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Abstrat

This diploma thesis is onerned to the development of numerial solution methods in

alulating so-alled "dispersion diagrams" of periodi surfae aousti wave (SAW) �l-

ter strutures. These piezoeletri devies are used in teleommuniations for frequeny

�ltering.

The mathematial problem is governed by two main points, the underlying periodi stru-

ture and the inde�nite oupled �eld problem due to the properties of the used piezoeletri

materials. Floquet-Bloh theory allows to restrit the in�nite periodi omputation do-

main to one referene ell by introduing quasi-periodi boundary onditions. Due to the

Bloh-ansatz the dispersion ontext between "exitation frequeny" and the "propagation

onstants" of the surfae aousti wave is desribed by parameter depending eigenvalue

problems.

Three di�erent solution approahes are developed for gaining these non-hermitian eigen-

value problems of generalized linear or quadrati form. Expanding the solution methods

of periodi strutures to the piezoeletri oupled �eld equations has the onsequene that

the eigenvalue problems get inde�nite and worse-onditioned, i.e. speial saling meth-

ods, whih ensure aurate numerial results, are required. A omprehensive olletion

of abstrat theory and numerial solution methods for the ouring algebrai eigenvalue

problems is provided.

Three di�erent solvers for the numerial simulation of the dispersion ontext are developed

and implemented. The used eigenvalue solver is onerned with the diret QZ-Method or

the iterative Impliitly Restarted Arnoldi-Method, respetively.

The inuene of periodi perturbations in the omputation geometry is shown in numerial

experiment for a pure mehanial model problem. Simulation results for the dispersion on-

text of simpli�ed periodi strutures related to real-life TV- and GSM-�lters are presented.



Zusammenfassung

Ziel der vorliegenden Diplomarbeit ist die Entwiklung numerisher L

�

osungsmetho-

den zur Berehnung sogenannter "Dispersionsdiagramme" von periodishen akustishen

Oberf

�

ahenwellen�lter-Strukturen (SAW-Filter). Diese piezoelektrishen Bauteile werden

in der Telekommunikation als Frequenz�lter eingesetzt.

Das dazugeh

�

orige mathematishe Modell wird durh folgende zwei Hauptprobleme be-

stimmt, der Periodizit

�

at der zugrundeliegenden Geometrie und den gekoppelten Feldglei-

hungen zur Beshreibung der piezoelektrishen Eigenshaften des verwendeten Materials.

Mit Hilfe der Floquet-Bloh-Theorie und Einf

�

uhrung quasi-periodisher Randbedingun-

gen kann das urspr

�

unglih unendlih (periodish) angenommene Berehnungsgebiet auf

eine Referenzzelle eingeshr

�

ankt werden, d.h. die Gleihungen m

�

ussen unter Erf

�

ullung der

speziellen Randbedingungen nur noh auf einer Periode gel

�

ost werden. Die gesuhte Di-

spersionsbeziehung, die den funktionalen Zusammenhang zwishen

�

Anregungsfrequenz

�

und

�

Ausbreitungskonstanten"beshreibt, wird als Parameter-abh

�

angiges Eigenwertproblem for-

muliert.

Es werden drei vershiedene L

�

osungsmethoden, die den Dispersionskontext beshreiben

und auf niht-hermiteshe Eigenwertprobleme verallgemeinerter linearer beziehungswei-

se quadratisher Form f

�

uhren, entwikelt. Nah Diskretisierung mittels der Methode Ei-

ne Erweiterung der vorgestellten Methoden auf piezoelektrishe Feldgleihungen hat zur

Konsequenz, dass die resultierenden Eigenwertproblem inde�nit und shleht-konditioniert

werden. Letzteres erfordert spezielle Skalierungsalgorithmen, um numerish zuverl

�

assige

Ergebnisse zu erhalten. Eine Zusammenstellung der abstrakten Theorie und der numeri-

shen L

�

osung niht-hermitesher algebraisher Eigenwertprobleme wird pr

�

asentiert und zur

L

�

osung der modellierten Probleme angewendet und erweitert.

Drei alternative L

�

oser werden entikelt und implementiert, wobei die auftretenden Eigen-

wertprobleme unter Verwendung der direkten QZ-Methode beziehungsweise der iterativen

Impliit-Restarted-Arnoldi-Methode gel

�

ost werden.

Der Einuss periodisher St

�

orungen des Material auf die Dispersionsbeziehung wird im nu-

merishen Experiment anhand eines rein mehanishes Problems dargestellt. Abshliessend

werden Dispersionsdiagramme von vereinfahten periodishen Strukturen, unter Verwen-

dung der Daten von praktish verwendeten TV-Filtern und GSM-Filtern, simuliert.
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Chapter 1

Introdution

This thesis deals with mathematial modeling and numerial simulation of periodi sur-

fae aousti wave �lters (briey SAW-�lters) and results in the omputation of so-alled

"dispersion diagrams", whih plays an important role in the teleommuniation industry.

The priniple of surfae aousti wave �lters is based on the physial properties of

piezoeleltri materials. The diret piezoeletri e�et states that a mehanial deformation

of a piezoeletri substrate evokes an eletri �eld, whih an be measured by harges on

the surfae. It always appears in ombination with the onverse e�et, i.e. if a piezoeletri

material is exposed to an eletri �eld, the material shrinks or strethes. This implies that

applying an eletri signal on a piezoeletri substrate yields a mehanial (aousti) wave.

Due to the diret piezoeletri e�et, this wave is always aompanied by an eletri �eld.

The main omponents of a SAW �lter are a piezoeletri substrate and an input and an

output interdigital transduer (IDT). An IDT is a omb of eletrodes whih is evaporated

on the surfae of the piezoeletri material. It is used for sending and reeiving eletri

signals. If an eletri �eld is applied at the input IDT, an aousti wave is evoked on the

surfae of the material due to the piezoeletri e�et. We are interested in waves whih

propagates along the surfae. If suh a wave, whih is always aompanied by an eletri

�eld due to the diret piezoeletri e�et, reahes the output IDT, the hanging eletri

�eld evokes surfae harges at the eletrodes, i.e. an eletri signal an be reeived.

The propagating surfae wave is haraterized by the frequeny of the input signal, by

the geometrial arrangements of the eletrodes and by the material parameters of the

piezoeletri substrate and eletrodes. We will show that due to the underlying geometry

no surfae wave an propagate at speial frequeny intervals. Therefore these frequenies

are missing in the output signal and the devie an be used for frequeny �ltering.

The frequeny domain is parted into pass-bands, i.e. frequenies whih get trough the

piezoeletri devie, and stop-bands, i.e. frequenies whih get �ltered out. For given

geometry and material parameters the ontext between propagating/attenuated aousti

waves and the frequeny an be read o� so alled "dispersion diagrams".

5



CHAPTER 1. INTRODUCTION 6

In this thesis we fous on surfae aousti wave devies used for frequeny �ltering in

wireless ommuniations, e.g. standard omponents in TV-sets and ellular phones. But

one has to mention that there are many other appliation �elds of SAW-devies as in radar

and sensor tehnology and non-destrutive evaluation.

We speialize on periodi SAW-�lters, i.e. eah IDT onsists of some hundreds or even

some thousands of eletrodes, whih are arranged periodially.

We assume time-harmoni exitation with the frequeny

!

2�

, hene all �eld distributions

are time-harmoni

f(x; t) = f(x)e

i!t

: (1.1)

The periodial arrangement of the eletrodes implies that the mehanial �eld and the

eletri potential are quasi-periodi in spae, i.e. they are of the form

f(x) = f

p

(x)e

(�+i�)x

; (1.2)

where p is the periodiity of the material and f

p

(:) denotes a p-periodi funtion. This

means that all �eld distributions an be desribed by the frequeny, a p-periodi funtion

f

p

(:) and a omplex propagation onstant � + i�. In this formulation � reets the

damping of the amplitude per period (eletrode) and � the phase shift per period.

The graph presenting the funtional ontext between the exitation frequeny and the

propagation onstant is alled the diagram of dispersion. This ontext is very important

in SAW-�lter design and its omputation is the task of this thesis.

A fundamental and reommendable introdution to aousti �eld problems, various

(surfae) wave modes and piezoeletriity is provided by Auld in [4℄ and [5℄. The numerial

solution of piezoeletri systems via the �nite element method is treated by Lerh in [27℄.

An overview of the historial development of SAW-devies is given in [29℄. The priniples

of periodi SAW-devies are treated by some IEEE papers like [17℄, but it has to be

mentioned that in most papers damping e�ets (� 6= 0) are not onsidered.

The mathematial justi�ation for the quasi-periodi �eld distribution (1.2) is given by

Floquet-Bloh theory, whih analyze the spetral properties of ordinary and partial dif-

ferential operators in periodi strutures. This theory was developed for solving speial

problems in quantum mehanis, where one deals with periodi Shr�odinger operators, by

Bloh and for ordinary di�erential equations by Floquet. A desription by physiists an

be found in Madelung [28℄ and in Ashroft and Mehrmin [3℄. A funtional analyti on-

sideration is provided by Simon and Reed [30℄. The generalization to partial di�erential

equations with periodi oeÆients is done by Bensoussan,Lions and Papaniolaou in [9℄

for real and ellipti problems and by Kuhment [19℄, who applied the theory for salar

equations on photoni and aousti band-gap devies in [6℄.

Bloh-Floquet theory implies that the solution on periodi strutures an be deomposited

in quasi-periodi funtions so-alled Bloh waves. Therefore the problem an be restrited
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to the unit-ell, i.e. the domain inluding one eletrode. Repeating this unit-ell one gets

the original geometry. In order to desribe the original periodi system, appropriate quasi-

periodi boundary onditions have to be established.

The one ell problem turns out to be a oupled-�eld parameter-depending (on propagation

onstant or frequeny) eigenvalue problem, whih we want to solve numerially by the

method of �nite elements. We introdue a detailed stepwise mathematial modeling for

the problem of periodi strutures, i.e. formulating appropriate boundary onditions and

aording disretization methods. We start with a Helmholtz-type problem and establish

three di�erent solution methods for omputing the dispersion ontext. All these methods

result in non-hermitian eigenvalue problems of linear or quadrati form. Applying the

established methods to periodi strutures on piezoeletri problems, is formally equivalent

to the Helmholtz-model ase, but the matries get inde�nite and worse onditioned due to

piezoeletri properties, whih requires speial numerial treatment.

Mathematial modeling results in two reasonable variants of frequeny-depending eigen-

value problems, one of quadrati form and the other one of generalized linear form. This

requires speial theory and numeris of algebrai eigenvalue problems.

An overview of and motivation for solving eigenvalue problems is provided in [37℄. In

[8℄ a reommendable olletion of state-of-the-art diret and iterative methods for large-

sale eigenvalue problems is given, the book inludes desription of improvement tools and

implementational details. Tisseur [36℄ speializes on quadrati eigenvalue problems and

Lehouqh et al. [23℄ and Sorensen [35℄ on Arnoldi and Impliit Restarted Arnoldi methods.

Mehrmann provides a olletion of struture-preserving methods in [11℄.

The stated eigenvalue problems are solved numerially by using the open-soure software

pakages Lapak [2℄ (diret method) and Arpak [13℄ (iterative Impliite Restarted Arnoldi

method).

On the tasks of this thesis

The oneptual formulation of this thesis is based on a part of the dotor thesis on Finite-

Element alulations of SAW-strutures [14℄ (to appear) by Manfred Hofer , Department

of Sensor Tehnology at the University of Erlangen. We ooperate in a joint projet on

SAW �lters. Two onferene papers [16℄, [15℄ were published by M. Hofer et al. during the

work on this problem. (o-authorship)

The main tasks of this thesis onsist in the following points:

1. Due to the quasi-periodial �eld distribution one an restrit the omputation do-

main to one ell. This requires to introdue appropriate quasi-periodial boundary

onditions.

2. In most ommon models only pure imaginary propagation onstants are onsidered,

i.e. � = 0 in (1.2), whih has the e�et that one only simulates non-attenuated

waves. In real life problems the inident surfae wave is mostly transmitted in eah
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ell, but the amplitude of the propagating wave gets dereased by reetion at the

eletrode, material damping, onversion to volume waves and thermal losses. In this

thesis material damping and attenuation through reetion at periodially arranged

eletrodes are onsidered.

3. The aim is to ompute the diagram of dispersion, whih gives the ontext between

the onstant of propagation � + i� and the frequeny ! for a given ell geometry.

On the organization of this thesis

� Chapter 2

The physial harateristis of the problem are provided. The priniples of SAW

devies are quoted, the terms stop-band diagram of dispersion are explained in detail.

At the end of the hapter the piezoeletri e�et and its governing equations are

posted.

� Chapter 3

The priniple onepts and results of the �nite element method for ellipti and oupled

�eld problems are given. Moreover, the basi ideas, results and an error analysis for

solving eigenvalue problems by the �nite elment method are skethed.

� Chapter 4

We provide a detailed mathematial modeling, separated in three main points, i.e. in

the theory of periodi strutures for Helmholtz-type problems, in the onsideration of

damping e�ets and in expansion of the modeled approahes to piezoeletri oupled

�eld problems. The steps of mathematial modeling provide two reasonable methods,

whih yield in frequeny-depending omplex non-hermitian eigenvalue problems of

linear or quadrati form.

� Chapter 5

We provide the theoretial bakground and numerial solution methods for large-

saled non-hermitian linear and quadrati algebrai eigenvalue problems and �nally

introdue open-soure software pakages, whih are used in numerial simulation.

� Chapter 6

This hapter ombines the methods introdued in Chapter 5 with the problems stated

in Chapter 4. The spetral properties of the various solution methods are analyzed.

Three alternative solution algorithms using the available software pakages Arpak

and Lapak are stated. At the end, saling methods for eigenvalue problems, whih

are neessary for the onvergene of piezoeletri problems, are treated and some

implementional aspets are disussed.
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� Chapter 7

Numerial results for periodially perturbed model problems (Laplae and plane

strain problem) and for piezoeletri real life problems (GSM-�lter and TV-�lter)

are presented. Finally, the three implemented solvers are ompared to eah other via

the simulation of a piezoeletri problem, whih is just apable for all three methods.

� Chapter 8

The presented models, theories, methods and algorithms are reviewed. Open prob-

lems, on whih further work an be done, are disussed.

� Appendix A

The material data used in numerial simulation are ited.



Chapter 2

Problem formulation and governing

equations

2.1 Problem desription

We study a surfae aousti wave (SAW, Rayleigh-wave) devie onsisting of a piezoeletri

substrate and evaporated eletrodes (see Figure 2.1). If an eletri signal is applied on

the transmitter eletrodes, an aousti wave is exited on the surfae of the piezoeletri

medium (onverse piezoeletri e�et). The propagating surfae wave is aompanied by

an eletri �eld on its travel trough the material (diret piezoeletri e�et). This eletri

�eld an be measured at the reeiver eletrodes.

Surface Acoustic Wave (SAW) Filter

Mechanical displacements:

Li Nb 0
Center frequency:
30 MHz - 3 GHz

3

Figure 2.1: SAW �lter [26℄

10



CHAPTER 2. PROBLEM FORMULATION AND GOVERNING EQUATIONS 11

We are interested in the propagation of Rayleigh-waves at the eletrodes. These waves

live near the surfae, the amplitude dereases rapidly with depth and beomes negligibly

small within the depth of a few wavelengths.

In general, surfae waves are 3 dimensional, but Rayleigh-waves polarize (partile dis-

plaement) only in the plane spanned up by the diretion of propagation (x) and the

surfae normal (y). This plane is alled the sagittal plane. Therefore displaement and

eletri �elds only depend on x and y oordinates and we an restrit the omputational

geometry to the sagittal plane.

Sine in devis used in pratise there are some hundred eletrodes, extending the ele-

trodes periodially to in�nity is a suitable approximation. We get an in�nite domain of a

piezoeletri substrate with periodially arranged eletrodes. See Figure 2.2.

piezoelectric substrate

period p

electrodes

x

y

Figure 2.2: Periodi geometry

Properties of waves in a periodi geometry We assume a time-harmoni exitation

of the wave. This implies harmoni �eld quantities (mehanial displaement and eletri

potential).

Due to the periodiity of the material the �eld distribution is quasi-periodial, that means

periodial irrespetive damping

u(x+ p) = u(x)e

(�+i�)p

: (2.1)

The following notation is used:

p ... period of the material (i.e. the distane between the enters of two suessive eletrodes),

� ... attenuation of the propagating wave per period,

� ... phase shift per period.

The ondition (2.1) is equivalent to the existene of a p-periodi funtion u

p

(x) = u

p

(x+p)

suh that

u(x) = u

p

(x)e

(�+i�)x

: (2.2)
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The diagram of dispersion The aim is to ompute the diagram of dispersion, whih

gives the ontext between the onstants of propagation �; � and the frequeny ! for a given

ell geometry. See Figure 2.3.

Figure 2.3: Diagram of dispersion: struture with periodial arranged eletrodes [16℄, [15℄

In this diagram we are mainly interested in the stopband regions (!

1

; !

2

), see stop band

attenuation. The damping term starting at the frequeny (!



) is produed by the fat that

above a partiular frequeny a part of the reeted wave is onverted to volume waves.

This loss of energy implies a damping of the surfae wave. This e�et will not be onsidered

in the model presented here (see Chapter 8).

The doted straight green line in Figure 2.3 shows the dispersion ontext, if there are no

periodi disturbanes.

Stop-band attenuation A wave traveling in x-diretion will be partially reeted

at the eletrodes. If p is a multiple of

�

2

with � denoting the wavelength, the reeted

amplitudes are all in phase and an interfere onstrutively. For a huge number of �ngers

there are many waves adding onstrutively and the sum of reeted waves interats with

the propagating wave. Then even if the reeted part per ell is small and it impedes the

propagation.

If the length of period of the material is equal the wavelength of the wave propagating

in x-diretion, the wave annot propagate. Moreover it turns out that the wave annot

propagate in a whole frequeny interval. This interval is alled the stop-band. The width

of this stop-band gives information on the quantity of the reetion at the eletrodes.

This e�et ours independently of the onsideration of material damping in the model.
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2.2 The piezoeletri e�et and governing equations

A material possesses piezoeletri properties, if it produes an eletrial polarization under

the appliation of mehanial stress or deformations. The polarization is measurable by

produed harges on the surfae. This phenomenon is alled the diret piezoeletri e�et.

The e�et is reversible, it is always aompanied by the onverse piezoeletri e�et. If an

eletri �eld is applied to a piezoeletri medium, there is an elasti deformation.

Piezoeletri e�ets result from speial asymmetries ourring in some rystalline materials

( e.g. in quartz by nature or in industrial produed eramis). These e�ets annot exist

in isotropi media. For more details see [4℄ pages 102{103.

The piezoeletri e�et is desribed by a oupling of elasti and eletri �eld quantities in

a medium. We an assume this oupling to be linear sine nonlinear oupling terms are

negligible small. To get the governing equations we state the unoupled �eld properties

and equations �rst:

2.2.1 The equations of elastiity

Let 
 � R

d

with d = 1; 2; 3 be a bounded domain whih desribes the referene on�g-

uration (original state) of a deformable body, and let �
 be the boundary of 
 whih is

supposed to be suÆiently smooth (polygonal in our appliations).

The deformation of the body is represented by the mapping

P :

�


� R

+

0

! R

d

(x; t) ! P (x; t);

whih is assumed to be injetive, suÆiently smooth, orientation preserving.

At t = 0 the body is in referene on�guration,i.e. P (x; 0) = x 8x 2 
.

Let a volume fore

f(:; t) : P (
; t) ! R

d

and a surfae tration

g(:; t) : P (�

1

; t) ! R

d

with �

1

� �


be given in the domain 
 and at the Neumann part �

1

of the boundary �
, respetively.

The fundamental axiom of ontinuum mehanis states the existene of a stress �eld t(x; n)

(ating on the surfae �P (A; t) with aording normal vetor n for any subdomain A � 
),

whih satis�es onservation of momentum and angular momentum in A.
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One of the main results in ontinual mehanis (Ciarlet [12℄) states that the stress vetor

is linear in n and an be represented by a (di�erentiable) stress tensor T (x) 2 R

d

d

of the

form

t(x; n) = T (x):n 8 x 2 P (
; t) (2.3)

satisfying the Cauhy equations of motion

div

x

T (x; t) + f(x; t) = �(x; t)

�

2

u

�t

2

(x; t) t 2 I; x 2 P (
; t)

T (x; t) = T

T

(x; t) t 2 I; x 2 P (
; t)

T (x; t):n = g(x; t) t 2 I; x 2 P (�

1

; t)

: (2.4)

�(x; t) denotes the mass density and I = [0; t

e

℄ the time-interval in R

+

0

.

We assume elasti deformation i.e. releasing the external fores the medium returns om-

pletely in its original referene state. Deformations imply strains in the deformed medium.

Let u(x) desribe the displaement vetor of a partile through deformation, i.e.

u(x; t) := P (x; t)� x 8 x 2 
 (2.5)

Green's strain tensor desribes the hange in lengths between two partiles:

"

ij

:=

1

2

(

�u

i

�x

j

+

�u

j

�x

i

+

d

X

k=1

�u

k

�x

j

�u

k

�x

i

) 8 i; j = 1; : : : ; d (2.6)

If we assume small deformations j

�u

k

�x

j

j � 1, we get negligible quadrati terms. In linear

elasti theory we use the (linearized) Cauhy-Green strain tensor by

S

ij

:=

1

2

(

�u

i

�x

j

+

�u

j

�x

i

) 8 i; j = 1; : : : ; d

S :=

1

2

(ru+ (ru)

T

) =: Bu

: (2.7)

Hook's law states that in linear elasti materials there is a linear onnetion between stresses

and strains of the form

T

ij

=

P

d

k;l=1



ijkl

S

kl

8 i; j = 1; : : : ; d

T = S

: (2.8)

There are 81 elasti sti�ness oeÆients 

ijkl

whih desribe the elasti properties of the

material. The material is alled homogeneous if 

ijkl

6= 

ijkl

(x).
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It turns out that only 21 elasti sti�ness oeÆients are independent. Under speial material

properties the number of independent oeÆients an be further dereased:

1. Isotropi materials are materials haraterized by possessing equal properties in all

diretions. It turns out that there are only two independent oeÆients �(x); �(x) > 0

known as Lam�e-onstants with



ijkl

= �Æ

ij

Æ

kl

+ �(Æ

ik

Æ

jl

+ Æ

il

Æ

jk

) (2.9)

and Hook's law simpli�es to

T

ij

= �

d

X

k=1

S

kk

Æ

ij

+ 2�S

ij

8 i; j = 1; : : : ; d (2.10)

2. Anisotropi materials have in general 21 independent sti�ness oeÆients. Some

rystals possess symmetry axes or two di�erent diretions whih have equal material

properties. Therefore the number of independent oeÆients redues as well in suh

rystals.

The linearized strain tensor S and the aording stress tensor T are symmetri.

2.2.2 The eletrostati �eld in a dieletri medium

We assume a dieletri medium whih has the properties to be polarizable and is insulating,

i.e. there are no free volume harges. Applying an eletri �eld to a dieletria implies a

distortion of the dipoles within the material resulting in a surfae harge. Internal the

dipoles sum up to zero, ie. inside it is neutral. The polarization P ats against the eletri

�eld E whih leads to the dieleitri displaement �eld D ( the �eld was initially introdued

to explain the fat that the eletri �eld of a apaitor dereases if a dieletri is put in

between). Sine the polarization depends on the eletri �eld as well one gets:

D = "

0

E + P = "E (2.11)

with "

0

the dieletri permittivity of vauum and " the dieletri permittivity tensor of

the material.
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The fourth law of Maxwell equations (Gauss law of dieletri �elds) states in integral form

Z

�A

D

T

n ds =

Z

A

q

free

(x) dx 8 proper A � 
 (2.12)

or, in di�erential form,

div

x

D(x) = q

free

(x) 8 x 2 
; (2.13)

where q

free

(x) denotes the free volume harge density in x.

We onsider an insulating material, i.e. q

free

= 0 in 
, and we get

div

x

D(x) = 0: (2.14)

In eletrostatis, the eletri �eld an be expressed by the salar potential �eld �(x) as

E(x) = �r�(x): (2.15)

2.2.3 The piezoeletri equations

The piezoeletri e�et states a liner oupling between strain �eld and eletri �eld. The

linearity is desribed by a oupling oeÆient tensor e whih is equal for diret and onverse

e�et.

Expansion of Hook's law and the eletrostati equation by the diret and the onverse

piezoeletri e�et gives the onstitutive piezoeletri equations:

T = 

E

S � e

T

E

D = eS + "

S

E

: (2.16)



E

... mehanial sti�ness matrix (measured at onstant eletri �eld E)

"

S

... permittivity matrix (measured at onstant mehanial strain S)

e ... piezoeletri oupling oeÆient matrix

The mehanial sti�ness matrix and the permittivity matrix are symmetri matries.

The displaement �eld u and the potential �eld � in a piezoeletri material (with no

impressed volume fores) are governed by

div

x

[(

E

S � e

T

E)(x; t)℄ = �(x; t)

�

2

u

�t

2

(x; t)

div

x

[(eS + "

S

E)(x; t)℄ = 0

with

S =

1

2

(ru+ (ru)

T

)

E = �r�

(2.17)

with still open boundary onditions (stated in the setion of mathematial modeling).

We refer the readet to [4℄ and [5℄ for more detailed information.



Chapter 3

The Finite Element Method

The �nite elment method is a powerful method for solving partial di�erential equations

numerially.

In this hapter the main results of �nite element analysis, whih are required in mathemat-

ial modeling of hapter 4, are provided. We start with FEM for ellipti soure problems,

whih our in model problems for periodi strutures. Then mixed FE-approximation,

whih is required for solving piezoeletri problems, i.e. oupled �eld problems, is intro-

dued.

Modeling the dispersion relation will lead to variational eigenvalue problems. FE-solutions

of these problems are onneted to soure problems, but need a separate (error-) analysis.

Therefore, we �nish this hapter with a brief sketh of �nite element methods for eigenvalue

problems.

3.1 The method of �nite elements

The Finite Element Method (FEM) is used to approximate the solution of seond order

problems, whih are posed in variational form in some subspae V

0

of the Sobolev spae

H

1

(
).

We start with the weak formulation oupled with the fundamental theorem of Lax-Milgram

for ellipti problems, introdue the Galerkin-method and then speialize on FEM.

The weak formulation Let 
 � R

d

be a bounded suÆiently smooth domain. We

assume a given problem in weak formulation, whih is already homogenised, i.e. the Dirih-

let onditions on �

D

� �
 are homogeneous. We de�ne V

0

:= fv 2 V : vj

�

D

= 0g � H

1

(
).

17
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We state the weak problem in abstrat form as follows

Find u 2 V

0

: a(u; v) = F (v) 8 v 2 V

0

: (3.1)

For ellipti problems existene and uniqueness of a weak solution is provided by the theorem

of Lax-Milgram.

