

:

Theorem 3.3.3 Error estimate for approximative eigenvalues

Let � be an eigenvalue of (3.12) of multipli
ity m and �

j

(h) (j = 1; :::; m) the m a

ording

eigenvalues of the dis
rete problem (3.20) satisfying �

j

(h)! �.

Then the following estimate holds

9


1

> 0 : j��

^

�(h)j � 


1

(�(h)"

h

"

�

h

) with

^

�(h) :=

1

m

m

X

j=1

�

j

(h): (3.22)

Stronger estimates 
an be given for the spe
ial 
ase of self-adjoint ellipti
 eigenvalue

problems,i.e. T; T

h

is self-adjoint and ellipti
.
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3.3.1 Self-adjoint ellipti
 eigenvalue problems

We view the eigenvalue problems (3.12) and its FE-approximations (3.20) under the fol-

lowing assumptions:

1. H = H

1

= H

2

.

2. The bilinearform a(:; :) is

symmetri
: a(u; v) = a(v; u) 8 u 2 H8 v 2 H;


ontinuous: a(u; v) � �

2

kukkvk 8 u 2 H8 v 2 H;

ellipti
: a(u; u) � �

1

kuk

2

8 u 2 H:

3. W = W

1

= W

2

� H is a 
ompa
t embedding.

4. The bilinearform b(:; :) is

symmetri
: b(u; v) = b(v; u) 8 u 2 W8 v 2 W;


ontinuous: b(u; v) � �

2

kukkvk 8 u 2 W8 v 2 W;

positive: b(u; u) � 0 8 u 6= 0 2 H:

Remark: The energeti
 norm k:k

a

=

p

a(:; :) is an equivalent norm to k:k

H

=: k:k.

The assumptions on spa
es and bilinear forms imply that T = T

�

= T

�

is a 
ompa
t and

self-adjoint operator, where T

�

denotes the adjoint of T .

Due to spe
tral theory of operators T has 
ountable sequen
e of positive eigenvalues 
on-

verging to zero. Therefore the variational eigenproblem (3.12) has a 
ountable sequen
e of

eigenvalues with

0 < �

1

� �

2

� :::%1: (3.23)

The 
orresponding eigenve
tors u

1

; u

2

; ::: 
an be 
hosen the way they satisfy

a(u

i

; u

j

) = �

j

b(u

i

; u

j

) = Æ

ij

(3.24)

Moreover, these eigenve
tors form a base of H, i.e. 8 u 2 H : u =

P

1

i

a(u; u

i

)u

i

.

Finite element dis
retization

Let V

h

� H denote a �nite-element subspa
e of H.

The eigenve
tors u

j

(j = 1; :::; N) of of the asso
iated Galerkin eigenvalue problem (3.20)


orresponding to the eigenvalues

0 < �

1; h

� �

2; h

� ::: � �

N;h

with N = dimV

h


an be 
hosen the way

a(u

i

; u

j

) = �

j; h

b(u

i

; u

j

) = Æ

ij

: (3.25)

holds.
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Theorem 3.3.4 Error estimates

If �

k

has geometri
 multipli
ity m

k

, i.e. �

k

= ::: = �

k+m

k

�1

, then

�

k+j; h

& �

k

for j = 0; :::; m

k

� 1

with the estimate

9C > 0 : �

k

� �

j; h

� �

k

+ C"

2

(�

k

) j = 0; :::; m

k

� 1 (3.26)

holds.

Con
erning the approximation of eigenve
tors there are two estimates:

1. Let u

k+j; h

be an eigenve
tor of (3.20) 
orresponding to �

k+j; h

for j = 0; :::; m

k

� 1.

Then there is a unit eigenve
tor in E(�

k

) whi
h satis�es

9C > 0 : ku� u

j;h

k

1

� C"

h

(�

k

): (3.27)

2. If u is a unit eigenve
tor of (3.12) 
orresponding to �

k

,i.e. u 2 E(�

k

) then there is a

ve
tor ~u

h

2 E

h

(�

k

) su
h that

9C > 0 : ku� ~u

h

k

1

� C"

h

(�

k

): (3.28)

If m

k

= 1, i.e. �

k

is simple, then

9C > 0 : ku

k

� u

k;h

k

1

� C"

h

(�

k

) (3.29)

holds.

Further analysis and estimates for self-adjoint ellitpi
 variational eigenvalue problems 
an

be found in [7℄.

Remark 3.3.5 On the "well-approximated part" of the spe
trum

Due to Babuska and Osborn [7℄ the �nite element method give reasonable approximations for

low eigenvalues. The dimension of the �nite element subspa
es and a

ording the dimension

of the algebrai
 eigenvalue problem will be mu
h larger than the number of well approximated

eigenvalues and eigenve
tors.

The solver for the algebrai
 eigenvalue problem should be designed to �nd low eigenvalues

of large sparse generalized eigenvalue problems.



Chapter 4

Mathemati
al modeling

Before starting with a stepwise 
onstru
tion of the mathemati
al model we have to pre
ise

the problem formulation, i.e. stating the boundary 
onditions and the geometry of the

desired �nal model.

4.1 Problem-based assumptions, geometry and

boundary 
onditions

Harmoni
 approa
h To redu
e the spa
e-time problem to a spatial one, we assume all

�eld quantities to be time-harmoni
, i.e.

v(x; t) = v

1

(x) 
os(!t) + v

2

(x) sin(!t): (4.1)

Using a 
omplex formulation v̂ of v with <(v̂(x)) = v

1

(x) and =(v̂(x)) = v

2

(x) leads to

the simpli�
ation that derivations in time are multipli
ations

�

�t

! i!t. and

�

2

�t

2

! �!

2

:

Therefore we 
onsider the 
omplex fun
tion v̂ during the 
omputation and take the real

part afterwards.

v̂(x; t) = v̂(x)e

i!t

v(x; t) = <(v̂(x; t))

(4.2)

Due to the linearity of the applied operations this is valid. For easier notation the hat

marker is be suppressed.

Ele
trodes In order to get the propagation parameter 
aused by periodi
 perturbations

(ele
trodes), we need not to simulate the sending or re
eiving state at the ele
trodes. It is

suÆ
ient to simulate the problem with short-
ir
uited ele
trodes (i.e. the potential �eld is

zero in the ele
trode domain 


el

) or 
oating ele
trodes (i.e. the potential �eld is 
onstant

within ea
h ele
trode, but the 
onstant 
an di�er between the ele
trodes). We will restri
t

ourselves to the �rst problem.

28
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Geometry We start with an in�nite piezoele
tri
 substrate with periodi
al arranged

ele
trodes on its surfa
e. Due to the fa
t that we are mainly interested in Rayleigh-waves,

we 
an restri
t the 
omputation domain to the sagittal plane. In the mathemati
al model

we denote this plane with the (x

1

; x

2

)-plane. With these assumption we a
hieve the domain

shown in Figure 4.1.

electrode boundaryG
el

G
N

charge and stress free boundaryW
el

electrode

G
el

G
el

G
el

G
el

G
el

G
el

G
N

G
N

G
N

G
N

G
N

G
N

G
N

G
N

W
S

piezoelectric substrate

p

X2

X1

Figure 4.1: In�nite model geometry for piezoele
tri
 problem

Two piezoele
tri
 model 
ases u 2 R

d

1. d=2: We assume that there is no displa
ement in the x

3

-dire
tion and displa
ement

and potential are not depending on the x

3

-
oordinate, i.e. u(x

1

; x

2

; t) 2 R

2

and

�(x

1

; x

2

; t) 2 R.

Bu := S =

0

�

S

x

1

x

1

S

x

1

x

2

S

x

2

x

1

S

x

2

x

2

1

A

=

�

�u

1

�x

1

1

2

(

�u

1

�x

2

+

�u

2

�x

1

)

1

2

(

�u

1

�x

2

+

�u

2

�x

1

)

�u

2

�x

2

�

; (4.3)

�B� = E =

0

�

�

��

�x

1

�

��

�x

2

0

1

A

: (4.4)

2. d=3: Due to the anisotropy of the material wave 
omponents in the z-dire
tion 
an

o

ur in pra
ti
al appli
ations. The deviation of the ideal 
ase is 
onsidered by al-

lowing 
onstant behavior of the �elds in x

3

-dire
tion:

�u

i

�x

3

= 0 for u = (u

1

; u

2

; u

3

)

T

2 R

3

��

�x

3

= 0

: (4.5)
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This implies the di�erential operators in 
 by

Bu = S =

0

�

S

x

1

x

1

S

x

1

x

2

1

2

�u

3

�x

1

S

x

2

x

1

S

x

2

x

2

1

2

�u

3

�x

2

1

2

�u

3

�x

1

1

2

�u

3

�x

2

0

1

A

; (4.6)

�B� = E =

0

�

�

��

�x

1

�

��

�x

2

0

1

A

: (4.7)

We treat the ele
trodes as piezoele
tri
 material with 
oupling 
oeÆ
ients set to zero

and a
hieve the behaviour of non-piezoele
tri
 material avoiding an expli
it 
hange of

the governing equations. This leads to the problem of partial di�erential equations with

periodi
al 
oeÆ
ients and will lead to Blo
h theory.

The boundary 
onditions The surfa
e ex
luding the ele
trodes (denoted with �

N

in

Figure 4.1) piezoele
tri
 substrate is stress- and 
harge-free , i.e.

T:n = 0 and D:n = 0 on �

N

:

Setting potential � to zero simulates short-
ir
uited ele
trodes, i.e. � = 0 in 


el

:

The me
hani
al �eld is again stress-free on �

el

, i.e. T:n = 0 on �

el

:

4.2 The main steps of modeling

We have three main points to be 
onsidered in the 
onstru
tion of a mathemati
al model

� the periodi
al geometry, i.e. partial di�erential equations with periodi
 
oeÆ
ients

� the physi
al properties of piezoele
tri
 media

� damping e�e
ts

We want to 
onstru
t the model step by step. To get a �rst impression of modeling and

possible solution methods we initially 
on
entrate on the �rst item, i.e. wave propagation

in periodi
al perturbed media. We sear
h for modeling and solution approa
hes for the

wave equation with periodi
 
oeÆ
ients. We start in 1 dimension and then upgrade to 2

dimension.

In this state of modeling we restri
t only to pure propagating mode (� = 0), sin
e this

simpli�
ation leads to self-adjoint problems.
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In the se
ond step we also permit stop band attenuation and 
onsider material damping

in the model and solution approa
hes for the wave equation. In
luding damping e�e
ts to

our model implies that the operators get 
omplex.

After 
oming up with the problem of periodi
 geometry and damping for the wave equation,

�nally we extend the developed methods to the system of piezoele
tri
 equations.

4.3 Modeling wave equation with periodi
 
oeÆ
ients

in 1 D

We simplify the in�nite periodi
al geometry to one dimension,i.e. 
 := R, and state the

strong problem as sear
hing a solution u 2 C

2

(
;R) of the periodi
 wave equation:

8 x 2 
 8 t 2 R : (a(x)u

X

(x; t))

x

= u

tt

(x; t) with a(x + p) = a(x): (4.8)

Let p > 0 2 R be a given, �xed period.

The positive periodi
 
oeÆ
ient a 2 C

1

(
) des
ribes the periodi
al properties of

the material. We remark that for the weak formulation of the problem the 
ondition

a 2 L

1

(
) : 0 < a � a(:) � a almost everywhere (a.e.) in 
 will be suÆ
ient.

The �rst step is using a harmoni
 approa
h as explained in (4.2)

û(x; t) = û (x)e

i!t

(4.9)

with û(:) in C

2

(
; C ). The hat marker will be suppressed furtheron.

Applying this approa
h to problem (4.8) leads to the Helmholtz-type equation

Find u 2 C

2

(
; C ) : �(a(x)u

0

(x))

0

� !

2

u(x) = 0: (4.10)

In order to give a formulation of the problem in operator form, we de�ne the ellipti


di�erential operator

A : C

2

(
; C ) ! C(
; C )

u(:) ! �(a(:)u

0

(:))

0

:

and get the operator eigenvalue problem

Find u 2 C

2

(
; C ); ! 2 R : Au = !

2

u: (4.11)
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The periodi
ity of the 
oeÆ
ient fun
tion a(:) 
an be expressed in the operator equation

via the shift operator

T

p

: C(
; C ) ! C(
; C )

u(:) ! T

p

u(:) := u(:+ p)

(4.12)

by the fa
t that the operator A is invariant over translation of period p (the operators


ommute)

T

p

A = AT

p

: (4.13)

In this 
ase Blo
h's theorem (introdu
ed afterwards) states that the solution of problem

(4.10) 
an be fully des
ribed via quasi-periodi
 eigenfun
tions of the form

9�; � 2 R : u(x+ p) = u(x)e

(�+i�)p

; (4.14)

whi
h is equivalent to

9 u

p

2 C

2

(
; C ) periodi
 with period p su
h that u(x) = u

p

(x) e

(�+i�)x

: (4.15)

4.3.1 Blo
hs Theorem

Theorem 4.3.1 (Blo
h's Theorem 1D)

Let A be a linear (di�erential) operator mapping C

2

(
; C ) into C(
; C ) whi
h is invariant

over T

p

de�ned in (4.12), i.e.

T

p

A = AT

p

:

Then for ea
h eigenspa
e E

A

(�) := fv 2 V jAv = �vg (with dim(E

A

(�) =: m ), there is a

base of eigenfun
tions

~

� = (

~

�

1

; :::;

~

�

m

) satisfying

A

~

�

j

= �

~

�

j

and T

p

~

�

j

= e

(�

j

+i�

j

)p

~

�

j

:

Proof: See "Asymptoti
 analysis of periodi
 stru
tures, Spe
tral theory of di�erential

operators with periodi
 
oeÆ
ients" in Lions [9℄.

In terms of above theorem the following equivalen
es of quasi-periodi
ity hold

T

p

� = e

(�+i�)p

� , �(x) = �

p

(x)e

(�+i�)x

, �(x + p) = e

(�+i�)p

�(x) (4.16)

.
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4.3.2 Restri
tion to the unit 
ell

Blo
h's theorem implies that we 
an restri
t the problem on sear
hing eigenfun
tions

in the spa
e of quasi-periodi
 fun
tions, i.e. we 
an assume u(x) = u

p

(x) e

�+i�x

with a


omplex pure-periodi
 fun
tion u

p

(:). Due to this periodi
ity the problem is fully des
ribed

by a solution on the unit 
ell.

It is suÆ
ient to solve problem (4.10) only on the unit 
ell 


p

:= [0; p℄, if the quasi-

periodi
ity (4.14) is 
onsidered in the boundary 
onditions of left and right bound of the

unit 
ell.

Notation 4.3.2 For briefer notation we de�ne 
 := e

(�+i�)p

.

In the starting phase of modeling we will 
on
retize on pure propagating,i.e. not-attenuated

solutions, i.e. we primarily assume � = 0, whi
h implies that j
j = 1.

Classi
al formulation Sear
h u 2 C

2

(


p

; C ) satisfying

�(a(x)u

0

(x))

0

= !

2

u(x) 8x 2 


p

: (4.17)

Quasi-periodi
ity plus its derivation impose the boundary 
onditions:

u(p) = 
u(0); (4.18)

w

l

:=�a(0)u

0

(0):

w

r

:=a(p)u

0

(p) = a(0)u

0

(0)e

i�p

�

! w

r

= �
w

l

: (4.19)

Weak formulation Through integration by parts we get

Z




p

a(x)u

0

(x)v

0

(x) dx�

Z




p

!

2

u(x)v(x) dx� a(x)u

0

(x)v(x)j

p

0

= 0: (4.20)

Using the 
ux notation de�ned in (4.19) leads to the variatonal formula

Sear
h for a solution u 2 H

1

(


p

; C ) satisfying 8v 2 H

1

(


p

; C ) :

Z




p

a(x)u

0

(x)v

0

(x) dx

| {z }

=:a

1

(u;v)

�!

2

Z




p

u(x)v(x) dx

| {z }

=:a

0

(u;v)

�w

l

v(0) + w

r

v(p)

| {z }

=:<w;v>

�

b

= 0: (4.21)

For given ! we de�ne the bilinear form a(u; v) = a

1

(u; v)�!

2

a

0

(u; v) for u; v 2 V := H

1

(


p

)

and 
laim the the quasi-periodi
ity of u expli
itely.



CHAPTER 4. MATHEMATICAL MODELING 34

Dis
retization and the Galerkin-FE-system We 
hoose a �nite element mesh with n

nodes (x

1

; :::; x

n

), a FE-subspa
e V

h

= spanf p

(i)

j i = 1; n g � V = H

1

(


p

) with (p

(i)

)

i=1;n

denoting the �nite elment base of V

h

with p

(i)

(x

(j)

) = Æ

ij

.

Moreover we split up the set of nodes in three disjoint subsets a

ording to Figure 4.2, the

set of inner (subs
ript i), of left boundary (subs
ript l) and of right boundary (subs
ript

r) nodes with x

i

:= (x

1

; :::; x

n�2

); x

l

:= x

n�1

; x

r

:= x

n

. The periodi
al boundary nodes are

denoted separately with the subs
ript b: x

b

:= (x

l

; x

r

):

x=l xn-1 x =r xnx2x1 x3
xn-2xn-1x3

xi

. . .

0 p

Figure 4.2: Splitting in inner, left and right verti
es

By setting K

i;j

= a(p

(i)

; p

(j)

) and u

h

(x) =

P

n

i=1

u

i

p

(i)

(x) with u

h

= (u

i

)

i=1;n

2 C

n

we get a

linear system with unknown right side

Ku

h

� w

h

= 0 (4.22)

with u

h

=

0

B

B

B

B

B

�

u

1

.

.

.

u

n�1

u

l

u

r

1

C

C

C

C

C

A

and w

h

:= (< w; p

(i)

>

�

b

)

i=1;n

=

0

B

B

B

B

B

�

0

.

.

.

0

w

l

p

(l)

(0)

w

r

p

(r)

(p)

1

C

C

C

C

C

A

=

0

B

B

B

B

B

�

0

.

.

.

0

w

l

w

r

1

C

C

C

C

C

A

:

In the next step we split the system in inner and boundary nodes. We a
hieve

�

K

i

K

ib

K

bi

K

b

��

u

i

u

b

�

=

�

0

w

b

�

: (4.23)

Due to the sparse right side we 
an eliminate the inner nodes u

i

. Eliminating u

i

from

the �rst equation and putting it into the se
ond one gives the smaller S
hur-
omplement

system

(�K

bi

K

�1

i

K

ib

+K

b

)

| {z }

=: S 2 R

2

2

S
hur-
omplement

u

b

= w

b

: (4.24)
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Considering the quasi-periodi
 boundary 
onditions

u

b

=

�

u

l

u

l




�

; w

b

=

�

w

l

�w

l




�

leads to 2 equations in 3 variables (u

l

; w

l

; 
 = e

i�p

)

S

11

u

l

+ 
S

12

u

l

= w

l

S

21

u

l

+ 
S

22

u

l

= �
w

l

�

) S

12




2

u

l

+ (S

11

+ S

22

)
u

l

+ S

21

u

l

= 0 (4.25)

with the notation S = (S

ij

)

i;j=1;2

.

If u

l

does not vanish identi
ally, we get a quadrati
 equation in 


S

12




2

+ (S

11

+ S

22

)
 + S

21

= 0: (4.26)

Remark 4.3.3 Sin
e S

12

= S

21

6= 0, the eigenvalues o

ur in the pair f
;

1




g, if 
 solves

(4.26).

Con
lusion:

In 1 dimension the model for the wave equation leads to a quadrati
 equation. With given

! the the dispersion 
ontext between ! and 
 
an be easily evaluated as a fun
tion 
(!).

The next question is how the evaluation of this 
ontext 
hanges if we go up to two dimen-

sions.
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4.4 Model of wave equation with periodi
al 
oeÆ-


ients in 2D

Modeling the 2D problem is 
omparable to the way we have done it in the 1D 
ase. We

present 3 variants of solution methods, they all result in eigenvalue problems (general-

ized linear and nonlinear). Two of them evaluate the dispersion relation as sear
hing

the propagation 
onstant depending on given frequen
y, i.e. 
(!), and the other the

inverse mapping via given propagation 
onstant, i.e. !(
). Sin
e we want to get an idea of

the whole diagram of dispersion, there is initially no advantage of any of the three methods.

4.4.1 Periodi
 geometry and Floquet-Blo
h theorem

We 
hose the strip 
 := R � [0; H℄ as underlying geometry.

We want to solve the 2 dimensional harmoni
 wave equation with periodi
 
oeÆ
ients in

dire
tion of propagation (x

1

-dire
tion) in 
 with boundary 
onditions a

ording to Figure

4.3:

Sear
h for a solution u(x; t) 2 C

2

(
� R)

div

x

(a(x)r

x

u(x; t)) = u

tt

(x; t) with a(x

1

+ p; x

2

) = a(x

1

; x

2

): (4.27)

The positive fun
tion a 2 C

1

(R

2

) des
ribes the periodi
al properties of the material in

x

1

-dire
tion, i.e.

a(x

1

+ p; x

2

) = a(x

1

; x

2

) 8 x

1

2 R; 8 x

2

2 [0; H℄: (4.28)

We note that for the later derived weak formulation periodi
 a 2 L

1

(
) with 0 < a �

a(x) � a for almost all x 2 
 will be suÆ
ient.

We use again a harmoni
 ansatz of the form

û(x

1

; x

2

; t) = û(x

1

; x

2

) e

i!t

: (4.29)

Suppressing the hat marker, we get the partial di�erential equations only in spa
e:

Sear
h for u 2 C

2

(
; C )

�div(aru(x)) = !

2

u(x) 8x 2 
: (4.30)

Remark on the 
hoi
e of boundary 
onditions:

The periodi
 
oeÆ
ient already simulates the periodi
 geometry. We 
hoose periodi
al ar-

ranged homogenous Diri
hlet boundary 
onditions due to the fa
t that in the piezoele
tri


model, we want to a
hieve in the �nal step, an equivalent boundary 
ondition is 
laimed

on the potential.
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Figure 4.3: In�nite periodi
al 
luster 2D (
)

Sin
e the propagation of surfa
e waves should be negligible within depth of a few

wavelength we set also zero-Diri
hlet 
onditions on the bottom.

Theorem 4.4.1 (Blo
h's Theorem 2D)

Assume a given operator A : C

2

(
; C ) ! C(
; C ), whi
h is invariant over translation T

p

of period p in x

1

-dire
tion, i.e.

T

p

A = AT

p

with

T

p

: C

2

(R

2

; C ) ! C

2

(R

2

; C )

f(:; :) ! f(:+ p; :)

:

Then the eigenfun
tion of A 
an be 
hosen quasi-periodi
ly in x

1

-dire
tion :

9�; � 2 R 8 (x

1

; x

2

) 2 
 : u(x

1

; x

2

) = u

p

(x

1

; x

2

)e

(�+i�)x

1

(4.31)

with periodi
 fun
tion u

p

(x

1

+ p; x

2

) = u

p

(x

1

; x

2

) 8 (x

1

; x

2

) 2 
,

this is equal to

9 � 2 R 8 (x

1

; x

2

) 2 
 : u(x

1

+ p; x

2

) = u(x

1

; x

2

)e

i(�+i�)p

(4.32)

Implying that for ea
h eigenspa
e E

A

(�) := fv 2 jAv = �vg (with dim(E

A

(�) =: m ), there

is a base of eigenfun
tions

~

� = (

~

�

1

; :::;

~

�

m

) satisfying

A

~

�

j

= �

~

�

j

and T

p

~

�

j

= e

(�

j

+i�

j

)p

~

�

j

: (4.33)

Proof: A proof for � = 0 is given in Lions [9℄. The general 
ase is treated in Ku
hment

[19℄.
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Remark 4.4.2 on theorem 4.4.1

Blo
h's theorem states that every eigenve
tor of the eigenvalue-problem Av = �v 
an be

de
omposited into so 
alled Blo
h-waves of the form (4.33).

