
Numerical Analysis of Isogeometric Methods

Stefan Takacs

Winter semester 2018/19



ii



Contents

1 What is Isogeometric Analysis? 1

1.1 Isogeometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Univariate Splines and NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Spline functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Spline and NURBS curves . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Greville mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Multivariate splines and NURBS . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Tensor-product spline and NURBS functions . . . . . . . . . . . . . . 9

1.3.2 Spline and NURBS manifolds . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Isogeometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Isogeometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Isogeometric Galerkin methods . . . . . . . . . . . . . . . . . . . . . . 14

1.5.2 Isogeometric collocation methods . . . . . . . . . . . . . . . . . . . . . 20

1.6 Some conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Approximation error estimates 23

2.1 Univariate approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Interpolants for the Courant element and for the step function . . . . 23

2.1.2 A simple interpolant for splines . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 The Schumaker quasi-interpolant . . . . . . . . . . . . . . . . . . . . . 29

2.2 Multivariate approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Approximation on the parameter domain . . . . . . . . . . . . . . . . 30

2.2.2 Approximation in the physical domain . . . . . . . . . . . . . . . . . . 34

2.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 p-robust approximation error estimates 37

3.1 Estimates for polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



iv CONTENTS

3.2 Estimates for splines with low smoothness . . . . . . . . . . . . . . . . . . . . 40

3.3 Estimates for splines with maximum smoothness . . . . . . . . . . . . . . . . 42

3.3.1 A proof for the periodic case . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 A proof for the non-periodic case . . . . . . . . . . . . . . . . . . . . . 49

3.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Inverse inequalities 51

4.1 Some inverse inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The spectrum of the splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Why inverse inequalities show sharpness of approximation error estimates (and

vice versa)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Assembling matrices in IgA 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Element-wise quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Inexact quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Assembling costs and sum factorization . . . . . . . . . . . . . . . . . . . . . 67

5.5 Weighted quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Low-tensor-rank quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 An algebraic low-tensor-rank quadrature . . . . . . . . . . . . . . . . . . . . . 75

5.8 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Adaptive discretizations in Isogeometric Analysis 77

6.1 Error estimates for locally refined spaces . . . . . . . . . . . . . . . . . . . . . 78

6.2 THB-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 T-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Index T-mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.2 T-mesh and T-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.3 Dual-compatible T-splines . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Linear solvers for Isogeometric Analysis 87

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Cholesky factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 (Preconditioned) conjugate gradient method . . . . . . . . . . . . . . . . . . . 90

8 Low-tensor-rank solvers 93



CONTENTS v

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2 Parameter domain preconditioners . . . . . . . . . . . . . . . . . . . . . . . . 93

8.3 Preconditioners for the physical domain . . . . . . . . . . . . . . . . . . . . . 96

8.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 Multigrid for Isogeometric Analysis 97

9.1 What is multigrid? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2 An abstract multigrid framework . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.3 Hackbusch like convergence analysis . . . . . . . . . . . . . . . . . . . . . . . 102

9.4 Multigrid solvers for Isogeometric Analysis . . . . . . . . . . . . . . . . . . . . 105

9.4.1 Jacobi and (symmetric) Gauss-Seidel smoothers . . . . . . . . . . . . . 107

9.4.2 Subspace corrected mass smoother . . . . . . . . . . . . . . . . . . . . 109

9.5 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10 Multi-patch Isogeometric Analysis 113

10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10.2 Conforming discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.3 Non-conforming discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



vi CONTENTS



Chapter 1

What is Isogeometric Analysis?

1.1 Isogeometric Analysis

First of all, Isogeometric Analysis (IgA) is a method to approximate the solution of a partial

differential equation (PDE), like the finite element method (FEM).

IgA was originally proposed in the year 2005 by T. Hughes, J. A. Cottrell and Y. Bazilevs

in the paper [1] and has gained much interest since then. Due to Elsevier, this paper has

been cited 2151 times (as of 1 Oct 2018)1.

IgA is an abbreviation for Isogeometric Analysis:

• Iso (Greek) means equal. This indicates that the same basis functions are used for

geometry transformation and as ansatz functions, i.e., that we use an isoparametric

discretization. We will see later that this requirement can be dropped.

• Geometric (Greek) means originally measuring the earth. It indicates the original

design goal of IgA to bring together both the world of computer aided design (CAD)

and the world of finite element simulation.

• Analysis means that the method was invented by engineers. They also say Finite

Element Analysis (FEA) instead of Finite Element Method (FEM). So, this means

that IgA is a method for the numerical solution of PDEs. Depending of the viewpoint,

IgA is a generalization of FEM or a variant of FEM.

The main aims of IgA are:

1. Better connection between computer aided design (CAD) and finite element (FEM)

simulation. The classical approach in FEM requires meshing the domain. IgA tries

to avoid this. (We will come to this part later). In many cases, we can represent

the geometry exactly in IgA (like circles), while in FEM the domain is often only

approximated and refinement is also done to get a better representation of the geometry.

2. IgA is a high-order discretization with fewer degrees of freedom than classical high-

order FEM. As the solutions of PDEs are often smooth (at least in the interior of the

domain), it is appropriate to choose smooth ansatz functions.

1see https://www.sciencedirect.com/science/article/pii/S0045782504005171

1

https://www.sciencedirect.com/science/article/pii/S0045782504005171
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Consider in 1D a domain Ω = (0, 1), which is subdivided into n subintervals. For

standard low-order FEM, we use globally C0, piecewise linear functions. This function

space has n+ 1 degrees of freedom, cf. Fig. 1.1. For standard high-order FEM, we use

globally C0, piecewise polynomials of degree p. This function space has np+ 1 degrees

of freedom, cf. Fig. 1.4. For standard IgA, we use globally Cp−1, piecewise polynomials

of degree p. This function space has n+ p degrees of freedom, cf. Fig. 1.2.

1.2 Univariate Splines and NURBS

1.2.1 Spline functions

Let p and n be positive integers. We call

Ξ := (ξ1, . . . , ξn+p+1)

a p-open knot vector if

ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1

and

ξj < ξj+p for all j ∈ {2, . . . , n}.

For the univariate case, we can choose without loss of generality ξ1 = 0 and ξn+p+1 = 1.

For each knot vector, we find the corresponding vectors of break points and multiplicities

(and vice versa).

We call

Z = (ζ1, . . . , ζN )

the vector of breakpoints and

M = (m1, . . . ,mN )

the vector of multiplicities if

Ξ = ( ζ1, . . . , ζ1︸ ︷︷ ︸
m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, · · · , ζN , . . . , ζN︸ ︷︷ ︸
mN times

).

Simple calculations yield

N∑
i=1

mi = n+ p+ 1 and 0 < mi ≤ p+ 1 for all mi = 1, . . . , N.

The vector of breakpoints Z forms a partition of Ω = (ζ1, ζN ), which we also call a mesh

consisting of the elements Ii = (ζi, ζi+1). We call

hi := ζi+1 − ζi

the local grid size and

h = max
i=1,...,N−1

hi (1.1)

the global grid size.

The B-spline basis functions are defined via the Cox-de Boor formula.
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Definition 1.1. Let Ξ be an p-open knot vector. For q = 0 and i = p+ 1, . . . , n, we define

B̂i,0,Ξ(x) =

{
1 if ξi ≤ x < ξi+1

0 otherwise
.

For q = 1, . . . , p and i = p− q + 1, . . . , n, we define recursively

B̂i,q,Ξ(x) =
x− ξi
ξi+q − ξi

B̂i,q,Ξ(x) +
ξi+q+1 − x
ξi+q+1 − ξi+1

B̂i,q−1,Ξ(x).

Note that for q := p, the indices are i = 1, . . . , n. Thus, n is the number of basis functions.

Remark 1.2. If the denominator is 0, we can derive that also the corresponding B-spline

vanishes (ξi+p − ξi ⇒ B̂i,p−1 = 0 and ξi+p+1 − ξi+1 ⇒ B̂i,p−1 = 0). So, we obtain terms 0
0 .

We define them to be 0.

Often, we are interested in the equidistant case. For 1/h ∈ N, we define

Ξ(p, k, h) := ( 0, · · · , 0︸ ︷︷ ︸
p+1 times

, h, · · · , h︸ ︷︷ ︸
p−k times

, 2h, · · · , 2h︸ ︷︷ ︸
p−k times

, · · · , (h−1 − 1)h, · · · , (h−1 − 1)h︸ ︷︷ ︸
p−k times

, 1, · · · , 1︸ ︷︷ ︸
p+1 times

)

and

B̂i,p,k,h := B̂i,p,Ξ(p,k,h) and B̂i,p,h := B̂i,p,p−1,h.

The B-splines have the following properties:

• Non negativity:

B̂i,p,Ξ(x) ≥ 0 for all x ∈ Ω. (1.2)

• Partition of unity:
n∑
i=1

B̂i,p,Ξ(x) = 1 for all x ∈ Ω. (1.3)

• Bounded support:

supp B̂i,p,Ξ = [ξi, ξi+p+1],

where supp f = {x : f(x) 6= 0} and M is the closure of M .

• The B-splines [B̂i,p,Ξ]ni=1 form a basis of the space Sp,Ξ(0, 1), given as follows.

Definition 1.3. The spline space Sp,Ξ(0, 1) is the space of all functions v such that (a)

v|Ii ∈ Pp,

i.e., the restriction of v to an element Ii = (ζi, ζi+1) is in Pp, the space of polynomials of

degree (at most) p, and (b)

lim
x→ζ+

i

∂j

∂xj
v(x) = lim

x→ζ−i

∂j

∂xj
v(x) for all j = 0, . . . , ki := p−mi,

i.e., the function value and the derivatives (up to order ki) agree on the break points. We

call

K = (k1, . . . , kN ) = p−M

the vector of continuities.
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Obviously, we have k1 = kN = −1 and 0 ≤ k1, . . . , kN−1 < p.

As for the B-spline basis functions, we define the equidistant spline spaces:

Sp,k,h(0, 1) := Sp,Ξ(p,k,h) and Sp,h(0, 1) := Sp,p−1,h(0, 1).

• Bounded dependence on knots: The definition of a B-spline B̂i,p,Ξ only depends on the

values of the following p+ 2 knots, which form the local knot vector :

Ξ(B̂i,p,Ξ) := (ξi, . . . , ξi+p+1).

For any interval Ij = (ζj , ζj+1), we define the support extension

Ĩj := int
( ⋃
l=1,...,n : supp B̂l,p,Ξ∩Ij 6=∅

supp B̂l,p,Ξ

)
, (1.4)

where int M is the interior of M . If i is such that Ij = (ξi, ξi+1), then

Ĩj = (ξi−p, ξi+p+1).

