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Abstract

This diploma thesis is concerned to the development of numerical solution methods in
calculating so-called "dispersion diagrams” of periodic surface acoustic wave (SAW) fil-
ter structures. These piezoelectric devices are used in telecommunications for frequency
filtering.

The mathematical problem is governed by two main points, the underlying periodic struc-
ture and the indefinite coupled field problem due to the properties of the used piezoelectric
materials. Floquet-Bloch theory allows to restrict the infinite periodic computation do-
main to one reference cell by introducing quasi-periodic boundary conditions. Due to the
Bloch-ansatz the dispersion context between ”excitation frequency” and the ”propagation
constants” of the surface acoustic wave is described by parameter depending eigenvalue
problems.

Three different solution approaches are developed for gaining these non-hermitian eigen-
value problems of generalized linear or quadratic form. Expanding the solution methods
of periodic structures to the piezoelectric coupled field equations has the consequence that
the eigenvalue problems get indefinite and worse-conditioned, i.e. special scaling meth-
ods, which ensure accurate numerical results, are required. A comprehensive collection
of abstract theory and numerical solution methods for the occuring algebraic eigenvalue
problems is provided.

Three different solvers for the numerical simulation of the dispersion context are developed
and implemented. The used eigenvalue solver is concerned with the direct QZ-Method or
the iterative Implicitly Restarted Arnoldi-Method, respectively.

The influence of periodic perturbations in the computation geometry is shown in numerical
experiment for a pure mechanical model problem. Simulation results for the dispersion con-
text of simplified periodic structures related to real-life TV- and GSM-filters are presented.



Zusammenfassung

Ziel der vorliegenden Diplomarbeit ist die Entwicklung numerischer Losungsmetho-
den zur Berechnung sogenannter ”Dispersionsdiagramme” von periodischen akustischen
Oberféchenwellenfilter-Strukturen (SAW-Filter). Diese piezoelektrischen Bauteile werden
in der Telekommunikation als Frequenzfilter eingesetzt.

Das dazugehorige mathematische Modell wird durch folgende zwei Hauptprobleme be-
stimmt, der Periodizitit der zugrundeliegenden Geometrie und den gekoppelten Feldglei-
chungen zur Beschreibung der piezoelektrischen Eigenschaften des verwendeten Materials.
Mit Hilfe der Floquet-Bloch-Theorie und Einfiihrung quasi-periodischer Randbedingun-
gen kann das urspriinglich unendlich (periodisch) angenommene Berechnungsgebiet auf
eine Referenzzelle eingeschrinkt werden, d.h. die Gleichungen miissen unter Erfiillung der
speziellen Randbedingungen nur noch auf einer Periode gelost werden. Die gesuchte Di-
spersionsbeziehung, die den funktionalen Zusammenhang zwischen Anregungsfrequenziind
Ausbreitungskonstanten” beschreibt, wird als Parameter-abhingiges Eigenwertproblem for-
muliert.

Es werden drei verschiedene Lésungsmethoden, die den Dispersionskontext beschreiben
und auf nicht-hermitesche Eigenwertprobleme verallgemeinerter linearer beziehungswei-
se quadratischer Form fiihren, entwickelt. Nach Diskretisierung mittels der Methode Ei-
ne Erweiterung der vorgestellten Methoden auf piezoelektrische Feldgleichungen hat zur
Konsequenz, dass die resultierenden Eigenwertproblem indefinit und schlecht-konditioniert
werden. Letzteres erfordert spezielle Skalierungsalgorithmen, um numerisch zuverlissige
Ergebnisse zu erhalten. Eine Zusammenstellung der abstrakten Theorie und der numeri-
schen Lésung nicht-hermitescher algebraischer Eigenwertprobleme wird préisentiert und zur
Losung der modellierten Probleme angewendet und erweitert.

Drei alternative Loser werden entickelt und implementiert, wobei die auftretenden Eigen-
wertprobleme unter Verwendung der direkten QZ-Methode beziehungsweise der iterativen
Implicit-Restarted-Arnoldi-Methode gelost werden.

Der Einfluss periodischer Storungen des Material auf die Dispersionsbeziehung wird im nu-
merischen Experiment anhand eines rein mechanisches Problems dargestellt. Abschliessend
werden Dispersionsdiagramme von vereinfachten periodischen Strukturen, unter Verwen-
dung der Daten von praktisch verwendeten TV-Filtern und GSM-Filtern, simuliert.
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Q domain in R?

r = 0, the boundary of a domain Q in R?

I'p part of boundary I" according to Dirichlet conditions

'y part of boundary I' according to Neumann conditions

Ly(92) space of over ) quadratic-integrable functions

H™(Q) Sobolev-space of Lo-functions with quadratic-integrable derivations up to order m
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C(9,C%)  space of in Q continuous functions mapping in C?

Ck(Q,C?) space of in Q k-times continuously differentiable functions mapping in C¢

_ d%u
Ut =gz

Uy =&

R(z) readlffpart of a complex number z € C
J(2) imaginary-part of a complex number z € C
€M machine precision
for a matrix A:
AT matrix transpose
A* conjugate transpose of A
At matrix inverse
AT inverse of A7
Im(A) the image/range of the matrix A
N (A) the nullspace/kernel of the matrix A
rk(A) the rank of the matrix A
o(A) the spectrum of A

Used Acronyms

SAW surface acoustic wave

PBC periodic boundary condition
ABC absorbing boundary condition
EP eigenvalue problem

EVP eigenvalue problem

SC Schur-Complement

INM-Method Inner-Node-Matrix-Method (defined in Chapter 4)
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Chapter 1

Introduction

This thesis deals with mathematical modeling and numerical simulation of periodic sur-
face acoustic wave filters (briefly SAW-filters) and results in the computation of so-called
"dispersion diagrams”, which plays an important role in the telecommunication industry.
The principle of surface acoustic wave filters is based on the physical properties of
piezoelelctric materials. The direct piezoelectric effect states that a mechanical deformation
of a piezoelectric substrate evokes an electric field, which can be measured by charges on
the surface. It always appears in combination with the converse effect, i.e. if a piezoelectric
material is exposed to an electric field, the material shrinks or stretches. This implies that
applying an electric signal on a piezoelectric substrate yields a mechanical (acoustic) wave.
Due to the direct piezoelectric effect, this wave is always accompanied by an electric field.
The main components of a SAW filter are a piezoelectric substrate and an input and an
output interdigital transducer (IDT). An IDT is a comb of electrodes which is evaporated
on the surface of the piezoelectric material. It is used for sending and receiving electric
signals. If an electric field is applied at the input IDT, an acoustic wave is evoked on the
surface of the material due to the piezoelectric effect. We are interested in waves which
propagates along the surface. If such a wave, which is always accompanied by an electric
field due to the direct piezoelectric effect, reaches the output IDT, the changing electric
field evokes surface charges at the electrodes, i.e. an electric signal can be received.

The propagating surface wave is characterized by the frequency of the input signal, by
the geometrical arrangements of the electrodes and by the material parameters of the
piezoelectric substrate and electrodes. We will show that due to the underlying geometry
no surface wave can propagate at special frequency intervals. Therefore these frequencies
are missing in the output signal and the device can be used for frequency filtering.
The frequency domain is parted into pass-bands, i.e. frequencies which get trough the
piezoelectric device, and stop-bands, i.e. frequencies which get filtered out. For given
geometry and material parameters the context between propagating/attenuated acoustic
waves and the frequency can be read off so called ”dispersion diagrams”.
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In this thesis we focus on surface acoustic wave devices used for frequency filtering in
wireless communications, e.g. standard components in TV-sets and cellular phones. But
one has to mention that there are many other application fields of SAW-devices as in radar
and sensor technology and non-destructive evaluation.

We specialize on periodic SAW-filters, i.e. each IDT consists of some hundreds or even
some thousands of electrodes, which are arranged periodically.

We assume time-harmonic excitation with the frequency 5=, hence all field distributions
are time-harmonic

f(z,t) = f(x)e™". (1.1)
The periodical arrangement of the electrodes implies that the mechanical field and the
electric potential are quasi-periodic in space, i.e. they are of the form

f(z) = fyla)el* P, (1.2)

where p is the periodicity of the material and f,(.) denotes a p-periodic function. This
means that all field distributions can be described by the frequency, a p-periodic function
fp(.) and a complex propagation constant « + i. In this formulation a reflects the
damping of the amplitude per period (electrode) and 3 the phase shift per period.

The graph presenting the functional context between the excitation frequency and the
propagation constant is called the diagram of dispersion. This context is very important
in SAW-filter design and its computation is the task of this thesis.

A fundamental and recommendable introduction to acoustic field problems, various
(surface) wave modes and piezoelectricity is provided by Auld in [4] and [5]. The numerical
solution of piezoelectric systems via the finite element method is treated by Lerch in [27].
An overview of the historical development of SAW-devices is given in [29]. The principles
of periodic SAW-devices are treated by some IEEE papers like [17], but it has to be
mentioned that in most papers damping effects (« # 0) are not considered.

The mathematical justification for the quasi-periodic field distribution (1.2) is given by
Floquet-Bloch theory, which analyze the spectral properties of ordinary and partial dif-
ferential operators in periodic structures. This theory was developed for solving special
problems in quantum mechanics, where one deals with periodic Schrodinger operators, by
Bloch and for ordinary differential equations by Floquet. A description by physicists can
be found in Madelung [28] and in Ashcroft and Mehrmin [3]. A functional analytic con-
sideration is provided by Simon and Reed [30]. The generalization to partial differential
equations with periodic coefficients is done by Bensoussan,Lions and Papanicolaou in [9]
for real and elliptic problems and by Kuchment [19], who applied the theory for scalar
equations on photonic and acoustic band-gap devices in [6].

Bloch-Floquet theory implies that the solution on periodic structures can be decomposited
in quasi-periodic functions so-called Bloch waves. Therefore the problem can be restricted
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to the unit-cell, i.e. the domain including one electrode. Repeating this unit-cell one gets
the original geometry. In order to describe the original periodic system, appropriate quasi-
periodic boundary conditions have to be established.

The one cell problem turns out to be a coupled-field parameter-depending (on propagation
constant or frequency) eigenvalue problem, which we want to solve numerically by the
method of finite elements. We introduce a detailed stepwise mathematical modeling for
the problem of periodic structures, i.e. formulating appropriate boundary conditions and
according discretization methods. We start with a Helmholtz-type problem and establish
three different solution methods for computing the dispersion context. All these methods
result in non-hermitian eigenvalue problems of linear or quadratic form. Applying the
established methods to periodic structures on piezoelectric problems, is formally equivalent
to the Helmholtz-model case, but the matrices get indefinite and worse conditioned due to
piezoelectric properties, which requires special numerical treatment.

Mathematical modeling results in two reasonable variants of frequency-depending eigen-
value problems, one of quadratic form and the other one of generalized linear form. This
requires special theory and numerics of algebraic eigenvalue problems.

An overview of and motivation for solving eigenvalue problems is provided in [37]. In
[8] a recommendable collection of state-of-the-art direct and iterative methods for large-
scale eigenvalue problems is given, the book includes description of improvement tools and
implementational details. Tisseur [36] specializes on quadratic eigenvalue problems and
Lehough et al. [23] and Sorensen [35] on Arnoldi and Implicit Restarted Arnoldi methods.
Mehrmann provides a collection of structure-preserving methods in [11].

The stated eigenvalue problems are solved numerically by using the open-source software
packages Lapack [2] (direct method) and Arpack [13] (iterative Implicite Restarted Arnoldi
method).

On the tasks of this thesis

The conceptual formulation of this thesis is based on a part of the doctor thesis on Finite-
Element calculations of SAW-structures [14] (to appear) by Manfred Hofer , Department
of Sensor Technology at the University of Erlangen. We cooperate in a joint project on
SAW filters. Two conference papers [16], [15] were published by M. Hofer et al. during the
work on this problem. (co-authorship)

The main tasks of this thesis consist in the following points:

1. Due to the quasi-periodical field distribution one can restrict the computation do-
main to one cell. This requires to introduce appropriate quasi-periodical boundary
conditions.

2. In most common models only pure imaginary propagation constants are considered,
i.e. @ = 0 in (1.2), which has the effect that one only simulates non-attenuated
waves. In real life problems the incident surface wave is mostly transmitted in each
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cell, but the amplitude of the propagating wave gets decreased by reflection at the
electrode, material damping, conversion to volume waves and thermal losses. In this
thesis material damping and attenuation through reflection at periodically arranged
electrodes are considered.

The aim is to compute the diagram of dispersion, which gives the context between
the constant of propagation o + i3 and the frequency w for a given cell geometry.

On the organization of this thesis

Chapter 2

The physical characteristics of the problem are provided. The principles of SAW
devices are quoted, the terms stop-band diagram of dispersion are explained in detail.
At the end of the chapter the piezoelectric effect and its governing equations are
posted.

Chapter 3

The principle concepts and results of the finite element method for elliptic and coupled
field problems are given. Moreover, the basic ideas, results and an error analysis for
solving eigenvalue problems by the finite elment method are sketched.

Chapter 4

We provide a detailed mathematical modeling, separated in three main points, i.e. in
the theory of periodic structures for Helmholtz-type problems, in the consideration of
damping effects and in expansion of the modeled approaches to piezoelectric coupled
field problems. The steps of mathematical modeling provide two reasonable methods,
which yield in frequency-depending complex non-hermitian eigenvalue problems of
linear or quadratic form.

Chapter 5

We provide the theoretical background and numerical solution methods for large-
scaled non-hermitian linear and quadratic algebraic eigenvalue problems and finally
introduce open-source software packages, which are used in numerical simulation.

Chapter 6

This chapter combines the methods introduced in Chapter 5 with the problems stated
in Chapter 4. The spectral properties of the various solution methods are analyzed.
Three alternative solution algorithms using the available software packages Arpack
and Lapack are stated. At the end, scaling methods for eigenvalue problems, which
are necessary for the convergence of piezoelectric problems, are treated and some
implementional aspects are discussed.
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e Chapter 7
Numerical results for periodically perturbed model problems (Laplace and plane
strain problem) and for piezoelectric real life problems (GSM-filter and TV-filter)
are presented. Finally, the three implemented solvers are compared to each other via
the simulation of a piezoelectric problem, which is just capable for all three methods.

e Chapter 8
The presented models, theories, methods and algorithms are reviewed. Open prob-
lems, on which further work can be done, are discussed.

e Appendix A
The material data used in numerical simulation are cited.



Chapter 2

Problem formulation and governing
equations

2.1 Problem description

We study a surface acoustic wave (SAW, Rayleigh-wave) device consisting of a piezoelectric
substrate and evaporated electrodes (see Figure 2.1). If an electric signal is applied on
the transmitter electrodes, an acoustic wave is excited on the surface of the piezoelectric
medium (converse piezoelectric effect). The propagating surface wave is accompanied by
an electric field on its travel trough the material (direct piezoelectric effect). This electric
field can be measured at the receiver electrodes.

Surface Acoustic Wave (SAW) Filter

////// ///////A

Li Nb 03
Center frequency:
Mechanical displacements: 30 MHz - 3 GHz

)
o

)

T

1

[T
[

I

BERRRAR!

Figure 2.1: SAW filter [26]
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We are interested in the propagation of Rayleigh-waves at the electrodes. These waves
live near the surface, the amplitude decreases rapidly with depth and becomes negligibly
small within the depth of a few wavelengths.

In general, surface waves are 3 dimensional, but Rayleigh-waves polarize (particle dis-
placement) only in the plane spanned up by the direction of propagation (x) and the
surface normal (y). This plane is called the sagittal plane. Therefore displacement and
electric fields only depend on x and y coordinates and we can restrict the computational
geometry to the sagittal plane.

Since in devics used in practise there are some hundred electrodes, extending the elec-
trodes periodically to infinity is a suitable approximation. We get an infinite domain of a
piezoelectric substrate with periodically arranged electrodes. See Figure 2.2.

Y 4 electrodes

period p

. A A B a4 49

piezoelectric substrate

Figure 2.2: Periodic geometry

Properties of waves in a periodic geometry We assume a time-harmonic excitation
of the wave. This implies harmonic field quantities (mechanical displacement and electric
potential).

Due to the periodicity of the material the field distribution is quasi-periodical, that means
periodical irrespective damping

u(x +p) = u(z)elFPP, (2.1)
The following notation is used:
p ... period of the material (i.e. the distance between the centers of two successive electrodes),
a ... attenuation of the propagating wave per period,

B ... phase shift per period.
The condition (2.1) is equivalent to the existence of a p-periodic function u,(x) = u,(z +p)
such that
u(x) = uy(x)e@tHr, (2.2)
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The diagram of dispersion The aim is to compute the diagram of dispersion, which
gives the context between the constants of propagation «, # and the frequency w for a given
cell geometry. See Figure 2.3.

w
Y
1
i
Y surface-
i wave

bulk wave conversion 5
A ﬂ[w)
. Vo,
W, ="
ool
w2 kee

2n s 0 n 2r g
p p p p

Figure 2.3: Diagram of dispersion: structure with periodical arranged electrodes [16], [15]

In this diagram we are mainly interested in the stopband regions (wy,ws), see stop band
attenuation. The damping term starting at the frequency (w.) is produced by the fact that
above a particular frequency a part of the reflected wave is converted to volume waves.
This loss of energy implies a damping of the surface wave. This effect will not be considered
in the model presented here (see Chapter 8).

The doted straight green line in Figure 2.3 shows the dispersion context, if there are no
periodic disturbances.

Stop-band attenuation A wave traveling in x-direction will be partially reflected
at the electrodes. If p is a multiple of % with A denoting the wavelength, the reflected
amplitudes are all in phase and can interfere constructively. For a huge number of fingers
there are many waves adding constructively and the sum of reflected waves interacts with
the propagating wave. Then even if the reflected part per cell is small and it impedes the
propagation.

If the length of period of the material is equal the wavelength of the wave propagating
in x-direction, the wave cannot propagate. Moreover it turns out that the wave cannot
propagate in a whole frequency interval. This interval is called the stop-band. The width
of this stop-band gives information on the quantity of the reflection at the electrodes.
This effect occurs independently of the consideration of material damping in the model.
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2.2 The piezoelectric effect and governing equations

A material possesses piezoelectric properties, if it produces an electrical polarization under
the application of mechanical stress or deformations. The polarization is measurable by
produced charges on the surface. This phenomenon is called the direct piezoelectric effect.
The effect is reversible, it is always accompanied by the converse piezoelectric effect. If an
electric field is applied to a piezoelectric medium, there is an elastic deformation.
Piezoelectric effects result from special asymmetries occurring in some crystalline materials
( e.g. in quartz by nature or in industrial produced ceramics). These effects cannot exist
in isotropic media. For more details see [4] pages 102-103.

The piezoelectric effect is described by a coupling of elastic and electric field quantities in
a medium. We can assume this coupling to be linear since nonlinear coupling terms are
negligible small. To get the governing equations we state the uncoupled field properties
and equations first:

2.2.1 The equations of elasticity

Let © C R? with d = 1,2,3 be a bounded domain which describes the reference config-
uration (original state) of a deformable body, and let Q2 be the boundary of © which is
supposed to be sufficiently smooth (polygonal in our applications).

The deformation of the body is represented by the mapping

P: OxRf — R4
(z,8) = Plxt),

which is assumed to be injective, sufficiently smooth, orientation preserving.
At t = 0 the body is in reference configuration,i.e. P(z,0) =z Vax € Q.

Let a volume force
f(,t): P(Q,t) — R

and a surface traction
g(.,t): P(Ty,t) — R with[; C 99

be given in the domain {2 and at the Neumann part I'; of the boundary 0¢2, respectively.

The fundamental axiom of continuum mechanics states the existence of a stress field ¢(z, n)
(acting on the surface dP(A,t) with according normal vector n for any subdomain A C ),
which satisfies conservation of momentum and angular momentum in A.
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One of the main results in continual mechanics (Ciarlet [12]) states that the stress vector
is linear in n and can be represented by a (differentiable) stress tensor T'(z) € R% of the
form

t(z,n) =T(z).n Vz € P(Q,t) (2.3)

satisfying the Cauchy equations of motion

div,T(z,t) + f(x,t) = p(x,t)%(a:,t) tel,z €P
T(x,t) = TT(z,t) tel,ze PQt) . (2.4)
T(x,t)n = g(x,t) tel,z €P
p(x,t) denotes the mass density and I = [0, 7] the time-interval in Ry .

We assume elastic deformation i.e. releasing the external forces the medium returns com-
pletely in its original reference state. Deformations imply strains in the deformed medium.
Let u(z) describe the displacement vector of a particle through deformation, i.e.

u(z,t) == P(z,t) —x Yz € (2.5)
Green’s strain tensor describes the change in lengths between two particles:

1 0u;  Ouy d Ouy, Ouy,
“ij T 5(8117] + 81171 + 1 8—117] 81171

) Vij=1,....d (2.6)

If we assume small deformations |%| < 1, we get negligible quadratic terms. In linear
J
elastic theory we use the (linearized) Cauchy-Green strain tensor by

j 2 0z, T B, (2.7)
S = 3(Vu+ (Vu)') =: Bu

Hook’s law states that in linear elastic materials there is a linear connection between stresses
and strains of the form
d .
Tij == Zk,l:l cijlekl Vl,] = 1,...,d

T g (2.8)

There are 81 elastic stiffness coefficients ¢;j;; which describe the elastic properties of the
material. The material is called homogeneous if ¢;jx # ¢k ().
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It turns out that only 21 elastic stiffness coefficients are independent. Under special material
properties the number of independent coefficients can be further decreased:

1. Isotropic materials are materials characterized by possessing equal properties in all
directions. It turns out that there are only two independent coefficients A(z), u(z) > 0
known as Lamé-constants with

Cijkt = A0ijOk + p(0idjy + i) (2.9)

and Hook’s law simplifies to

d
Ti]-:AZSkkéijerSij Vi,j=1,...,d (2.10)

k=1

2. Anisotropic materials have in general 21 independent stiffness coefficients. Some
crystals possess symmetry axes or two different directions which have equal material
properties. Therefore the number of independent coefficients reduces as well in such
crystals.

The linearized strain tensor S and the according stress tensor 7" are symmetric.

2.2.2 The electrostatic field in a dielectric medium

We assume a dielectric medium which has the properties to be polarizable and is insulating,
i.e. there are no free volume charges. Applying an electric field to a dielectrica implies a
distortion of the dipoles within the material resulting in a surface charge. Internal the
dipoles sum up to zero, ie. inside it is neutral. The polarization P acts against the electric
field E which leads to the dielecitric displacement field D ( the field was initially introduced
to explain the fact that the electric field of a capacitor decreases if a dielectric is put in
between). Since the polarization depends on the electric field as well one gets:

D=¢yE+P=cE (2.11)

with gy the dielectric permittivity of vacuum and ¢ the dielectric permittivity tensor of
the material.
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The fourth law of Maxwell equations (Gauss law of dielectric fields) states in integral form
D"nds = / qfree(r)dr ¥ proper A C Q (2.12)
2A A

or, in differential form,
divyD(x) = qpree() Vo e Q, (2.13)

where ¢fre.(z) denotes the free volume charge density in .
We consider an insulating material, i.e. gfre = 0 in €2, and we get

div,D(x) = 0. (2.14)
In electrostatics, the electric field can be expressed by the scalar potential field ®(x) as

E(z) = —Vd(x). (2.15)

2.2.3 The piezoelectric equations

The piezoelectric effect states a liner coupling between strain field and electric field. The
linearity is described by a coupling coefficient tensor e which is equal for direct and converse
effect.