Therefore the solution is fully des
ribed by quasi-periodi
 fun
tions and we 
an restri
t the

solution set to this spe
ial form :

Sear
h eigenve
tors u 2 C

2

(
) solving Au = �u of the form

u(x

1

+ p; x

2

) = e

(�

j

+i�

j

)p

u(x

1

; x

2

) 8(x

1

; x

2

) 2 
; (4.34)

or of the equivalent form

u(x

1

; x

2

) = e

(�

j

+i�

j

)x

1

u

p

(x

1

; x

2

) 8(x

1

; x

2

) 2 
 (4.35)

with u

p

2 C

2

(
; C ) periodi
 in x

1

-
oordinate, i.e. u

p

(x

1

; x

2

) = u

p

(x

1

+ p; x

2

) 8(x

1

; x

2

) 2 
.

Remark 4.4.3 on Blo
h de
omposition

Due to Blo
h's theorem every eigenve
tor 
an be written as a dis
rete sum of quasi-periodi


Blo
h waves. The parameter � of ea
h Blo
h wave des
ribes the attenuation per period.

If � > 0 the parameter des
ribes the attenuation of "forward-running" waves, i.e.

propagation in x

1

-dire
tion is positive, and � < 0 the attenuation of "ba
kward-running"

waves, i.e. propagation in x

1

-dire
tion is negative. Sin
e we view a periodi
 medium and

are mainly interested in waves whi
h propagate in the whole periodi
 geometry, we 
an

restri
t the numeri
al 
al
ulation on pure propagating modes (� = 0) and Blo
h-waves

with attenuation parameter � smallest in magnitude.

We will �rst solve the problem of pure propagating modes and then extend the problem to

attenuated Blo
h-waves, where we are interested in solutions a

ording to � smallest in

magnitude.

4.4.2 Restri
tion to the unit 
ell

Due to the validity of Blo
h's theorem, we 
an restri
t the problem (4.30) to the unit


ell 


p

:= [0; p℄ � [0; H℄. Blo
h waves on the unit-
ell fully des
ribes the solutions on the

in�nite strip.

We use the notation 
 := e

(�+i�)p

and primarly 
onsider only non-attenuated (pure-

propagating) waves, i.e. � = 0.
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Dirichlet Boundary

G
D

Dirichlet

G
D

Neumann

G
N

Neumann

G
N

right

periodical

boundary

left

periodical

boundary
W

p
G

L
G

R

Figure 4.4: Restri
tion to the unit 
ell 2D (


p

)

Classi
al formulation Sear
h for a fun
tion u 2 C

2

(


p

; C ) whi
h solves 8 x 2 


p

:

�div(a(x)ru(x))� !

2

u(x) = 0 (4.36)

with a 2 C

1

(


p

) and a(0) = a(p) satisfying the boundary 
onditions (see Figure 4.4)

Diri
hlet boundary: u(x) = 0 on �

D

Neumann boundary:

�u

�N

(x) := a(x)

�u

�n

(x) = 0 on �

N

Periodi
 boundary: �

L

; �

R

u(p; x

2

) = 
u(0; x

2

) 8x

2

2 [0; H℄

�u

�N

(p; x

2

) = �


�u

�N

(0; x

2

) 8x

2

2 [0; H℄

8x 2 �

L

: ~w

l

(x) :=

�u

�N

(x)

8x 2 �

R

: ~w

r

(x) :=

�u

�N

(x)

�

~w

r

(x) = �
 ~w

l

(x)

(4.37)

with

�u

�n

(x) for x 2 � des
ribing the partial derivation in dire
tion of the normal ve
tor

(pointing to the exterior of 


p

) of the a

ording boundary �.

The 
onditions stated on the quasi-periodi
 boundaries stem from applying and di�eren-

tiating equation (4.34).
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Variational formulation We start with the 
lassi
al problem and test it with fun
tions

v of the testspa
e V

0

(spe
i�ed later)

Z




p

div

x

(a(x)ru(x)) : v(x) dx�

Z




p

!

2

u(x)v(x) dx = 0:

Integration by parts leads to

Z




p

a(x)ru(x)r

T

v(x) dx�

Z

�

D

[�

N

�u

�N

(x)v(x) ds�

Z




p

!

2

u(x)v(x) dx�

Z

�

L

[�

R

�u

�N

(x)v(x) ds = 0:

By 
hoosing test-fun
tions whi
h vanish on the Diri
hlet-boundary (essential boundary


ondition), i.e.

V

0

:= fv 2 H

1

(


p

; C ) : v(x) = 0 on �

D

g (4.38)

the boundary integral over �

D

gets zero. Under 
onsideration of the Neumann-
onditions

(natural boundary 
ondition) we get

Z




p

a(x)ru(x)r

T

v(x) dx�

Z




p

!

2

u(x)v(x) dx�

Z

�

L

[�

R

�u

�N

(x)v(x) ds = 0:

Sin
e the solution has to satisfy the stated boundary 
onditions (in the weak sense) we


hoose the sear
h spa
e as

V

p

:= V

0

\ fu 2 V = H

1

(


p

) j u(x

1

; x

2

) = 
u(x

1

+ p; x

2

)g:

Under 
ondition (4.37) for the 
ux ~w

l

, ~w

r

over the periodi
 boundaries, we get the weak

formulation:

Sear
h for a solution u 2 V

p

: 8v 2 V

0

Z




p

a(x)ru(x)r

T

v(x) dx

| {z }

=: a

1

(u;v)

� !

2

Z




p

u(x)v(x) dx

| {z }

=:a

0

(u;v)

�(

Z

�

L

~w

l

(x)v(x) ds

Z

�

R

~w

r

(x)v(x) ds

| {z }

=:< ~w;v>

�

b

) = 0:

(4.39)

Remark 4.4.4 Properties of the stated bilinear forms a

0

(:; :); a

1

(:; :) : H

1

� H

1

! R :

Both are symmetri
 and 
ontinuous. Moreover, a

1

(:; :) is ellipti
 for a(:) 2 L

1

(


p

) with

0 < a � a(x) � a for x a.e. in 


p

and a

0

(:; :) is positive.

Supplementary, we de�ne the bilinear form a(u; v) := a

1

(u; v)�!

2

a

0

(u; v) for given ! in R

+

0

.

Remark 4.4.5 The problem arises that the 
hosen test spa
e in the weak formulation is

bigger than the sear
h spa
e. If we treat the 
ux over the left boundary as independent

fun
tion of u and extend the sera
h spa
e with w

l

the spa
es be
ome isomorph.

V

wph

= f(u; w) 2 H

1

(
); L

2

(�

L

[ �

R

) j u 2 V

0p

; w =

P

n

l

i=1

w

l(i)

(p

l(i)

� 
p

r(i)

) ; w

( l(i)

2 C g

For easier notation/assembling we 
hoose u in V

0h

and in
orporate the quasi-periodi
ity

expli
itely in the dis
retized matrix equation.
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FE-Dis
retization and Galerkin problem We 
hoose a regular triangulation with

following supplementary properties: We have a mesh of n nodes whi
h we split up in

n = n

i

+ n

d

+ n

l

+ n

r

with n

d

denoting the nodes a

ording to Diri
hlet boundary,

n

l

; n

r

a

ording to the left and right boundary (quasi-periodi
al boundaries) ex
luding

Diri
hlet nodes and n

i

denoting all remaining nodes (in
luding the nodes on the Neumann

boundary).

Morover, we assume a grid, in whi
h right and left boundary have an identi
al 
onne
tion.

We introdu
e the index mappings d(:); l(:); r(:); i(:) : f1; :::; n

�

g ! f1; :::; ng and supple-

mentary x

r(i)

= x

l(i)

+ (0; p) for i = 1; n

l

.

We 
hoose the FE-subspa
es

V

h

:= spanfp

(j)

j = 1; n : p

(j)

base fun
tion a

. to node x

j

g � V = H

1

(


p

);

V

0h

:= fu

h

=

P

n

j=1

u

(j)

p

(j)

j u

(j)

2 C with u

d(i)

= 0 for i = 1; n

d

g � V

h

;

V

ph

:= fu

h

2 V

0h

with u

r(i)

= 
u

l(i)

for i = 1; n

l

g

= f

P

n

i

j=1

u

i(j)

p

i(j)

+

P

n

l

j=1

u

l(j)

(p

l(j)

+ 
p

r(j)

)g � V

0h

� V

h

:

The dis
retization is done by formulating the weak problem within sear
h

spa
e and test spa
e both V

0h

. We get N := n � n

d

a

ording to the setting

v

h

= p

(i)

for i 2 f1; :::; ng n range(d(:)).

During the 
omputation we treat the 
ux ~w

l

; ~w

r

= �
 ~w

l

over the quasi-periodi
al

boundaries as unknown from the displa
ement u independent fun
tions. We will see

that in the dis
retized equation one 
an drop the 
ux ve
tor after 
onsideration of their

quasi-periodi
ity.

We get the Galerkin-FE-system (note that w is also unknown)

Sear
h u 2 C

N

and ( 
 or ! ) : (K � !

2

M) u� w = 0; (4.40)

or in more detail

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

0

�

u

i

u

l

u

r

1

A

�!

2

0

�

M

ii

M

il

M

ir

M

li

M

ll

M

lr

M

ri

M

rl

M

rr

1

A

0

�

u

i

u

l

u

r

1

A

�

0

�

0

w

l

�
w

l

1

A

= 0 (4.41)

under the quasi-periodi
 
ondition

u

r

= 
u

l

: (4.42)
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The system is de�ned by following notations:

(K

ii

)

kj

= a

1

(p

i(k)

; p

i(j)

) 8 k = 1; n

i

; j = 1; n

i

(K

il

)

kj

= a

1

(p

i(k)

; p

i(j)

) 8 k = 1; n

i

; j = 1; n

l

analogous for K

rr

; K

ri

; K

rl

; K

ir

; K

li

; K

lr

(M

ii

)

kj

= a

0

(p

i(k)

; p

i(j)

) 8 k = 1; n

i

; j = 1; n

i

(M

il

)

kj

= a

0

(p

i(k)

; p

i(j)

) 8 k = 1; n

i

; j = 1; n

l

analogous for M

rr

;M

ri

;M

rl

;M

ir

;M

li

;M

lr

We state the sti�ness matrix K :=

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

2 R

N

N

,

the mass matrix M :=

0

�

M

ii

M

il

M

ir

M

li

M

ll

M

lr

M

ri

M

rl

M

rr

1

A

2 R

N

N

and

the displa
ement ve
tor u :=

0

�

u

i

u

l

u

r

1

A

2 C

N

with

u

i

= (u

i(j)

)

j=1;n

i

u

l

= (u

l(j)

)

j=1;n

l

u

r

= (u

r(j)

)

j=1;n

r

.

The 
ux ve
tor is de�ned as w 2 C

N

with the 
omponents

w

i

=

8

>

<

>

:

0 for i 2 f1; :::; n

i

g

R

�

L

~w

l

p

l(i)

(x) ds =: w

l;i

for i 2 fn

i

+ 1; :::; n

i

+ n

l

g

R

�

R

~w

l

(:� p) p

r(i)

(x) ds =: w

r;i

for i 2 fn

i

+ n

l

+ 1; :::; Ng

:

Remark 4.4.6 We have impli
itly dropped the elements a

ording to Diri
hlet nodes sin
e

u

d(:)

= 0, w

d(:)

= 0

In
luding the quasi-periodi
ity (4.42) in the Galerkin-system (4.40) we a
hieve

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

0

�

u

i

u

l


u

l

1

A

� !

2

0

�

M

ii

M

il

M

ir

M

li

M

ll

M

lr

M

ri

M

rl

M

rr

1

A

0

�

u

i

u

l


u

l

1

A

�

0

�

0

w

l

�
w

l

1

A

= 0:

(4.43)
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Remark 4.4.7 Some properties of mass and sti�ness matrix:

1. K,M are sparse matri
es.

2. We assume that the mesh is large enough that left and right boundary have no 
ommon

element. There is no dire
t 
oupling between left and right nodes, whi
h implies that

K

lr

= K

rl

=M

lr

=M

rl

= 0:

3. K;M are symmetri
 positive de�nite matri
es, i.e. the diagonal blo
ks

K

ii

; K

ll

; K

rr

;M

ii

; ::: are symmetri
, positive de�nite.

4.4.3 Three solution approa
hes

We present three approa
hes for 
omputing the dispersion 
ontext. They are developed

by the author and therefore no referen
es 
an be given for the following methods. In the

�rst and third approa
h presented we assume given frequen
y and sear
h the propagation


onstant, i.e. 
(!) and in the se
ond one the propagation 
onstant is given and we ask for

the 
ontext !(
). All three result in eigenvalue problems (of linear or quadrati
 form).

For given ! 2 R

+

0

we de�ne the system matrix K with the blo
ks

K

��

:= K

��

� !

2

M

��

for � = i; l; r (4.44)

Approa
h 1: S
hur-Complement Method for given ! (SC-Method)

This approa
h is analogous to the method used in the 1D model. We assume that ! given

satis�es !

2

=2 �(M

�1

K), i.e. K regular. We split the system matrix in inner and boundary

nodes

K(!) = K =

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

=:

�

K

ii

K

ib

K

bi

K

bb

�

;


ompute the S
hur-
omplement

S := (�K

bi

K

�1

ii

K

ib

+K

bb

) =:

�

S

11

S

12

S

21

S

22

�

= S

T

2 R

2 n

l

2n

l

(4.45)

and get

�

S

11

S

12

S

21

S

22

��

u

l


u

l

�

=

�

w

l

�
 w

l

�

:

Multiplying the �rst line with 
 and adding �rst and se
ond line elimenates w

l

and we get

a quadrati
 eigenvalue problem in 
:




2

S

12

u

l

+ 
(S

11

+ S

22

)u

l

+ S

21

u

l

= 0: (4.46)
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Con
lusion:

The S
hur-Complement Method results in a quadrati
 eigenvalue problem with real matri-


es of moderate size (n

l

� n

l

) (
ompared to the original problem dimension N = n

i

+ 2n

l

with n

i

� n

l

). But it has the drawba
k that the 
omputation of the S
hur-
omplement

requires the inversion of the "large" matrix K

ii

for every given ! and destroys sparsity of

matri
es, moreover we 
annot state spe
ial properties of the blo
k matri
es of S.

We have to look for solution methods of quadrati
 eigenvalue problems of the form:

Sear
h x 2 C

n

and � 2 C with j�j = 1 : (�

2

A+ �B +A

T

)x = 0 with B = B

T

(4.47)

with A;B real dense matri
es of quite moderate size.

Approa
h 2: Given propagation 
onstant 


We start with the Galerkin-system

K

0

�

u

i

u

l


u

l

1

A

� !

2

M

0

�

u

i

u

l


u

l

1

A

=

0

�

0

w

l

�
w

l

1

A

(4.48)

and bear in mind that K;M are symmetri
 and positive de�nite matri
es.

If the right side of the Galerkin-system (4.48) was zero, the problem would turn into a

generalized eigenvalue problem.

This states the question after a matrix transformation whi
h eliminates the right side

while preserving symmetry and positive de�niteness, i.e. we sera
h a transformation of

the form T

H

KT � !

2

T

H

MT .

We 
an reformulate ve
tors to get a possible transformation matrix T via

(K � !

2

M)

0

�

I

i

0

0 I

l

0 
I

l

1

A

| {z }

:=T

�

u

i

u

l

�

=

0

�

0

I

l

�


1

A

w

l

:

Multiplying with

~

T

H

:=

�

I

i

0 0

0 
I

l

I

l

�

from the left eliminates the right side of the

system, but destroys symmetry.
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Considering the fa
t that 
 = e

i�p

and hen
e 
:�
 = 1, we 
an expand

~

T

H

to

~

T

H

=

�

I

i

0

0 
I

l

�

| {z }

regular

T

H

, i.e. T

H

w = 0.

We 
an transform the Galerkin system by multiplying with

T

H

:=

�

I

i

0 0

0 I

l

�
I

l

�

(4.49)

from the left into a generalized eigenvalue problem

T

H

KT ~u = !

2

T

H

MT ~u with ~u :=

�

u

i

u

l

�

: (4.50)

Remark 4.4.8 Properties of the matri
es T

H

KT; T

H

MT

1. The matri
es are 
omplex-valued through 
 2 C

2. The matri
es are obviously hermitian, sin
e K;M are hermitian (symmetri
).

3. The positive de�niteness is preserved:

(T

H

KTx; x) = (KTx; Tx) > 0 8x 6= 0, sin
e (Kx; x) > 0 8x 6= 0 and

(Tx = 0, x = 0).

4. The transformation preserves sparsity of the matri
es.

Con
lusion:

For given 
 2 C the method requires the solution of a generalized eigenvalue problem

Sear
h � 2 R

+

0

and x 2 C

m

: Ax = �Bx

with 
omplex-valued, sparse, hermitian and positive de�nite matri
es A;B of dimension

(m�m), where m = n

i

+ n

l

.
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Approa
h 3: Inner-Node-Matrix Method for given ! (INM-Method)

In the S
hur-Complement Approa
h we got a quadrati
 eigenvalue problem to 
ompute 


by given frequen
y !.

The se
ond approa
h (for given 
) gives the idea for another method for given frequen
y

avoiding the 
omputation of the S
hur-
omplement.

We start with the system matrix

K(!) =

0

�

K

ii

K

il

+ 
K

ir

K

li

K

ll

+ 
K

lr

K

ri

K

rl

+ 
K

rr

1

A

�

u

i

u

l

�

=

0

�

0

w

l

�
w

l

1

A

:

Mutliplying with

�

I

i

0 0

0 
I

l

I

l

�

from the left side eliminates the right side and we get

�

K

ii

K

il

+ 
K

ir


K

li

+K

ri


K

ll

+ 


2

K

lr

+K

rl

+ 
K

rr

��

u

i

u

l

�

=

�

0


w

l

� 
w

l

�

: (4.51)

Extra
ting 
 leads to a quadrati
 eigenvalue problem

�




2

�

0 0

0 K

lr

�

+ 


�

0 K

ir

K

li

K

ll

+K

rr

�

+

�

K

ii

K

il

K

ri

K

rl

� ��

u

i

u

l

�

= 0

under 
onsideration of the spe
ial stru
ture of K mentioned in Remark 4.4.7 the quadrati


term vanishes.

We get a generalized linear eigenvalue problem

 

K

ii

K

il

K

T

ir

0

!

�

u

i

u

l

�

= 


 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

u

i

u

l

�

. (4.52)

Con
lusion: The Inner-Node-Matrix Approa
h results in a generalized eigenvalue problem

Sear
h x 2 C

m

and � 2 C with j�j = 1:

Ax = �Bx of the form A =

�

M

1

G

F

T

0

�

; B =

�

0 �F

�G

T

�M

2

�

The matri
es A;B are real-valued, sparse and of dimension (m�m) with m := n

i

+ n

l

.

If we assume that ! is given the way that K = K � !

2

M is regular, then the diagonal

blo
ks M

1

;M

2

are regualr and the matrix A� B is regular and symmetri
.
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Remark 4.4.9

1. The question arises if through dropping w

l

out of the system by adding two blo
ks

of equations this has probably an unwanted e�e
t on the spe
trum, i.e. one drops

eigenvalues ?

Rewriting the system gives

0

B

�

K

ii

K

il

0

K

T

il

K

ll

I

l

K

ri

T

0 0

1

C

A

0

�

u

i

u

l

w

l

1

A

= 


0

�

0 �K

ir

0

0 0 0

0 �K

rr

I

l

1

A

0

�

u

i

u

l

w

l

1

A

One 
an see that adding the last two line blo
ks eliminates N

l

zero lines on the right

side of the eigenvalue problem. In the 
hapter of eigenvalue theory we will see that

these lines a

ord to in�nite eigenvalues whi
h we are not interested in. The spe
trum

of �nite eigenvalues remains un
hanged through this adding of equations. We get all

interesting eigenvalues if we solve the Inner-Node-Matrix system.

2. Interpretation of the Inner-Node-Matrix Problem:

We treat the question of what weak formulation leads dire
tly to the Inner-Node-

Matrix system:

Setting ~w

r

= ~w

l

(: � p) and 
hoosing the sear
hspa
e V

p

and the testspa
e V

p2

:=

V

0

\ fv 2 V = H

1

(


p

) j 
v(x

1

; x

2

) = v(x

1

+ p; x

2

)g

Remark 4.4.10 We have 
hosen for test and sear
hspa
e the whole spa
e, 
laimed the pe-

riodi
ity 
ondition for u expli
itly. Then we introdu
ed a variable w for the 
ux and treated

it independent of u. We dis
retized the weak formulations and hoped that the a
hieved ma-

tri
es 
an be transformed the way that the unknowns a

ording to w will get eliminated

and that we 
an redu
e to a quadrati
 system. This was quite an intuitive approa
h, but

we su

eeded. But through transformations, redu
tion of variables and 
hoosing the 
ux

independent of u, do we still solve the original problem ?

Now we give a mathemati
al a

urate approa
h by a problem related 
hoi
e of test and

sear
hspa
e whi
h 
onsider the quasi-periodi
ity. This approa
h has the big advantage that

the boundary integral, whi
h we former 
ome up by introdu
ing the independent variable

w, vanishes already in the weak formulation.
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4.4.4 Stating quasi-periodi
 test and sear
h spa
e

We want that the quasi-periodi
ity is already 
onsidered in sear
h and testspa
e and that

the both spa
es are isomporph.

Sear
h and testspa
e have to ful�ll the Diri
hlet-
ondition, i.e. they have to be subspa
e

of V

0

:= f v 2 (H

1

(


p

)) j v = 0 on �

D

g:

The sear
hspa
e The solution has to satisfy the quasi-periodi
ity 
ondition

u(x+ p) = 
u(x) 8 x 2 �

L

: (4.53)

This holds if the sear
hspa
e is restri
ted to

V

p

(
) := f v 2 V

0

j v(x+ p) = 
v(x) for almost all x on �

L

g � V

0

: (4.54)

The quasi-periodi
ity 
ondition for the 
ux follows from the quasi-periodi
ity of u.

The testspa
e The testspa
e should also represent the periodi
ity, whi
h implies that

test and sear
hspa
e are isomorph, i.e. let � be an arbitrary 
omplex s
alar and de�ne

V

p

(�) := f v 2 V

0

j v(x+ p) = �v(x) for almost all x on �

L

g with � 2 C �xed :

(4.55)

The weak formulation of the unit 
ell leads to

Sear
h for a solution u 2 V

p

(
) : 8v 2 V

p

(�)

0 = �

Z




p

div(aru)v dx� !

2

Z




p

uvdx

=

Z




p

a(x)ru(x)r

T

v(x) dx�

Z

�

L

\�

R

u(x)v(x) ds� !

2

Z




p

u(x)v(x) dx:

The remained boundary integral 
an be expressed as

Z

�

L

\�

R

u(x)v(x) ds =

Z

�

L

u(x)v(x) ds+

Z

�

R

u(x)v(x) ds

=

Z

�

L

�u

�n

(x)v(x) ds+

Z

�

L

(

�u

�n(x + p)

(x + p))v(x+ p) ds

=

Z

�

L

u(x)v(x)(1� 
 � �)ds = (1� 
 � �)

Z

�

L

u(x)v(x)ds:

Obviously, the boundary integral over the periodi
 bounds vanishes, if we 
hoose

� :=

1




: (4.56)
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Weak formulation with quasi-periodi
 test and sear
hspa
e

Find u 2 V

p

(
) :

Z




p

a(x)ru(x)r

T

v(x) dx� !