Lemma 1.4. Assume that Ξ = (ξ1, . . . , ξn+p+1) is a p-open knot vector and that Ξ′ =

(ξ2, . . . , ξn+p) is a (p− 1)-open knot vector. Then, the derivative of a spline satisfies

d

dx
B̂i,p,Ξ(x) =

p

ξi+p − ξi
B̂i,p−1,Ξ′(x)− p

ξi+p+1 − ξi+1
B̂i+1,p−1,Ξ′(x).

This shows d
dxB̂i,p,Ξ ∈ Sp−1,Ξ′(0, 1).

The mapping
d

dx
: Sp,Ξ(0, 1)→ Sp−1,Ξ′(0, 1)

is surjective. The mapping

d

dx
: Sp,Ξ(0, 1)\R→ Sp−1,Ξ′(0, 1) (1.5)

is bijective, where

Sp,Ξ(0, 1)\R =

{
v ∈ Sp,Ξ(0, 1) :

∫
Ω
v(x) dx = 0

}
.

Examples of B-spline bases:

• For p = 1, we obtain that all basis functions are interpolatory, i.e., each basis function

is 1 at its center and all other basis functions are 0 there.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.1: Splines of degree 1
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• For p = 2 without repeated knots (i.e., multiplicity 1 everywhere), we obtain that only

the basis functions on the boundary are interpolatory.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.2: Splines of degree 2 without repeated knots

• For p = 2 with one repeated knot at 2/5 (multiplicity 2), we obtain that the basis

functions on the boundary and at 2/5 are interpolatory.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.3: Splines of degree 2 with one repeated knot at 2/5

• For p = 2 and only C0-smoothness (which is the same as to have multiplicity 2 every-

where), we obtain for every knot one interpolatory basis function.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.4: Splines of degree 2 with one repeated knots

This is a general rule: The B-splines are interpolatory on the boundary and everywhere in

the interior where the multiplicity is p.

Based on the B-spline basis, we associate any function uh ∈ Sp,Ξ(0, 1) with its vector repre-

sentation:

uh = (u1, . . . , un) such that uh(x) =

n∑
i=1

uiB̂i,p,Ξ(x).
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1.2.2 Spline and NURBS curves

Let control points C = (c1, . . . , cn) with ci ∈ Rd with d ∈ {2, 3} be given. The polygon

(c1, . . . , cn) is called the control polygon.

c1

c2
c3

c4

c5

c6
c7

c8

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1.5: Spline curve

A spline curve is given by

c(x) =

n∑
i=1

ciB̂i,p,Ξ(x).

A spline curve is characterized by p, Ξ and C.

The spline curve has the following property:

• Convex hull property: The curve lies in the union of the convex hulls of all p + 1

consecutive control points:

c(x) ∈
n−p⋃
i=1

convex-hull{ci, . . . , ci+p} for all x.

Moreover, on the endpoints and on each knot where we have only C0 smoothness (this

is the same as multiplicity p− 1), the curve is interpolatory, cf. Fig. 1.5, where p = 2

and Ξ = (0, 0, 0, 1/5, 2/5, 2/5, 3/5, 4/5, 1, 1, 1). That spline curve is interpolatory at c4.

The construction of B-spline curves does not allow the construction of conic curves (except

parabola). Conic curves can be represented by rational functions, which leads us to NURBS

(non-uniform rational B-splines).

A rational curve is given by

c(x) =
1

w(x)
c̃(x),

where c̃(x) is a B-spline curve and the weight function w(x) is a B-spline function.

Using this approach, we can represent a circle via

w(x) = 1 + x2, c̃(x) = (1− x2, 2x).

Note that in this example, the chosen “splines” are just polynomials.
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This motivates the use of NURBS. For a given p-open knot vector and given weights W =

(w1, . . . , wn), we define the weight function

w(x) =
n∑
j=1

wjB̂j,p,Ξ(x)

and the NURBS basis functions

N̂i,p,Ξ,W (x) =
wiB̂i,p,Ξ(x)∑n
j=1wjB̂j,p,Ξ(x)

.

Note that we use the coefficients wi also in the numerator. This is done to preserve the

property that the basis functions form a partition of unity.

The NURBS space is given by

N̂p,Ξ,W (0, 1) := span {N̂1,p,Ξ,W , . . . , N̂n,p,Ξ,W }.

Based on this definition of the NURBS function space, we can define NURBS curves com-

pletely analogous to spline curves:

c(x) =
n∑
i=1

ciN̂i,p,Ξ,W (x).

A NURBS curve is characterized by p, Ξ, C and W .

Remark 1.5. Each NURBS curve c in Rd is the central projection of a spline curve

c̃(x) =

(
ci
wi

)
B̂i,p,Ξ(x)

in Rd+1 to the plane Rd × {1}.

1.2.3 Refinement

The goal of refinement is to be able to represent a function or curve of interest better.

1.2.3.1 h-refinement / knot insertion

Let Ξ = (ξ1, . . . , ξn+p+1) be a knot vector and ξ ∈ [ξj , ξj+1) be a knot to be inserted. Then,

the updated knot vector is

Ξ = (ξ1, . . . , ξj , ξ, ξj+1, . . . , ξn+p+1)

and we assume that ξ is chosen such that we still have a p-open knot vector. We have

B̂i,p,Ξ(x) = αiB̂i,p,Ξ(x) + (1− αi+1)B̂i+1,p,Ξ(x),

where

αi =


1 for i = 1, . . . , j − p
ξ−ξj

ξj+p−ξj for i = j − p+ 1, . . . , j

0 for i = j + 1, . . . , n+ 1.

So, all original B-splines can be represented by the refined ones.
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Remark 1.6. When ξ is equal to ξj, the knot insertion corresponds to the reduction of the

smoothness at that point.

Having a B-spline function

uh(x) =
n∑
i=1

uiB̂i,p,Ξ(x),

we obtain the coefficients ui such that

uh(x) =

n+1∑
i=1

uiB̂i,p,Ξ(x)

via

 u1
...

un+1

 =



1
. . .

1

αj−p+1

1− αj−p+1 αj−p+2

1− αj−p+2
. . .
. . . αj

1− αj
1

. . .

1



 u1
...
un

 .

1.2.3.2 p-refinement

The term p-refinement refers to increasing the spline degree p by 1, while keeping the conti-

nuities fixed or, in other words, increasing all multiplicities by 1.

Such a refinement corresponds to classical high-order FEM.

p-refinement is again a refinement, so the original space is a subset of the spline space

obtained by p-refinement. All functions can be represented with the new basis functions.

1.2.3.3 k-“refinement”

The term k-“refinement” refers to increasing the spline degree p by 1, while keeping the

multiplicities fixed or, in other words, increasing the smoothness by 1.

k-“refinement” is not a refinement in the classical sense: This approach yields a completely

new function space.

1.2.4 Greville mesh

Let Ξ be a p-open knot vector. For each B-spline basis function B̂i,p,Ξ, we associate a Greville

point

γi,p,Ξ :=
ξi+1 + . . .+ ξi+p

p
for i = 1, . . . , n.
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The Greville points are the coefficients of the linear function u(x) = x:

x =

n∑
i=1

γi,p,ΞB̂i,p,Ξ(x).

The Greville points are distinct:

γi,p,Ξ < γi+1,p,Ξ.

We can associate the Greville points to the basis functions:

γi,p,Ξ ↔ B̂i,p,Ξ.

The Greville points form a partition of Ω (Greville mesh)

Mp,Ξ = (γ1,p,Ξ, . . . , γn,p,Ξ).

Given a spline (or NURBS) curve with control points C = (c1, . . . , cn), the control polygon

is given by

d(x) =
n∑
i=1

ciB̂i,p,M̃(x),

where the functions B̂
i,p,M̃ are the piecewise linear functions defined on the Greville mesh

M and M̃ = (γ1,p,Ξ, γ1,p,Ξ, γ2,p,Ξ, . . . , γn,p,Ξ, γn,p,Ξ) is the corresponding 1-open knot vector.

When applying knot insertion, the corresponding control polygon converges to the curve. If

c ∈ C2(0, 1), then

sup
x∈(0,1)

|c(x)− d(x)| ≤ Ch2 sup
x∈(0,1)

|c′′(x)|,

where C is independent of h.

1.3 Multivariate splines and NURBS

Multivariate splines are simply defined as tensor-products of univariate splines.

1.3.1 Tensor-product spline and NURBS functions

Let d ∈ {2, 3} be the spatial dimension. For every ` = {1, . . . , d}, let Ξ` = (ξ`,1, . . . , ξ`,n`+p`+1)

be a p`-open knot vector for some p` and some n`.

Define

p = (p1, . . . , pd)

to be a multi-index of spline degrees and

Ξ = Ξ1 × · · ·Ξd = {(ξ1, . . . , ξd) : ξ` ∈ Ξ`}

to be a multivariate knot vector.

The B-spline basis functions are defined by their tensor product:

B̂i,p,Ξ(x) = B̂i1,p1,Ξ1(x1) · · · B̂id,pd,Ξd(xd), (1.6)
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where i = (i1, . . . , id) and p = (p1, . . . , pd) are multi-indices and the functions B̂iδ,pδ,Ξδ(xδ)

are univariate B-splines. The spline function space is given by

Ŝp,Ξ(Ω̂) = span {B̂i,p,Ξ : i ∈ I}. (1.7)

For the equidistant case, we again use the notation

B̂i,p,k,h(x) = B̂i1,p1,k1,h1(x1) · · · B̂id,pd,kd,hd(xd) and B̂i,p,h(x) = B̂i,p,p−1,h(x)

and the analogous notation for the spline space. If we choose the spline degree p to be a

scalar p, we always mean p = (p, · · · , p). The same holds for the continuity k and the grid

size h.

We define I to be the set of all possible multi-indices:

I = {(i1, . . . , id) : iδ ∈ Iδ = {1, . . . , Nδ}}.

It is of importance for any implementation, to define a lexicographical ordering. So, we

denote the spline B̂i,p,Ξ also as spline B̂i,p,Ξ, where

i =

d∑
`=1

`−1∏
j=1

nj

 (i` − 1) + 1. (1.8)

For d = 3, this yields i = i1 + n1(i2 − 1) + n1n2(i3 − 1). Note that this formula introduces a

bijective mapping

i↔ i with {1, . . . , n1} × · · · × {1, . . . , nd} ↔ {1, . . . , n1 · · ·nd}.

Analogously to the univariate case, we introduce the following concepts.

• The tensor-product

Z = Z1 × · · ·Zd
of breakpoints forms a Cartesian grid in the parameter domain Ω̂ = (0, 1)d, giving the

Bézier mesh

M̂ = {Qj = I1,j1 × · · · × Id,jd : I`,j` = (ζ`,j` , ζ`,j`+1) for 1 ≤ j` ≤ N` − 1}.

• For a generic Bézier element Qj ∈ M̂, we also define its support extension:

Q̃j := Ĩ1,j1 × · · · × Ĩd,jd ,

where the objects Ĩδ,jδ are the univariate support extensions, cf. (1.4).