Theorem 3.1.1 (Lax-Milgram) [10℄

Let V

0

� H

1

(
). If the bilinear form a(:; :) : V

0

� V

0

! R is

1. ellipti, i.e. there is a onstant �

1

> 0 suh that

a(v; v) � �

1

kvk

2

1

8 v 2 V

0

; (3.2)

where k:k

1

= k:k

H

1

(
)

denotes the norm of H

1

on 
.

2. ontinuous, i.e. there is a onstant �

2

> 0 suh that

ja(w; v)j � �

2

kwk

1

kvk

1

8w; v 2 V

0

; (3.3)

and the linear form F : V

0

! R is ontinuous, i.e. there is a onstant  > 0 suh that

j

~

F (v)j � kvk

1

8 v 2 V

0

; (3.4)

then there exists a unique solution u 2 V

0

whih solves

a(u; v) = F (v) 8v 2 V

0

:

The Galerkin Method - Disretization The Galerkin method states the approxi-

mative solution of the weak problem by solving the problem only over �nite-dimensional

subspaes V

h

� V . The index h is the disretization parameter and denotes that with

h ! 0 we want to ahieve onvergene of the approximate solution u

h

2 V

h

against the

exat solution u 2 V .

We state the disrete problems in V

h

� V

Find u

h

2 V

0h

: a(u

h

; v

h

) = F (v

h

) 8 v

h

2 V

0h

: (3.5)

with the �nite-dimensional subspae V

0h

:= V

0

\ V

h

.

Due to V

0h

� V

0

the Lax-Milgram theorem still holds for the disrete problem, i.e. there is

a unique u

h

2 V

0h

solving (3.5).
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We hoose a base (p

(i)

)

i2!

h

of V

h

suh that

V

0h

= spanfp

(i)

; i 2 !

h

g;

i.e. u

h

2 V

0h

is represented by the linear ombination u

h

=

P

i2!

h

u

(i)

p

(i)

with u

(i)

2 R. By

!

h

and !

h

we denote index sets for the hosen bases of V

h

and V

0h

. The disrete problem

is ful�lled, if (3.5) holds forall p

(j)

with j 2 !

h

. Choosing v

h

= p

(j)

for all j 2 !

h

leads to

the Galerkin system

Find u

h

= (u

(i)

)

i2!

h

2 R

N

h

: K

h

u

h

= f

h

(3.6)

with N

h

= dim!

h

and K

h;ij

= a(p

(i)

; p

(j)

), 8 i; j 2 !

h

, f

h

j

= f(p

(j)

), 8 j 2 !

h

:

Cea's Lemma states [10℄ that the disretization error an be bounded by the approximation

error, i.e. under the assumptions of the theorem of Lax-Milgram the estimate

ku� u

h

k

1

�

�

2

�

1

inf

w

h

2V

0h

ku� v

h

k

1

(3.7)

holds for the solution u 2 V

0

of (3.1) and its approximation u

h

satisfying (3.5) .

Finite element subspaes The �nite element method is a speial ase of the Galerkin

method, i.e. a speial hoie of the subspaes V

h

. There are three main aspets in on-

struting suh a subspae V

h

:

1. The triangulation �

h

of the given geometry 
 in subdomains (alled elements) T 2 �

h

satis�es

(a) 8T 2 �

h

: T = T and

Æ

T

6= ;;

(b)

S

T2�

h

T = 
;

() for T

1

; T

2

2 �

h

: T

1

6= T

2

) T

1

\ T

2

=

8

>

>

<

>

>

:

;

vertex

edge

fae (if d=3)

2. All v

h

2 V

h

are pieewise polynomials, i.e. P

T

= fv

h

j

T

: v

h

2 V

h

g is a polynomial set.

is set of polynomials of degree k.

3. A base of V

h

with base funtions having small support exist.
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Conerning the model problem, whih will be stated in Chapter 4, 
 is de�ned on R

2

and triangles or retangles are used for triangulation. The set of verties of all T in �

h

is

desribed by the nodes fx

(i)

; i 2 !

h

g. We will use linear elements, i.e. the ansatz funtions

v

h

j

T

are linear for triangles and bilinear for retangles.

For the onstrution of the base funtions p

(i)

of V

h

we hoose

p

(j)

(x

i

) = Æ

ij

8 i; j 2 !

h

; (3.8)

whih are well-de�ned for p

(i)

j

T

linear or respetively bilinear.

Sine a(p

(i)

; p

(j)

) = 0 if meas

R

2

(supp(p

(i)

) \ supp(p

(j)

)) 6= 0, hoosing base funtions with

small support (whih will lead to nodal basis funtions) implies that the sti�ness matrix

K

h

in the Galerkin system (3.6) beomes sparse.



CHAPTER 3. THE FINITE ELEMENT METHOD 21

3.2 FEM for oupled �eld problems

The weak formulation of piezoeletri problems yields in a mixed variational problem of

the form:

Find u 2 X and � 2M whih satisfy

a(u; v) + b(v; �) = f(v) 8 v 2 X

b(u;  ) � (�;  ) = g( ) 8 2 M

Theorem 3.2.1 Let us assume that

f and g are bounded linear forms, i.e. f 2 X

�

, g 2M

�

,

1.2. the bilinear forms a(:; :) : X �X ! R and b(:; :) : X �M ! R are ontinuous,i.e.

9�

2

> 0 : ja(w; v)j � �

2

kwk

X

kvk

X

8w; v 2 X

9�

2

> 0 : jb(v;  )j � �

2

kvk

X

k k

M

8 v 2 X; 8 2 M;

3. the bilinear form b(:; :) ful�lls the inf-sup-ondition, i.e.

9�

1

> 0 : inf 2M

 6=0

sup v2X

v 6=0

b(v;  )

kvk

X

k k

M

� �

1

:

4. a(:; :) is ellipti on V

0

= Ker b = fv 2 Xjb(v;  ) = 0 8 2Mg,i.e.

9�

1

: a(v; v) � �

1

kvk

X

8 v 2 V

0

;

5. a(:; :) is non-negative on X , i.e.

a(v; v) � 0 8 v 2 X;

6. The bilinear form (:; :) :M �M ! R ful�lls the onditions

( ;  ) � 0 8 2 M;

( ; �) = (�;  ) 8 ; � 2 M::

Then the weak oupled-�eld problem

Find u 2 X and � 2M suh that

a(u; v) + b(v; �) = f(v) 8 v 2 X

b(u;  ) � (�;  ) = g( ) 8 2 M

(3.9)

has a unique solution (u; �) 2 X �M .

Proof: see Remark 10:8 in [31℄ p.572-573.
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Remark 3.2.2 Theory of problems of the form (3.9) are derived form the theory of sad-

dle point problems ((.,.)=0). The assumption (1)-(4) are nothing but the assumptions of

Brezzi's theorem.

Disretization of mixed problems Choosing �nite-dimensional subspaes X

h

� X

and M

h

�M the disrete mixed problem reads as follows:

Find u

h

2 X

h

; �

h

2M

h

suh that

a(u

h

; v

h

) + b(v

h

; �

h

) = f(v

h

) 8 v

h

2 X

h

b(u

h

;  

h

) � (�

h

;  

h

) = g( 

h

) 8 

h

2 M

h

:

(3.10)

In ontrast to ellipti problems, the assumptions posed for existene and uniqueness results

are not all automatially implied on the disrete spaes. Sine in general V

0h

:= fv

h

2

X

h

j b(v

h

;  

h

) = 0 8 

h

2M

h

g 6� V

0

, the elliptiity of a(:; :) has to be expliitly required for

the disrete problem as well as the disrete inf-sup-ondition.

Theorem 3.2.3 Under the assumptions of theorem 3.2.1 and the disrete onditions

1. a(:; :) is V

0h

-ellipti,

2. the disrete inf-sup-ondition is ful�lled, i.e.

9

~

�

1

6=

~

�

1

(h) > 0 : inf 

h

2M

h

 6=0

sup v

h

2X

h

v 6=0

b(v

h

;  

h

)

kv

h

k

X

h

k 

h

k

M

h

�

~

�

1

;

the disrete problem (3.10) has one and only one solution u

h

2 X

h

;  

h

2M

h

.

Finite Element Disretisization We assume two �nite element subspaes X

h

� X and

M

h

� M with the nodal bases p

(i)

of X

h

and 	

(i)

of M

h

aording to the node x

i

2 !

h

,

i.e. p

(i)

(x

j

) = Æ

ij

and 	

(i)

(x

j

) = Æ

ij

:

With u

h

=

P

n

i=1

u

i

h

p

(i)

and �

h

=

P

n

i=1

�

h

	

(i)

we ahieve the Galerkin-problem

�

A B

�

B �C

��

u

h

�

h

�

=

�

f

h

g

h

�

; (3.11)

where the matries are de�ned by A

ij

= a(p

(i)

; p

(i)

), B

i;j

= b(p

(i)

;	

(i)

), B

�

= B

T

and

C

ij

= (	

(i)

;	

(i)

).

The system matrix

�

A B

�

B �C

�

is regular, but inde�nite. Due to the small support of the

base funtions, the system matrix is sparse.

For further information we refer the reader to [10℄ and [31℄.
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3.3 Finite element method for eigenvalue problems

In this setion the following questions will be skethed : What happens if one solves

eigenvalue problems via �nite-element method? Whih eigenvalues will be approximated,

how are the onvergene properties adn how aurate is this approximation?

The statements and results of the following setion stem from "Finite Element Meth-

ods - Eigenvalue problems" by Babuska and Osborn [7℄ and an be found there with proofs.

Sine we want to apply �nite element tehniques on eigenvalue problems we assume a given

eigenvalue problem of weak form. The theroy of approximating variational formulated

eigenvalue problems will be traed bak on spetral theroy of ompat operators. Then

�nite element tehniques are applied analogous to the soure variational problems. The

disretized eigenvalue problems an be again traed bak on ompat operators. Then an

error estimate for the approximated eigenvalues will be given.

More detailed spetral analysis is known for self-adjoint ellipti problems. Sine in Chapter

4 we will state self-adjoint ellipti problems in the �rst phases of modeling, some results

for these speial type of eigenvalue problems will be given.

Detailed spetral theory for oupled �eld problems (espeially piezoeletri problems) will

be left open within this thesis, for further information and referenes see [7℄.

Abstrat eigenvalue problem We start with a variationally posed eigenvalue problem

on omplex Hilbert-spaes (H

1

; k:k

1

; (:; :)

1

); (H

2

; k:k

2

; (:; :)

2

): A salar � 2 C is alled an

eigenvalue of the bilinar form a with respet to the bilinear form b if there is an eigenvetor

u 6= 0 2 H

1

ful�lling

a(u; v) = �b(u; v) 8v 2 H

2

: (3.12)

Let a(:; :) be a bilinear form on H

1

�H

2

whih ontinuous

9�

2

> 0 : ja(w; v)j � �

2

kwk

1

kvk

2

8w 2 H

1

8 v 2 H

2

(3.13)

and satis�es the inf-sup onditions

inf

u2H

1

;

kuk

1

=1

sup

v2H

2

;

kvk

2

=1

ja(u; v)j = � > 0; (3.14)

sup

u2H

1

ja(u; v)j > 0 8v 6= 0 2 H

2

: (3.15)

The bilinear form b(:; :), de�ned on W

1

� W

2

with H

1

� W

1

ompat and H

2

� W

2

bounded, is assumed to be ontinuous in W

1

�W

2

, i.e.

9�

2

> 0 : jb(w; v)j � �

2

kwk

W

1

kvk

W

2

8w 2 W

1

8 v 2 W

2

: (3.16)
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The main idea of spetral theory of variationally posed eigenvalue problems

The assumptions (3.13)-(3.16) for a(:; :); b(:; :) imply the the existene of unique ompat

operators

T : H

1

! H

1

and T

�

: H

2

! H

2

;

whih hold

a(Tu; v) = b(u; v) 8 u 2 H

1

8 v 2 H

2

a(u; T

�

v) = b(u; v) 8 u 2 H

1

8 v 2 H

2

kTuk

1

�

�

2

�

kuk

W

1

8 u 2 H

1

:

(3.17)

Theorem 3.3.1 (�; u) is an eigenpair of (3.12) if and only if (

1

�

; u) is an eigenpair of T ,

i.e. Tu =

1

�

u.

Therefore the analysis of variationally formulated eigenvalue problems is given by spetral

theory of ompat operators.

De�nition 3.3.2 The eigenvalue � of the variational eigenvalue problem is of multipliity

m by de�nition, if �

�1

is a m-multiple eigenvalue of T .

The �nite element method for approximating eigenproblems

The �nite element method of eigenvalue problems is formally equal to FEM of soure

problems. We hoose �nite element spaes H

1h

� H

1

and H

2h

� H

2

of equal dimension,

i.e. dimH

1;h

= dimH

2;h

= N , for whih

inf

u2H

1h

;

kuk

1

=1

sup

v2H

2;h

;

kvk

2

=1

ja(u; v)j = �

h

= �(h) > 0 (3.18)

and

lim

h!0

�

�1

h

inf

w

h

2H

1

ku� w

h

k

1

= 0 (3.19)

is valid.

Then we formulate the weak eigenvalue problem (3.12) on the FE-subspaes and get the

�nite element Galerkin eigenvalue problem

Searh (�

h

; u

h

) 2 (C ; H

1h

); u

h

6= 0 : a(u

h

; v

h

) = �

h

b(u

h

; v

h

) 8 v

h

2 H

2h

: (3.20)

Let (�

1

; :::�

N

) and (	

1

; :::;	

N

) be bases of the subspaes H

1h

and H

2h

.

By hoosing A

ij

= a(�

i

;	

j

), B

ij

= b(�

i

;	

j

) and u

h

= (u

i

)

i=1;N

with u

h

=

P

N

i=1

u

i

�

i

, we

get the algebrai eigenvalue problem

Searh �

h

2 C and u

h

2 C

N

: Au

h

= �

h

Bu

h

; (3.21)

whih is equivalent the Galerkin eigenvalue problem (3.20).
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The analysis of Galerkin eigenvalue problems an be again redued to spetral theory of

ompat operators.

For every h we de�ne an operator T

h

: H

1

! H

1h

by

a(T

h

u; v

h

) = b(u; v

h

) 8 u 2 H

1

8 v

h

2 H

2h

:

T

h

an be written as P

h

T with P

h

denoting the projetion of H

1

on H

1h

,i.e.

a(P

h

u; v

h

) = a(u; v

h

) 8 u 2 H

1

8 v

h

2 H

1h

:

The ompatness of T and the projetion property of P

h

imply that T

h

= P

h

T ! T in

k:k

1

.

Again (�

h

; u

h

) is an eigenpair of (3.20) if and only if (�

�1

h

; u

h

) is an eigenpair of T

h

.

Error analysis Before giving a result on the quality of eigenvalue aproximation by the

�nite element method some notational work is required.

The (generalized) eigenspaes aording to an eigenvalue � of (3.12) are denoted by

E(�) := fuj(�; u) solves (3.12) with kuk

1

= 1g;

E

�

(�) := fvj(�; v) adjoint eigenpair of (3.12) with kuk

2

= 1g:

If (�) is of multipliity m, there are m orresponding eigenvalues �

1

(h); :::; �

m

(h) for eah

�nite element subspaes H

1h

; H

2h

with �

j

(h)! � for h! 0, sine T

h

! T .

The eigenspae of (3.20) aording to � of (3.12),i.e. �

j

(h) ! �, is the sum of the m

eigenspaes of �

j

(h), (j = 1; :::; m). We denote this eigenspae with E

h

(�) and assume the

eigenvetors of E

h

(�) be normalized in k:k

1

.

Moreover, we de�ne the approximation error in respet to the eigenspaes by

"

h

(�) := sup

u2E(�)

inf

w

h

2H

1h

ku� w

h

k

1

;

"

�

h

(�) := sup

u2E

�

(�)

inf

w

h

2H

2h

kv � w

h

k

2

:

Theorem 3.3.3 Error estimate for approximative eigenvalues

Let � be an eigenvalue of (3.12) of multipliity m and �

j

(h) (j = 1; :::; m) the m aording

eigenvalues of the disrete problem (3.20) satisfying �

j

(h)! �.

Then the following estimate holds

9

1

> 0 : j��

^

�(h)j � 

1

(�(h)"

h

"

�

h

) with

^

�(h) :=

1

m

m

X

j=1

�

j

(h): (3.22)

Stronger estimates an be given for the speial ase of self-adjoint ellipti eigenvalue

problems,i.e. T; T

h

is self-adjoint and ellipti.
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3.3.1 Self-adjoint ellipti eigenvalue problems

We view the eigenvalue problems (3.12) and its FE-approximations (3.20) under the fol-

lowing assumptions:

1. H = H

1

= H

2

.

2. The bilinearform a(:; :) is

symmetri: a(u; v) = a(v; u) 8 u 2 H8 v 2 H;

ontinuous: a(u; v) � �

2

kukkvk 8 u 2 H8 v 2 H;

ellipti: a(u; u) � �

1

kuk

2

8 u 2 H:

3. W = W

1

= W

2

� H is a ompat embedding.

4. The bilinearform b(:; :) is

symmetri: b(u; v) = b(v; u) 8 u 2 W8 v 2 W;

ontinuous: b(u; v) � �

2

kukkvk 8 u 2 W8 v 2 W;

positive: b(u; u) � 0 8 u 6= 0 2 H:

Remark: The energeti norm k:k

a

=

p

a(:; :) is an equivalent norm to k:k

H

=: k:k.

The assumptions on spaes and bilinear forms imply that T = T

�

= T

�

is a ompat and

self-adjoint operator, where T

�

denotes the adjoint of T .

Due to spetral theory of operators T has ountable sequene of positive eigenvalues on-

verging to zero. Therefore the variational eigenproblem (3.12) has a ountable sequene of

eigenvalues with

0 < �

1

� �

2

� :::%1: (3.23)

The orresponding eigenvetors u

1

; u

2

; ::: an be hosen the way they satisfy

a(u

i

; u

j

) = �

j

b(u

i

; u

j

) = Æ

ij

(3.24)

Moreover, these eigenvetors form a base of H, i.e. 8 u 2 H : u =

P

1

i

a(u; u

i

)u

i

.

Finite element disretization

Let V

h

� H denote a �nite-element subspae of H.

The eigenvetors u

j

(j = 1; :::; N) of of the assoiated Galerkin eigenvalue problem (3.20)

orresponding to the eigenvalues

0 < �

1; h

� �

2; h

� ::: � �

N;h

with N = dimV

h

an be hosen the way

a(u

i

; u

j

) = �

j; h

b(u

i

; u

j

) = Æ

ij

: (3.25)

holds.
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Theorem 3.3.4 Error estimates

If �

k

has geometri multipliity m

k

, i.e. �

k

= ::: = �

k+m

k

�1

, then

�

k+j; h

& �

k

for j = 0; :::; m

k

� 1

with the estimate

9C > 0 : �

k

� �

j; h

� �

k

+ C"

2

(�

k

) j = 0; :::; m

k

� 1 (3.26)

holds.

Conerning the approximation of eigenvetors there are two estimates:

1. Let u

k+j; h

be an eigenvetor of (3.20) orresponding to �

k+j; h

for j = 0; :::; m

k

� 1.

Then there is a unit eigenvetor in E(�

k

) whih satis�es

9C > 0 : ku� u

j;h

k

1

� C"

h

(�

k

): (3.27)

2. If u is a unit eigenvetor of (3.12) orresponding to �

k

,i.e. u 2 E(�

k

) then there is a

vetor ~u

h

2 E

h

(�

k

) suh that

9C > 0 : ku� ~u

h

k

1

� C"

h

(�

k

): (3.28)

If m

k

= 1, i.e. �

k

is simple, then

9C > 0 : ku

k

� u

k;h

k

1

� C"

h

(�

k

) (3.29)

holds.

Further analysis and estimates for self-adjoint ellitpi variational eigenvalue problems an

be found in [7℄.

Remark 3.3.5 On the "well-approximated part" of the spetrum

Due to Babuska and Osborn [7℄ the �nite element method give reasonable approximations for

low eigenvalues. The dimension of the �nite element subspaes and aording the dimension

of the algebrai eigenvalue problem will be muh larger than the number of well approximated

eigenvalues and eigenvetors.

The solver for the algebrai eigenvalue problem should be designed to �nd low eigenvalues

of large sparse generalized eigenvalue problems.



Chapter 4

Mathematial modeling

Before starting with a stepwise onstrution of the mathematial model we have to preise

the problem formulation, i.e. stating the boundary onditions and the geometry of the

desired �nal model.

4.1 Problem-based assumptions, geometry and

boundary onditions

Harmoni approah To redue the spae-time problem to a spatial one, we assume all

�eld quantities to be time-harmoni, i.e.

v(x; t) = v

1

(x) os(!t) + v

2

(x) sin(!t): (4.1)

Using a omplex formulation v̂ of v with <(v̂(x)) = v

1

(x) and =(v̂(x)) = v

2

(x) leads to

the simpli�ation that derivations in time are multipliations

�

�t

! i!t. and

�

2

�t

2

! �!

2

:

Therefore we onsider the omplex funtion v̂ during the omputation and take the real

part afterwards.

v̂(x; t) = v̂(x)e

i!t

v(x; t) = <(v̂(x; t))

(4.2)

Due to the linearity of the applied operations this is valid. For easier notation the hat

marker is be suppressed.

Eletrodes In order to get the propagation parameter aused by periodi perturbations

(eletrodes), we need not to simulate the sending or reeiving state at the eletrodes. It is

suÆient to simulate the problem with short-iruited eletrodes (i.e. the potential �eld is

zero in the eletrode domain 


el

) or oating eletrodes (i.e. the potential �eld is onstant

within eah eletrode, but the onstant an di�er between the eletrodes). We will restrit

ourselves to the �rst problem.

28
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Geometry We start with an in�nite piezoeletri substrate with periodial arranged

eletrodes on its surfae. Due to the fat that we are mainly interested in Rayleigh-waves,

we an restrit the omputation domain to the sagittal plane. In the mathematial model

we denote this plane with the (x

1

; x

2

)-plane. With these assumption we ahieve the domain

shown in Figure 4.1.

electrode boundaryG
el

G
N

charge and stress free boundaryW
el

electrode

G
el

G
el

G
el

G
el

G
el

G
el

G
N

G
N

G
N

G
N

G
N

G
N

G
N

G
N

W
S

piezoelectric substrate

p

X2

X1

Figure 4.1: In�nite model geometry for piezoeletri problem

Two piezoeletri model ases u 2 R

d

1. d=2: We assume that there is no displaement in the x

3

-diretion and displaement

and potential are not depending on the x

3

-oordinate, i.e. u(x

1

; x

2

; t) 2 R

2

and

�(x

1

; x

2

; t) 2 R.

Bu := S =

0

�

S

x

1

x

1

S

x

1

x

2

S

x

2

x

1

S

x

2

x

2

1

A

=

�

�u

1

�x

1

1

2

(

�u

1

�x

2

+

�u

2

�x

1

)

1

2

(

�u

1

�x

2

+

�u

2

�x

1

)

�u

2

�x

2

�

; (4.3)

�B� = E =

0

�

�

��

�x

1

�

��

�x

2

0

1

A

: (4.4)

2. d=3: Due to the anisotropy of the material wave omponents in the z-diretion an

our in pratial appliations. The deviation of the ideal ase is onsidered by al-

lowing onstant behavior of the �elds in x

3

-diretion:

�u

i

�x

3

= 0 for u = (u

1

; u

2

; u

3

)

T

2 R

3

��

�x

3

= 0

: (4.5)
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This implies the di�erential operators in 
 by

Bu = S =

0

�

S

x

1

x

1

S

x

1

x

2

1

2

�u

3

�x

1

S

x

2

x

1

S

x

2

x

2

1

2

�u

3

�x

2

1

2

�u

3

�x

1

1

2

�u

3

�x

2

0

1

A

; (4.6)

�B� = E =

0

�

�

��

�x

1

�

��

�x

2

0

1

A

: (4.7)

We treat the eletrodes as piezoeletri material with oupling oeÆients set to zero

and ahieve the behaviour of non-piezoeletri material avoiding an expliit hange of

the governing equations. This leads to the problem of partial di�erential equations with

periodial oeÆients and will lead to Bloh theory.

The boundary onditions The surfae exluding the eletrodes (denoted with �

N

in

Figure 4.1) piezoeletri substrate is stress- and harge-free , i.e.

T:n = 0 and D:n = 0 on �

N

:

Setting potential � to zero simulates short-iruited eletrodes, i.e. � = 0 in 


el

:

The mehanial �eld is again stress-free on �

el

, i.e. T:n = 0 on �

el

:

4.2 The main steps of modeling

We have three main points to be onsidered in the onstrution of a mathematial model

� the periodial geometry, i.e. partial di�erential equations with periodi oeÆients

� the physial properties of piezoeletri media

� damping e�ets

We want to onstrut the model step by step. To get a �rst impression of modeling and

possible solution methods we initially onentrate on the �rst item, i.e. wave propagation

in periodial perturbed media. We searh for modeling and solution approahes for the

wave equation with periodi oeÆients. We start in 1 dimension and then upgrade to 2

dimension.

In this state of modeling we restrit only to pure propagating mode (� = 0), sine this

simpli�ation leads to self-adjoint problems.
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In the seond step we also permit stop band attenuation and onsider material damping

in the model and solution approahes for the wave equation. Inluding damping e�ets to

our model implies that the operators get omplex.

After oming up with the problem of periodi geometry and damping for the wave equation,

�nally we extend the developed methods to the system of piezoeletri equations.

4.3 Modeling wave equation with periodi oeÆients

in 1 D

We simplify the in�nite periodial geometry to one dimension,i.e. 
 := R, and state the

strong problem as searhing a solution u 2 C

2

(
;R) of the periodi wave equation:

8 x 2 
 8 t 2 R : (a(x)u

X

(x; t))

x

= u

tt

(x; t) with a(x + p) = a(x): (4.8)

Let p > 0 2 R be a given, �xed period.

The positive periodi oeÆient a 2 C

1

(
) desribes the periodial properties of

the material. We remark that for the weak formulation of the problem the ondition

a 2 L

1

(
) : 0 < a � a(:) � a almost everywhere (a.e.) in 
 will be suÆient.

The �rst step is using a harmoni approah as explained in (4.2)

û(x; t) = û (x)e

i!t

(4.9)

with û(:) in C

2

(
; C ). The hat marker will be suppressed furtheron.

Applying this approah to problem (4.8) leads to the Helmholtz-type equation

Find u 2 C

2

(
; C ) : �(a(x)u

0

(x))

0

� !

2

u(x) = 0: (4.10)

In order to give a formulation of the problem in operator form, we de�ne the ellipti

di�erential operator

A : C

2

(
; C ) ! C(
; C )

u(:) ! �(a(:)u

0

(:))

0

:

and get the operator eigenvalue problem

Find u 2 C

2

(
; C ); ! 2 R : Au = !