2

Z




p

u(x)v(x) dx = 0 8v 2 V

p

(


�1

) (4.57)

a

1

(u; v)� !

2

a

0

(u; v) = 0 8v 2 V

p

(


�1

) (4.58)

Finite element dis
retization With shape fun
tions p

j

(:) satisfying

p

j

(x

i

) = Æ

ij

p

l(j)

(x) = p

r(j)

(x + p) 8x on �

L

8j 2 f1; ::; n

l

g

we 
hoose the FE-subspa
es of sera
h and testspa
e

V

0h

:= spanf p

i

j i 2 rg(i(:)) \ rg(l(:)) g (4.59)

V

ph

(
) := f u

h

j u

h

=

n

i

X

j=1

u

i(j)

p

i(j)

+

n

l

X

j=1

u

l(j)

(p

l(j)

+ 
p

r(j)

); u

j

2 C g (4.60)

V

ph

(


�1

) := spanf p

i(j)

g

j=1;n

i

\ spanf 
p

l(j)

+ p

r(j)

g

j=1;n

l

g: (4.61)

Choosing v

h

= p

i(j)

for j = 1; n

i

and v

h

= 
p

l

(j) + p

r

(j) for j = 1; n

l

leads to n

i

+ n

l

equations for the n

i

+ n

l


omponents of u 2 C

n

i

+n

l

. We get the Galerkin-system equation

�

K

ii

K

il

+ 
K

ir


K

li

+K

ri




2

K

lr

+ 
(K

ll

+K

rr

) +K

rl

��

u

i

u

l

�

�!

2

�

M

ii

M

il

+ 
M

ir


M

li

+M

ri




2

M

lr

+ 
(M

ll

+M

rr

) +M

rl

��

u

i

u

l

�

= 0

; (4.62)

where K

��

;M

��

(� = i; l; r) denote the blo
ks of sti�ness and mass matrix de�ned in

(4.43).

Note that K

lr

= K

rl

= 0.

Reformulation of the three solution approa
hes

Given propagation 
onstant 
 with 
�
 = 1

Setting

�

u

i

u

l

�

=

�

I 0

0 


��

I 0

0 �


��

u

i

u

l

�

gives

�

K

ii

�
K

il

+K

ir


K

li

+K

ri

(K

ll

+K

rr

)

��

u

i


u

l

�

�!

2

�

M

ii

M

il

+ 
M

ir


M

li

+M

ri




2

M

lr

+ 
(M

ll

+M

rr

) +M

rl

��

u

i

u

l

�

= 0:

(4.63)
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Sin
e this transformation is regular for 
 6= 0 , the transformed problem has the same

spe
trum. The former formulation is helpful sin
e it provides the positive de�niteness of

the transformed system.

We see if we 
hoose K

��

= K

��

+M

��

and extra
t the blo
ks in 
 to the right side, we get

the generalized eigenvalue problem

�

K

ii

K

il

K

ri

0

�

(u

i

u

l

) = 


�

0 �K

ir

�K

li

�K

ll

�K

rr

�

(u

i

u

l

) : (4.64)

This is the eigenvalue problem stated through the INM-Approa
h.

Con
erning the SC-Method: If we take the S
hur-
omplement in (4.64) or (4.63) via elim-

inating the �rst line blo
k we get

�


2

K

li

K

�1

ii

K

ir

| {z }

S

12

�
(K

li

K

�1

ii

K

il

+K

ri

K

�1

ii

K

ir

�K

ll

�K

rr

| {z }

=S

11

+S

22

)�K

ri

K

�1

ii

K

il

| {z }

=S

21

u

l

= 0 (4.65)

with S

ij

S
hur-
omplement blo
k of (4.45). That means, we a
hieve the quadrati


eigenvalue problem of the SC-Method.

Con
lusion:

The reformulation of test and sear
hspa
e 
onstitutes a mathemati
al a

urate method

with the result that INM-Method and SC-Method does not 
hange, but are a
hieved

without any transformation or at least only transformation to S
hur-
omplement form,

for the method in whi
h we have given 
 only by a similarity transformation from the

right side.

Thus in the analogous to approa
h 2,3 the spe
tra of the formulated eigenvalue problems

is equal to the spe
tra of solution of the Galerkin-system problem. The di�eren
e in the

spe
trum of SC-method and Inner-Node-Matrix Method will be dis
ussed in the next but

one 
hapter.
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4.4.5 In
lude damping e�e
ts

There are many 
omplex damping e�e
ts (depending on temperature, frequen
y, fri
tion,

material ... ). Our aim is to 
onsider two variants of damping in our model

1. Material damping

This e�e
t 
an be in
luded to our model by adding a vis
ous damping term in the

initial partial di�erential equation. It be
ame naturalized (by engineers) to use a

damping matrix whi
h is proportional to the mass matrix or a 
ombination of mass

and sti�ness matrix in the dis
retized matrix equation. This approximation is 
alled

Rayleigh-damping.

2. Wave re
e
tion at periodi
 perturbations

In ea
h 
ell the in
ident wave gets re
e
ted at the ele
trode with the result that

at 
ertain frequen
ies these re
e
ted waves 
an interfere 
onstru
tively and the

amplitude of the propagating wave de
reases with ea
h 
ell. This attenuation o

urs

even independent of material damping.

To be able to 
ompute the dispersion relation also within the stopband we need

to 
onsider this attenuation e�e
t in our model. Up to now we only 
onsidered

the dispersion 
urves whi
h belongs to undamped Blo
h waves (through assuming

� = 0), i.e. the purely propagating modes.

We are mainly interested in Blo
h waves with � smallest in magnitude.

We model ea
h damping e�e
t on its own �rst.

Modeling attenuation evoked by re
e
tion at ele
trodes

This e�e
t is 
onsidered by quasi-periodi
 boundary 
onditions with non-zero attenuation

in (4.37) of the 
lassi
al formulation on the unit 
ell 


p

.

We start with the 
lassi
al formulation and 
onsider


 := e

(�+i�)p

The variational formulations and dis
retizations (for general test-spa
e and quasi-periodi


test-spa
es) are equal to the undamped problem, sin
e we always treated 
 as a general


omplex s
alar.

Con
erning the three solution methods In the S
hur-Complement and Inner-

Node-Matrix Method, where the frequen
y ! is given and we sear
h for 
, we only have

to rede�ne the desired solution sets in the stated eigenvalue-problems. We re
all that we

ware priorly interested in 
omplex eigenvalues with norm 1.
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Considering damping e�e
ts we are interested in eigenvalues with � smallest in magnitude

Approa
h 1: S
hur-Complement Method

The method des
ribed for the undamped variant does not use the fa
t that the desired 


has norm 1. Therefore, only the set of desired eigenvalues has to be extended, the problem

type stays the same. If we are mainly interested in propagation 
onstants where attenuation

is smallest in magnitude, we get the quadrati
 eigenvalue problem:

Sear
h u

l

2 C

m

and 
 := e

(�+i�)p

2 C with j�j small:




2

S

12

u

l

+ 
(S

11

+ S

22

)u

l

+ S

T

12

u

l

= 0 (4.66)

with S := �K

T

ib

K

ii

K

ib

+K

bb

= S

T

.

Approa
h 3: Inner-Node-Matrix Method

The undamped version presented in the Inner-Node approa
h does not use the spe
ial form

of 
. Therefore, only the set of desired eigenvalues extends (analogous to approa
h 1).

If we are interested in propagation 
onstants with attenuation smallest in magnitude, the

solution approa
h results in the general eigenvalue problem:

Sear
h

�

u

i

u

l

�

2 C

(n

i

+n

l

)

and 
 := e

(�+i�)p

2 C with j�j small

 

K

ii

K

il

K

T

ir

0

!

�

u

i

u

l

�

= 


 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

u

i

u

l

�

(4.67)

with K

��

real-valued and sparse and K

ll

; K

rr

; K

ii

regular f.�u. (!):

Approa
h 2: given propagation 
onstant 
 := e

(�+i�)p

We have to adapt the transformation matrix T (
) , sin
e we used the fa
t 
:�
 = 1, in the

undamped model.

With two distin
t transformations from the left T

1

and the right T

2

, we get the generalized

eigenvalue problem

Sear
h ~u 2 C

(n

i

+n

l

)

and !

2

2 R

+

0

:

T

H

1

KT

2

~u = !

2

T

H

1

MT

2

~u (4.68)

with T

1

=

0

�

I

i

0

0 I

l

0 �


�1

I

l

1

A

; T

2

=

0

�

I

i

0

0 I

l

0 
I

l

1

A

and ~u =

�

u

i

u

l

�

:

We see that for the attenuated variant we loose 
omplex-symmetry and positive de�niteness

of the matri
es.
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But the main drawba
k of 
omputing ! depending on 
 := e

(�+i�)p

is that one has to

provide a two dimensional array (�; �) to get the dispersion relation. But how should this

array be 
hosen, espe
ially in the 
ase that one is interested in a spe
ial frequen
y domain.

This method is suited to 
ompute only pure propagating modes. If one is interested in

damping e�e
ts this method is not re
ommended due to the 
ompli
ated data preparation.

Up to this it will not be analyzed anymore.

Modeling material damping

In elasti
ity fri
tion depends on 
hange of strains and on the velo
ity u

t

. Material damping


an be in
luded to our model by adding a linear vis
ous damping term 


�u

�t

, where 
 is a

di�erential operator in spa
e, to the wave equation leading to

div

x

(a(x)r

x

u(x; t)) + 


�u

�t

= u

tt

(x; t):

By the harmoni
 ansatz, we get

�div

x

(a(x)ru(x)) + i!
 u(x)� !

2

u = 0:

Through a variant of Blo
h's Theorem we get quasi-periodi
ity with attenuation, i.e.

9�; � 2 R 8x 2 
 : u(x) = u

p

(x)e

(�+i�)x

(4.69)

with u

p

(x) periodi
 fun
tion,i.e. u

p

(x) = u

p

(x+ p) 8x 2 
.

This is obviously equal to

9�; � 2 R 8x 2 
 : u(x+ p) = u(x)e

(�+i�)p

: (4.70)

Therefore we 
an redu
e the 
omputation geometry to the unit 
ell with a

ording bound-

ary 
ondition, i.e. set 
 := e

(�+i�)p

.

It is 
ommonly used to model the damping term in the dis
retized equation as a linear


ombination of sti�ness and mass matrix as damping matrix. This is known as Rayleigh-

damping.

We assume given positive damping 
oeÆ
ients 


K

; 


M

:

C := 


K

K + 


M

M: (4.71)

Sin
e K;M are symmetri
 and positive de�nite matri
es, these fa
ts are also implied on

the damping matrix C.

This is equal to de�ne the damping operator in the partial di�erential equation as




�u

�t

(:) := (


M

I + 


K

a(:)

�

2

�x

2

)

�u

�t

(:);
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where 


M

and 


K

are material-depending 
onstants.

Considering Rayleigh-damping the FE-Galerkin-system of equation (4.40) expands to

Ku+ i! (


K

K + 


M

M)

| {z }

=C

u� !

2

Mu� w = 0: (4.72)

Splitted in inner and periodi
al boundary nodes we get

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

0

�

u

i

u

l


u

l

1

A

+ i!

0

�

C

ii

C

il

C

ir

C

li

C

ll

C

lr

C

ri

C

rl

C

rr

1

A

0

�

u

i

u

l


u

l

1

A

� !

2

0

�

M

ii

M

il

M

ir

M

li

M

ll

M

lr

M

ri

M

rl

M

rr

1

A

0

�

u

i

u

l


u

l

1

A

=

0

�

0

w

l

�
w

l

1

A

:

(4.73)

Material damping and the three solution methods

Approa
h 1 and 3: given frequen
y !

For given ! we de�ne the system matrix by

K

��

(!) = K

��

:= K

��

+ i!C

��

� !

2

M

��

for � = i; l; r (4.74)

and have the following problem to solve

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

| {z }

=:K

0

�

u

i

u

l


u

l

1

A

=

0

�

0

w

l

�
w

l

1

A

: (4.75)

That means approa
h 1 and 3 are formally analogous to their variants for damping

through re
e
tion at the ele
trodes. With one di�eren
e that through 
onsidering material

damping the system matrix K gets 
omplex, but maintains (
omplex) symmetri
 (not

hermitian!).

Approa
h 2 will not be treated for the reasons dis
ussed in the paragraph of attenuation


aused by periodi
 perturbations.
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4.5 Mathemati
al modeling of periodi
al piezoele
tri


equations in periodi
al geometry

Now we want to apply the developed methods of the periodi
 wave equation on the

piezoele
tri
 problem.

We have to 
ombine two problems, the piezoele
tri
 system equations and the properties

implied by the periodi
 geometry, this will be done the following way: We state the

piezoele
tri
 problem in 
lassi
al and weak form on an in�nite periodi
 geometry �rst.

We formulate an abstra
t version of Blo
h's theorem and restri
t the problem to the

unit 
ell. Then we introdu
e the properties of the Finite Element Method for "standard"

piezoele
tri
 problems, i.e. problems with Neumann and Diri
hlet boundaries only. This

stepwise 
onstru
tion leads us to an obvious adaptation of the methods introdu
ed for the

quasi-periodi
 wave equation in order to apply them to piezoele
tri
 systems.

4.5.1 Piezoele
tri
 equations, periodi
 geometry and Floquet-

Blo
h Theorem

To simulate the behavior of displa
ement ve
tor fun
tion u(:; :) 2 C

2;2

((R

2

;R

+

0

);R

d

) for

d = 2; 3 and the s
alar potential �(:; :) 2 C

2;0

((R

2

; R

+

0

);R) we have to solve the piezoele
tri


system equations

div

x

(


E

Bu� e

T

r

x

�) = �(x)

�

2

u

�t

2

(4.76)

div

x

(eBu� "

S

r

x

�) = 0 (4.77)

with Bu = S =

1

2

(r

T

x

u+r

x

u) and �(x

1

; x

2

) = �(x

1

+ p; x

2

) on an in�nite periodi
 
luster


 shown in �gure 4.5 and 


T

:= (
; [0; T ℄).

We assume all �eld distribution to be harmoni
, i.e.

û(x; t) = e

i!t

u(x) 2 C

d

8(x; t) 2 


T

;

^

�(x; t) = e

i!t

�(x) 2 C 8(x; t) 2 


T

;

u(x; t) = <fû(x; t)g 8(x; t) 2 


T

;

�(x; t) = <f

^

�(x; t)g 8(x; t) 2 


T

:

For easier notation and the fa
t that derivatives after time be
ome multipli
ations, we use

the 
omplex distribution and take the real part after 
omputation. This is valid sin
e all

applied operations are linear.

We have already motivated problem setting (short-
ir
uited ele
trodes)with boundary 
on-

ditions and underlying geometry at the beginning of this se
tion. Figure 4.5 shows on
e

more the in�nite geometry.
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Figure 4.5: In�nite periodi
al 
luster (
) of the piezoele
tri
 model

We state the 
lassi
al formulation of the piezoele
tri
 model by

Sear
hing for a (u;�) 2 (C

2

(
; C

d

); C

2

(
; C )) whi
h satis�es :

�div (


E

Bu+ e

T

r�) = � !

2

u

�div (eBu� "

S

r�) = 0

(4.78)

with the boundary 
onditions (let n denote the outer normal ve
tor)

stress� free T:n = 0 on � := �
;

short� 
ir
uit � = 0 on 


el

) � = 0 on �

el

;


harge� free D:n= 0 on �

N

:

(4.79)

with domains and boundaries de�ned a

ording to Figure 4.5 by




S

:= R � (�H; 0) (the domain of piezoele
tri
 substrate),




el

:= [

k2Z

�

(

kp

4

;

3kp

4

) (the domain of ele
trodes),

�

int

= 


S

\ 


el

(interfa
e of piezoele
tri
 substrate and ele
trodes),

� := �
,

�

el

:= �
 \ �


el

and

�

N

:= �
 n �

el

:

Again we try to apply Blo
h's theorem in order to simplify the problem to the unit


ell and to get an expli
it dispersion relation. Now we formulate �rst the weak formulation.
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Remark 4.5.1 on interfa
e 
ondition between the two materials (substrate and ele
trodes):

The interfa
e 
onditions on the interfa
e ele
trode-substrate are given by

lim

x2


el

! y

u(x) = lim

x2


S

! y

u(x) 8 y 2 �

int

;

lim

x2


el

! y

�(x) = lim

x2


S

! y

�(x) 8 y 2 �

int

;

T:n

S

= �T:n

el

on �

int

;

D:n

S

= �D:n

el

= 0 on �

int

:

Stepwise 
onstru
tion of the weak formulation of piezoele
tri
 equations

1. We multiply with testfun
tions v and 	 and integrate over 


�

R




v

T

div (T ) dx � !

2

R




v

T

� u dx = 0;

�

R




	div (D) dx = 0:

2. Integration by parts and 
onsideration of the symmetry of T ((rv)

T

T = (Bv)

T

T )

leads to

R




(Bv)

T

: T dx �

R

�


v

T

T:n ds� !

2

R




v

T

� u dx = 0;

R




(r	)

T

Ddx �

R

�


	D:n ds = 0:

3. Under 
onsideration of the boundary 
onditions we get

R




(Bv)

T

: T dx � !

2

R




v

T

� u dx = 0;

R




(r	)

T

Ddx �

R




el

	D:n ds = 0:

4. Choosing the testspa
e

V

0

:= f (v;	) 2 (H

1

(
; C

d

); H

1

(
; C ) j	 = 0 in 


el

g (4.80)

and taking the sear
h spa
e V

0

, we �nally get the weak problem formulation

Find (u;�) 2 V

0

su
h that for all (v;	) in V

0

:

R




(Bv)

T

: 


E

Bu dx +

R




(Bv)

T

: e

T

(r�) dx � !

2

R




v

T

� u dx = 0

R




(r	)

T

eBu dx �

R




(r	)

T

"

S

r� dx = 0:

(4.81)

A

ording to the periodi
 geometry, i.e. all 
oeÆ
ients are periodi
, we restri
t the


al
ulation to the unit 
ell and a
hieve an expli
it dispersion relation. We have to adopt

Blo
hs method to the piezoele
tri
 problem. This time we develop an abstra
t variant

a
ting on the weak formulation of the problem.
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Abstra
t version of Blo
h's theorem:

Theorem 4.5.2

Let V

0

be the Hilbert spa
e stated in (4.80).

We de�ne the shift operator T

p

: V

0

! V

0

mapping u(x

1

; x

2

) to T

p

u(x

1

; x

2

) := u(x

1

+p; x

2

).

We assume, that the two bilinear forms a,b : V � V ! R are symmetri
 and are invariant

over T

p

, i.e.

T

p

(a(:; :)) = a(T

p

(:); T

p

(:)); (4.82)

T

p

(b(:; :)) = b(T

p

(:); T

p

(:)): (4.83)

Then every eigenve
tor u

k

2 V

0


orresponding to the eigenvalues �

k

of the weak generalized

eigenvalue problem

a(u

k

; v) = �

k

b(u

k

; v) 8 v 2 V

0


an be fully des
ribed by quasi-periodi
 eigenfun
tions ( 

j

)

j=1;:::;m

satisfying

a( 

j

; v) = �

i

b( 

j

; v) 8 v 2 V

0

(4.84)

of the form (in weak sense)

9 �

j

; �

j

2 R : T

p

 

j

= e

(�

j

+i�

j

)p

 

j

: (4.85)

m denotes the geometri
 multipli
ity of �

i

.

Proof idea:

The proof is analogous to the already des
ribed version of Blo
h's theorem.

Remark 4.5.3 on Blo
h's theorem

Every eigenve
tor (u;�) in V

0

of the weak problem (4:81) 
an be de
omposited in quasi-

periodi
 eigenve
tors

u(x

1

; x

2

) =

P

m(!)

j=1




1;j

 

j

with  

j

(x

1

+ p; x

2

) = e

(�

j

+i�

j

)p

 

j

(x

1

; x

2

);

�(x

1

; x

2

) =

P

m(!)

j=1




2;j

�

j

with �

j

(x

1

+ p; x

2

) = e

(�

j

+i�

j

)p

�

j

(x

1

; x

2

)

(4.86)

with ( ; �) eigenve
tors 
orresponding to ! and m = m(!) denoting the geometri
 multi-

pli
ity of !.

I.e. every solution (u;�) in V

0

of (4.81) is fully des
ribed by the solution of its Blo
h waves

on the unit 
ell.
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G
RG

L

W
p,S

right quasi-periodical

boundary
left quasi-periodical

boundary

G
N

Neumann boundary

G
N

G
N

G
El

electrode boundary

W
p,El

Figure 4.6: Restri
tion to the unit-
ell for quasi-periodi
 solution

4.5.2 Restri
tion to the unit 
ell

We restri
t the formulation (4.81) to the unit 
ell 


p

a

ording to Figure 4.6 and introdu
e

the following notations 


p;S

:= (0; p)� (�H; 0), 


p;el

:= (

p

4

;

3p

4

)� (0; h

el

), 


p

:= 


el;p

[


S;p

,

�

l

= f0g � (�H; 0), �

r

= fpg � (�H; 0) and the Neumann boundary �

N

a

ording to

Figure 4.6.

Sear
h for a (u;�) 2 V

0

:= f(u;�) 2 (H

1

(


p

; C

2

); H

1

(


p

; C ))j� = 0 on 


el

g :

Z




p

(Bv)

T

: T (u;�) dx� !

2

Z




p

u

T

v dx =

Z

�

L

[�

R

v

T

T (u;�):n ds

Z




p

(r	)

T

D(u;�) dx =

Z

�

L

[�

R

	D(u;�):n ds (4.87)

for all (v;	) in V

0

,

with the already implemented boundary 
onditions

T:n = 0 on �


p

D:n = 0 on �

N

� = 0 on 


p;el

and the quasi-periodi
al boundary 
onditions whi
h we have not 
onsidered yet and

are a
hieved by di�erentiation

u

r

= 
u

l

T

r

:n

r

= �
 T

l

:n

l

D

r

:n

r

= �
 D

l

:n

l

with 
 := e

(�+i�)p

: (4.89)
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4.5.3 FE-dis
retization of the unit 
ell 


p

We 
hoose a regular triangulation of the unit 
ell 


p

with n nodes (x

(1)

; :::; x

(n)

) and

x

(i)

= (x

(i)

1

; x

(i)

2

) for all i. Then we split up the nodes into n = n

i

+ n

e

+ n

l

+ n

r

with

n

e

denoting the nodes 
orresponding to ele
trode, n

l

; n

r

a

ording to the left and right

boundary (quasi-periodi
al bounds) nodes and n

i

denoting all remaining nodes, whi
h we


all inner nodes and whi
h again also in
ludes the Neumann nodes.

A

ording to the partitiion we introdu
e the index mappings

l(:); r(:); i(:); e(:) : f1; :::; n

�

g ! f1; :::; ng:

Furthermore, we assume that the left and right boundary nodes mat
h, i.e. they satisfy

x

r(i)

= x

l(i)

+ (0; p) for i = 1; n

l

:

FE-dis
retization of piezoele
tri
 problems with Diri
hlet and Neumann BCs

In order to get an idea of the properties of FE-matri
es of piezoele
tri
 problems, we

�rst treat "standard" boundary problems, i.e. we assume only Neumann and Diri
hlet

boundary 
onditions. For this problems we state the piezoele
tri
 Galerkin-system and

analyze the matrix properties.

We 
hoose Neumann 
onditions on right and left boundaries, i.e. we solve the weak

problem (4.96) with the sear
h and test spa
e V

0

.