• The Greville points are defined by:

γi,p,Ξ = (γi1,p1,Ξ1 , · · · , γid,pd,Ξd).

Again, the Greville points allow the representation of the linear function:

x =
∑
i∈I

γi,p,ΞB̂i,p,Ξ(x),

where both x and γi,p are vectors.
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Multivariate NURBS are defined as rational tensor-product B-splines. Assume weights wi ∈
R to be given for all multi-indices i ∈ I. The weight function is given by

w(x) =
∑
j∈I

wjB̂j,p,Ξ(x)

Now, the NURBS basis functions are given by:

N̂i,p,Ξ,W (x) =
wiB̂i,p,Ξ(x)∑
j∈IwjB̂j,p,Ξ(x)

.

Note that the multivariate NURBS functions are not tensor-products of the univariate

NURBS functions. (They where if we would have assumed wi to have tensor product struc-

ture, i.e., that there were coefficients wδ,iδ such that wi = w1,i1 · · ·wd,id .)
The NURBS function space is given by

N̂p,Ξ,W (Ω̂) = span {N̂i,p,Ξ,W : i ∈ I}.

The refinement algorithms of knot insertion and degree elevation can be generalized to the

multivariate splines and NURBS:

• Refinements always apply to one of the spatial dimensions: There we just apply the

corresponding algorithm to the B-spline basis.

• The control points and/or weights are chosen such that the manifold/weight function

stays the same.

Typically, if we speak about refinement, we mean to apply it with respect to all spacial

dimensions.

In practice, we might have implementations, where we do not compute weights corresponding

to fine degrees. If we just need to evaluate the weight function, we can do the evaluation

also based on the basis functions for the original (coarse) grid.

1.3.2 Spline and NURBS manifolds

As for the curves, we can new define spline parameterizations of multivariate geometries in

Rm as follows. Assume that control points ci ∈ Rm are given. The manifold is given by

F (x) =
∑
i∈I

ciB̂i,p,Ξ(x),

where x ∈ Ω̂ = (0, 1)d. (For NURBS manifolds, just replace B̂i,p,Ξ by N̂i,p,Ξ,W ).

We always choose m ≥ d:

• d = 1: curve in space (m = 3) or in the plane (m = 2) or just a parameterization of

an univariate quantity (m = d = 1).

• d = 2: surface in space (m = 3) or in the plane (m = 2).
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• d = 3: volume in space (m = 3).

We can define again the control mesh (analogously to the control polygon).

We define Bézier mesh on the physical domain Ω to be the F -image of the (open) elements

in M̂:

F (M̂) = {Q ⊂ Ω : K = F (Q̂) : Q̂ ∈ M̂}.

The Bézier mesh should not be confused with the Greville meshM, obtained by connecting

the images of the Greville points, cf. Fig. 1.6.

Parameter domain Physical domain

Greville mesh M

Bezier mesh F(M)

Greville mesh M

^

^´

Figure 1.6: Multivariate parameterization

Let ĥ be the grid size on the parameter domain Ω̂:

ĥ = max
Q∈M̂

ĥQ and ĥQ = diam Q.

Let h be the grid size on the physical domain Ω:

h = max
Q∈M

hQ and hQ = diam Q.

The following assumption guarantees ĥ
Q̂
h hQ:

Assumption 1.7. The parameterization F : Ω̂→ Ω satisfies

‖∇F‖
L∞(Ω̂)

≤ C and ‖(∇F )−1‖
L∞(Ω̂)

≤ C.

The assumption prevents the existence of singularities in F , cf. Fig. 1.7 and 1.8



1.4. ISOGEOMETRIC FUNCTIONS 13

Figure 1.7: A singular parameterization

Figure 1.8: A non-singular parameterization

1.4 Isogeometric functions

Assume to have a NURBS or B-spline parameterization of the domain of interest (physical

domain Ω):

F : Ω̂ = (0, 1)d → Ω ⊂ Rm.

We define on Ω functions as follows (pull-back principle):

Vh := {f ◦ F−1 : f ∈ V̂h},

where V̂h is the corresponding function space on the parameter domain Ω̂. So, we might

choose

V̂h := N̂p,Ξ,W (Ω̂) or V̂h := Ŝp,Ξ(Ω̂)

The basis for the space Vh is also given by the pull-back principle:

Ni,p,Ξ,W = N̂i,p,Ξ,W ◦ F−1 or Bi,p,Ξ = B̂i,p,Ξ ◦ F−1. (1.9)

1.5 Isogeometric Analysis

Now, we can formally introduce Isogeometric Analysis. Usually, we consider Galerkin meth-

ods. An alternative are collocation methods, which we will introduce in the second subsec-

tion.
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1.5.1 Isogeometric Galerkin methods

1.5.1.1 Model problem

We restrict ourselves to partial differential equations of second order. Consider the following

model problem, which is known as the Poisson problem or the Laplace equation.

For a given function f , find the unknown function u such that the PDE

−∆u = f in Ω,

is satisfied. We can generalize everything we present to other differential operators and to

systems of differential equations.

To make the solution unique, we have to impose boundary conditions:

• Dirichlet boundary conditions:

u = gD on ΓD,

where gD is a given function.

• Neumann boundary conditions:

∂u

∂n
= gN on ΓN ,

where gN is a given function and ∂u
∂n denotes the partial derivative in the direction of

the outer normal vector.

• Robin boundary conditions:

αu+ β
∂u

∂n
= gR on ΓR,

where gR is a given function and α > 0 and β > 0 are given coefficients.

We have boundary conditions everywhere, i.e.,

∂Ω = ΓD ∪ ΓN ∪ ΓR,

where ∂Ω denotes the boundary of Ω, and we only have one boundary condition everywhere,

i.e.,

Γi ∩ Γj = ∅ for i, j ∈ {D,N,R} with i 6= j.

Remark 1.8. For pure Neumann boundary conditions (ΓN = ∂Ω), we do not have a unique

solution, because the constant functions are in the null-space. So, in this case, we have to

require ∫
Ω
udx = 0

to obtain uniqueness. Moreover, we have to require∫
Ω
f dx = 0

to obtain existence of a solution.

The combination of the PDE and the boundary conditions is called a boundary value problem

(BVP).
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1.5.1.2 Variational formulation

To obtain a Galerkin discretization, we first have to set up a variational formulation. First,

we multiply the PDE with a test function v and integrate over Ω. Now the problem reads

as follows.

Find u ∈ V such that ∫
Ω
−∆u(x)v(x) dx =

∫
Ω
fv(x) dx

for all test functions v ∈ V . The choice of the function space V is discussed below.

Now, we apply integration by parts and obtain∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂

∂n
u(x)v(x) ds(x) =

∫
Ω
fv(x) dx

for all test functions v.

Now, we choose as follows:

u ∈ Vg = {u ∈ V : u = gD on ΓD},

v ∈ V0 = {v ∈ V : v = 0 on ΓD},

i.e., the ansatz functions u satisfy the Dirichlet boundary conditions and the test functions

v satisfy the homogenous version of the Dirichlet boundary conditions.

Using this choice and using the Neumann and Robin boundary conditions, we obtain∫
Ω
∇u · ∇v dx−

∫
ΓD

∂

∂n
u(x) v(x)︸︷︷︸

= 0

ds(x)−
∫

ΓN

∂

∂n
u(x)︸ ︷︷ ︸

= gN

v(x) ds(x)

−
∫

ΓR

∂

∂n
u(x)︸ ︷︷ ︸

= β−1gR − αβ−1u

v(x) ds(x) =

∫
Ω
fv(x) dx.

So, the problem now reads as follows.

Problem 1.9. Find u ∈ Vg such that

a(u, v) = 〈f, v〉

holds for all v ∈ V0, where

a(u, v) :=

∫
Ω
∇u · ∇v dx+

α

β

∫
ΓR

uv(x) ds(x),

〈f, v〉 :=

∫
Ω
fv(x) dx−

∫
ΓN

gNv(x) ds(x)− 1

β

∫
ΓR

gRv(x) ds(x).

The function spaces can be chosen as follows. Define the Lebesgue space L2(Ω) to be

L2(Ω) :=
{
u :

∫
Ω
u(x)2 dx <∞

}
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and the corresponding norm by

‖u‖L2(Ω) :=

(∫
Ω
u(x)2 dx

)1/2

.

The term ‖ · ‖L2(Ω) is a norm if and only if we consider functions that differ only on a set

of measure 0 as being equivalent, cf. courses on functional analysis (Sobolev spaces) and

numerics of PDEs.

The norm ‖ · ‖L2(Ω) is a Hilbert space norm, so there is a corresponding scalar product

(u, v)L2(Ω) =

∫
Ω
u(x)v(x) dx.

such that ‖u‖L2(Ω) = (u, u)
1/2
L2(Ω).

Now, define the Sobolev space H1(Ω) to be

H1(Ω) := {u : u ∈ L2(Ω) and ∇u ∈ L2(Ω)}

and the corresponding seminorm norm by

|u|H1(Ω) := ‖∇u‖L2(Ω) =

(
d∑
i=1

∥∥∥ ∂

∂xi
u
∥∥∥2

L2(Ω)

)1/2

.

We can also define a norm via

‖u‖H1(Ω) :=
(
‖u‖2L2(Ω) + |u|2H1(Ω)

)1/2
.

Again, we have a scalar product

(u, v)H1(Ω) := (∇u,∇v)L2(Ω) :=
d∑
i=1

( ∂

∂xi
u,

∂

∂xi
v
)
L2(Ω)

such that |u|H1(Ω) = (u, u)
1/2
H1(Ω)

.

If we have a close enough look onto the variational problem (cf. numerics of PDEs), we

obtain that we should use

V = H1(Ω).

For this choice and using suitable assumptions (cf. numerics of PDEs), we can show that

the variational formulation Problem 1.9 and the original formulation (strong formulation)

are equivalent. Note that so far we did not deviate from standard finite elements.

Some remarks:

• Neumann boundary conditions are basically a special case of the Robin boundary

conditions (for α = 0, β = 1).

• Dirichlet boundary conditions are not a special case of the Robin boundary conditions

(for α = 1, β = 0), because we cannot divide by 0. But, we can choose β to be a very

small number, as an approximation (→ Nitsche method).
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• Boundary conditions that are enforced by choosing the space (in our case: Dirichlet)

are called essential boundary conditions, the other ones (in our case: Neumann, Robin)

are called natural boundary conditions.

• Dirichlet boundary conditions can be imposed strongly using the open knot vector

setting. Here, we use that exactly one basis function is nonzero on the boundary, cf.

Fig 1.9.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.9: Splines of degree 2 without repeated knots

So, we might just eliminate that basis function.

In two or more dimensions, we can basically do the same. However, in general, it is

not possible to enforce non-homogenous Dirichlet boundary conditions exactly.