2

u: (4.11)
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The periodiity of the oeÆient funtion a(:) an be expressed in the operator equation

via the shift operator

T

p

: C(
; C ) ! C(
; C )

u(:) ! T

p

u(:) := u(:+ p)

(4.12)

by the fat that the operator A is invariant over translation of period p (the operators

ommute)

T

p

A = AT

p

: (4.13)

In this ase Bloh's theorem (introdued afterwards) states that the solution of problem

(4.10) an be fully desribed via quasi-periodi eigenfuntions of the form

9�; � 2 R : u(x+ p) = u(x)e

(�+i�)p

; (4.14)

whih is equivalent to

9 u

p

2 C

2

(
; C ) periodi with period p suh that u(x) = u

p

(x) e

(�+i�)x

: (4.15)

4.3.1 Blohs Theorem

Theorem 4.3.1 (Bloh's Theorem 1D)

Let A be a linear (di�erential) operator mapping C

2

(
; C ) into C(
; C ) whih is invariant

over T

p

de�ned in (4.12), i.e.

T

p

A = AT

p

:

Then for eah eigenspae E

A

(�) := fv 2 V jAv = �vg (with dim(E

A

(�) =: m ), there is a

base of eigenfuntions

~

� = (

~

�

1

; :::;

~

�

m

) satisfying

A

~

�

j

= �

~

�

j

and T

p

~

�

j

= e

(�

j

+i�

j

)p

~

�

j

:

Proof: See "Asymptoti analysis of periodi strutures, Spetral theory of di�erential

operators with periodi oeÆients" in Lions [9℄.

In terms of above theorem the following equivalenes of quasi-periodiity hold

T

p

� = e

(�+i�)p

� , �(x) = �

p

(x)e

(�+i�)x

, �(x + p) = e

(�+i�)p

�(x) (4.16)

.
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4.3.2 Restrition to the unit ell

Bloh's theorem implies that we an restrit the problem on searhing eigenfuntions

in the spae of quasi-periodi funtions, i.e. we an assume u(x) = u

p

(x) e

�+i�x

with a

omplex pure-periodi funtion u

p

(:). Due to this periodiity the problem is fully desribed

by a solution on the unit ell.

It is suÆient to solve problem (4.10) only on the unit ell 


p

:= [0; p℄, if the quasi-

periodiity (4.14) is onsidered in the boundary onditions of left and right bound of the

unit ell.

Notation 4.3.2 For briefer notation we de�ne  := e

(�+i�)p

.

In the starting phase of modeling we will onretize on pure propagating,i.e. not-attenuated

solutions, i.e. we primarily assume � = 0, whih implies that jj = 1.

Classial formulation Searh u 2 C

2

(


p

; C ) satisfying

�(a(x)u

0

(x))

0

= !

2

u(x) 8x 2 


p

: (4.17)

Quasi-periodiity plus its derivation impose the boundary onditions:

u(p) = u(0); (4.18)

w

l

:=�a(0)u

0

(0):

w

r

:=a(p)u

0

(p) = a(0)u

0

(0)e

i�p

�

! w

r

= �w

l

: (4.19)

Weak formulation Through integration by parts we get

Z




p

a(x)u

0

(x)v

0

(x) dx�

Z




p

!

2

u(x)v(x) dx� a(x)u

0

(x)v(x)j

p

0

= 0: (4.20)

Using the ux notation de�ned in (4.19) leads to the variatonal formula

Searh for a solution u 2 H

1

(


p

; C ) satisfying 8v 2 H

1

(


p

; C ) :

Z




p

a(x)u

0

(x)v

0

(x) dx

| {z }

=:a

1

(u;v)

�!

2

Z




p

u(x)v(x) dx

| {z }

=:a

0

(u;v)

�w

l

v(0) + w

r

v(p)

| {z }

=:<w;v>

�

b

= 0: (4.21)

For given ! we de�ne the bilinear form a(u; v) = a

1

(u; v)�!

2

a

0

(u; v) for u; v 2 V := H

1

(


p

)

and laim the the quasi-periodiity of u expliitely.
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Disretization and the Galerkin-FE-system We hoose a �nite element mesh with n

nodes (x

1

; :::; x

n

), a FE-subspae V

h

= spanf p

(i)

j i = 1; n g � V = H

1

(


p

) with (p

(i)

)

i=1;n

denoting the �nite elment base of V

h

with p

(i)

(x

(j)

) = Æ

ij

.

Moreover we split up the set of nodes in three disjoint subsets aording to Figure 4.2, the

set of inner (subsript i), of left boundary (subsript l) and of right boundary (subsript

r) nodes with x

i

:= (x

1

; :::; x

n�2

); x

l

:= x

n�1

; x

r

:= x

n

. The periodial boundary nodes are

denoted separately with the subsript b: x

b

:= (x

l

; x

r

):

x=l xn-1 x =r xnx2x1 x3
xn-2xn-1x3

xi

. . .

0 p

Figure 4.2: Splitting in inner, left and right verties

By setting K

i;j

= a(p

(i)

; p

(j)

) and u

h

(x) =

P

n

i=1

u

i

p

(i)

(x) with u

h

= (u

i

)

i=1;n

2 C

n

we get a

linear system with unknown right side

Ku

h

� w

h

= 0 (4.22)

with u

h

=

0

B

B

B

B

B

�

u

1

.

.

.

u

n�1

u

l

u

r

1

C

C

C

C

C

A

and w

h

:= (< w; p

(i)

>

�

b

)

i=1;n

=

0

B

B

B

B

B

�

0

.

.

.

0

w

l

p

(l)

(0)

w

r

p

(r)

(p)

1

C

C

C

C

C

A

=

0

B

B

B

B

B

�

0

.

.

.

0

w

l

w

r

1

C

C

C

C

C

A

:

In the next step we split the system in inner and boundary nodes. We ahieve

�

K

i

K

ib

K

bi

K

b

��

u

i

u

b

�

=

�

0

w

b

�

: (4.23)

Due to the sparse right side we an eliminate the inner nodes u

i

. Eliminating u

i

from

the �rst equation and putting it into the seond one gives the smaller Shur-omplement

system

(�K

bi

K

�1

i

K

ib

+K

b

)

| {z }

=: S 2 R

2

2

Shur-omplement

u

b

= w

b

: (4.24)
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Considering the quasi-periodi boundary onditions

u

b

=

�

u

l

u

l



�

; w

b

=

�

w

l

�w

l



�

leads to 2 equations in 3 variables (u

l

; w

l

;  = e

i�p

)

S

11

u

l

+ S

12

u

l

= w

l

S

21

u

l

+ S

22

u

l

= �w

l

�

) S

12



2

u

l

+ (S

11

+ S

22

)u

l

+ S

21

u

l

= 0 (4.25)

with the notation S = (S

ij

)

i;j=1;2

.

If u

l

does not vanish identially, we get a quadrati equation in 

S

12



2

+ (S

11

+ S

22

) + S

21

= 0: (4.26)

Remark 4.3.3 Sine S

12

= S

21

6= 0, the eigenvalues our in the pair f;

1



g, if  solves

(4.26).

Conlusion:

In 1 dimension the model for the wave equation leads to a quadrati equation. With given

! the the dispersion ontext between ! and  an be easily evaluated as a funtion (!).

The next question is how the evaluation of this ontext hanges if we go up to two dimen-

sions.
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4.4 Model of wave equation with periodial oeÆ-

ients in 2D

Modeling the 2D problem is omparable to the way we have done it in the 1D ase. We

present 3 variants of solution methods, they all result in eigenvalue problems (general-

ized linear and nonlinear). Two of them evaluate the dispersion relation as searhing

the propagation onstant depending on given frequeny, i.e. (!), and the other the

inverse mapping via given propagation onstant, i.e. !(). Sine we want to get an idea of

the whole diagram of dispersion, there is initially no advantage of any of the three methods.

4.4.1 Periodi geometry and Floquet-Bloh theorem

We hose the strip 
 := R � [0; H℄ as underlying geometry.

We want to solve the 2 dimensional harmoni wave equation with periodi oeÆients in

diretion of propagation (x

1

-diretion) in 
 with boundary onditions aording to Figure

4.3:

Searh for a solution u(x; t) 2 C

2

(
� R)

div

x

(a(x)r

x

u(x; t)) = u

tt

(x; t) with a(x

1

+ p; x

2

) = a(x

1

; x

2

): (4.27)

The positive funtion a 2 C

1

(R

2

) desribes the periodial properties of the material in

x

1

-diretion, i.e.

a(x

1

+ p; x

2

) = a(x

1

; x

2

) 8 x

1

2 R; 8 x

2

2 [0; H℄: (4.28)

We note that for the later derived weak formulation periodi a 2 L

1

(
) with 0 < a �

a(x) � a for almost all x 2 
 will be suÆient.

We use again a harmoni ansatz of the form

û(x

1

; x

2

; t) = û(x

1

; x

2

) e

i!t

: (4.29)

Suppressing the hat marker, we get the partial di�erential equations only in spae:

Searh for u 2 C

2

(
; C )

�div(aru(x)) = !

2

u(x) 8x 2 
: (4.30)

Remark on the hoie of boundary onditions:

The periodi oeÆient already simulates the periodi geometry. We hoose periodial ar-

ranged homogenous Dirihlet boundary onditions due to the fat that in the piezoeletri

model, we want to ahieve in the �nal step, an equivalent boundary ondition is laimed

on the potential.
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Figure 4.3: In�nite periodial luster 2D (
)

Sine the propagation of surfae waves should be negligible within depth of a few

wavelength we set also zero-Dirihlet onditions on the bottom.

Theorem 4.4.1 (Bloh's Theorem 2D)

Assume a given operator A : C

2

(
; C ) ! C(
; C ), whih is invariant over translation T

p

of period p in x

1

-diretion, i.e.

T

p

A = AT

p

with

T

p

: C

2

(R

2

; C ) ! C

2

(R

2

; C )

f(:; :) ! f(:+ p; :)

:

Then the eigenfuntion of A an be hosen quasi-periodily in x

1

-diretion :

9�; � 2 R 8 (x

1

; x

2

) 2 
 : u(x

1

; x

2

) = u

p

(x

1

; x

2

)e

(�+i�)x

1

(4.31)

with periodi funtion u

p

(x

1

+ p; x

2

) = u

p

(x

1

; x

2

) 8 (x

1

; x

2

) 2 
,

this is equal to

9 � 2 R 8 (x

1

; x

2

) 2 
 : u(x

1

+ p; x

2

) = u(x

1

; x

2

)e

i(�+i�)p

(4.32)

Implying that for eah eigenspae E

A

(�) := fv 2 jAv = �vg (with dim(E

A

(�) =: m ), there

is a base of eigenfuntions

~

� = (

~

�

1

; :::;

~

�

m

) satisfying

A

~

�

j

= �

~

�

j

and T

p

~

�

j

= e

(�

j

+i�

j

)p

~

�

j

: (4.33)

Proof: A proof for � = 0 is given in Lions [9℄. The general ase is treated in Kuhment

[19℄.
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Remark 4.4.2 on theorem 4.4.1

Bloh's theorem states that every eigenvetor of the eigenvalue-problem Av = �v an be

deomposited into so alled Bloh-waves of the form (4.33).

Therefore the solution is fully desribed by quasi-periodi funtions and we an restrit the

solution set to this speial form :

Searh eigenvetors u 2 C

2

(
) solving Au = �u of the form

u(x

1

+ p; x

2

) = e

(�

j

+i�

j

)p

u(x

1

; x

2

) 8(x

1

; x

2

) 2 
; (4.34)

or of the equivalent form

u(x

1

; x

2

) = e

(�

j

+i�

j

)x

1

u

p

(x

1

; x

2

) 8(x

1

; x

2

) 2 
 (4.35)

with u

p

2 C

2

(
; C ) periodi in x

1

-oordinate, i.e. u

p

(x

1

; x

2

) = u

p

(x

1

+ p; x

2

) 8(x

1

; x

2

) 2 
.

Remark 4.4.3 on Bloh deomposition

Due to Bloh's theorem every eigenvetor an be written as a disrete sum of quasi-periodi

Bloh waves. The parameter � of eah Bloh wave desribes the attenuation per period.

If � > 0 the parameter desribes the attenuation of "forward-running" waves, i.e.

propagation in x

1

-diretion is positive, and � < 0 the attenuation of "bakward-running"

waves, i.e. propagation in x

1

-diretion is negative. Sine we view a periodi medium and

are mainly interested in waves whih propagate in the whole periodi geometry, we an

restrit the numerial alulation on pure propagating modes (� = 0) and Bloh-waves

with attenuation parameter � smallest in magnitude.

We will �rst solve the problem of pure propagating modes and then extend the problem to

attenuated Bloh-waves, where we are interested in solutions aording to � smallest in

magnitude.

4.4.2 Restrition to the unit ell

Due to the validity of Bloh's theorem, we an restrit the problem (4.30) to the unit

ell 


p

:= [0; p℄ � [0; H℄. Bloh waves on the unit-ell fully desribes the solutions on the

in�nite strip.

We use the notation  := e

(�+i�)p

and primarly onsider only non-attenuated (pure-

propagating) waves, i.e. � = 0.
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Dirichlet Boundary

G
D

Dirichlet

G
D

Neumann

G
N

Neumann

G
N

right

periodical

boundary

left

periodical

boundary
W

p
G

L
G

R

Figure 4.4: Restrition to the unit ell 2D (


p

)

Classial formulation Searh for a funtion u 2 C

2

(


p

; C ) whih solves 8 x 2 


p

:

�div(a(x)ru(x))� !

2

u(x) = 0 (4.36)

with a 2 C

1

(


p

) and a(0) = a(p) satisfying the boundary onditions (see Figure 4.4)

Dirihlet boundary: u(x) = 0 on �

D

Neumann boundary:

�u

�N

(x) := a(x)

�u

�n

(x) = 0 on �

N

Periodi boundary: �

L

; �

R

u(p; x

2

) = u(0; x

2

) 8x

2

2 [0; H℄

�u

�N

(p; x

2

) = �

�u

�N

(0; x

2

) 8x

2

2 [0; H℄

8x 2 �

L

: ~w

l

(x) :=

�u

�N

(x)

8x 2 �

R

: ~w

r

(x) :=

�u

�N

(x)

�

~w

r

(x) = � ~w

l

(x)

(4.37)

with

�u

�n

(x) for x 2 � desribing the partial derivation in diretion of the normal vetor

(pointing to the exterior of 


p

) of the aording boundary �.

The onditions stated on the quasi-periodi boundaries stem from applying and di�eren-

tiating equation (4.34).
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Variational formulation We start with the lassial problem and test it with funtions

v of the testspae V

0

(spei�ed later)

Z




p

div

x

(a(x)ru(x)) : v(x) dx�

Z




p

!

2

u(x)v(x) dx = 0:

Integration by parts leads to

Z




p

a(x)ru(x)r

T

v(x) dx�

Z

�

D

[�

N

�u

�N

(x)v(x) ds�

Z




p

!

2

u(x)v(x) dx�

Z

�

L

[�

R

�u

�N

(x)v(x) ds = 0:

By hoosing test-funtions whih vanish on the Dirihlet-boundary (essential boundary

ondition), i.e.

V

0

:= fv 2 H

1

(


p

; C ) : v(x) = 0 on �

D

g (4.38)

the boundary integral over �

D

gets zero. Under onsideration of the Neumann-onditions

(natural boundary ondition) we get

Z




p

a(x)ru(x)r

T

v(x) dx�

Z




p

!

2

u(x)v(x) dx�

Z

�

L

[�

R

�u

�N

(x)v(x) ds = 0:

Sine the solution has to satisfy the stated boundary onditions (in the weak sense) we

hoose the searh spae as

V

p

:= V

0

\ fu 2 V = H

1

(


p

) j u(x

1

; x

2

) = u(x

1

+ p; x

2

)g:

Under ondition (4.37) for the ux ~w

l

, ~w

r

over the periodi boundaries, we get the weak

formulation:

Searh for a solution u 2 V

p

: 8v 2 V

0

Z




p

a(x)ru(x)r

T

v(x) dx

| {z }

=: a

1

(u;v)

� !

2

Z




p

u(x)v(x) dx

| {z }

=:a

0

(u;v)

�(

Z

�

L

~w

l

(x)v(x) ds

Z

�

R

~w

r

(x)v(x) ds

| {z }

=:< ~w;v>

�

b

) = 0:

(4.39)

Remark 4.4.4 Properties of the stated bilinear forms a

0

(:; :); a

1

(:; :) : H

1

� H

1

! R :

Both are symmetri and ontinuous. Moreover, a

1

(:; :) is ellipti for a(:) 2 L

1

(


p

) with

0 < a � a(x) � a for x a.e. in 


p

and a

0

(:; :) is positive.

Supplementary, we de�ne the bilinear form a(u; v) := a

1

(u; v)�!

2

a

0

(u; v) for given ! in R

+

0

.

Remark 4.4.5 The problem arises that the hosen test spae in the weak formulation is

bigger than the searh spae. If we treat the ux over the left boundary as independent

funtion of u and extend the serah spae with w

l

the spaes beome isomorph.

V

wph

= f(u; w) 2 H

1

(
); L

2

(�

L

[ �

R

) j u 2 V

0p

; w =

P

n

l

i=1

w

l(i)

(p

l(i)

� p

r(i)

) ; w

( l(i)

2 C g

For easier notation/assembling we hoose u in V

0h

and inorporate the quasi-periodiity

expliitely in the disretized matrix equation.
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FE-Disretization and Galerkin problem We hoose a regular triangulation with

following supplementary properties: We have a mesh of n nodes whih we split up in

n = n

i

+ n

d

+ n

l

+ n

r

with n

d

denoting the nodes aording to Dirihlet boundary,

n

l

; n

r

aording to the left and right boundary (quasi-periodial boundaries) exluding

Dirihlet nodes and n

i

denoting all remaining nodes (inluding the nodes on the Neumann

boundary).

Morover, we assume a grid, in whih right and left boundary have an idential onnetion.

We introdue the index mappings d(:); l(:); r(:); i(:) : f1; :::; n

�

g ! f1; :::; ng and supple-

mentary x

r(i)

= x

l(i)

+ (0; p) for i = 1; n

l

.

We hoose the FE-subspaes

V

h

:= spanfp

(j)

j = 1; n : p

(j)

base funtion a. to node x

j

g � V = H

1

(


p

);

V

0h

:= fu

h

=

P

n

j=1

u

(j)

p

(j)

j u

(j)

2 C with u

d(i)

= 0 for i = 1; n

d

g � V

h

;

V

ph

:= fu

h

2 V

0h

with u

r(i)

= u

l(i)

for i = 1; n

l

g

= f

P

n

i

j=1

u

i(j)

p

i(j)

+

P

n

l

j=1

u

l(j)

(p

l(j)

+ p

r(j)

)g � V

0h

� V

h

:

The disretization is done by formulating the weak problem within searh

spae and test spae both V

0h

. We get N := n � n

d

aording to the setting

v

h

= p

(i)

for i 2 f1; :::; ng n range(d(:)).

During the omputation we treat the ux ~w

l

; ~w

r

= � ~w

l

over the quasi-periodial

boundaries as unknown from the displaement u independent funtions. We will see

that in the disretized equation one an drop the ux vetor after onsideration of their

quasi-periodiity.

We get the Galerkin-FE-system (note that w is also unknown)

Searh u 2 C

N

and (  or ! ) : (K � !

2

M) u� w = 0; (4.40)

or in more detail

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

0

�

u

i

u

l

u

r

1

A

�!

2

0

�

M

ii

M

il

M

ir

M

li

M

ll

M

lr

M

ri

M

rl

M

rr

1

A

0

�

u

i

u

l

u

r

1

A

�

0

�

0

w

l

�w

l

1

A

= 0 (4.41)

under the quasi-periodi ondition

u

r

= u

l

: (4.42)
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The system is de�ned by following notations:

(K

ii

)

kj

= a

1

(p

i(k)

; p

i(j)

) 8 k = 1; n

i

; j = 1; n

i

(K

il

)

kj

= a

1

(p

i(k)

; p

i(j)

) 8 k = 1; n

i

; j = 1; n

l

analogous for K

rr

; K

ri

; K

rl

; K

ir

; K

li

; K

lr

(M

ii

)

kj

= a

0

(p

i(k)

; p

i(j)

) 8 k = 1; n

i

; j = 1; n

i

(M

il

)

kj

= a

0

(p

i(k)

; p

i(j)

) 8 k = 1; n

i

; j = 1; n

l

analogous for M

rr

;M

ri

;M

rl

;M

ir

;M

li

;M

lr

We state the sti�ness matrix K :=

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

2 R

N

N

,

the mass matrix M :=

0

�

M

ii

M

il

M

ir

M

li

M

ll

M

lr

M

ri

M

rl

M

rr

1

A

2 R

N

N

and

the displaement vetor u :=

0

�

u

i

u

l

u

r

1

A

2 C

N

with

u

i

= (u

i(j)

)

j=1;n

i

u

l

= (u

l(j)

)

j=1;n

l

u

r

= (u

r(j)

)

j=1;n

r

.

The ux vetor is de�ned as w 2 C

N

with the omponents

w

i

=

8

>

<

>

:

0 for i 2 f1; :::; n

i

g

R

�

L

~w

l

p

l(i)

(x) ds =: w

l;i

for i 2 fn

i

+ 1; :::; n

i

+ n

l

g

R

�

R

~w

l

(:� p) p

r(i)

(x) ds =: w

r;i

for i 2 fn

i

+ n

l

+ 1; :::; Ng

:

Remark 4.4.6 We have impliitly dropped the elements aording to Dirihlet nodes sine

u

d(:)

= 0, w

d(:)

= 0

Inluding the quasi-periodiity (4.42) in the Galerkin-system (4.40) we ahieve

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

0

�

u

i

u

l

u

l

1

A

� !

2

0

�

M

ii

M

il

M

ir

M

li

M

ll

M

lr

M

ri

M

rl

M

rr

1

A

0

�

u

i

u

l

u

l

1

A

�

0

�

0

w

l

�w

l

1

A

= 0:

(4.43)
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Remark 4.4.7 Some properties of mass and sti�ness matrix:

1. K,M are sparse matries.

2. We assume that the mesh is large enough that left and right boundary have no ommon

element. There is no diret oupling between left and right nodes, whih implies that

K

lr

= K

rl

=M

lr

=M

rl

= 0:

3. K;M are symmetri positive de�nite matries, i.e. the diagonal bloks

K

ii

; K

ll

; K

rr

;M

ii

; ::: are symmetri, positive de�nite.

4.4.3 Three solution approahes

We present three approahes for omputing the dispersion ontext. They are developed

by the author and therefore no referenes an be given for the following methods. In the

�rst and third approah presented we assume given frequeny and searh the propagation

onstant, i.e. (!) and in the seond one the propagation onstant is given and we ask for

the ontext !(). All three result in eigenvalue problems (of linear or quadrati form).

For given ! 2 R

+

0

we de�ne the system matrix K with the bloks

K

��

:= K

��

� !

2

M

��

for � = i; l; r (4.44)

Approah 1: Shur-Complement Method for given ! (SC-Method)

This approah is analogous to the method used in the 1D model. We assume that ! given

satis�es !

2

=2 �(M

�1

K), i.e. K regular. We split the system matrix in inner and boundary

nodes

K(!) = K =

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

=:

�

K

ii

K

ib

K

bi

K

bb

�

;

ompute the Shur-omplement

S := (�K

bi

K

�1

ii

K

ib

+K

bb

) =:

�

S

11

S

12

S

21

S

22

�

= S

T

2 R

2 n

l

2n

l

(4.45)

and get

�

S

11

S

12

S

21

S

22

��

u

l

u

l

�

=

�

w

l

� w

l

�

:

Multiplying the �rst line with  and adding �rst and seond line elimenates w

l

and we get

a quadrati eigenvalue problem in :



2

S

12

u

l

+ (S

11

+ S

22

)u

l

+ S

21

u

l

= 0: (4.46)
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Conlusion:

The Shur-Complement Method results in a quadrati eigenvalue problem with real matri-

es of moderate size (n

l

� n

l

) (ompared to the original problem dimension N = n

i

+ 2n

l

with n

i

� n

l

). But it has the drawbak that the omputation of the Shur-omplement

requires the inversion of the "large" matrix K

ii

for every given ! and destroys sparsity of

matries, moreover we annot state speial properties of the blok matries of S.

We have to look for solution methods of quadrati eigenvalue problems of the form:

Searh x 2 C

n

and � 2 C with j�j = 1 : (�

2

A+ �B +A

T

)x = 0 with B = B

T

(4.47)

with A;B real dense matries of quite moderate size.

Approah 2: Given propagation onstant 

We start with the Galerkin-system

K

0

�

u

i

u

l

u

l

1

A

� !

2

M

0

�

u

i

u

l

u

l

1

A

=

0

�

0

w

l

�w

l

1

A

(4.48)

and bear in mind that K;M are symmetri and positive de�nite matries.

If the right side of the Galerkin-system (4.48) was zero, the problem would turn into a

generalized eigenvalue problem.

This states the question after a matrix transformation whih eliminates the right side

while preserving symmetry and positive de�niteness, i.e. we serah a transformation of

the form T

H

KT � !

2

T

H

MT .

We an reformulate vetors to get a possible transformation matrix T via

(K � !

2

M)

0

�

I

i

0

0 I

l

0 I

l

1

A

| {z }

:=T

�

u

i

u

l

�

=

0

�

0

I

l

�

1

A

w

l

:

Multiplying with

~

T

H

:=

�

I

i

0 0

0 I

l

I

l

�

from the left eliminates the right side of the

system, but destroys symmetry.
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Considering the fat that  = e

i�p

and hene :� = 1, we an expand

~

T

H

to

~

T

H

=

�

I

i

0

0 I

l

�

| {z }

regular

T

H

, i.e. T

H

w = 0.

We an transform the Galerkin system by multiplying with

T

H

:=

�

I

i

0 0

0 I

l

�I

l

�

(4.49)

from the left into a generalized eigenvalue problem

T

H

KT ~u = !

2

T

H

MT ~u with ~u :=

�

u

i

u

l

�

: (4.50)

Remark 4.4.8 Properties of the matries T

H

KT; T

H

MT

1. The matries are omplex-valued through  2 C

2. The matries are obviously hermitian, sine K;M are hermitian (symmetri).

3. The positive de�niteness is preserved:

(T

H

KTx; x) = (KTx; Tx) > 0 8x 6= 0, sine (Kx; x) > 0 8x 6= 0 and

(Tx = 0, x = 0).

4. The transformation preserves sparsity of the matries.

Conlusion:

For given  2 C the method requires the solution of a generalized eigenvalue problem

Searh � 2 R

+

0

and x 2 C

m

: Ax = �Bx

with omplex-valued, sparse, hermitian and positive de�nite matries A;B of dimension

(m�m), where m = n

i

+ n

l

.
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Approah 3: Inner-Node-Matrix Method for given ! (INM-Method)

In the Shur-Complement Approah we got a quadrati eigenvalue problem to ompute 

by given frequeny !.

The seond approah (for given ) gives the idea for another method for given frequeny

avoiding the omputation of the Shur-omplement.