Expansion of Hook’s law and the electrostatic equation by the direct and the converse
piezoelectric effect gives the constitutive piezoelectric equations:

T = FS—eTE

2.16
D = eS+&°E (2.16)
c? ... mechanical stiffness matrix (measured at constant electric field F)
e ... permittivity matrix (measured at constant mechanical strain S)
e ... piezoelectric coupling coefficient matrix

The mechanical stiffness matrix and the permittivity matrix are symmetric matrices.

The displacement field u and the potential field ® in a piezoelectric material (with no
impressed volume forces) are governed by

div[(c"S — €TE)(x,t)] = p(x,t)2(z,1) with = L(Vu+ (Vo))
divy[(eS + 5E)(z,t)] = 0 E = —Vo

(2.17)
with still open boundary conditions (stated in the section of mathematical modeling).

We refer the readet to [4] and [5] for more detailed information.



Chapter 3

The Finite Element Method

The finite elment method is a powerful method for solving partial differential equations
numerically.

In this chapter the main results of finite element analysis, which are required in mathemat-
ical modeling of chapter 4, are provided. We start with FEM for elliptic source problems,
which occur in model problems for periodic structures. Then mixed FE-approximation,

which is required for solving piezoelectric problems, i.e. coupled field problems, is intro-
duced.

Modeling the dispersion relation will lead to variational eigenvalue problems. FE-solutions
of these problems are connected to source problems, but need a separate (error-) analysis.
Therefore, we finish this chapter with a brief sketch of finite element methods for eigenvalue
problems.

3.1 The method of finite elements

The Finite Element Method (FEM) is used to approximate the solution of second order
problems, which are posed in variational form in some subspace Vj of the Sobolev space
HY(Q).

We start with the weak formulation coupled with the fundamental theorem of Lax-Milgram
for elliptic problems, introduce the Galerkin-method and then specialize on FEM.

The weak formulation Let O C R? be a bounded sufficiently smooth domain. We
assume a given problem in weak formulation, which is already homogenised, i.e. the Dirich-
let conditions on I'p C 99 are homogeneous. We define V := {v € V@ v|._ =0} C H'(Q).

17
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We state the weak problem in abstract form as follows
Findu e Vy: a(u,v)=F(v) Yv € . (3.1)

For elliptic problems existence and uniqueness of a weak solution is provided by the theorem
of Lax-Milgram.

Theorem 3.1.1 (Lax-Milgram) [10/
Let Vo € HY(Q). If the bilinear form a(.,.): Vo x Vo — R is

1. elliptic, i.e. there is a constant py > 0 such that
a(v,v) > || Vo e 1, (3.2)
where |||y = ||.||n1 ) denotes the norm of H' on Q.
2. continuous, i.e. there is a constant py > 0 such that

la(w, )| < pollwllilloll, Vw0 e W, (3:3)

and the linear form F : Vo — R is continuous, i.e. there is a constant ¢ > 0 such that
[F)| <clolh Yo e W, (3.4)
then there exists a unique solution u € Vi which solves

a(u,v) = F(v) Yo € V.

The Galerkin Method - Discretization The Galerkin method states the approxi-
mative solution of the weak problem by solving the problem only over finite-dimensional
subspaces V;, C V. The index h is the discretization parameter and denotes that with
h — 0 we want to achieve convergence of the approximate solution u; € Vj, against the
exact solution v € V.

We state the discrete problems in V;, C V'
Find u;, € Vo, : a(uh,vh) = F(Uh) Yo, € Vi (35)
with the finite-dimensional subspace Vg, := V5 N V},.

Due to Vo, C Vi the Lax-Milgram theorem still holds for the discrete problem, i.e. there is
a unique uy, € Vp, solving (3.5).
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We choose a base (p®);c;, of Vj, such that
Von = span{p(i),i € wp},

i.e. uj, € Vpy is represented by the linear combination uj, = 3, u@Dp ) with «® € R. By
wp, and wy, we denote index sets for the chosen bases of V}, and Vp,. The discrete problem
is fulfilled, if (3.5) holds forall p¢¥) with j € wj,. Choosing v, = p\¥ for all j € wy, leads to
the Galerkin system

Find u;, = (u®);ey, € RV : Ky, = f

I (3.6)

with N, = dimwy, and Kj,;; = a(p®,p), Vi, j € wy, ihj = f(pW), ¥Yj € wp.

Cea’s Lemma states [10] that the discretization error can be bounded by the approximation
error, i.e. under the assumptions of the theorem of Lax-Milgram the estimate

lu—unlly <22 inf flu—onlly (3.7)
,Ul wp EVop

holds for the solution u € V; of (3.1) and its approximation u, satisfying (3.5) .

Finite element subspaces The finite element method is a special case of the Galerkin
method, i.e. a special choice of the subspaces V}. There are three main aspects in con-
structing such a subspace Vj:

1. The triangulation 75, of the given geometry € in subdomains (called elements) T € 7,
satisfies

(a) VI €1y, : T:Tandjo“%@,

(b) UTET}L T = ﬁ’
0

vertex
edge
face (if d=3)

(c)fory,Therm: T #To =TiNTy, =

2. All v, € V}, are piecewise polynomials, i.e. Pr = {v,|r : v, € V},} is a polynomial set.
is set of polynomials of degree k.

3. A base of V}, with base functions having small support exist.
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Concerning the model problem, which will be stated in Chapter 4,  is defined on R?
and triangles or rectangles are used for triangulation. The set of vertices of all T in 7y, is
described by the nodes {z ¥, i € @, }. We will use linear elements, i.e. the ansatz functions
vp|r are linear for triangles and bilinear for rectangles.

For the construction of the base functions p® of V}, we choose

pW (') =6,  Vij € @y, (3.8)
which are well-defined for p{|; linear or respectively bilinear.
Since a(p@, p)) = 0 if measp: (supp(p@) N supp(p?)) # 0, choosing base functions with

small support (which will lead to nodal basis functions) implies that the stiffness matrix
K}, in the Galerkin system (3.6) becomes sparse.
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3.2 FEM for coupled field problems

The weak formulation of piezoelectric problems yields in a mixed variational problem of
the form:
Find v € X and ¢ € M which satisfy

a(u,v) + blv,9) = f(v) Vo € X
b(u, ) — c(d,9) = g(¥) Vip e M

Theorem 3.2.1 Let us assume that

f and g are bounded linear forms, i.e. f € X* , g € M*,
2. the bilinear forms a(.,.): X x X = R and b(.,.) : X x M — R are continuous,i.e.

day >0 |a(w,v)] < f|w|x||v|x Vw,v € X
30: > 0= o(v, )] < Ballvllxll¥llae Vv e X,V € M,

3. the bilinear form b(.,.) fulfills the inf-sup-condition, i.e.

b(v, )

46 > 0: and)eMSUpveX > .
v [[ollx [l

4. al.,.) is elliptic on Vo = Ker b= {v € X|b(v,v) =0V € M},i.e.

oy a(v,v) > aq|v]|x Vo e VW,

5. a(.,.) is non-negative on X , i.e

a(v,v) >0 Vv e X,
6. The bilinear form c(.,.) : M x M — R fulfills the conditions

(1, 1)) 0 Vi € M,
(¥, ¢) (g, ) Vb, ¢ € M.

Then the weak coupled-field problem
Findu € X and ¢ € M such that

a(u,v) + blv,0) = f(v) Vo e X
b(u, ) — c(d,9) = g(¥) Vip e M

has a unique solution (u,p) € X x M.

v

(3.9)

Proof: see Remark 10.8 in [31] p.572-573.
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Remark 3.2.2 Theory of problems of the form (3.9) are derived form the theory of sad-
dle point problems (c(.,.)=0). The assumption (1)-(4) are nothing but the assumptions of
Brezzi’s theorem.

Discretization of mixed problems Choosing finite-dimensional subspaces X, C X

and M, C M the discrete mixed problem reads as follows:
Find u, € X}, ¢, € M), such that

a(uh,vh) + b(vh,qﬁh) = f(vh) Yo, € X,
blun, ¥n) — c(on,¥n) = g(tn) Vb, € M.

In contrast to elliptic problems, the assumptions posed for existence and uniqueness results
are not all automatically implied on the discrete spaces. Since in general Vg, := {v, €
X | b(vp, tbp) =0V, € My} & Vi, the ellipticity of a(.,.) has to be explicitly required for
the discrete problem as well as the discrete inf-sup-condition.

(3.10)

Theorem 3.2.3 Under the assumptions of theorem 3.2.1 and the discrete conditions
1. a(.,.) is Vop-elliptic,

2. the discrete inf-sup-condition is fulfilled, i.e.

. _ b(v,, .
361 # Bi(h) > 0: an¢f;,/)§é]\gh SUP vy, eXy (o8, 1) > B,

v#0 ||Uh||Xh||77/}h||Mh

the discrete problem (3.10) has one and only one solution up € Xy, Yy € M.

Finite Element Discretisization We assume two finite element subspaces X;, C X and
M, C M with the nodal bases p® of X, and U@ of M), according to the node z* € wy,
With uy, = Y27 ujp™ and ¢y = Y7 ¢, ¥ we achieve the Galerkin-problem

A B Up, — ih
<B_C><Qh>_<2h ’ (3‘11)
where the matrices are defined by A;; = a(p@,p®), B;; = b(p®@, V) B* = BT and
The system matrix <

%

B —C
base functions, the system matrix is sparse.

) is regular, but indefinite. Due to the small support of the

For further information we refer the reader to [10] and [31].
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3.3 Finite element method for eigenvalue problems

In this section the following questions will be sketched : What happens if one solves
eigenvalue problems via finite-element method? Which eigenvalues will be approximated,
how are the convergence properties adn how accurate is this approximation?

The statements and results of the following section stem from ”Finite Element Meth-
ods - Eigenvalue problems” by Babuska and Osborn [7] and can be found there with proofs.

Since we want to apply finite element techniques on eigenvalue problems we assume a given
eigenvalue problem of weak form. The theroy of approximating variational formulated
eigenvalue problems will be traced back on spectral theroy of compact operators. Then
finite element techniques are applied analogous to the source variational problems. The
discretized eigenvalue problems can be again traced back on compact operators. Then an
error estimate for the approximated eigenvalues will be given.

More detailed spectral analysis is known for self-adjoint elliptic problems. Since in Chapter
4 we will state self-adjoint elliptic problems in the first phases of modeling, some results
for these special type of eigenvalue problems will be given.

Detailed spectral theory for coupled field problems (especially piezoelectric problems) will
be left open within this thesis, for further information and references see [7].

Abstract eigenvalue problem We start with a variationally posed eigenvalue problem
on complex Hilbert-spaces (Hiy, ||-[|1, (-,-)1), (H2,|-||2, (:,.)2): A scalar A € C is called an
eigenvalue of the bilinar form a with respect to the bilinear form b if there is an eigenvector
u# 0 € Hy fulfilling

a(u,v) = Ab(u,v) Vv € Hy. (3.12)

Let a(.,.) be a bilinear form on H; x H, which continuous
doe >0:  |a(w,v)] < agl|lw|i]|v]|s Vw € Hi Vv € Hy (3.13)

and satisfies the inf-sup conditions

inf sup |a(u,v)] = a >0, (3.14)
u€H, vEH,,
Nelli=1 o)y =1
sup |a(u,v)] > 0 Vv #0 € Ho. (3.15)
u€Hy

The bilinear form b(.,.), defined on W; x Wy with H; C W; compact and Hy, C W,
bounded, is assumed to be continuous in W; x W, i.e.

A8y > 0:  |b(w,v)| < Bollw||lw, ||v]|w, Vwe W, Vv e W, (3.16)
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The main idea of spectral theory of variationally posed eigenvalue problems
The assumptions (3.13)-(3.16) for a(.,.),b(.,.) imply the the existence of unique compact
operators
T:H — Hyand T, : H, — H,,

which hold

a(Tu,v) = b(u,v) Vu e H\Vv € Hy

a(u, T,w) = bu,v) Vue HiVv e Hy (3.17)
|Tully < Zlullw,  VueH.

Theorem 3.3.1 (A, u) is an eigenpair of (3.12) if and only if (%,u) is an eigenpair of T,
i.e. Tu = tu.
)

Therefore the analysis of variationally formulated eigenvalue problems is given by spectral
theory of compact operators.

Definition 3.3.2 The eigenvalue X of the variational eigenvalue problem is of multiplicity
m by definition, if X' is a m-multiple eigenvalue of T.

The finite element method for approximating eigenproblems

The finite element method of eigenvalue problems is formally equal to FEM of source
problems. We choose finite element spaces Hy, C H; and Hy, C Hy of equal dimension,
ie. dimH,, = dimH,; = N, for which

inf sup |a(u,v)|=a, =ah) >0 (3.18)
a2y T2
T lvlle=t

and

li 1 inf - = 1
lima, " inf fu w0 (3.19)

is valid.
Then we formulate the weak eigenvalue problem (3.12) on the FE-subspaces and get the
finite element Galerkin eigenvalue problem

Search (Ap,up) € (C, Hyp),upn #0:  alup, vn) = Apb(up,vp) Yo, € Hop,. (3.20)

Let (®4,...0x) and (¥y, ..., Uy) be bases of the subspaces Hyj, and Hyy, .
By ChOOSng Aij = CL((I)Z', \Ijj), Bij = b((I)l, \I]J) and Uy = (UZ)ZZI,_N with Uup = Zz]\il UZ'(I)i, we
get the algebraic eigenvalue problem

Search A\, € C and u, € C¥ :  Au, = M\ Buy, (3.21)

which is equivalent the Galerkin eigenvalue problem (3.20).
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The analysis of Galerkin eigenvalue problems can be again reduced to spectral theory of
compact operators.
For every h we define an operator T}, : H; — Hy; by

a(Tpu,vp) = b(u,vy) Yu € HiVv, € Hyp,.
T}, can be written as P,T with P, denoting the projection of Hy on Hyy,i.e.
a(Puu,vy) = a(u, vp) Vu€ H Vv, € Hyy,.
The compactness of T and the projection property of P, imply that T}, = P,7 — T in

I11]1-

Again (A, up) is an eigenpair of (3.20) if and only if (A, ', uy) is an eigenpair of Tj,.

Error analysis Before giving a result on the quality of eigenvalue aproximation by the
finite element method some notational work is required.
The (generalized) eigenspaces according to an eigenvalue A of (3.12) are denoted by

E(\) = {u|(\ u) solves (3.12) with [Jul|; = 1},
E*(\) := {v|(), v) adjoint eigenpair of (3.12) with [|ul|s = 1}.

If () is of multiplicity m, there are m corresponding eigenvalues A (h), ..., A,y (h) for each
finite element subspaces Hyy, Hap, with A;(h) — A for h — 0, since T}, — T.

The eigenspace of (3.20) according to A of (3.12),i.e. A\;(h) — A, is the sum of the m
eigenspaces of A;(h), (j = 1,...,m). We denote this eigenspace with Ej,(\) and assume the
eigenvectors of Ej,(\) be normalized in ||.||;.

Moreover, we define the approximation error in respect to the eigenspaces by
en(A) = sup inf |lu—wyl,
uweE(\) WhEHin
er(A) = sup inf ||jv — wy|e.
uw€E*(\) WhE€Han

Theorem 3.3.3 FError estimate for approrimative eigenvalues

Let X be an eigenvalue of (3.12) of multiplicity m and \j(h) (j =1,...,m) the m according
eigenvalues of the discrete problem (3.20) satisfying \;(h) — A.

Then the following estimate holds

Jei>0: P AR < a(Bh)ensl)  with A(h) = %Z (3.22)

Stronger estimates can be given for the special case of self-adjoint elliptic eigenvalue
problems,i.e. T, T}, is self-adjoint and elliptic.
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3.3.1 Self-adjoint elliptic eigenvalue problems

We view the eigenvalue problems (3.12) and its FE-approximations (3.20) under the fol-
lowing assumptions:

1. H:leHg.

2. The bilinearform af(.,.) is

symmetric: a(u,v) = a(v,u) Vue HVYv € H,
continuous: a(u,v) < agllull||v]| Vue HVYv € H,
elliptic: a(u,u) > ayljul|? Vue€e H.

3. W=W; =W, D H is a compact embedding.
4. The bilinearform b(.,.) is

symmetric: b(u,v) = b(v,u) VueWVveW,
continuous: b(u,v) < Baoflull||v]| VueWVveW,
positive: bu,u) > 0 Vu#0 € H.

Remark: The energetic norm ||.||, = y/a(.,.) is an equivalent norm to ||.||z =: [|.]-

The assumptions on spaces and bilinear forms imply that 7" = T, = T™ is a compact and
self-adjoint operator, where T* denotes the adjoint of 7.

Due to spectral theory of operators T has countable sequence of positive eigenvalues con-
verging to zero. Therefore the variational eigenproblem (3.12) has a countable sequence of
eigenvalues with

The corresponding eigenvectors uq, us, ... can be chosen the way they satisfy
CL(UZ', U]‘) = )‘j b(ul, U]‘) == 61’]‘ (324)
Moreover, these eigenvectors form a base of H, i.e. Vu € H: u=7> " a(u, u;)u;.

Finite element discretization

Let V,, C H denote a finite-element subspace of H.

The eigenvectors u; (j = 1,..., N) of of the associated Galerkin eigenvalue problem (3.20)
corresponding to the eigenvalues

0<)\1,h S)\Q’h <.. S)\N,h with N = dimV},

can be chosen the way
(]J(Ui, Uj) = )\j,h b(uz, Uj) = 51] (325)

holds.
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Theorem 3.3.4 Error estimates
If M\, has geometric multiplicity my,, i.e. \p = ... = Xy, —1, then

Merih N Ak for g =0,...,my —1
with the estimate
JC>0: N < Nop < M +C2 (M) §=0,..,mp—1 (3.26)

holds.
Concerning the approxrimation of eigenvectors there are two estimates:

1. Let ugij,p be an eigenvector of (3.20) corresponding to Agyjpn for j =0, ...,my — 1.
Then there is a unit eigenvector in E(\;) which satisfies

30 >0 Jju—ugnll < Cen(Mp). (3.27)

2. If u is a unit eigenvector of (3.12) corresponding to \i,i.e. u € E()\) then there is a
vector iy, € Ey(\y) such that

AC >0 |lu— |1 < Cep(Ap). (3.28)
If mp =1, i.e. \y is simple, then

AC >0 |ug — kel < Cen(Ax) (3.29)
holds.

Further analysis and estimates for self-adjoint ellitpic variational eigenvalue problems can
be found in [7].

Remark 3.3.5 On the "well-approximated part” of the spectrum

Due to Babuska and Osborn [7] the finite element method give reasonable approximations for
low etgenvalues. The dimension of the finite element subspaces and according the dimension
of the algebraic eigenvalue problem will be much larger than the number of well approzimated
eigenvalues and eigenvectors.

The solver for the algebraic eigenvalue problem should be designed to find low eigenvalues
of large sparse generalized eigenvalue problems.



Chapter 4

Mathematical modeling

Before starting with a stepwise construction of the mathematical model we have to precise
the problem formulation, i.e. stating the boundary conditions and the geometry of the
desired final model.

4.1 Problem-based assumptions, geometry and
boundary conditions

Harmonic approach To reduce the space-time problem to a spatial one, we assume all
field quantities to be time-harmonic, i.e.

v(z,t) = vy (z) cos(wt) + ve(z) sin(wt). (4.1)
Using a complex formulation ¢ of v with R(0(x)) = v;(z) and I(v(x)) = va(x) leads to
the simplification that derivations in time are multiplications % — qwt. and g—; — —w?.

Therefore we consider the complex function v during the computation and take the real
part afterwards. .
o(z,t) = o(x)e™t

v(z,t) = R(0(z,t))

Due to the linearity of the applied operations this is valid. For easier notation the hat
marker is be suppressed.

(4.2)

Electrodes In order to get the propagation parameter caused by periodic perturbations
(electrodes), we need not to simulate the sending or receiving state at the electrodes. It is
sufficient to simulate the problem with short-circuited electrodes (i.e. the potential field is
zero in the electrode domain €,;) or floating electrodes (i.e. the potential field is constant
within each electrode, but the constant can differ between the electrodes). We will restrict
ourselves to the first problem.

28
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Geometry We start with an infinite piezoelectric substrate with periodical arranged
electrodes on its surface. Due to the fact that we are mainly interested in Rayleigh-waves,
we can restrict the computation domain to the sagittal plane. In the mathematical model
we denote this plane with the (z1, z5)-plane. With these assumption we achieve the domain
shown in Figure 4.1.

Qg piezoelectric substrate

EEQ, electrode I',, electrode boundary I’y charge and stress free boundary

Figure 4.1: Infinite model geometry for piezoelectric problem

Two piezoelectric model cases u € R?

1. d=2: We assume that there is no displacement in the x3-direction and displacement
and potential are not depending on the xs-coordinate, i.e. u(zy, 72,t) € R? and
(I)(Z'l, T2, t) e R

Savzr Saa oy L(2u | dua)
Bu = §= = < l(%f?i%) 2 31’2M 0z ), (4_3)
S:EQ:El S:EQ:EQ 2\ 0xa or1 oxo
P
oz
-Bd = E=| -2 (4.4)
0

2. d=3: Due to the anisotropy of the material wave components in the z-direction can
occur in practical applications. The deviation of the ideal case is considered by al-
lowing constant behavior of the fields in x3-direction:

ou; T 3
ui ) f = eR
o ! or u = (uy, ug, uz) ‘ (4.5)

dz3
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This implies the differential operators in €2 by

1 dug
lel‘l lel‘z 53_:[1
1 0u
Bu = S: Sl‘zl‘l szl? 53_12 y (46)
Lous  10us 0
2 0xq 2 0xa
00
W
0

We treat the electrodes as piezoelectric material with coupling coefficients set to zero
and achieve the behaviour of non-piezoelectric material avoiding an explicit change of
the governing equations. This leads to the problem of partial differential equations with
periodical coefficients and will lead to Bloch theory.

The boundary conditions The surface excluding the electrodes (denoted with T'y in
Figure 4.1) piezoelectric substrate is stress- and charge-free | i.e.

Tn=0and D.n=0on ['y.

Setting potential ® to zero simulates short-circuited electrodes, i.e. ® =0 in Q.
The mechanical field is again stress-free on I'y, i.e. Tn=0onTly,.

4.2 The main steps of modeling

We have three main points to be considered in the construction of a mathematical model
e the periodical geometry, i.e. partial differential equations with periodic coefficients
e the physical properties of piezoelectric media
e damping effects

We want to construct the model step by step. To get a first impression of modeling and
possible solution methods we initially concentrate on the first item, i.e. wave propagation
in periodical perturbed media. We search for modeling and solution approaches for the
wave equation with periodic coefficients. We start in 1 dimension and then upgrade to 2
dimension.

In this state of modeling we restrict only to pure propagating mode (« = 0), since this
simplification leads to self-adjoint problems.



CHAPTER 4. MATHEMATICAL MODELING 31

In the second step we also permit stop band attenuation and consider material damping
in the model and solution approaches for the wave equation. Including damping effects to
our model implies that the operators get complex.

After coming up with the problem of periodic geometry and damping for the wave equation,
finally we extend the developed methods to the system of piezoelectric equations.