1.5.1.3 Homogenization

For the theory, we observe that we can homogenize the variational problem using the following

ansatz:

u = u∗ + u0,

where we choose one fixed u∗ ∈ Vg and use u0 ∈ V0. Then, the variational problem reads as

follows.

Problem 1.10. Find u ∈ V0 such that

a(u, v) = 〈f0, v〉

holds for all v ∈ V0, where

〈f0, v〉 := 〈f, v〉 − a(u∗, v)

is a linear functional.

1.5.1.4 Existence and uniqueness

Existence and uniqueness of the solution is guaranteed by the Lax Milgram theorem.

Theorem 1.11. If a is bounded, i.e.,

a(u, v) ≤ µ‖u‖V ‖v‖V for all u, v ∈ V0,
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and coercive, i.e.,

a(v, v) ≥ µ‖v‖2V for all v ∈ V0,

and f is bounded, i.e.,

〈f, v〉 ≤ c‖v‖V for all v ∈ V0,

then the problem,

find u ∈ V0 such that a(u, v) = 〈f, v〉 for all v ∈ V0, (1.10)

has exactly one solution.

This theorem is applicable to our model problem.

1.5.1.5 Discretization

So far, we are still in the original function space (which has infinitely many degrees of

freedom). To be able to compute something, we have to discretize the problem: We replace

the space V by some space Vh (or, equivalently, V0 by V0,h = V0 ∩ Vh).

Conforming discretization: We choose Vh ⊂ V .

Galerkin principle: We use the same subspace for the ansatz functions and the test functions:

Find uh ∈ V0,h such that a(uh, vh) = 〈f, vh〉 for all vh ∈ V0,h. (1.11)

Note that uh is the a-orthogonal projection of u into V0,h, i.e.,

a(u− uh, vh) = 0 for all vh ∈ V0,h.

As we have a conforming Galerkin discretization, the conditions of the Lax Milgram theorem

carry over to Vh (or Vh,0), so we have again existence and uniqueness.

1.5.1.6 Error estimates

Ceá’s Lemma allows to estimate the error.

Lemma 1.12. Assume that a and f satisfy the conditions of the Lax Milgram theorem. Let

u be the solution of the original problem (1.10) and uh be the solution of the discretized

problem (1.11). Then, we have

‖u− uh‖V ≤
µ

µ
inf

vh∈Vh
‖u− vh‖V ,

i.e., we can bound the discretization error ‖u−uh‖V by a constant times the approximation

error infvh∈Vh ‖u− vh‖V .

This motivates approximation error estimates (see Chapters 2 and 3). We will see, that we

can bound

inf
vh∈Sp,Ξ(Ω)

‖u− vh‖H1(Ω) ≤ C(p,Ξ, r, F )hr−1|u|Hr(Ω),

with 1 ≤ r ≤ minδ pδ + 1.
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The Sobolev space Hr(Ω) is given by

Hr(Ω) =
{
u :

∂l1+···+ld

∂xl11 · · · ∂x
ld
d

u ∈ L2(Ω) for all l = (l1, . . . , ld) ∈ (Z+
0 )d such that |l| ≤ r

}
,

where |l| := l1 + · · ·+ ld. The corresponding seminorm is given by

|u|Hr(Ω) =

 ∑
l∈(Z+

0 )d:|l|=r

∥∥∥ ∂l1+···+ld

∂xl11 · · · ∂x
ld
d

u
∥∥∥2

L2(Ω)

1/2

and the corresponding seminorm is given by

‖u‖Hr(Ω) =

 ∑
l∈(Z+

0 )d:|l|≤r

∥∥∥ ∂l1+···+ld

∂xl11 · · · ∂x
ld
d

u
∥∥∥2

L2(Ω)

1/2

.

1.5.1.7 Regularity

Having such approximation error estimates motivates the next question: How large is ‖u‖Hr(Ω)?

If ‖u‖Hr(Ω) =∞, the above result would be pointless.

There are many regularity results. Important examples are:

• If Ω ⊂ R2 is convex polygonal domain, and all boundary conditions are of the same

type, and Ω is simply connected, and f ∈ L2(Ω), and gD = gN = gR = 0, and ..., then

u ∈ H2(Ω).

• If Ω ⊂ R2 has a sufficiently smooth boundary, and all boundary conditions are of the

same type, and Ω is simply connected, and f ∈ L2(Ω), and gD = gN = gR = 0, and ...,

then u ∈ H2(Ω).

There are many more special cases, where u ∈ H2(Ω) can be shown. In all cases, we have

the following kind of result:

‖u‖H2(Ω) ≤ c‖f‖L2(Ω).

We cannot hope for results for more than H2. If H2-regularity does not hold, we might at

least hope for some result u ∈ H1+s(Ω) with s ∈ (0, 1).

In the interior of the open domain Ω, we have everything we want. Let Ω0 be an open

domain such that Ω0 ⊂ Ω, then

f ∈ Hr(Ω)⇒ u|Ω0 ∈ Hr+2(Ω0),

where u|Ω0 is the restriction of u to Ω0.

1.5.1.8 Matrix-vector formulation

The next step is the reformulation of the problem in a matrix-vector formulation. We make

the following ansatz:

uh(x) =
N∑
i=1

uiϕi(x), and vh(x) =
N∑
i=1

viϕi(x),
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where the functions ϕi are the B-spline or NURBS basis functions (1.9), ordered in a lexico-

graphical ordering (1.8).

We obtain
N∑
i=1

N∑
j=1

uivja(ϕi, ϕj) =
N∑
j=1

vj〈f, ϕj〉.

By defining

• the solution vector uh := (u1, . . . , uN ),

• the test function vector vh := (v1, . . . , vN ),

• the load vector f
h

:= [〈f, ϕi〉]Ni=1, and

• the stiffness matrix Ah := [a(ϕi, ϕj)]
N
i,j=1,

the above linear system reads as follows

vThAhuh = vTh fh for all vh ∈ RN

or just

Ahuh = f
h
. (1.12)

Note that uh and f
h

have a completely different definition.

The linear system has the following properties:

• It is large scale.

• The matrix Ah is sparse: It has only O((1 + 2p)d) elements per row.

• Ah is symmetric and positive definite (as a(·, ·) has been symmetric and coercive).

• For solving the problem, we have to do particularly the following steps:

– Compute the entries of Ah and f
h
.

– Solve the linear system (1.12).

1.5.2 Isogeometric collocation methods

Isogeometric collocation methods are an alternative to Galerkin methods.

Consider only the univariate case. The model problem reads as follows

−u′′(x) = f(x)

for x ∈ (0, 1) and we assume to have Dirichlet boundary conditions u(0) = u(1) = 0.

We discretize the problem as follows: We replace u by a spline function uh ∈ Sp,Ξ(0, 1) and

require

−u′′h(xi) = f(xi)

for some collocation points (xi)
n−1
i=2 and uh(0) = uh(1) = 0. The number of collocation points

plus the number of boundary conditions has to coincide with the number of basis functions.
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We can – as for the Galerkin approach – make an ansatz

uh(x) =

n∑
i=1

uiB̂i,p,Ξ(x)

and obtain

n∑
j=1

ujB̂
′′
j,p,Ξ(xi) = f(xi) for all i = 2, . . . , n− 1,

n∑
j=1

ujB̂j,p,Ξ(0) = 0,

n∑
j=1

ujB̂j,p,Ξ(1) = 0.

As the spline functions are interpolatory on the boundary, the second two lines simplify to

u1 = 0 and un = 0. So, the overall problem simplifies to

n−1∑
j=2

ujB̂
′′
j,p,Ξ(xi) = f(xi) for all i = 2, . . . , n− 1.

This linear system be rewritten in matrix-vector formulation as

Ahuh = f
h
,

where

• the stiffness matrix is given by Ah = [B′′j,p,Ξ(xi)]
n−1
i,j=2,

• the load vector is given by f
h

= [f(xi)]
n−1
i=2 ,

• the solution vector uh = (u2, · · · , un−1) is such that uh(x) =
∑n−1

i=2 uiBi,p,Ξ(x).

Some remarks:

• A proper choice of the points xi is of importance. One possibility are the Greville

points.

• Another possibility (which is understood better) are the DEMKO points.

• All boundary conditions (Dirichlet, Neumann, Robin) have to be imposed strongly

(essential boundary conditions).

• The collocation stiffness matrix Ah is non-symmetric.

• The bandwidth of the stiffness matrix Ah is smaller than for the Galerkin discretization:

The bandwidth is 2p+ 1 for Galerkin and p+ 1 for collocation.

• In the interior, the collocation stiffness matrix for the spine degree 2p looks like the

Galerkin stiffness matrix for degree p. At the boundary, the matrices look differently.
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• There is only little convergence theory available. In practice, we have one of the

following two cases:

– The collocation method converges as well as the Galerkin method. In this case,

the collocation method is nice because the stiffness matrix bandwidth is smaller

and its entries are easier to compute.

– The collocation method does not work at all.

1.6 Some conclusions

Isogeometric Analysis:

• global geometry mapping

• smooth basis functions

• global geometry mapping does not al-
low complicated domains→ multi-patch
constructions

• requires appropriate geometry represen-
tation (can be similar to meshing)

Finite element Analysis:

• local geometry mapping

• typically only C0

• the construction does not allow to im-
pose more smoothness

• no problems with complicated domains

• requires meshing

1.7 Literature

This chapter follows mainly [2]. The subsection 1.5.1 follows also [3]. The subsection 1.5.2

follows mainly [4].



Chapter 2

Approximation error estimates

Given a function u, we are interested in finding a spline uh ∈ Sp,Ξ such that the approximation

error ‖u− uh‖ for some appropriately chosen norm ‖ · ‖ is small.

2.1 Univariate approximation

2.1.1 Interpolants for the Courant element and for the step function

The Courant elements are nothing but the B-spline basis for degree p = 1, see Fig. 2.1.
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Figure 2.1: Courant element

Let

Ξ = (x1, x1, x2, x3, . . . , xn−1, xn, xn).

be a 1-open knot vector.

The Courant element forms a nodal basis, i.e., we have

B̂i,1,Ξ(xj) = δi,j ,

where

δi,j :=

{
1 if i = j

0 otherwise

is the Kronecker delta.

23
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Based on this property, we introduce the following interpolation operator:

Π1,Ξ : C0(0, 1)→ S1,Ξ(0, 1)

Π1,Ξu :=

n∑
i=1

u(xi)Bi,1,Ξ.

The same is possible for the step functions, which we denote by B̂i,0,Ξ, see Fig. 2.2. Here,

Ξ = (ξ1, . . . , ξn+1)

is a 0-open knot vector, and

B̂i,0,Ξ(x) =

{
1 if ξi ≤ x < ξi+1

0 otherwise
.
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Figure 2.2: Piece-wise constants

Here, we might define the nodes xi := 1
2(ξi + ξi+1) to be the midpoints of the elements

Ii = (ξi, ξi+1) and obtain again

B̂i,0,Ξ(xj) = δi,j ,

and define a projector Π0,Ξ as above.