We start with the system matrix

K(!) =

0

�

K

ii

K

il

+ K

ir

K

li

K

ll

+ K

lr

K

ri

K

rl

+ K

rr

1

A

�

u

i

u

l

�

=

0

�

0

w

l

�w

l

1

A

:

Mutliplying with

�

I

i

0 0

0 I

l

I

l

�

from the left side eliminates the right side and we get

�

K

ii

K

il

+ K

ir

K

li

+K

ri

K

ll

+ 

2

K

lr

+K

rl

+ K

rr

��

u

i

u

l

�

=

�

0

w

l

� w

l

�

: (4.51)

Extrating  leads to a quadrati eigenvalue problem

�



2

�

0 0

0 K

lr

�

+ 

�

0 K

ir

K

li

K

ll

+K

rr

�

+

�

K

ii

K

il

K

ri

K

rl

� ��

u

i

u

l

�

= 0

under onsideration of the speial struture of K mentioned in Remark 4.4.7 the quadrati

term vanishes.

We get a generalized linear eigenvalue problem

 

K

ii

K

il

K

T

ir

0

!

�

u

i

u

l

�

= 

 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

u

i

u

l

�

. (4.52)

Conlusion: The Inner-Node-Matrix Approah results in a generalized eigenvalue problem

Searh x 2 C

m

and � 2 C with j�j = 1:

Ax = �Bx of the form A =

�

M

1

G

F

T

0

�

; B =

�

0 �F

�G

T

�M

2

�

The matries A;B are real-valued, sparse and of dimension (m�m) with m := n

i

+ n

l

.

If we assume that ! is given the way that K = K � !

2

M is regular, then the diagonal

bloks M

1

;M

2

are regualr and the matrix A� B is regular and symmetri.
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Remark 4.4.9

1. The question arises if through dropping w

l

out of the system by adding two bloks

of equations this has probably an unwanted e�et on the spetrum, i.e. one drops

eigenvalues ?

Rewriting the system gives

0

B

�

K

ii

K

il

0

K

T

il

K

ll

I

l

K

ri

T

0 0

1

C

A

0

�

u

i

u

l

w

l

1

A

= 

0

�

0 �K

ir

0

0 0 0

0 �K

rr

I

l

1

A

0

�

u

i

u

l

w

l

1

A

One an see that adding the last two line bloks eliminates N

l

zero lines on the right

side of the eigenvalue problem. In the hapter of eigenvalue theory we will see that

these lines aord to in�nite eigenvalues whih we are not interested in. The spetrum

of �nite eigenvalues remains unhanged through this adding of equations. We get all

interesting eigenvalues if we solve the Inner-Node-Matrix system.

2. Interpretation of the Inner-Node-Matrix Problem:

We treat the question of what weak formulation leads diretly to the Inner-Node-

Matrix system:

Setting ~w

r

= ~w

l

(: � p) and hoosing the searhspae V

p

and the testspae V

p2

:=

V

0

\ fv 2 V = H

1

(


p

) j v(x

1

; x

2

) = v(x

1

+ p; x

2

)g

Remark 4.4.10 We have hosen for test and searhspae the whole spae, laimed the pe-

riodiity ondition for u expliitly. Then we introdued a variable w for the ux and treated

it independent of u. We disretized the weak formulations and hoped that the ahieved ma-

tries an be transformed the way that the unknowns aording to w will get eliminated

and that we an redue to a quadrati system. This was quite an intuitive approah, but

we sueeded. But through transformations, redution of variables and hoosing the ux

independent of u, do we still solve the original problem ?

Now we give a mathematial aurate approah by a problem related hoie of test and

searhspae whih onsider the quasi-periodiity. This approah has the big advantage that

the boundary integral, whih we former ome up by introduing the independent variable

w, vanishes already in the weak formulation.
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4.4.4 Stating quasi-periodi test and searh spae

We want that the quasi-periodiity is already onsidered in searh and testspae and that

the both spaes are isomporph.

Searh and testspae have to ful�ll the Dirihlet-ondition, i.e. they have to be subspae

of V

0

:= f v 2 (H

1

(


p

)) j v = 0 on �

D

g:

The searhspae The solution has to satisfy the quasi-periodiity ondition

u(x+ p) = u(x) 8 x 2 �

L

: (4.53)

This holds if the searhspae is restrited to

V

p

() := f v 2 V

0

j v(x+ p) = v(x) for almost all x on �

L

g � V

0

: (4.54)

The quasi-periodiity ondition for the ux follows from the quasi-periodiity of u.

The testspae The testspae should also represent the periodiity, whih implies that

test and searhspae are isomorph, i.e. let � be an arbitrary omplex salar and de�ne

V

p

(�) := f v 2 V

0

j v(x+ p) = �v(x) for almost all x on �

L

g with � 2 C �xed :

(4.55)

The weak formulation of the unit ell leads to

Searh for a solution u 2 V

p

() : 8v 2 V

p

(�)

0 = �

Z




p

div(aru)v dx� !

2

Z




p

uvdx

=

Z




p

a(x)ru(x)r

T

v(x) dx�

Z

�

L

\�

R

u(x)v(x) ds� !

2

Z




p

u(x)v(x) dx:

The remained boundary integral an be expressed as

Z

�

L

\�

R

u(x)v(x) ds =

Z

�

L

u(x)v(x) ds+

Z

�

R

u(x)v(x) ds

=

Z

�

L

�u

�n

(x)v(x) ds+

Z

�

L

(

�u

�n(x + p)

(x + p))v(x+ p) ds

=

Z

�

L

u(x)v(x)(1�  � �)ds = (1�  � �)

Z

�

L

u(x)v(x)ds:

Obviously, the boundary integral over the periodi bounds vanishes, if we hoose

� :=

1



: (4.56)



CHAPTER 4. MATHEMATICAL MODELING 49

Weak formulation with quasi-periodi test and searhspae

Find u 2 V

p

() :

Z




p

a(x)ru(x)r

T

v(x) dx� !

2

Z




p

u(x)v(x) dx = 0 8v 2 V

p

(

�1

) (4.57)

a

1

(u; v)� !

2

a

0

(u; v) = 0 8v 2 V

p

(

�1

) (4.58)

Finite element disretization With shape funtions p

j

(:) satisfying

p

j

(x

i

) = Æ

ij

p

l(j)

(x) = p

r(j)

(x + p) 8x on �

L

8j 2 f1; ::; n

l

g

we hoose the FE-subspaes of serah and testspae

V

0h

:= spanf p

i

j i 2 rg(i(:)) \ rg(l(:)) g (4.59)

V

ph

() := f u

h

j u

h

=

n

i

X

j=1

u

i(j)

p

i(j)

+

n

l

X

j=1

u

l(j)

(p

l(j)

+ p

r(j)

); u

j

2 C g (4.60)

V

ph

(

�1

) := spanf p

i(j)

g

j=1;n

i

\ spanf p

l(j)

+ p

r(j)

g

j=1;n

l

g: (4.61)

Choosing v

h

= p

i(j)

for j = 1; n

i

and v

h

= p

l

(j) + p

r

(j) for j = 1; n

l

leads to n

i

+ n

l

equations for the n

i

+ n

l

omponents of u 2 C

n

i

+n

l

. We get the Galerkin-system equation

�

K

ii

K

il

+ K

ir

K

li

+K

ri



2

K

lr

+ (K

ll

+K

rr

) +K

rl

��

u

i

u

l

�

�!

2

�

M

ii

M

il

+ M

ir

M

li

+M

ri



2

M

lr

+ (M

ll

+M

rr

) +M

rl

��

u

i

u

l

�

= 0

; (4.62)

where K

��

;M

��

(� = i; l; r) denote the bloks of sti�ness and mass matrix de�ned in

(4.43).

Note that K

lr

= K

rl

= 0.

Reformulation of the three solution approahes

Given propagation onstant  with � = 1

Setting

�

u

i

u

l

�

=

�

I 0

0 

��

I 0

0 �

��

u

i

u

l

�

gives

�

K

ii

�K

il

+K

ir

K

li

+K

ri

(K

ll

+K

rr

)

��

u

i

u

l

�

�!

2

�

M

ii

M

il

+ M

ir

M

li

+M

ri



2

M

lr

+ (M

ll

+M

rr

) +M

rl

��

u

i

u

l

�

= 0:

(4.63)
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Sine this transformation is regular for  6= 0 , the transformed problem has the same

spetrum. The former formulation is helpful sine it provides the positive de�niteness of

the transformed system.

We see if we hoose K

��

= K

��

+M

��

and extrat the bloks in  to the right side, we get

the generalized eigenvalue problem

�

K

ii

K

il

K

ri

0

�

(u

i

u

l

) = 

�

0 �K

ir

�K

li

�K

ll

�K

rr

�

(u

i

u

l

) : (4.64)

This is the eigenvalue problem stated through the INM-Approah.

Conerning the SC-Method: If we take the Shur-omplement in (4.64) or (4.63) via elim-

inating the �rst line blok we get

�

2

K

li

K

�1

ii

K

ir

| {z }

S

12

�(K

li

K

�1

ii

K

il

+K

ri

K

�1

ii

K

ir

�K

ll

�K

rr

| {z }

=S

11

+S

22

)�K

ri

K

�1

ii

K

il

| {z }

=S

21

u

l

= 0 (4.65)

with S

ij

Shur-omplement blok of (4.45). That means, we ahieve the quadrati

eigenvalue problem of the SC-Method.

Conlusion:

The reformulation of test and searhspae onstitutes a mathematial aurate method

with the result that INM-Method and SC-Method does not hange, but are ahieved

without any transformation or at least only transformation to Shur-omplement form,

for the method in whih we have given  only by a similarity transformation from the

right side.

Thus in the analogous to approah 2,3 the spetra of the formulated eigenvalue problems

is equal to the spetra of solution of the Galerkin-system problem. The di�erene in the

spetrum of SC-method and Inner-Node-Matrix Method will be disussed in the next but

one hapter.
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4.4.5 Inlude damping e�ets

There are many omplex damping e�ets (depending on temperature, frequeny, frition,

material ... ). Our aim is to onsider two variants of damping in our model

1. Material damping

This e�et an be inluded to our model by adding a visous damping term in the

initial partial di�erential equation. It beame naturalized (by engineers) to use a

damping matrix whih is proportional to the mass matrix or a ombination of mass

and sti�ness matrix in the disretized matrix equation. This approximation is alled

Rayleigh-damping.

2. Wave reetion at periodi perturbations

In eah ell the inident wave gets reeted at the eletrode with the result that

at ertain frequenies these reeted waves an interfere onstrutively and the

amplitude of the propagating wave dereases with eah ell. This attenuation ours

even independent of material damping.

To be able to ompute the dispersion relation also within the stopband we need

to onsider this attenuation e�et in our model. Up to now we only onsidered

the dispersion urves whih belongs to undamped Bloh waves (through assuming

� = 0), i.e. the purely propagating modes.

We are mainly interested in Bloh waves with � smallest in magnitude.

We model eah damping e�et on its own �rst.

Modeling attenuation evoked by reetion at eletrodes

This e�et is onsidered by quasi-periodi boundary onditions with non-zero attenuation

in (4.37) of the lassial formulation on the unit ell 


p

.

We start with the lassial formulation and onsider

 := e

(�+i�)p

The variational formulations and disretizations (for general test-spae and quasi-periodi

test-spaes) are equal to the undamped problem, sine we always treated  as a general

omplex salar.

Conerning the three solution methods In the Shur-Complement and Inner-

Node-Matrix Method, where the frequeny ! is given and we searh for , we only have

to rede�ne the desired solution sets in the stated eigenvalue-problems. We reall that we

ware priorly interested in omplex eigenvalues with norm 1.
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Considering damping e�ets we are interested in eigenvalues with � smallest in magnitude

Approah 1: Shur-Complement Method

The method desribed for the undamped variant does not use the fat that the desired 

has norm 1. Therefore, only the set of desired eigenvalues has to be extended, the problem

type stays the same. If we are mainly interested in propagation onstants where attenuation

is smallest in magnitude, we get the quadrati eigenvalue problem:

Searh u

l

2 C

m

and  := e

(�+i�)p

2 C with j�j small:



2

S

12

u

l

+ (S

11

+ S

22

)u

l

+ S

T

12

u

l

= 0 (4.66)

with S := �K

T

ib

K

ii

K

ib

+K

bb

= S

T

.

Approah 3: Inner-Node-Matrix Method

The undamped version presented in the Inner-Node approah does not use the speial form

of . Therefore, only the set of desired eigenvalues extends (analogous to approah 1).

If we are interested in propagation onstants with attenuation smallest in magnitude, the

solution approah results in the general eigenvalue problem:

Searh

�

u

i

u

l

�

2 C

(n

i

+n

l

)

and  := e

(�+i�)p

2 C with j�j small

 

K

ii

K

il

K

T

ir

0

!

�

u

i

u

l

�

= 

 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

u

i

u

l

�

(4.67)

with K

��

real-valued and sparse and K

ll

; K

rr

; K

ii

regular f.�u. (!):

Approah 2: given propagation onstant  := e

(�+i�)p

We have to adapt the transformation matrix T () , sine we used the fat :� = 1, in the

undamped model.

With two distint transformations from the left T

1

and the right T

2

, we get the generalized

eigenvalue problem

Searh ~u 2 C

(n

i

+n

l

)

and !

2

2 R

+

0

:

T

H

1

KT

2

~u = !

2

T

H

1

MT

2

~u (4.68)

with T

1

=

0

�

I

i

0

0 I

l

0 �

�1

I

l

1

A

; T

2

=

0

�

I

i

0

0 I

l

0 I

l

1

A

and ~u =

�

u

i

u

l

�

:

We see that for the attenuated variant we loose omplex-symmetry and positive de�niteness

of the matries.
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But the main drawbak of omputing ! depending on  := e

(�+i�)p

is that one has to

provide a two dimensional array (�; �) to get the dispersion relation. But how should this

array be hosen, espeially in the ase that one is interested in a speial frequeny domain.

This method is suited to ompute only pure propagating modes. If one is interested in

damping e�ets this method is not reommended due to the ompliated data preparation.

Up to this it will not be analyzed anymore.

Modeling material damping

In elastiity frition depends on hange of strains and on the veloity u

t

. Material damping

an be inluded to our model by adding a linear visous damping term 

�u

�t

, where  is a

di�erential operator in spae, to the wave equation leading to

div

x

(a(x)r

x

u(x; t)) + 

�u

�t

= u

tt

(x; t):

By the harmoni ansatz, we get

�div

x

(a(x)ru(x)) + i! u(x)� !

2

u = 0:

Through a variant of Bloh's Theorem we get quasi-periodiity with attenuation, i.e.

9�; � 2 R 8x 2 
 : u(x) = u

p

(x)e

(�+i�)x

(4.69)

with u

p

(x) periodi funtion,i.e. u

p

(x) = u

p

(x+ p) 8x 2 
.

This is obviously equal to

9�; � 2 R 8x 2 
 : u(x+ p) = u(x)e

(�+i�)p

: (4.70)

Therefore we an redue the omputation geometry to the unit ell with aording bound-

ary ondition, i.e. set  := e

(�+i�)p

.

It is ommonly used to model the damping term in the disretized equation as a linear

ombination of sti�ness and mass matrix as damping matrix. This is known as Rayleigh-

damping.

We assume given positive damping oeÆients 

K

; 

M

:

C := 

K

K + 

M

M: (4.71)

Sine K;M are symmetri and positive de�nite matries, these fats are also implied on

the damping matrix C.

This is equal to de�ne the damping operator in the partial di�erential equation as



�u

�t

(:) := (

M

I + 

K

a(:)

�

2

�x

2

)

�u

�t

(:);
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where 

M

and 

K

are material-depending onstants.

Considering Rayleigh-damping the FE-Galerkin-system of equation (4.40) expands to

Ku+ i! (

K

K + 

M

M)

| {z }

=C

u� !

2

Mu� w = 0: (4.72)

Splitted in inner and periodial boundary nodes we get

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

0

�

u

i

u

l

u

l

1

A

+ i!

0

�

C

ii

C

il

C

ir

C

li

C

ll

C

lr

C

ri

C

rl

C

rr

1

A

0

�

u

i

u

l

u

l

1

A

� !

2

0

�

M

ii

M

il

M

ir

M

li

M

ll

M

lr

M

ri

M

rl

M

rr

1

A

0

�

u

i

u

l

u

l

1

A

=

0

�

0

w

l

�w

l

1

A

:

(4.73)

Material damping and the three solution methods

Approah 1 and 3: given frequeny !

For given ! we de�ne the system matrix by

K

��

(!) = K

��

:= K

��

+ i!C

��

� !

2

M

��

for � = i; l; r (4.74)

and have the following problem to solve

0

�

K

ii

K

il

K

ir

K

li

K

ll

K

lr

K

ri

K

rl

K

rr

1

A

| {z }

=:K

0

�

u

i

u

l

u

l

1

A

=

0

�

0

w

l

�w

l

1

A

: (4.75)

That means approah 1 and 3 are formally analogous to their variants for damping

through reetion at the eletrodes. With one di�erene that through onsidering material

damping the system matrix K gets omplex, but maintains (omplex) symmetri (not

hermitian!).

Approah 2 will not be treated for the reasons disussed in the paragraph of attenuation

aused by periodi perturbations.
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4.5 Mathematial modeling of periodial piezoeletri

equations in periodial geometry

Now we want to apply the developed methods of the periodi wave equation on the

piezoeletri problem.

We have to ombine two problems, the piezoeletri system equations and the properties

implied by the periodi geometry, this will be done the following way: We state the

piezoeletri problem in lassial and weak form on an in�nite periodi geometry �rst.

We formulate an abstrat version of Bloh's theorem and restrit the problem to the

unit ell. Then we introdue the properties of the Finite Element Method for "standard"

piezoeletri problems, i.e. problems with Neumann and Dirihlet boundaries only. This

stepwise onstrution leads us to an obvious adaptation of the methods introdued for the

quasi-periodi wave equation in order to apply them to piezoeletri systems.

4.5.1 Piezoeletri equations, periodi geometry and Floquet-

Bloh Theorem

To simulate the behavior of displaement vetor funtion u(:; :) 2 C

2;2

((R

2

;R

+

0

);R

d

) for

d = 2; 3 and the salar potential �(:; :) 2 C

2;0

((R

2

; R

+

0

);R) we have to solve the piezoeletri

system equations

div

x

(

E

Bu� e

T

r

x

�) = �(x)

�

2

u

�t

2

(4.76)

div

x

(eBu� "

S

r

x

�) = 0 (4.77)

with Bu = S =

1

2

(r

T

x

u+r

x

u) and �(x

1

; x

2

) = �(x

1

+ p; x

2

) on an in�nite periodi luster


 shown in �gure 4.5 and 


T

:= (
; [0; T ℄).

We assume all �eld distribution to be harmoni, i.e.

û(x; t) = e

i!t

u(x) 2 C

d

8(x; t) 2 


T

;

^

�(x; t) = e

i!t

�(x) 2 C 8(x; t) 2 


T

;

u(x; t) = <fû(x; t)g 8(x; t) 2 


T

;

�(x; t) = <f

^

�(x; t)g 8(x; t) 2 


T

:

For easier notation and the fat that derivatives after time beome multipliations, we use

the omplex distribution and take the real part after omputation. This is valid sine all

applied operations are linear.

We have already motivated problem setting (short-iruited eletrodes)with boundary on-

ditions and underlying geometry at the beginning of this setion. Figure 4.5 shows one

more the in�nite geometry.
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Figure 4.5: In�nite periodial luster (
) of the piezoeletri model

We state the lassial formulation of the piezoeletri model by

Searhing for a (u;�) 2 (C

2

(
; C

d

); C

2

(
; C )) whih satis�es :

�div (

E

Bu+ e

T

r�) = � !

2

u

�div (eBu� "

S

r�) = 0

(4.78)

with the boundary onditions (let n denote the outer normal vetor)

stress� free T:n = 0 on � := �
;

short� iruit � = 0 on 


el

) � = 0 on �

el

;

harge� free D:n= 0 on �

N

:

(4.79)

with domains and boundaries de�ned aording to Figure 4.5 by




S

:= R � (�H; 0) (the domain of piezoeletri substrate),




el

:= [

k2Z

�

(

kp

4

;

3kp

4

) (the domain of eletrodes),

�

int

= 


S

\ 


el

(interfae of piezoeletri substrate and eletrodes),

� := �
,

�

el

:= �
 \ �


el

and

�

N

:= �
 n �

el

:

Again we try to apply Bloh's theorem in order to simplify the problem to the unit

ell and to get an expliit dispersion relation. Now we formulate �rst the weak formulation.
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Remark 4.5.1 on interfae ondition between the two materials (substrate and eletrodes):

The interfae onditions on the interfae eletrode-substrate are given by

lim

x2


el

! y

u(x) = lim

x2


S

! y

u(x) 8 y 2 �

int

;

lim

x2


el

! y

�(x) = lim

x2


S

! y

�(x) 8 y 2 �

int

;

T:n

S

= �T:n

el

on �

int

;

D:n

S

= �D:n

el

= 0 on �

int

:

Stepwise onstrution of the weak formulation of piezoeletri equations

1. We multiply with testfuntions v and 	 and integrate over 


�

R




v

T

div (T ) dx � !

2

R




v

T

� u dx = 0;

�

R




	div (D) dx = 0:

2. Integration by parts and onsideration of the symmetry of T ((rv)

T

T = (Bv)

T

T )

leads to

R




(Bv)

T

: T dx �

R

�


v

T

T:n ds� !

2

R




v

T

� u dx = 0;

R




(r	)

T

Ddx �

R

�


	D:n ds = 0:

3. Under onsideration of the boundary onditions we get

R




(Bv)

T

: T dx � !

2

R




v

T

� u dx = 0;

R




(r	)

T

Ddx �

R




el

	D:n ds = 0:

4. Choosing the testspae

V

0

:= f (v;	) 2 (H

1

(
; C

d

); H

1

(
; C ) j	 = 0 in 


el

g (4.80)

and taking the searh spae V

0

, we �nally get the weak problem formulation

Find (u;�) 2 V

0

suh that for all (v;	) in V

0

:

R




(Bv)

T

: 

E

Bu dx +

R




(Bv)

T

: e

T

(r�) dx � !

2

R




v

T

� u dx = 0

R




(r	)

T

eBu dx �

R




(r	)

T

"

S

r� dx = 0:

(4.81)

Aording to the periodi geometry, i.e. all oeÆients are periodi, we restrit the

alulation to the unit ell and ahieve an expliit dispersion relation. We have to adopt

Blohs method to the piezoeletri problem. This time we develop an abstrat variant

ating on the weak formulation of the problem.
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Abstrat version of Bloh's theorem:

Theorem 4.5.2

Let V

0

be the Hilbert spae stated in (4.80).

We de�ne the shift operator T

p

: V

0

! V

0

mapping u(x

1

; x

2

) to T

p

u(x

1

; x

2

) := u(x

1

+p; x

2

).

We assume, that the two bilinear forms a,b : V � V ! R are symmetri and are invariant

over T

p

, i.e.

T

p

(a(:; :)) = a(T

p

(:); T

p

(:)); (4.82)

T

p

(b(:; :)) = b(T

p

(:); T

p

(:)): (4.83)

Then every eigenvetor u

k

2 V

0

orresponding to the eigenvalues �

k

of the weak generalized

eigenvalue problem

a(u

k

; v) = �

k

b(u

k

; v) 8 v 2 V

0

an be fully desribed by quasi-periodi eigenfuntions ( 

j

)

j=1;:::;m

satisfying

a( 

j

; v) = �

i

b( 

j

; v) 8 v 2 V

0

(4.84)

of the form (in weak sense)

9 �

j

; �

j

2 R : T

p

 

j

= e

(�

j

+i�

j

)p

 

j

: (4.85)

m denotes the geometri multipliity of �

i

.

Proof idea:

The proof is analogous to the already desribed version of Bloh's theorem.

Remark 4.5.3 on Bloh's theorem

Every eigenvetor (u;�) in V

0

of the weak problem (4:81) an be deomposited in quasi-

periodi eigenvetors

u(x

1

; x

2

) =

P

m(!)

j=1



1;j

 

j

with  

j

(x

1

+ p; x

2

) = e

(�

j

+i�

j

)p

 

j

(x

1

; x

2

);

�(x

1

; x

2

) =

P

m(!)

j=1



2;j

�

j

with �

j

(x

1

+ p; x

2

) = e

(�

j

+i�

j

)p

�

j

(x

1

; x

2

)

(4.86)

with ( ; �) eigenvetors orresponding to ! and m = m(!) denoting the geometri multi-

pliity of !.

I.e. every solution (u;�) in V

0

of (4.81) is fully desribed by the solution of its Bloh waves

on the unit ell.
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Figure 4.6: Restrition to the unit-ell for quasi-periodi solution

4.5.2 Restrition to the unit ell

We restrit the formulation (4.81) to the unit ell 


p

aording to Figure 4.6 and introdue

the following notations 


p;S

:= (0; p)� (�H; 0), 


p;el

:= (

p

4

;

3p

4

)� (0; h

el

), 


p

:= 


el;p

[


S;p

,

�

l

= f0g � (�H; 0), �

r

= fpg � (�H; 0) and the Neumann boundary �

N

aording to

Figure 4.6.

Searh for a (u;�) 2 V

0

:= f(u;�) 2 (H

1

(


p

; C

2

); H

1

(


p

; C ))j� = 0 on 


el

g :

Z




p

(Bv)

T

: T (u;�) dx� !

2

Z




p

u

T

v dx =

Z

�

L

[�

R

v

T

T (u;�):n ds

Z




p

(r	)

T

D(u;�) dx =

Z

�

L

[�

R

	D(u;�):n ds (4.87)

for all (v;	) in V

0

,

with the already implemented boundary onditions

T:n = 0 on �


p

D:n = 0 on �

N

� = 0 on 


p;el

and the quasi-periodial boundary onditions whih we have not onsidered yet and

are ahieved by di�erentiation

u

r

= u

l

T

r

:n

r

= � T

l

:n

l

D

r

:n

r

= � D

l

:n

l

with  := e

(�+i�)p

: (4.89)
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4.5.3 FE-disretization of the unit ell 


p

We hoose a regular triangulation of the unit ell 


p

with n nodes (x

(1)

; :::; x

(n)

) and

x

(i)

= (x

(i)

1

; x

(i)

2

) for all i. Then we split up the nodes into n = n

i

+ n

e

+ n

l

+ n

r

with

n

e

denoting the nodes orresponding to eletrode, n

l

; n

r

aording to the left and right

boundary (quasi-periodial bounds) nodes and n

i

denoting all remaining nodes, whih we

all inner nodes and whih again also inludes the Neumann nodes.

Aording to the partitiion we introdue the index mappings

l(:); r(:); i(:); e(:) : f1; :::; n

�

g ! f1; :::; ng:

Furthermore, we assume that the left and right boundary nodes math, i.e. they satisfy

x

r(i)

= x

l(i)

+ (0; p) for i = 1; n

l

:

FE-disretization of piezoeletri problems with Dirihlet and Neumann BCs

In order to get an idea of the properties of FE-matries of piezoeletri problems, we

�rst treat "standard" boundary problems, i.e. we assume only Neumann and Dirihlet

boundary onditions. For this problems we state the piezoeletri Galerkin-system and

analyze the matrix properties.