We 
hoose the FE-subspa
es of V = H

1

(


p

)

d+1

and V

0

by

V

h

:= spanfp

(j)

; j = 1; n : p

(j)

FE-base fun
tion a

. to node x

j

g

d+1

� V

= spanfp

(j)

e

k

; j = 1; n : p

(j)

FE-base fun
tion for x

j

; k = 1; d+ 1g

V

0h

:= f(u

h

;�

h

) j

u

h

=

P

n

j=1

u

(j)

p

(j)

with u

(i)

2 C

d

�

h

=

P

n

j=1; j =2Rg(e(:))

�

(j)

p

(j)

with �

(j)

2 C

g � V

h

;

where e

k

denotes the k-th unit ve
tor in R

d+1

and Rg(f(:)) denotes the range (image) of

a fun
tion f(:).

We approximate the solution of (4.96) by solving the dis
retized weak problem:

Sear
h (u

h

;�

h

) = (

P

i

u

(i)

p

(i)

;

P

i

�

(i)

p

(i)

) 2 V

0h

satisfying for all (v

h

;	

h

) in V

0h

:

Z




p

(Bv

h

)

T

: T (u

h

;�

h

) dx� !

2

Z




p

u

T

h

v

h

dx =

Z

�

L

[�

R

v

T

h

T (u

h

;�

h

):n ds

Z




p

(r	

h

)

T

D(u

h

;�

h

) dx =

Z

�

L

[�

R

	D(u

h

;�

h

):n ds: (4.90)
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The Galerkin-FE-problem denotes sear
hing u 2 C

d�N

u

;� 2 C

N

�

:

�

K

uu

K

u�

K

�u

�K

��

��

u

�

�

� !

2

�

M

uu

0

0 0

��

u

�

�

= 0: (4.91)

This N := d �N

u

+N

�

equations are a
hieved through following notation:

N

�

:= n� n

e

and N

u

:= n and e

k

denoting the k-th unit ve
tor of R

d

for k = 1; d

u :=

0

B

�

u

(1)

.

.

.

u

(N

u

)

1

C

A

with u

(j)

2 C

d

by dis
retization u

h

:=

P

i

u

(i)

p

(i)

� :=

0

B

�

�

(1)

.

.

.

�

(N

�

)

1

C

A

with �

(j)

2 C by dis
retization u

h

:=

P

i

�

(i)

p

(i)

.

Using a derivative tensor B

h

p

(i)

a

ording to ea
h shape fun
tion p

(i)

, whi
h is de�ned by

u

(i)

B

h

p

(i)

(x) = B(u

(i)

p

(i)

(x)) we state

1. the me
hani
al sti�ness matrix K

uu

2 R

d�N

u

d�N

u

by blo
ks K

(ij)

uu

in R

d

d

with (K

(ij)

uu

)

mk

=

R




p

((B

h

p

(i)

)e

m

)

T

: 


E

(B

h

p

(j)

)e

k

dx for m; k = 1; ::d,

2. the diele
tri
 sti�ness matrix K

��

2 R

N

�

N

�

by (K

�;�

)

ij

:=

R




p

(rp

(i)

)

T

"

S

rp

(j)

dx,

3. the piezoele
tri
 
oupling matri
es K

u�

= K

T

�u

2 R

N

u

N

�

by blo
ks K

(ij)

u�

2 R

d

with (K

(ij)

u�

)

k

:=

R




p

(e

k

(B

h

p

(j)

)

T

: e

T

rp

(j)

dx and

4. the me
hani
al mass matrix M

uu

2 R

d�N

u

d�N

u

by M

uu ; ij

:=

R




p

p

(i)

� p

(j)

dx:

Remark 4.5.4 on the piezoele
tri
 FE-matri
es

1. In pra
ti
e the matri
es are assembled elementwise and not nodewise as written above

for easier notation.

2. The notation of the system matri
es used in (4.91) is the 
ommon formulation of

FE-dis
retisized piezoele
tri
 problems.

3. The matri
es have the following properties:

K

��

= K

T

��

; K

uu

= K

T

uu

are positive de�nite .

M

uu

=M

T

uu

is positive de�nite.

K

u�

= K

T

�u

.
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4. The not-null-elements of the me
hani
al sti�ness matrix K

uu

are of quantities

� 10

10

, while the not-null-elements of the diele
tri
 sti�ness matrix K

��

are of

quantities � 10

�10

due to the 
oeÆ
ient tensors.

This requires s
aling of eigenvalue problems and/or robust algorithms .

FE-dis
retization of piezoele
tri
 problems with quasi-periodi
 boundary


onditions To 
onsider quasi-periodi
 boundary 
onditions we start again at the weak

formulation of (4.96), but this time we in
orporate the quasi-periodi
 boundary 
onditions

(4.89) by stating quasi-periodi
 test and sear
h spa
es:

Sear
h and test spa
e have to ful�ll the Diri
hlet-
ondition, i.e. they have to be a subspa
e

of V

0

:= f v 2 (H

1

(


p

)) j v = 0 on �

D

g.

The sear
h spa
e The solution has to satisfy the quasi-periodi
ity 
ondition (with

p = (p; 0))

u(x+ p) = 
u(x) 8x 2 �

L

: (4.92)

This holds if the sear
h spa
e is restri
ted to

V

p

(
) := f (v;  ) 2 V

0

j v(x+ p) = 
v(x);  (x+ p) = 
 (x) a.e. on �

L

g � V

0

: (4.93)

The quasi-periodi
ity 
ondition for the 
ux follows from the quasi-periodi
ity of u.

The test spa
e The test spa
e should also represent the periodi
ity, whi
h implies that

test and sear
h spa
e are isomorph, i.e. let � be an arbitrary 
omplex s
alar:

V

p

(�) := f (v;	) 2 V

0

j v(x+ p) = �v(x); 	(x + p) = �	(x) a.e. on �

L

g: (4.94)

with � 2 C arbitrary, but �xed.

Analogous to the model of the 2D wave equation the integral over the quasi-periodi
al

boundary vanishes if one 
hooses

� :=

1




: (4.95)

Weak formulation of piezoele
tri
 problem with quasi-periodi
 boundary on

unit 
ell Sear
h for a (u;�) 2 V

p

(
) :

Z




p

(Bv)

T

: T (u;�) dx� !

2

Z




p

u

T

v dx =

Z

�

L

[�

R

v

T

T (u;�):n ds

Z




p

(r	)

T

D(u;�) dx =

Z

�

L

[�

R

	D(u;�):n ds (4.96)

for all (v;	) 2 V

p

(

1




):
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FE-dis
retization of quasi-periodi
 piezole
tri
 problem With shape fun
tions

p

j

(:) satisfying

p

j

(x

i

) = Æ

ij

p

l(j)

(x) = p

r(j)

(x + p) 8x on �

L

8j 2 f1; ::; n

l

g

we 
hoose the FE-subspa
es of sear
h and testspa
e

V

0h

:= spanf p

i

j i 2 rg(i(:)) \ rg(l(:)) g;

V

ph

(
) := f (u

h

;�

h

) j

u

h

=

P

d

k=1

P

n

i

j=1

u

i(j)

k

p

i(j)

e

k

+

+

P

d

k=1

P

n

l

j=1

u

l(j)

k

(p

l(j)

+ 
p

r(j)

)e

k

; u

j

k

2 C

�

h

=

P

n

i

j=1

�

i(j)

p

i(j)

+

P

n

l

j=1

�

l(j)

(p

l(j)

+ 
p

r(j)

); �

j

2 C

g;

V

ph

(


�1

) := spanf p

i

(j) g

j=1;n

i

\ spanf 
p

l(j)

+ p

r(j)

g

j=1;n

l

; g

d+1

:

Choosing (v

h

;	

h

) = p

i(j)

e

k

for j = 1; n

i

and (v

h

;	

h

) = (
p

l

(j) + p

r

(j))e

k

for j = 1; n

l

for

k = 1; d+ 1 leads to N(n

i

+ n

l

) � (d+ 1) equations for the (n

i

+ n

l

) � (d+ 1) 
omponents of

(u;�) 2 C

(n

i

+n

l

)�(d+1)

.

We get Galerkin-system:

�

K

ii

K

il

+ 
K

ir


K

li

+K

ri


(K

ll

+K

rr

)

��

u

i

u

l

�

� !

2

�

M

ii

M

il

+ 
M

ir


M

li

+M

ri


(M

ll

+M

rr

)

��

u

i

u

l

�

= 0;

(4.97)

where K

st

;M

st

(s; t = i; l; r) are blo
ks of sti�ness and mass matrix of the piezoele
tri


system a

ording to inner, left and right boundary nodes. Note that K

lr

= K

rl

= 0.

By the following notation

K

st

:=

�

K

uu;st

K

u�;st

K

�u;st

�K

��;st

�

for s; t 2 fi; l; rg

M

ss

:=

�

M

uu;ss

0

0 0

�

for s 2 fi; l; rg

y

s

:=

�

u

s

�

s

�

for s 2 fi; lg

(4.98)

we 
an apply the solution approa
hes presented for the Helmholtz-type model dire
tly to

the 
oupled �eld problem.

But we introdu
e material damping �rst, i.e. we 
onsider Raleigh damping in the

piezoele
tri
 system.
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4.5.4 Rayleigh-damping for the piezoele
tri
 FE-system

We want to 
onsider Rayleigh-damping to the me
hani
al �eld, i.e. with given parameters




K

; 


M

we de�ne the damping matrix

C

uu

:= 


K

M

uu

+ 


M

K

uu

: (4.99)

The system ( 4.91) extends to the damped piezoel
tri
 FE-Galerkin system

Sear
h u 2 C

d�N

u

;� 2 C

N

�

:

�

K

uu

K

u�

K

�u

�K

��

��

u

�

�

+ i!

�

C

uu

0

0 0

��

u

�

�

� !

2

�

M

uu

0

0 0

��

u

�

�

=

�

w

u

w

�

�

(4.100)

and the damped analog of ( 4.101) to

�

K

ii

K

il

+ 
K

ir


K

li

+K

ri


(K

ll

+K

rr

)

��

u

i

u

l

�

+ i!

�

C

ii

C

il

+ 
C

ir


C

li

+ C

ri


(C

ll

+ C

rr

)

��

u

i

u

l

�

� !

2

�

M

ii

M

il

+ 
M

ir


M

li

+M

ri


(M

ll

+M

rr

)

��

u

i

u

l

�

= 0

(4.101)

the de�nition (4.98) is extended by

C

ss

:=

�

C

uu;ss

0

0 0

�

=

�




K

M

uu;ss

+ 


M

K

uu;ss

0

0 0

�

(4.102)

for s 2 fi; l; rg.

4.5.5 S
hur-Complement and Inner-Node-Matrix Method for

piezoele
tri
 problem

For already stated reasons we apply only approa
h 1 and 3 (given !) to the problem.

For given ! we de�ne the system matri
es

K

st

:= K

st

� !

2

M

st

s; t = i; l; r (4.103)

K

C

st

:= K

st

+ i!C

st

� !

2

M

��

s; t = i; l; r (4.104)

K is symmetri
 and real-valued and K

C

is 
omplex-valued and 
omplex-symmetri
.

We assume a given ! for whi
h K and K

C

is regular.
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Due to the SC-Method we get a quadrati
 eigenvalue problem

( with N

l

:= (d+ 1) � n

l

)

Sear
h 
 2 C ; y

l

6= 0 2 C

N

l

: 


2

S

12

y

l

+ 
(S

11

+ S

22

)y

l

+ S

T

12

y

l

= 0 (4.105)

with S

12

:= �K

li

K

�1

ii

K

T

ri

S

11

:= �K

li

K

�1

ii

K

T

li

+K

ll

= S

T

11

2 R

N

l

N

l

for undamped system (4.91)

S

22

:= �K

ri

K

�1

ii

K

T

ri

+K

rr

= S

T

22

S

12

:= �K

C

li

K

C

�1

ii

K

C

T

ri

S

11

:= �K

C

li

K

�1

ii

K

C

T

li

+K

C

ll

= S

T

11

2 C

N

l

N

l

for damped system (4.100)

S

22

:= �K

C

ri

K

C

�1

ii

K

C

T

ri

+K

C

rr

= S

T

22

For the Inner-Node-Matrix Method we get a generalized linear eigenvalue problem

for the undamped system (4.91) we sear
h 
 2 C ;

�

y

i

y

l

�

6= 0 2 C

N

l

+N

i

N

l

+N

i

:

 

K

ii

K

il

K

T

ir

0

!

�

y

i

y

l

�

= 


 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

y

i

y

l

�

(4.106)

and for the damped system (4.100) we sear
h 
 2 C ;

�

y

i

y

l

�

6= 0 2 C

N

l

+N

i

N

l

+N

i

:

 

K

C

ii

K

C

il

K

C

T

ir

0

!

�

y

i

y

l

�

= 


 

0 �K

C

ir

�K

C

T

il

�(K

C

ll

+K

C

rr

)

!

�

y

i

y

l

�

(4.107)

Remark 4.5.5 If Ay = 
By denote the linear eigenvalue problems (4.106) or respe
tively

(4.107), the matrix (A�B) is regular and (
omplex-)symmetri
. This is valid through the

assumption imposed on the 
hoi
e of !.



Chapter 5

General theory and numeri
s of

algebrai
 eigenvalue problems

We dis
uss three di�erent types of eigenvalue problems: the standard, the generalized

linear and the quadrati
 eigenvalue problem.

This 
hapter starts with de�ning these eigenvalue problems, followed by an introdu
tion

to the main ideas whi
h underlie numeri
al solution methods. A short overview of the

software pa
kages needed is given.

A good overview and 
omparison of state-of-the-art eigenvalue solvers is given in [8℄,

In the following the supers
ript * denotes 'transposed' if real arithmeti
 is used and 'trans-

posed 
omplex 
onjugate' if 
omplex arithmeti
 is used.

5.1 De�nitions and types of eigenvalue problems

5.1.1 The standard eigenvalue problem

Let A be a n� n square matrix over R or C . Sear
hing s
alars � 2 C and ve
tors x 2 C

n

satisfying

Ax = �x (SEP) (5.1)

forms the standard eigenvalue problem.

An eigenvalue � of a matrix A is de�ned as a 
omplex root p

A

(�) = 0 of the 
hara
teristi


polynomial of the matrix A

p

A

(�) := det(�I � A): (5.2)

Hen
e eigenvalues are 
omplex numbers � for whi
h the matrix pen
il (�I � A) be
omes

singular.

66
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The set of all eigenvalues is 
alled the spe
trum of a matrix denoted by �(A):

�(A) := f� 2 C j det(�I � A) = 0g

= f� 2 C j (�I � A) singularg

(5.3)

Let � be an eigenvalue of A. A non-zero ve
tor x 2 C

n

satisfying

Ax = �x with � 2 �(A)

is 
alled (right) eigenve
tor 
orresponding to the eigenvalue � of A. The pair (�; x) is 
alled

a (right) eigenpair of A.

A non-zero ve
tor y 2 C

n

, whi
h satis�es

y

�

A = �y

�

with � 2 �(A);

is 
alled a left eigenve
tor for the eigenvalue � of A. The pair (�; y) is 
alled a left eigenpair

of A.

If � is an eigenvalue of A, then the eigenspa
e asso
iated with � is de�ned as the nullspa
e

N (�I � A).

The 
hara
teristi
 polynomial is of order n, hen
e 
ounting multipli
ities the polynomial

has n 
omplex roots , i.e. the matrix A has n eigenvalues �

i

2 C . The algebrai
 multipli
ity

n

a

of an eigenvalue �

i

is the multipli
ity of �

i

as a root of the 
hara
teristi
 polynomial.

The dimension of the 
orresponding eigenspa
e spe
i�es the geometri
 multipli
ity n

g

. An

eigenvalue is 
alled defe
tive, if the geometri
 multipli
ity is lower than the algebrai
 one.

Two obvious fa
ts:

1. Eigenve
tors of distin
t eigenvalues are linearly independent.

2. 1 � n

g

� n

a

Some matrix properties imply a spe
ial stru
ture to the spe
trum, i.e.

matrix spe
trum eigenve
tors

A real �

i

2 R x

i

2 R

n

or �

i

2 C in pairs : �

i

,

�

�

i

x

i

; �x

i

A real and A = A

T

� 2 R x

i

2 R

n

A = A

�

�

i

2 R x

i

2 R

n

or �

i

2 C in pairs : �

i

,

�

�

i

x

i

; �x

i

with Ax

i

= �

i

x

i

:

This additional information is helpful in 
onstru
ting fast and reliable solvers for matri
es

of spe
ial stru
ture.
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5.1.2 The generalized (linear) eigenvalue problem

Let A;B be n� n square matri
es over R or C .

Sear
hing s
alars � 2 C and ve
tors x 2 C

n

satisfying

Ax = �Bx (LEP) (5.4)

states the generalized (linear) eigenvalue problem.

The polynomial

p

(A;B)

(�) := det(�B � A) (5.5)

is 
alled the 
hara
teristi
 polynomial of the matrix pair (A;B).

In 
ontrast to the standard problem the 
hara
teristi
 polynomial of a matrix pair (A;B)

need not to be of order n sin
e

det(�B � A) = �

n

:det(B) + lower terms:

Therefore one has to introdu
e �nite and in�nite eigenvalues.

Finite eigenvalues denotes eigenvalues in the 
ommon sense as in the SEP. The roots

p

(A;B)

(�) = 0 of the 
hara
teristi
 polynomial are 
alled �nite eigenvalues of the matrix

pen
il (A� �B).

Let � be a �nite eigenvalue of (A;B). A non-zero ve
tor x 2 C

n

is 
alled a general (right)

eigenve
tor a

ording to � if it solves

Ax = �Bx:

The pair (�; x) is a (right) �nite eigenpair.

A non-zero ve
tor y 2 C

n

is 
alled a general left eigenve
tor a

ording to �, if it solves

y

�

A = �y

�

B:

The pair (�; y) is a left �nite eigenpair.

If the degree d of the 
hara
teristi
 polynomial is lower than n, there are (n � d) in�nite

eigenvalues per de�nition.

Through reformulation of the eigenvalue problem one 
an a
hieve a more a

urate de�nition

for in�nite eigenvalues. Repla
ing the eigenvalue � by the 
omplex pair (�; �) with

� =

�

�

and j�j

2

+ j�j

2

= 1 leads to

�Ax = �Bx; (5.6)
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whi
h is equivalent to Ax = �Bx in the 
ase of �nite eigenvalues. We identify in�nite

eigenvalues with the pair (1; 0) and right / left eigenve
tors asso
iated with an in�nite

eigenvalue as ve
tors x; y 2 C

n

satisfying

Bx = 0 or y

�

B = 0 respe
tively. (5.7)

Conne
tion between standard and generalized eigenvalue problems:

The standard problem is a spe
ial 
ase of the generalized one by setting B = I.

If B is regular, the generalized eigenvalue problem Ax = �Bx 
an be transformed to

standard form B

�1

Ax = �x. By similarity transformation we will show later that the

generalized and the 
orresponding standard problem have the same spe
trum.

5.1.3 The quadrati
 eigenvalue problem

The nonlinear eigenvalue problem of order k is de�ned as sear
hing s
alars � 2 C and

ve
tors x 2 C

n

, whi
h satisfy

�

k

C

k

x + �

k�1

C

k�1

x + :::+ �C

1

x + C

0

x = 0; (5.8)

with C

l

2 C

n

n

for l = 0; :::; k.

The matrix polynomial P

k

(�) := �

k

C

k

+ ::: + �C

1

+ C

0

is 
alled �-matrix of order k.

In this thesis we treat quadrati
 eigenvalue problems, i.e. �-matri
es of order 2.

The 
hara
teristi
 polynomial of a quadrati
 pen
il is de�ned by

p

P

2

(�) := det(P

2

(�)) = det(�

2

C

2

+ �C

1

+ C

0

) (5.9)

Eigenvalues should be again de�ned as the roots of the 
hara
teristi
 polynomial, but

sin
e the number of roots depends on the regularity of the leading matrix C

2

, we have

to distinguish �nite and in�nite eigenvalues. Here a main di�eren
e to linear problems is

implied by the fa
t that the 
hara
teristi
 polynomial of P

2


an have up to 2n 
omplex

roots.

Finite eigenvalues of the quadrati
 matrix pen
il P

2

are de�ned as the roots of the 
har-

a
teristi
 polynomial p

P

2

(�) = det(P

2

(�)) = 0.

A (right) eigenve
tor a

ording to a �nite eigenvalue � is a non-zero ve
tor x 2 C

n

solving

the matrix equation

P

2

(�)x = 0 with � 2 �(P

2

) := f�

i

j p

P

2

(�

i

) = 0g: (5.10)

Analogously left eigenve
tors are non-zero solutions y 2 C

n

of

y

�

P

2

(�) = 0 with � 2 �(P

2

): (5.11)
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The pairs (�; x); (�; y) are �nite right/left eigenpairs.

If there are d �nite eigenvalues, then there are 2n � d in�nite eigenvalues by de�nition.

To get an a

urate de�nition of in�nite eigenvalues and the 
orresponding eigenve
tors,

the problem has to be again reformulated. Repla
ing � by the pair (�; �) with � =

�

�

and

normalized by j�j

2

+ j�j

2

= 1 one gets

�

2

C

2

x+ � � C

1

x+ �

2

C

0

x = 0: (5.12)

By this the pair (1; 0) stands for in�nite eigenvalues of P

2

and the quotient � =

�

�

with

j�j > 0 denotes �nite eigenvalues of P

2

.

This implies de�ning right/left eigenve
tors asso
iated to in�nite eigenvalues as non-zero

ve
tors x; y 2 C

n

solving

C

2

x = 0; or y

�

C

2

= 0 respe
tively: (5.13)

Sin
e there are 2n eigenvalues (�nite and in�nite), in general the eigenve
tors 
annot form

an independent set in C

n

. With the e�e
t that two distin
t eigenvalues may have the

same eigenve
tor.

Some matrix properties imply spe
ial stru
ture of the spe
trum of QEPs:

For P

2

(�

i

) = C

2

�

2

i

+ C

1

�

i

+ C

0

= 0 we get

matri
es spe
trum eigenve
tors

P

2

regular 2n �nite eigenvalues

P

2

real �

i

2 R x

i

real

or 
omplex 
onjugate pairs (�

i

;

�

�

i

) (�

i

; x

i

)) (

�

�

i

; �x

i

)

5.2 Numeri
s of eigenvalue problems

There is a wide range of numeri
al solution methods for eigenvalue problems. A large

part of methods assume hermitian and positive de�nite matri
es. Sin
e it turns out that

the matri
es of the problems modeled in Chapter 4 do not ful�ll these assumptions, we


on
entrate on algorithms whi
h work with non-hermitian general matri
es. Moreover one

always has to bear in mind that the matri
es 
an be singular.

To get a �rst impression of a given eigenvalue problem it is sense- and useful to 
ompute

the whole spe
trum. In problems derived from assembling the piezoele
tri
 equations

the system matri
es are very ill-
onditioned. The non-zero 
oeÆ
ients of the me
hani
al

sti�ness matrix K

uu

are of the order 10

10

whereas the non-zero 
oeÆ
ients of the blo
k

modeling the ele
tri
 potential K

��

are of the order 10

�10

(see also Appendix A). To
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get �rst reliable results and referen
e values we look for well-understood, robust and re-

liable methods. This leads us to dire
t methods and espe
ially to the QR/QZ-algorithm [8℄.

Analogous to linear equation solvers we apply iterative methods to eigenvalue problems to

get faster algorithms. These methods have the advantage that they need fewer fa
toriza-

tions, do not destroy sparsity of the matri
es and, e.g. in 
ase of Ja
obi-Davidson method,

the linear equations arising 
an be solved approximately. There are two main advantages of

iterative methods. First, some iterative methods suÆ
e only with matrix-ve
tor produ
ts,

i.e. the expli
it knowledge of the system matri
es is not ne
essary. Se
ondly, it is possible to

spe
ify a (small) part of the spe
trum whi
h one is interested in. Only the eigenpairs with

spe
i�ed properties, e.g. largest/smallest real/imaginary part, largest/smallest magnitude

or eigenvalues next to a given 
omplex target 
, are 
omputed.