The operators Πp,Ξ for p ∈ {0, 1} have the following properties:

• They are interpolatory at the nodes xi.

• They only depend on the function value of u at the nodes.

• They are linear operators.

• They are projectors, i.e., we have Πp,ΞΠp,Ξu = Πp,Ξu for all u.

We have the following approximation error estimate.

Theorem 2.1. The approximation error estimate

‖u−Π0,Ξu‖L2(0,1) ≤
h

2
|u|H1(0,1)

holds for all u ∈ H1(0, 1), where h is the global grid size (1.1).
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Proof. Assume that u is arbitrary but fixed and define uh := Π0,Ξu. Consider the intervals

Ii = (ξi, ξi+1) and recall that that uh|Ii = u(ξi+1/2), where ξi+1/2 := ξi+1/2. So, we obtain

‖(I −Π0,Ξ)u‖2L2(0,1) =
n−1∑
i=1

∫ ξi+1

ξi

(
u(x)− uh(x)

)2
dx

=
n−1∑
i=1

∫ ξi+1

ξi

(
u(x)− u(ξi+1/2)

)2
dx =

n−1∑
i=1

∫ ξi+1/2

ξi

(
±
∫ x

ξi+1/2

u′(η) dη
)2

dx,

where we use the convention
∫ B
A ... dx =

∫ A
B ... dx and where “±” = “+” if x ≥ ξi+1/2 and

“±” = “−” if x < ξi+1/2. In any case, we have (±1)2 = 1. Now, we obtain using the

Cauchy-Schwarz inequality further

‖(I −Π0,Ξ)u‖2L2(0,1) ≤
n−1∑
i=1

∫ ξi+1

ξi

∫ x

ξi+1/2

u′(η)2 dη

∫ x

ξi+1/2

1 dη dx

≤ h

2

n−1∑
i=1

∫ ξi+1

ξi

∫ x

ξi+1/2

u′(η)2 dη dx

=
h

2

n−1∑
i=1

(∫ ξi+1/2

ξi

∫ ξi+1/2

x
u′(η)2 dη dx+

∫ ξi+1

ξi+1/2

∫ x

ξi+1/2

u′(η)2 dη dx

)

≤ h

2

n−1∑
i=1

(∫ ξi+1/2

ξi

∫ ξi+1/2

ξi

u′(η)2 dη dx+

∫ ξi+1

ξi+1/2

∫ ξi+1

ξi+1/2

u′(η)2 dη dx

)

=
h

2

n−1∑
i=1

(∫ ξi+1/2

ξi

dx

∫ ξi+1/2

ξi

u′(η)2 dη +

∫ ξi+1

ξi+1/2

dx

∫ ξi+1

ξi+1/2

u′(η)2 dη

)

≤ h2

4

n−1∑
i=1

(∫ ξi+1/2

ξi

u′(η)2 dη +

∫ ξi+1

ξi+1/2

u′(η)2 dη

)

=
h2

4

n−1∑
i=1

(∫ ξi+1

ξi

u′(η)2 dη

)
=
h2

4
|u|2H1(0,1),

which was to show.

Similarly, we can show the following theorem.

Theorem 2.2. We have

‖u−Π1,Ξu‖L2(0,1) ≤ ch|u|H1(0,1)

for all u ∈ H1(0, 1), and

|u−Π1,Ξu|H1(0,1) ≤ ch|u|H2(0,1)

for all u ∈ H2(0, 1), where h is the global grid size (1.1).

As Π1,Ξ is a projector, we obtain (I −Π1,Ξ)2 = (I −Π1,Ξ) and therefore also

‖(I −Π1,Ξ)u‖L2(0,1) = ‖(I −Π1,Ξ)2u‖L2(0,1) ≤ ch|(I −Π1,Ξ)u|H1(0,1) ≤ c2h2|u|H2(0,1). (2.1)

Obviously, the approximation error is bounded by the interpolation error :

inf
uh∈Sp,Ξ(0,1)

|u− uh|H1 ≤ |u−Πp,Ξu|H1 .
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2.1.2 A simple interpolant for splines

The results of the last subsection cannot be extended for p ≥ 2 because splines do not form

a nodal basis. In other words: there is no set of nodes xi such that

B̂i,p,Ξ(xj) = δi,j .

However, we can construct a subspace of the spline space such that such a condition is

satisfied. Assume that p and Ξ are fixed and assume that n/p ∈ Z, where n is the number

of basis functions. (The last assumption can be dropped, see Remark 2.4.)

Then, we define basis functions ϕ1, . . . , ϕm with m = n/p as follows:

V̂i,p,Ξ :=

p∑
l=1

B̂(i−1)p+l,p,Ξ.

We obtain a spline space Vi,p,Ξ(0, 1) := span {V̂1,p,Ξ, . . . , V̂m,p,Ξ} ⊂ Sp,Ξ(0, 1).

For p = 2, the basis functions V̂i,p,Ξ are depicted in Fig. 2.3. The corresponding B-splines

are depicted with dashed lines.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2.3: Splines V̂i,p,Ξ for p = 2

Observe that the basis functions V̂i,p,Ξ satisfy the following properties:

• Non negativity, cf. (1.2): 0 ≤ V̂i,p,Ξ(x) ≤ 1.

• Partition of unity, cf. (1.3)

• Nodal basis:

V̂i,p,Ξ(xj) = δi,j ,

where

xj := ξ(j−1)p+(p+1).

• Bounded support:

supp V̂i,p,Ξ = [xi−1, xi+1],

where x−1 := 0 and xm+1 := xm.

As we have a nodal basis, we define the following interpolation operator:

Πp,Ξ : C0(0, 1)→ Sp,Ξ(0, 1)

Πp,Ξu :=

n/p∑
i=1

u(xi)V̂i,p,Ξ.
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Theorem 2.3. For p ≥ 1, the approximation error estimate

‖u−Πp,Ξu‖L2(0,1) ≤
√

2H|u|H1(0,1)

holds for all u ∈ H1(0, 1), where H is the grid size of the grid (x0, x1, . . . , xm)

H = max
i=1,...,m−1

xi+1 − xi = max
i=1,...,m−1

(ξip+(p+1) − ξ(i−1)p+(p+1)).

We have

H ≤ ph. (2.2)

Proof. Assume that u is arbitrary but fixed and define uh := Πp,Ξu. Consider the intervals

Ii = (xi, xi+1) for i = 1, . . . ,m−1. Observe that on this interval only the two basis functions

ϕi and ϕi+1

are active. Using this, non-negativity and partition of unity, we know that there are coeffi-

cients α(x) ∈ [0, 1] such that

uh(x) = α(x)u(xi) + (1− α(x))u(xi+1) for x ∈ Ii.

So, we obtain using (A+B)2 ≤ 2(A2 +B2):

‖(I −Πp,Ξ)u‖2L2(0,1) =

m−1∑
i=1

∫ xi+1

xi

(
u(x)− α(x)u(xi)− (1− α(x))u(xi+1)

)2
dx

≤ 2
m−1∑
i=1

∫ xi+1

xi

α(x)2
(
u(x)− u(xi)

)2
+ (1− α(x))2

(
u(x)− u(xi+1)

)2
dx

≤ 2
m−1∑
i=1

∫ xi+1

xi

(
u(x)− u(xi)

)2
+
(
u(x)− u(xi+1)

)2
dx.

Observe that the main theorem of integration and Cauchy-Schwarz inequality yield(
u(x)− u(xi)

)2
=
(∫ xi

x
u′(ξ) dξ

)2
≤ |x− xi|

∫ xi

x
u′(ξ)2 dξ ≤ H

∫ xi

x
u′(ξ)2 dξ.

We obtain an analogous result for
(
u(x)− u(xi+1)

)2
. So, we obtain further

‖(I −Πp,Ξ)u‖2L2(0,1) ≤ 2H

m−1∑
i=1

∫ xi+1

xi

∫ x

xi

u′(ξ)2 dξ +

∫ xi+1

x
u′(ξ)2 dξ dx

= 2H
m−1∑
i=1

∫ xi+1

xi

∫ xi+1

xi

u′(ξ)2 dξ dx

= 2H2
m−1∑
i=1

∫ xi+1

xi

u′(ξ)2 dξ = 2H2|u|2H1(0,1)

which was to show. The estimate (2.2) is trivial.

Some comments:
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• The dependence in the grid size is – as we have expected – optimal.

• In the spline degree, the result is optimal concerning the considered subspace. If we

consider the full subspace, the result is not optimal.

• The interpolation operator is local.

• We do not need to stick to adding up exactly p basis functions:

Remark 2.4. The approximation error result of Theorem 2.3 also holds if always at

least p basis functions are added up. Instead of (2.2), we obtain that H is bounded by

h times the largest number of basis functions added up.

If we do not assume n/p ∈ Z, we can modify the definition of the basis functions V̂i,p,Ξ
as follows: we define m := bn/pc basis functions, where the first m− 1 basis functions

are the sum of p B-splines. The last basis function V̂m,p,Ξ is the sum of the remainder

(at most 2p− 1 basis functions). So, we obtain both the approximation error estimate

of Theorem 2.3 and H ≤ 2ph.

• The interpolation error estimate (Theorem 2.3 in combination with Remark 2.4) yields

again an approximation error estimate both for the spline space Vp,Ξ(0, 1) and for the

original space Sp,Ξ(0, 1). For the latter:

inf
uh∈Sp,Ξ(0,1)

‖u− uh‖L2(0,1) ≤ 2p h|u|H1(0,1). (2.3)

The same error estimate is obtained for the L2-orthogonal projector into Sp,Ξ.

Remark 2.5. An interpolation error estimate of the form

‖u− Π̃p,Ξu‖L2(0,1) ≤ c p h|u|H1(0,1). (2.4)

can be also derived for the following choice:

(Π̃p,Ξu) :=
n∑
i=1

u(γi)B̂i,p,Ξ,

where (γi)
n
i=1 are the Greville points. Note that this choice is simpler the discussed one.

However, an error estimate of the order ≤ c p h is not a (quasi-)optimal n-width for the

spline space. An quasi-optimal n-width is a result of the form

‖u−Πu‖L2 ≤ c 1
dimVh

|u|H1 ,

where Π is a projector into Vh. As dimSp,Ξ h h−1 + p and dimVp,Ξ h h−1/p, the estimate

of Theorem 2.3 yields a quasi-optimal n-with, while the estimate (2.4) is not.

The estimate 2.3 can be extended to higher Sobolev indices as follows.

Theorem 2.6. For 0 ≤ r ≤ p with r, p ∈ Z, the approximation error estimate

inf
uh∈Sp,Ξ(0,1)

|u− uh|Hr(0,1) ≤ 2p h|u|Hr+1(0,1)

holds for all u ∈ Hr+1(0, 1).
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Proof. We show this theorem by induction. We knot that the result holds for r = 0, see (2.3).