4.3 Modeling wave equation with periodic coefficients
inlD

We simplify the infinite periodical geometry to one dimension,i.e. 2 := R, and state the
strong problem as searching a solution u € C?(Q, R) of the periodic wave equation:

Ve QVteR: (a(x)ux(z,1))s = uy(z,t) with a(x 4+ p) = a(x). (4.8)

Let p > 0 € R be a given, fixed period.

The positive periodic coefficient a € C'(Q) describes the periodical properties of
the material. We remark that for the weak formulation of the problem the condition
a € L*(Q): 0 <a<a(.) <aalmost everywhere (a.e.) in Q will be sufficient.

The first step is using a harmonic approach as explained in (4.2)
a(z,t) = i (v)e™ (4.9)
with 4(.) in C?(£2,C). The hat marker will be suppressed furtheron.
Applying this approach to problem (4.8) leads to the Helmholtz-type equation
Find u € C*(2,C) :  —(a(z)u'(z)) — wu(z) = 0. (4.10)

In order to give a formulation of the problem in operator form, we define the elliptic
differential operator

A:C*Q,C) — C(Q,C)
u(.) = —(a()d' ()"

and get the operator eigenvalue problem

Findu € C*(2,C),w e R:  Au = w?u. (4.11)
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The periodicity of the coefficient function a(.) can be expressed in the operator equation
via the shift operator

T, : C(Q,C) — C(Q,C)

u(.) — Tpu(.):=u(.+p) (4.12)

by the fact that the operator A is invariant over translation of period p (the operators
commute)

T,A = AT, (4.13)

In this case Bloch’s theorem (introduced afterwards) states that the solution of problem
(4.10) can be fully described via quasi-periodic eigenfunctions of the form

Ja,BE€R:  u(r +p) = u(x)e@tPr, (4.14)
which is equivalent to

Ju, € C*(Q,C) periodic with period p such that  u(z) = u,(z) e+, (4.15)

4.3.1 Blochs Theorem

Theorem 4.3.1 (Bloch’s Theorem 1D)
Let A be a linear (differential) operator mapping C*(2,C) into C(Q, C) which is invariant
over T, defined in (4.12), i.e.

T, A = AT,

Then for each eigenspace E4(\) := {v € V| Av = \v} (with dim(E4(\) =:m ), there is a
base of eigenfunctions ® = (@1, ..., dm) satisfying

Aqgj = )\dN)] and qugj = e(aj—l—iﬂj)pqgj.

Proof: See ” Asymptotic analysis of periodic structures, Spectral theory of differential
operators with periodic coefficients” in Lions [9].

In terms of above theorem the following equivalences of quasi-periodicity hold

T,® = TPP o &(z) = O, (2)e P & B(x +p) = TPP(2) (4.16)
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4.3.2 Restriction to the unit cell

Bloch’s theorem implies that we can restrict the problem on searching eigenfunctions
in the space of quasi-periodic functions, i.e. we can assume u(r) = u,(z)e**¥% with a
complex pure-periodic function u,(.). Due to this periodicity the problem is fully described
by a solution on the unit cell.

It is sufficient to solve problem (4.10) only on the unit cell Q, := [0,p], if the quasi-
periodicity (4.14) is considered in the boundary conditions of left and right bound of the
unit cell.

Notation 4.3.2 For briefer notation we define v = (TP,

In the starting phase of modeling we will concretize on pure propagating,i.e. not-attenuated
solutions, i.e. we primarily assume « = 0, which implies that |y| = 1.

Classical formulation Search v € C*(Q,, C) satisfying

—(a(z)v' (7)) = wu(z) Vo €Q,. (4.17)
Quasi-periodicity plus its derivation impose the boundary conditions:
u(p) = yu(0), (4.18)
wi:=—a(0)u'(0).
. — = —ywy. 4.19
wr::a(p)u’(p) _ a(o)ul(o)ezﬂp w Yyw; ( )

Weak formulation Through integration by parts we get
/ a(z)u'(x)v' (x) dx — / w?u(r)v(z) dz — a(z)u (x)v(x)]} = 0. (4.20)
QP QP
Using the flux notation defined in (4.19) leads to the variatonal formula

Search for a solution u € H'($,, C) satisfying Vv € H'(9,,C) :

/Q a(x)u' (z)v'(z) dr — w? /Q w(z)v(z) dz —ww(0) -|; w,v(p) = 0. (4.21)

J

~ -~ 4 ~ -~ 4 =:<w,u>r,

=:a1(u,v) =:ao(u,v)

For given w we define the bilinear form a(u, v) = a; (u, v)—w?ag(u, v) for u,v € V:= H'(Q,)
and claim the the quasi-periodicity of u explicitely.
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Discretization and the Galerkin-FE-system We choose a finite element mesh with n
nodes (z1, ..., z,), a FE-subspace V, = span{p® |i =T,n} C V = H'(Q,) with (p?),_15
denoting the finite elment base of V3, with p@ (z()) = 4,;.

Moreover we split up the set of nodes in three disjoint subsets according to Figure 4.2, the
set of inner (subscript i), of left boundary (subscript [) and of right boundary (subscript
r) nodes with x; := (21, ..., tp_2), T := Tp_1, T, := x,. The periodical boundary nodes are
denoted separately with the subscript b: x, := (2, ;).

Figure 4.2: Splitting in inner, left and right vertices

By setting K;; = a(p®, pW) and uy,(z) = 37, up!® (z) with w, = (u;);_17 € C" we get a
linear system with unknown right side

U1 0 0
with u, = un;l and w, := (< w,p(i) >1"b)i:1’n = () = 0
Uy wlp(l)(O) w;
Uy w,p™(p) W,

In the next step we split the system in inner and boundary nodes. We achieve

([[é) f{f)(ib):(sb) (4.23)

Due to the sparse right side we can eliminate the inner nodes ;. Eliminating u, from
the first equation and putting it into the second one gives the smaller Schur-complement

system
(—KbiKi_lKib + Kb) Up = Wp. (424)

= SeR}

Schur-complement
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Considering the quasi-periodic boundary conditions

Uy = A w, = W
= \wy ) 7wy

leads to 2 equations in 3 variables (u;, w;,y = €??)

S+ vSieu, = wy

= Sy’ + (St + Se2)yur + Seru =0
Souy + ySpw = —7?1)1} 27w (Sn 4 So)yu+ S

with the notation S = (S;;); j=12-
If u; does not vanish identically, we get a quadratic equation in ~

S197? + (S11 + So2)y + Sa1 = 0.

35

(4.25)

(4.26)

Remark 4.3.3 Since Sio = So1 # 0, the eigenvalues occur in the pair {7, %}, if v solves

(4.26).

Conclusion:

In 1 dimension the model for the wave equation leads to a quadratic equation. With given
w the the dispersion context between w and + can be easily evaluated as a function v(w).
The next question is how the evaluation of this context changes if we go up to two dimen-

sions.
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4.4 Model of wave equation with periodical coeffi-
cients in 2D

Modeling the 2D problem is comparable to the way we have done it in the 1D case. We
present 3 variants of solution methods, they all result in eigenvalue problems (general-
ized linear and nonlinear). Two of them evaluate the dispersion relation as searching
the propagation constant depending on given frequency, i.e. y(w), and the other the
inverse mapping via given propagation constant, i.e. w(7y). Since we want to get an idea of
the whole diagram of dispersion, there is initially no advantage of any of the three methods.

4.4.1 Periodic geometry and Floquet-Bloch theorem

We chose the strip Q := R x [0, H] as underlying geometry.

We want to solve the 2 dimensional harmonic wave equation with periodic coefficients in
direction of propagation (z;-direction) in © with boundary conditions according to Figure
4.3:

Search for a solution u(z,t) € C%(Q x R)

div, (a(2)Veu(z,t)) = uy(x,t)  with a(z) + p,x2) = a(xq, x9). (4.27)

The positive function a € C*(R?) describes the periodical properties of the material in
x1-direction, i.e.

a(zy +p,xe) = a(xy,29) Y, € R, Vg, € [0, H]. (4.28)

<a<

We note that for the later derived weak formulation periodic a € L*(£2) with 0
a(r) < @ for almost all z € Q will be sufficient.
We use again a harmonic ansatz of the form

U(x1, 29, ) = (w1, 75) €™F, (4.29)

Suppressing the hat marker, we get the partial differential equations only in space:
Search for u € C*(, C)

—div(aVu(r)) = w’u(r) Vo €. (4.30)

Remark on the choice of boundary conditions:

The periodic coefficient already simulates the periodic geometry. We choose periodical ar-
ranged homogenous Dirichlet boundary conditions due to the fact that in the piezoelectric
model, we want to achieve in the final step, an equivalent boundary condition is claimed
on the potential.
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Figure 4.3: Infinite periodical cluster 2D ()

Since the propagation of surface waves should be negligible within depth of a few

wavelength we set also zero-Dirichlet conditions on the bottom.

Theorem 4.4.1 (Bloch’s Theorem 2D)

Assume a given operator A : C*(Q, C) — C(Q, C), which is invariant over translation T,

of period p in x1-direction, i.e.

T .

TA=ar, win @ OO~ CR.Q

G = fl+p)

Then the eigenfunction of A can be chosen quasi-periodicly in x1-direction :
Ja, B € RY (1, 19) € Q = u(wy, 72) = uy(x1, 25) 0T8I

with periodic function u,(z1 + p, 2) = uy(x1, x2) V¥ (21, 32) € Q,
this is equal to

3B € RY (21, 73) € Q = u(xy + p, x2) = u(wy, z)e @HAP

(4.31)

(4.32)

Implying that for each eigenspace E4(N) :== {v € | Av = Av} (with dim(E4(\) =:m ), there

is a base of eigenfunctions ® = (¢, ..., ¢m) satisfying

A&j = )\éj and Tp&j = e(aj+i5j)p¢~j_

(4.33)

Proof: A proof for a = 0 is given in Lions [9]. The general case is treated in Kuchment

19].
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Remark 4.4.2 on theorem 4.4.1

Bloch’s theorem states that every eigenvector of the eigenvalue-problem Av = A\v can be
decomposited into so called Bloch-waves of the form (4.33).

Therefore the solution is fully described by quasi-periodic functions and we can restrict the
solution set to this special form :

Search eigenvectors u € C?(Q) solving Au = \u of the form

w(xy + p,xy) = e FBIPY (21 25) V(ry,22) € Q, (4.34)

or of the equivalent form
u(zy, 9) = @ BITy (1) ) V(zy,22) € Q (4.35)
with u, € C*(Q, C) periodic in x1-coordinate, i.e. uy(x1,T2) = uy(T1 + p, T2) V(x1,22) € Q.

Remark 4.4.3 on Bloch decomposition

Due to Bloch’s theorem every eigenvector can be written as a discrete sum of quasi-periodic
Bloch waves. The parameter o of each Bloch wave describes the attenuation per period.
If « > 0 the parameter describes the attenuation of ”forward-running” waves, i.e.
propagation in xq-direction is positive, and o < 0 the attenuation of "backward-running”
waves, i.e. propagation in xq-direction is negative. Since we view a periodic medium and
are mainly interested in waves which propagate in the whole periodic geometry, we can
restrict the numerical calculation on pure propagating modes (o = 0) and Bloch-waves
with attenuation parameter o smallest in magnitude.

We will first solve the problem of pure propagating modes and then extend the problem to
attenuated Bloch-waves, where we are interested in solutions according to o smallest in
magnitude.

4.4.2 Restriction to the unit cell

Due to the validity of Bloch’s theorem, we can restrict the problem (4.30) to the unit
cell ©, := [0, p] x [0, H]. Bloch waves on the unit-cell fully describes the solutions on the
infinite strip.

We use the notation vy := e(®"P and primarly consider only non-attenuated (pure-
propagating) waves, i.e. @ = 0.
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Figure 4.4: Restriction to the unit cell 2D (€2,)

Classical formulation Search for a function u € C?(€,, C) which solves V z €
—div(a(r)Vu(z)) — w*u(z) =0 (4.36)

with a € C'(Q,) and a(0) = a(p) satisfying the boundary conditions (see Figure 4.4)

Dirichlet boundary:  wu(z) =0 on ['p

Neumann boundary: 2% (z) := a(z)%%(z) = 0 on 'y

Periodic boundary: 'y, T'r
u(p, x2) = yu(0, z2) Vs € [0, H] (4.37)
%(p, To) = —75—]’\‘,(0,@) Vy € [0, H]

Ve e Ty wy(r) = &(x _ ~
20 9D L a) = i)
Ve eTgr: w(z) = 55 (z)
with %(:r) for x € T' describing the partial derivation in direction of the normal vector

(pointing to the exterior of €2,) of the according boundary I
The conditions stated on the quasi-periodic boundaries stem from applying and differen-

tiating equation (4.34).
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Variational formulation We start with the classical problem and test it with functions
v of the testspace V (specified later)

/Q divg(a(x)Vu(z)) . v(x) de — /Q wru(z)v(r) dz = 0.
Integration by parts leads to
/Q a(z)Vu(z)VTv(r) d:)/:—/F . %(w)v(:r) ds—/Q wu(z)v(x) d:)/:—/F . %(x)v(x) ds = 0.

By choosing test-functions which vanish on the Dirichlet-boundary (essential boundary
condition), i.e.

Vo:={ve H(9,,C) :v(x) =00onTp} (4.38)
the boundary integral over I'p gets zero. Under consideration of the Neumann-conditions
(natural boundary condition) we get

/Qp a(z)Vu(z)Viv(r) dv — /

Qp

ou
w?u(z)v(z) dx — / —(z)v(x)ds = 0.
roury ON
Since the solution has to satisfy the stated boundary conditions (in the weak sense) we

choose the search space as
V, =Von{ueV=H" Q)| ulx,zs) = yu(z, + p,22)}.

Under condition (4.37) for the flux w;,w, over the periodic boundaries, we get the weak
formulation:
Search for a solution u € V,,: Vv € 1}

/Q )T s /Q u(a)o(e) do /F (o)) ds /F o)) =0

' ' Vv

=:a1 (u,v) =:a0(u,v) =:<w,u>r,

(4.39)

Remark 4.4.4 Properties of the stated bilinear forms ao(.,.),a:1(.,.): H'x H' — R:
Both are symmetric and continuous. Moreover, a,(.,.) is elliptic for a(.) € Loo(£2,) with
0<a<a(zr)<a forz ae. in Q, and ao(.,.) is positive.

Supplementary, we define the bilinear form a(u, v) := a1 (u, v) —w?a(u, v) for given w in Ry .

Remark 4.4.5 The problem arises that the chosen test space in the weak formulation is
bigger than the search space. If we treat the flux over the left boundary as independent
function of u and extend the serach space with w; the spaces become isomorph.

Viph = {(u,w) € H'(Q), L*(TL UTR) |u € Vop,w = 3271, w'D (p' — 4p™@) , w1 € C}

For easier notation/assembling we choose u in Vy, and incorporate the quasi-periodicity
explicitely in the discretized matriz equation.
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FE-Discretization and Galerkin problem We choose a regular triangulation with
following supplementary properties: We have a mesh of n nodes which we split up in
n = n; + ng +n; + n, with ny denoting the nodes according to Dirichlet boundary,
ny, n, according to the left and right boundary (quasi-periodical boundaries) excluding
Dirichlet nodes and n; denoting all remaining nodes (including the nodes on the Neumann
boundary).

Morover, we assume a grid, in which right and left boundary have an identical connection.
We introduce the index mappings d(.),1(.),r(.),i(.) : {1,...,n.} — {1,...,n} and supple-
mentary ;) = i) + (0,p) fori =1,n,.

We choose the FE-subspaces

Vi, = span{p¥ j =T1,n : p\) base function acc. to node z;} cV=HY(Q,),
Vo = {un=377, uWDp) |4 € Cwith uggy = 0fori=T,ng} C Vi,
Vor = {up € Vo, with u' @ = yu'® fori = 1,m;}

= {0 wOp' D)+ 3750 W'D (p'D) 4 yp7))} C Von C Vi

The discretization is done by formulating the weak problem within search

space and test space both Vy,. We get N := n — ng according to the setting
v, = p for i € {1,...,n}\ range(d(.)).
During the computation we treat the flux w;,w, = —~vw; over the quasi-periodical

boundaries as unknown from the displacement u independent functions. We will see
that in the discretized equation one can drop the flux vector after consideration of their
quasi-periodicity.

We get the Galerkin-FE-system (note that w is also unknown)

Searchy € CV and (yorw) : (K —w?M)u—w =0, (4.40)
or in more detail
K, Ky K, U M;; M, M, U; 0
K; Ky K, u | —w? | My My M, u | — wy =0 (4.41)
Kri Krl Krr Uy Mri Mrl Mrr Uy —yw

under the quasi-periodic condition

Uy = Yy . (4.42)
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The system is defined by following notations:
(Ki)g; = ai(p'®,p'D) Vk=T1n;,j=1n,
Kilk' = ai pl(k)apl(]) Vk:majzlanl
J
analogous for K., K.;, Ky, K, Ki;, K
(Mn)k] = ao(pi(k);pi(j)) Vk=1,n;75=1n;
M) = ap(p'®,p'9))y Vk=T1n;j=1mn
J
analogous fO’f‘ MT‘T‘7 Mria Mrla MiT‘7 Mli7 er

K; Ky K
We state the stiffness matriz K := K; K; K = ]R%,
Kri Krl Krr
the mass matriz M = M,; M, M, € ]R% and
Mri Mrl Mrr
U Ui = (Ui(j))j:Lm
the displacement vector u:= | w; | € CN with w, = (ul(j))jzl,m
Uy Ur = (ur(j))jzl,n7~
The flur vector is defined as w € CN with the components
0 for i € {1,...,n;}
w,; = fFL wip'® (x) ds =: wy fori € {n;+1,...,n;+n}

Jr, (- =p)p" D (z)ds = w,; fori € {ni+mn +1,..,N}

Remark 4.4.6 We have implicitly dropped the elements according to Dirichlet nodes since
uqy =0, wgy =0

Including the quasi-periodicity (4.42) in the Galerkin-system (4.40) we achieve

K, Ky K, U; M, M; M, U; 0
K, K; K Uy — w? M, My M, Uy - wy =0.
Kri Krl Krr YU Mri Mrl Mrr YU —YWw;

(4.43)
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Remark 4.4.7 Some properties of mass and stiffness matrix:

1. K,M are sparse matrices.

2. We assume that the mesh is large enough that left and right boundary have no common
element. There is no direct coupling between left and right nodes, which implies that

Klr - Krl - er - Mrl = 0.

3. K,M are symmetric positive definite matrices, i.e. the diagonal blocks
K, Ky, K., Mj;, ... are symmetric, positive definite.

4.4.3 Three solution approaches

We present three approaches for computing the dispersion context. They are developed
by the author and therefore no references can be given for the following methods. In the
first and third approach presented we assume given frequency and search the propagation
constant, i.e. 7y(w) and in the second one the propagation constant is given and we ask for
the context w(7). All three result in eigenvalue problems (of linear or quadratic form).

For given w € R} we define the system matrix K with the blocks

K, =K, —wM,, for x = 4,[,r (4.44)
Approach 1: Schur-Complement Method for given w (SC-Method)
This approach is analogous to the method used in the 1D model. We assume that w given

satisfies w? ¢ o(M 1K), i.e. K regular. We split the system matrix in inner and boundary
nodes

K“ ‘ ?ﬂ ?ir — —
i7d 178 7 K K;
K(w)=K = Ky | Ky Ky :3<?. ?b>,
Km' Krl Krr " w
compute the Schur-complement
S = (—KuK;;  Kip + Kyp) = S S ) ST e R%Zﬁ (4.45)
So1 Sa

and get

<S11 512>< Uy >:< wy )
So1 Sa Yuq —Yw '

Multiplying the first line with v and adding first and second line elimenates w; and we get
a quadratic eigenvalue problem in 7:

’yQSlgul + '}/(Sn + SQQ)U[ + Sglul =0. (446)
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Conclusion:

The Schur-Complement Method results in a quadratic eigenvalue problem with real matri-
ces of moderate size (n; x n;) (compared to the original problem dimension N = n; + 2n,
with n; > n;). But it has the drawback that the computation of the Schur-complement
requires the inversion of the ”large” matrix K;; for every given w and destroys sparsity of
matrices, moreover we cannot state special properties of the block matrices of S.

We have to look for solution methods of quadratic eigenvalue problems of the form:

Search z € C* and A € C with [\|=1: (MA+AB+AT)z =0 with B = B" (4.47)

with A, B real dense matrices of quite moderate size.

Approach 2: Given propagation constant v

We start with the Galerkin-system

U U 0
K| w | —w*M| = wy (4.48)
Y T —Yw;

and bear in mind that K, M are symmetric and positive definite matrices.

If the right side of the Galerkin-system (4.48) was zero, the problem would turn into a
generalized eigenvalue problem.

This states the question after a matrix transformation which eliminates the right side
while preserving symmetry and positive definiteness, i.e. we serach a transformation of
the form THKT — w*THMT.

We can reformulate vectors to get a possible transformation matrix 7 via

I; 0 0
(K—WQM) 0 Il ( ZZ ) = Il wi.
0 1 -
=T

I, 0 0
0 I, I
system, but destroys symmetry.

Multiplying with TH := ( ) from the left eliminates the right side of the
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Considering the fact that v = ¢#” and hence vy = 1, we can expand T7 to
~ I; 0
m_ [ L H o H, _
T —<0 71l>T , e T"w = 0.
————
regular

We can transform the Galerkin system by multiplying with

I, 0 0
H ,__ 9
T ._<0 I vh) (4.49)

from the left into a generalized eigenvalue problem

THKTH = w?TH MTi with @ := < Z ) . (4.50)
l

Remark 4.4.8 Properties of the matrices T' KT, T" MT
1. The matrices are complez-valued through v € C
2. The matrices are obviously hermitian, since K, M are hermitian (symmetric).

3. The positive definiteness is preserved:
(T"KTz,x) = (KTz,Tz) >0V #0, since (Kz,z) > 0Vx # 0 and
(Tx=0&2=0).

4. The transformation preserves sparsity of the matrices.

Conclusion:
For given v € C the method requires the solution of a generalized eigenvalue problem

Search A € Rf and x € C™: Az = ABx

with complex-valued, sparse, hermitian and positive definite matrices A, B of dimension
(m x m), where m = n; + ny.
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Approach 3: Inner-Node-Matrix Method for given w (INM-Method)

In the Schur-Complement Approach we got a quadratic eigenvalue problem to compute 7
by given frequency w.

The second approach (for given ) gives the idea for another method for given frequency
avoiding the computation of the Schur-complement.