We introdu
e the Arnoldi method [35℄, [11℄ for solving standard and generalized

linear problems iteratively. Con
erning quadrati
 problems we present a linearization

method to generalized problems and the nonlinear expansion of Ja
obi-Davidson algorithm.

The theory of these methods (QR-QZ,Arnoldi, Ja
obi-Davidson) is �rst des
ribed in detail

for solving standard problems, whi
h is te
hni
ally less 
ompli
ated. Then the main ideas

get expanded to the generalized and nonlinear 
ase.

Understanding the theory underlying and motivation of the algorithms leads to an idea of


onstru
ting problem dependent stru
ture preserving methods.

We start with some helpful tools often used in solving eigenvalue problems.

5.2.1 Some fa
ilities - transformations, fa
torizations and de
om-

positions

Before applying an eigenvalue routine it is often advisable to transform the system to a

simpler problem or to a problem with higher 
onvergen
e rate.

After solving the transformed problem, the ba
k transformation of the spe
trum and of

the 
orresponding eigenve
tors should be easy to perform.

Similarity transformation At �rst we are looking for transformations whi
h have no

e�e
t on the spe
trum of the matrix pen
il

P

l

(�) :=

�

�

2

C

2

+ �C

1

+ C

0

l = 2 
orresponding to QEP

�B � A l = 1 
orresponding to LEP and SEP(B = I)

;
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where C

i

; A; B are general n� n matri
es over C .

The 
orresponding 
hara
teristi
 polynomial is det(P

l

(�)). The spe
trum (set of �nite eigen-

values) is denoted by �(P

l

).

Theorem 5.2.1 Similarity transformations

If U; V are regular (n� n) matri
es, then

�(P

l

) = �(U

�

P

l

V ): (5.14)

(�

i

; y

i

) solves U

�

P

l

(�

i

)V y

i

= 0: , (�

i

; x

i

:= V y

i

) solves P

l

(�

i

)x

i

= 0 (5.15)

The last equivalen
e holds for in�nite eigenvalues �

i

=1.

Proof: Every eigenvalue �

i

of P

l

is a root of the 
hara
teristi
 polynomial of U

�

P

l

V :

0 = det(U

�

P

l

(�

i

)V ) = det(U

�

)

| {z }

6=0

�det(P

l

(�

i

)) det(V )

| {z }

6=0

, det(P

l

(�)) = 0 ) (5:14):

For �nite eigenve
tors equivalen
e (5.15) is obvious by regularity of U; V .

For �

i

=1: for l=1 sin
e U; V regular

U

�

BV y = 0 , U

��

U

�

BV y

i

= BV y

i

= Bx

i

= 0 with x

i

= V y

i

for l = 2 : analogous.

�

If the matri
es U; V are unitary (U

�

U = I and V

�

V = I) we 
all these transformations

unitary similarity transformations. For real matri
es repla
e unitary by orthogonal.

There are some eigenvalue problems of spe
ial stru
ture whi
h are easier to solve than

general ones (e.g. system matri
es of diagonal, tridiagonal, triangular or Hessenberg form).

It is often useful to transform the given problem �rst to some redu
ed form, if possible,

and then solving the simpler problem.

If this is done by similarity transformations the spe
trum does not 
hange and the ba
k

transformations of eigenve
tors are easy to perform (one matrix-ve
tor multipli
ation V y

i

).

For instan
e, if a given matrix A has n independent eigenve
tors, one 
an �nd a unitary

(orthogonal) matrix Q whi
h diagonalizes A, i.e.

A = QDQ

�

with D diagonal matrix. Normalized eigenve
tors are given by the 
olumns of Q. The


orresponding eigenvalues are the diagonal elements of D.
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Spe
tral transformation In many 
ases it makes sense to transform the spe
trum as

well. We will see that iterative methods have fast 
onvergen
e to dominant eigenvalues,

i.e. eigenvalues of largest magnitude whi
h are separated from the rest of the spe
trum.

If one is interested in eigenvalues near to a given 
omplex target 
 of generalized linear

problems, we 
an a

elerate the 
onvergen
e rate by solving a transformed eigenvalue

problem where the desired eigenvalues lie at the end of the spe
trum.

At �rst we 
reate an eigenvalue problem in whi
h the desired eigenvalues are 
lose to zero

by the shift

(A� 
B)x = (�

i

� 
)Bx: (5.16)

Via inverting the problem the sear
hed eigenvalues get dominant

Bx =

1

�

i

� 


(A� 
B)x: (5.17)

Theorem 5.2.2 Spe
tral transformation

Starting from the generalized eigenvalue problem

Ax

i

= �

i

Bx

i

the spe
tral transformation with shift � denotes the transformed LEP

Bx

i

= �

i

(A� 
B)x

i

:

The transformation and the a

ording ba
k-transformation of the spe
trum satisfy

�(B;A� 
B) = f

1

�

i

� 


j �

i

2 �(A;B) g;

�(A;B) = f

1

�

i

+ 
 j �

i

2 �(B;A� 
B) g:

(�

i

; x

i

) solves Bx

i

= �

i

(A� 
B)x , (�

i

; x

i

) := (
 +

1

�

i

; x

i

) solves Ax

i

= �

i

Bx

i

or respe
tively

(�

i

; x

i

) solves Ax

i

= �

i

Bx

i

, (

1

�

i

� 


; x

i

) solves x = (A� 
B)

�1

Bx

The eigenve
tors maintain un
hanged through these spe
tral transformations.
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If (A�
B) is a regular pen
il, one 
an 
onstru
t a standard eigenvalue problem out of the

spe
tral transformation. Similarity transformation leads to

(A� 
B)

�1

Bx

i

=

1

�

i

� 


x

i

(5.18)

or

B(A� 
B)

�1

y

i

=

1

�

i

� 


y

i

(5.19)

respe
tively. In problem (5.18) the eigenve
tors are un
hanged, for (5.19) one has to apply

x

i

= (A� 
B)

�1

y

i

for ba
k-transforming.

Methods using spe
tral transformation and (5.18) or (5.19) 
arry the supplement shift-

and-invert (SI).

Spe
tral transformations and SI-methods are used to

� shift interior eigenvalues to the end of the spe
trum,

� transform generalized linear to standard problems in 
ase that B is singular and if

there is a 
omplex number 
 for whi
h the pen
il (A� 
B) is regular.

S
hur de
omposition One 
an 
ompute the eigenvalues of a general matrix by

transforming the matrix to (quasi-)triangular form (see Remark 5.2.5 for the de�nition

of quasi-tringalur matri
es). The eigenvalues are given by the diagonal entries. If the

eigenve
tors are required, they 
an be 
omputed by solving a triangular system and then

ba
k transforming it a

ording to the original problem.

De�nition 5.2.3 S
hur de
omposition

A unitary (orthogonal) similar transformation of a square matrix A to S
hur form is

de�ned by the de
omposition

A = QTQ

�

(5.20)

with Q unitary (orthogonal) and T upper triangular (quasi-triangular) in 
omplex (real)

arithmeti
.

The 
olumns of Q are 
alled S
hur ve
tors.

Computing eigenvalues and eigenve
tors see generalized 
ase (B = I).
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De�nition 5.2.4 Generalized S
hur de
omposition

A unitary (orthogonal) similarity transformation of a matrix pen
il (A��B) to generalized

S
hur form is done by the de
omposition

A� �B = Q(T

A

� �T

B

)Z

�

(5.21)

with Q;Z unitary (orthogonal) matri
es and T

A

; T

B

triangular (quasi-triangular).

The 
olumns of Q;Z are 
alled generalized S
hur ve
tors .

The eigenvalues of a triangular pen
il are easy to get and sin
e the transformation was

similar the spe
trum does not 
hange through this transformation, we get

�(A;B) = �(T

A

; T

B

) = f

T

A;ii

T

B;ii

ji = 1; :::ng: (5.22)

Eigenve
tors to �nite eigenvalues 
an be a
hieved by solving a triangular system

(T

A

� �

i

T

B

)y

i

= 0 ! y

i

or for in�nite eigenvalues by 
omputing the nullspa
e of a

triangular system T

B

y

i

= 0 and by applying the ba
k transformation to the original

problem afterwards by x

i

= Zy

i

.

Remark 5.2.5 to T

A

; T

B

(quasi-)triangular:

If real arithmeti
 is used and 
omplex eigenvalues appear, it is impossible to transform

the matri
es to triangular form. One has to admit (2 � 2) diagonal blo
ks. Ea
h blo
k D

i

represents a 
omplex 
onjugate pair of eigenvalues �

i

;

�

�

i

by satisfying �(D

i

) = f�

i

;

�

�

i

g.

Triangular matri
es with (2� 2) blo
ks on the diagonal are 
alled quasi-triangular.

5.2.2 The QR/QZ- algorithm - a dire
t method

The QR-method is a dire
t method (terminates in �nite steps if exa
t arithmeti
 is pro-

vided) for solving a standard eigenvalue problem Ax = �x. It is used

� for dense matri
es of moderate size,

� for solving lower dimensional subproblems whi
h o

ur in iterative subspa
e proje
-

tion methods.

This method is numeri
ally very reliable and the whole spe
trum of the problem is


omputed.
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The algorithm is based on 
omputing the S
hur fa
torization of A in the following steps:

1. QR-fa
toriziation

Every square matrix A 
an be fa
torized into

A = QR (5.23)

with Q unitary and R upper triangular.

One has to remark that the QR-fa
torization of a Hessenberg matrix is mu
h faster

than the fa
torization of a general matrix.

2. The QR-transformation is de�ned by

A = QR

~

A = RQ: (5.24)

This performs a unitary similarity transformation of the original matrix, sin
e

Q

�

AQ = Q

�

QRQ = RQ =

~

A.

If A is Hessenberg, one 
an prove that the QR-transformation of A maintains

Hessenberg form. Iterative appli
ation of QR-streps results in the 
onvergen
e of

~

A

to (quasi-)triangular form. In 
omplex arithmeti
 the subdiagonal elements (in real

arithmeti
 the subdiagonal elements 
orresponding to real eigenvalues) 
onverge

against zero.

This means, through iteration

~

A 
onverges against the S
hur fa
torization of A.

3. Improvements to the QR-fa
torization:

To a
hieve a better 
onvergen
e rate (subdiagonal entries ! 0) a spe
tral trans-

formation a

ording to the a
tually iterated Hessenberg matrix is applied in ea
h

QR-step. This variant of QR-iteration is 
alled impli
itly-shifted QR-transformation.

4. The primal Hessenberg form in item 1 
an be a
hieved through Givens rotation,

Householder transformation or modi�ed Gram-S
hmidt methods (! Arnoldi pro
e-

dure).

Remark 5.2.6 If A is hermitian, the Hessenberg forms redu
e to tridiagonal forms.

The 
omputational 
osts of the QR-method in
luding redu
tion to Hessenberg form,

impli
ite shifts and some other improvements are O(n

3

) 
oating point operations (� 10n

3

if only eigenvalues are desired and � 25n

3

for 
omputing eigenpairs). The memory
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requirement is O(n

2

) .

The QZ-algorithm denotes the expansion of QR-method to generalized linear eigenvalue

problems. Te
hni
ally the algorithm be
omes more 
ompli
ated, but the main idea of

redu
ing the matrix to generalized S
hur form is similar:

At �rst A;B are redu
ed simultaneously by unitary similarity transformation the way A

be
omes Hessenberg and B upper triangular. In the next step QZ-iteration is applied to

for
e A to get upper triangular as well while keeping B in form.

Applied with impli
it shifts the existen
e of in�nite eigenvalues poses no problems.

Computing eigenvalues requires approximately 30n

3


oating point operations plus 16n

3

for eigenve
tors.

5.2.3 Iterative methods

The power method

The easiest iterative method for solving standard eigenvalue problems is the power

method. We use it to motivate Krylov methods. The power method is a single ve
tor

iteration (only one eigenve
tor is 
omputed). In 
ase of 
onvergen
e the method results in

the eigenpair 
orresponding to the eigenvalue of largest magnitude.

Algorithm 5.2.7 The power method

Given start ve
tor v;

for k = 1; 2; 3:::

v =

v

kvk

;

w = Av;

� = w

�

v;

if (kw � �vk � �

M

j�j) break;

w = v;

end for;

The fun
tioning and properties of the power method 
an already be seen under assuming

that A has n independent eigenve
tors x

i

with 
orresponding eigenvalues �

i

satisfying

j�

1

j > j�

2

j � j�

3

j::: � j�

n

j :

Then the starting ve
tor v

0


an be expanded as v

0

=

P

n

i=1

�

i

x

i

(assume that �

1

6= 0).
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In the k-th step of the algorithm one gets (negle
ting the normalization of w)

v

k+1

= A

k

v

0

=

X

i

�

i

A

k

x

i

=

X

i

�

i

�

k

i

x

i

= �

k

1

(�

1

x

1

+

n

X

i=2

�

i

(

�

i

�

1

)

k

| {z }

! 0

x

i

)

! �

k

1

�

1

x

1

for k !1:

If the starting ve
tor has a part in the dire
tion of the dominant eigenve
tor x

1

, the

power method 
onverges to the eigenve
tor 
orresponding to the eigenvalue of largest

magnitude. The rate of 
onvergen
e depends on the ratio j

�

1

�

2

j. If this ratio is 
lose to one,

the 
onvergen
e 
an get very slow.

The power method 
omputes only one eigenve
tor, to a
hieve more eigenve
tors one 
an

de
ate already 
onverged eigenve
tors. If we orthogonalize the starting ve
tor v

0

against v

1

(�

1

= 0), the method will 
onverge to the se
ond largest eigenve
tor (if v is not orthogonal

to v

2

).

The main idea of iterative proje
tion methods

The idea behind subspa
e proje
tion method is to proje
t the given eigenvalue problem

onto lower dimensional subspa
es. One a
hieves a smaller sized subproblem, solves this

with mu
h lower requirements and view the 
omputed eigenvalues as approximations to

the original problem.

The big question will be, how to 
hoose the subspa
e on whi
h we proje
t the original

problem.

There are two di�erent proje
tion te
hniques : orthogonal and oblique proje
tion methods.

We des
ribe the fun
tioning by means of the standard problem (SEP):

1. Orthogonal proje
tion onto a given subspa
e K of dimension m � n:

We want to proje
t the problem of 
omputing the eigenpairs of

Ax = �x with x 2 C

n

and � 2 C (5.25)

onto the subspa
e K. That means we sear
h an approximate eigenpair (

~

�; ~x) with

~

� 2 C and ~x 2 K whi
h solves the problem with respe
t to the subspa
e K. In more

detail, the residual of A~x�

~

�~x is zero with respe
t to the subspa
e in the sense that

the residual is orthogonal to K.

This is imposed by the Galerkin 
ondition

v

�

(A~x�

~

�~x) = 0 8v 2 K; (5.26)
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in matrix notation this is equivalent to

(V

�

AV �

~

�I)y = 0; (5.27)

where V 2 C

n�m

unitary is the matrix representation of an orthonormal base of K

and ~x of (5.26) is for
ed to lie in the subspa
e K by 
hoosing ~x := V y.

The proje
ted eigenvalue problem

V

�

AV y =

~

�y (5.28)

is of dimension (m�m) and its eigenvalues are viewed as approximations 
orrespond-

ing to the subspa
e K of the original eigenproblem (5.25).

This leads to the base pro
edure of orthogonal proje
tion methods:

(a) Compute an orthonormal m-dimensional base V

m

of the subspa
e K.

(b) Compute the proje
tion matrix : V

�

m

AV

m

(
) Solve the proje
ted eigenvalue problem: V

�

m

AV

m

y = �y

The approximate eigenpair (�; s) := (�; V

m

y) is 
alled a Ritz pair, � a Ritz value and

s a Ritz ve
tor 
orresponding to the subspa
e K.

2. Oblique proje
tion te
hnique on two given subspa
es K and L:

The main di�eren
e to orthogonal proje
tion methods is that we 
hoose di�erent

test (L) and sear
h (K) spa
es. The approximate eigenve
tors should lie in K, but

the 
orresponding residual should be orthogonal to the subspa
e L.

We sear
h a ~x in K satisfying the Petrov-Galerkin 
ondition

w

�

(A� �I)~x = 0 8 w 2 L: (5.29)

Assuming that matrix representations W of a base of L and V of a base of K are


hosen bi-orthogonal W

�

V = I, this yields in the proje
ted eigenvalue problem

W

�

AV y = �y:

We will only use orthogonal proje
tion methods whi
h are numeri
ally more reliable than

oblique methods.
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Krylov methods - The Arnoldi method

The idea of orthogonal proje
tion methods bases on the proje
tion of the eigenvalue

problem to a smaller dimensioned subspa
e. But how should one 
hoose this subspa
e ?

The power method gives the motivation for Krylov methods. There we have built the se-

quen
e v; Av; A

2

v; :::; A

k

v and dis
overed that it 
onverges in dire
tion of the eigenve
tor


orresponding to the eigenvalue of largest magnitude. In general, it also 
ontains infor-

mation of eigenve
tor dire
tions 
orresponding to eigenvalues near the dominant one. The

power method only utilizes the last two ve
tors in ea
h iteration step and without de
ation

te
hniques it delivers only one eigenve
tor.

Now we want to exploit more information of the iterated ve
tor sequen
e and 
ompute

more than one eigenve
tor.

We 
hoose our subspa
e

K

m

(A; v) := spanfv; Av; A

2

v; :::; A

m�1

vg: (5.30)

This subspa
e is 
alled a Krylov subspa
e of A of order m and methods proje
ting on

Krylov subspa
es are termed Krylov methods.

Arnoldi method for SEP

The basi
 algorithm - 
omputing an Arnoldi fa
torization

Constru
ting an orthonormal base of the Krylov subspa
e via the modi�ed Gram-S
hmidt

method leads to the Arnoldi pro
edure.

Algorithm 5.2.8 (Arnoldi pro
edure)

Create an orthonormal base of K

m

(A; v)

v

1

=

v

kvk

for j = 1; 2; :::; m� 1

w = Av

j

for i = 1; 2; :::; j

h

i;j

= w

�

v

i

w = w � h

i;j

v

i

end

h

j+1;j

= kwk

2

if (h

j+1;j

� 0) break

v

j+1

=

w

h

j+1;j

end;
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Formulating the Arnoldi pro
edure in matrix notation by setting

V

j

:= [v

1

; v

2

; :::v

j

℄ a matrix with orthonormal 
olumns

(H

m;m+1

)

i;j

:=

�

h

i;j

for i � j + 1

0 otherwise

is (m�m+ 1) upper Hessenberg

H

m;m

denotes the submatrix formed of the �rst (m�m) blo
k of : H

m;m+1

leads to

AV

m

= V

m+1

H

m;m+1

= V

m

H

m;m

+ h

m+1;m

v

m+1

e

T

m

: (5.31)

Furthermore we see

V

�

m

AV

m

= V

�

m

V

m

H

m;m

+ h

m+1;m

V

�

m

v

m+1

e

T

m

= H

m;m

: (5.32)

We a
hieved a proje
ted eigenvalue problem of Hessenberg form.

We 
all a unitary transformation of A satisfying (5.31) and (5.32) a m-step Arnoldi

fa
torization of A.

Remark 5.2.9 If A is hermitian, (analogous the QR-algorithm) the Hessenberg matrix is

a tridiagonal matrix and the asso
iated variant of the Arnoldi method is 
alled Lanz
os

method.

Eigenvalue approximations

The proje
ted Hessenberg problem of size (m�m) is solved dire
tly by the QR-algortihm

and we get m eigenvalues.

If (�; y) is an eigenpair of the proje
ted problem:

H

m;m

y = �y ; (5.33)

we get an approximate eigenpair for Ax� �x = 0 due to

H

m;m

y � �y = 0

V

�

m

AV

m

y � �y = 0

V

�

m

(AV

m

y � �V

m

y) = 0

V

�

m

(As� �s) = 0 with s := V

m

y:
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Employing the eigenpair approximation to the original problem leads to a residual whi
h

is orthogonal to the proje
ted subspa
e.

(�; s) is a Ritz pair, � a Ritz-value and s a Ritz-ve
tor 
orresponding to the subspa
e

K

m

(A; v).

The norm of the residual leads to the Ritz estimate

kAs� �sk = kAV

m

y � �V

m

yk = kH

m;m

V

m

y + h

m+1;m

v

m+1

e

T

m

y

m

� �V

m

yk

= kV

m

(H

m;m

y � �y + h

m;m+1

v

m+1

y

m

k

= jh

m+1;m

j jy

m

j:

If there is a breakdown in the Arnoldi pro
edure (h

j+1;j

= 0; v

j+1

= 0), the Ritz-values are

exa
t eigenvalues, i.e.

�(H

jj

) � �(A): (5.34)

One has to mention that a small residual does in general not imply a small error for the

eigenvalue/eigenve
tor approximation, but it 
an be used to 
onstru
t stopping 
riteria.

Improvements - Restarting an Arnoldi method

In the above presented form of the algorithm one has to in
rease m as long as one gets all

interested eigenvalues and the proje
ted Hessenberg problem is solved by QR-algorithm.

For large problems this 
an be very expensive in 
omputation and storage requirement.

We have to apply some improvements in order to keep m small while 
omputing all

eigenvalues of interest.

Another big problem is the fa
t that the required orthogonality of the 
omputed Krylov

base 
an hardly be hold in �nite pre
ision arithmeti
 if m be
omes large.

In the analysis of the power method we have seen that the 
hoi
e of the starting ve
tor


ompletely determines the approximate eigensolutions. How should we 
hoose the new

starting ve
tor in order to take up as mu
h desired information as possible from the a
tual

Krylov spa
e?

One obvious method of restarting is to 
ompute an m-step Arnoldi fa
torization and the


orresponding approximate eigenvalues. Then the spe
trum is splitted in two disjoint sets:

the set of good-�tting (k) and the set of unwanted (p = m � k) Ritz-values. The new

starting ve
tor 
an be 
hosen as a linear 
ombination of eigenve
tors a

ording to the k

wanted Ritz-values. This is one variant of expli
it restarting.

We try to sti
k the information of a m-dimensional subspa
e into one ve
tor. Coming up

with this problem leads to the impli
itly restarted Arnoldi method.

Impli
itly Restarted Arnoldi Method - IRAM This te
hnique 
ombines the im-

pli
itly shifted QR-iteration and the m-step Arnoldi-fa
torization. Interesting eigenvalue

information of an m-step Arnoldi fa
torization is extra
ted and 
ompressed to a smaller

(�xed-sized) k-step fa
torization.
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Algorithm 5.2.10 Computing an updated partial Arnoldi-fa
torization

Assume an already 
omputed (m = k+p)-Arnoldi fa
torization of A : AV

m

= V

m

H+f

m

e

T

m

.

1. Extra
t Ritz-values from the Hessenberg matrix H and 
hoose k wanted Ritz-values.

2. Apply p shifted QR-iterations of the form (H � �

j

I) = QR:

(A� �

j

I)V � V (H � �I) = f

m

e

T

m

A (V Q)

| {z }

V

+

� (V Q)

| {z }

V

+

(RQ+ �

i

I)

| {z }

H

+

= f

m

e

T

m

Q:

After p steps the �rst k 
olumns of the transformed m-step Arnoldi fa
torization turns

out to be a k-step Arnoldi-fa
torization in
luding the information a

ording to the k


hosen best-�tting Ritz-values

AV

+

k

= V

+

k

H

+

k

+ f

+

k

e

T

k

: (5.35)

3. Use the updated trun
ated Arnoldi fa
toization (5.35) as starting point and apply

again p Arnoldi-steps to get a m-step Arnoldi fa
torization and go to step 1.