So, we assume to know

inf
uh∈Sp,Ξ(0,1)

|u− uh|Hr(0,1) ≤ 2p h|u|Hr+1(0,1) (2.5)

and that we are interested in showing

inf
uh∈Sp,Ξ(0,1)

|u− uh|Hr+1(0,1) ≤ 2p h|u|Hr+2(0,1). (2.6)

Note that

inf
uh∈Sp,Ξ(0,1)

|u− uh|Hr+1(0,1) = inf
uh∈Sp,Ξ(0,1)

|u′ − u′h|Hr(0,1).

Using (1.5), we obtain

inf
uh∈Sp,Ξ(0,1)

|u− uh|Hr+1(0,1) = inf
vh∈Sp−1,Ξ′ (0,1)

|u′ − vh|Hr(0,1).

Now, the induction hypothesis (2.5) shows (2.6).

Note that we have proven this theorem based on the space Vp,Ξ(0, 1), however for that space

directly we do not have such high-order approximation error estimates as in Theorem 2.6,

i.e., we cannot expect

inf
uh∈Vp,Ξ(0,1)

|u− uh|Hr(0,1) ≤ 2p h|u|Hr+1(0,1)

to be true for r > 0.

Corollary 2.7. For 0 ≤ s < r ≤ p+ 1 with s, r, p ∈ Z, the approximation error estimate

inf
uh∈Sp,Ξ(0,1)

|u− uh|Hs(0,1) ≤ (2p h)r−s|u|Hr(0,1)

holds for all u ∈ Hr(0, 1).

Proof. This is obtained by chaining Theorem 2.6 as in (2.1).

2.1.3 The Schumaker quasi-interpolant

In the last section, we have introduced a local projector into the spline space that satisfies

an L2−H1-error estimates. We did not introduce a particular interpolant that also satisfies

the higher order estimates.

Such an interpolant is given in the book [5].

Assume Ξ to be a p-open knot vector. Following the construction in [5], there is a dual basis

[λi]
n
i=1 with

λi : Hq(0, 1)→ R

such that

λi(B̂j,p,Ξ) = δi,j .
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Those basis functions have the form

λi(v) =

∫ 1

0
ψi(x)v(x) dx,

where ψi is a spline with local support:

suppψi = [ξi, ξi+p+1].

The functions ψi are locally defined and only depend on the local knot vector Ξ(B̂i,p,Ξ).

Having a nodal basis, we again define

Πp,Ξu :=
n∑
i=1

λi(u)B̂i,p,Ξ.

Based on these definitions, the following theorems are proven.

Theorem 2.8. For any non-empty knot span Ii = (ζi, ζi+1), we have

‖Πp,Ξu‖L2(Ii) ≤ C‖u‖L2(Ĩi)
,

and

|Πp,Ξu|H1(Ii) ≤ C|u|H1(Ĩi)
,

where Ĩi is the support extension and C only depends on p.

Theorem 2.9. There is a positive constant C depending only on p such that for all s ∈ Z
with 0 < s ≤ p+ 1, the estimate

‖(I −Πp,Ξ)u‖L2(Ii) ≤ Ch̃
s
i |u|Hs(Ĩi)

holds for all u ∈ Hs(I). If he partition is locally quasi uniform, we also obtain for any

r, s ∈ Z with 0 ≤ r < s ≤ p+ 1

|(I −Πp,Ξ)u|Hr(Ii) ≤ Ch̃
s−r
i |u|

Hs(Ĩi)
.

2.2 Multivariate approximation

2.2.1 Approximation on the parameter domain

For simplicity, we assume without loss of generality that Ω̂ = (0, 1)2.

For each spatial dimension l ∈ {1, 2}, we assume a discretization space to be given, say

Vl := Spl,Ξl(0, 1). Moreover, we assume that we have chosen our favorite univariate projection

operator Πl : C∞(0, 1)→ Vl.

On the parameter domain Ω̂, we consider the space

V̂h = V1 ⊗ V2,

cf. (1.6) and (1.7).
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Now, a projector for the parameter domain is introduced as follows. First we define the

following projectors:

(Π̂1u)(x, y) = (Π1u(·, y))(x)

(Π̂2u)(x, y) = (Π2u(x, ·))(y).

The operator Π̂1 is to be understood as follows. For each fixed choice of y, we restrict the

function u to be a univariate function u(·, y). We apply the projector Π1 to that univariate

function. Now, we define a bivariate function w such that for each y we have w(·, y) =

Π1u(·, y). The projector Π̂1 is exactly the mapping u→ w.

Certainly, Π̂1 maps C0(Ω̂)→ V1 ⊗ C0(0, 1) and Π̂2 maps C0(Ω̂)→ C0(0, 1)⊗ V2.

Now, we define an operator on C0(Ω̂):

Π̂ := Π̂1Π̂2.

Lemma 2.10. Π̂ := Π̂1Π̂2 = Π̂2Π̂1 is a projector into V1 ⊗ V2.

Proof. The spaces Vδ have bases: Vδ = span {ϕ(δ)
i : i = 1, . . . , nδ}. We make use of the fact

that each projector into the space Vδ can be represented as

Πδu =

nδ∑
i=1

〈λ(δ)
i (t), u(t)〉tϕ(δ)

i ,

where the functionals λ
(δ)
i are appropriately chosen dual basis functions, i.e., such that

〈λ(δ)
i (t), ϕ

(δ)
j (t)〉t = δi,j . As Πδ is linear, we immediately obtain that also the functionals λ

(δ)
i

are linear.

So, we obtain

Π̂1u =

n1∑
i=1

〈λ(1)
i (x), u(x, y)〉xϕ(1)

i (x),

and

Π̂2Π̂1u =

n2∑
j=1

n1∑
i=1

〈λ(2)
j (y), 〈λ(1)

i (x), u(x, y)〉x〉yϕ(1)
i (x)ϕ

(2)
i (y) (2.7)

=

n1∑
i=1

n2∑
j=1

〈λ(1)
i (x)λ

(2)
j (y), u(x, y)〉(x,y)ϕ

(1)
i (x)ϕ

(2)
i (y).

This term is completely symmetric in the spatial dimensions, so we obtain the first statement.

We observe moreover that Π̂2Π̂1u is a linear combination of the basis functions, i.e., Π̂ :=

Π̂2Π̂1 maps into V1 ⊗ V2.

To show that Π̂ is a projector, we need to know that Π̂uh = uh for all uh ∈ V1 ⊗ V2. Using

linearity of Π̂, it suffices to show only

Π̂ϕi,j = ϕi,j
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for all ϕi,j(x, y) = ϕ
(1)
i (x)ϕ

(2)
i (y). By plugging into (2.7), we obtain

(Π̂ϕi,j)(x, y) =

n1∑
k=1

n2∑
l=1

〈λ(1)
k (x)〈λ(2)

l (y), ϕ
(1)
i (x)ϕ

(2)
j (y)〉y〉xϕ(1)

k (x)ϕ
(2)
l (y)

=

n1∑
k=1

n2∑
l=1

〈λ(1)
k (x)ϕ

(1)
i (x)〉x︸ ︷︷ ︸

= δi,k

〈λ(2)
l (y), ϕ

(2)
j (y)〉y︸ ︷︷ ︸

= δj,l

ϕ
(1)
k (x)ϕ

(2)
k (y)

= ϕ
(1)
i (x)ϕ

(2)
j (y) = ϕi,j(x, y),

which was to show.

Remark 2.11. For the Schumaker interpolant, we have

〈λ(δ)
i (t), u(t)〉t =

∫ 1

0
ψ

(δ)
i (t)u(t) dt

and the main part of the proof reads as follows:

Π̂2Π̂1u =

n2∑
j=1

n1∑
i=1

∫ 1

0
ψ

(2)
j (y)

∫ 1

0
ψ

(1)
i (x)u(x, y) dx dyϕ

(1)
i (x)ϕ

(2)
i (y)

=

n1∑
i=1

n2∑
j=1

∫
Ω̂
ψ

(1)
i (x)ψ

(2)
j (y)u(x, y) d(x, y)ϕ

(1)
i (x)ϕ

(2)
i (y).

For the pointwise interpolants, we have

〈λ(δ)
i (t), u(t)〉t = u(x

(δ)
i )

and the main part of the proof reads as follows:

Π̂2Π̂1u =

n2∑
j=1

n1∑
i=1

u(x
(1)
i , x

(2)
i )ϕ

(1)
i (x)ϕ

(2)
i (y).

Theorem 2.12. Provided that the error estimates

‖(I −Π1)u‖L2(0,1) ≤ hΦ1|u|H1(0,1) and ‖(I −Π2)u‖L2(0,1) ≤ hΦ2|u|H1(0,1),

hold for all u ∈ H1(0, 1) and that the stability estimate

‖Π1u‖L2(0,1) ≤ Ψ1‖u‖L2(0,1) (2.8)

holds for all u ∈ L2(0, 1), we obtain

‖(I − Π̂)u‖
L2(Ω̂)

≤
√

2hmax{Φ1,Ψ1Φ2}|u|H1(Ω̂)
.

for all u ∈ C0(Ω̂).

Proof. Let u be arbitrary but fixed. Observe that (2.8) implies

‖Π1u(·, y)‖2L2(0,1) ≤ Ψ2
1‖u(·, y)‖2L2(0,1)
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and therefore also ∫ 1

0
‖Π1u(·, y)‖2L2(0,1) dy ≤

∫ 1

0
Ψ2

1‖u(·, y)‖2L2(0,1) dy

and further

‖Π̂1u‖2L2(Ω̂)
≤ Ψ2

1‖u(·, y)‖2
L2(Ω̂)

.

We can do the same for the approximation error estimates and obtain

‖(I − Π̂1)u‖
L2(Ω̂)

≤ hΦ1‖ ∂∂xu‖L2(Ω̂)
and ‖(I − Π̂2)u‖

L2(Ω̂)
≤ hΦ2‖ ∂∂yu‖L2(Ω̂)

.

We obtain using these estimates and the triangle inequality

‖(I − Π̂)u‖L2(0,1) = ‖(I − Π̂1Π̂2)u‖L2(0,1)

≤ ‖(I − Π̂1)u‖L2(0,1) + ‖Π̂1(I − Π̂2)u‖L2(0,1)

≤ hΦ1‖ ∂∂xu‖L2(Ω̂)
+ Ψ1‖Π̂1(I − Π̂2)u‖L2(0,1)

≤ hΦ1‖ ∂∂xu‖L2(Ω̂)
+ Ψ1hΦ2‖ ∂∂yu‖L2(Ω̂)

≤
√

2 max{Φ1Ψ1,Φ2}h
(
‖ ∂∂xu‖

2
L2(Ω̂)

+ ‖ ∂∂yu‖
2
L2(Ω̂)

)1/2

=
√

2 max{Φ1Ψ1,Φ2}h|u|H1(Ω̂)
,

which was to show.