We hoose Neumann onditions on right and left boundaries, i.e. we solve the weak

problem (4.96) with the searh and test spae V

0

.

We hoose the FE-subspaes of V = H

1

(


p

)

d+1

and V

0

by

V

h

:= spanfp

(j)

; j = 1; n : p

(j)

FE-base funtion a. to node x

j

g

d+1

� V

= spanfp

(j)

e

k

; j = 1; n : p

(j)

FE-base funtion for x

j

; k = 1; d+ 1g

V

0h

:= f(u

h

;�

h

) j

u

h

=

P

n

j=1

u

(j)

p

(j)

with u

(i)

2 C

d

�

h

=

P

n

j=1; j =2Rg(e(:))

�

(j)

p

(j)

with �

(j)

2 C

g � V

h

;

where e

k

denotes the k-th unit vetor in R

d+1

and Rg(f(:)) denotes the range (image) of

a funtion f(:).

We approximate the solution of (4.96) by solving the disretized weak problem:

Searh (u

h

;�

h

) = (

P

i

u

(i)

p

(i)

;

P

i

�

(i)

p

(i)

) 2 V

0h

satisfying for all (v

h

;	

h

) in V

0h

:

Z




p

(Bv

h

)

T

: T (u

h

;�

h

) dx� !

2

Z




p

u

T

h

v

h

dx =

Z

�

L

[�

R

v

T

h

T (u

h

;�

h

):n ds

Z




p

(r	

h

)

T

D(u

h

;�

h

) dx =

Z

�

L

[�

R

	D(u

h

;�

h

):n ds: (4.90)
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The Galerkin-FE-problem denotes searhing u 2 C

d�N

u

;� 2 C

N

�

:

�

K

uu

K

u�

K

�u

�K

��

��

u

�

�

� !

2

�

M

uu

0

0 0

��

u

�

�

= 0: (4.91)

This N := d �N

u

+N

�

equations are ahieved through following notation:

N

�

:= n� n

e

and N

u

:= n and e

k

denoting the k-th unit vetor of R

d

for k = 1; d

u :=

0

B

�

u

(1)

.

.

.

u

(N

u

)

1

C

A

with u

(j)

2 C

d

by disretization u

h

:=

P

i

u

(i)

p

(i)

� :=

0

B

�

�

(1)

.

.

.

�

(N

�

)

1

C

A

with �

(j)

2 C by disretization u

h

:=

P

i

�

(i)

p

(i)

.

Using a derivative tensor B

h

p

(i)

aording to eah shape funtion p

(i)

, whih is de�ned by

u

(i)

B

h

p

(i)

(x) = B(u

(i)

p

(i)

(x)) we state

1. the mehanial sti�ness matrix K

uu

2 R

d�N

u

d�N

u

by bloks K

(ij)

uu

in R

d

d

with (K

(ij)

uu

)

mk

=

R




p

((B

h

p

(i)

)e

m

)

T

: 

E

(B

h

p

(j)

)e

k

dx for m; k = 1; ::d,

2. the dieletri sti�ness matrix K

��

2 R

N

�

N

�

by (K

�;�

)

ij

:=

R




p

(rp

(i)

)

T

"

S

rp

(j)

dx,

3. the piezoeletri oupling matries K

u�

= K

T

�u

2 R

N

u

N

�

by bloks K

(ij)

u�

2 R

d

with (K

(ij)

u�

)

k

:=

R




p

(e

k

(B

h

p

(j)

)

T

: e

T

rp

(j)

dx and

4. the mehanial mass matrix M

uu

2 R

d�N

u

d�N

u

by M

uu ; ij

:=

R




p

p

(i)

� p

(j)

dx:

Remark 4.5.4 on the piezoeletri FE-matries

1. In pratie the matries are assembled elementwise and not nodewise as written above

for easier notation.

2. The notation of the system matries used in (4.91) is the ommon formulation of

FE-disretisized piezoeletri problems.

3. The matries have the following properties:

K

��

= K

T

��

; K

uu

= K

T

uu

are positive de�nite .

M

uu

=M

T

uu

is positive de�nite.

K

u�

= K

T

�u

.
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4. The not-null-elements of the mehanial sti�ness matrix K

uu

are of quantities

� 10

10

, while the not-null-elements of the dieletri sti�ness matrix K

��

are of

quantities � 10

�10

due to the oeÆient tensors.

This requires saling of eigenvalue problems and/or robust algorithms .

FE-disretization of piezoeletri problems with quasi-periodi boundary

onditions To onsider quasi-periodi boundary onditions we start again at the weak

formulation of (4.96), but this time we inorporate the quasi-periodi boundary onditions

(4.89) by stating quasi-periodi test and searh spaes:

Searh and test spae have to ful�ll the Dirihlet-ondition, i.e. they have to be a subspae

of V

0

:= f v 2 (H

1

(


p

)) j v = 0 on �

D

g.

The searh spae The solution has to satisfy the quasi-periodiity ondition (with

p = (p; 0))

u(x+ p) = u(x) 8x 2 �

L

: (4.92)

This holds if the searh spae is restrited to

V

p

() := f (v;  ) 2 V

0

j v(x+ p) = v(x);  (x+ p) =  (x) a.e. on �

L

g � V

0

: (4.93)

The quasi-periodiity ondition for the ux follows from the quasi-periodiity of u.

The test spae The test spae should also represent the periodiity, whih implies that

test and searh spae are isomorph, i.e. let � be an arbitrary omplex salar:

V

p

(�) := f (v;	) 2 V

0

j v(x+ p) = �v(x); 	(x + p) = �	(x) a.e. on �

L

g: (4.94)

with � 2 C arbitrary, but �xed.

Analogous to the model of the 2D wave equation the integral over the quasi-periodial

boundary vanishes if one hooses

� :=

1



: (4.95)

Weak formulation of piezoeletri problem with quasi-periodi boundary on

unit ell Searh for a (u;�) 2 V

p

() :

Z




p

(Bv)

T

: T (u;�) dx� !

2

Z




p

u

T

v dx =

Z

�

L

[�

R

v

T

T (u;�):n ds

Z




p

(r	)

T

D(u;�) dx =

Z

�

L

[�

R

	D(u;�):n ds (4.96)

for all (v;	) 2 V

p

(

1



):
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FE-disretization of quasi-periodi piezoletri problem With shape funtions

p

j

(:) satisfying

p

j

(x

i

) = Æ

ij

p

l(j)

(x) = p

r(j)

(x + p) 8x on �

L

8j 2 f1; ::; n

l

g

we hoose the FE-subspaes of searh and testspae

V

0h

:= spanf p

i

j i 2 rg(i(:)) \ rg(l(:)) g;

V

ph

() := f (u

h

;�

h

) j

u

h

=

P

d

k=1

P

n

i

j=1

u

i(j)

k

p

i(j)

e

k

+

+

P

d

k=1

P

n

l

j=1

u

l(j)

k

(p

l(j)

+ p

r(j)

)e

k

; u

j

k

2 C

�

h

=

P

n

i

j=1

�

i(j)

p

i(j)

+

P

n

l

j=1

�

l(j)

(p

l(j)

+ p

r(j)

); �

j

2 C

g;

V

ph

(

�1

) := spanf p

i

(j) g

j=1;n

i

\ spanf p

l(j)

+ p

r(j)

g

j=1;n

l

; g

d+1

:

Choosing (v

h

;	

h

) = p

i(j)

e

k

for j = 1; n

i

and (v

h

;	

h

) = (p

l

(j) + p

r

(j))e

k

for j = 1; n

l

for

k = 1; d+ 1 leads to N(n

i

+ n

l

) � (d+ 1) equations for the (n

i

+ n

l

) � (d+ 1) omponents of

(u;�) 2 C

(n

i

+n

l

)�(d+1)

.

We get Galerkin-system:

�

K

ii

K

il

+ K

ir

K

li

+K

ri

(K

ll

+K

rr

)

��

u

i

u

l

�

� !

2

�

M

ii

M

il

+ M

ir

M

li

+M

ri

(M

ll

+M

rr

)

��

u

i

u

l

�

= 0;

(4.97)

where K

st

;M

st

(s; t = i; l; r) are bloks of sti�ness and mass matrix of the piezoeletri

system aording to inner, left and right boundary nodes. Note that K

lr

= K

rl

= 0.

By the following notation

K

st

:=

�

K

uu;st

K

u�;st

K

�u;st

�K

��;st

�

for s; t 2 fi; l; rg

M

ss

:=

�

M

uu;ss

0

0 0

�

for s 2 fi; l; rg

y

s

:=

�

u

s

�

s

�

for s 2 fi; lg

(4.98)

we an apply the solution approahes presented for the Helmholtz-type model diretly to

the oupled �eld problem.

But we introdue material damping �rst, i.e. we onsider Raleigh damping in the

piezoeletri system.
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4.5.4 Rayleigh-damping for the piezoeletri FE-system

We want to onsider Rayleigh-damping to the mehanial �eld, i.e. with given parameters



K

; 

M

we de�ne the damping matrix

C

uu

:= 

K

M

uu

+ 

M

K

uu

: (4.99)

The system ( 4.91) extends to the damped piezoeltri FE-Galerkin system

Searh u 2 C

d�N

u

;� 2 C

N

�

:

�

K

uu

K

u�

K

�u

�K

��

��

u

�

�

+ i!

�

C

uu

0

0 0

��

u

�

�

� !

2

�

M

uu

0

0 0

��

u

�

�

=

�

w

u

w

�

�

(4.100)

and the damped analog of ( 4.101) to

�

K

ii

K

il

+ K

ir

K

li

+K

ri

(K

ll

+K

rr

)

��

u

i

u

l

�

+ i!

�

C

ii

C

il

+ C

ir

C

li

+ C

ri

(C

ll

+ C

rr

)

��

u

i

u

l

�

� !

2

�

M

ii

M

il

+ M

ir

M

li

+M

ri

(M

ll

+M

rr

)

��

u

i

u

l

�

= 0

(4.101)

the de�nition (4.98) is extended by

C

ss

:=

�

C

uu;ss

0

0 0

�

=

�



K

M

uu;ss

+ 

M

K

uu;ss

0

0 0

�

(4.102)

for s 2 fi; l; rg.

4.5.5 Shur-Complement and Inner-Node-Matrix Method for

piezoeletri problem

For already stated reasons we apply only approah 1 and 3 (given !) to the problem.

For given ! we de�ne the system matries

K

st

:= K

st

� !

2

M

st

s; t = i; l; r (4.103)

K

C

st

:= K

st

+ i!C

st

� !

2

M

��

s; t = i; l; r (4.104)

K is symmetri and real-valued and K

C

is omplex-valued and omplex-symmetri.

We assume a given ! for whih K and K

C

is regular.
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Due to the SC-Method we get a quadrati eigenvalue problem

( with N

l

:= (d+ 1) � n

l

)

Searh  2 C ; y

l

6= 0 2 C

N

l

: 

2

S

12

y

l

+ (S

11

+ S

22

)y

l

+ S

T

12

y

l

= 0 (4.105)

with S

12

:= �K

li

K

�1

ii

K

T

ri

S

11

:= �K

li

K

�1

ii

K

T

li

+K

ll

= S

T

11

2 R

N

l

N

l

for undamped system (4.91)

S

22

:= �K

ri

K

�1

ii

K

T

ri

+K

rr

= S

T

22

S

12

:= �K

C

li

K

C

�1

ii

K

C

T

ri

S

11

:= �K

C

li

K

�1

ii

K

C

T

li

+K

C

ll

= S

T

11

2 C

N

l

N

l

for damped system (4.100)

S

22

:= �K

C

ri

K

C

�1

ii

K

C

T

ri

+K

C

rr

= S

T

22

For the Inner-Node-Matrix Method we get a generalized linear eigenvalue problem

for the undamped system (4.91) we searh  2 C ;

�

y

i

y

l

�

6= 0 2 C

N

l

+N

i

N

l

+N

i

:

 

K

ii

K

il

K

T

ir

0

!

�

y

i

y

l

�

= 

 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

y

i

y

l

�

(4.106)

and for the damped system (4.100) we searh  2 C ;

�

y

i

y

l

�

6= 0 2 C

N

l

+N

i

N

l

+N

i

:

 

K

C

ii

K

C

il

K

C

T

ir

0

!

�

y

i

y

l

�

= 

 

0 �K

C

ir

�K

C

T

il

�(K

C

ll

+K

C

rr

)

!

�

y

i

y

l

�

(4.107)

Remark 4.5.5 If Ay = By denote the linear eigenvalue problems (4.106) or respetively

(4.107), the matrix (A�B) is regular and (omplex-)symmetri. This is valid through the

assumption imposed on the hoie of !.



Chapter 5

General theory and numeris of

algebrai eigenvalue problems

We disuss three di�erent types of eigenvalue problems: the standard, the generalized

linear and the quadrati eigenvalue problem.

This hapter starts with de�ning these eigenvalue problems, followed by an introdution

to the main ideas whih underlie numerial solution methods. A short overview of the

software pakages needed is given.

A good overview and omparison of state-of-the-art eigenvalue solvers is given in [8℄,

In the following the supersript * denotes 'transposed' if real arithmeti is used and 'trans-

posed omplex onjugate' if omplex arithmeti is used.

5.1 De�nitions and types of eigenvalue problems

5.1.1 The standard eigenvalue problem

Let A be a n� n square matrix over R or C . Searhing salars � 2 C and vetors x 2 C

n

satisfying

Ax = �x (SEP) (5.1)

forms the standard eigenvalue problem.

An eigenvalue � of a matrix A is de�ned as a omplex root p

A

(�) = 0 of the harateristi

polynomial of the matrix A

p

A

(�) := det(�I � A): (5.2)

Hene eigenvalues are omplex numbers � for whih the matrix penil (�I � A) beomes

singular.

66
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The set of all eigenvalues is alled the spetrum of a matrix denoted by �(A):

�(A) := f� 2 C j det(�I � A) = 0g

= f� 2 C j (�I � A) singularg

(5.3)

Let � be an eigenvalue of A. A non-zero vetor x 2 C

n

satisfying

Ax = �x with � 2 �(A)

is alled (right) eigenvetor orresponding to the eigenvalue � of A. The pair (�; x) is alled

a (right) eigenpair of A.

A non-zero vetor y 2 C

n

, whih satis�es

y

�

A = �y

�

with � 2 �(A);

is alled a left eigenvetor for the eigenvalue � of A. The pair (�; y) is alled a left eigenpair

of A.

If � is an eigenvalue of A, then the eigenspae assoiated with � is de�ned as the nullspae

N (�I � A).

The harateristi polynomial is of order n, hene ounting multipliities the polynomial

has n omplex roots , i.e. the matrix A has n eigenvalues �

i

2 C . The algebrai multipliity

n

a

of an eigenvalue �

i

is the multipliity of �

i

as a root of the harateristi polynomial.

The dimension of the orresponding eigenspae spei�es the geometri multipliity n

g

. An

eigenvalue is alled defetive, if the geometri multipliity is lower than the algebrai one.

Two obvious fats:

1. Eigenvetors of distint eigenvalues are linearly independent.

2. 1 � n

g

� n

a

Some matrix properties imply a speial struture to the spetrum, i.e.

matrix spetrum eigenvetors

A real �

i

2 R x

i

2 R

n

or �

i

2 C in pairs : �

i

,

�

�

i

x

i

; �x

i

A real and A = A

T

� 2 R x

i

2 R

n

A = A

�

�

i

2 R x

i

2 R

n

or �

i

2 C in pairs : �

i

,

�

�

i

x

i

; �x

i

with Ax

i

= �

i

x

i

:

This additional information is helpful in onstruting fast and reliable solvers for matries

of speial struture.
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5.1.2 The generalized (linear) eigenvalue problem

Let A;B be n� n square matries over R or C .

Searhing salars � 2 C and vetors x 2 C

n

satisfying

Ax = �Bx (LEP) (5.4)

states the generalized (linear) eigenvalue problem.

The polynomial

p

(A;B)

(�) := det(�B � A) (5.5)

is alled the harateristi polynomial of the matrix pair (A;B).

In ontrast to the standard problem the harateristi polynomial of a matrix pair (A;B)

need not to be of order n sine

det(�B � A) = �

n

:det(B) + lower terms:

Therefore one has to introdue �nite and in�nite eigenvalues.

Finite eigenvalues denotes eigenvalues in the ommon sense as in the SEP. The roots

p

(A;B)

(�) = 0 of the harateristi polynomial are alled �nite eigenvalues of the matrix

penil (A� �B).

Let � be a �nite eigenvalue of (A;B). A non-zero vetor x 2 C

n

is alled a general (right)

eigenvetor aording to � if it solves

Ax = �Bx:

The pair (�; x) is a (right) �nite eigenpair.

A non-zero vetor y 2 C

n

is alled a general left eigenvetor aording to �, if it solves

y

�

A = �y

�

B:

The pair (�; y) is a left �nite eigenpair.

If the degree d of the harateristi polynomial is lower than n, there are (n � d) in�nite

eigenvalues per de�nition.

Through reformulation of the eigenvalue problem one an ahieve a more aurate de�nition

for in�nite eigenvalues. Replaing the eigenvalue � by the omplex pair (�; �) with

� =

�

�

and j�j

2

+ j�j

2

= 1 leads to

�Ax = �Bx; (5.6)
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whih is equivalent to Ax = �Bx in the ase of �nite eigenvalues. We identify in�nite

eigenvalues with the pair (1; 0) and right / left eigenvetors assoiated with an in�nite

eigenvalue as vetors x; y 2 C

n

satisfying

Bx = 0 or y

�

B = 0 respetively. (5.7)

Connetion between standard and generalized eigenvalue problems:

The standard problem is a speial ase of the generalized one by setting B = I.

If B is regular, the generalized eigenvalue problem Ax = �Bx an be transformed to

standard form B

�1

Ax = �x. By similarity transformation we will show later that the

generalized and the orresponding standard problem have the same spetrum.

5.1.3 The quadrati eigenvalue problem

The nonlinear eigenvalue problem of order k is de�ned as searhing salars � 2 C and

vetors x 2 C

n

, whih satisfy

�

k

C

k

x + �

k�1

C

k�1

x + :::+ �C

1

x + C

0

x = 0; (5.8)

with C

l

2 C

n

n

for l = 0; :::; k.

The matrix polynomial P

k

(�) := �

k

C

k

+ ::: + �C

1

+ C

0

is alled �-matrix of order k.

In this thesis we treat quadrati eigenvalue problems, i.e. �-matries of order 2.

The harateristi polynomial of a quadrati penil is de�ned by

p

P

2

(�) := det(P

2

(�)) = det(�

2

C

2

+ �C

1

+ C

0

) (5.9)

Eigenvalues should be again de�ned as the roots of the harateristi polynomial, but

sine the number of roots depends on the regularity of the leading matrix C

2

, we have

to distinguish �nite and in�nite eigenvalues. Here a main di�erene to linear problems is

implied by the fat that the harateristi polynomial of P

2

an have up to 2n omplex

roots.

Finite eigenvalues of the quadrati matrix penil P

2

are de�ned as the roots of the har-

ateristi polynomial p

P

2

(�) = det(P

2

(�)) = 0.

A (right) eigenvetor aording to a �nite eigenvalue � is a non-zero vetor x 2 C

n

solving

the matrix equation

P

2

(�)x = 0 with � 2 �(P

2

) := f�

i

j p

P

2

(�

i

) = 0g: (5.10)

Analogously left eigenvetors are non-zero solutions y 2 C

n

of

y

�

P

2

(�) = 0 with � 2 �(P

2

): (5.11)
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The pairs (�; x); (�; y) are �nite right/left eigenpairs.

If there are d �nite eigenvalues, then there are 2n � d in�nite eigenvalues by de�nition.

To get an aurate de�nition of in�nite eigenvalues and the orresponding eigenvetors,

the problem has to be again reformulated. Replaing � by the pair (�; �) with � =

�

�

and

normalized by j�j

2

+ j�j

2

= 1 one gets

�

2

C

2

x+ � � C

1

x+ �

2

C

0

x = 0: (5.12)

By this the pair (1; 0) stands for in�nite eigenvalues of P

2

and the quotient � =

�

�

with

j�j > 0 denotes �nite eigenvalues of P

2

.

This implies de�ning right/left eigenvetors assoiated to in�nite eigenvalues as non-zero

vetors x; y 2 C

n

solving

C

2

x = 0; or y

�

C

2

= 0 respetively: (5.13)

Sine there are 2n eigenvalues (�nite and in�nite), in general the eigenvetors annot form

an independent set in C

n

. With the e�et that two distint eigenvalues may have the

same eigenvetor.

Some matrix properties imply speial struture of the spetrum of QEPs:

For P

2

(�

i

) = C

2

�

2

i

+ C

1

�

i

+ C

0

= 0 we get

matries spetrum eigenvetors

P

2

regular 2n �nite eigenvalues

P

2

real �

i

2 R x

i

real

or omplex onjugate pairs (�

i

;

�

�

i

) (�

i

; x

i

)) (

�

�

i

; �x

i

)

5.2 Numeris of eigenvalue problems

There is a wide range of numerial solution methods for eigenvalue problems. A large

part of methods assume hermitian and positive de�nite matries. Sine it turns out that

the matries of the problems modeled in Chapter 4 do not ful�ll these assumptions, we

onentrate on algorithms whih work with non-hermitian general matries. Moreover one

always has to bear in mind that the matries an be singular.

To get a �rst impression of a given eigenvalue problem it is sense- and useful to ompute

the whole spetrum. In problems derived from assembling the piezoeletri equations

the system matries are very ill-onditioned. The non-zero oeÆients of the mehanial

sti�ness matrix K

uu

are of the order 10

10

whereas the non-zero oeÆients of the blok

modeling the eletri potential K

��

are of the order 10

�10

(see also Appendix A). To
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get �rst reliable results and referene values we look for well-understood, robust and re-

liable methods. This leads us to diret methods and espeially to the QR/QZ-algorithm [8℄.

Analogous to linear equation solvers we apply iterative methods to eigenvalue problems to

get faster algorithms. These methods have the advantage that they need fewer fatoriza-

tions, do not destroy sparsity of the matries and, e.g. in ase of Jaobi-Davidson method,

the linear equations arising an be solved approximately. There are two main advantages of

iterative methods. First, some iterative methods suÆe only with matrix-vetor produts,

i.e. the expliit knowledge of the system matries is not neessary. Seondly, it is possible to

speify a (small) part of the spetrum whih one is interested in. Only the eigenpairs with

spei�ed properties, e.g. largest/smallest real/imaginary part, largest/smallest magnitude

or eigenvalues next to a given omplex target , are omputed.

We introdue the Arnoldi method [35℄, [11℄ for solving standard and generalized

linear problems iteratively. Conerning quadrati problems we present a linearization

method to generalized problems and the nonlinear expansion of Jaobi-Davidson algorithm.

The theory of these methods (QR-QZ,Arnoldi, Jaobi-Davidson) is �rst desribed in detail

for solving standard problems, whih is tehnially less ompliated. Then the main ideas

get expanded to the generalized and nonlinear ase.

Understanding the theory underlying and motivation of the algorithms leads to an idea of

onstruting problem dependent struture preserving methods.

We start with some helpful tools often used in solving eigenvalue problems.

5.2.1 Some failities - transformations, fatorizations and deom-

positions

Before applying an eigenvalue routine it is often advisable to transform the system to a

simpler problem or to a problem with higher onvergene rate.

After solving the transformed problem, the bak transformation of the spetrum and of

the orresponding eigenvetors should be easy to perform.

Similarity transformation At �rst we are looking for transformations whih have no

e�et on the spetrum of the matrix penil

P

l

(�) :=

�

�

2

C

2

+ �C

1

+ C

0

l = 2 orresponding to QEP

�B � A l = 1 orresponding to LEP and SEP(B = I)

;
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where C

i

; A; B are general n� n matries over C .

The orresponding harateristi polynomial is det(P

l

(�)). The spetrum (set of �nite eigen-

values) is denoted by �(P

l

).

Theorem 5.2.1 Similarity transformations

If U; V are regular (n� n) matries, then

�(P

l

) = �(U

�

P

l

V ): (5.14)

(�

i

; y

i

) solves U

�

P

l

(�

i

)V y

i

= 0: , (�

i

; x

i

:= V y

i

) solves P

l

(�

i

)x

i

= 0 (5.15)

The last equivalene holds for in�nite eigenvalues �

i

=1.

Proof: Every eigenvalue �

i

of P

l

is a root of the harateristi polynomial of U

�

P

l

V :

0 = det(U

�

P

l

(�

i

)V ) = det(U

�

)

| {z }

6=0

�det(P

l

(�

i

)) det(V )

| {z }

6=0

, det(P

l

(�)) = 0 ) (5:14):

For �nite eigenvetors equivalene (5.15) is obvious by regularity of U; V .

For �

i

=1: for l=1 sine U; V regular

U

�

BV y = 0 , U

��

U

�

BV y

i

= BV y

i

= Bx

i

= 0 with x

i

= V y

i

for l = 2 : analogous.

�

If the matries U; V are unitary (U

�

U = I and V

�

V = I) we all these transformations

unitary similarity transformations. For real matries replae unitary by orthogonal.

There are some eigenvalue problems of speial struture whih are easier to solve than

general ones (e.g. system matries of diagonal, tridiagonal, triangular or Hessenberg form).

It is often useful to transform the given problem �rst to some redued form, if possible,

and then solving the simpler problem.

If this is done by similarity transformations the spetrum does not hange and the bak

transformations of eigenvetors are easy to perform (one matrix-vetor multipliation V y

i

).

For instane, if a given matrix A has n independent eigenvetors, one an �nd a unitary

(orthogonal) matrix Q whih diagonalizes A, i.e.

A = QDQ

�

with D diagonal matrix. Normalized eigenvetors are given by the olumns of Q. The

orresponding eigenvalues are the diagonal elements of D.
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Spetral transformation In many ases it makes sense to transform the spetrum as

well. We will see that iterative methods have fast onvergene to dominant eigenvalues,

i.e. eigenvalues of largest magnitude whih are separated from the rest of the spetrum.

If one is interested in eigenvalues near to a given omplex target  of generalized linear

problems, we an aelerate the onvergene rate by solving a transformed eigenvalue

problem where the desired eigenvalues lie at the end of the spetrum.