Some 
omputational aspe
ts of IRAM Let m = k + p denote the dimension of the

Arnoldi-fa
torization of the Impli
ite Restarted Arnoldi Method. Moreover, k is the number

of wanted eigenvalues and p the number of applied impli
ite QR-shift in ea
h iteration step.

� If we 
hoose k of moderate size, orthogonality of the base V

k


an be preserved a
-


ording to working pre
ision also in �nite arithmeti
. No spurious eigenvalues 
an be

produ
ed by the la
k of orthogonality.

� The storage requirement of the restarted version is of �xed size, i.e. 2nk +O(k

2

).

� On the 
omputational 
ost of IRAM:

We suÆ
e with presenting the total 
ost of one iteration step of IRAM here, a spe
i-

�
ation in more detail and itemization in ea
h step of the algorithm 
an be found in

[8℄ p. 185. We de�ne 
 su
h that 
n is the 
ost of a matrix-ve
tor produ
t Av with

the system matrix A of dimension n� n.

The total 
ost of one IRAM iteration is


pn� 2[(5k � 2)p+ 2p

2

℄n+ 2k

2

n +O((k + p)

3

):

� On the stopping 
riterion (used also in ARPACK): A Ritz pair (�; x) = (�; V

k

y) is

assumed to be 
onverged if � is in the set of wanted eigenvalues and

kf

k

kje

�

k

yj

| {z }

Ritz estimate

� max(kH

k

k�

M

; tol � j�j):
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Moreover, the 
omputed Ritz-pair (�; x) is an exa
t eigenpair of a matrix A+E near

A, i.e.

(A+ E)x = �x with E = �(e

T

k

s)f

k

x

H

;

where �

M

is the ma
hine pre
ision and the bound tol � j�j implies that kEk � tol �kAk.

For more spe
i�
ation we refer to [8℄ and [23℄.

Approximating interior eigenvalues Sin
e the subspa
e 
hosen in the Arnoldi

method is motivated by the power method one 
an imagine that the algorithm has fast


onvergen
e if we sear
h dominant eigenvalues. One way to 
ompute interior eigenvalues is

to apply a spe
tral transformation of the problem. Interior eigenvalues 
an be 
omputed by

transforming the problem by mat
hing spe
tral transformation before applying the Arnoldi

algorithm. This method has the disadvantage that in ea
h step a system (A � 
I)

�1

has

to be solved.

There are some variants of the Arnoldi method whi
h 
an handle the problem of approx-

imating interior eigenvalues without expli
it spe
tral transformations ( harmoni
 Ritz

values). But for this approa
h the 
onvergen
e 
an get very slow.

Krylov methods for generalized eigenvalue problems

Their are three ways of solving

Ax� �Bx = 0

by Krylov methods:

� Transformation to a standard problem via Shift-and-Invert (SI)

((A� 
B)

�1

B � �I)x = 0:

This is re
ommended if one is interested in interior eigenvalues, i.e. eigenvalues near

the shift 
. This te
hnique has the drawba
k that in ea
h iteration (A�
B)

�1

has to

be solved. One gets good 
onvergen
e rates to the interested eigenvalues by spe
tral

transformation.

� M-Arnoldi method

This method is implemented in the ARPACK software pa
kage, but has the restri
-

tion that the matrix B has to be hermitian and positive semi-de�nite. It works with

B-inner-produ
ts, i.e. produ
ts of the form (x; x)

B

= (Bx; x). Sin
e in our problem

B is not positive de�nite this variant is only mentioned for 
ompleteness.

� Rational Krylov algorithm

In an SI-Arnoldi method the shift is �xed. If one wants to vary it, one would have to

reje
t the already 
omputed subspa
e and start with a new one. This way one would
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lose the whole information sti
king in the old subspa
e. The rational Krylov method

is a generalization of the SI-Arnoldi method whi
h 
ompensates this problem. One


an vary the shifts and is able to a
hieve fast 
onvergen
e of Ritz values a

ording

to a union around the 
hosen shifts.

The main idea is that we start with a SI-Arnoldi for a 
hosen shift �

1

, 
ompute an

orthonormal base V

k

with

(A� �

1

)

�1

BV

k

= V

k+1

H

k+1;k

and evaluate the eigenvalues of H

k+1;k

. After a few steps the Ritz-values a

ording

near the shift �

1

are well approximated.

We 
hoose a new shift �

2

. Then we have to transform the matrix V

k+1

the way

one 
an interpret the a
hieved matrix W

k+1

(whi
h span the same subspa
e

span(W

k+1

) = span(V

k+1

)) as orthogonal base for a SI-Arnoldi subspa
e for the shift

�

2

. One 
an perform this transformation by applying a QR-de
omposition, solving

a triangular system and transforming matri
es of size (k + 1).

For more detail see [8℄.

Ja
obi-Davidson method for SEP

The Arnoldi method is an e�e
tive method for 
omputing interior eigenvalues near a

spe
i�ed shift, if one uses shift-and-invert methods. With the drawba
k that one has to

solve the system (A� 
I)x = b a

urately and eÆ
iently. The Ja
obi-Davidson algorithm

provides a te
hnique whi
h manages with approximate (but still reasonable) solutions of

the system. Hen
e pre
ondition methods 
an be applied.

The Ja
obi-Davidson method is an orthogonal proje
tion method, but in 
ontrast to the

Arnoldi algorithm the proje
ted matrix is of no spe
ial redu
ed stru
ture. Hen
e solving

the proje
ted eigenvalue problem be
omes more expensive.

Expansion of sear
h spa
e:

Assume that we have already 
omputed the subspa
e base V

k

of the k-th step. Then the

proje
ted eigenvalue problem is given through

V

�

k

AV

k

y = �y

and we 
an 
ompute a desired Ritz-pair (�

k

; s := V

k

y) belonging to V

k

.

Now the question is how to expand the base V

k

by the information given above?

The residual of the original problem

r := As� �

k

s (5.36)



CHAPTER 5. THEORY OF ALGEBRAIC EIGENVALUE PROBLEMS 86

provides information about the quality of the a
tual k-step eigenvalue approximation. The

idea is to expand V

k

by a 
orre
tion �s?s of the Ritz-ve
tor s the way the residual of the


orre
ted ve
tor s +�s vanishes a

ording to the subspa
e orthogonal to s, i.e.

(I � ss

�

)(A� �

k

I)(�s+ s) = 0: (5.37)

One 
an see that r 2 s

?

:= ft : t

T

x = 0g through (I�ss

�

)(A��

k

)s = r�s s

�

As

|{z}

�

k

��

k

s s

�

s

|{z}

I

=

r and therefore

(I � ss

�

)(A� �

k

I)�s = �r (5.38)

is valid.

In a �nal step one has to assure that �s is orthogonal to s in (5.38). After for
ing �s

into s

?

by repla
ing it with (I � ss

�

)�s 2 s

?

we a
hieve the Ja
obi-Davidson 
orre
tion

equation a

ording to the residual r and the k-th Ritz-pair (�

k

; s), i.e.

(I � ss

�

)(A� �

k

I)(I � ss

�

)�s = �r: (5.39)

This approa
h is motivated by the following de
omposition of A

A = (I � ss

�

)A(I � ss

�

) + Ass

�

+ ss

�

A� �

k

ss

�

with �

k

= s

�

As:

If �

k

= � is an exa
t eigenvalue, the 
orre
tion equation (if solved a

urately) gives the

orthogonal 
omplement of s to the exa
t eigenve
tor, i.e.

(A� �I)(s+�s) = 0

holds.

Algorithm 5.2.11 Ja
obi-Davidson for SEP Ax = �x

Proje
ted matrix: M

k

:= V

�

k

AV

k

Start settings:

v

1

=

v

kvk

; M

1

= v

�

1

Av

1

;

�

1

= m

11

; s = v

1

; r = As� �

1

s;
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Iteration:

for i = 1; 2; :::; m� 1

Solve Ja
obi-Davidson 
orre
tion equation (approximately)

(I � ss

�

)(A� �

k

I)(I � ss

�

)�s = �r

Orthogonalize via Gram-S
hmidt pro
edure �s against V

k

! v

k+1

Expand V

k

: V

k+1

= [V

k

; v

k+1

℄

Expand M

k

: M

k+1

=

�

M

k

V

�

k

Av

k+1

v

�

k+1

AV

k

v

�

k+1

Av

k+1

�

Solve proje
ted eigenvalue problem M

k

y = �y

Choose one �tting Ritz-ve
tor �

k+1

plus Ritz-ve
tor s = V

k+1

y

Compute new residual: r

k+1

= As� �

k+1

s

Convergen
e test via residual

Restart:

v

1

= s;

Start again with iteration;

In the presented form the Ja
obi-Davidson algorithm results in one desired eigenve
tor.

If more eigenve
tors are sear
hed, one has to apply de
ation te
hniques. After a satis-

fying approximation of the �rst Ritz-pair, one 
ontinues in a subspa
e spanned by the

remaining eigenve
tors. De
ation and restart te
hniques are used in e.g. Ja
obi-Davidson-

QR-algorithms.

5.2.4 Solving quadrati
 eigenvalue problems

In most appli
ation of quadrati
 eigenvalue problem the matri
es are assumed to be

hermitian and positive-de�nite. Here we deal only with methods whi
h do not exploit

spe
ial properties of matri
es.

Let C

0

; C

1

; C

2

be general matri
es in C

n�n

with the restri
tion that they do not have a


ommon nullspa
e, i.e. we assume the quadrati
 pen
il to be regular.

The main solution approa
hes :

� Transformation of the quadrati
 pen
il to linear form

� Proje
tion methods whi
h proje
t the QEP on a lower-dimensional quadrati
 problem

and solve the lower-dimensioned problem by e.g. linearization-methods

� Newton methods (not treated here)
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Transformation to linear form

We transform the quadrati
 problem

�

2

C

2

x + �C

1

x+ C

0

x = 0 (5.40)

by introdu
ing a new variable

y := �x: (5.41)

The QEP (5.40) be
omes expli
itly linear in �:

(a) �C

2

y + C

1

y + C

0

x = 0

(b) �C

2

y + �C

1

x + C

0

x = 0

Together with (5.41) we get two possible linear eigenvalue problems:

�

0 I

�C

0

�C

1

��

x

y

�

= �

�

I 0

0 C

2

��

x

y

�

; (5.42)

�

0 I

�C

0

0

��

x

y

�

= �

�

I 0

C

1

C

2

��

x

y

�

: (5.43)

Without loss of generality we 
ontinue with approa
h (a). If A;B denote the system ma-

tri
es in (5.42), we get a linear eigenvalue problem

Az = �Bz with z =

�

x

�x

�

: (5.44)

It remains to show the equivalen
e of the spe
tra of QEP and linearized form, i.e.

det(A� �B) = det(�

2

C

2

x+ �C

1

x + C

0

x); (5.45)

whi
h follows from the fa
torization

A� �B =

�

0 I

�I ��C

1

� C

0

�

| {z }

det(:)=1

�

�

2

C

2

x+ �C

1

x+ C

0

x 0

0 I

��

I 0

��I I

�

| {z }

det(:)=1

:

Remark 5.2.12 The problem (5.44) is only expli
itly linear, impli
itly it is still quadrati
.

Treating the problem numeri
ally as linear problem without respe
ting the spe
tral stru
ture

of the eigenve
tor z (as we do), 
an lead to a supplementary error.
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Algorithm 5.2.13 Solve QEP by linearization via QZ-algorithm:

Build linearization matri
es (A;B) referring to (5.42) or (5.43)

Compute generalized S
hur form of (A;B):

T

A

=W

�

AZ , T

B

=W

�

BZ

for j = 1; ::2n

�

i

=

(T

A

)

ii

(T

B

)

ii

Solve (T

A

� �

i

T

B

)y = 0; z = Zy

z

1

:=

z(1 :n)

kz(1 :n)k

z

2

:=

z(n+1 : 2n)

kz(n+1 : 2nk

r

1

= �

2

i

C

2

z

1

+ �

i

C

1

z

1

+ C

0

z

1

r

2

= �

2

i

C

2

z

2

+ �

i

C

1

z

2

+ C

0

z

2

Choose z

j

with minimal r

j

as eigenve
tor x

i


orresponding to �

i

end for

Solving linearized problem via iterative methods:

We assume a subspa
e method whi
h 
an manage only with matrix*ve
tor produ
ts Av;Bv

and the system matri
es need not be given expli
itly. The produ
ts 
an be pie
ed eÆ
iently

together by the produ
ts 
orresponding to the smaller sized quadrati
 system matri
es

under exploiting the spe
ial stru
ture of A;B.

If we want to use a SEP-solver routine or if we are interested in interior eigenvalues and

want to utilize SI-methods, we have to provide B

�1

Av or (A � �B)

�1

Bv. An eÆ
ient

algorithm 
an be derived from fa
torization

B

�1

A =

�

0 I

�C

�1

2

C

0

�C

�1

2

C

1

�

; (5.46)

(A� �B)

�1

B =

�

I 0

�I I

��

(�

2

C

2

+ �C

1

+ C

0

)

�1

0

0 I

��

�C

1

� �C

2

�C

2

I 0

�

:(5.47)

Instead of solving systems of dimension (2n� 2n) via exploiting the spe
ial stru
ture the

solution of (n� n) systems will be suÆ
ient (e.g. sparse LU-fa
torization).

Algorithm 5.2.14 Compute k eigenvalues of QEP by linearization via subspa
e proje
tion

Provide eÆ
ient matrix-multipli
ation and shift-and-invert-routines

Compute k desired eigenvalues via subspa
e method: (�

i

; z

i

)

for i = 1; :::k

z

1

:=

z(1 :n)

kz(1 :n)k

z

2

:=

z(n+1 : 2n)

kz(n+1 : 2nk
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r

1

= �

2

j

C

2

z

1

+ �

j

C

1

z

1

+ C

0

z

1

)

r

2

= �

2

j

C

2

z

2

+ �

j

C

1

z

2

+ C

0

z

2

Choose z

j

with minimal r

j

as eigenve
tor x

i


orresponding to �

i

end for

The big advantage of linearization is the fa
t that, it 
an be solved with already introdu
ed

solvers for LEPs, but it has two main drawba
ks. First the 
orresponding linear problem

is double the dimension (2n � 2n) and se
ond in �nite arithmeti
 the spe
ial form of the

eigenve
tors z = (x; �x)

T

is not automati
ally implied. The information about the spe
ial

stru
ture is lost.

If this stru
ture is respe
ted in the algorithm, this leads to stru
ture preserving methods.

In these methods the proje
tion subspa
e has to be expanded the way the spe
ial stru
ture

of the original problem will be implied on the proje
ted problem. Moreover the proje
ted

problem has to be solved under respe
ting the stru
ture as well. For detailed information

see [11℄.

Ja
obi-Davidson for quadrati
 problems

Ja
obi-Davidson methods are used to avoid the disadvantage of lineraization (doubling

the dimension, not respe
ting stru
ture of eigenve
tor). It a
ts dire
tly on the QEP,

the subspa
e is expanded by 
orre
tions of the iterated Ritz-ve
tors analogously to the

Ja
obi-Davidson 
orre
tion equation for SEPs. The 
orre
tion equation 
an be again

solved approximately.

Expansion of subspa
e - eigenve
tor 
orre
tion:

Assume a given subspa
e V

k

with already 
omputed and 
hosen Ritz-pair (�; u := V

k

y)


orresponding to the k-th step proje
ted problem, i.e.

V

k

P

2

(�)V

k

y = 0: (5.48)

Analogous to the SEP version of Ja
obi-Davidson we want to expand the subspa
e by

improving the Ritz-ve
tor s with respe
t to the residual r := P

2

(�)s.

Assume (��;�s) is the exa
t orthogonal 
orre
tion of (�; s) to the a

ording eigenpair

solution

P

2

(� +��)(s +�s) = 0 with s?�s: (5.49)

Taking only �rst order terms of (5.49) into a

ount

P

2

(�+��)(s+�s) = P

2

(�)s+P

2

(�)�s+�� (2 � �C

2

+ �C

1

)

| {z }

P

0

2

(�)

s+O(���s+��

2

) (5.50)

leads to

�r = P

2

(�)�s+��P

0

2

(�)s with �s? s: (5.51)
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To expand the subspa
e we only need a 
orre
tion �s of the Ritz-ve
tor s, therefore we are

not interested in the term 
orresponding to the 
orre
tion ��. We 
an drop this term by

testing equation (5.51) in a spa
e orthogonal to ��P

0

2

(�)s but invariant for �r = �P

2

(�)s

and P

2

(�)�s. This holds for testing with the spa
e a

ording to (I � P

0

2

(�)ss

�

) (sin
e

s

�

P

2

(�)s = 0):

�r = (I � P

0

2

(�)ss

�

)P

2

(�)�s with �s? s: (5.52)

Then we restri
t the sear
h spa
e in (5.52) in order to ful�ll the orthogonality 
onstraint

impli
itly. We 
onstitute the generalized Ja
obi-Davidson 
orre
tion equation by

�r = (I � P

0

2

(�)ss

�

)(P

2

(�))(I � ss

�

)�s: (5.53)

We get an expansion v

k+1

by orthonormalizing the update �s , i.e. (approximate) solution

of the 
orre
tion equation (5.53), against the 
olumns of V

k

.

Algorithm 5.2.15 Ja
obi-Davidson method for QEP P

2

(�)x = 0

Proje
ted matri
es: M

k

i

:= V

�

k

C

i

V

k

Start settings:

Choose a (n�m) orthonormal matrix V

for i = 1; ::3 
ompute M

i

= V

�

C

i

V

Iteration:

for k = m; :::;m

max

� 1

Compute eigenpairs (�; y) of (�

2

M

2

+ �M

1

+M

0

)y = 0

Choose a desired Ritz-pair (�; u = V y) with kyk = 1

Compute residural r = P

2

(�)u

if (krk

2

< �) � = �; x = u; STOP

Solve Ja
obi-Davidson 
orre
tion equation (approximately) �u?u

(I � P

0

2

(�)uu

�

)P

2

(�) (I � uu

�

)�u = �r

Orthogonalize via Gram-S
hmidt �u againt V ! v

k+1

with kv

k+1

k = 1

for i = 1,2,3 M

k+1

i

=

�

M

k

i

V

�

C

i

v

k+1

v

�

k+1

C

i

V v

�

k+1

C

i

v

k+1

�

Expand V

k+1

= [V

k

; v

k+1

℄

end for;

Settings for restart

Choose best m Ritz-pairs (�

i

; u

i

) from last step

Orthonormalize fu

1

; :::; u

m

g ! V

m

Compute M

i

= V

�

i

C

i

V

i

for i = 1; 2; 3

Restart;
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We have presented the main ideas and theoreti
al ba
kground of the wide range of algo-

rithms for solving standard, general linear and quadrati
 non-hermitian eigenvalue prob-

lems. The dire
t QZ-solver states a robust and reliable solving routine, but sin
e it is dire
t,

it requires dire
t fa
torization and destroys any sparsity of the system matri
es.

The Arnoldi method with impli
it restarts was presented in more detail, be
ause it is

implemented in ARPACK, a software pa
kage we use for solving the inner-node matrix

problem. The method 
an handle sparse matri
es and need no expli
it knowledge of the

system-matri
es, if matrix-ve
tor produ
ts are supplied.

The Ja
obi-Davidson method was introdu
ed, sin
e it provides a method for solving

quadrati
 eigenvalue problems without linearization.

5.3 Available software pa
kages

There are some open sour
e solver routines for solving non-hermitian linear eigenvalue

problems. We introdu
e two of them: LAPACK whi
h provides the dire
t QR/QZ-solver

and ARPACK whi
h is the implemented version of the impli
itly restarted Arnoldi method.

We brie
y sket
h the solvable problem types and the input paramters one has to supply

for solving non-hermitian eigenvalue problems with ea
h pa
kage.

5.3.1 The Linear Algebra Pa
kage LAPACK/LAPACK++

LAPACK provides dense matrix 
lasses (
omplex and real), dire
t linear system solvers

(fa
torizations) and dire
t solvers for linear (generalized and standard) eigenvalue prob-

lems via QR-QZ-algorithm optional in 
omplex and real arithme
y.

LAPACK++ is the C++-extension of the Fortran90-kernel of LAPACK and provides

obje
t-oriented matrix 
lasses and interfa
es for symmetri
 solvers.

For the solution of non-hermitian generalized linear eigenvalue problems LAPACK [2℄ pro-

vides the routines DGGEV() for real and ZGGEV() for 
omplex problems. The routines

solve non-hermitian problems of the form Ax = �Bx, where A;B are square, by the QZ-

algorithm. Sin
e the solver 
an handle multiple and in�nite eigenvalues, there are no spe
ial

restri
tions on A;B. The whole spe
trum and on demand all left and/or right eigenve
tors

are 
omputed.

In order to apply the xGGEV()-routine, one only has to provide

� the problem dimensions and

� the matri
es A;B in dense LAPACK-matrix-
lass form.

In addition to the QZ-solver LAPACK provides balan
ing and s
aling routines xGGBAK

and xGGBAK, whi
h optionally prepro
ess the matri
es A;B. In the balan
ing routine the
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matrix pen
il gets permuted in order to a
hieve that A;B are as nearly upper triangular as

possible. The s
aling routine provides a similarity transformation to get that the rows and


olumns of the matri
es are as 
lose in norm to 1 as possible. These tools 
an improve the

speed and a

ura
y of the later applied QZ-algorithm. The transformations do not 
hange

the spe
trum, but a ba
k-transformation of the 
omputed eigenve
tors is required.

Sin
e in piezoele
tri
 problems the magnitude of elasti
 and ele
tri
 sti�ness matrix entries

di�er in a wide range, s
aling routines are essential to get a

urate results for this problem


lass. The problem of s
aling eigenvalue problems will be dis
ussed in Chapter 6 in more

detail.

5.3.2 Arnoldi Pa
kage (ARPACK/ARPACK++)

The Arnoldi pa
kage provides the Impli
it Restarted Arnoldi method sket
hed in algorithm

5.2.10. The theory of the underlying method is des
ribed in the users' guide for ARPACK

[23℄. In the users' guide of ARPACK++ [13℄ a detailed des
ription of the implementational

aspe
ts are given.

ARPACK++ is the obje
t-orientated extansion of ARPACK and has the same fun
tion-

ality.

The routines are separated into three problem 
lasses : real symmetri
 , real non-symmetri


and 
omplex non-hermitian problems. Within these three 
lasses are one di�ers between

generalized and standard eigenvalue problems. In the following we will 
on
entrate on the


omplex solver 
lasses.

Remark 5.3.1 on generalized eigenvalue problems solvable by the Arnoldi pa
kage

Sin
e ARPACK implements the M-Arnoldi method (des
ribed in subse
tion 5.2.3) for solv-

ing generalized problems, eigenvalue problems of the form Ax = �Bx 
an only be solved

under the assumption that B is hermitian positive-de�nite, while the matrix A is of arbi-

trary form.

The main advantage of Arnoldi-methods is that the matri
es have not to be given in expli
it

form, i.e. supplying the matrix-ve
tor produ
t is suÆ
ient. The Arnoldi-Pa
kages provides

solving-
lasses whi
h requires only user-de�ned matrix-ve
tor-produ
ts (ArCompStdEig,

ArCompGenEig).

There are two modes for ea
h problem 
lass 
on
erning the part of the spe
trum we want

to 
ompute:

In the regular mode one is interested in nev eigenvalues of largest/smallest magni-

tude or real/imaginary part. The user-supplied matrix-obje
t 
lasses have to provide the

problem dimension and for the standard problem the produ
t OPx = Ax! y and for the

generalized problem OPx = B

�1

Ax! y and Bx! z.