Remark 2.13. Note that we cannot assume the stability estimate (2.8) to be satisfied in gen-

eral. If we are only interested in approximation error estimates, we can choose the projectors

Πi to be the L2-orthogonal projectors, as we have

‖(I −Πi)u‖L2(0,1) = inf
uh∈V1

‖u− uh‖L2(0,1) ≤ ‖(I − Π̃i)u‖L2(0,1) ≤ · · ·

for Π̃i being any other projector.

As the L2-orthogonal projector satisfies (2.8) by construction, we obtain the desired approx-

imation error estimates.

Theorem 2.14. Provided that the approximation error estimates

‖(I −Π1)u‖L2(0,1) ≤ Φ0,1h|u|H1(0,1), |(I −Π1)u|H1(0,1) ≤ Φ1,1h|u|H2(0,1),

‖(I −Π2)u‖L2(0,1) ≤ Φ0,2h|u|H1(0,1), |(I −Π2)u|H1(0,1) ≤ Φ1,2h|u|H2(0,1),

and the stability estimates

|Π1u|H1(0,1) ≤ Ψ1|u|H1(0,1), and |Π2u|H1(0,1) ≤ Ψ2|u|H1(0,1)

hold, we obtain

‖(I − Π̂)u‖L1(0,1) ≤
√

2hmax{Φ1,1,Φ0,2Ψ1,Φ1,2,Φ0,1Ψ2}|u|H2(0,1)

for all u ∈ C0(Ω̂).
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The proof is left as an exercise to the reader.

We had been very careful with defining the projector Π̂ as we have required u to be in

C0(Ω̂). Now, having approximation error estimates, we can extend its definition using a

density argument. Assume that the univariate projectors Π1 and Π2 satisfy the assumptions

of Theorem 2.12, so we have

‖I −Πu‖
L2(Ω̂)

≤ ch|u|
H1(Ω̂)

.

Note that C0(Ω̂) is dense in H1(Ω̂). So, for each ε > 0 and for each u ∈ H1(Ω), we can find

a function uε ∈ C0(Ω̂) such that

‖u− uε‖
H1(Ω̂)

≤ ε‖u‖
H1(Ω̂)

.

So, we can set up a functional Aε, which assigns such a function uε to each given u.

Now, we can construct projectors Πε := ΠAε and observe using the triangle inequality

‖u−Πεu‖
L2(Ω̂)

≤ ‖u−Aεu‖
L2(Ω̂)

+ ‖(I −Π)Aεu‖
L2(Ω̂)

≤ ε‖u‖
H1(Ω̂)

+ ch|Aεu|
H1(Ω̂)

≤ ε(1 + ch)‖u‖
H1(Ω̂)

+ ch|u|
H1(Ω̂)

and an inverse inequality (see Chapter 4) further

‖Πεu‖
H1(Ω̂)

≤ Υh−1‖Πεu‖
L2(Ω̂)

≤ Υh−1(‖u‖
L2(Ω̂)

+ ‖(I −Πε)u‖
L2(Ω̂)

) ≤ (h−1 + c)Υ‖u‖
H1(Ω̂)

.

Because the Πε are uniformly bounded in H1, we can take the limit ε → 0 and obtain an

operator Π0 : H1(Ω̂)→ V̂ with

‖u−Π0u‖
L2(Ω̂)

≤ ch|u|
H1(Ω̂)

.

2.2.2 Approximation in the physical domain

F

u

u   F°

°П(u   F)u   F)

 (u   F)П(u   F)u  F))  F°     °
-1

Figure 2.4: Approximation on the physical domain
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Let Π̂ : H1(Ω̂)→ V̂h be a projector on the parameter domain, where V̂h is some discretization,

e.g., V̂h = Ŝp,Ξ(Ω̂).

Let u ∈ H1(Ω) be arbitrary but fixed and define û := u ◦ F .

Then, we compute as follows:

‖u− (Π̂(u ◦ F )) ◦ F−1‖L2(Ω) ≤ Ψ1‖û− Π̂û‖
L2(Ω̂)

≤ Ψ1Ψ2|û|H1(Ω̂)
≤ Ψ1Ψ2Ψ3|u|H1(Ω̂)

,

where

Ψ1 := sup
u∈L2(Ω)

‖u‖L2(Ω)

‖u ◦ F‖
L2(Ω̂)

, Ψ3 := sup
u∈H1(Ω)

|u ◦ F |
H1(Ω̂)

|u|H1(Ω)
,

and

Ψ2 := sup
û∈H1(Ω̂)

‖û−Πû‖
L2(Ω̂)

|û|
H1(Ω̂)

.

An upper bound for Ψ2 is obtained by any approximation error estimate for the parameter

domain, like the results shown in the last subsection.

In the remainder of this subsection, we discuss how to estimate Ψ1 and Ψ2 and similar terms.

Theorem 2.15. Assume that F : Ω̂ = (0, 1)d → Ω ⊂ Rd. Then we have

‖u‖L2(Ω) . ‖∇F‖
d/2

L∞(Ω̂)
‖u ◦ F‖

L2(Ω̂)
and ‖u ◦ F‖

L2(Ω̂)
. ‖(∇F )−1‖d/2

L∞(Ω̂)
‖u‖L2(Ω)

for all u ∈ L2(Ω), where the L∞-norm of a matrix A(x) with coefficients ai,j(x) is given by

supx maxi,j |ai,j(x)|.

Proof. Let u be arbitrary but fixed and choose û := u ◦ F . The substitution rule yields

‖u‖2L2(Ω) =

∫
Ω
u(x)2 dx =

∫
Ω̂
û(x̂)2|det∇F (x̂)| dx̂

≤

(
sup
x∈Ω̂

| det∇F (x̂)|

)∫
Ω̂
û(x̂)2 dx̂,

where ∇F is the Jacobi matrix, which has size d× d. As the determinant of a d× d matrix

is bounded by d times its largest entry, we obtain(
sup
x∈Ω̂

|det∇F (x̂)|

)
≤ ‖∇F‖d

L∞(Ω̂)

and, therefore, the desired result.

Theorem 2.16. Assume that F : Ω̂ = (0, 1)d → Ω ⊂ Rd. Then we have

|u|H1(Ω) ≤ c‖∇F‖
d/2

L∞(Ω̂)
‖(∇F )−1‖

L∞(Ω̂)
|u ◦ F |

H1(Ω̂)

and

|u ◦ F |
H1(Ω̂)

≤ c‖∇F‖
L∞(Ω̂)

‖(∇F )−1‖d/2
L∞(Ω̂)

|u|H1(Ω)

for all u ∈ H1(Ω), where the constant c only depends on d.
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Proof. Let u be arbitrary but fixed and choose û := u ◦ F . The substitution rule yields

|u|2H1(Ω) =

∫
Ω

(∇xu)(x) · (∇xu)(x) dx

=

∫
Ω̂

(∇xu)(F (x̂)) · (∇xu)(F (x̂))|det∇F (x̂)| dx̂.

Now, observe that the chain rule yields

(∇x̂(u ◦ F ))(x̂) = ∇x̂F (x̂) (∇xu)(F (x̂))

and, therefore, also

(∇xu)(F (x̂)) = (∇x̂F (x̂))−1(∇x̂(u ◦ F ))(x̂).

By plugging this into the above equation, we obtain

|u|2H1(Ω) =

∫
Ω̂

[(∇x̂(u ◦ F ))(x̂)]T (∇x̂F (x̂))−T (∇x̂F (x̂))−1(∇x̂(u ◦ F ))(x̂)|det∇F (x̂)| dx̂

≤ c‖∇F‖d
L∞(Ω̂)

‖(∇F )−1‖2
L∞(Ω̂)

∫
Ω̂

[(∇x̂(u ◦ F ))(x̂)]T (∇x̂(u ◦ F ))(x̂) dx̂

= c‖∇F‖d
L∞(Ω̂)

‖(∇F )−1‖2
L∞(Ω̂)

|û|2
H1(Ω̂)

,

which was to show.

The other direction is analogous.

Some comments:

• Results similar to Theorem 2.16 for norms with higher Sobolev indices are possible if

the geometry is sufficiently smooth. So, we estimates of |u|Hr(Ω), we need that that

the L∞-norm of the derivatives of the geometry function F up to order r is bounded.

• Similar results are possible for mappings F : Ω̂ = (0, 1)d → Ω ⊂ Rm with m > d.

• If the geometry transformation is not sufficiently smooth, one can work with broken

Sobolev spaces or bent Sobolev spaces.

2.3 Literature

Subsection 2.1.1 is standard. For the results of Subsection 2.1.2, literature is not known. For

more information on the Schumaker quasi interpolants, we refer to [5]. We moreover refer

to [6], where approximation error estimates for IgA have been discussed.



Chapter 3

p-robust approximation error
estimates

3.1 Estimates for polynomials

Consider the Legendre polynomials, which are given by the following formula.

L0(x) = 1

L1(x) = x

Ln(x) =
2n− 1

n
xLn−1(x)− n− 1

n
Ln−2(x) for n = 2, 3, . . . .

One typically considers them on the interval (−1, 1).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 3.1: The first six Legendre-polynomials: L0(x) = 1, L1(x) = x, L2(x) = 1
2(−1 +

3x2), L3(x) = 1
2(−3x+ 5x3), L4(x) = 1

8(3− 30x2 + 35x4), L5(x) = 1
8(15x− 70x3 + 63x5)

Some properties:

• Degree: degLn = n.

37
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• Boundary conditions:

– Ln(1) = 1 for all n = 0, 1, 2, . . ..

– Ln(−1) = (−1)n for all n = 0, 1, 2, . . ..

• Parity: For even n, Ln is even, for odd n, Ln is odd.

– Ln(−x) = (−1)nLn(x) for all n = 0, 1, 2, . . ..

• Basis: Pn = span {L0, L1, . . . , Ln}.

• Orthogonality: ∫ 1

−1
Li(x)Lj(x) dx =

2

2i+ 1
δi,j

• A simple consequence is∫ 1

−1
Li(x)v(x) dx = 0 for all v ∈ Pp with p < i

since v can be expressed as a linear combination of the Legendre polynomials L0, · · · , Lp.

• Orthogonality of derivatives and primes: For k ∈ Z and i, j ≥ max{0, k}, we have∫ 1

−1
(1− x2)nL

(k)
i (x)L

(k)
j (x) dx =

2

2i+ 1

(i+ k)!

(i− k)!
δi,j , (3.1)

where, for k ≥ 0, u(k) is the kth derivative, and for k < 0, u(k)(x) :=
∫ x
−1 u

(k+1)(y) dy

is the prime.

(3.1) is to be understood that the series is convergent if and only if the integral on the

left-hand side is finite. A proof is for k > 0 is given in [7, Lemma 3.10] and for k < 0

is given in [8, Corollary 1].