At �rst we reate an eigenvalue problem in whih the desired eigenvalues are lose to zero

by the shift

(A� B)x = (�

i

� )Bx: (5.16)

Via inverting the problem the searhed eigenvalues get dominant

Bx =

1

�

i

� 

(A� B)x: (5.17)

Theorem 5.2.2 Spetral transformation

Starting from the generalized eigenvalue problem

Ax

i

= �

i

Bx

i

the spetral transformation with shift � denotes the transformed LEP

Bx

i

= �

i

(A� B)x

i

:

The transformation and the aording bak-transformation of the spetrum satisfy

�(B;A� B) = f

1

�

i

� 

j �

i

2 �(A;B) g;

�(A;B) = f

1

�

i

+  j �

i

2 �(B;A� B) g:

(�

i

; x

i

) solves Bx

i

= �

i

(A� B)x , (�

i

; x

i

) := ( +

1

�

i

; x

i

) solves Ax

i

= �

i

Bx

i

or respetively

(�

i

; x

i

) solves Ax

i

= �

i

Bx

i

, (

1

�

i

� 

; x

i

) solves x = (A� B)

�1

Bx

The eigenvetors maintain unhanged through these spetral transformations.
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If (A�B) is a regular penil, one an onstrut a standard eigenvalue problem out of the

spetral transformation. Similarity transformation leads to

(A� B)

�1

Bx

i

=

1

�

i

� 

x

i

(5.18)

or

B(A� B)

�1

y

i

=

1

�

i

� 

y

i

(5.19)

respetively. In problem (5.18) the eigenvetors are unhanged, for (5.19) one has to apply

x

i

= (A� B)

�1

y

i

for bak-transforming.

Methods using spetral transformation and (5.18) or (5.19) arry the supplement shift-

and-invert (SI).

Spetral transformations and SI-methods are used to

� shift interior eigenvalues to the end of the spetrum,

� transform generalized linear to standard problems in ase that B is singular and if

there is a omplex number  for whih the penil (A� B) is regular.

Shur deomposition One an ompute the eigenvalues of a general matrix by

transforming the matrix to (quasi-)triangular form (see Remark 5.2.5 for the de�nition

of quasi-tringalur matries). The eigenvalues are given by the diagonal entries. If the

eigenvetors are required, they an be omputed by solving a triangular system and then

bak transforming it aording to the original problem.

De�nition 5.2.3 Shur deomposition

A unitary (orthogonal) similar transformation of a square matrix A to Shur form is

de�ned by the deomposition

A = QTQ

�

(5.20)

with Q unitary (orthogonal) and T upper triangular (quasi-triangular) in omplex (real)

arithmeti.

The olumns of Q are alled Shur vetors.

Computing eigenvalues and eigenvetors see generalized ase (B = I).
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De�nition 5.2.4 Generalized Shur deomposition

A unitary (orthogonal) similarity transformation of a matrix penil (A��B) to generalized

Shur form is done by the deomposition

A� �B = Q(T

A

� �T

B

)Z

�

(5.21)

with Q;Z unitary (orthogonal) matries and T

A

; T

B

triangular (quasi-triangular).

The olumns of Q;Z are alled generalized Shur vetors .

The eigenvalues of a triangular penil are easy to get and sine the transformation was

similar the spetrum does not hange through this transformation, we get

�(A;B) = �(T

A

; T

B

) = f

T

A;ii

T

B;ii

ji = 1; :::ng: (5.22)

Eigenvetors to �nite eigenvalues an be ahieved by solving a triangular system

(T

A

� �

i

T

B

)y

i

= 0 ! y

i

or for in�nite eigenvalues by omputing the nullspae of a

triangular system T

B

y

i

= 0 and by applying the bak transformation to the original

problem afterwards by x

i

= Zy

i

.

Remark 5.2.5 to T

A

; T

B

(quasi-)triangular:

If real arithmeti is used and omplex eigenvalues appear, it is impossible to transform

the matries to triangular form. One has to admit (2 � 2) diagonal bloks. Eah blok D

i

represents a omplex onjugate pair of eigenvalues �

i

;

�

�

i

by satisfying �(D

i

) = f�

i

;

�

�

i

g.

Triangular matries with (2� 2) bloks on the diagonal are alled quasi-triangular.

5.2.2 The QR/QZ- algorithm - a diret method

The QR-method is a diret method (terminates in �nite steps if exat arithmeti is pro-

vided) for solving a standard eigenvalue problem Ax = �x. It is used

� for dense matries of moderate size,

� for solving lower dimensional subproblems whih our in iterative subspae proje-

tion methods.

This method is numerially very reliable and the whole spetrum of the problem is

omputed.
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The algorithm is based on omputing the Shur fatorization of A in the following steps:

1. QR-fatoriziation

Every square matrix A an be fatorized into

A = QR (5.23)

with Q unitary and R upper triangular.

One has to remark that the QR-fatorization of a Hessenberg matrix is muh faster

than the fatorization of a general matrix.

2. The QR-transformation is de�ned by

A = QR

~

A = RQ: (5.24)

This performs a unitary similarity transformation of the original matrix, sine

Q

�

AQ = Q

�

QRQ = RQ =

~

A.

If A is Hessenberg, one an prove that the QR-transformation of A maintains

Hessenberg form. Iterative appliation of QR-streps results in the onvergene of

~

A

to (quasi-)triangular form. In omplex arithmeti the subdiagonal elements (in real

arithmeti the subdiagonal elements orresponding to real eigenvalues) onverge

against zero.

This means, through iteration

~

A onverges against the Shur fatorization of A.

3. Improvements to the QR-fatorization:

To ahieve a better onvergene rate (subdiagonal entries ! 0) a spetral trans-

formation aording to the atually iterated Hessenberg matrix is applied in eah

QR-step. This variant of QR-iteration is alled impliitly-shifted QR-transformation.

4. The primal Hessenberg form in item 1 an be ahieved through Givens rotation,

Householder transformation or modi�ed Gram-Shmidt methods (! Arnoldi proe-

dure).

Remark 5.2.6 If A is hermitian, the Hessenberg forms redue to tridiagonal forms.

The omputational osts of the QR-method inluding redution to Hessenberg form,

impliite shifts and some other improvements are O(n

3

) oating point operations (� 10n

3

if only eigenvalues are desired and � 25n

3

for omputing eigenpairs). The memory
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requirement is O(n

2

) .

The QZ-algorithm denotes the expansion of QR-method to generalized linear eigenvalue

problems. Tehnially the algorithm beomes more ompliated, but the main idea of

reduing the matrix to generalized Shur form is similar:

At �rst A;B are redued simultaneously by unitary similarity transformation the way A

beomes Hessenberg and B upper triangular. In the next step QZ-iteration is applied to

fore A to get upper triangular as well while keeping B in form.

Applied with impliit shifts the existene of in�nite eigenvalues poses no problems.

Computing eigenvalues requires approximately 30n

3

oating point operations plus 16n

3

for eigenvetors.

5.2.3 Iterative methods

The power method

The easiest iterative method for solving standard eigenvalue problems is the power

method. We use it to motivate Krylov methods. The power method is a single vetor

iteration (only one eigenvetor is omputed). In ase of onvergene the method results in

the eigenpair orresponding to the eigenvalue of largest magnitude.

Algorithm 5.2.7 The power method

Given start vetor v;

for k = 1; 2; 3:::

v =

v

kvk

;

w = Av;

� = w

�

v;

if (kw � �vk � �

M

j�j) break;

w = v;

end for;

The funtioning and properties of the power method an already be seen under assuming

that A has n independent eigenvetors x

i

with orresponding eigenvalues �

i

satisfying

j�

1

j > j�

2

j � j�

3

j::: � j�

n

j :

Then the starting vetor v

0

an be expanded as v

0

=

P

n

i=1

�

i

x

i

(assume that �

1

6= 0).
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In the k-th step of the algorithm one gets (negleting the normalization of w)

v

k+1

= A

k

v

0

=

X

i

�

i

A

k

x

i

=

X

i

�

i

�

k

i

x

i

= �

k

1

(�

1

x

1

+

n

X

i=2

�

i

(

�

i

�

1

)

k

| {z }

! 0

x

i

)

! �

k

1

�

1

x

1

for k !1:

If the starting vetor has a part in the diretion of the dominant eigenvetor x

1

, the

power method onverges to the eigenvetor orresponding to the eigenvalue of largest

magnitude. The rate of onvergene depends on the ratio j

�

1

�

2

j. If this ratio is lose to one,

the onvergene an get very slow.

The power method omputes only one eigenvetor, to ahieve more eigenvetors one an

deate already onverged eigenvetors. If we orthogonalize the starting vetor v

0

against v

1

(�

1

= 0), the method will onverge to the seond largest eigenvetor (if v is not orthogonal

to v

2

).

The main idea of iterative projetion methods

The idea behind subspae projetion method is to projet the given eigenvalue problem

onto lower dimensional subspaes. One ahieves a smaller sized subproblem, solves this

with muh lower requirements and view the omputed eigenvalues as approximations to

the original problem.

The big question will be, how to hoose the subspae on whih we projet the original

problem.

There are two di�erent projetion tehniques : orthogonal and oblique projetion methods.

We desribe the funtioning by means of the standard problem (SEP):

1. Orthogonal projetion onto a given subspae K of dimension m � n:

We want to projet the problem of omputing the eigenpairs of

Ax = �x with x 2 C

n

and � 2 C (5.25)

onto the subspae K. That means we searh an approximate eigenpair (

~

�; ~x) with

~

� 2 C and ~x 2 K whih solves the problem with respet to the subspae K. In more

detail, the residual of A~x�

~

�~x is zero with respet to the subspae in the sense that

the residual is orthogonal to K.

This is imposed by the Galerkin ondition

v

�

(A~x�

~

�~x) = 0 8v 2 K; (5.26)



CHAPTER 5. THEORY OF ALGEBRAIC EIGENVALUE PROBLEMS 79

in matrix notation this is equivalent to

(V

�

AV �

~

�I)y = 0; (5.27)

where V 2 C

n�m

unitary is the matrix representation of an orthonormal base of K

and ~x of (5.26) is fored to lie in the subspae K by hoosing ~x := V y.

The projeted eigenvalue problem

V

�

AV y =

~

�y (5.28)

is of dimension (m�m) and its eigenvalues are viewed as approximations orrespond-

ing to the subspae K of the original eigenproblem (5.25).

This leads to the base proedure of orthogonal projetion methods:

(a) Compute an orthonormal m-dimensional base V

m

of the subspae K.

(b) Compute the projetion matrix : V

�

m

AV

m

() Solve the projeted eigenvalue problem: V

�

m

AV

m

y = �y

The approximate eigenpair (�; s) := (�; V

m

y) is alled a Ritz pair, � a Ritz value and

s a Ritz vetor orresponding to the subspae K.

2. Oblique projetion tehnique on two given subspaes K and L:

The main di�erene to orthogonal projetion methods is that we hoose di�erent

test (L) and searh (K) spaes. The approximate eigenvetors should lie in K, but

the orresponding residual should be orthogonal to the subspae L.

We searh a ~x in K satisfying the Petrov-Galerkin ondition

w

�

(A� �I)~x = 0 8 w 2 L: (5.29)

Assuming that matrix representations W of a base of L and V of a base of K are

hosen bi-orthogonal W

�

V = I, this yields in the projeted eigenvalue problem

W

�

AV y = �y:

We will only use orthogonal projetion methods whih are numerially more reliable than

oblique methods.
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Krylov methods - The Arnoldi method

The idea of orthogonal projetion methods bases on the projetion of the eigenvalue

problem to a smaller dimensioned subspae. But how should one hoose this subspae ?

The power method gives the motivation for Krylov methods. There we have built the se-

quene v; Av; A

2

v; :::; A

k

v and disovered that it onverges in diretion of the eigenvetor

orresponding to the eigenvalue of largest magnitude. In general, it also ontains infor-

mation of eigenvetor diretions orresponding to eigenvalues near the dominant one. The

power method only utilizes the last two vetors in eah iteration step and without deation

tehniques it delivers only one eigenvetor.

Now we want to exploit more information of the iterated vetor sequene and ompute

more than one eigenvetor.

We hoose our subspae

K

m

(A; v) := spanfv; Av; A

2

v; :::; A

m�1

vg: (5.30)

This subspae is alled a Krylov subspae of A of order m and methods projeting on

Krylov subspaes are termed Krylov methods.

Arnoldi method for SEP

The basi algorithm - omputing an Arnoldi fatorization

Construting an orthonormal base of the Krylov subspae via the modi�ed Gram-Shmidt

method leads to the Arnoldi proedure.

Algorithm 5.2.8 (Arnoldi proedure)

Create an orthonormal base of K

m

(A; v)

v

1

=

v

kvk

for j = 1; 2; :::; m� 1

w = Av

j

for i = 1; 2; :::; j

h

i;j

= w

�

v

i

w = w � h

i;j

v

i

end

h

j+1;j

= kwk

2

if (h

j+1;j

� 0) break

v

j+1

=

w

h

j+1;j

end;
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Formulating the Arnoldi proedure in matrix notation by setting

V

j

:= [v

1

; v

2

; :::v

j

℄ a matrix with orthonormal olumns

(H

m;m+1

)

i;j

:=

�

h

i;j

for i � j + 1

0 otherwise

is (m�m+ 1) upper Hessenberg

H

m;m

denotes the submatrix formed of the �rst (m�m) blok of : H

m;m+1

leads to

AV

m

= V

m+1

H

m;m+1

= V

m

H

m;m

+ h

m+1;m

v

m+1

e

T

m

: (5.31)

Furthermore we see

V

�

m

AV

m

= V

�

m

V

m

H

m;m

+ h

m+1;m

V

�

m

v

m+1

e

T

m

= H

m;m

: (5.32)

We ahieved a projeted eigenvalue problem of Hessenberg form.

We all a unitary transformation of A satisfying (5.31) and (5.32) a m-step Arnoldi

fatorization of A.

Remark 5.2.9 If A is hermitian, (analogous the QR-algorithm) the Hessenberg matrix is

a tridiagonal matrix and the assoiated variant of the Arnoldi method is alled Lanzos

method.

Eigenvalue approximations

The projeted Hessenberg problem of size (m�m) is solved diretly by the QR-algortihm

and we get m eigenvalues.

If (�; y) is an eigenpair of the projeted problem:

H

m;m

y = �y ; (5.33)

we get an approximate eigenpair for Ax� �x = 0 due to

H

m;m

y � �y = 0

V

�

m

AV

m

y � �y = 0

V

�

m

(AV

m

y � �V

m

y) = 0

V

�

m

(As� �s) = 0 with s := V

m

y:



CHAPTER 5. THEORY OF ALGEBRAIC EIGENVALUE PROBLEMS 82

Employing the eigenpair approximation to the original problem leads to a residual whih

is orthogonal to the projeted subspae.

(�; s) is a Ritz pair, � a Ritz-value and s a Ritz-vetor orresponding to the subspae

K

m

(A; v).

The norm of the residual leads to the Ritz estimate

kAs� �sk = kAV

m

y � �V

m

yk = kH

m;m

V

m

y + h

m+1;m

v

m+1

e

T

m

y

m

� �V

m

yk

= kV

m

(H

m;m

y � �y + h

m;m+1

v

m+1

y

m

k

= jh

m+1;m

j jy

m

j:

If there is a breakdown in the Arnoldi proedure (h

j+1;j

= 0; v

j+1

= 0), the Ritz-values are

exat eigenvalues, i.e.

�(H

jj

) � �(A): (5.34)

One has to mention that a small residual does in general not imply a small error for the

eigenvalue/eigenvetor approximation, but it an be used to onstrut stopping riteria.

Improvements - Restarting an Arnoldi method

In the above presented form of the algorithm one has to inrease m as long as one gets all

interested eigenvalues and the projeted Hessenberg problem is solved by QR-algorithm.

For large problems this an be very expensive in omputation and storage requirement.

We have to apply some improvements in order to keep m small while omputing all

eigenvalues of interest.

Another big problem is the fat that the required orthogonality of the omputed Krylov

base an hardly be hold in �nite preision arithmeti if m beomes large.

In the analysis of the power method we have seen that the hoie of the starting vetor

ompletely determines the approximate eigensolutions. How should we hoose the new

starting vetor in order to take up as muh desired information as possible from the atual

Krylov spae?

One obvious method of restarting is to ompute an m-step Arnoldi fatorization and the

orresponding approximate eigenvalues. Then the spetrum is splitted in two disjoint sets:

the set of good-�tting (k) and the set of unwanted (p = m � k) Ritz-values. The new

starting vetor an be hosen as a linear ombination of eigenvetors aording to the k

wanted Ritz-values. This is one variant of expliit restarting.

We try to stik the information of a m-dimensional subspae into one vetor. Coming up

with this problem leads to the impliitly restarted Arnoldi method.

Impliitly Restarted Arnoldi Method - IRAM This tehnique ombines the im-

pliitly shifted QR-iteration and the m-step Arnoldi-fatorization. Interesting eigenvalue

information of an m-step Arnoldi fatorization is extrated and ompressed to a smaller

(�xed-sized) k-step fatorization.
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Algorithm 5.2.10 Computing an updated partial Arnoldi-fatorization

Assume an already omputed (m = k+p)-Arnoldi fatorization of A : AV

m

= V

m

H+f

m

e

T

m

.

1. Extrat Ritz-values from the Hessenberg matrix H and hoose k wanted Ritz-values.

2. Apply p shifted QR-iterations of the form (H � �

j

I) = QR:

(A� �

j

I)V � V (H � �I) = f

m

e

T

m

A (V Q)

| {z }

V

+

� (V Q)

| {z }

V

+

(RQ+ �

i

I)

| {z }

H

+

= f

m

e

T

m

Q:

After p steps the �rst k olumns of the transformed m-step Arnoldi fatorization turns

out to be a k-step Arnoldi-fatorization inluding the information aording to the k

hosen best-�tting Ritz-values

AV

+

k

= V

+

k

H

+

k

+ f

+

k

e

T

k

: (5.35)

3. Use the updated trunated Arnoldi fatoization (5.35) as starting point and apply

again p Arnoldi-steps to get a m-step Arnoldi fatorization and go to step 1.

Some omputational aspets of IRAM Let m = k + p denote the dimension of the

Arnoldi-fatorization of the Impliite Restarted Arnoldi Method. Moreover, k is the number

of wanted eigenvalues and p the number of applied impliite QR-shift in eah iteration step.

� If we hoose k of moderate size, orthogonality of the base V

k

an be preserved a-

ording to working preision also in �nite arithmeti. No spurious eigenvalues an be

produed by the lak of orthogonality.

� The storage requirement of the restarted version is of �xed size, i.e. 2nk +O(k

2

).

� On the omputational ost of IRAM:

We suÆe with presenting the total ost of one iteration step of IRAM here, a spei-

�ation in more detail and itemization in eah step of the algorithm an be found in

[8℄ p. 185. We de�ne  suh that n is the ost of a matrix-vetor produt Av with

the system matrix A of dimension n� n.

The total ost of one IRAM iteration is

pn� 2[(5k � 2)p+ 2p

2

℄n+ 2k

2

n +O((k + p)

3

):

� On the stopping riterion (used also in ARPACK): A Ritz pair (�; x) = (�; V

k

y) is

assumed to be onverged if � is in the set of wanted eigenvalues and

kf

k

kje

�

k

yj

| {z }

Ritz estimate

� max(kH

k

k�

M

; tol � j�j):
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Moreover, the omputed Ritz-pair (�; x) is an exat eigenpair of a matrix A+E near

A, i.e.

(A+ E)x = �x with E = �(e

T

k

s)f

k

x

H

;

where �

M

is the mahine preision and the bound tol � j�j implies that kEk � tol �kAk.

For more spei�ation we refer to [8℄ and [23℄.

Approximating interior eigenvalues Sine the subspae hosen in the Arnoldi

method is motivated by the power method one an imagine that the algorithm has fast

onvergene if we searh dominant eigenvalues. One way to ompute interior eigenvalues is

to apply a spetral transformation of the problem. Interior eigenvalues an be omputed by

transforming the problem by mathing spetral transformation before applying the Arnoldi

algorithm. This method has the disadvantage that in eah step a system (A � I)

�1

has

to be solved.

There are some variants of the Arnoldi method whih an handle the problem of approx-

imating interior eigenvalues without expliit spetral transformations ( harmoni Ritz

values). But for this approah the onvergene an get very slow.

Krylov methods for generalized eigenvalue problems

Their are three ways of solving

Ax� �Bx = 0

by Krylov methods:

� Transformation to a standard problem via Shift-and-Invert (SI)

((A� B)

�1

B � �I)x = 0:

This is reommended if one is interested in interior eigenvalues, i.e. eigenvalues near

the shift . This tehnique has the drawbak that in eah iteration (A�B)

�1

has to

be solved. One gets good onvergene rates to the interested eigenvalues by spetral

transformation.

� M-Arnoldi method

This method is implemented in the ARPACK software pakage, but has the restri-

tion that the matrix B has to be hermitian and positive semi-de�nite. It works with

B-inner-produts, i.e. produts of the form (x; x)

B

= (Bx; x). Sine in our problem

B is not positive de�nite this variant is only mentioned for ompleteness.

� Rational Krylov algorithm

In an SI-Arnoldi method the shift is �xed. If one wants to vary it, one would have to

rejet the already omputed subspae and start with a new one. This way one would
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lose the whole information stiking in the old subspae. The rational Krylov method

is a generalization of the SI-Arnoldi method whih ompensates this problem. One

an vary the shifts and is able to ahieve fast onvergene of Ritz values aording

to a union around the hosen shifts.

The main idea is that we start with a SI-Arnoldi for a hosen shift �

1

, ompute an

orthonormal base V

k

with

(A� �

1

)

�1

BV

k

= V

k+1

H

k+1;k

and evaluate the eigenvalues of H

k+1;k

. After a few steps the Ritz-values aording

near the shift �

1

are well approximated.

We hoose a new shift �

2

. Then we have to transform the matrix V

k+1

the way

one an interpret the ahieved matrix W

k+1

(whih span the same subspae

span(W

k+1

) = span(V

k+1

)) as orthogonal base for a SI-Arnoldi subspae for the shift

�

2

. One an perform this transformation by applying a QR-deomposition, solving

a triangular system and transforming matries of size (k + 1).

For more detail see [8℄.

Jaobi-Davidson method for SEP

The Arnoldi method is an e�etive method for omputing interior eigenvalues near a

spei�ed shift, if one uses shift-and-invert methods. With the drawbak that one has to

solve the system (A� I)x = b aurately and eÆiently. The Jaobi-Davidson algorithm

provides a tehnique whih manages with approximate (but still reasonable) solutions of

the system. Hene preondition methods an be applied.

The Jaobi-Davidson method is an orthogonal projetion method, but in ontrast to the

Arnoldi algorithm the projeted matrix is of no speial redued struture. Hene solving

the projeted eigenvalue problem beomes more expensive.

Expansion of searh spae:

Assume that we have already omputed the subspae base V

k

of the k-th step. Then the

projeted eigenvalue problem is given through

V

�

k

AV

k

y = �y

and we an ompute a desired Ritz-pair (�

k

; s := V

k

y) belonging to V

k

.

Now the question is how to expand the base V

k

by the information given above?

The residual of the original problem

r := As� �

k

s (5.36)
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provides information about the quality of the atual k-step eigenvalue approximation. The

idea is to expand V

k

by a orretion �s?s of the Ritz-vetor s the way the residual of the

orreted vetor s +�s vanishes aording to the subspae orthogonal to s, i.e.

(I � ss

�

)(A� �

k

I)(�s+ s) = 0: (5.37)

One an see that r 2 s

?

:= ft : t

T

x = 0g through (I�ss

�

)(A��

k

)s = r�s s

�

As

|{z}

�

k

��

k

s s

�

s

|{z}

I

=

r and therefore

(I � ss

�

)(A� �

k

I)�s = �r (5.38)

is valid.

In a �nal step one has to assure that �s is orthogonal to s in (5.38). After foring �s

into s

?

by replaing it with (I � ss

�

)�s 2 s

?

we ahieve the Jaobi-Davidson orretion

equation aording to the residual r and the k-th Ritz-pair (�

k

; s), i.e.

(I � ss

�

)(A� �

k

I)(I � ss

�

)�s = �r: (5.39)

This approah is motivated by the following deomposition of A

A = (I � ss

�

)A(I � ss

�

) + Ass

�

+ ss

�

A� �

k

ss

�

with �

k

= s

�

As:

If �

k

= � is an exat eigenvalue, the orretion equation (if solved aurately) gives the

orthogonal omplement of s to the exat eigenvetor, i.e.

(A� �I)(s+�s) = 0

holds.

Algorithm 5.2.11 Jaobi-Davidson for SEP Ax = �x

Projeted matrix: M

k

:= V

�

k

AV

k

Start settings:

v

1

=

v

kvk

; M

1

= v

�

1

Av

1

;

�

1

= m

11

; s = v

1

; r = As� �

1

s;
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Iteration:

for i = 1; 2; :::; m� 1

Solve Jaobi-Davidson orretion equation (approximately)

(I � ss

�

)(A� �

k

I)(I � ss

�

)�s = �r

Orthogonalize via Gram-Shmidt proedure �s against V

k

! v

k+1

Expand V

k

: V

k+1

= [V

k

; v

k+1

℄

Expand M

k

: M

k+1

=

�

M

k

V

�

k

Av

k+1

v

�

k+1

AV

k

v

�

k+1

Av

k+1

�

Solve projeted eigenvalue problem M

k

y = �y

Choose one �tting Ritz-vetor �

k+1

plus Ritz-vetor s = V

k+1

y

Compute new residual: r

k+1

= As� �

k+1

s

Convergene test via residual

Restart:

v

1

= s;

Start again with iteration;

In the presented form the Jaobi-Davidson algorithm results in one desired eigenvetor.

If more eigenvetors are searhed, one has to apply deation tehniques. After a satis-

fying approximation of the �rst Ritz-pair, one ontinues in a subspae spanned by the

remaining eigenvetors. Deation and restart tehniques are used in e.g. Jaobi-Davidson-

QR-algorithms.

5.2.4 Solving quadrati eigenvalue problems

In most appliation of quadrati eigenvalue problem the matries are assumed to be

hermitian and positive-de�nite. Here we deal only with methods whih do not exploit

speial properties of matries.

Let C

0

; C

1

; C

2

be general matries in C

n�n

with the restrition that they do not have a

ommon nullspae, i.e. we assume the quadrati penil to be regular.

The main solution approahes :

� Transformation of the quadrati penil to linear form

� Projetion methods whih projet the QEP on a lower-dimensional quadrati problem

and solve the lower-dimensioned problem by e.g. linearization-methods

� Newton methods (not treated here)
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Transformation to linear form

We transform the quadrati problem

�

2

C

2

x + �C

1

x+ C

0

x = 0 (5.40)

by introduing a new variable

y := �x: (5.41)

The QEP (5.40) beomes expliitly linear in �:

(a) �C

2

y + C

1

y + C

0

x = 0

(b) �C

2

y + �C

1

x + C

0

x = 0

Together with (5.41) we get two possible linear eigenvalue problems:

�

0 I

�C

0

�C

1

��

x

y

�

= �

�

I 0

0 C

2

��

x

y

�

; (5.42)

�

0 I

�C

0

0

��

x

y

�

= �

�

I 0

C

1

C

2

��

x

y

�

: (5.43)

Without loss of generality we ontinue with approah (a). If A;B denote the system ma-

tries in (5.42), we get a linear eigenvalue problem

Az = �Bz with z =

�

x

�x

�

: (5.44)

It remains to show the equivalene of the spetra of QEP and linearized form, i.e.

det(A� �B) = det(�

2

C

2

x+ �C

1

x + C

0

x); (5.45)

whih follows from the fatorization

A� �B =

�

0 I

�I ��C

1

� C

0

�

| {z }

det(:)=1

�

�

2

C

2

x+ �C

1

x+ C

0

x 0

0 I

��

I 0

��I I

�

| {z }

det(:)=1

:

Remark 5.2.12 The problem (5.44) is only expliitly linear, impliitly it is still quadrati.