CHAPTER 5. THEORY OF ALGEBRAIC EIGENVALUE PROBLEMS 94

In the shift and invert mode we want to 
ompute nev eigenvalues 
losest to a


omplex shift �. The user-supplied matrix-obje
t 
lasses have to provide the problem

dimension and for standard problems the spe
tral shift operation OPx = (A� �I)

�1

and

for generalized problems OPx = (A� �B)

�1

! y and Bx! z.

The required input parameters in the 
onstru
tor of ArCompStdEig and ArCompGenEig

are

� the dimension of the problem n

� the number of wanted eigenvalues nev

� one (in 
ase of standard problem) or two (in 
ase of generalized problem) matrix

obje
ts with the above des
ribed matrix-produ
ts a

ording to the sele
ted mode

(OPx;Bx)

� (optional) the relative a

ura
y tol of Ritz values for the stopping 
riterion. By default

it is set to ma
hine pre
ision. If 
onvergen
e takes pla
e, the 
omputed eigenvalues

� ful�ll

j�� �

�

j < tol j�j

where �

�

is the exa
t eigenvalue of A whi
h is 
losest to �.

� (optional) the dimension of the 
omputed Arnildi-base n
v = nev+p. By default the

parameter is set to 2 � nev, whi
h is a good 
hoi
e due to experien
e [8℄.

� (optional) a starting ve
tor for the Arnoldi-pro
ess, by default a random ve
tor is

used.



Chapter 6

Appli
ation of Eigenvalue Theory

Now we 
ombine the previous two 
hapters, i.e. we analyze and solve the problems stated

in Chapter 4 with the theory and solvers provided in Chapter 5.

We have seen that spe
ial properties of the matrix pen
il imply spe
ial properties of the

spe
trum. Thus we analyze the spe
trum of the stated problems �rst and re
e
t how these

properties 
an be used in 
omputation. Then we 
he
k how open-sour
e eigenvalue solvers


an be applied to the posed problem-types. At the end of this 
hapter we deal with the

problem of s
aling eigenvalue problems, whi
h is ne
essary for getting reasonable results

in the 
ase of piezoele
tri
 problems.

We want to solve one of the following eigenvalue problems:

� The Inner-Node-Matrix Method leads to a larger sized, but linear eigenvalue problem

Find u = (u

i

; u

l

)

T

2 C

N

i

+N

l

and 
 2 C solving

 

K

ii

K

il

K

T

ir

0

!

�

u

i

u

l

�

= 


 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

u

i

u

l

�

. (6.1)

All matri
es are 
omplex and K

ll

; K

rr

; K

ii

are 
omplex-symmetri
.

� The SC-method leads to the quadrati
 problem

Sear
h 
 2 C ; y

l

6= 0 2 C

N

l

: 


2

S

12

y

l

+ 
(S

11

+ S

22

)y

l

+ S

T

12

y

l

= 0; (6.2)

where N

l

is of moderate size with two variants of given problems, i.e. expli
itly given

dense matri
es S

ij

of moderate size, whi
h were derived by inverting a matrix K

ii

or

se
ondly the matri
es are impli
itly given only by matrix-ve
tor produ
ts, for whi
h

we need K

�1

ii

. The matri
es are 
omplex and S

11

; S

22

are 
omplex symmetri
.

95
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Remark 6.0.2 The eigenvalue problems presented above are parameter-dependent, i.e.

they have to be solved in ea
h frequen
y step !, sin
e K = K(!) and S

��

= S

��

(!) .

In both problems we are interested in a few eigenvalues 
 near the unit 
ir
le, i.e. j
j � 1.

6.1 Spe
tral properties

6.1.1 The spe
tral 
onne
tion between the alternative methods

We analyze the 
onne
tion between the two methods. Sin
e the methods des
ribe the same

problem, one has to 
he
k if the two alternatives lead to the same result, i.e. if they have

the same spe
trum or at least if the interesting eigenvalues o

ur in both problems and if

these eigenvalues are equal and 
an be separated in the solution.

In the subse
tion on periodi
 sear
h and test-spa
es we have seen that the quadrati
 prob-

lem (6.2) arises from the linear problems (6.1) by forming the S
hur-
omplement. It is

obvious that the SC-problem has 2 � N

l

eigenvalues, sin
e the matri
es are of dimension

(N

l

� N

l

) and the problem is quadrati
, but that the Inner-Node-Matrix Problem has

N

i

+ N

l

eigenvalues. Whi
h eigenvalues do we drop in forming the S
hur-
omplement ?

Whi
h e�e
t is implied on the spe
trum of a matrix by forming the S
hur-
omplement ?

In order to determine the transformation of the spe
trum we have to state and examine

the SC-method as transformation of the INM-Problem. Applying the multipli
ation

�

I 0

(K

T

ir

+ 
K

T

il

)K

�1

ii

I

�

:(6:1)

from the left to the Inner-Node-Matrix Problem leads to

�

K

ii

K

il

+ 
K

ir

0 


2

S

12

+ 
(S

11

+ S

22

) + S

T

12

��

u

i

u

l

�

=

�

0

0

�

: (6.3)

The transformation matrix is regular and well-de�ned for all 
 �nite, i.e. the transformation

is similiar. Therefore, if �

�

denotes the set of �nite eigenvalues, �

�

(6:1)

= �

�

(6:3)

holds. Through

the de
oupling of the lines a

ording to u

i

and u

l

in (6.3), it is valid that

(
; u

l

) �nite eigenpair of (6:2), (
;

�

�K

�1

ii

(K

il

+ 
K

ir

)u

l

u

l

�

) �nite eigenpair of (6:3):

Therefore the �nite spe
tra of the INM and the SC Problem are equal, i.e.

�

�

(6:1)

= �

�

(6:2)

:
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6.1.2 On symple
ti
-type pen
ils

Analyzing the symmetries of the matrix blo
ks in the INM-Problem and the spe
ial prop-

erty that the quadrati
 problem is nearly of equal form as the a

ording inverted quadrati


eigenvalue problem one 
an state some helpful results on the form of the spe
trum.

Spe
ial stru
ture of the quadrati
 eigenvalue problem

Theorem 6.1.1

1. If (
; x

l

) is a right eigenpair of




2

S

12

x

l

+ 
(S

11

+ S

22

)x

l

+ S

T

12

x

l

= 0 (6.4)

then (

1




; �x) is a left eigenpair (�x denotes the 
omplex 
onjugate ve
tor).

2. For real-valued matri
es (undamped system: C = 0) 
omplex eigenvalues o

ur in

quadruples


 2 �

S

)

1




; �
;

1

�


2 �

S

(6.5)

Proof:

1. Statement is valid due to symmetry of the matri
es ((S

11

+ S

22

) = (S

11

+ S

22

)

T

):

Let (
; x) be a right eigenpair.

We view the left eigenvalue problem and transpose it

�

2

y

�

S

12

+ �y

�

(S

11

+ S

22

) + y

�

S

T

12

= 0 j

T

�

2

S

T

12

�y + �(S

11

+ S

22

)�y + S

12

�y = 0 j

1

�

2

:

S

T

12

�y +

1

�

(S

11

+ S

22

)�y +

1

�

2

S

12

�y = 0;

i.e. (

1

�

; �y) is a right eigenpair.

For all (
 = 0; x) right eigenpairs: x 2 N (S

12

) ) �x

�

S

T

12

= x

T

S

12

= 0, i.e. in�nite

left eigenpair (1; �x). Analogous for 
 =1.

2. Complex eigenvalue of real valued matri
es 
ome in 
omplex 
onjugate pairs.

Spe
ial stru
ture of the linear eigenvalue problem

The analogous result 
an be stated for the linear INM-Problem. Let ( 
;

�

x

y

�

) be a �nite

non-zero right eigenpair of

�

M

1

G

F

T

0

��

x

y

�

= 


�

0 �F

�G

T

�M

2

��

x

y

�

)

M

1

x = �(G + 
F )y

(F

T

+ 
G

T

)x = �
M

2

y

(6.6)
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If the problem a
ts related to the SC-method we 
an determine parameters �

1

; �

2

2 C

in su
h a way that (

1




;

�

�

1

�x

�

2

�y

�

) solves the left eigenvalue problem. Transposing the left

eigenvalue problem we get

�

M

1

F

G

T

0

��

�

1

x

�

2

y

�

=

1




�

0 �G

�F

T

�M

2

��

�

1

x

�

2

y

�

(6.7)

then we express in form of (6.6)

�

1

M

1

x = �

1




�

2

(G+ 
F )y

1




�

1

(F

T

+ 
G

T

)x = �

1




2

�

2

(
M

2

)y

Comparison of 
oeÆ
ients gives: 
 �

1

= �

2

With setting �

1

= 1 we state

Theorem 6.1.2

1. To ea
h �nite non-zero right eigenpair (
;

�

x

i

x

l

�

) of the Inner-Node-Matrix eigen-

value problem (6.6) (

1




;

�

�x

i


�x

l

�

is a left eigenpair,i.e. 
 2 � ,

1




2 �.

2. For real-valued systems (undamped C = 0) 
omplex eigenvalues of (6.6) o

ur in

quadruples:


 2 �

S

)

1




; �
;

1

�


2 �

S

(6.8)

Remark 6.1.3 on stru
ture preserving methods and symple
ti
 matri
es

The presented spe
tral properties 
an be used for stru
ture preserving methods.

The stru
ture of the Inner-Node-Matrix system reminds on symple
ti
 matri
es, i.e. a ma-

trix pen
il A� �B is 
alled symple
ti
 , if

AJ

T

= BJ

T

with J =

�

0 I

I 0

�

(6.9)

Stru
ture preserving methods for symple
ti
 matri
es are introdu
ed in Mehrmann [11℄.

The result that if 
 is a �nite eigenvalue, its re
ipro
al is one as well, 
an only be used in

form of stru
ture preserving methods in iterative methods whi
h work with left and right

eigenspa
es, i.e. two-sided Lan
zos methods. By using only methods whi
h work with

right eigenspa
es, e.g. Krylov methods only use right eigenve
tors in the 
onstru
tion of

the proje
tion subspa
es, we will not take the full advantage out of this spe
tral result.
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6.2 Solving the SC quadrati
 eigenvalue problem

Sin
e we intend to use the Impli
it Restarted Arnoldi solver and the QZ-Solver provided

by ARPACK or respe
tively LAPACK, we 
an only solve linear eigenvalue prob-

lems. To apply these solvers on the SC-problem, one has to linearize the problem the

way presented in (5.42) �rst and then 
all the solving routines with the linearized matri
es.

6.2.1 Linearization of the SC-quadrati
 eigenvalue problem

Linearization of problem (6.4) leads to a LEP with the same spe
trum

�

0 I

S

T

12

S

11

+ S

22

��

x

z

�

= 


�

I 0

0 �S

12

��

x

z

�

with z = 
x; (6.10)

abbreviated by L

A

y = 
L

B

y:

The generalized linear eigenvalue problem is a dense problem of "moderate" size

(2 �n

l

�2 �n

l

) with dense system matri
es. We are interested in eigenvalues with j
j near 1.

Remark 6.2.1 on the regualrity of the linearized matri
es L

A

; L

B

The matrix S

12

denotes the subdiagonal blo
k of the S
hur-
omplement of problem (6.1),

therefore we 
an not state its regularity. Sin
e we 
an not give any assertions on the reg-

ularity of L

A

and L

B

. shift-and-invert methods as well as a transformation to standard

problem of the GEP 6.10 is not well-de�ned.

Solving the linearized SC-problem with the dire
t QZ-solver In se
tion (5.3.1)

we des
ribed the fun
tioning and input parameters of the LAPACK routine xGGEV(),

whi
h provides the QZ-algorithm for real non-hermitian eigenvalue problems.

For using xGGEV() one has to provide the problem dimension and the linearized system

matri
es L

A

; L

B

in the dense matrix 
lass of LAPACK.

Solving the linearized SC-problem via the LAPACK-QZ-solver in
lude the following main

steps:

Under the assumption of already assembled sti�ness, mass and damping matri
es K;M;C

one has to perform

� the 
omputation K = K + i!C � !

2

M ,

� the separation/mapping of K in blo
k matri
es a

ording to inner, left and right

nodes,

� the 
omputation of S
hur-
omplement blo
ks via LU-fa
torization of K

ii

! S

12

; S

11

; S

22

;
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� the linearization matri
es L

A

; L

B

of (6.10)

� a 
all of LAPACK xGGEV() with L

A

; L

B

in ea
h frequen
y step.

Algorithm 6.2.2 (QZ-S
hur-PBCSolver) We assume ready-assembled sti�ness and

mass matri
es K;M , where rows and 
olumns a

ording to Diri
hlet nodes are already

dropped.

Provide matri
es a

ording to inner,left and right nodes ! K

st

;M

st

for s; t = i; l; r;

for all ! do

1.

if(damping) for s; t = i; l; r K

st

=

�

K

st

� !

2

M

st

�!(~�K

st

+

~

�M

st

)

!(~�K

st

+

~

�M

st

) K

st

� !

2

M

st

�

;

else for s; t = i; l; r K

st

= K

st

� !

2

M

st

;

2. LU-fa
torization of K

ii

, i.e. K

ii

= LU

3. Compute SC-blo
ks via ba
k-substitution in LU , i.e.

LU T

ir

= K

ir

; ! T

ir

S

12

= K

li

T

ir

;

S

22

= K

ri

T

ir

+K

rr

;

LU T

il

= K

il

! T

il

;

S

11

= K

li

T

il

+K

ll

;

4. Build LAPACK-dense matri
es L

A

; L

B

a

ording to (6.10);

5. xGGEV(2 �N

l

; 2 �N

l

; L

A

; L

B

; evals; eve
s);

6. Compute �

j

= jevals(j)j; �

j

= arg(evals(j)) (j = 1; :::; 2 �N

l

);

Choose n

ev

pairs (�

j

; �

j

) with smallest j�

j

j;

Remark 6.2.3 The Rayleigh-damping 
oeÆ
ients ~�;

~

� 
an be 
hosen frequen
y-dependent,

i.e. ~�(!);

~

�(!).

The main 
osts of Algorithm 6.2.2 
onsist in the 
omputation of the LU-fa
torization for

ea
h ! and in the solution of the dense, but moderate-sized (2 � N

l

� 2 � N

l

) eigenvalue

problem for ea
h !.
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Solving the SC-problem with the Arnodli-pa
kage? Not possible. Due to Re-

mark 6.2.1 the linearized problem (6.10) 
annot be solved by the Arnoldi pa
kage. Nor

does it ful�ll the 
riteria of the generalized solver (L

B

is not hermitian positive de�nite)

neither 
an we state a well-de�ned similar standard eigenvalue problem.

6.3 Solving the Inner-Node-Matrix eigenproblem

On in�nite and zero eigenvalues

Through re
e
tions on the rank and nullspa
es of the system matri
es we want to get an

idea of the number of interesting eigenvalues in the system. Therefore we 
ompute the

number of eigenvalue we are never interested in, i.e. zero and in�nite eigenvalues, sin
e this

is equivalent with j�j =1:

In�nite right eigenve
tors (x; y)

T

lie in the nullspa
e of B :=

�

0 �K

ir

�K

li

�K

ll

�K

rr

�

,

sin
e N

i

+N

l

= rk[B℄ + dim(N )(B) we 
ompute the rank of B (rk[B℄). By the regularity

of K

ll

+K

rr

we get rk[B℄ � N

l

+ rk[K

il

℄

| {z }

:=m

l

�N

l

� 2N

l

and hen
e

dim(N (B)) = N

i

�m

l

� N

i

�N

l

The dimension of the nullspa
e of A :=

�

K

ii

K

il

�K

ri

0

�

gives the number of zero eigenval-

ues. Through rk[A℄ � N

i

+ rk[K

ri

℄

| {z }

:=m

r

�N

l

� N

i

+N

l

there are N

l

�m

r

� 0 zero eigenvalues.

The main result is that the INM-Problem has at least N

i

�N

l

in�nite eigenvalues, i.e. we

are interested in at most 2 �N

l

eigenvalues of the N

i

+N

l

eigenvalues of the linear problem.

6.3.1 Spe
tral transformation

Setting up the problem we mentioned the fa
t that A�B is 
omplex symmetri
 and regular.

In order to a
hieve a more regular problem, the �rst part of a spe
tral transformation results

in

 

K

ii

K

il

+K

ir

K

T

ir

+K

T

il

K

ll

+K

rr

!

�

u

i

u

l

�

= (
 � 1)

 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

u

i

u

l

�

(6.11)

General spe
tral transformations are used to shift the interesting part of the spe
trum to

the end of the spe
trum whi
h 
an be faster approximated by the most numeri
al methods.

We have applied the shift to get a regular symmetri
 matrix on right side. Therefore we 
an

treat the generalized problem as a standard one (without expli
itly 
omputing (A�B)

�1

B).



CHAPTER 6. APPLICATION OF EIGENVALUE THEORY 102

 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

y

i

y

l

�

= �

 

K

ii

K

il

+K

ir

K

T

ir

+K

T

il

K

ll

+K

rr

!

�

y

i

y

l

�

(6.12)

with � = 1=(
 � 1)

Remark 6.3.1 on the spe
trum of (6.12)

1. The transformed INM-Problem (6.12) has only �nite eigenvalues, whi
h seperate into

2 �N

l

non-zero ones and N

i

�N

l

zeros.

2. The "symple
ti
" property of the spe
trum transforms to

� 2 �

�

(6:12)

, ��� 1 2 �

�

(6:12)

:

3. The part of the spe
trum we are interested in, i.e. j
j near 1, distributes un
lustered

over C n f0g.

4. The in�nite eigenvalues of (6.1) are shifted to 0.

Extra
ting the interesting part of the spe
trum There is no obvious 
lustering of

the transformed spe
trum a

ording to the distan
e of 
 =

1

�

+ 1 from the unit 
ir
le.

But we know that the interesting eigenvalues satisfy � 6= 0 and that there are only 2 �N

l

eigenvalues for whi
h this holds. Therefore, one way to extra
t the interesting part is to


ompute the 2 �N

l

eigenvalues of largest magnitude and separate the interesting ones out

of the 
omputed set. Sin
e in pra
ti
al problems N

l

� N

i

the possibility to redu
e the


omputation on only 2 �N

l

instead of N

i

+N

l

eigenvalues is of big numeri
al advantage in

the use of iterative methods.

Remark 6.3.2 Applying the shift has the disadvantage that the desired part of the spe
-

trum, whi
h is 
hara
terized in the original problem by the values near the unit-
ir
le, get

spread over the whole 
omplex domain ex
luding zero. But �rst 
omputing eigenvalues of

largest magnitude is of mu
h faster 
onvergen
e than 
omputing small one (harmoni
 Ritz

values) and se
ondly we will see that this transformation is ne
essary in order to use the

Arnoldi-pa
kage.
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Solving the Inner-Node-Matrix Problem with a dire
t QZ-solver The LAPACK-

QZ-solver 
an be dire
tly applied to the original INM-Problem (6.1) after 
onversion to

dense LAPACK matri
es, the following steps:

Under the assumption of already assembled sti�ness,mass and damping matri
es K;M;C

one has to perform

� the 
omputation K = K + i!C � !

2

M ,

� separation/mapping of K in blo
k matri
es a

ording to inner, left and right nodes,

� building up the matri
es A;B (in LAPACK-DENSE matrix type) a

ording to INM-

Problem (6:1),

� a 
all of LAPACK xGGEV() with A;B

in ea
h frequen
y step.

Algorithm 6.3.3 (QZ-LEP-PBCSolver) We assume ready-assembled sti�ness and

mass matri
es K;M , where rows and 
olumns a

ording to Diri
hlet nodes are already

dropped.

Provide matri
es a

ording to inner,left and right nodes ! K

st

;M

st

for s; t = i; l; r;

for all ! do

1.

if(damping) for s; t = i; l; r K

st

=

�

K

st

� !

2

M

st

�!(~�K

st

+

~

�M

st

)

!(~�K

st

+

~

�M

st

) K

st

� !

2

M

st

�

;

else for s; t = i; l; r K

st

= K

st

� !

2

M

st

;

2. Build LAPACK-DENSE matri
es A;B a

ording to (6.1);

3. xGGEV(N

l

+N

i

; N

l

+N

i

; A; B; evals; eve
s);

4. Compute �

j

= ln(jevals(j)j); �

j

= arg(evals(j)) (j = 1; :::; N

i

+N

l

) ;

Choose n

ev

pairs (�

j

; �

j

) with smallest j�

j

j;

Solving the Inner-Node-Matrix Problem with IRAM Neither the inner node prob-

lem (6.1) nor the problem (6.12) have a hermitian, positive matrix B, therefore the gener-

alized Arnoldi solver 
annot be applied. But the problem (6.12) 
an be transformed into a

standard eigenvalue problem

(A� B)

�1

Bx = �x

where we are sear
hing for the 2 �N

l

eigenvalues of largest magnitude.
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The main advantages of using an Arnoldi solver that we only sear
h for n

ev

= 2 � N

l

eigenvalues of the (N

i

+ N

l

� N

i

+ N

l

) eigenvalue problem and that one suÆ
es with

matrix-ve
tor produ
t OPx of the transformed system. Therefore we have to provide a

matrix-obje
t 
lass in
luding the OPx operation (A� B)

�1

Bx.

Under the assumption of already assembled sti�ness, mass and damping matri
es K;M;C

one has to perform

� the 
omputation K = K + i!C � !

2

M ,

� separation/mapping of K in blo
k matri
es a

ording to inner, left and right nodes,

� set up sparse fa
torization of (A�B) = LL

T

, de�ne sparse multipli
ation with B by

multipli
ations of blo
ks K

st

,

� a 
all of ArnoldiPa
kage with OPx.

in ea
h frequen
y step.

Algorithm 6.3.4 (Arnoldi-LEP-PBCSolver) We assume ready-assembled sti�ness

and mass matri
es K;M , where rows and 
olumns a

ording to Diri
hlet nodes are already

dropped.

Provide matri
es a

ording to inner, left and right nodes ! K

st

;M

st

for s; t = i; l; r;

for all ! do

1.

if(damping) for s; t = i; l; r K

st

=

�

K

st

� !

2

M

st

�!(~�K

st

+

~

�M

st

)

!(~�K

st

+

~

�M

st

) K

st

� !

2

M

st

�

;

else for s; t = i; l; r K

st

= K

st

� !

2

M

st

;

2. Provide 
lass for sparse OPx.MultMv(x) = (LL

T

)

�1

Bx,

i.e. sparse Cholesky-fa
torization

LL

T

= A� B

3. ArnoldiPa
kage(N

l

+N

i

; OPx; n

ev

= 2 �N

l

; evals; eve
s);

4. Compute �

j

= ln(j1 +

1

evals(j)

j); �

j

= arg(

1

evals(j)

) (j = 1; :::; 2 �N

l

) ;

Choose n

ev

pairs (�

j

; �

j

) with smallest j�

j

j;

For ea
h frequen
y one has to provide on
e a sparse-Cholesky fa
torization of the 
omplex-

symmetri
 matrix (A�B)

�1

. For ea
h matrix-mulitpli
ation in the Arnoldi solver one has

to perform

� a sparse matrix-ve
tor produ
t y = Bx! y,

� solving LL

T

w = y ! w, i.e. forward-ba
kward substitution.
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6.4 S
aling of eigenvalue problems

Solving piezoele
tri
 problems a

ording to Algorithms 6.2.2 - 6.3.4 leads to 
onvergen
e,

but gives irrational results. We explain this problems on standard eigenvalue problems.