We start with the system matrix

o Kn K+ ’YEir . 0
Kw)=| Ki Ky+vKy ( o ) = w
Kri Krl + fYKrr : —Yw

Mutliplying with < 6‘ 701 ? ) from the left side eliminates the right side and we get
14
_?ii_ o Fi‘f‘ VKz’r o up \ 0 (4.51)
YK+ Kvi 7Kuy+ VK + K+ 7K, w )\ yw—yw )’ '

Extracting v leads to a quadratic eigenvalue problem

o 00 i 0 K, i K; K Ui\ _g
T\o K, "\Ki Ky+K,. K, K, w )

under consideration of the special structure of K mentioned in Remark 4.4.7 the quadratic
term vanishes.
We get a generalized linear eigenvalue problem

Ki Ki u; 0 ~K; Ui
_ L) = _ _ — '), 4.52
( Ki?: 0 ) ( u ) 7( _KizT —(Ku+ K,r) ) < iy ) (4.52)

Conclusion: The Inner-Node-Matrix Approach results in a generalized eigenvalue problem
Search z € C™ and A\ € C with |A\| = 1:

_ (M, G . 0 —F
Azr = \Bx oftheformA—<FT 0>’B_<—GT —M2>

The matrices A, B are real-valued, sparse and of dimension (m x m) with m := n; + n;.
If we assume that w is given the way that K = K — w?M is regular, then the diagonal
blocks My, My are regualr and the matrix A — B is regular and symmetric.



CHAPTER 4. MATHEMATICAL MODELING 47

Remark 4.4.9

1. The question arises if through dropping w; out of the system by adding two blocks
of equations this has probably an unwanted effect on the spectrum, i.e. one drops
eigenvalues ¢
Rewriting the system gives

Fz’]z; Ky 0 U; 0 —K; 0 U;
?il ?ll Il U =7 0 2 0 Uuj
K—MT 0 0 wy 0 —K, I wy

One can see that adding the last two line blocks eliminates N; zero lines on the right
side of the eigenvalue problem. In the chapter of eigenvalue theory we will see that
these lines accord to infinite eigenvalues which we are not interested in. The spectrum
of finite eigenvalues remains unchanged through this adding of equations. We get all
interesting eigenvalues if we solve the Inner-Node-Matriz system.

2. Interpretation of the Inner-Node-Matrix Problem:
We treat the question of what weak formulation leads directly to the Inner-Node-
Matriz system:
Setting w, = w,(. — p) and choosing the searchspace V), and the testspace Vpy :=
Von{v eV =HYQ,) |yv(z1,22) = v(x1 +p,22)}

Remark 4.4.10 We have chosen for test and searchspace the whole space, claimed the pe-
riodicity condition for u explicitly. Then we introduced a variable w for the flux and treated
it independent of u. We discretized the weak formulations and hoped that the achieved ma-
trices can be transformed the way that the unknowns according to w will get eliminated
and that we can reduce to a quadratic system. This was quite an intuitive approach, but
we succeeded. But through transformations, reduction of variables and choosing the flux
independent of u, do we still solve the original problem ?

Now we give a mathematical accurate approach by a problem related choice of test and
searchspace which consider the quasi-periodicity. This approach has the big advantage that
the boundary integral, which we former come up by introducing the independent variable
w, vanishes already in the weak formulation.



CHAPTER 4. MATHEMATICAL MODELING 48

4.4.4 Stating quasi-periodic test and search space

We want that the quasi-periodicity is already considered in search and testspace and that
the both spaces are isomporph.

Search and testspace have to fulfill the Dirichlet-condition, i.e. they have to be subspace
of Vo:={ve (H'(Q))|v=00nTp}.

The searchspace The solution has to satisfy the quasi-periodicity condition
u(x +p) =yu(r) Vaely. (4.53)
This holds if the searchspace is restricted to
Vo(7) :={veVy|v(x+p)=~v(x) for almost all x on I', } C V4. (4.54)

The quasi-periodicity condition for the flux follows from the quasi-periodicity of w.

The testspace The testspace should also represent the periodicity, which implies that
test and searchspace are isomorph, i.e. let u be an arbitrary complex scalar and define

Vo(p) :=={v e Vo|v(x+p)=pv(x) for almost all z on I'y, } with p € C fixed .

(4.55)
The weak formulation of the unit cell leads to
Search for a solution u € V,(y):  VYuv € V,(n)
0 = —/ div(aVu)v dx — w2/ uvdx
Q, Q,
= / a(z)Vu(z)V v (x) dx—/ u(x)v(r)ds — w2/ u(z)v(z) de.
Qp INAaIN Qp
The remained boundary integral can be expressed as
/ u(z)v(z)ds = / u(x)v(zr) ds —|—/ u(z)v(z)ds
INARINA 'y 'r
ou ou
= —xvxds—i—/ ——(x +p))v(z +p)ds
@ ds+ | (Gt )+
= [ up@) - wds =1 =7-p) [ ulpids
' 'y
Obviously, the boundary integral over the periodic bounds vanishes, if we choose
1
poi=—. (4.56)

v
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Weak formulation with quasi-periodic test and searchspace
Find u € V,(v) :

/Qa(x)Vu(x)VTv(x)dx— w2/Q u(z)v(r)dr = 0 YveV,(yv!) (4.57)

P P

ar(u,v) — wlag(u,v) = 0 Yo e V(v ) (4.58)

Finite element discretization With shape functions p’(.) satisfying

P(z) = 6
pl(j)(x) = p’"(j)(x +p) Ve on 'y Vje{l, .. ,n}

we choose the FE-subspaces of serach and testspace

Vo = span{p'|ie rg(i(.))Nrg(l(.)} (4.59)
n; ng

Vor(7) = {up|up = Zul(ﬂ)pl(ﬂ) + Zul(a)(pl(a) +p"@), ui e C} (4.60)
7=1 7j=1

Von(v™") == span{p'D}, - Nspan{ ' + p*D}_-}. (4.61)

Choosing v, = p'¥) for j = 1,n; and v, = p'(j) + p"(j) for j = 1,n; leads to n; +
equations for the n; + n; components of u € C" ™. We get the Galerkin-system equation

K Ki + 7Ky (5
YKy + Kyi VK + (K + Kiyp) + Ky u

2 M;; M + v M;, ui \ _qg’ (4.62)
YMy; + M,y y*M,, + Y(My + M,,) + My, w )
where K,., M., (x = i,l,r) denote the blocks of stiffness and mass matrix defined in

(4.43).
Note that K, = K,; = 0.

Reformulation of the three solution approaches

Given propagation constant v with vy = 1
. wp\ _ (1 0 I 0 U .
Settmg(ul)—(()7><07><ul>glves
( Ki; YKy + Ky ) < u; )
YK + Ky (Kyp + Koy) Y

2 M;; M;; + v M;, Ui\ _ g
’YMli + Mri fYQer + fY(Mll + Mrr) + Mrl -
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Since this transformation is regular for v # 0 , the transformed problem has the same
spectrum. The former formulation is helpful since it provides the positive definiteness of
the transformed system.

We see if we choose K, = K,, + M,, and extract the blocks in v to the right side, we get
the generalized eigenvalue problem

Ki Ki _ 0 -K;,
( K, 0 > (ugw) =y ( iy R Sy ) (uiuy) . (4.64)

This is the eigenvalue problem stated through the INM-Approach.

Concerning the SC-Method: If we take the Schur-complement in (4.64) or (4.63) via elim-
inating the first line block we get

J/

—? ?li?;'l?ir —7(?11'F;-1Fi1 + ?ri?;l?ir - Ky—-K,,)— Kri?;‘lfil w =0 (4.65)
51; :Sl::’522 :ngl

with S;; Schur-complement block of (4.45). That means, we achieve the quadratic
eigenvalue problem of the SC-Method.

Conclusion:

The reformulation of test and searchspace constitutes a mathematical accurate method
with the result that INM-Method and SC-Method does not change, but are achieved
without any transformation or at least only transformation to Schur-complement form,
for the method in which we have given v only by a similarity transformation from the
right side.

Thus in the analogous to approach 2,3 the spectra of the formulated eigenvalue problems
is equal to the spectra of solution of the Galerkin-system problem. The difference in the
spectrum of SC-method and Inner-Node-Matrix Method will be discussed in the next but
one chapter.
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4.4.5 Include damping effects

There are many complex damping effects (depending on temperature, frequency, friction,
material ... ). Our aim is to consider two variants of damping in our model

1. Material damping
This effect can be included to our model by adding a viscous damping term in the
initial partial differential equation. It became naturalized (by engineers) to use a
damping matrix which is proportional to the mass matrix or a combination of mass
and stiffness matrix in the discretized matrix equation. This approximation is called
Rayleigh-damping.

2. Wave reflection at periodic perturbations
In each cell the incident wave gets reflected at the electrode with the result that
at certain frequencies these reflected waves can interfere constructively and the
amplitude of the propagating wave decreases with each cell. This attenuation occurs
even independent of material damping.
To be able to compute the dispersion relation also within the stopband we need
to consider this attenuation effect in our model. Up to now we only considered
the dispersion curves which belongs to undamped Bloch waves (through assuming
a = 0), i.e. the purely propagating modes.
We are mainly interested in Bloch waves with o smallest in magnitude.

We model each damping effect on its own first.

Modeling attenuation evoked by reflection at electrodes

This effect is considered by quasi-periodic boundary conditions with non-zero attenuation
in (4.37) of the classical formulation on the unit cell €,.

We start with the classical formulation and consider

The variational formulations and discretizations (for general test-space and quasi-periodic

test-spaces) are equal to the undamped problem, since we always treated 7 as a general
complex scalar.

Concerning the three solution methods In the Schur-Complement and Inner-
Node-Matrix Method, where the frequency w is given and we search for v, we only have
to redefine the desired solution sets in the stated eigenvalue-problems. We recall that we
ware priorly interested in complex eigenvalues with norm 1.
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Considering damping effects we are interested in eigenvalues with o smallest in magnitude

Approach 1: Schur-Complement Method

The method described for the undamped variant does not use the fact that the desired
has norm 1. Therefore, only the set of desired eigenvalues has to be extended, the problem
type stays the same. If we are mainly interested in propagation constants where attenuation
is smallest in magnitude, we get the quadratic eigenvalue problem:

Search u; € C™ and 7 := e(®*)P € C with |a| small:
72512ul + ’Y(Sll + SQQ)U[ + Sgul =0 (466)
with S := _?g;?m?zb + ?bb == ST.

Approach 3: Inner-Node-Matriz Method

The undamped version presented in the Inner-Node approach does not use the special form
of . Therefore, only the set of desired eigenvalues extends (analogous to approach 1).

If we are interested in propagation constants with attenuation smallest in magnitude, the
solution approach results in the general eigenvalue problem:

Search < ZZ ) € Citm) and v := el*+#P ¢ C with |a| small
I

Ki Ki U 0 ~Kj, ”
_ ) = — — — ! 4.67
( K: 0 ) ( L ) 7( _KilT _(Kll+Krr) ) < w ) ( )
with K,, real-valued and sparse and K, K,,, K;; regular f.ii. (w).

Approach 2: given propagation constant v := elatiBlp
We have to adapt the transformation matrix 7'(7) , since we used the fact 7.5 = 1, in the
undamped model.

With two distinct transformations from the left T and the right 75, we get the generalized
eigenvalue problem

Search i € C"*™) and w? € Ry :

T KTy = w*TH MTya (4.68)
I, 0 I, 0 .
with T, = 0 , =1 0 1 andﬂ:<u2>.
0 ~°'I 0 ~I :

We see that for the attenuated variant we loose complex-symmetry and positive definiteness
of the matrices.
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But the main drawback of computing w depending on v := e(®*#)? ig that one has to
provide a two dimensional array («, 5) to get the dispersion relation. But how should this
array be chosen, especially in the case that one is interested in a special frequency domain.
This method is suited to compute only pure propagating modes. If one is interested in
damping effects this method is not recommended due to the complicated data preparation.
Up to this it will not be analyzed anymore.

Modeling material damping

In elasticity friction depends on change of strains and on the velocity u;. Material damping
can be included to our model by adding a linear viscous damping term c¢2%, where ¢ is a

ot !
differential operator in space, to the wave equation leading to

div, (a(z)Vyu(z, t)) + cg—? = uy(z,1).

By the harmonic ansatz, we get
—divg (a(z)Vu(r)) +iwcu(z) — w?u = 0.

Through a variant of Bloch’s Theorem we get quasi-periodicity with attenuation, i.e.
Ja,B RV € Q:  u(x) = upy(z)el@tde (4.69)

with u,(z) periodic function,i.e. uy(x) = u,(z + p) Vo € Q.
This is obviously equal to

Ja,f € RV € Q:u(z + p) = u(x)e PP, (4.70)

Therefore we can reduce the computation geometry to the unit cell with according bound-
ary condition, i.e. set v := el@+#)P,

It is commonly used to model the damping term in the discretized equation as a linear
combination of stiffness and mass matrix as damping matrix. This is known as Rayleigh-
damping.

We assume given positive damping coefficients cg, ¢y -

Since K, M are symmetric and positive definite matrices, these facts are also implied on
the damping matrix C'.
This is equal to define the damping operator in the partial differential equation as

ou 9% Ou
280y = (en T+ ewal) ) 22 ),
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where ¢); and cx are material-depending constants.
Considering Rayleigh-damping the FE-Galerkin-system of equation (4.40) expands to

Ku+iw (cg K + eyyM) u — w>Mu — w = 0. (4.72)

=C

Splitted in inner and periodical boundary nodes we get

Ky Ki K; Us Ci Ci C; U
Ky, Ky K w +iw | Ci Cy Cp w
Kri Krl Krr Yuq Cri Crl Crr YU
—w?| My My M, w | = wy
Mri Mrl Mrr Y —Yw;
(4.73)
Material damping and the three solution methods
Approach 1 and 3: given frequency w
For given w we define the system matrix by
K,.(w) =K,, = K,, +iwC,, —w’M,, for x =i, (4.74)
and have the following problem to solve
K; Ki K; (& 0
K; Kiy K u | = w : (4.75)
Fri Frl Frr Yup —Yw
_K

That means approach 1 and 3 are formally analogous to their variants for damping
through reflection at the electrodes. With one difference that through considering material
damping the system matrix K gets complex, but maintains (complex) symmetric (not
hermitian!).

Approach 2 will not be treated for the reasons discussed in the paragraph of attenuation
caused by periodic perturbations.
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4.5 Mathematical modeling of periodical piezoelectric
equations in periodical geometry

Now we want to apply the developed methods of the periodic wave equation on the
piezoelectric problem.

We have to combine two problems, the piezoelectric system equations and the properties
implied by the periodic geometry, this will be done the following way: We state the
piezoelectric problem in classical and weak form on an infinite periodic geometry first.
We formulate an abstract version of Bloch’s theorem and restrict the problem to the
unit cell. Then we introduce the properties of the Finite Element Method for ”standard”
piezoelectric problems, i.e. problems with Neumann and Dirichlet boundaries only. This
stepwise construction leads us to an obvious adaptation of the methods introduced for the
quasi-periodic wave equation in order to apply them to piezoelectric systems.

4.5.1 Piezoelectric equations, periodic geometry and Floquet-
Bloch Theorem
To simulate the behavior of displacement vector function u(.,.) € C??((R?,R{);R?) for

d = 2,3 and the scalar potential ®(.,.) € C*°((R%, R{); R) we have to solve the piezoelectric
system equations

82
div,(c"Bu — "V, ®) = p(x)a—tg (4.76)

div,(eBu — 5V, ®) = 0 (4.77)

with Bu = S = $(VIu+ V,u) and p(z1, 12) = p(z1 + p, x5) on an infinite periodic cluster
2 shown in figure 4.5 and Qp := (,[0, 7).
We assume all field distribution to be harmonic, i.e.

i(z,t) = e“tu(z) € C¢  V(x,t) € Qr,
d(x,t) = e'd(z) € C V(z,t) € Qr,
u(z,t) = Rfa(r,t)} V(z,t) € Qr,
O(x,t) = R{®(z,1)} V(x,t) € Qp.

For easier notation and the fact that derivatives after time become multiplications, we use
the complex distribution and take the real part after computation. This is valid since all
applied operations are linear.

We have already motivated problem setting (short-circuited electrodes)with boundary con-
ditions and underlying geometry at the beginning of this section. Figure 4.5 shows once
more the infinite geometry.
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€ piezoglectric substrate .- H
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I, electrode boundary Iy charge and stress free boundary

Figure 4.5: Infinite periodical cluster (£2) of the piezoelectric model

We state the classical formulation of the piezoelectric model by
Searching for a (u, ®) € (C*(Q,C?%),C*(Q,C)) which satisfies :

—div (¢ Bu +e"V®) = pw?u

4.78
—div (eBu — e5V®) = 0 (4.78)

with the boundary conditions (let n denote the outer normal vector)

stress — free  T.n=0 on [':= 0,
short — circuit ® =0 on Q = ®=0onTy, (4.79)
charge — free D.n=0 on 'y

with domains and boundaries defined according to Figure 4.5 by
Qs :=R x (—H,0) (the domain of piezoelectric substrate),

Qe = Ugez-(%2,22)  (the domain of electrodes),

19
Tint = Qg N Q (interface of piezoelectric substrate and electrodes),
I = 09,

[y := 002N o, and

Iy =00\ .

Again we try to apply Bloch’s theorem in order to simplify the problem to the unit
cell and to get an explicit dispersion relation. Now we formulate first the weak formulation.
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Remark 4.5.1 on interface condition between the two materials (substrate and electrodes):
The interface conditions on the interface electrode-substrate are given by

xefglrl—)yu(x) xef%gl)yu(x) y !

AL
Tng = —=T.ng on Lint,
D.ns = —D.nel =0 on Fmt.

Stepwise construction of the weak formulation of piezoelectric equations

1. We multiply with testfunctions v and ¥ and integrate over €2
— [yl div(T) dz — w? [, " pudz =0,
— [ ¥div (D) dz = 0.

2. Integration by parts and consideration of the symmetry of T ((Vv)T T = (Bv)T T)
leads to

[oB)T : Tde — [,,v" Tonds — w? [, v7 pudz =0,
fo (VO Ddx — [,, ¥ D.nds = 0.

3. Under consideration of the boundary conditions we get

Jo(Bv)" : Tdx — w? [, v" pudz =0,
Jo (V¥ Ddr — [, ¥Dnds=0.

4. Choosing the testspace
Vo :={(v,¥) € (H'(Q,CH, H(Q,C) | ¥ =0inQy } (4.80)

and taking the search space 1}, we finally get the weak problem formulation
Find (u,®) € Vj such that for all (v, V) in 1} :

Jo(Bv)" :c” Budx + [,(Bv)" :e" (V®)dr — w® [, v" puds =0 (4.81)
[ (V) e Budx — [,(VU)" 5 VO dz = 0. '
According to the periodic geometry, i.e. all coefficients are periodic, we restrict the
calculation to the unit cell and achieve an explicit dispersion relation. We have to adopt
Blochs method to the piezoelectric problem. This time we develop an abstract variant
acting on the weak formulation of the problem.
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Abstract version of Bloch’s theorem:

Theorem 4.5.2

Let Vi be the Hilbert space stated in (4.80).

We define the shift operator T, : Vo — Vo mapping u(xy, x3) to Tyu(xy, xse) = u(z +p, 12).
We assume, that the two bilinear forms a,b : VXV — R are symmetric and are invariant
over T,, i.e.

Ty(a(,,) = a(T(), Tp(), (4.82)
T((,.) = bT(), Tp()- (4.83)

Then every eigenvector uy, € Vi corresponding to the eigenvalues Ay of the weak generalized
eigenvalue problem

a(ug, v) = Agb(ug,v) Yo € V)

can be fully described by quasi-periodic eigenfunctions (V;)j=1,..m satisfying

a(y,v) = \b(¥;,v) Vo € W (4.84)
of the form (in weak sense)

Ja;,B €R: Typ; = elaTBiry,, (4.85)

m denotes the geometric multiplicity of A;.

Proof idea:
The proof is analogous to the already described version of Bloch’s theorem.

Remark 4.5.3 on Bloch’s theorem
Every eigenvector (u, ®) in Vi of the weak problem (4.81) can be decomposited in quasi-
periodic etgenvectors
u(rr, ) = S el with (a4 poas) = TR (2, 1), (4.86)
P(x1,79) = ZT:(T) o with  mi(z1+p,x2) = e(ajﬂﬁj)pﬂj(xl,fh)
with (1, n) eigenvectors corresponding to w and m = m(w) denoting the geometric multi-
plicity of w.

Le. every solution (u, ®) in V5 of (4.81) is fully described by the solution of its Bloch waves
on the unit cell.
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Figure 4.6: Restriction to the unit-cell for quasi-periodic solution

4.5.2 Restriction to the unit cell

We restrict the formulation (4.81) to the unit cell €2, according to Figure 4.6 and introduce

the following notations €, s := (0,p) x (—=H,0), Q. := (%, %’) X (0, her), Qp = Qe UQs,,,
I, = {0} x (—H,0), ', = {p} x (—H,0) and the Neumann boundary 'y according to

Figure 4.6.

Search for a (u, ®) € V := {(u,®) € (H'(Q,,C*), H'(Q,,C))|® = 0on Q} :

/ (Bv)" : T(u, ®) dx —w2/ w'vdr = / v T (u, ®).nds
Qp T'rUl'g

Qp

/ (V) 'D(u,®)dz = / UD(u,®).nds  (4.87)

for all (v, ¥) in Vj,

with the already implemented boundary conditions

Tn=0 on 09,
Dn=0 onTIy
®=0 on Q,

and the quasi-periodical boundary conditions which we have not considered yet and
are achieved by differentiation
Up = YU ]
T,.n, = —yT.my with v := elotiBp, (4.89)
D,.n, = —yD;.my
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4.5.3 FE-discretization of the unit cell ,

We choose a regular triangulation of the unit cell €2, with n nodes (z™M, ..., 2™) and
() = (xgi),xgi)) for all i. Then we split up the nodes into n = n; + n. + n; + n, with
ne denoting the nodes corresponding to electrode, n;, n, according to the left and right
boundary (quasi-periodical bounds) nodes and n; denoting all remaining nodes, which we
call inner nodes and which again also includes the Neumann nodes.

According to the partitiion we introduce the index mappings

1),r(),i(),e(l) : {1,....,n.} — {1,....,n}.
Furthermore, we assume that the left and right boundary nodes match, i.e. they satisfy

Tr(iy = i) + (0,p) fori =1,y

FE-discretization of piezoelectric problems with Dirichlet and Neumann BCs
In order to get an idea of the properties of FE-matrices of piezoelectric problems, we
first treat "standard” boundary problems, i.e. we assume only Neumann and Dirichlet
boundary conditions. For this problems we state the piezoelectric Galerkin-system and
analyze the matrix properties.

We choose Neumann conditions on right and left boundaries, i.e. we solve the weak
problem (4.96) with the search and test space Vj.

We choose the FE-subspaces of V' = H'(Q,)*"! and V; by

Vi, = span{p¥, j =T1,n : pi¥) FE-base function acc. to node z;}**'  C V

= span{pYWe,j = 1,n : pU) FE-base function for x], kE=1,d+1}
up = S0 ulpl) with u® € C?
Vo == {(un, @n) ]| b

)l cV
Oy =0 iergery 9PV with @9 e C t h

where e;, denotes the k-th unit vector in R™*" and Rg(f(.)) denotes the range (image) of
a function f(.).

We approximate the solut10n of (4.96) by solving the discretized weak problem:
Search (up, ®p) = (32, u@p® 3. dWpl)) € Vy, satisfying for all (vs, ¥y) in Vo:

/ (Bup)™ : T(up, @) dz — w? | wlvyde = / v T (up, ®p).nds
O, TLUTR

Qp

/(V\Ifh)TD(uh,tbh)dx = / WD (up, ®p).nds.  (4.90)
Q T'rUl'r

P
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The Galerkin-FE-problem denotes searching v € C4Ve & € CNe:

(o S ) (a)-= (" 0)(8)-0|  am

This N :=d- N, + Ng equations are achieved through following notation:
Ng :=n—n, and N, :=n and e, denoting the k-th unit vector of R? for k =1,d

u =

Q=

u()
: with u) € C¢ by discretization uy, == >, uWp®
(V)
e
: with ®9) € C by discretization uy =Y, ®Op .
d(Na)

Using a derivative tensor Byp® according to each shape function p®, which is defined by
u® Bup® () = B(uWp®(x)) we state

1.