Treating the problem numerially as linear problem without respeting the spetral struture

of the eigenvetor z (as we do), an lead to a supplementary error.
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Algorithm 5.2.13 Solve QEP by linearization via QZ-algorithm:

Build linearization matries (A;B) referring to (5.42) or (5.43)

Compute generalized Shur form of (A;B):

T

A

=W

�

AZ , T

B

=W

�

BZ

for j = 1; ::2n

�

i

=

(T

A

)

ii

(T

B

)

ii

Solve (T

A

� �

i

T

B

)y = 0; z = Zy

z

1

:=

z(1 :n)

kz(1 :n)k

z

2

:=

z(n+1 : 2n)

kz(n+1 : 2nk

r

1

= �

2

i

C

2

z

1

+ �

i

C

1

z

1

+ C

0

z

1

r

2

= �

2

i

C

2

z

2

+ �

i

C

1

z

2

+ C

0

z

2

Choose z

j

with minimal r

j

as eigenvetor x

i

orresponding to �

i

end for

Solving linearized problem via iterative methods:

We assume a subspae method whih an manage only with matrix*vetor produts Av;Bv

and the system matries need not be given expliitly. The produts an be pieed eÆiently

together by the produts orresponding to the smaller sized quadrati system matries

under exploiting the speial struture of A;B.

If we want to use a SEP-solver routine or if we are interested in interior eigenvalues and

want to utilize SI-methods, we have to provide B

�1

Av or (A � �B)

�1

Bv. An eÆient

algorithm an be derived from fatorization

B

�1

A =

�

0 I

�C

�1

2

C

0

�C

�1

2

C

1

�

; (5.46)

(A� �B)

�1

B =

�

I 0

�I I

��

(�

2

C

2

+ �C

1

+ C

0

)

�1

0

0 I

��

�C

1

� �C

2

�C

2

I 0

�

:(5.47)

Instead of solving systems of dimension (2n� 2n) via exploiting the speial struture the

solution of (n� n) systems will be suÆient (e.g. sparse LU-fatorization).

Algorithm 5.2.14 Compute k eigenvalues of QEP by linearization via subspae projetion

Provide eÆient matrix-multipliation and shift-and-invert-routines

Compute k desired eigenvalues via subspae method: (�

i

; z

i

)

for i = 1; :::k

z

1

:=

z(1 :n)

kz(1 :n)k

z

2

:=

z(n+1 : 2n)

kz(n+1 : 2nk
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r

1

= �

2

j

C

2

z

1

+ �

j

C

1

z

1

+ C

0

z

1

)

r

2

= �

2

j

C

2

z

2

+ �

j

C

1

z

2

+ C

0

z

2

Choose z

j

with minimal r

j

as eigenvetor x

i

orresponding to �

i

end for

The big advantage of linearization is the fat that, it an be solved with already introdued

solvers for LEPs, but it has two main drawbaks. First the orresponding linear problem

is double the dimension (2n � 2n) and seond in �nite arithmeti the speial form of the

eigenvetors z = (x; �x)

T

is not automatially implied. The information about the speial

struture is lost.

If this struture is respeted in the algorithm, this leads to struture preserving methods.

In these methods the projetion subspae has to be expanded the way the speial struture

of the original problem will be implied on the projeted problem. Moreover the projeted

problem has to be solved under respeting the struture as well. For detailed information

see [11℄.

Jaobi-Davidson for quadrati problems

Jaobi-Davidson methods are used to avoid the disadvantage of lineraization (doubling

the dimension, not respeting struture of eigenvetor). It ats diretly on the QEP,

the subspae is expanded by orretions of the iterated Ritz-vetors analogously to the

Jaobi-Davidson orretion equation for SEPs. The orretion equation an be again

solved approximately.

Expansion of subspae - eigenvetor orretion:

Assume a given subspae V

k

with already omputed and hosen Ritz-pair (�; u := V

k

y)

orresponding to the k-th step projeted problem, i.e.

V

k

P

2

(�)V

k

y = 0: (5.48)

Analogous to the SEP version of Jaobi-Davidson we want to expand the subspae by

improving the Ritz-vetor s with respet to the residual r := P

2

(�)s.

Assume (��;�s) is the exat orthogonal orretion of (�; s) to the aording eigenpair

solution

P

2

(� +��)(s +�s) = 0 with s?�s: (5.49)

Taking only �rst order terms of (5.49) into aount

P

2

(�+��)(s+�s) = P

2

(�)s+P

2

(�)�s+�� (2 � �C

2

+ �C

1

)

| {z }

P

0

2

(�)

s+O(���s+��

2

) (5.50)

leads to

�r = P

2

(�)�s+��P

0

2

(�)s with �s? s: (5.51)
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To expand the subspae we only need a orretion �s of the Ritz-vetor s, therefore we are

not interested in the term orresponding to the orretion ��. We an drop this term by

testing equation (5.51) in a spae orthogonal to ��P

0

2

(�)s but invariant for �r = �P

2

(�)s

and P

2

(�)�s. This holds for testing with the spae aording to (I � P

0

2

(�)ss

�

) (sine

s

�

P

2

(�)s = 0):

�r = (I � P

0

2

(�)ss

�

)P

2

(�)�s with �s? s: (5.52)

Then we restrit the searh spae in (5.52) in order to ful�ll the orthogonality onstraint

impliitly. We onstitute the generalized Jaobi-Davidson orretion equation by

�r = (I � P

0

2

(�)ss

�

)(P

2

(�))(I � ss

�

)�s: (5.53)

We get an expansion v

k+1

by orthonormalizing the update �s , i.e. (approximate) solution

of the orretion equation (5.53), against the olumns of V

k

.

Algorithm 5.2.15 Jaobi-Davidson method for QEP P

2

(�)x = 0

Projeted matries: M

k

i

:= V

�

k

C

i

V

k

Start settings:

Choose a (n�m) orthonormal matrix V

for i = 1; ::3 ompute M

i

= V

�

C

i

V

Iteration:

for k = m; :::;m

max

� 1

Compute eigenpairs (�; y) of (�

2

M

2

+ �M

1

+M

0

)y = 0

Choose a desired Ritz-pair (�; u = V y) with kyk = 1

Compute residural r = P

2

(�)u

if (krk

2

< �) � = �; x = u; STOP

Solve Jaobi-Davidson orretion equation (approximately) �u?u

(I � P

0

2

(�)uu

�

)P

2

(�) (I � uu

�

)�u = �r

Orthogonalize via Gram-Shmidt �u againt V ! v

k+1

with kv

k+1

k = 1

for i = 1,2,3 M

k+1

i

=

�

M

k

i

V

�

C

i

v

k+1

v

�

k+1

C

i

V v

�

k+1

C

i

v

k+1

�

Expand V

k+1

= [V

k

; v

k+1

℄

end for;

Settings for restart

Choose best m Ritz-pairs (�

i

; u

i

) from last step

Orthonormalize fu

1

; :::; u

m

g ! V

m

Compute M

i

= V

�

i

C

i

V

i

for i = 1; 2; 3

Restart;
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We have presented the main ideas and theoretial bakground of the wide range of algo-

rithms for solving standard, general linear and quadrati non-hermitian eigenvalue prob-

lems. The diret QZ-solver states a robust and reliable solving routine, but sine it is diret,

it requires diret fatorization and destroys any sparsity of the system matries.

The Arnoldi method with impliit restarts was presented in more detail, beause it is

implemented in ARPACK, a software pakage we use for solving the inner-node matrix

problem. The method an handle sparse matries and need no expliit knowledge of the

system-matries, if matrix-vetor produts are supplied.

The Jaobi-Davidson method was introdued, sine it provides a method for solving

quadrati eigenvalue problems without linearization.

5.3 Available software pakages

There are some open soure solver routines for solving non-hermitian linear eigenvalue

problems. We introdue two of them: LAPACK whih provides the diret QR/QZ-solver

and ARPACK whih is the implemented version of the impliitly restarted Arnoldi method.

We briey sketh the solvable problem types and the input paramters one has to supply

for solving non-hermitian eigenvalue problems with eah pakage.

5.3.1 The Linear Algebra Pakage LAPACK/LAPACK++

LAPACK provides dense matrix lasses (omplex and real), diret linear system solvers

(fatorizations) and diret solvers for linear (generalized and standard) eigenvalue prob-

lems via QR-QZ-algorithm optional in omplex and real arithmey.

LAPACK++ is the C++-extension of the Fortran90-kernel of LAPACK and provides

objet-oriented matrix lasses and interfaes for symmetri solvers.

For the solution of non-hermitian generalized linear eigenvalue problems LAPACK [2℄ pro-

vides the routines DGGEV() for real and ZGGEV() for omplex problems. The routines

solve non-hermitian problems of the form Ax = �Bx, where A;B are square, by the QZ-

algorithm. Sine the solver an handle multiple and in�nite eigenvalues, there are no speial

restritions on A;B. The whole spetrum and on demand all left and/or right eigenvetors

are omputed.

In order to apply the xGGEV()-routine, one only has to provide

� the problem dimensions and

� the matries A;B in dense LAPACK-matrix-lass form.

In addition to the QZ-solver LAPACK provides balaning and saling routines xGGBAK

and xGGBAK, whih optionally preproess the matries A;B. In the balaning routine the
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matrix penil gets permuted in order to ahieve that A;B are as nearly upper triangular as

possible. The saling routine provides a similarity transformation to get that the rows and

olumns of the matries are as lose in norm to 1 as possible. These tools an improve the

speed and auray of the later applied QZ-algorithm. The transformations do not hange

the spetrum, but a bak-transformation of the omputed eigenvetors is required.

Sine in piezoeletri problems the magnitude of elasti and eletri sti�ness matrix entries

di�er in a wide range, saling routines are essential to get aurate results for this problem

lass. The problem of saling eigenvalue problems will be disussed in Chapter 6 in more

detail.

5.3.2 Arnoldi Pakage (ARPACK/ARPACK++)

The Arnoldi pakage provides the Impliit Restarted Arnoldi method skethed in algorithm

5.2.10. The theory of the underlying method is desribed in the users' guide for ARPACK

[23℄. In the users' guide of ARPACK++ [13℄ a detailed desription of the implementational

aspets are given.

ARPACK++ is the objet-orientated extansion of ARPACK and has the same funtion-

ality.

The routines are separated into three problem lasses : real symmetri , real non-symmetri

and omplex non-hermitian problems. Within these three lasses are one di�ers between

generalized and standard eigenvalue problems. In the following we will onentrate on the

omplex solver lasses.

Remark 5.3.1 on generalized eigenvalue problems solvable by the Arnoldi pakage

Sine ARPACK implements the M-Arnoldi method (desribed in subsetion 5.2.3) for solv-

ing generalized problems, eigenvalue problems of the form Ax = �Bx an only be solved

under the assumption that B is hermitian positive-de�nite, while the matrix A is of arbi-

trary form.

The main advantage of Arnoldi-methods is that the matries have not to be given in expliit

form, i.e. supplying the matrix-vetor produt is suÆient. The Arnoldi-Pakages provides

solving-lasses whih requires only user-de�ned matrix-vetor-produts (ArCompStdEig,

ArCompGenEig).

There are two modes for eah problem lass onerning the part of the spetrum we want

to ompute:

In the regular mode one is interested in nev eigenvalues of largest/smallest magni-

tude or real/imaginary part. The user-supplied matrix-objet lasses have to provide the

problem dimension and for the standard problem the produt OPx = Ax! y and for the

generalized problem OPx = B

�1

Ax! y and Bx! z.
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In the shift and invert mode we want to ompute nev eigenvalues losest to a

omplex shift �. The user-supplied matrix-objet lasses have to provide the problem

dimension and for standard problems the spetral shift operation OPx = (A� �I)

�1

and

for generalized problems OPx = (A� �B)

�1

! y and Bx! z.

The required input parameters in the onstrutor of ArCompStdEig and ArCompGenEig

are

� the dimension of the problem n

� the number of wanted eigenvalues nev

� one (in ase of standard problem) or two (in ase of generalized problem) matrix

objets with the above desribed matrix-produts aording to the seleted mode

(OPx;Bx)

� (optional) the relative auray tol of Ritz values for the stopping riterion. By default

it is set to mahine preision. If onvergene takes plae, the omputed eigenvalues

� ful�ll

j�� �

�

j < tol j�j

where �

�

is the exat eigenvalue of A whih is losest to �.

� (optional) the dimension of the omputed Arnildi-base nv = nev+p. By default the

parameter is set to 2 � nev, whih is a good hoie due to experiene [8℄.

� (optional) a starting vetor for the Arnoldi-proess, by default a random vetor is

used.



Chapter 6

Appliation of Eigenvalue Theory

Now we ombine the previous two hapters, i.e. we analyze and solve the problems stated

in Chapter 4 with the theory and solvers provided in Chapter 5.

We have seen that speial properties of the matrix penil imply speial properties of the

spetrum. Thus we analyze the spetrum of the stated problems �rst and reet how these

properties an be used in omputation. Then we hek how open-soure eigenvalue solvers

an be applied to the posed problem-types. At the end of this hapter we deal with the

problem of saling eigenvalue problems, whih is neessary for getting reasonable results

in the ase of piezoeletri problems.

We want to solve one of the following eigenvalue problems:

� The Inner-Node-Matrix Method leads to a larger sized, but linear eigenvalue problem

Find u = (u

i

; u

l

)

T

2 C

N

i

+N

l

and  2 C solving

 

K

ii

K

il

K

T

ir

0

!

�

u

i

u

l

�

= 

 

0 �K

ir

�K

T

il

�(K

ll

+K

rr

)

!

�

u

i

u

l

�

. (6.1)

All matries are omplex and K

ll

; K

rr

; K

ii

are omplex-symmetri.

� The SC-method leads to the quadrati problem

Searh  2 C ; y

l

6= 0 2 C

N

l

: 

2

S

12

y

l

+ (S

11

+ S

22

)y

l

+ S

T

12

y

l

= 0; (6.2)

where N

l

is of moderate size with two variants of given problems, i.e. expliitly given

dense matries S

ij

of moderate size, whih were derived by inverting a matrix K

ii

or

seondly the matries are impliitly given only by matrix-vetor produts, for whih

we need K

�1

ii

. The matries are omplex and S

11

; S

22

are omplex symmetri.

95
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Remark 6.0.2 The eigenvalue problems presented above are parameter-dependent, i.e.

they have to be solved in eah frequeny step !, sine K = K(!) and S

��

= S

��

(!) .

In both problems we are interested in a few eigenvalues  near the unit irle, i.e. jj � 1.

6.1 Spetral properties

6.1.1 The spetral onnetion between the alternative methods

We analyze the onnetion between the two methods. Sine the methods desribe the same

problem, one has to hek if the two alternatives lead to the same result, i.e. if they have

the same spetrum or at least if the interesting eigenvalues our in both problems and if

these eigenvalues are equal and an be separated in the solution.

In the subsetion on periodi searh and test-spaes we have seen that the quadrati prob-

lem (6.2) arises from the linear problems (6.1) by forming the Shur-omplement. It is

obvious that the SC-problem has 2 � N

l

eigenvalues, sine the matries are of dimension

(N

l

� N

l

) and the problem is quadrati, but that the Inner-Node-Matrix Problem has

N

i

+ N

l

eigenvalues. Whih eigenvalues do we drop in forming the Shur-omplement ?

Whih e�et is implied on the spetrum of a matrix by forming the Shur-omplement ?

In order to determine the transformation of the spetrum we have to state and examine

the SC-method as transformation of the INM-Problem. Applying the multipliation

�

I 0

(K

T

ir

+ K

T

il

)K

�1

ii

I

�

:(6:1)

from the left to the Inner-Node-Matrix Problem leads to

�

K

ii

K

il

+ K

ir

0 

2

S

12

+ (S

11

+ S

22

) + S

T

12

��

u

i

u

l

�

=

�

0

0

�

: (6.3)

The transformation matrix is regular and well-de�ned for all  �nite, i.e. the transformation

is similiar. Therefore, if �

�

denotes the set of �nite eigenvalues, �

�

(6:1)

= �

�

(6:3)

holds. Through

the deoupling of the lines aording to u

i

and u

l

in (6.3), it is valid that

(; u

l

) �nite eigenpair of (6:2), (;

�

�K

�1

ii

(K

il

+ K

ir

)u

l

u

l

�

) �nite eigenpair of (6:3):

Therefore the �nite spetra of the INM and the SC Problem are equal, i.e.

�

�

(6:1)

= �

�

(6:2)

:
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6.1.2 On sympleti-type penils

Analyzing the symmetries of the matrix bloks in the INM-Problem and the speial prop-

erty that the quadrati problem is nearly of equal form as the aording inverted quadrati

eigenvalue problem one an state some helpful results on the form of the spetrum.

Speial struture of the quadrati eigenvalue problem

Theorem 6.1.1

1. If (; x

l

) is a right eigenpair of



2

S

12

x

l

+ (S

11

+ S

22

)x

l

+ S

T

12

x

l

= 0 (6.4)

then (

1



; �x) is a left eigenpair (�x denotes the omplex onjugate vetor).

2. For real-valued matries (undamped system: C = 0) omplex eigenvalues our in

quadruples

 2 �

S

)

1



; �;

1

�

2 �

S

(6.5)

Proof:

1. Statement is valid due to symmetry of the matries ((S

11

+ S

22

) = (S

11

+ S

22

)

T

):

Let (; x) be a right eigenpair.

We view the left eigenvalue problem and transpose it

�

2

y

�

S

12

+ �y

�

(S

11

+ S

22

) + y

�

S

T

12

= 0 j

T

�

2

S

T

12

�y + �(S

11

+ S

22

)�y + S

12

�y = 0 j

1

�

2

:

S

T

12

�y +

1

�

(S

11

+ S

22

)�y +

1

�

2

S

12

�y = 0;

i.e. (

1

�

; �y) is a right eigenpair.

For all ( = 0; x) right eigenpairs: x 2 N (S

12

) ) �x

�

S

T

12

= x

T

S

12

= 0, i.e. in�nite

left eigenpair (1; �x). Analogous for  =1.

2. Complex eigenvalue of real valued matries ome in omplex onjugate pairs.

Speial struture of the linear eigenvalue problem

The analogous result an be stated for the linear INM-Problem. Let ( ;

�

x

y

�

) be a �nite

non-zero right eigenpair of

�

M

1

G

F

T

0

��

x

y

�

= 

�

0 �F

�G

T

�M

2

��

x

y

�

)

M

1

x = �(G + F )y

(F

T

+ G

T

)x = �M

2

y

(6.6)
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If the problem ats related to the SC-method we an determine parameters �

1

; �

2

2 C

in suh a way that (

1



;

�

�

1

�x

�

2

�y

�

) solves the left eigenvalue problem. Transposing the left

eigenvalue problem we get

�

M

1

F

G

T

0

��

�

1

x

�

2

y

�

=

1



�

0 �G

�F

T

�M

2

��

�

1

x

�

2

y

�

(6.7)

then we express in form of (6.6)

�

1

M

1

x = �

1



�

2

(G+ F )y

1



�

1

(F

T

+ G

T

)x = �

1



2

�

2

(M

2

)y

Comparison of oeÆients gives:  �

1

= �

2

With setting �

1

= 1 we state

Theorem 6.1.2

1. To eah �nite non-zero right eigenpair (;

�

x

i

x

l

�

) of the Inner-Node-Matrix eigen-

value problem (6.6) (

1



;

�

�x

i

�x

l

�

is a left eigenpair,i.e.  2 � ,

1



2 �.

2. For real-valued systems (undamped C = 0) omplex eigenvalues of (6.6) our in

quadruples:

 2 �

S

)

1



; �;

1

�

2 �

S

(6.8)

Remark 6.1.3 on struture preserving methods and sympleti matries

The presented spetral properties an be used for struture preserving methods.

The struture of the Inner-Node-Matrix system reminds on sympleti matries, i.e. a ma-

trix penil A� �B is alled sympleti , if

AJ

T

= BJ

T

with J =

�

0 I

I 0

�

(6.9)

Struture preserving methods for sympleti matries are introdued in Mehrmann [11℄.

The result that if  is a �nite eigenvalue, its reiproal is one as well, an only be used in

form of struture preserving methods in iterative methods whih work with left and right

eigenspaes, i.e. two-sided Lanzos methods. By using only methods whih work with

right eigenspaes, e.g. Krylov methods only use right eigenvetors in the onstrution of

the projetion subspaes, we will not take the full advantage out of this spetral result.
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6.2 Solving the SC quadrati eigenvalue problem

Sine we intend to use the Impliit Restarted Arnoldi solver and the QZ-Solver provided

by ARPACK or respetively LAPACK, we an only solve linear eigenvalue prob-

lems. To apply these solvers on the SC-problem, one has to linearize the problem the

way presented in (5.42) �rst and then all the solving routines with the linearized matries.

6.2.1 Linearization of the SC-quadrati eigenvalue problem

Linearization of problem (6.4) leads to a LEP with the same spetrum

�

0 I

S

T

12

S

11

+ S

22

��

x

z

�

= 

�

I 0

0 �S

12

��

x

z

�

with z = x; (6.10)

abbreviated by L

A

y = L

B

y:

The generalized linear eigenvalue problem is a dense problem of "moderate" size

(2 �n

l

�2 �n

l

) with dense system matries. We are interested in eigenvalues with jj near 1.

Remark 6.2.1 on the regualrity of the linearized matries L

A

; L

B

The matrix S

12

denotes the subdiagonal blok of the Shur-omplement of problem (6.1),

therefore we an not state its regularity. Sine we an not give any assertions on the reg-

ularity of L

A

and L

B

. shift-and-invert methods as well as a transformation to standard

problem of the GEP 6.10 is not well-de�ned.

Solving the linearized SC-problem with the diret QZ-solver In setion (5.3.1)

we desribed the funtioning and input parameters of the LAPACK routine xGGEV(),

whih provides the QZ-algorithm for real non-hermitian eigenvalue problems.

For using xGGEV() one has to provide the problem dimension and the linearized system

matries L

A

; L

B

in the dense matrix lass of LAPACK.

Solving the linearized SC-problem via the LAPACK-QZ-solver inlude the following main

steps:

Under the assumption of already assembled sti�ness, mass and damping matries K;M;C

one has to perform

� the omputation K = K + i!C � !

2

M ,

� the separation/mapping of K in blok matries aording to inner, left and right

nodes,

� the omputation of Shur-omplement bloks via LU-fatorization of K

ii

! S

12

; S

11

; S

22

;
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� the linearization matries L

A

; L

B

of (6.10)

� a all of LAPACK xGGEV() with L

A

; L

B

in eah frequeny step.

Algorithm 6.2.2 (QZ-Shur-PBCSolver) We assume ready-assembled sti�ness and

mass matries K;M , where rows and olumns aording to Dirihlet nodes are already

dropped.

Provide matries aording to inner,left and right nodes ! K

st

;M

st

for s; t = i; l; r;

for all ! do

1.

if(damping) for s; t = i; l; r K

st

=

�

K

st

� !

2

M

st

�!(~�K

st

+

~

�M

st

)

!(~�K

st

+

~

�M

st

) K

st

� !

2

M

st

�

;

else for s; t = i; l; r K

st

= K

st

� !

2

M

st

;

2. LU-fatorization of K

ii

, i.e. K

ii

= LU

3. Compute SC-bloks via bak-substitution in LU , i.e.

LU T

ir

= K

ir

; ! T

ir

S

12

= K

li

T

ir

;

S

22

= K

ri

T

ir

+K

rr

;

LU T

il

= K

il

! T

il

;

S

11

= K

li

T

il

+K

ll

;

4. Build LAPACK-dense matries L

A

; L

B

aording to (6.10);

5. xGGEV(2 �N

l

; 2 �N

l

; L

A

; L

B

; evals; eves);

6. Compute �

j

= jevals(j)j; �

j

= arg(evals(j)) (j = 1; :::; 2 �N

l

);

Choose n

ev

pairs (�

j

; �

j

) with smallest j�

j

j;

Remark 6.2.3 The Rayleigh-damping oeÆients ~�;

~

� an be hosen frequeny-dependent,

i.e. ~�(!);

~

�(!).

The main osts of Algorithm 6.2.2 onsist in the omputation of the LU-fatorization for

eah ! and in the solution of the dense, but moderate-sized (2 � N

l

� 2 � N

l

) eigenvalue

problem for eah !.
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Solving the SC-problem with the Arnodli-pakage? Not possible. Due to Re-

mark 6.2.1 the linearized problem (6.10) annot be solved by the Arnoldi pakage. Nor

does it ful�ll the riteria of the generalized solver (L

B

is not hermitian positive de�nite)

neither an we state a well-de�ned similar standard eigenvalue problem.

6.3 Solving the Inner-Node-Matrix eigenproblem

On in�nite and zero eigenvalues

Through reetions on the rank and nullspaes of the system matries we want to get an

idea of the number of interesting eigenvalues in the system. Therefore we ompute the

number of eigenvalue we are never interested in, i.e. zero and in�nite eigenvalues, sine this

is equivalent with j�j =1:

In�nite right eigenvetors (x; y)

T

lie in the nullspae of B :=

�

0 �K

ir

�K

li

�K

ll

�K

rr

�

,

sine N

i

+N

l

= rk[B℄ + dim(N )(B) we ompute the rank of B (rk[B℄). By the regularity

of K

ll

+K

rr

we get rk[B℄ � N

l

+ rk[K

il

℄

| {z }

:=m

l

�N

l

� 2N

l

and hene

dim(N (B)) = N

i

�m

l

� N

i

�N

l

The dimension of the nullspae of A :=

�

K

ii

K

il

�K

ri

0

�

gives the number of zero eigenval-

ues. Through rk[A℄ � N

i

+ rk[K

ri

℄

| {z }

:=m

r

�N

l

� N

i

+N

l

there are N

l

�m

r

� 0 zero eigenvalues.

The main result is that the INM-Problem has at least N

i

�N

l

in�nite eigenvalues, i.e. we

are interested in at most 2 �N

l

eigenvalues of the N

i

+N

l

eigenvalues of the linear problem.

6.3.1 Spetral transformation

Setting up the problem we mentioned the fat that A�B is omplex symmetri and regular.

In order to ahieve a more regular problem, the �rst part of a spetral transformation results

in
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(6.11)

General spetral transformations are used to shift the interesting part of the spetrum to

the end of the spetrum whih an be faster approximated by the most numerial methods.

We have applied the shift to get a regular symmetri matrix on right side. Therefore we an

treat the generalized problem as a standard one (without expliitly omputing (A�B)

�1

B).
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(6.12)

with � = 1=( � 1)

Remark 6.3.1 on the spetrum of (6.12)

1. The transformed INM-Problem (6.12) has only �nite eigenvalues, whih seperate into

2 �N

l

non-zero ones and N

i

�N

l

zeros.