There is a roundo�-error around �

M

kAk with �

M

denoting the ma
hine pre
ision, if one

solves a standard eigenvalue problem Ax = �x. The system matrix due to piezoele
-

tri
 problems is very ill-
onditioned and therefore 
onverged eigenvalues 
an be senseless.

Through s
aling methods one wants to redu
e the norm of A by a similarity transformation

DAD

�1

.

Matrix Balan
ing used in QZ-algorithm presented for standard problems

There are two steps in matrix balan
ing, i.e. permutation and s
aling [2℄.

1. Permutation has the e�e
t that A is transformed by a similarity transformation

to blo
k upper triangular form in order to a
hieve that later algorithm have faster


onvergen
e. P is permutation matrix.

~

A = PAP

T

=

0

�

~

A

11

~

A

12

~

A

13

0

~

A

22

~

A

23

0 0

~

A

33

1

A

The blo
k

~

A

11

;

~

A

33

are upper triangular, while A

22

has general form, i.e. the matrix

is in S
hur-form "outside" the blo
k A

22

. One has to mention that often no a

ording

permutation 
an be found.

Permuting results in faster 
onvergen
e of later QR-iterations.

2. S
aling is the main tri
k for solving piezoele
tri
 problems, applied before an eigen-

value routine it improves the a

ura
y a
hieved afterwards. We want to apply simi-

larity transformations in su
h a way that the matrix A is balan
ed the way that the

norms of rows and 
olumns are equal in magnitude.

~

~

A = D

~

AD

�1

with D =

0

�

I 0 0

0 D

�1

22

0

0 0 I

1

A

:

Sin
e in the balan
ing routine only similarity transformation are used, the spe
trum does

not 
hange, i.e. �(A) = �(

~

A) = �(

~

~

A), but it has to bear in mind that the eigenve
tors need

to be ba
k-transformed, therefore one has to store the transforming matri
es. This method

of balan
ing is used in the QZ-algorithm and is provided in LAPACK by the xGEBAL()

routine.
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For s
aling generalized eigenvalue problems one provides two regular matri
es D

1

; D

2

the

way that D

1

AD

2

; D

1

BD

2

have row and 
olumn norms near 1. Then we solve the similar

eigenvalue problem

D

1

AD

2

x = 
D

1

BD

2

x:

6.4.1 S
aling of piezoele
tri
 problems

A piezoele
tri
 problem based s
aling 
an be applied in order to a
hieve reasonable rea-

sonable results in the Arnoldi method as well. The elements of the sti�ness blo
ks of the

piezoele
tri
 problem are of following magnitude

K

uu

� O(10

10

)

K

��

� O(10

�10

)

K

u�

� O(1):

Therefore with the s
aling matrix D =

�

10

�5

I

N

u

0

0 10

5

I

N

�

�

the transformed matrix

satis�es

~

K = DKD =

�

10

�10

K

uu

K

u�

K

�u

10

10

K

��

�

(6.13)

Applying this s
aling on the inner, left and right blo
ks of K, implies that the transformed

generalized eigenvalue problem a

ording to (6.12) is mu
h better s
aled, i.e. all elements

are of order O(1).

Tri
k: S
aling of material data Sin
e the blo
k matri
es of the sti�ness matrix depend

linearly on the material data, the following s
aling of the material tensors and mass density

(notation a

ording to Chapter 2)

~


E

= 10

�10




E

; ~"

S

= 10

10

"

S

; ~e = e; ~� = 10

�10

� (6.14)

is equal to the transformation (6.13). One only has to ensure that the material data

also enter linearly into the boundary 
onditions. This holds for the boundary 
onditions

presented in Chapter 4, i.e. for Diri
hlet, Neumann and periodi
 boundaries.

Con
lusion: If the s
aling of material data a

ording to (6.14) is applied during assembling

of sti�ness and mass matri
es, the presented Algorithms 6.2.2 - 6.3.4 lead in general to

more a

urate results.



Chapter 7

Numeri
al Results

In this 
hapter we present results of simulations of the dispersion 
ontext of SAW-�lter-type

stru
tures. We start with simulating the in
uen
e of periodi
 pertubations on the solution

of a pure me
hani
al model problem. Therefore the elasti
 strain problem is solved �rst on

a non-perturbed in�nite strip and then for a periodi
ally perturbed strip. In this numeri
al

experiment the e�e
t of periodi
 perturbation on the dispersion 
ontext 
an be seen very

well.

The piezoele
tri
 problem is solved for TV- and GSM-�lter related periodi
 stru
tures.

Finally,we give some 
on
luding remarks on the quality of the developed mathemati
al

model a

ording to the gained results.

Before presenting the numeri
al results we give some remarks on the implmentation, the

presentation of the results:

On the implementation The FE-matrix assembling is done by the Finite Element

Pa
kage FEPP [33℄ developed at the University of Linz.

Three di�erent dispersion 
ontext solvers, developed within this thesis, are implemented

and 
ompared to ea
h other in this 
hapter:

� Solving the S
hur-
omplement problem via linearization and under appli
ation of the

dire
t Lapa
k-QZ solver, i.e. Algorithm 6.2.2

� Solving the Inner-node problem with the dire
t Lapa
k-QZ solver, i.e. Algorithm

6.3.3.

� Solving the Inner-node problem with the iterative Arnoldi-pa
kage and with n

ev

=

2 �N

l

eigenvalues to 
ompute, i.e. Algorithm 6.3.4.

We set the number of 
omputed Arnoldi ve
tors to 2 �n

ev

and the a

ura
y for the stopping


riterion of the Arnoldi solver to working pre
ision. This setting implies that Arnoldi and

107
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dire
t QZ-solver a
hieve equal a

ura
y. Therefore we 
an 
ompare the solvers to ea
h

other by the 
al
ulation times required.

On the presentation of simulated dispersion diagrams One gains the propagation


onstants (�; �) out of the 
omputed eigenvalues 
 through the 
ontext 
 = e

(�+i�)p

.

Sin
e e

(�+i�)p

= e

(�+i(�+

2�k�

p

))p

for all k 2 Z, � 
an not be uniquely 
al
ulated. In general

one de�nes � in (��; �℄.

In general we present the dispersion 
urves by the fun
tional 
ontext (� � p; � � p; f) for

given frequen
ies f =

!

2�

and � 2 (��; �℄.

SAW-designers are mainly interested in the dispersion 
ontext near stop-bands regions,

whi
h as already mentioned in Chapter 2 is 
hara
terized by propagation 
onstants of the

form (�; � =

�

p

) and propagating modes of the form (0; �). Therefore for presenting zooms

in the stop-band region � is 
ontinued to the region [0;

2�

p

).

7.1 The e�e
t of periodi
 perturbations on a pure me-


hani
al problem

We want to present the in
uen
e of periodi
 perturbations on the dispersion 
ontext

of the elasti
 plane strain problem. We 
ompare diagrams with and without periodi


perturbations, whi
h is modeled by a periodi
al arrangement of Diri
hlet (�

D

) and

Neumann (�

N

) boundaries.

Under the assumption of time-harmoni
 ex
itation, i.e. we assume u(x; t) = u(x) �e

i!t

2 C

2

we state the strong formulation of elasti
 plane strain problem on the in�nite strip 


S

by:

Find u = (u

1

; u

2

) : 


S

! C

2

satisfying

�divT = !

2

� u in 


S

with T = 
 Su (Hook's law)

u = 0 on �

D

T � n = 0 on �

N

(7.1)

with S =

�

�u

1

�x

1

1

2

(

�u

1

�x

2

+

�u

2

�x

1

)

1

2

(

�u

1

�x

2

+

�u

2

�x

1

)

�u

2

�x

2

�

and 
 = 


E

the elasti
 sti�ness tensor of

the used substrate material.
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We 
al
ulate the dispersion 
ontext for the geometries shown in Figure 7.1 and 7.1.

GD

GN

GD

......

GDGD

GN

G
L

GRpWW
S

x

1

2

x

1

11

Figure 7.1: Underlying geometry without periodi
 perturbations
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......
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x

1

2

x

1

1

Figure 7.2: Underlying geometry with periodi
 perturbations

Restri
ted to the 
orresponding unit-
ell the stated model problem 7.2 turns into

�divT = !

2

� u in 


p

with T = 
 Su (Hook's law)

u = 0 on �

D

T � n = 0 on �

N

u(x

1

; x

2

) = u(x

1

+ p; x

2

) for (x

1

; x

2

) 2 �

L

(7.2)

In the following presented results, red points 
orrespond to propagation 
onstants of the

form (� � p; �), i.e. the re
e
ted waves interfere 
onstru
tively, green points 
orrespond to

propagation 
onstants of the form (0; � � p), i.e. pure propagating modes and blue points

to (�; �), i.e. the remaining 
al
ulated 
omplex propagation 
onstants.

E�e
t of periodi
 perturbations: 3D and 2D representation
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Figure 7.3: Elasti
 plane strain without periodi
 perturbation
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Figure 7.4: Elasti
 plane strain with periodi
 perturbation
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The red rings in Figure 7.4 represent the stop-bands, while in the non-perturbed analog

the pure-propagating modes are 
ontinuous.
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Figure 7.5: Elasti
 plane strain on non-perturbed geometry

0

1000

2000

3000

4000

5000

6000

7000

8000

-2 -1 0 1 2 3 4 5 6

o
m

e
g
a
/2

/P
i

green:(0,beta.p), red:(c.p,Pi)

Figure 7.6: Elasti
 plane strain on periodi
 geometry
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7.2 Simulation of piezoele
tri
 problems

In Chapter 2 we presented two piezoele
tri
 models:

� Model with 3 degrees of freedom (dofs) per node : u

1

; u

2

;�

We assume no displa
ement in the x

3

-dire
tion and displa
ement and potential are

not depending on the x

3

-
oordinate, i.e. u(x

1

; x

2

; t) 2 R

2

and �(x

1

; x

2

; t) 2 R.

This problem is simulated with the real-life data of a TV-�lter.

� Model with 4 degrees of freedom per node : u

1

; u

2

; u

3

;�

Due to the anisotropy of the material wave 
omponents in the x

3

-dire
tion 
an o

ur

in pra
ti
al appli
ations. The deviation of the ideal 
ase is 
onsidered by allowing


onstant behavior of the �elds in x

3

-dire
tion:

�u

i

�x

3

= 0 for u = (u

1

; u

2

; u

3

)

T

2 R

3

��

�x

3

= 0

:

The diagram of dispersion for this problem type is simulated with the data of a

GSM-�lter.

In both models we simulate short-
ir
uited ele
trodes, i.e. we set the potential to zero on

the ele
trodes 


El

.

The 
enter frequen
y of the stop-band

The frequen
y, in whi
h a periodi
ally arranged ele
trodes yields in maximal re
e
tion, i.e.

the re
e
ted waves interfere 
onstru
tively, satis�es

f




=

v

2p

: (7.3)

v denotes the propagation velo
ity of a surfa
e wave in the material. SAWs have the

property that their velo
ity v is mu
h slower than ele
tromagneti
 waves. The frequen
y

f




is supposed to approximate the 
enter of the stop-band in the dispersion 
ontext.

The propagation of Rayleigh-waves in anisotropi
 materials depend on the 
rystal 
lass and

the orientation ("Euler Angles") with respe
t to the propagation dire
tion. Therefore the

velo
ity of surfa
e waves depends on the used material, its 
rystal 
lass and the dire
tion of

propagation. Sin
e we want only to get an idea in whi
h frequen
y domain the stop-band


an be suspe
ted, we suÆ
e with approximative values for the velo
ity v of Rayleigh waves.

For exa
t values due to 
rystal 
lasses and orientation see Auld [5℄.

v

Lithium Niobate LiNbO

3

3300 � v � 3900m=s

Lithium Tantalate LiTaO

3

3100 � v � 3300m=s

Sili
on Si � 4900m=s



CHAPTER 7. NUMERICAL RESULTS 113

On the underlying mathemati
al model and plate modes

Through using Diri
hlet or Neumann 
onditions on the bottom of the used geometry we

simulated a piezoele
tri
 strip with �nite depth. This means that we model a plate and

there are plate modes as well as surfa
e waves in the results. These plate modes 
an be

�ltered out, by 
omputing the energy in the whole domain and 
ompare it to the energy

on the half domain. If the energy is 
on
entrated near the surfa
e, we have a surfa
e wave.

This method is used in the do
tor thesis of M.Hofer [14℄. The problem is only mentioned

for 
ompleteness reasons and will not be further treated within this thesis.

Piezoele
tri
 problems

Dispersion 
ontext of TV-�lter-like stru
ture: d = 2

We simulate the piezoele
tri
 problem with 3 degrees of freedom (u 2 C

2

;� 2 C ) under

the usage of Lithium Niobate (LiNbO

3

) for piezoele
tri
 substrate and aluminium for

ele
trodes. The used material data are listed in Appendix A.

GG
L R

W
El

p = 0.133  E-05

h = 0.2 E-06el
Al

W
S

LiTa0
3

h = 0.665 E-05S

p/2

Figure 7.7: Unit 
ell of simulated TV �lter problem

With the geometry data of the unit-
ell presented Figure 7.7 one 
an estimate a 
enter

frequen
y near

3:3 10

7

Hz � f

0

� 3:9 10

7

Hz:

We simulate the piezoele
tri
 problem (4.96) for d = 2 and S;E a

ording to (4.3)-(4.4)

on the unit 
ell presented in Figure 7.7.
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Figure 7.8: Dispersion 
ontext for TV-�lter stru
ture (short-
ir
uited ele
trodes)
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Figure 7.9: Short-
ir
uited TV-�lter-stru
ture: zoom in stopband region (� periodi
ally


ontinued)
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Figure 7.10: TV-�lter-stru
ture: 2D-plot of pure propagating modes in stop-band region

Figure 7.11: TV-�lter-stru
ture: 2D plot of stop-bands
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Dispersion 
ontext of GSM-�lter-like stru
ture: d = 3 For simulating the piezo-

ele
tri
 problem with 4 degrees of freedom (u

1

; u

2

; u

3

;�) in ea
h node we use the following

unit 
ell of a GSM-�lter-related periodi
 stru
ture shown in Figure 7.12

� Material for piezoele
tri
 substrate: Lithium Tantalate LiTaO

3

� Material for ele
trodes: Aluminium Al

GG
L R

W
El

p = 0.133  E-05

h = 0.2 E-06el

Al

W
S

LiTa0
3

h = 0.665 E-05S

p/2

Figure 7.12: Unit 
ell for simulating LiTa0

3

GSM-�lter-stru
ture (d = 3)

We use a mesh of re
tangles, with 36 nodes (� 4 degrees of freedom) on ea
h periodi
 bound

and N

i

= 4 �n

i

= 1386 degrees of freedom of inner nodes and a unit 
ell of the form shown

in Figure 7.12.

With these settings we get the dispersion 
ontext (3D) shown in Figure 7.2. A zoom to

the stop-band is given in Figure 7.2. For a better presentation of the stop-band region,

the 
al
ulated propagation 
onstants are periodi
ally 
ontinued, i.e. � 2 [0;

2�

p

℄.
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Figure 7.13: Dispersion 
ontext for LiTaO
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GSM Filter: zoom in stop band region (� periodi
ally 
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7.2.1 Comparison of three algorithms

Now we want to 
ompare the three implemented algorithms, developed in Chapter 6 and

itemized on
e more at the beginning of this 
hapter. The parameters were set the way

the di�erent solvers yield the same a

ura
y, therefore one 
an analyze their quality by


omparing the 
omputational times required fo solving the dispersion 
ontext for one

frequen
y step f =

!

2�

for the presented GSM-�lter-type problem.

Sin
e the used FE-software pa
kage FEPP does not provide a sparse matrix 
lass for


omplex matri
es, the presented algorithms are tested using dense matri
es, i.e. the problem

dimension is bounded and the main 
omputational 
osts are governed by dense matrix

operatations. But even using dense matri
es, we get reasonable and satisfying results. The

solvers 
an be analyzed and 
ompared. In the following tabulars the 
omputational 
osts

of ea
h step in the various solver is listed. One sees that the main 
osts bases on the dense

matrix multipli
ation, but with these results one 
an predetermine the behaviour of the

solvers under the usage of sparse matri
es.

One frequen
y step: No Damping, GSM 4 dofs

Complex non-hermitian IRAM in se
 in se
 (Arnoldi)

Time for 
reating and solving EP (omega) 847

Time for ArSolve (omega) 807

Time for Cholesky-fa
torization 100

Time for Arnoldi loop (without 
reating problem) 670

Time for Op.x 632

Time for reorthognolaziation 14

Time for solving Hessenberg subeigenproblem 6

Time for getting QR-shifts 0.002

Total number of update iterations 1

Total number of OPx operation 261

Total number of reorthogonalization steps 260

Total number of restarts 0

QZ-S
hur-PBC-Solver in se


Time for 
reating and solving EP (omega) 326

Time for LU-inversion (S
hurComplement) 256

Time for 
al
ulate S
hur-Mati
es 58

Time for solving QEP 9
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QZ-LinerEP-Solver in se


Time for 
reating and solving LEP (omega) 1952

Time for solving LEP via QZ 1943

One frequen
y step: Rayleigh-Damping, GSM-stru
ture 4 dofs

Complex non-hermitian IRAM in se
 in se
 (Arnoldi)

Time for 
reating and solving EP (omega) 800

Time for Cholesky-fa
torization 99

Time for Arnoldi loop (without 
reating problem) 622

Time for Op.x 632

Time for reorthognolaziation 14

Time for solving Hessenberg subeigenproblem 6

Time for getting QR-shifts 0.0002

Total number of update iterations 1

Total number of OPx operation 261

Total number of reorthogonalization steps 259

Total number of restarts 0

QZ-S
hur-PBC-Solver in se


Time for 
reating and solving EP (omega) 3300

Time for LU-inversion (S
hurComplement) 2500

Time for 
al
ulate S
hur-Mati
es 474

Time for solving QEP 65

QZ-LinerEP-Solver in hours

Time for 
reating and solving LEP (omega) 9 h

Looking at the 
omputation times of the various steps we 
an expe
t an immense a

eler-

ation by the usage of sparse fa
torizations, sparse matri
es and sparse matrix-operations.

The 
omparison of 
omputational requirments show that the SC-QZ-solver and the INM-

Arnoldi-solver are suited also for bigger problems.
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Rayleigh-damping and absorbing boundary 
onditions

The problem of Rayleigh-damping is not of big pra
ti
al need for these problem types, sin
e

the used piezoele
tri
 substrates are nearly lossless. Moreover, if one wants to a
hieve rea-

sonable results, one has to be aware of frequen
y dependent Rayleigh-damping parameters,

whi
h are very tri
ky to state. The main 
ause for posing the problem of Rayleigh-damping

in the problem formulation of this thesis is that Rayleigh-damping problem leads to 
om-

plex problems as the 
onsideration of absorbing boundary 
onditions (ABC) do. These

boundary 
onditions provide a possibility for modeling bulk wave radiation shown in the

dispersion diagram in Chapter 2. ABCs are not 
onsidered in the models used within this

thesis, but an expansion of the implemented solvers to these methods should be possible.

Absorbing boundary 
onditions of �rst and se
ond order are modeled in [14℄.



Chapter 8

Con
lustions and Further Remarks

Within this thesis the full ma
hinary of mathemati
al problem solving was presented. We

started with the physi
al problem formulation. We stated a step-by-step mathemati
al

modeling using Floquet-Blo
h theory for modeling periodi
 stru
tures, 
oupled �eld theory

due to the piezoele
tri
 e�e
t and 
omplex problems due to damping e�e
t (or absorbing

boundary 
onditions). Three solution approa
hes, i.e. "Gamma-Given-Method" for pure-

propagating modes, SC-Method and INM-Method, were developed and analyzed. The

methods were developed within this thesis and therefore no referen
es 
an be given. A 
om-

prehensive theory for algebrai
 eigenvalue problems were given and applied for 
onstru
ting

algorithms for solving the SC- and the INM-method with an ansatz to stru
ture preserving

methods. Three di�erent solvers were implemented and 
ompared. Within numeri
al

experiments the in
uen
e of periodi
 perturbations on dispersion diagrams were presented.

The work 
an dire
tly be 
ontinued in the following dire
tions:

� improve presented solvers by using sparse matrix operations

and with more mathemati
al work

� absorbing boundary 
onditions of arbitrary order

� or introdu
ing in�nite elements in the dis
retization in order to model bulk wave

radiation.
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Appendix A

Material data used in simulation

We state the 
oeÆ
ients of pra
ti
al matirials used in simulation of GSM-�lter. The data

are 
ited out of [18℄.

The 
oeÆ
ient tensors are des
ribed in the form a

ording to

T = 


E

S � e

T

E

D = eS + "

S

E

with T =

2

6

6

6

6

6

6

4

T

xx

T

yy

T

zz

T

yz

T

xz

T

xy

3

7

7

7

7

7

7

5

; S =

2

6

6

6

6

6

6

4

S

xx

S

yy

S

zz

2 � S

yz

2 � S

xz

2 � S

xy

3

7

7

7

7

7

7

5

:

Piezoele
tri
 materials used for piezoele
tri
 substrate

LithiumNiobate (LiNbO

3

)

Me
hani
al sti�ness tensor




E

=

0

B

B

B

B

B

B

�

22:7965 6:519 6:519 0 0 0

6:519 19:8432 5:4775 0 �0:7884 0

6:519 5:4775 19:8432 0 0:7884 0

0 0 0 7:18285 0 �0:7884

0 �0:7884 0:7884 0 5:9645 0

0 0 0 �0:7884 0 5:9645

1

C

C

C

C

C

C

A

: 10

10

Newton=m

2

Piezoele
tri
 
oupling tensor

e =

0

�

�1:7847 �0:3062 �0:3062 0 0 0

0 0 0 �2:4365 0 �3:7159

0 �2:4365 2:4365 0 �3:7159 0

1

A
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Diele
tri
 permittivity tensor

"

S

=

0

�

2:364245 0 0

0 4:106988 0

0 0 4:106988

1

A

: 10

�10

As=Vm

Density of material � = 4628kg=m

3

Lithium Tantanate, 0 deg 
ut (LiTaO

3

)

Me
hani
al sti�ness tensor




E

=

0

B

B

B

B

B

B

�

23:28 4:65 8:36 �1:05 0 0

4:65 23:28 8:36 1:05 0 0

8:36 8:36 27:59 0 0 0

�1:05 1:05 0 9:49 0 0

0 0 0 0 9:49 �1:05

0 0 0 0 �1:05 9:315

1

C

C

C

C

C

C

A

: 10

10

N=m

2

Piezoele
tri
 
oupling tensor

e =

0

�

0 0 0 0 2:64 �1:86

�1:86 1:86 0 2:64 0 0

�0:22 �0:22 1:71 0 0 0

1

A

Diele
tri
 permittivity tensor

"

S

=

0

�

3:621286 0 0

0 3:621286 0

0 0 3:76295

1

A

: 10

�10

As=V m

Density of material � = 7454kg=m

3

Non-Piezoele
tri
 material used for ele
trodes

Aluminium (Al)

Me
hani
al sti�ness tensor




E

=

0

B

B

B

B

B

B

�

10:78 5:493 5:493 0 0 0

5:493 10:7800 5:493 0 0 0

5:493 5:493 10:78 0 0 0

0 0 0 2:645 0 0

0 0 0 0 2:645 0

0 0 0 0 0 2:645

1

C

C

C

C

C

C

A

: 10

10

N=m

2
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Piezoele
tri
 
oupling tensor (non-piezoele
tri
 material)

e = e

T

= 0

Diele
tri
 permittivity tensor

"

S

=

0

�

0:0885 0 0

0 0:0885 0

0 0 0:0885

1

A

As=Vm

Density of material � = 2700kg=m

3
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