/.

the mechanical stiffness matrix K,, € Rd'N“ by blocks K&j) in Rd

with ( K mk—fQ (Bppen)T : B (BypDerdr for m,k =1, ..d,
the dielectric stiffness matrix Kpg € Ry * by (Koe)ij fQ (VpNT S VpWde,

the piezoelectric coupling matrices K, = K, € R\ by blocks K @ € R?
with (K i 1= fQ ex(BrpNT - eTVplldz and

the mechanical mass matrix M,, € R%Y N“ by My, ij == fQP p® ppW) dz.

Remark 4.5.4 on the piezoelectric FE-matrices

1.

In practice the matrices are assembled elementwise and not nodewise as written above
for easier notation.

The notation of the system matrices used in (4.91) is the common formulation of
FE-discretisized piezoelectric problems.

The matrices have the following properties:
Koo = KLy, Ky = KL, are positive definite .
M, = M], is positive definite.

K. =K}, .
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4. The not-null-elements of the mechanical stiffness matrix K,, are of quantities
~ 10'°, while the not-null-elements of the dielectric stiffness matrix Kg¢ are of
quantities ~ 107!° due to the coefficient tensors.

This requires scaling of eigenvalue problems and/or robust algorithms .

FE-discretization of piezoelectric problems with quasi-periodic boundary
conditions To consider quasi-periodic boundary conditions we start again at the weak
formulation of (4.96), but this time we incorporate the quasi-periodic boundary conditions
(4.89) by stating quasi-periodic test and search spaces:

Search and test space have to fulfill the Dirichlet-condition, i.e. they have to be a subspace
of Vo :={ve (H'(Q))|lv=0onTp}.

The search space The solution has to satisfy the quasi-periodicity condition (with

p=(p,0))
u(x + p) = yu(zr) Vo € T'y. (4.92)

This holds if the search space is restricted to
Vo(7) = {(v,9) € Vo |v(z +p) = yv(x), Y(x +p) =y¢(z) ae.on g} C V. (4.93)

The quasi-periodicity condition for the flux follows from the quasi-periodicity of w.

The test space The test space should also represent the periodicity, which implies that
test and search space are isomorph, i.e. let ; be an arbitrary complex scalar:
Vo(p) == {(v,¥) € Vo |v(z+p) = po(z), ¥(x+p) = pu¥(z) ae on L} (4.94)

with u € C arbitrary, but fixed.
Analogous to the model of the 2D wave equation the integral over the quasi-periodical
boundary vanishes if one chooses

o= S (4.95)

Weak formulation of piezoelectric problem with quasi-periodic boundary on
unit cell Search for a (u, ®) € V,(v) :

/ (Bv)" : T(u, ®) dx —w2/ w'vdr = / v T (u, ®).nds
Q T'rUl'g

P QP
/ (V)" D(u,®)de = / UD(u,d).nds (4.96)
Qp r'LUlg

for all (v, ¥) € V,(=).

1
Y
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FE-discretization of quasi-periodic piezolectric problem With shape functions
P’ (.) satisfying
Pxi) = &
p'D(z) = p"D(z+p) Ve on 'y Vje{l,..,m}

we choose the FE-subspaces of search and testspace

Von = span{p'|i € rg(i(.)) Nrg(l(.)},
up = ZZ 1Z;i1uli(j)pi(j)ek+
Von(v) = { (un, @p) | + 12] 1ul(7)( ) 4 ypT ())ek, ul € C |2
O, = Y0, @Wp0) 4 37 IO (pll) 4 4pV)), B e C
Vin(v™h) = span{p'(j) } =i N span{ ap'V) 4+ p W} e 3

Choosing (u1, ) = p'Pe for j = T,y and (un, U4) = (194) + p ())ex for j = T, for
k=1,d+ 1 leads to N(n; +ny) - (d+ 1) equations for the (n; +n;) - (d + 1) components of
(1, ) € T 04D

We get Galerkin-system:
( K Ky + K, ) ( Uy ) W < M;; M;; + v M, ) ( U; ) -
YK + Ky v(Ky+ Kyy) U YMy + My y(My + M,,) u ’

where K, Mg (s,t = i,l,7) are blocks of stiffness and mass matrix of the piezoelectric
system according to inner, left and right boundary nodes. Note that K;. = K,;, = 0.

By the following notation

R Kuu,st Ku@,st .
K, = < Kowu —Kons > for s,t € {i,1,r}
M, = < M%" 8 ) for s € {i,,r} (4.98)

Us :
Ys = < o, ) for s € {i,1}

we can apply the solution approaches presented for the Helmholtz-type model directly to
the coupled field problem.

But we introduce material damping first, i.e. we consider Raleigh damping in the
piezoelectric system.
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4.5.4 Rayleigh-damping for the piezoelectric FE-system

We want to consider Rayleigh-damping to the mechanical field, i.e. with given parameters
¢k, cy we define the damping matrix

The system ( 4.91) extends to the damped piezoelctric FE-Galerkin system
Search u € C*Nu, ® € CNe:

Kuu Ku':I) u +iw Cuu 0
Koy —Koo [ 0 O
and the damped analog of ( 4.101) to
( K K + K, ) < Uy ) 4w ( Ci Ci +vCir ) ( U; )
YK + Ky y(Ky + K,y) Uy vCu + Cri Y(Cu+ C,y) Uy

B wz( M;; M;; + v M;, )(%’)_0
YMy; + My v(My + M,,) Uy

W
(4.100)

RS
N——
|
&

DN
VR
S
IS
o O
N——
N
[ERIS
N——
|
VR
S
1S
N——

(4.101)
the definition (4.98) is extended by
o Cuu,ss 0 _ CKMuu,ss+CMKuu,ss 0
urm (G 0) = (oMb 0} iy

for s € {i,1,r}.

4.5.5 Schur-Complement and Inner-Node-Matrix Method for
piezoelectric problem

For already stated reasons we apply only approach 1 and 3 (given w) to the problem.
For given w we define the system matrices

Ky = Ka—w’M, st=ilr (4.103)
KCy; = Kg+iwCy—w’M,. s,t=1,l,r (4.104)

K is symmetric and real-valued and F_m complex-valued and complex-symmetric.
We assume a given w for which K and K¢ is regular.
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Due to the SC-Method we get a quadratic eigenvalue problem
( with N; := (d+1) - my)

Search v € C,y; #0 € CM : 2SSy + (St + Sao)ys + Shy, = 0 (4.105)
with S, = ~K;K; K,

Sy o= —?Hf;lfg + Ky =81 € R%i for undamped system (4.91)

Sy = —K,Ky Ko+ Kyp =57,

Sy = —KOK0, KO,

Sy = —KcliF;IKC;F + K¢, =S8, € C%ﬁ for damped system (4.100)

Sy = —KO,KC, KC. +KC, =S

For the Inner-Node-Matrix Method we get a generalized linear eigenvalue problem

for the undamped system (4.91) we search v € C, < Z; > #0€ C’]]\\,?LJ\\,Z :

Ki Ky Yi \ _ 0 ~Ki Yi (4.106)
f,j: 0 Y -7 _?;’ _(?ll + ?rr) Y .
and for the damped system (4.100) we search v € C, ( z > #0e€ C’%’iﬁ :

)
l

K¢, K¢ Yi 0 —K%, Yi
c’ =7 =T & o (4.107)
K ir 0 Yi -K il —(K n+ K 1"1") Yi

Remark 4.5.5 If Ay = vBy denote the linear eigenvalue problems (4.106) or respectively
(4.107), the matriz (A — B) is regular and (complex-)symmetric. This is valid through the
assumption imposed on the choice of w.



Chapter 5

General theory and numerics of
algebraic eigenvalue problems

We discuss three different types of eigenvalue problems: the standard, the generalized
linear and the quadratic eigenvalue problem.

This chapter starts with defining these eigenvalue problems, followed by an introduction
to the main ideas which underlie numerical solution methods. A short overview of the
software packages needed is given.

A good overview and comparison of state-of-the-art eigenvalue solvers is given in [8],
In the following the superscript * denotes ’transposed’ if real arithmetic is used and ’trans-
posed complex conjugate’ if complex arithmetic is used.

5.1 Definitions and types of eigenvalue problems

5.1.1 The standard eigenvalue problem

Let A be a n X n square matrix over R or C. Searching scalars A € C and vectors x € C"
satisfying
Axr =Xz (SEP) (5.1)

forms the standard eigenvalue problem.

An eigenvalue X of a matrix A is defined as a complex root pa(A) = 0 of the characteristic

polynomial of the matrix A
pa(A) = det(A — A). (5.2)

Hence eigenvalues are complex numbers A for which the matrix pencil (A — A) becomes
singular.

66
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The set of all eigenvalues is called the spectrum of a matriz denoted by o(A):

o(A) = {\ € C|det(A\[ — A) =0}

= {\ € C|(A — A)singular} (5.3)

Let A be an eigenvalue of A. A non-zero vector x € C" satisfying
Ax =Xz with A € o(A)

is called (right) eigenvector corresponding to the eigenvalue A of A. The pair (), z) is called
a (right) eigenpair of A.
A non-zero vector y € C", which satisfies

y'A= Xyt withA € o(A),

is called a left eigenvector for the eigenvalue A of A. The pair (), y) is called a left eigenpair
of A.

If X\ is an eigenvalue of A, then the eigenspace associated with A is defined as the nullspace

N(M — A).

The characteristic polynomial is of order n, hence counting multiplicities the polynomial
has n complex roots , i.e. the matrix A has n eigenvalues \; € C. The algebraic multiplicity
n, of an eigenvalue ); is the multiplicity of \; as a root of the characteristic polynomial.
The dimension of the corresponding eigenspace specifies the geometric multiplicity ny. An
eigenvalue is called defective, if the geometric multiplicity is lower than the algebraic one.
Two obvious facts:

1. Eigenvectors of distinct eigenvalues are linearly independent.

2.1<n,<n,

Some matrix properties imply a special structure to the spectrum, i.e.

matrix spectrum eigenvectors
A real A ER r; € R?
or \; € Cin pairs : J; , Xz Ti, T; .
Arealand A= AT | AeR x; € R with Az; = Ai;.
A= A* A ER _ r; € R?
or \; € Cin pairs : i ;)\i Ti, T;

This additional information is helpful in constructing fast and reliable solvers for matrices
of special structure.
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5.1.2 The generalized (linear) eigenvalue problem

Let A, B be n x n square matrices over R or C.
Searching scalars A € C and vectors x € C" satisfying

Ax = ABx (LEP) (5.4)

states the generalized (linear) eigenvalue problem.

The polynomial
P(a,)(A) = det(AB — A) (5.5)

is called the characteristic polynomial of the matrix pair (A, B).
In contrast to the standard problem the characteristic polynomial of a matrix pair (A, B)
need not to be of order n since

det(AB — A) = \".det(B) + lower terms.

Therefore one has to introduce finite and infinite eigenvalues.

Finite eigenvalues denotes eigenvalues in the common sense as in the SEP. The roots
p(a,B)(A) = 0 of the characteristic polynomial are called finite eigenvalues of the matrix
pencil (4 — AB).

Let A be a finite eigenvalue of (A, B). A non-zero vector x € C" is called a general (right)
eigenvector according to A if it solves

Ax = \Bx.

The pair (\, ) is a (right) finite eigenpair.
A non-zero vector y € C" is called a general left eigenvector according to A, if it solves

y'A=\yB.
The pair (\,y) is a left finite eigenpair.

If the degree d of the characteristic polynomial is lower than n, there are (n — d) infinite
eigenvalues per definition.

Through reformulation of the eigenvalue problem one can achieve a more accurate definition
for infinite eigenvalues. Replacing the eigenvalue A by the complex pair («, §) with

A= 5 and |af? + |87 = 1 leads to

fAr = aBz, (5.6)
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which is equivalent to Az = ABx in the case of finite eigenvalues. We identify infinite
eigenvalues with the pair (1,0) and right / left eigenvectors associated with an infinite
eigenvalue as vectors x,y € C" satisfying

Bx =0 or y*B =0 respectively. (5.7)

Connection between standard and generalized eigenvalue problems:

The standard problem is a special case of the generalized one by setting B = I.

If B is regular, the generalized eigenvalue problem Ax = ABzx can be transformed to
standard form B 'Ax = Mz. By similarity transformation we will show later that the
generalized and the corresponding standard problem have the same spectrum.

5.1.3 The quadratic eigenvalue problem

The nonlinear eigenvalue problem of order k is defined as searching scalars A € C and
vectors x € C", which satisfy

)\kax + )\k_le_lx + ...+ )\Clﬂf + COIL' = 0, (58)
with C; € C7 for [ =0, ..., k.
The matrix polynomial P(\) := \*C}, + ... + MO} + Oy is called A-matriz of order k.

In this thesis we treat quadratic eigenvalue problems, i.e. A-matrices of order 2.
The characteristic polynomial of a quadratic pencil is defined by

pp,(N) = det(Py(N\)) = det(\>Cy + ACy + Cp) (5.9)

Eigenvalues should be again defined as the roots of the characteristic polynomial, but
since the number of roots depends on the regularity of the leading matrix C5, we have
to distinguish finite and infinite eigenvalues. Here a main difference to linear problems is
implied by the fact that the characteristic polynomial of P, can have up to 2n complex
roots.

Finite eigenvalues of the quadratic matrix pencil P, are defined as the roots of the char-
acteristic polynomial pp,(A) = det(Py(\)) = 0.

A (right) eigenvector according to a finite eigenvalue A is a non-zero vector 2z € C" solving
the matrix equation

P,(Mx =0 withA € o(P) :={\;|pp,(\;) = 0}. (5.10)
Analogously left eigenvectors are non-zero solutions y € C™ of

y*Py(A) =0 withA € o(P). (5.11)
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The pairs (A, z), (A, y) are finite right/left eigenpairs.

If there are d finite eigenvalues, then there are 2n — d infinite eigenvalues by definition.
To get an accurate definition of infinite eigenvalues and the corresponding eigenvectors,
o]

the problem has to be again reformulated. Replacing A by the pair («, 5) with A = 3 and

normalized by |«|? 4+ |3]* = 1 one gets
?Coz+aBCrz+ 2 Cor = 0. (5.12)

By this the pair (1,0) stands for infinite eigenvalues of P, and the quotient A = ¢ with
|5] > 0 denotes finite eigenvalues of P,.

This implies defining right/left eigenvectors associated to infinite eigenvalues as non-zero
vectors x,y € C" solving

™|

Cox =0, or y*Cy =0 respectively. (5.13)

Since there are 2n eigenvalues (finite and infinite), in general the eigenvectors cannot form
an independent set in C* . With the effect that two distinct eigenvalues may have the
same eigenvector.

Some matrix properties imply special structure of the spectrum of QEPs:
For PQ()\Z) = 02)\22 + Cl)\z + CU =0 we get

matrices spectrum eigenvectors
P, regular | 2n finite eigenvalues
P, real A €R x; real
or complex conjugate pairs (A, \;) | (A, 75) = (\i, Ti)

5.2 Numerics of eigenvalue problems

There is a wide range of numerical solution methods for eigenvalue problems. A large
part of methods assume hermitian and positive definite matrices. Since it turns out that
the matrices of the problems modeled in Chapter 4 do not fulfill these assumptions, we
concentrate on algorithms which work with non-hermitian general matrices. Moreover one
always has to bear in mind that the matrices can be singular.

To get a first impression of a given eigenvalue problem it is sense- and useful to compute
the whole spectrum. In problems derived from assembling the piezoelectric equations
the system matrices are very ill-conditioned. The non-zero coefficients of the mechanical
stiffness matrix K,, are of the order 10'° whereas the non-zero coefficients of the block
modeling the electric potential Kgg are of the order 107'0 (see also Appendix A). To
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get first reliable results and reference values we look for well-understood, robust and re-
liable methods. This leads us to direct methods and especially to the QR/QZ-algorithm [8].

Analogous to linear equation solvers we apply iterative methods to eigenvalue problems to
get faster algorithms. These methods have the advantage that they need fewer factoriza-
tions, do not destroy sparsity of the matrices and, e.g. in case of Jacobi-Davidson method,
the linear equations arising can be solved approximately. There are two main advantages of
iterative methods. First, some iterative methods suffice only with matrix-vector products,
i.e. the explicit knowledge of the system matrices is not necessary. Secondly, it is possible to
specify a (small) part of the spectrum which one is interested in. Only the eigenpairs with
specified properties, e.g. largest/smallest real/imaginary part, largest/smallest magnitude
or eigenvalues next to a given complex target 7, are computed.

We introduce the Arnoldi method [35], [11] for solving standard and generalized
linear problems iteratively. Concerning quadratic problems we present a linearization
method to generalized problems and the nonlinear expansion of Jacobi-Davidson algorithm.

The theory of these methods (QR-QZ,Arnoldi, Jacobi-Davidson) is first described in detail
for solving standard problems, which is technically less complicated. Then the main ideas
get expanded to the generalized and nonlinear case.

Understanding the theory underlying and motivation of the algorithms leads to an idea of
constructing problem dependent structure preserving methods.

We start with some helpful tools often used in solving eigenvalue problems.

5.2.1 Some facilities - transformations, factorizations and decom-
positions

Before applying an eigenvalue routine it is often advisable to transform the system to a
simpler problem or to a problem with higher convergence rate.

After solving the transformed problem, the back transformation of the spectrum and of
the corresponding eigenvectors should be easy to perform.

Similarity transformation At first we are looking for transformations which have no
effect on the spectrum of the matrix pencil

P\ = NCy+MC+Cy  1=2  corresponding to QEP
T AB-A I=1  corresponding to LEP and SEP(B =1)
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where C;, A, B are general n X n matrices over C.
The corresponding characteristic polynomial is det(P;())). The spectrum (set of finite eigen-
values) is denoted by o(F)).

Theorem 5.2.1 Similarity transformations
If U,V are regular (n X n) matrices, then

o(P) = o(U*PV). (5.14)

(M\i,yi) solves U*P(\)Vy; =0. < (N, z;:=Vy;) solves P(\)x; =0  (5.15)

The last equivalence holds for infinite eigenvalues \; = oo.

Proof: Every eigenvalue \; of P, is a root of the characteristic polynomial of U*PV':
0 =det(U*P,(\,)V) = det(U*) -det(P,(\;)) det(V) <& det(P(\)=0 = (5.14).
S—— S—

#0 70
For finite eigenvectors equivalence (5.15) is obvious by regularity of U, V.
For \; = oco: for 1=1 since U,V regular
UsBVy=0 < U *U*BVy,=BVy,=Bx; =0 with z; =Vy;
forl =2: analogous.

O

If the matrices U,V are unitary (U*U = I and V*V = I) we call these transformations
unitary similarity transformations. For real matrices replace unitary by orthogonal.

There are some eigenvalue problems of special structure which are easier to solve than
general ones (e.g. system matrices of diagonal, tridiagonal, triangular or Hessenberg form).
It is often useful to transform the given problem first to some reduced form, if possible,
and then solving the simpler problem.

If this is done by similarity transformations the spectrum does not change and the back
transformations of eigenvectors are easy to perform (one matrix-vector multiplication Vy;).

For instance, if a given matrix A has n independent eigenvectors, one can find a unitary
(orthogonal) matrix @ which diagonalizes A, i.e.

A=QDQ*

with D diagonal matrix. Normalized eigenvectors are given by the columns of (). The
corresponding eigenvalues are the diagonal elements of D.
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Spectral transformation In many cases it makes sense to transform the spectrum as
well. We will see that iterative methods have fast convergence to dominant eigenvalues,
i.e. eigenvalues of largest magnitude which are separated from the rest of the spectrum.
If one is interested in eigenvalues near to a given complex target v of generalized linear
problems, we can accelerate the convergence rate by solving a transformed eigenvalue
problem where the desired eigenvalues lie at the end of the spectrum.

At first we create an eigenvalue problem in which the desired eigenvalues are close to zero
by the shift

(A —~yB)x = (\; — v)Buz. (5.16)
Via inverting the problem the searched eigenvalues get dominant
1
Bz = A—~vB)x. 5.17
v = (A= 9B) (5.17)

Theorem 5.2.2 Spectral transformation
Starting from the generalized eigenvalue problem

the spectral transformation with shift u denotes the transformed LEP
Bzx; = u;(A — yB)x;.

The transformation and the according back-transformation of the spectrum satisfy
1
o(B,A-vB) = {m | Ai € 0(A,B) },
1

)

1
(i, ;) solves Bx; = pi(A—+vyB)x < (N, x;) := (y+ —, ;) solves Ax; = \;Bx;

i
or respectively

1

N — 7;:JEZ') solves © = (A — vB) ‘Bz

(Ai, ;) solves Ax; = \;Bx; &

The eigenvectors maintain unchanged through these spectral transformations.
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If (A —~B) is a regular pencil, one can construct a standard eigenvalue problem out of the
spectral transformation. Similarity transformation leads to

(A—~B) 'Bx; = T (5.18)

or

B(A—9B) 'y = pyp—_ (5.19)

respectively. In problem (5.18) the eigenvectors are unchanged, for (5.19) one has to apply
z; = (A — yB)y; for back-transforming.

Methods using spectral transformation and (5.18) or (5.19) carry the supplement shift-
and-invert (SI).

Spectral transformations and SI-methods are used to
e shift interior eigenvalues to the end of the spectrum,

e transform generalized linear to standard problems in case that B is singular and if
there is a complex number v for which the pencil (A — yB) is regular.

Schur decomposition One can compute the eigenvalues of a general matrix by
transforming the matrix to (quasi-)triangular form (see Remark 5.2.5 for the definition
of quasi-tringalur matrices). The eigenvalues are given by the diagonal entries. If the
eigenvectors are required, they can be computed by solving a triangular system and then
back transforming it according to the original problem.

Definition 5.2.3 Schur decomposition
A unitary (orthogonal) similar transformation of a square matriz A to Schur form s
defined by the decomposition

A=QTQ" (5.20)

with @ unitary (orthogonal) and T upper triangular (quasi-triangular) in complex (real)
arithmetic.
The columns of Q) are called Schur vectors.

Computing eigenvalues and eigenvectors see generalized case (B = I).
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Definition 5.2.4 Generalized Schur decomposition
A unitary (orthogonal) similarity transformation of a matriz pencil (A—AB) to generalized
Schur form is done by the decomposition

A= \B=Q(Ts— \Tp)Z* (5.21)

with Q, Z unitary (orthogonal) matrices and Ty, Tp triangular (quasi-triangular).
The columns of QQ, Z are called generalized Schur vectors .

The eigenvalues of a triangular pencil are easy to get and since the transformation was
similar the spectrum does not change through this transformation, we get

o(A,B) = o(Ty, Tp) = {T:__ li=1,..n}. (5.22)

Eigenvectors to finite eigenvalues can be achieved by solving a triangular system
(T4 — MTg)y; = 0 — y; or for infinite eigenvalues by computing the nullspace of a
triangular system Tgy; = 0 and by applying the back transformation to the original
problem afterwards by x; = Zy;.