2. The "sympleti" property of the spetrum transforms to

� 2 �

�

(6:12)

, ��� 1 2 �

�

(6:12)

:

3. The part of the spetrum we are interested in, i.e. jj near 1, distributes unlustered

over C n f0g.

4. The in�nite eigenvalues of (6.1) are shifted to 0.

Extrating the interesting part of the spetrum There is no obvious lustering of

the transformed spetrum aording to the distane of  =

1

�

+ 1 from the unit irle.

But we know that the interesting eigenvalues satisfy � 6= 0 and that there are only 2 �N

l

eigenvalues for whih this holds. Therefore, one way to extrat the interesting part is to

ompute the 2 �N

l

eigenvalues of largest magnitude and separate the interesting ones out

of the omputed set. Sine in pratial problems N

l

� N

i

the possibility to redue the

omputation on only 2 �N

l

instead of N

i

+N

l

eigenvalues is of big numerial advantage in

the use of iterative methods.

Remark 6.3.2 Applying the shift has the disadvantage that the desired part of the spe-

trum, whih is haraterized in the original problem by the values near the unit-irle, get

spread over the whole omplex domain exluding zero. But �rst omputing eigenvalues of

largest magnitude is of muh faster onvergene than omputing small one (harmoni Ritz

values) and seondly we will see that this transformation is neessary in order to use the

Arnoldi-pakage.
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Solving the Inner-Node-Matrix Problem with a diret QZ-solver The LAPACK-

QZ-solver an be diretly applied to the original INM-Problem (6.1) after onversion to

dense LAPACK matries, the following steps:

Under the assumption of already assembled sti�ness,mass and damping matries K;M;C

one has to perform

� the omputation K = K + i!C � !

2

M ,

� separation/mapping of K in blok matries aording to inner, left and right nodes,

� building up the matries A;B (in LAPACK-DENSE matrix type) aording to INM-

Problem (6:1),

� a all of LAPACK xGGEV() with A;B

in eah frequeny step.

Algorithm 6.3.3 (QZ-LEP-PBCSolver) We assume ready-assembled sti�ness and

mass matries K;M , where rows and olumns aording to Dirihlet nodes are already

dropped.

Provide matries aording to inner,left and right nodes ! K

st

;M

st

for s; t = i; l; r;

for all ! do

1.

if(damping) for s; t = i; l; r K

st

=

�

K

st

� !

2

M

st

�!(~�K

st

+

~

�M

st

)

!(~�K

st

+

~

�M

st

) K

st

� !

2

M

st

�

;

else for s; t = i; l; r K

st

= K

st

� !

2

M

st

;

2. Build LAPACK-DENSE matries A;B aording to (6.1);

3. xGGEV(N

l

+N

i

; N

l

+N

i

; A; B; evals; eves);

4. Compute �

j

= ln(jevals(j)j); �

j

= arg(evals(j)) (j = 1; :::; N

i

+N

l

) ;

Choose n

ev

pairs (�

j

; �

j

) with smallest j�

j

j;

Solving the Inner-Node-Matrix Problem with IRAM Neither the inner node prob-

lem (6.1) nor the problem (6.12) have a hermitian, positive matrix B, therefore the gener-

alized Arnoldi solver annot be applied. But the problem (6.12) an be transformed into a

standard eigenvalue problem

(A� B)

�1

Bx = �x

where we are searhing for the 2 �N

l

eigenvalues of largest magnitude.
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The main advantages of using an Arnoldi solver that we only searh for n

ev

= 2 � N

l

eigenvalues of the (N

i

+ N

l

� N

i

+ N

l

) eigenvalue problem and that one suÆes with

matrix-vetor produt OPx of the transformed system. Therefore we have to provide a

matrix-objet lass inluding the OPx operation (A� B)

�1

Bx.

Under the assumption of already assembled sti�ness, mass and damping matries K;M;C

one has to perform

� the omputation K = K + i!C � !

2

M ,

� separation/mapping of K in blok matries aording to inner, left and right nodes,

� set up sparse fatorization of (A�B) = LL

T

, de�ne sparse multipliation with B by

multipliations of bloks K

st

,

� a all of ArnoldiPakage with OPx.

in eah frequeny step.

Algorithm 6.3.4 (Arnoldi-LEP-PBCSolver) We assume ready-assembled sti�ness

and mass matries K;M , where rows and olumns aording to Dirihlet nodes are already

dropped.

Provide matries aording to inner, left and right nodes ! K

st

;M

st

for s; t = i; l; r;

for all ! do

1.

if(damping) for s; t = i; l; r K

st

=

�

K

st

� !

2

M

st

�!(~�K

st

+

~

�M

st

)

!(~�K

st

+

~

�M

st

) K

st

� !

2

M

st

�

;

else for s; t = i; l; r K

st

= K

st

� !

2

M

st

;

2. Provide lass for sparse OPx.MultMv(x) = (LL

T

)

�1

Bx,

i.e. sparse Cholesky-fatorization

LL

T

= A� B

3. ArnoldiPakage(N

l

+N

i

; OPx; n

ev

= 2 �N

l

; evals; eves);

4. Compute �

j

= ln(j1 +

1

evals(j)

j); �

j

= arg(

1

evals(j)

) (j = 1; :::; 2 �N

l

) ;

Choose n

ev

pairs (�

j

; �

j

) with smallest j�

j

j;

For eah frequeny one has to provide one a sparse-Cholesky fatorization of the omplex-

symmetri matrix (A�B)

�1

. For eah matrix-mulitpliation in the Arnoldi solver one has

to perform

� a sparse matrix-vetor produt y = Bx! y,

� solving LL

T

w = y ! w, i.e. forward-bakward substitution.
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6.4 Saling of eigenvalue problems

Solving piezoeletri problems aording to Algorithms 6.2.2 - 6.3.4 leads to onvergene,

but gives irrational results. We explain this problems on standard eigenvalue problems.

There is a roundo�-error around �

M

kAk with �

M

denoting the mahine preision, if one

solves a standard eigenvalue problem Ax = �x. The system matrix due to piezoele-

tri problems is very ill-onditioned and therefore onverged eigenvalues an be senseless.

Through saling methods one wants to redue the norm of A by a similarity transformation

DAD

�1

.

Matrix Balaning used in QZ-algorithm presented for standard problems

There are two steps in matrix balaning, i.e. permutation and saling [2℄.

1. Permutation has the e�et that A is transformed by a similarity transformation

to blok upper triangular form in order to ahieve that later algorithm have faster

onvergene. P is permutation matrix.

~

A = PAP

T

=

0

�

~

A

11

~

A

12

~

A

13

0

~

A

22

~

A

23

0 0

~

A

33

1

A

The blok

~

A

11

;

~

A

33

are upper triangular, while A

22

has general form, i.e. the matrix

is in Shur-form "outside" the blok A

22

. One has to mention that often no aording

permutation an be found.

Permuting results in faster onvergene of later QR-iterations.

2. Saling is the main trik for solving piezoeletri problems, applied before an eigen-

value routine it improves the auray ahieved afterwards. We want to apply simi-

larity transformations in suh a way that the matrix A is balaned the way that the

norms of rows and olumns are equal in magnitude.

~

~

A = D

~

AD

�1

with D =

0

�

I 0 0

0 D

�1

22

0

0 0 I

1

A

:

Sine in the balaning routine only similarity transformation are used, the spetrum does

not hange, i.e. �(A) = �(

~

A) = �(

~

~

A), but it has to bear in mind that the eigenvetors need

to be bak-transformed, therefore one has to store the transforming matries. This method

of balaning is used in the QZ-algorithm and is provided in LAPACK by the xGEBAL()

routine.
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For saling generalized eigenvalue problems one provides two regular matries D

1

; D

2

the

way that D

1

AD

2

; D

1

BD

2

have row and olumn norms near 1. Then we solve the similar

eigenvalue problem

D

1

AD

2

x = D

1

BD

2

x:

6.4.1 Saling of piezoeletri problems

A piezoeletri problem based saling an be applied in order to ahieve reasonable rea-

sonable results in the Arnoldi method as well. The elements of the sti�ness bloks of the

piezoeletri problem are of following magnitude

K

uu

� O(10

10

)

K

��

� O(10

�10

)

K

u�

� O(1):

Therefore with the saling matrix D =

�

10

�5

I

N

u

0

0 10

5

I

N

�

�

the transformed matrix

satis�es

~

K = DKD =

�

10

�10

K

uu

K

u�

K

�u

10

10

K

��

�

(6.13)

Applying this saling on the inner, left and right bloks of K, implies that the transformed

generalized eigenvalue problem aording to (6.12) is muh better saled, i.e. all elements

are of order O(1).

Trik: Saling of material data Sine the blok matries of the sti�ness matrix depend

linearly on the material data, the following saling of the material tensors and mass density

(notation aording to Chapter 2)

~

E

= 10

�10



E

; ~"

S

= 10

10

"

S

; ~e = e; ~� = 10

�10

� (6.14)

is equal to the transformation (6.13). One only has to ensure that the material data

also enter linearly into the boundary onditions. This holds for the boundary onditions

presented in Chapter 4, i.e. for Dirihlet, Neumann and periodi boundaries.

Conlusion: If the saling of material data aording to (6.14) is applied during assembling

of sti�ness and mass matries, the presented Algorithms 6.2.2 - 6.3.4 lead in general to

more aurate results.



Chapter 7

Numerial Results

In this hapter we present results of simulations of the dispersion ontext of SAW-�lter-type

strutures. We start with simulating the inuene of periodi pertubations on the solution

of a pure mehanial model problem. Therefore the elasti strain problem is solved �rst on

a non-perturbed in�nite strip and then for a periodially perturbed strip. In this numerial

experiment the e�et of periodi perturbation on the dispersion ontext an be seen very

well.

The piezoeletri problem is solved for TV- and GSM-�lter related periodi strutures.

Finally,we give some onluding remarks on the quality of the developed mathematial

model aording to the gained results.

Before presenting the numerial results we give some remarks on the implmentation, the

presentation of the results:

On the implementation The FE-matrix assembling is done by the Finite Element

Pakage FEPP [33℄ developed at the University of Linz.

Three di�erent dispersion ontext solvers, developed within this thesis, are implemented

and ompared to eah other in this hapter:

� Solving the Shur-omplement problem via linearization and under appliation of the

diret Lapak-QZ solver, i.e. Algorithm 6.2.2

� Solving the Inner-node problem with the diret Lapak-QZ solver, i.e. Algorithm

6.3.3.

� Solving the Inner-node problem with the iterative Arnoldi-pakage and with n

ev

=

2 �N

l

eigenvalues to ompute, i.e. Algorithm 6.3.4.

We set the number of omputed Arnoldi vetors to 2 �n

ev

and the auray for the stopping

riterion of the Arnoldi solver to working preision. This setting implies that Arnoldi and

107
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diret QZ-solver ahieve equal auray. Therefore we an ompare the solvers to eah

other by the alulation times required.

On the presentation of simulated dispersion diagrams One gains the propagation

onstants (�; �) out of the omputed eigenvalues  through the ontext  = e

(�+i�)p

.

Sine e

(�+i�)p

= e

(�+i(�+

2�k�

p

))p

for all k 2 Z, � an not be uniquely alulated. In general

one de�nes � in (��; �℄.

In general we present the dispersion urves by the funtional ontext (� � p; � � p; f) for

given frequenies f =

!

2�

and � 2 (��; �℄.

SAW-designers are mainly interested in the dispersion ontext near stop-bands regions,

whih as already mentioned in Chapter 2 is haraterized by propagation onstants of the

form (�; � =

�

p

) and propagating modes of the form (0; �). Therefore for presenting zooms

in the stop-band region � is ontinued to the region [0;

2�

p

).

7.1 The e�et of periodi perturbations on a pure me-

hanial problem

We want to present the inuene of periodi perturbations on the dispersion ontext

of the elasti plane strain problem. We ompare diagrams with and without periodi

perturbations, whih is modeled by a periodial arrangement of Dirihlet (�

D

) and

Neumann (�

N

) boundaries.

Under the assumption of time-harmoni exitation, i.e. we assume u(x; t) = u(x) �e

i!t

2 C

2

we state the strong formulation of elasti plane strain problem on the in�nite strip 


S

by:

Find u = (u

1

; u

2

) : 


S

! C

2

satisfying

�divT = !

2

� u in 


S

with T =  Su (Hook's law)

u = 0 on �

D

T � n = 0 on �

N

(7.1)

with S =

�

�u

1

�x

1

1

2

(

�u

1

�x

2

+

�u

2

�x

1

)

1

2

(

�u

1

�x

2

+

�u

2

�x

1

)

�u

2

�x

2

�

and  = 

E

the elasti sti�ness tensor of

the used substrate material.
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We alulate the dispersion ontext for the geometries shown in Figure 7.1 and 7.1.
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Figure 7.1: Underlying geometry without periodi perturbations
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Figure 7.2: Underlying geometry with periodi perturbations

Restrited to the orresponding unit-ell the stated model problem 7.2 turns into

�divT = !

2

� u in 


p

with T =  Su (Hook's law)

u = 0 on �

D

T � n = 0 on �

N

u(x

1

; x

2

) = u(x

1

+ p; x

2

) for (x

1

; x

2

) 2 �

L

(7.2)

In the following presented results, red points orrespond to propagation onstants of the

form (� � p; �), i.e. the reeted waves interfere onstrutively, green points orrespond to

propagation onstants of the form (0; � � p), i.e. pure propagating modes and blue points

to (�; �), i.e. the remaining alulated omplex propagation onstants.

E�et of periodi perturbations: 3D and 2D representation
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Figure 7.3: Elasti plane strain without periodi perturbation
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Figure 7.4: Elasti plane strain with periodi perturbation
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The red rings in Figure 7.4 represent the stop-bands, while in the non-perturbed analog

the pure-propagating modes are ontinuous.
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Figure 7.5: Elasti plane strain on non-perturbed geometry
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Figure 7.6: Elasti plane strain on periodi geometry
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7.2 Simulation of piezoeletri problems

In Chapter 2 we presented two piezoeletri models:

� Model with 3 degrees of freedom (dofs) per node : u

1

; u

2

;�

We assume no displaement in the x

3

-diretion and displaement and potential are

not depending on the x

3

-oordinate, i.e. u(x

1

; x

2

; t) 2 R

2

and �(x

1

; x

2

; t) 2 R.

This problem is simulated with the real-life data of a TV-�lter.

� Model with 4 degrees of freedom per node : u

1

; u

2

; u

3

;�

Due to the anisotropy of the material wave omponents in the x

3

-diretion an our

in pratial appliations. The deviation of the ideal ase is onsidered by allowing

onstant behavior of the �elds in x

3

-diretion:

�u

i

�x

3

= 0 for u = (u

1

; u

2

; u

3

)

T

2 R

3

��

�x

3

= 0

:

The diagram of dispersion for this problem type is simulated with the data of a

GSM-�lter.

In both models we simulate short-iruited eletrodes, i.e. we set the potential to zero on

the eletrodes 


El

.

The enter frequeny of the stop-band

The frequeny, in whih a periodially arranged eletrodes yields in maximal reetion, i.e.

the reeted waves interfere onstrutively, satis�es

f



=

v

2p

: (7.3)

v denotes the propagation veloity of a surfae wave in the material. SAWs have the

property that their veloity v is muh slower than eletromagneti waves. The frequeny

f



is supposed to approximate the enter of the stop-band in the dispersion ontext.

The propagation of Rayleigh-waves in anisotropi materials depend on the rystal lass and

the orientation ("Euler Angles") with respet to the propagation diretion. Therefore the

veloity of surfae waves depends on the used material, its rystal lass and the diretion of

propagation. Sine we want only to get an idea in whih frequeny domain the stop-band

an be suspeted, we suÆe with approximative values for the veloity v of Rayleigh waves.

For exat values due to rystal lasses and orientation see Auld [5℄.

v

Lithium Niobate LiNbO

3

3300 � v � 3900m=s

Lithium Tantalate LiTaO

3

3100 � v � 3300m=s

Silion Si � 4900m=s
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On the underlying mathematial model and plate modes

Through using Dirihlet or Neumann onditions on the bottom of the used geometry we

simulated a piezoeletri strip with �nite depth. This means that we model a plate and

there are plate modes as well as surfae waves in the results. These plate modes an be

�ltered out, by omputing the energy in the whole domain and ompare it to the energy

on the half domain. If the energy is onentrated near the surfae, we have a surfae wave.

This method is used in the dotor thesis of M.Hofer [14℄. The problem is only mentioned

for ompleteness reasons and will not be further treated within this thesis.

Piezoeletri problems

Dispersion ontext of TV-�lter-like struture: d = 2

We simulate the piezoeletri problem with 3 degrees of freedom (u 2 C

2

;� 2 C ) under

the usage of Lithium Niobate (LiNbO

3

) for piezoeletri substrate and aluminium for

eletrodes. The used material data are listed in Appendix A.

GG
L R

W
El

p = 0.133  E-05

h = 0.2 E-06el
Al

W
S

LiTa0
3

h = 0.665 E-05S

p/2

Figure 7.7: Unit ell of simulated TV �lter problem

With the geometry data of the unit-ell presented Figure 7.7 one an estimate a enter

frequeny near

3:3 10

7

Hz � f

0

� 3:9 10

7

Hz:

We simulate the piezoeletri problem (4.96) for d = 2 and S;E aording to (4.3)-(4.4)

on the unit ell presented in Figure 7.7.
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Figure 7.8: Dispersion ontext for TV-�lter struture (short-iruited eletrodes)
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Figure 7.9: Short-iruited TV-�lter-struture: zoom in stopband region (� periodially

ontinued)
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Figure 7.10: TV-�lter-struture: 2D-plot of pure propagating modes in stop-band region

Figure 7.11: TV-�lter-struture: 2D plot of stop-bands
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Dispersion ontext of GSM-�lter-like struture: d = 3 For simulating the piezo-

eletri problem with 4 degrees of freedom (u

1

; u

2

; u

3

;�) in eah node we use the following

unit ell of a GSM-�lter-related periodi struture shown in Figure 7.12

� Material for piezoeletri substrate: Lithium Tantalate LiTaO

3

� Material for eletrodes: Aluminium Al

GG
L R

W
El

p = 0.133  E-05

h = 0.2 E-06el

Al

W
S

LiTa0
3

h = 0.665 E-05S

p/2

Figure 7.12: Unit ell for simulating LiTa0

3

GSM-�lter-struture (d = 3)

We use a mesh of retangles, with 36 nodes (� 4 degrees of freedom) on eah periodi bound

and N

i

= 4 �n

i

= 1386 degrees of freedom of inner nodes and a unit ell of the form shown

in Figure 7.12.

With these settings we get the dispersion ontext (3D) shown in Figure 7.2. A zoom to

the stop-band is given in Figure 7.2. For a better presentation of the stop-band region,

the alulated propagation onstants are periodially ontinued, i.e. � 2 [0;

2�

p

℄.
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Figure 7.13: Dispersion ontext for LiTaO
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GSM-�lter struture (short-iruited)
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Figure 7.14: LiTaO
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GSM Filter: zoom in stop band region (� periodially ontinued)
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7.2.1 Comparison of three algorithms

Now we want to ompare the three implemented algorithms, developed in Chapter 6 and

itemized one more at the beginning of this hapter. The parameters were set the way

the di�erent solvers yield the same auray, therefore one an analyze their quality by

omparing the omputational times required fo solving the dispersion ontext for one

frequeny step f =

!

2�

for the presented GSM-�lter-type problem.

Sine the used FE-software pakage FEPP does not provide a sparse matrix lass for

omplex matries, the presented algorithms are tested using dense matries, i.e. the problem

dimension is bounded and the main omputational osts are governed by dense matrix

operatations. But even using dense matries, we get reasonable and satisfying results. The

solvers an be analyzed and ompared. In the following tabulars the omputational osts

of eah step in the various solver is listed. One sees that the main osts bases on the dense

matrix multipliation, but with these results one an predetermine the behaviour of the

solvers under the usage of sparse matries.

One frequeny step: No Damping, GSM 4 dofs

Complex non-hermitian IRAM in se in se (Arnoldi)

Time for reating and solving EP (omega) 847

Time for ArSolve (omega) 807

Time for Cholesky-fatorization 100

Time for Arnoldi loop (without reating problem) 670

Time for Op.x 632

Time for reorthognolaziation 14

Time for solving Hessenberg subeigenproblem 6

Time for getting QR-shifts 0.002

Total number of update iterations 1

Total number of OPx operation 261

Total number of reorthogonalization steps 260

Total number of restarts 0

QZ-Shur-PBC-Solver in se

Time for reating and solving EP (omega) 326

Time for LU-inversion (ShurComplement) 256

Time for alulate Shur-Maties 58

Time for solving QEP 9
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QZ-LinerEP-Solver in se

Time for reating and solving LEP (omega) 1952

Time for solving LEP via QZ 1943

One frequeny step: Rayleigh-Damping, GSM-struture 4 dofs

Complex non-hermitian IRAM in se in se (Arnoldi)

Time for reating and solving EP (omega) 800

Time for Cholesky-fatorization 99

Time for Arnoldi loop (without reating problem) 622

Time for Op.x 632

Time for reorthognolaziation 14

Time for solving Hessenberg subeigenproblem 6

Time for getting QR-shifts 0.0002

Total number of update iterations 1

Total number of OPx operation 261

Total number of reorthogonalization steps 259

Total number of restarts 0

QZ-Shur-PBC-Solver in se

Time for reating and solving EP (omega) 3300

Time for LU-inversion (ShurComplement) 2500

Time for alulate Shur-Maties 474

Time for solving QEP 65

QZ-LinerEP-Solver in hours

Time for reating and solving LEP (omega) 9 h

Looking at the omputation times of the various steps we an expet an immense aeler-

ation by the usage of sparse fatorizations, sparse matries and sparse matrix-operations.

The omparison of omputational requirments show that the SC-QZ-solver and the INM-

Arnoldi-solver are suited also for bigger problems.
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Rayleigh-damping and absorbing boundary onditions

The problem of Rayleigh-damping is not of big pratial need for these problem types, sine

the used piezoeletri substrates are nearly lossless. Moreover, if one wants to ahieve rea-

sonable results, one has to be aware of frequeny dependent Rayleigh-damping parameters,

whih are very triky to state. The main ause for posing the problem of Rayleigh-damping

in the problem formulation of this thesis is that Rayleigh-damping problem leads to om-

plex problems as the onsideration of absorbing boundary onditions (ABC) do. These

boundary onditions provide a possibility for modeling bulk wave radiation shown in the

dispersion diagram in Chapter 2. ABCs are not onsidered in the models used within this

thesis, but an expansion of the implemented solvers to these methods should be possible.

Absorbing boundary onditions of �rst and seond order are modeled in [14℄.



Chapter 8

Conlustions and Further Remarks

Within this thesis the full mahinary of mathematial problem solving was presented. We

started with the physial problem formulation. We stated a step-by-step mathematial

modeling using Floquet-Bloh theory for modeling periodi strutures, oupled �eld theory

due to the piezoeletri e�et and omplex problems due to damping e�et (or absorbing

boundary onditions). Three solution approahes, i.e. "Gamma-Given-Method" for pure-

propagating modes, SC-Method and INM-Method, were developed and analyzed. The

methods were developed within this thesis and therefore no referenes an be given. A om-

prehensive theory for algebrai eigenvalue problems were given and applied for onstruting

algorithms for solving the SC- and the INM-method with an ansatz to struture preserving

methods. Three di�erent solvers were implemented and ompared. Within numerial

experiments the inuene of periodi perturbations on dispersion diagrams were presented.

The work an diretly be ontinued in the following diretions:

� improve presented solvers by using sparse matrix operations

and with more mathematial work

� absorbing boundary onditions of arbitrary order

� or introduing in�nite elements in the disretization in order to model bulk wave

radiation.
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Appendix A

Material data used in simulation

We state the oeÆients of pratial matirials used in simulation of GSM-�lter. The data

are ited out of [18℄.

The oeÆient tensors are desribed in the form aording to

T = 

E

S � e

T

E

D = eS + "

S

E

with T =

2

6

6

6

6

6

6

4

T

xx

T

yy

T

zz

T

yz

T

xz

T

xy

3

7

7

7

7

7

7

5

; S =

2

6

6

6

6

6

6

4

S

xx

S

yy

S

zz

2 � S

yz

2 � S

xz

2 � S

xy

3

7

7

7

7

7

7

5

:

Piezoeletri materials used for piezoeletri substrate

LithiumNiobate (LiNbO

3

)

Mehanial sti�ness tensor



E

=

0

B

B

B

B

B

B

�

22:7965 6:519 6:519 0 0 0

6:519 19:8432 5:4775 0 �0:7884 0

6:519 5:4775 19:8432 0 0:7884 0

0 0 0 7:18285 0 �0:7884

0 �0:7884 0:7884 0 5:9645 0

0 0 0 �0:7884 0 5:9645

1

C

C

C

C

C

C

A

: 10

10

Newton=m

2

Piezoeletri oupling tensor

e =

0

�

�1:7847 �0:3062 �0:3062 0 0 0

0 0 0 �2:4365 0 �3:7159

0 �2:4365 2:4365 0 �3:7159 0

1

A
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Dieletri permittivity tensor

"

S

=

0

�

2:364245 0 0

0 4:106988 0

0 0 4:106988

1

A

: 10

�10

As=Vm

Density of material � = 4628kg=m

3

Lithium Tantanate, 0 deg ut (LiTaO

3

)

Mehanial sti�ness tensor



E

=

0

B

B

B

B

B

B

�

23:28 4:65 8:36 �1:05 0 0

4:65 23:28 8:36 1:05 0 0

8:36 8:36 27:59 0 0 0

�1:05 1:05 0 9:49 0 0

0 0 0 0 9:49 �1:05

0 0 0 0 �1:05 9:315

1

C

C

C

C

C

C

A

: 10

10

N=m

2

Piezoeletri oupling tensor

e =

0

�

0 0 0 0 2:64 �1:86

�1:86 1:86 0 2:64 0 0

�0:22 �0:22 1:71 0 0 0

1

A

Dieletri permittivity tensor

"

S

=

0

�

3:621286 0 0

0 3:621286 0

0 0 3:76295

1

A

: 10

�10

As=V m

Density of material � = 7454kg=m

3

Non-Piezoeletri material used for eletrodes

Aluminium (Al)

Mehanial sti�ness tensor



E

=

0

B

B

B

B

B

B

�

10:78 5:493 5:493 0 0 0

5:493 10:7800 5:493 0 0 0

5:493 5:493 10:78 0 0 0

0 0 0 2:645 0 0

0 0 0 0 2:645 0

0 0 0 0 0 2:645

1

C

C

C

C

C

C

A

: 10

10

N=m

2
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Piezoeletri oupling tensor (non-piezoeletri material)

e = e

T

= 0

Dieletri permittivity tensor

"

S

=

0

�

0:0885 0 0

0 0:0885 0

0 0 0:0885

1

A

As=Vm

Density of material � = 2700kg=m

3
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