Remark 5.2.5 to T4, Ty (quasi-)triangular:

If real arithmetic is used and complex eigenvalues appear, it is impossible to transform
the matrices to triangular form. One has to admit (2 x 2) diagonal blocks. Each block D;
represents a complex conjugate pair of eigenvalues \;, \; by satisfying o(D;) = {\i, i}
Triangular matrices with (2 X 2) blocks on the diagonal are called quasi-triangular.

5.2.2 The QR/QZ- algorithm - a direct method

The QR-method is a direct method (terminates in finite steps if exact arithmetic is pro-
vided) for solving a standard eigenvalue problem Ax = Az. It is used

e for dense matrices of moderate size,

e for solving lower dimensional subproblems which occur in iterative subspace projec-
tion methods.

This method is numerically very reliable and the whole spectrum of the problem is
computed.
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The algorithm is based on computing the Schur factorization of A in the following steps:

1. QR-factoriziation
Every square matrix A can be factorized into

A=QR (5.23)

with Q unitary and R upper triangular.
One has to remark that the QR-factorization of a Hessenberg matrix is much faster
than the factorization of a general matrix.

2. The QR-transformation is defined by

A = QR

A = RQ. (5.24)

This performs a unitary similarity transformation of the original matrix, since
Q*AQ = Q*QRQ = RQ = A.

If A is Hessenberg, one can prove that the QR-transformation of A maintains
Hessenberg form. Iterative application of QR-streps results in the convergence of A
to (quasi-)triangular form. In complex arithmetic the subdiagonal elements (in real
arithmetic the subdiagonal elements corresponding to real eigenvalues) converge
against zero.

This means, through iteration A converges against the Schur factorization of A.

3. Improvements to the QR-factorization:
To achieve a better convergence rate (subdiagonal entries — 0) a spectral trans-
formation according to the actually iterated Hessenberg matrix is applied in each
QR-step. This variant of QR-iteration is called implicitly-shifted QQR-transformation.

4. The primal Hessenberg form in item 1 can be achieved through Givens rotation,

Householder transformation or modified Gram-Schmidt methods (— Arnoldi proce-
dure).

Remark 5.2.6 If A is hermitian, the Hessenberg forms reduce to tridiagonal forms.
The computational costs of the QR-method including reduction to Hessenberg form,

implicite shifts and some other improvements are O(n3) floating point operations (= 10n3
if only eigenvalues are desired and ~ 25n3 for computing eigenpairs). The memory
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requirement is O(n?) .

The QZ-algorithm denotes the expansion of QR-method to generalized linear eigenvalue
problems. Technically the algorithm becomes more complicated, but the main idea of
reducing the matrix to generalized Schur form is similar:

At first A, B are reduced simultaneously by unitary similarity transformation the way A
becomes Hessenberg and B upper triangular. In the next step QZ-iteration is applied to
force A to get upper triangular as well while keeping B in form.

Applied with implicit shifts the existence of infinite eigenvalues poses no problems.
Computing eigenvalues requires approximately 30n3 floating point operations plus 16n?
for eigenvectors.

5.2.3 Iterative methods

The power method

The easiest iterative method for solving standard eigenvalue problems is the power
method. We use it to motivate Krylov methods. The power method is a single vector
iteration (only one eigenvector is computed). In case of convergence the method results in
the eigenpair corresponding to the eigenvalue of largest magnitude.

Algorithm 5.2.7 The power method
Given start vector v;

fork=1,23...
v= HZ_H;
w = Awv;
0 = w*v;
if (JJlw—0v|| <enplf|) break;
w = v;
end for;

The functioning and properties of the power method can already be seen under assuming
that A has n independent eigenvectors z; with corresponding eigenvalues \; satisfying
IA1] > [A2| > |As]... > [\

Then the starting vector vy can be expanded as vg = Y., ;x; (assume that py # 0).
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In the k-th step of the algorithm one gets (neglecting the normalization of w)

verr = Afug =D A = ik

— )\’fulxl for k — oo.

If the starting vector has a part in the direction of the dominant eigenvector z;, the
power method converges to the eigenvector corresponding to the eigenvalue of largest
magnitude. The rate of convergence depends on the ratio |§—;| If this ratio is close to one,
the convergence can get very slow.

The power method computes only one eigenvector, to achieve more eigenvectors one can
deflate already converged eigenvectors. If we orthogonalize the starting vector v, against v,
(11 = 0), the method will converge to the second largest eigenvector (if v is not orthogonal
to 1)2).

The main idea of iterative projection methods

The idea behind subspace projection method is to project the given eigenvalue problem
onto lower dimensional subspaces. One achieves a smaller sized subproblem, solves this
with much lower requirements and view the computed eigenvalues as approximations to
the original problem.

The big question will be, how to choose the subspace on which we project the original
problem.

There are two different projection techniques : orthogonal and oblique projection methods.
We describe the functioning by means of the standard problem (SEP):

1. Orthogonal projection onto a given subspace K of dimension m < n:
We want to project the problem of computing the eigenpairs of

Ar =Xz withz € C*and A € C (5.25)

onto the subspace K. That means we search an approximate eigenpair (5\,:?;) with
) € C and 7 € K which solves the problem with respect to the subspace K. In more
detail, the residual of AT — \F is zero with respect to the subspace in the sense that
the residual is orthogonal to K.

This is imposed by the Galerkin condition

v (A% —Ai) =0 Yovek, (5.26)
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in matrix notation this is equivalent to

(V*AV — M)y =0, (5.27)

where V' € C™ ™ unitary is the matrix representation of an orthonormal base of I
and Z of (5.26) is forced to lie in the subspace K by choosing & := V.
The projected eigenvalue problem

V*AVY = My (5.28)

is of dimension (m x m) and its eigenvalues are viewed as approximations correspond-
ing to the subspace K of the original eigenproblem (5.25).

This leads to the base procedure of orthogonal projection methods:

(a) Compute an orthonormal m-dimensional base V,,, of the subspace K.
(b) Compute the projection matrix : V* AV,
(c) Solve the projected eigenvalue problem: V* AV,,y = Oy

The approximate eigenpair (6, s) := (0, V,,y) is called a Ritz pair,  a Ritz value and
s a Ritz vector corresponding to the subspace K.

2. Oblique projection technique on two given subspaces K and L:
The main difference to orthogonal projection methods is that we choose different
test (L) and search (K) spaces. The approximate eigenvectors should lie in K, but
the corresponding residual should be orthogonal to the subspace L.

We search a z in K satisfying the Petrov-Galerkin condition
w (A=A =0 Yw € L. (5.29)

Assuming that matrix representations W of a base of £ and V of a base of K are
chosen bi-orthogonal W*V = I, this yields in the projected eigenvalue problem

W*AVy = 0y.

We will only use orthogonal projection methods which are numerically more reliable than
oblique methods.
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Krylov methods - The Arnoldi method

The idea of orthogonal projection methods bases on the projection of the eigenvalue
problem to a smaller dimensioned subspace. But how should one choose this subspace ?

The power method gives the motivation for Krylov methods. There we have built the se-
quence v, Av, A%v, ..., A¥v and discovered that it converges in direction of the eigenvector
corresponding to the eigenvalue of largest magnitude. In general, it also contains infor-
mation of eigenvector directions corresponding to eigenvalues near the dominant one. The
power method only utilizes the last two vectors in each iteration step and without deflation
techniques it delivers only one eigenvector.

Now we want to exploit more information of the iterated vector sequence and compute
more than one eigenvector.

We choose our subspace

K™(A,v) == span{v, Av, A%v, ..., A" v}, (5.30)

This subspace is called a Krylov subspace of A of order m and methods projecting on
Krylov subspaces are termed Krylov methods.

Arnoldi method for SEP
The basic algorithm - computing an Arnoldi factorization

Constructing an orthonormal base of the Krylov subspace via the modified Gram-Schmidt
method leads to the Arnoldi procedure.

Algorithm 5.2.8 (Arnoldi procedure)
Create an orthonormal base of K™(A,v)

U1 : ”Z_H
forj=1,2,...m—1
w = Av,
fori=1,2,...,7
hi,j = w*vi
w=w — hi,jvi
end
hjs1,; = [[wll2
if (hjt1; =~ 0) break
Vjig1 = o

1.
end;
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Formulating the Arnoldi procedure in matrix notation by setting

V; = [v1,v9,...v;] a matrix with orthonormal columns
. hi,j fors < j+1 .
(Hmmt1)ij = { 0 otherwise is (m x m + 1) upper Hessenberg
Hm denotes the submatrix formed of the first (m x m) block of : Hy, 141

leads to

Avm — Vm-l—le,m-H
= ViHpm + hons 1 mVUmii€h. (5.31)

Furthermore we see

V:lAVm = V:leHm’m + hm+1’mvn);7)m+1 63;1
= Hypm. (5.32)

We achieved a projected eigenvalue problem of Hessenberg form.
We call a unitary transformation of A satisfying (5.31) and (5.32) a m-step Arnoldi
factorization of A.

Remark 5.2.9 If A is hermitian, (analogous the QR-algorithm) the Hessenberqg matriz is
a tridiagonal matriz and the associated variant of the Arnoldi method is called Lanzcos
method.

Eigenvalue approximations
The projected Hessenberg problem of size (m x m) is solved directly by the QR-algortihm
and we get m eigenvalues.

If (0,y) is an eigenpair of the projected problem:
Hmy = 0y, (5.33)

we get an approximate eigenpair for Ax — Az = 0 due to

Hypmy—0y = 0

VeAVL,y —6y = 0

V*(AViy — 0Viy) = 0
V*(As — 0s) 0 withs:=V,y.
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Employing the eigenpair approximation to the original problem leads to a residual which
is orthogonal to the projected subspace.

(0,s) is a Ritz pair, # a Ritz-value and s a Ritz-vector corresponding to the subspace
Km(A,v).

The norm of the residual leads to the Ritz estimate

||A5 - 95” = ||Avmy - evmyH = ||Hm,mvmy + hm+1,mvm+lez7;ym - evmy“
= ||Vm(Hm,my — 0y + hm,m—l—lvm-i-lym“
= |hmt1ml| [Yml-

If there is a breakdown in the Arnoldi procedure (h;i; = 0,v;11 = 0), the Ritz-values are
exact eigenvalues, i.e.

O'(Hjj) C O'(A) (534)

One has to mention that a small residual does in general not imply a small error for the
eigenvalue/eigenvector approximation, but it can be used to construct stopping criteria.

Improvements - Restarting an Arnoldi method

In the above presented form of the algorithm one has to increase m as long as one gets all
interested eigenvalues and the projected Hessenberg problem is solved by QR-algorithm.
For large problems this can be very expensive in computation and storage requirement.
We have to apply some improvements in order to keep m small while computing all
eigenvalues of interest.

Another big problem is the fact that the required orthogonality of the computed Krylov
base can hardly be hold in finite precision arithmetic if m becomes large.

In the analysis of the power method we have seen that the choice of the starting vector
completely determines the approximate eigensolutions. How should we choose the new
starting vector in order to take up as much desired information as possible from the actual
Krylov space?

One obvious method of restarting is to compute an m-step Arnoldi factorization and the
corresponding approximate eigenvalues. Then the spectrum is splitted in two disjoint sets:
the set of good-fitting (k) and the set of unwanted (p = m — k) Ritz-values. The new
starting vector can be chosen as a linear combination of eigenvectors according to the k
wanted Ritz-values. This is one variant of explicit restarting.

We try to stick the information of a m-dimensional subspace into one vector. Coming up
with this problem leads to the implicitly restarted Arnoldi method.

Implicitly Restarted Arnoldi Method - IRAM This technique combines the im-
plicitly shifted QR-iteration and the m-step Arnoldi-factorization. Interesting eigenvalue
information of an m-step Arnoldi factorization is extracted and compressed to a smaller
(fixed-sized) k-step factorization.
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Algorithm 5.2.10 Computing an updated partial Arnoldi-factorization
Assume an already computed (m = k+p)-Arnoldi factorization of A : AVy, = Vi H+ frel .

1. Ezxtract Ritz-values from the Hessenberg matriz H and choose k wanted Ritz-values.
2. Apply p shifted QR-iterations of the form (H — p;I) = QR:
(A= )V —=V(H —pl) = fnep,
A(VQ) - (VQ) (RQ+ wl) = fmel,Q.
—— = —
v+ v+ H+

After p steps the first k columns of the transformed m-step Arnoldi factorization turns
out to be a k-step Arnoldi-factorization including the information according to the k
chosen best-fitting Ritz-values

AVP = VP HE + fifel. (5.35)

3. Use the updated truncated Arnoldi factoization (5.35) as starting point and apply
again p Arnoldi-steps to get a m-step Arnoldi factorization and go to step 1.

Some computational aspects of IRAM Let m = k + p denote the dimension of the
Arnoldi-factorization of the Implicite Restarted Arnoldi Method. Moreover, & is the number
of wanted eigenvalues and p the number of applied implicite QR-shift in each iteration step.

e If we choose k of moderate size, orthogonality of the base V}, can be preserved ac-
cording to working precision also in finite arithmetic. No spurious eigenvalues can be
produced by the lack of orthogonality.

e The storage requirement of the restarted version is of fixed size, i.e. 2nk + O(k?).

e On the computational cost of IRAM:
We suffice with presenting the total cost of one iteration step of IRAM here, a speci-
fication in more detail and itemization in each step of the algorithm can be found in
[8] p. 185. We define 7 such that yn is the cost of a matrix-vector product Av with
the system matrix A of dimension n x n.

The total cost of one IRAM iteration is
ypn — 2[(5k — 2)p + 2p*|n + 2k*n + O((k + p)?).

e On the stopping criterion (used also in ARPACK): A Ritz pair (0,z) = (0, Viy) is
assumed to be converged if # is in the set of wanted eigenvalues and

[ flllery] < maz(|[Hllear, tol - |0]).
——

Ritz estimate
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Moreover, the computed Ritz-pair (6, x) is an exact eigenpair of a matrix A+ E near
A, e
(A4 E)x =0z with E = —(e} s) frz”,

where €, is the machine precision and the bound tol- |#| implies that ||E|| < tol-||A]|.
For more specification we refer to [8] and [23].

Approximating interior eigenvalues  Since the subspace chosen in the Arnoldi
method is motivated by the power method one can imagine that the algorithm has fast
convergence if we search dominant eigenvalues. One way to compute interior eigenvalues is
to apply a spectral transformation of the problem. Interior eigenvalues can be computed by
transforming the problem by matching spectral transformation before applying the Arnoldi
algorithm. This method has the disadvantage that in each step a system (A — yI)~! has
to be solved.

There are some variants of the Arnoldi method which can handle the problem of approx-
imating interior eigenvalues without explicit spectral transformations (+— harmonic Ritz
values). But for this approach the convergence can get very slow.

Krylov methods for generalized eigenvalue problems

Their are three ways of solving
Az — ABzx =0

by Krylov methods:

e Transformation to a standard problem via Shift-and-Invert (SI)
(A—+B) 'B— ul)x =0.

This is recommended if one is interested in interior eigenvalues, i.e. eigenvalues near
the shift . This technique has the drawback that in each iteration (A —~B)~" has to
be solved. One gets good convergence rates to the interested eigenvalues by spectral
transformation.

e M-Arnoldi method
This method is implemented in the ARPACK software package, but has the restric-
tion that the matrix B has to be hermitian and positive semi-definite. It works with
B-inner-products, i.e. products of the form (z,z)p = (Bx,x). Since in our problem
B is not positive definite this variant is only mentioned for completeness.

e Rational Krylov algorithm
In an SI-Arnoldi method the shift is fixed. If one wants to vary it, one would have to
reject the already computed subspace and start with a new one. This way one would
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lose the whole information sticking in the old subspace. The rational Krylov method
is a generalization of the SI-Arnoldi method which compensates this problem. One
can vary the shifts and is able to achieve fast convergence of Ritz values according
to a union around the chosen shifts.

The main idea is that we start with a SI-Arnoldi for a chosen shift p;, compute an
orthonormal base V), with

(A= )"'BVy = Viy 1 Hi i

and evaluate the eigenvalues of Hj ;. After a few steps the Ritz-values according
near the shift p; are well approximated.

We choose a new shift pu,. Then we have to transform the matrix Vi, the way
one can interpret the achieved matrix Wy, (which span the same subspace
span(Wyi1) = span(Viy1)) as orthogonal base for a SI-Arnoldi subspace for the shift
f2. One can perform this transformation by applying a QR-decomposition, solving
a triangular system and transforming matrices of size (k + 1).

For more detail see [8].

Jacobi-Davidson method for SEP

The Arnoldi method is an effective method for computing interior eigenvalues near a
specified shift, if one uses shift-and-invert methods. With the drawback that one has to
solve the system (A — vI)x = b accurately and efficiently. The Jacobi-Davidson algorithm
provides a technique which manages with approximate (but still reasonable) solutions of
the system. Hence precondition methods can be applied.

The Jacobi-Davidson method is an orthogonal projection method, but in contrast to the
Arnoldi algorithm the projected matrix is of no special reduced structure. Hence solving
the projected eigenvalue problem becomes more expensive.

Expansion of search space:
Assume that we have already computed the subspace base Vj of the k-th step. Then the
projected eigenvalue problem is given through

VirAVyy = Oy

and we can compute a desired Ritz-pair (6, s := Vjy) belonging to V.
Now the question is how to expand the base V}, by the information given above?

The residual of the original problem

r:=As — Os (5.36)
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provides information about the quality of the actual k-step eigenvalue approximation. The
idea is to expand Vj by a correction Asl s of the Ritz-vector s the way the residual of the
corrected vector s + As vanishes according to the subspace orthogonal to s, i.e.

(I —ss")(A—0xI)(As+s)=0. (5.37)
One can see that r € st := {t : tT2 = 0} through (I—ss*)(A—0))s = r—s " As —0p5 s*s =
) T
r and therefore '
(I —ss")(A—0l)As = —r (5.38)

is valid.

In a final step one has to assure that As is orthogonal to s in (5.38). After forcing As
into st by replacing it with (I — ss*)As € st we achieve the Jacobi-Davidson correction
equation according to the residual r and the k-th Ritz-pair (6, s), i.e.

(I —ss")(A—0kl)(I — ss*)As = —r. (5.39)
This approach is motivated by the following decomposition of A
A= (I—ss")A( —ss") + Ass" + ss"A — Oyss*  with 0, = s"As.

If 6, = X is an exact eigenvalue, the correction equation (if solved accurately) gives the
orthogonal complement of s to the exact eigenvector, i.e.

(A=X)(s+As) =0

holds.

Algorithm 5.2.11 Jacobi-Davidson for SEP Ax = \z
Projected matriz: My, := V;AVj
Start settings:

v . — * .
v = W, M1 = levl,
01 =my; s =wvy; r=As — bOs;
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Iteration:
for i=1,2,...,m—1
Solve Jacobi-Davidson correction equation (approzimately)

(I —ss")(A—0p)(I —ss")As = —r
Orthogonalize via Gram-Schmidt procedure As against Vi — vgi1q
Ezpand Vi : Vigr = [Vi, Urq]

M, Vi Avgiq
Bapand My : My = ( UZH/ZVk inlA;j;-l >
Solve projected eigenvalue problem My = Oy
Choose one fitting Ritz-vector 0,1 plus Ritz-vector s = Vi 11y
Compute new residual: 111 = As — 118

Convergence test via residual

Restart:
V1 = S,
Start again with iteration;

In the presented form the Jacobi-Davidson algorithm results in one desired eigenvector.
If more eigenvectors are searched, one has to apply deflation techniques. After a satis-
fying approximation of the first Ritz-pair, one continues in a subspace spanned by the
remaining eigenvectors. Deflation and restart techniques are used in e.g. Jacobi-Davidson-
QR-algorithms.

5.2.4 Solving quadratic eigenvalue problems

In most application of quadratic eigenvalue problem the matrices are assumed to be
hermitian and positive-definite. Here we deal only with methods which do not exploit
special properties of matrices.

Let Cy, C, Cy be general matrices in C"*" with the restriction that they do not have a
common nullspace, i.e. we assume the quadratic pencil to be regular.

The main solution approaches :

e Transformation of the quadratic pencil to linear form

e Projection methods which project the QEP on a lower-dimensional quadratic problem
and solve the lower-dimensioned problem by e.g. linearization-methods

e Newton methods (not treated here)



CHAPTER 5. THEORY OF ALGEBRAIC EIGENVALUE PROBLEMS 88

Transformation to linear form

We transform the quadratic problem
NCyz + N\C1z + Coz = 0 (5.40)

by introducing a new variable
Y= Ax. (5.41)

The QEP (5.40) becomes explicitly linear in A:

(a) )\ng + C1y + Cgl‘ = 0
(b) AOyy + NChix+Cox = 0

Together with (5.41) we get two possible linear eigenvalue problems:

(&) —2Ge)) e
(L)) =28 a)) ew

Without loss of generality we continue with approach (a). If A, B denote the system ma-
trices in (5.42), we get a linear eigenvalue problem

, T
Az=ABz with z= ( g > : (5.44)

It remains to show the equivalence of the spectra of QEP and linearized form, i.e.
det(A — AB) = det(\*Cyx + AC1z + Cox), (5.45)

which follows from the factorization

_ 0 I )\202517 —+ )\leL’ —+ Coflf 0 I 0
A_AB_<—I —A01—00>< 0 I M T )
det(.)=1 det(.)=1

Remark 5.2.12 The problem (5.44) is only explicitly linear, implicitly it is still quadratic.
Treating the problem numerically as linear problem without respecting the spectral structure
of the eigenvector z (as we do), can lead to a supplementary error.
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Algorithm 5.2.13 Solve QEP by linearization via QZ-algorithm:
Build linearization matrices (A, B) referring to (5.42) or (5.43)
Compute generalized Schur form of (A, B):

Ty=W*AZ , Tg =W*BZ

forj =1,.2n
_ (Ta)u
Ai = (TB)is

Solve (Ta — \Tp)y=0;2=Zy

z(1:n)

Z1 =

L [[2(1:n)]
o z(n+1:2n)
27 Jlz(n+1:2n]

r = )\%022’1 + )\10121 + CUZI
o = )\%CQZQ + )\iClZQ + COZQ
Choose z; with minimal r; as eigenvector x; corresponding to \;

end for

Solving linearized problem via iterative methods:

We assume a subspace method which can manage only with matrix*vector products Av, Bv
and the system matrices need not be given explicitly. The products can be pieced efficiently
together by the products corresponding to the smaller sized quadratic system matrices
under exploiting the special structure of A, B.

If we want to use a SEP-solver routine or if we are interested in interior eigenvalues and
want to utilize SI-methods, we have to provide B~'Av or (A — uB)~'Bv. An efficient
algorithm can be derived from factorization

L 0 I
i (e ). o
1 o I 0 (/1/202 + /LC1 + Co)_l 0 —C — /1/02 -,
(A—uB)"'B = <ul 1)( ; , ; ;7 )67

Instead of solving systems of dimension (2n x 2n) via exploiting the special structure the
solution of (n x n) systems will be sufficient (e.g. sparse LU-factorization).

Algorithm 5.2.14 Compute k eigenvalues of QEP by linearization via subspace projection
Provide efficient matriz-multiplication and shift-and-invert-routines
Compute k desired eigenvalues via subspace method: (\;, z;)

fori=1,...k
. z(1l:m)
“1 ()]
. z(n+1:2n)
22 "= Ta(nt1:2n]
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r = )\?0221 + )\jClZl + 0021)
o = )\?CQZQ + )\jClZQ + COZQ
Choose z; with minimal r; as eigenvector x; corresponding to \;

end for

The big advantage of linearization is the fact that, it can be solved with already introduced
solvers for LEPs, but it has two main drawbacks. First the corresponding linear problem
is double the dimension (2n x 2n) and second in finite arithmetic the special form of the
eigenvectors z = (x, Az)” is not automatically implied. The information about the special
structure is lost.

If this structure is respected in the algorithm, this leads to structure preserving methods.
In these methods the projection subspace has to be expanded the way the special structure
of the original problem will be implied on the projected problem. Moreover the projected
problem has to be solved under respecting the structure as well. For detailed information
see [11].

Jacobi-Davidson for quadratic problems

Jacobi-Davidson methods are used to avoid the disadvantage of lineraization (doubling
the dimension, not respecting structure of eigenvector). It acts directly on the QEP,
the subspace is expanded by corrections of the iterated Ritz-vectors analogously to the
Jacobi-Davidson correction equation for SEPs. The correction equation can be again
solved approximately.

Expansion of subspace - eigenvector correction:
Assume a given subspace Vj with already computed and chosen Ritz-pair (6,u := Viy)
corresponding to the k-th step projected problem, i.e.

Analogous to the SEP version of Jacobi-Davidson we want to expand the subspace by
improving the Ritz-vector s with respect to the residual r := Py(6)s.

Assume (A#, As) is the exact orthogonal correction of (6, s) to the according eigenpair
solution

Py +Af)(s+As) =0  with s L As. (5.49)

Taking only first order terms of (5.49) into account

Py(0 4+ AB) (5 + As) = Py(0)s + Pa(0)As + Al (2% 0C, + 0C)) s + O(AOAs + AG?) (5.50)

[ J/

10

leads to
—r = Py(0)As+ AOP,(0)s  with As Ls. (5.51)
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To expand the subspace we only need a correction As of the Ritz-vector s, therefore we are
not interested in the term corresponding to the correction Af. We can drop this term by
testing equation (5.51) in a space orthogonal to AOP;(f)s but invariant for —r = —P,(0)s
and P,(#)As. This holds for testing with the space according to (I — P;(0)ss*) (since
s*Py(0)s = 0):
—r = (I — Py(0)ss*)Py(A)As  with As L s. (5.52)
Then we restrict the search space in (5.52) in order to fulfill the orthogonality constraint
implicitly. We constitute the generalized Jacobi-Davidson correction equation by
—r = (I — Py(0)ss*)(Pa(0))(I — ss*)As. (5.53)

We get an expansion vy, by orthonormalizing the update As , i.e. (approximate) solution
of the correction equation (5.53), against the columns of V}.

Algorithm 5.2.15 Jacobi-Davidson method for QEP Py(A)x =0

Projected matrices: MF := Vi C;Vy
Start settings:
Choose a (n x m) orthonormal matriz V
fori=1,..3 compute M; = V*C;V
Iteration:
fork=m,....Mpyer — 1
Compute eigenpairs (0,y) of (0 My + O0M, + My)y =0
Choose a desired Ritz-pair (0,u = Vy) with ||y|| =1
Compute residural r = Py(6)u
if (J|7]]2 <€) A =0,z =u; STOP
Solve Jacobi-Davidson correction equation (approximately) Aulu
(I — Py(0)uu*) Po(0) (I — uu*) Au= —r
Orthogonalize via Gram-Schmidt Au againt V- — v1 with ||vgq]] =1
fori =1,2,3 MF! = ( M V2 Civgyy )
! V1 GV v, Civga
Ezpand Vi1 = [Vi, Upi1]
end for;
Settings for restart
Choose best m Ritz-pairs (0;,u;) from last step
Orthonormalize {u1, ..., U} — Vi,
Compute M; = V*C,;V; fori=1,2,3

Restart;
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We have presented the main ideas and theoretical background of the wide range of algo-
rithms for solving standard, general linear and quadratic non-hermitian eigenvalue prob-
lems. The direct QZ-solver states a robust and reliable solving routine, but since it is direct,
it requires direct factorization and destroys any sparsity of the system matrices.

The Arnoldi method with implicit restarts was presented in more detail, because it is
implemented in ARPACK, a software package we use for solving the inner-node matrix
problem. The method can handle sparse matrices and need no explicit knowledge of the
system-matrices, if matrix-vector products are supplied.

The Jacobi-Davidson method was introduced, since it provides a method for solving
quadratic eigenvalue problems without linearization.

5.3 Available software packages

There are some open source solver routines for solving non-hermitian linear eigenvalue
problems. We introduce two of them: LAPACK which provides the direct QR/QZ-solver
and ARPACK which is the implemented version of the implicitly restarted Arnoldi method.
We briefly sketch the solvable problem types and the input paramters one has to supply
for solving non-hermitian eigenvalue problems with each package.

5.3.1 The Linear Algebra Package LAPACK/LAPACK++

LAPACK provides dense matrix classes (complex and real), direct linear system solvers
(factorizations) and direct solvers for linear (generalized and standard) eigenvalue prob-
lems via QR-QZ-algorithm optional in complex and real arithmecy.
LAPACK++ is the C+H++-extension of the Fortran90-kernel of LAPACK and provides
object-oriented matrix classes and interfaces for symmetric solvers.

For the solution of non-hermitian generalized linear eigenvalue problems LAPACK [2] pro-
vides the routines DGGEV() for real and ZGGEV() for complex problems. The routines
solve non-hermitian problems of the form Ax = ABxz, where A, B are square, by the QZ-
algorithm. Since the solver can handle multiple and infinite eigenvalues, there are no special
restrictions on A, B. The whole spectrum and on demand all left and /or right eigenvectors
are computed.

In order to apply the xGGEV()-routine, one only has to provide

e the problem dimensions and
e the matrices A, B in dense LAPACK-matrix-class form.

In addition to the QZ-solver LAPACK provides balancing and scaling routines xGGBAK
and xGGBAK, which optionally preprocess the matrices A, B. In the balancing routine the
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matrix pencil gets permuted in order to achieve that A, B are as nearly upper triangular as
possible. The scaling routine provides a similarity transformation to get that the rows and
columns of the matrices are as close in norm to 1 as possible. These tools can improve the
speed and accuracy of the later applied QZ-algorithm. The transformations do not change
the spectrum, but a back-transformation of the computed eigenvectors is required.

Since in piezoelectric problems the magnitude of elastic and electric stiffness matrix entries
differ in a wide range, scaling routines are essential to get accurate results for this problem
class. The problem of scaling eigenvalue problems will be discussed in Chapter 6 in more
detail.

5.3.2 Arnoldi Package (ARPACK/ARPACK++)

The Arnoldi package provides the Implicit Restarted Arnoldi method sketched in algorithm
5.2.10. The theory of the underlying method is described in the users’ guide for ARPACK
[23]. In the users’ guide of ARPACK++ [13] a detailed description of the implementational
aspects are given.

ARPACK++ is the object-orientated extansion of ARPACK and has the same function-
ality.

The routines are separated into three problem classes : real symmetric , real non-symmetric
and complex non-hermitian problems. Within these three classes are one differs between
generalized and standard eigenvalue problems. In the following we will concentrate on the
complex solver classes.

Remark 5.3.1 on generalized eigenvalue problems solvable by the Arnoldi package

Since ARPACK implements the M-Arnoldi method (described in subsection 5.2.3) for solv-
ing generalized problems, eigenvalue problems of the form Ax = ABx can only be solved
under the assumption that B is hermitian positive-definite, while the matriz A is of arbi-
trary form.

The main advantage of Arnoldi-methods is that the matrices have not to be given in explicit
form, i.e. supplying the matrix-vector product is sufficient. The Arnoldi-Packages provides
solving-classes which requires only user-defined matrix-vector-products (ArCompStdEig,
ArCompGenEig).

There are two modes for each problem class concerning the part of the spectrum we want
to compute:

In the regular mode one is interested in nev eigenvalues of largest/smallest magni-
tude or real/imaginary part. The user-supplied matrix-object classes have to provide the
problem dimension and for the standard problem the product OPx = Ax — y and for the
generalized problem OPz = B~'Ax — y and Bx — 2.
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In the shift and invert mode we want to compute nev eigenvalues closest to a
complex shift 0. The user-supplied matrix-object classes have to provide the problem
dimension and for standard problems the spectral shift operation OPz = (A — oI)~! and
for generalized problems OPx = (A —o0B)~™' — y and Bx — 2.

The required input parameters in the constructor of ArCompStdEig and ArCompGenEig

are

the dimension of the problem n
the number of wanted eigenvalues nev

one (in case of standard problem) or two (in case of generalized problem) matrix

objects with the above described matrix-products according to the selected mode
(OPzx, Bx)

(optional) the relative accuracy tol of Ritz values for the stopping criterion. By default
it is set to machine precision. If convergence takes place, the computed eigenvalues
A fulfill

A — X\ < tol ||

where \* is the exact eigenvalue of A which is closest to A.

(optional) the dimension of the computed Arnildi-base ncv = nev + p. By default the
parameter is set to 2 - nev, which is a good choice due to experience [8].

(optional) a starting vector for the Arnoldi-process, by default a random vector is
used.



Chapter 6

Application of Eigenvalue Theory

Now we combine the previous two chapters, i.e. we analyze and solve the problems stated
in Chapter 4 with the theory and solvers provided in Chapter 5.

We have seen that special properties of the matrix pencil imply special properties of the
spectrum. Thus we analyze the spectrum of the stated problems first and reflect how these
properties can be used in computation. Then we check how open-source eigenvalue solvers
can be applied to the posed problem-types. At the end of this chapter we deal with the
problem of scaling eigenvalue problems, which is necessary for getting reasonable results
in the case of piezoelectric problems.

We want to solve one of the following eigenvalue problems:

e The Inner-Node-Matriz Method leads to a larger sized, but linear eigenvalue problem
Find u = (u;, w;)" € CNi™V and v € C solving

Ki Ki ( s ) B 0 ~K;, < u; > (61)
&L oo J\w) 7\ K] —®y+FK) ) \w ) '

All matrices are complex and Ky, K,,, K;; are complex-symmetric.

o The SC-method leads to the quadratic problem

Search v € C,yy #0 € CV = 42815y, + v(S11 + Sa2)yr + Shy, = 0, (6.2)

where N is of moderate size with two variants of given problems, i.e. explicitly given
dense matrices S;; of moderate size, which were derived by inverting a matrix Kj;; or
secondly the matrices are implicitly given only by matrix-vector products, for which
we need K;;'. The matrices are complex and Sy, Sy are complex symmetric.

95



CHAPTER 6. APPLICATION OF EIGENVALUE THEORY 96

Remark 6.0.2 The eigenvalue problems presented above are parameter-dependent, i.e.
they have to be solved in each frequency step w, since K = K(w) and Sy, = Sw(w) .
In both problems we are interested in a few eigenvalues y near the unit circle, i.e. |y| ~ 1.

6.1 Spectral properties

6.1.1 The spectral connection between the alternative methods

We analyze the connection between the two methods. Since the methods describe the same
problem, one has to check if the two alternatives lead to the same result, i.e. if they have
the same spectrum or at least if the interesting eigenvalues occur in both problems and if
these eigenvalues are equal and can be separated in the solution.

In the subsection on periodic search and test-spaces we have seen that the quadratic prob-
lem (6.2) arises from the linear problems (6.1) by forming the Schur-complement. It is
obvious that the SC-problem has 2 - N; eigenvalues, since the matrices are of dimension
(N, x N;) and the problem is quadratic, but that the Inner-Node-Matrix Problem has
N; + N eigenvalues. Which eigenvalues do we drop in forming the Schur-complement ?
Which effect is implied on the spectrum of a matrix by forming the Schur-complement ?
In order to determine the transformation of the spectrum we have to state and examine
the SC-method as transformation of the INM-Problem. Applying the multiplication

I 0
_ o (6.1
<(K§+7K5)Kiil I) (6.1)

from the left to the Inner-Node-Matrix Problem leads to

(Fii Ki+ 7K ><U1>:<0> (6.3)
0 72Si2 + 7(Si1 + Sa2) + ST, Uy 0/ '

The transformation matrix is regular and well-defined for all v finite, i.e. the transformation

*

is similiar. Therefore, if o™ denotes the set of finite eigenvalues, o7 ;) = 0(; 5) holds. Through
the decoupling of the lines according to u; and u; in (6.3), it is valid that

_71 p—

(v, ;) finite eigenpair of (6.2) < (7, ( — K (K +7Kir)u

)) finite eigenpair of (6.3).
U

Therefore the finite spectra of the INM and the SC Problem are equal, i.e.

O.Ekﬁ.l) = 0?6.2)'
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6.1.2 On symplectic-type pencils

Analyzing the symmetries of the matrix blocks in the INM-Problem and the special prop-
erty that the quadratic problem is nearly of equal form as the according inverted quadratic
eigenvalue problem one can state some helpful results on the form of the spectrum.

Special structure of the quadratic eigenvalue problem
Theorem 6.1.1
1. If (v, ;) is a right eigenpair of
v2S19m; + v(S11 + Sog)xy + Sk =0 (6.4)

then (=,Z) is a left eigenpair (T denotes the complexr conjugate vector).

1

B!

2. For real-valued matrices (undamped system: C = 0) complex eigenvalues occur in
quadruples

Y€ os = —,%, - €0g (65)

2=
21| =

Proof:

1. Statement is valid due to symmetry of the matrices ((S1y + Sa2) = (S11 + So2)T):
Let (v, x) be a right eigenpair.
We view the left eigenvalue problem and transpose it
1°y*Sha + py*(Su1 + S22) +y* STy, = "

/LQSgg + /JJ(SH + 522)@] + Slgg =0 | #1—2

Shy + %(511 + So2)y + #1—2512§ = 0,
i.e. (i, ) is a right eigenpair.
For all (v = 0,z) right eigenpairs: x € N(Si2) = z*SL, = 2751, = 0, i.e. infinite
left eigenpair (0o, T). Analogous for v = oo.

2. Complex eigenvalue of real valued matrices come in complex conjugate pairs.

Special structure of the linear eigenvalue problem

The analogous result can be stated for the linear INM-Problem. Let ( v, < z ) ) be a finite

non-zero right eigenpair of

M, G r\ 0 —F T\ Mz —(G+~F)y
FT 0 y L U L VA Y (FT +~vGT)x = —vMyy

(6.6)
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If the problem acts related to the SC-method we can determine parameters ay,ay € C
oT

in such a way that ( ) ) solves the left eigenvalue problem. Transposing the left

1
'Y,
eigenvalue problem we get

(o o) (o) =3 ) () o

then we express in form of (6.6)

oMz = —%ag (G+~F)y
%041 (FT +7G)z = —712 (v Ma)y

Comparison of coefficients gives: v a3 = s

With setting ay = 1 we state
Theorem 6.1.2

1. To each finite non-zero right eigenpair (7, < il )) of the Inner-Node-Matriz eigen-
!
value problem (6.6) (%, < ’;L’Ez ) is a left eigenpair,i.e. v € 0 & % €o.
!

2. For real-valued systems (undamped C = 0) complex eigenvalues of (6.6) occur in
quadruples:

les (6.8)

¥y |

Remark 6.1.3 on structure preserving methods and symplectic matrices

The presented spectral properties can be used for structure preserving methods.

The structure of the Inner-Node-Matriz system reminds on symplectic matrices, i.e. a ma-

triz pencil A — AB is called symplectic , if

1
ASE _76/7
fy

AJT = BJ" with J = < (I’ é ) (6.9)

Structure preserving methods for symplectic matrices are introduced in Mehrmann [11].

The result that if v is a finite eigenvalue, its reciprocal is one as well, can only be used in
form of structure preserving methods in iterative methods which work with left and right
eigenspaces, i.e. two-sided Lanczos methods. By using only methods which work with
right eigenspaces, e.g. Krylov methods only use right eigenvectors in the construction of
the projection subspaces, we will not take the full advantage out of this spectral result.
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6.2 Solving the SC quadratic eigenvalue problem

Since we intend to use the Implicit Restarted Arnoldi solver and the QZ-Solver provided
by ARPACK or respectively LAPACK, we can only solve linear eigenvalue prob-
lems. To apply these solvers on the SC-problem, one has to linearize the problem the
way presented in (5.42) first and then call the solving routines with the linearized matrices.

6.2.1 Linearization of the SC-quadratic eigenvalue problem

Linearization of problem (6.4) leads to a LEP with the same spectrum

(& 0l (2) = (5 2 (2) wwemre o

abbreviated by L.y = ~Lpgy.

The generalized linear eigenvalue problem is a dense problem of "moderate” size
(2-m; x 2-n;) with dense system matrices. We are interested in eigenvalues with |y| near 1.

Remark 6.2.1 on the requalrity of the linearized matrices L 4, Lp

The matriz Siy denotes the subdiagonal block of the Schur-complement of problem (6.1),
therefore we can not state its reqularity. Since we can not give any assertions on the reg-
ularity of Ly and Lg. shift-and-invert methods as well as a transformation to standard
problem of the GEP 6.10 is not well-defined.

Solving the linearized SC-problem with the direct QZ-solver In section (5.3.1)
we described the functioning and input parameters of the LAPACK routine xGGEV(),
which provides the QZ-algorithm for real non-hermitian eigenvalue problems.

For using xGGEV() one has to provide the problem dimension and the linearized system
matrices L4, Lp in the dense matrix class of LAPACK.

Solving the linearized SC-problem via the LAPACK-QZ-solver include the following main
steps:

Under the assumption of already assembled stiffness, mass and damping matrices K, M, C'
one has to perform

e the computation K = K + iwC — w?M,

e the separation/mapping of K in block matrices according to inner, left and right
nodes,

e the computation of Schur-complement blocks via LU-factorization of K
— S12, S11, S22,
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e the linearization matrices L4, Lg of (6.10)
o a call of LAPACK xGGEV() with Ly, L

in each frequency step.

Algorithm 6.2.2 (QZ-Schur-PBCSolver) We assume ready-assembled stiffness and
mass matrices K, M, where rows and columns according to Dirichlet nodes are already
dropped.

Provide matrices according to inner,left and right nodes — Ky, My for s,t =i,l,r;

for all w do

. 2 s >
if(damping)  fors,t=i,l,r Ky = ( Ky —w” Mgy w(aKg + M) ) ;
w

(szt + BMst) Kst - W2Mst
else fors,t=il,r Kg=Kg—w?Mg;

1.

2. LU-factorization of K;;, i.e. K;; = LU

3. Compute SC-blocks via back-substitution in LU, i.e.

LU Tzir — ?zr; — T;'r
Sy = ?liTir;
Sy = KT+ Ky

LUT; = Ky — Ti;

Sy = KuTy+ Ky;

4. Build LAPACK-dense matrices L, Lp according to (6.10);
5. xGGEV(2- N;,2- Ny, L, Lp, evals, evecs);

6. Compute o = |evals(j)|, 5; = arg(evals(j)) (1=1,..,2-Ny);
Choose ne, pairs (a;, ;) with smallest |o;;

Remark 6.2.3 The Rayleigh-damping coefficients &, B can be chosen frequency-dependent,
i.e. a(w), B(w).

The main costs of Algorithm 6.2.2 consist in the computation of the LU-factorization for
each w and in the solution of the dense, but moderate-sized (2 - N; x 2 - N;) eigenvalue
problem for each w.
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Solving the SC-problem with the Arnodli-package? Not possible. Due to Re-
mark 6.2.1 the linearized problem (6.10) cannot be solved by the Arnoldi package. Nor
does it fulfill the criteria of the generalized solver (Lp is not hermitian positive definite)
neither can we state a well-defined similar standard eigenvalue problem.

6.3 Solving the Inner-Node-Matrix eigenproblem

On infinite and zero eigenvalues

Through reflections on the rank and nullspaces of the system matrices we want to get an
idea of the number of interesting eigenvalues in the system. Therefore we compute the
number of eigenvalue we are never interested in, i.e. zero and infinite eigenvalues, since this
is equivalent with |o| = oo.

_Fli _Fll - Frr
since N; + N; = rk[B] + dim(N')(B) we compute the rank of B (rk[B]). By the regularity
of K + K, we get rk[B] < N; + rk[K;] < 2N, and hence

——

:=m<N;

Infinite right eigenvectors (z,y)” lie in the nullspace of B := ( 0 —Kar ))

The dimension of the nullspace of A := < _I% ‘ [g“ gives the number of zero eigenval-

ues. Through rk[A] < N; + rk[K,;] < N; + N, there are N; — m, > 0 zero eigenvalues.
——

::mTSNl
The main result is that the INM-Problem has at least /N; — IV, infinite eigenvalues, i.e. we
are interested in at most 2- N; eigenvalues of the N; + N, eigenvalues of the linear problem.

6.3.1 Spectral transformation

Setting up the problem we mentioned the fact that A— B is complex symmetric and regular.
In order to achieve a more regular problem, the first part of a spectral transformation results

in
Ky K+ K, ; 0 -K,; ;

o 2T <u>:(7—1) —T = = (u) (6.11)
Kz’r+Kil Ky+K,, Up _Kz'l —(K”-FK,«T) Up

General spectral transformations are used to shift the interesting part of the spectrum to
the end of the spectrum which can be faster approximated by the most numerical methods.
We have applied the shift to get a regular symmetric matrix on right side. Therefore we can
treat the generalized problem as a standard one (without explicitly computing (A—B) ' B).
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0 — K, Ui K;; Ki+ K, Vi
s i [ o 2T (6.12)
_Kil _(Kll+Krr) Ui Kir+Kil K,+K,, Ui
with A =1/(y — 1)

Remark 6.3.1 on the spectrum of (6.12)

1. The transformed INM-Problem (6.12) has only finite eigenvalues, which seperate into
2+ N; non-zero ones and N; — N; zeros.

2. The "symplectic” property of the spectrum transforms to

*

3. The part of the spectrum we are interested in, i.e. |7y| near 1, distributes unclustered

over C\ {0}.

4. The infinite eigenvalues of (6.1) are shifted to 0.

Extracting the interesting part of the spectrum There is no obvious clustering of
the transformed spectrum according to the distance of v = % + 1 from the unit circle.
But we know that the interesting eigenvalues satisfy A # 0 and that there are only 2 - NN,
eigenvalues for which this holds. Therefore, one way to extract the interesting part is to
compute the 2 - N; eigenvalues of largest magnitude and separate the interesting ones out
of the computed set. Since in practical problems N; < N; the possibility to reduce the
computation on only 2 - N; instead of N; + N, eigenvalues is of big numerical advantage in
the use of iterative methods.

Remark 6.3.2 Applying the shift has the disadvantage that the desired part of the spec-
trum, which is characterized in the original problem by the values near the unit-circle, get
spread over the whole complex domain excluding zero. But first computing eigenvalues of
largest magnitude is of much faster convergence than computing small one (harmonic Ritz
values) and secondly we will see that this transformation is necessary in order to use the
Arnoldi-package.



CHAPTER 6. APPLICATION OF EIGENVALUE THEORY 103

Solving the Inner-Node-Matrix Problem with a direct QZ-solver The LAPACK-
QZ-solver can be directly applied to the original INM-Problem (6.1) after conversion to
dense LAPACK matrices, the following steps:

Under the assumption of already assembled stiffness,mass and damping matrices K, M, C'
one has to perform

e the computation K = K + iwC — w?M,
e separation/mapping of K in block matrices according to inner, left and right nodes,

e building up the matrices A, B (in LAPACK-DENSE matrix type) according to INM-
Problem (6.1),

o a call of LAPACK xGGEV/() with A, B

in each frequency step.

Algorithm 6.3.3 (QZ-LEP-PBCSolver) We assume ready-assembled stiffness and
mass matrices K, M, where rows and columns according to Dirichlet nodes are already
dropped.

Provide matrices according to inner,left and right nodes — K, My, for s,t =1i,l,r;

for all w do

. 2 s >
if(damping)  fors,t=1i,l,r Ky = ( Ky —w” Mgy w(aKg + M) ) ;
w

(szt + BMst) Kst - W2Mst
else fors,t=idl,r Kg=Ky—w?M;

1.

2. Build LAPACK-DENSE matrices A, B according to (6.1);
3. xGGEV(N; + N;, N, + N;, A, B, evals, evecs);

4. Compute a; = In(|evals(j)|), 5; = arg(evals(j)) (G=1,.... N+ Ny) ;
Choose ne, pairs («;, §;) with smallest |o;;

Solving the Inner-Node-Matrix Problem with IRAM Neither the inner node prob-
lem (6.1) nor the problem (6.12) have a hermitian, positive matrix B, therefore the gener-
alized Arnoldi solver cannot be applied. But the problem (6.12) can be transformed into a

standard eigenvalue problem
(A—B)'Br = \x

where we are searching for the 2 - V; eigenvalues of largest magnitude.
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The main advantages of using an Arnoldi solver that we only search for n., = 2 - N,
eigenvalues of the (N; + N; x N; + N;) eigenvalue problem and that one suffices with
matrix-vector product OPx of the transformed system. Therefore we have to provide a
matrix-object class including the O Pz operation (A — B)™'Bz.

Under the assumption of already assembled stiffness, mass and damping matrices K, M, C'
one has to perform

e the computation K = K + iwC — w?M,
e separation/mapping of K in block matrices according to inner, left and right nodes,

e set up sparse factorization of (A — B) = LL", define sparse multiplication with B by
multiplications of blocks K ;,

e a call of ArnoldiPackage with OPzx.

in each frequency step.

Algorithm 6.3.4 (Arnoldi-LEP-PBCSolver) We assume ready-assembled stiffness
and mass matrices K, M, where rows and columns according to Dirichlet nodes are already
dropped.

Provide matrices according to inner, left and right nodes — K, My, for s,t =1,1,r;
for all w do

. . . - th — UJZMSt —W(dKSt + BMst)
f(d t=1,l Ky = - P ;
if(damping)  for s, BT ! ( w(aKg + fMg) Ky — w?Myg

else fors,t=1dl,r Kg=Kyg—w?M;

1.

2. Provide class for sparse O Pz.MultMv(z) = (LLT) !Bz,
i.e. sparse Cholesky-factorization

LL"=A-B
3. ArnoldiPackage(N; + N;, OPx,ne, = 2 - Ny, evals, evecs);
4. Compute o; = In(]1 + mbaﬁj = arg(m) (j=1,..,2-Np);

Choose ne, pairs (a;, ;) with smallest |o;;

For each frequency one has to provide once a sparse-Cholesky factorization of the complex-
symmetric matrix (A — B)~!. For each matrix-mulitplication in the Arnoldi solver one has
to perform

e a sparse matrix-vector product y = Bx — v,

e solving LLTw = y — w, i.e. forward-backward substitution.
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6.4 Scaling of eigenvalue problems

Solving piezoelectric problems according to Algorithms 6.2.2 - 6.3.4 leads to convergence,
but gives irrational results. We explain this problems on standard eigenvalue problems.
There is a roundoff-error around e€,,||A|| with €, denoting the machine precision, if one
solves a standard eigenvalue problem Ax = Az. The system matrix due to piezoelec-
tric problems is very ill-conditioned and therefore converged eigenvalues can be senseless.
Through scaling methods one wants to reduce the norm of A by a similarity transformation
DAD™..

Matrix Balancing used in QZ-algorithm presented for standard problems

There are two steps in matrix balancing, i.e. permutation and scaling [2].

1. Permutation has the effect that A is transformed by a similarity transformation
to block upper triangular form in order to achieve that later algorithm have faster
convergence. P is permutation matrix.

5 12111 1{112 %13
A=PAPT = 0 Ay Ay
0 0 A

The block ;111, Ay are upper triangular, while A5, has general form, i.e. the matrix
is in Schur-form ”outside” the block As;. One has to mention that often no according
permutation can be found.

Permuting results in faster convergence of later QR-iterations.

2. Scaling is the main trick for solving piezoelectric problems, applied before an eigen-
value routine it improves the accuracy achieved afterwards. We want to apply simi-
larity transformations in such a way that the matrix A is balanced the way that the
norms of rows and columns are equal in magnitude.

0
Dy
0

A=DAD with D =

O O N~
~ O O

Since in the balancing routine only similarity transformation are used, the spectrum does

not change, i.e. 0(A) = 0(A) = o(A), but it has to bear in mind that the eigenvectors need
to be back-transformed, therefore one has to store the transforming matrices. This method
of balancing is used in the QZ-algorithm and is provided in LAPACK by the xGEBAL()

routine.
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For scaling generalized eigenvalue problems one provides two regular matrices Dy, D, the
way that DyADs, DyBD> have row and column norms near 1. Then we solve the similar
eigenvalue problem

D1 ADyx = yDBDsx.

6.4.1 Scaling of piezoelectric problems

A piezoelectric problem based scaling can be applied in order to achieve reasonable rea-
sonable results in the Arnoldi method as well. The elements of the stiffness blocks of the
piezoelectric problem are of following magnitude

Ky ~ O(10'%)
?@q;. ~ 0(10_10)

10_5[Nu 0

Therefore with the scaling matrix D = < 0 1071,

) the transformed matrix

satisfies

(6.13)

5 —1077 §7d
K:DKD:<10—K““ K us )

Koy 10K g0
Applying this scaling on the inner, left and right blocks of K, implies that the transformed

generalized eigenvalue problem according to (6.12) is much better scaled, i.e. all elements
are of order O(1).

Trick: Scaling of material data Since the block matrices of the stiffness matrix depend
linearly on the material data, the following scaling of the material tensors and mass density
(notation according to Chapter 2)

¢ =10"1F =100 e=e¢ p=10"" (6.14)

is equal to the transformation (6.13). One only has to ensure that the material data
also enter linearly into the boundary conditions. This holds for the boundary conditions
presented in Chapter 4, i.e. for Dirichlet, Neumann and periodic boundaries.

Conclusion: If the scaling of material data according to (6.14) is applied during assembling
of stiffness and mass matrices, the presented Algorithms 6.2.2 - 6.3.4 lead in general to
more accurate results.



Chapter 7

Numerical Results

In this chapter we present results of simulations of the dispersion context of SAW-filter-type
structures. We start with simulating the influence of periodic pertubations on the solution
of a pure mechanical model problem. Therefore the elastic strain problem is solved first on
a non-perturbed infinite strip and then for a periodically perturbed strip. In this numerical
experiment the effect of periodic perturbation on the dispersion context can be seen very
well.

The piezoelectric problem is solved for TV- and GSM-filter related periodic structures.
Finally,we give some concluding remarks on the quality of the developed mathematical
model according to the gained results.

Before presenting the numerical results we give some remarks on the implmentation, the
presentation of the results:

On the implementation The FE-matrix assembling is done by the Finite Element
Package FEPP [33] developed at the University of Linz.

Three different dispersion context solvers, developed within this thesis, are implemented
and compared to each other in this chapter:

e Solving the Schur-complement problem via linearization and under application of the
direct Lapack-QZ solver, i.e. Algorithm 6.2.2

e Solving the Inner-node problem with the direct Lapack-QZ solver, i.e. Algorithm
6.3.3.

e Solving the Inner-node problem with the iterative Arnoldi-package and with n,, =
2 - N; eigenvalues to compute, i.e. Algorithm 6.3.4.

We set, the number of computed Arnoldi vectors to 2-n,, and the accuracy for the stopping
criterion of the Arnoldi solver to working precision. This setting implies that Arnoldi and

107



CHAPTER 7. NUMERICAL RESULTS 108

direct QZ-solver achieve equal accuracy. Therefore we can compare the solvers to each
other by the calculation times required.

On the presentation of simulated dispersion diagrams One gains the propagation
constants (o, 3) out of the computed eigenvalues v through the context y = e(@+i#P,

Since e+t — (et o o)l | e Z, 3 can not be uniquely calculated. In general
one defines (3 in (—m, 7.

In general we present the dispersion curves by the functional context (« - p, [ - p, f) for
given frequencies f = 5= and f € (—m, 7).

SAW-designers are mainly interested in the dispersion context near stop-bands regions,
which as already mentioned in Chapter 2 is characterized by propagation constants of the

form (o, 5 = %) and propagating modes of the form (0, 3). Therefore for presenting zooms
in the stop-band region 3 is continued to the region [0, 27”)

7.1 The effect of periodic perturbations on a pure me-
chanical problem

We want to present the influence of periodic perturbations on the dispersion context
of the elastic plane strain problem. We compare diagrams with and without periodic
perturbations, which is modeled by a periodical arrangement of Dirichlet (I'p) and
Neumann (T'y) boundaries.

Under the assumption of time-harmonic excitation, i.e. we assume u(z,t) = u(x)-e™! € C?
we state the strong formulation of elastic plane strain problem on the infinite strip €2g by:
Find u = (uy, us) : Qg — C? satisfying

—divT = w?pu inQg  with T =c¢Su (Hook’s law)

u = 0 on I'p (7.1)
T-n = 0 on ['y
ow L(ow y Ou)
with S = ( T T R ) and ¢ = c¥ the elastic stiffness tensor of
25 T 30) o2

the used substrate material.
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We calculate the dispersion context for the geometries shown in Figure 7.1 and 7.1.

5

Ig |1

-
w

!
1

o

Figure 7.1: Underlying geometry without periodic perturbations

I'y Ip Iy Ip Iy Ibr, Io 1 Ip Iy Iy Io I'y

Iy

1.

Xy

Figure 7.2: Underlying geometry with periodic perturbations

Restricted to the corresponding unit-cell the stated model problem 7.2 turns into

—divT = w?pu in Q, with T'= ¢ Su (Hook’s law)
= 0 r
N o (7.2)
T-n = 0 on 'y
w(zy,xe) = u(xy+p,x9) for (zq,20) € T

In the following presented results, red points correspond to propagation constants of the
form (a - p,7), i.e. the reflected waves interfere constructively, green points correspond to
propagation constants of the form (0,5 - p), i.e. pure propagating modes and blue points
to («, ), i.e. the remaining calculated complex propagation constants.

Effect of periodic perturbations: 3D and 2D representation
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f=omega/2/Pi
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Figure 7.3: Elastic plane strain without periodic perturbation
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Figure 7.4: Elastic plane strain with periodic perturbation
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The red rings in Figure 7.4 represent the stop-bands, while in the non-perturbed analog
the pure-propagating modes are continuous.
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Figure 7.5: Elastic plane strain on non-perturbed geometry
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Figure 7.6: Elastic plane strain on periodic geometry
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7.2 Simulation of piezoelectric problems

In Chapter 2 we presented two piezoelectric models:

e Model with 3 degrees of freedom (dofs) per node : uy, ug, ®
We assume no displacement in the x3-direction and displacement and potential are
not depending on the z3-coordinate, i.e. u(z1, zo,t) € R? and ®(z, x9,t) € R.
This problem is simulated with the real-life data of a TV-filter.

e Model with 4 degrees of freedom per node : uy,us, us, ®
Due to the anisotropy of the material wave components in the x3-direction can occur
in practical applications. The deviation of the ideal case is considered by allowing
constant behavior of the fields in z3-direction:

Ou; _

o= 0 for u = (uy, us, u3)” € R
9% _ 0 :
Ox3

The diagram of dispersion for this problem type is simulated with the data of a
GSM-filter.

In both models we simulate short-circuited electrodes, i.e. we set the potential to zero on
the electrodes Qg;.

The center frequency of the stop-band

The frequency, in which a periodically arranged electrodes yields in maximal reflection, i.e.
the reflected waves interfere constructively, satisfies

fe

v

=5 (7.3)

v denotes the propagation velocity of a surface wave in the material. SAWs have the
property that their velocity v is much slower than electromagnetic waves. The frequency
fe is supposed to approximate the center of the stop-band in the dispersion context.

The propagation of Rayleigh-waves in anisotropic materials depend on the crystal class and
the orientation (”Euler Angles”) with respect to the propagation direction. Therefore the
velocity of surface waves depends on the used material, its crystal class and the direction of
propagation. Since we want only to get an idea in which frequency domain the stop-band
can be suspected, we suffice with approximative values for the velocity v of Rayleigh waves.
For exact values due to crystal classes and orientation see Auld [5].

v
Lithium Niobate LiNbO5 3300 < v < 3900m/s
Lithium Tantalate LiT'aO3 | 3100 < v < 3300m/s
Silicon Si ~ 4900m/s
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On the underlying mathematical model and plate modes

Through using Dirichlet or Neumann conditions on the bottom of the used geometry we
simulated a piezoelectric strip with finite depth. This means that we model a plate and
there are plate modes as well as surface waves in the results. These plate modes can be
filtered out, by computing the energy in the whole domain and compare it to the energy
on the half domain. If the energy is concentrated near the surface, we have a surface wave.
This method is used in the doctor thesis of M.Hofer [14]. The problem is only mentioned
for completeness reasons and will not be further treated within this thesis.

Piezoelectric problems

Dispersion context of T'V-filter-like structure: d = 2

We simulate the piezoelectric problem with 3 degrees of freedom (u € C*,® € C) under
the usage of Lithium Niobate (LiNbO3) for piezoelectric substrate and aluminium for
electrodes. The used material data are listed in Appendix A.

p/2
+“—>
Q El

A h o =0.2E-06

LiTaO3

Qg
h s = 0.665 E-05

“—>
p=0.133 E-05

Figure 7.7: Unit cell of simulated TV filter problem

With the geometry data of the unit-cell presented Figure 7.7 one can estimate a center

frequency near
3.3107Hz < f, < 3.910"Hz.

We simulate the piezoelectric problem (4.96) for d = 2 and S, E according to (4.3)-(4.4)
on the unit cell presented in Figure 7.7.
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f=omega/2/Pi

N

4et07
3.9e+07
3.8e+07
37e+07
3.6e+07
35e+07
34e+07
3.3e+07
3.2e407
3.1e+07

3e+07

Figure 7.8: Dispersion context for TV-filter structure (short-circuited electrodes)
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Figure 7.9: Short-circuited TV-filter-structure: zoom in stopband region (5 periodically
continued)
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Figure 7.10: TV-filter-structure: 2D-plot of pure propagating modes in stop-band region
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Figure 7.11: TV-filter-structure: 2D plot of stop-bands
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Dispersion context of GSM-filter-like structure: d = 3 For simulating the piezo-
electric problem with 4 degrees of freedom (uy, us, uz, ®) in each node we use the following
unit cell of a GSM-filter-related periodic structure shown in Figure 7.12

e Material for piezoelectric substrate: Lithium Tantalate LiTaO3

e Material for electrodes: Aluminium Al
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Figure 7.12: Unit cell for simulating LiT'a03; GSM-filter-structure (d = 3)

We use a mesh of rectangles, with 36 nodes (- 4 degrees of freedom) on each periodic bound
and N; = 4-n; = 1386 degrees of freedom of inner nodes and a unit cell of the form shown
in Figure 7.12.

With these settings we get the dispersion context (3D) shown in Figure 7.2. A zoom to
the stop-band is given in Figure 7.2. For a better presentation of the stop-band region,
the calculated propagation constants are periodically continued, i.e. 3 € [0, 27”]
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Figure 7.13: Dispersion context for LiTaO3; GSM-filter structure (short-circuited)
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Figure 7.14: LiTaO3 GSM Filter: zoom in stop band region (3 periodically continued)
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7.2.1 Comparison of three algorithms

Now we want to compare the three implemented algorithms, developed in Chapter 6 and
itemized once more at the beginning of this chapter. The parameters were set the way
the different solvers yield the same accuracy, therefore one can analyze their quality by
comparing the computational times required fo solving the dispersion context for one
frequency step f = 5= for the presented GSM-filter-type problem.

Since the used FE-software package FEPP does not provide a sparse matrix class for
complex matrices, the presented algorithms are tested using dense matrices, i.e. the problem
dimension is bounded and the main computational costs are governed by dense matrix
operatations. But even using dense matrices, we get reasonable and satisfying results. The
solvers can be analyzed and compared. In the following tabulars the computational costs
of each step in the various solver is listed. One sees that the main costs bases on the dense
matrix multiplication, but with these results one can predetermine the behaviour of the
solvers under the usage of sparse matrices.

One frequency step: No Damping, GSM 4 dofs

Complex non-hermitian IRAM in sec in sec (Arnoldi)
Time for creating and solving EP (omega) 847

Time for ArSolve (omega) 807

Time for Cholesky-factorization 100

Time for Arnoldi loop (without creating problem) 670

Time for Op.x 632
Time for reorthognolaziation 14
Time for solving Hessenberg subeigenproblem 6

Time for getting QR-shifts 0.002

Total number of update iterations 1
Total number of OPx operation 261
Total number of reorthogonalization steps 260
Total number of restarts 0
QZ-Schur-PBC-Solver in sec

Time for creating and solving EP (omega) 326

Time for LU-inversion (SchurComplement) 256

Time for calculate Schur-Matices o8

Time for solving QEP 9
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QZ-LinerEP-Solver in sec

Time for creating and solving LEP (omega) 1952
Time for solving LEP via QZ 1943

One frequency step: Rayleigh-Damping, GSM-structure 4 dofs

Complex non-hermitian IRAM in sec in sec (Arnoldi)
Time for creating and solving EP (omega) 800

Time for Cholesky-factorization 99

Time for Arnoldi loop (without creating problem) 622

Time for Op.x 632
Time for reorthognolaziation 14
Time for solving Hessenberg subeigenproblem 6
Time for getting QR-shifts 0.0002
Total number of update iterations 1
Total number of OPx operation 261
Total number of reorthogonalization steps 259
Total number of restarts 0
QZ-Schur-PBC-Solver in sec

Time for creating and solving EP (omega) 3300

Time for LU-inversion (SchurComplement) 2500

Time for calculate Schur-Matices 474

Time for solving QEP 65

QZ-LinerEP-Solver in hours

Time for creating and solving LEP (omega) 9h

Looking at the computation times of the various steps we can expect an immense acceler-
ation by the usage of sparse factorizations, sparse matrices and sparse matrix-operations.
The comparison of computational requirments show that the SC-QZ-solver and the INM-
Arnoldi-solver are suited also for bigger problems.
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Rayleigh-damping and absorbing boundary conditions

The problem of Rayleigh-damping is not of big practical need for these problem types, since
the used piezoelectric substrates are nearly lossless. Moreover, if one wants to achieve rea-
sonable results, one has to be aware of frequency dependent Rayleigh-damping parameters,
which are very tricky to state. The main cause for posing the problem of Rayleigh-damping
in the problem formulation of this thesis is that Rayleigh-damping problem leads to com-
plex problems as the consideration of absorbing boundary conditions (ABC) do. These
boundary conditions provide a possibility for modeling bulk wave radiation shown in the
dispersion diagram in Chapter 2. ABCs are not considered in the models used within this
thesis, but an expansion of the implemented solvers to these methods should be possible.
Absorbing boundary conditions of first and second order are modeled in [14].



Chapter 8

Conclustions and Further Remarks

Within this thesis the full machinary of mathematical problem solving was presented. We
started with the physical problem formulation. We stated a step-by-step mathematical
modeling using Floquet-Bloch theory for modeling periodic structures, coupled field theory
due to the piezoelectric effect and complex problems due to damping effect (or absorbing
boundary conditions). Three solution approaches, i.e. ”Gamma-Given-Method” for pure-
propagating modes, SC-Method and INM-Method, were developed and analyzed. The
methods were developed within this thesis and therefore no references can be given. A com-
prehensive theory for algebraic eigenvalue problems were given and applied for constructing
algorithms for solving the SC- and the INM-method with an ansatz to structure preserving
methods. Three different solvers were implemented and compared. Within numerical
experiments the influence of periodic perturbations on dispersion diagrams were presented.

The work can directly be continued in the following directions:

e improve presented solvers by using sparse matrix operations
and with more mathematical work

e absorbing boundary conditions of arbitrary order

e or introducing infinite elements in the discretization in order to model bulk wave
radiation.
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Appendix A

Material data used in simulation

We state the coefficients of practical matirials used in simulation of GSM-filter. The data
are cited out of [18].
The coefficient tensors are described in the form according to

Tl’l’ SfL’fL’
. . Ty, Syy
T = c¢*S — e'FE . T,, _ S,
D = ¢5 + &g VRT= o 5=, g
| Ty | 2+ Say

Piezoelectric materials used for piezoelectric substrate

LithiumNiobate (LiNbO3)
Mechanical stiffness tensor

997965 6.519  6.510 0 0 0
6519 19.8432 54775 0 —0.7884 0
o | 6519 54775 198432 0 0.7884 0 . )
¢ = 0 0 0 718285 0  —o0.7884 | 10 Newton/m
0 —0.7884 0.7884 0 5.0645 0
0 0 0 07884 0 5.0645

Piezoelectric coupling tensor

—1.7847 —0.3062 —0.3062 0 0 0
e= 0 0 0 —2.4365 0 —3.7159
0 —2.4365  2.4365 0 —3.7159 0
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APPENDIX A. MATERIAL DATA USED IN SIMULATION

Dielectric permittivity tensor

2.364245 0 0
g5 = 0 4.106988 0 1071% As/Vm
0 0 4.106988

Density of material p = 4628kg/m?

Lithium Tantanate, 0 deg cut (LiTaO3)
Mechanical stiffness tensor

2328 4.65 836 —1.05 0 0
4.65 23.28 836 1.05 0 0
B 8.36 836 27.59 0 0 0 10 9
¢ 105 1.05 0 949 0 0 107 N/m
0 0 0 0 949 -1.05
0 0 0 0 —1.05 9.315
Piezoelectric coupling tensor
0 0 0 0 264 —1.86
e = —1.86 1.86 0 264 0 0
—0.22 —-0.22 1.71 0 0 0
Dielectric permittivity tensor
3.621286 0 0
g5 = 0 3.621286 0 1071% As/Vm
0 0 3.76295
Density of material p = 7454kg/m?
Non-Piezoelectric material used for electrodes
Aluminium (Al)
Mechanical stiffness tensor
10.78 5.493 5.493 0 0 0
5.493 10.7800 5.493 0 0 0
g | 5493 5493 10.78 0 0 0 10 9
© = 0 0 0 2645 0 0 10T N/m
0 0 0 0 2.645 0
0 0 0 0 0 2.645
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Piezoelectric coupling tensor (non-piezoelectric material)

e=e =0
Dielectric permittivity tensor
0.0885 0 0
e5 = 0 0.085 0 As/Vm
0 0 0.0885

Density of material p = 2700kg/m?
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