Theorem 3.1 (Weierstrass approximation theorem). For every ε > 0 and every u ∈
C0(−1, 1), there is degree p and a polynomial uε ∈ Pp such that

‖u− uε‖L∞(−1,1) ≤ ε.

We can relax this result to the L2-norm and use density of L2 in C0 to obtain that, for every

ε > 0 and every u ∈ L2(−1, 1), there is degree p such that

inf
uε∈Pp

‖u− uε‖L2(−1,1)︸ ︷︷ ︸
= ‖u−Πpu‖L2(−1,1)

≤ ε,

where Πp is the L2(−1, 1)-orthogonal projection into Pp. This yields limp→∞ ‖u−Πpu‖L2(−1,1) =

0 and therefore

u = lim
p→∞

Πpu in the L2-sense. (3.2)

Since the Legendre polynomials form an orthogonal basis, they can be used to represent the

orthogonal projections into a spline space. We use the following ansatz:

(Πpu)(x) =

p∑
i=0

uiLi(x).
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As Πp is the L2-orthogonal projection, we have

0 = (u−Πpu, v)L2(−1,1)

for all test functions v ∈ Pp(−1, 1). Using the particular choice v := Lj with j = 0, . . . , p,

we obtain

0 = (u−Πpu, Lj)L2(−1,1) = (u, Lj)L2(−1,1) − (

p∑
i=0

uiLi, Lj)L2(−1,1)

= (u, Lj)L2(−1,1) −
p∑
i=0

ui (Li, Lj)L2(−1,1)︸ ︷︷ ︸
= 2

2j+1δi,j

= (u, Lj)L2(−1,1) −
2

2j + 1
uj ,

i.e., uj = 2j+1
2 (u, Lj)L2(−1,1). This yields

Πpu =

p∑
i=0

2i+ 1

2
(u, Li)L2(−1,1)Li.

Now, in combination with (3.2), we obtain

u =
∞∑
i=0

2i+ 1

2
(u, Li)L2(−1,1)Li,

cf. [7, (3.3.3) and (3.3.5)].

Using this result, we obtain the following approximation error estimate.

Theorem 3.2. For any u ∈ L2(−1, 1), we have

‖u−Πpu‖2L2(−1,1) =
∞∑

i=p+1

2i+ 1

2
(u, Li)

2
L2(−1,1).

Proof. We have

u−Πpu =

∞∑
i=0

2i+ 1

2
(u, Li)L2Li −

p∑
i=0

2i+ 1

2
(u, Li)L2Li =

∞∑
i=p+1

2i+ 1

2
(u, Li)L2Li

and

(u−Πpu, u−Πpu)L2(−1,1) =
∞∑

i=p+1

∞∑
j=p+1

2i+ 1

2
(u, Li)L2

2j + 1

2
(u, Lj)L2 (Li, Lj)L2︸ ︷︷ ︸

=
2

2i+ 1
δi,j

,

which immediately yields the desired result.
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Assuming 0 ≤ k ≤ p+ 1, the combination of Theorem 3.2 and (3.1) yields:

‖u−Πpu‖2L2(−1,1) =

∞∑
i=p+1

2i+ 1

2
(u, Li)

2
L2(−1,1)

≤

(
sup

i=p+1,...,∞

(i− k)!

(i+ k)!

) ∞∑
i=p+1

2i+ 1

2
(u, Li)

2
L2(−1,1)

(i+ k)!

(i− k)!


≤

(
sup

i=p+1,...,∞

(i− k)!

(i+ k)!

)( ∞∑
i=k

2i+ 1

2
(u, Li)

2
L2(−1,1)

(i+ k)!

(i− k)!

)

=

(
sup

i=p+1,...,∞

(i− k)!

(i+ k)!

)
︸ ︷︷ ︸

=
(p+ 1− k)!

(p+ 1 + k)!

∫ 1

−1
| ∂k
∂xk

u(x)|2(1− x2) dx︸ ︷︷ ︸
≤ |u|2Hk(−1,1)

.

Stirling’s formula, cf. [7, p. 72], yields

(p+ 1− k)!

(p+ 1 + k)!
≤
( e

2

)2k
(p+ 1)−2k.

This proves the following theorem.

Theorem 3.3. Let 0 ≤ k ≤ p+ 1. Then for all u ∈ Hk(−1, 1), we have

‖u−Πpu‖L2(−1,1) ≤
( e

2

)k
(p+ 1)−k|u|Hk(−1,1).

If we go to another interval (a, b), we obtain using a simple scaling argument

‖u−Πpu‖L2(a,b) ≤
(
b− a

2

)k ( e

2

)k
(p+ 1)−k|u|Hk(a,b)

≤ (b− a)k(p+ 1)−k|u|Hk(a,b). (3.3)

Can we extend this to splines by applying this projector to all elements Ii = (ζi, ζi+1)? If Πp

was interpolatory on the boundary, we could. This is what we discuss in the next section.

3.2 Estimates for splines with low smoothness

For simplicity, we assume k2 = k3 = · · · = kn−1 =: k. Throughout this section, we assume

k ≤ p+ 1

2
.

Under this limitation, we introduce an Hermite type operator

Πp,Ξ : Hk+1(0, 1)→ Sp,Ξ(0, 1)

as follows. First define for each element Ii = (ζi, ζi+1) with i = 1, . . . , N − 1 a polynomial

ui ∈ Pp such that

u
(j)
i (ζi) = u(j)(ζi) for all j = 0, . . . , k, (3.4)

u
(j)
i (ζi+1) = u(j)(ζi+1) for all j = 0, . . . , k, (3.5)

u
(k+1)
i |Ii = P Iip−k−1(u(k+1)) (3.6)
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where u(i) denotes the ith derivative and P Iiq is the L2(Ii)-orthogonal projection into Pq.
The overall function is defined via

(Πp,Ξu)|Ii := ui.

First we observe that

Πp,Ξu ∈ Sp,Ξ(0, 1)

holds due to the Hermite type construction (3.4), (3.5).

The next step is to show that there is a polynomial such that (3.4), (3.5) and (3.6) are

satisfied:

• (3.4) contains k + 1 conditions,

• (3.5) contains k + 1 conditions,

• (3.6) contains p− k conditions,

while the function space Pp has p+ 1 dimensions. So, the problem is overdetermined.

Observe that there are polynomials in Pp such that both (3.4) and (3.6) are satisfied. (This

is left as an exercise to the reader. Note that it is not sufficient to show that the number of

conditions is ≤ than the number of degrees of freedom.)

The next lemma shows that the combination of (3.4) and (3.6) implies (3.5).

Lemma 3.4. Let u ∈ Hk+1(−1, 1) and let v ∈ Pp such that

v(j)(−1) = u(j)(−1) for all j = 0, . . . , k,

v(k+1) = P
(−1,1)
p−k−1(u(k+1)),

where P
(−1,1)
p−k−1 is the L2(−1, 1)-orthogonal projection into Pp. Then

v(j)(1) = u(j)(1) holds for all j = 0, . . . , k.

Proof. The Taylor expansion of any function ϕ ∈ C`(−1, 1) is

ϕ(x) =
∑̀
i=0

(x+ 1)i

i!
ϕ(i)(−1) +

∫ x

−1

(x− y)`+1

(`− 1)!
ϕ(`)(y) dy.

Let j ∈ {0, . . . , k} be arbitrary but fixed. The Taylor expansions for ` := k + 1− j are

u(j)(x) =

k+1−j∑
i=0

(x+ 1)i

i!
u(j+i)(−1) +

∫ x

−1

(x− y)k−j+2

(`− 1)!
u(k+1)(y) dy

=
k+1∑
i=j

(x+ 1)i−j

(i− j)!
u(i)(−1) +

∫ x

−1

(x− y)k−j+2

(`− 1)!
u(k+1)(y) dy

and

v(j)(x) =

k+1∑
i=j

(x+ 1)i−j

(i− j)!
v(i)(−1) +

∫ x

−1

(x− y)k−j+2

(`− 1)!
v(k+1)(y) dy.
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Taking x = 1 and subtracting the above expressions, we obtain

u(j)(x)− v(j)(x)

=
k+1∑
i=j

2i−j

(i− j)!
(u(i) − v(i))(−1)︸ ︷︷ ︸

= 0 due to assumption

+

∫ 1

−1

(1− y)k−j+2

(`− 1)!
(u(k+1) − v(k+1))(y) dy︸ ︷︷ ︸
=: (∗)

Note that v(k+1) = P
(−1,1)
p−k−1(u(k+1)), implies u(k+1)−v(k+1) to be orthogonal to any polynomial

of degree p− k − 1, we have that also (∗) = 0. This shows u(j)(x) = v(j)(x).

Using approximation results on Legendre polynomials, we obtain the following result.

Theorem 3.5. Provided 0 ≤ l ≤ k − 1 ≤ r ≤ p + 1 and k ≤ p+1
2 , we obtain for all

u ∈ Hr(0, 1)

|u−Πp,Ξu|Hl(0,1) ≤ hr−l(p− k)l−r|u|Hr(0,1).

Proof. For l = k + 1, this result directly follows from (3.3) and (3.6). For l < k + 1, similar

arguments are possible. The details are given in [8, Theorem 2].

Some comments:

• Numerical experiments indicate sharpness of the results.

• The case of highest smoothness (k = p− 1) is not covered.

• The extension to the multivariate case and to the physical domain can be done as

outlined in Section 2.2.

3.3 Estimates for splines with maximum smoothness

The results from the last section do not cover case k = p− 1, which is the most interesting

case for IgA. If we would plug this choice into Theorem 3.5, we would obtain

|u−Πp,Ξu|Hl(0,1) ≤ hr−l|u|Hr(0,1).

The goal of this section is to give such a statement. This does not come for free: the

techniques of this section are only applicable for equidistant grids.

Throughout the next three subsections, we prove the following theorem.

Theorem 3.6. Provided p ∈ N, h = 1/n, n ∈ N, hp < |(0, 1)| = 1, we have

inf
uh∈Sp,h(0,1)

‖u− uh‖L2(0,1) ≤
√

2h|u|H1(0,1)

for all u ∈ H1(0, 1).

Following the arguments of Theorem 2.6 and Corollary 2.7, we can extend this result to

higher Sobolev indices. In this case, we obtain an estimate of the form ≤ (
√

2h)r−l.

Following the arguments of Section 2.2, we can extend our results to the multivariate case.

In this case, the constants depend on d. Following the arguments of Section 2.2.2, we can

extend the result to the physical domain. In this case, the constants also depend on the

geometry mapping.
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3.3.1 A proof for the periodic case

First we have to discuss what a periodic function is. We say that a function u ∈ H1(0, 1) is

periodic if we can extend the function as

w(x) := u
(
x− bxc

)
such that w ∈ H1(0, 2). Note that w is obviously in H1(0, 1) and in H1(1, 2). The only

question is if it is in H1 at the point 1. From standard trace estimates, we know that

H1-functions are continuous, but do not show more continuity than that.

So, we have

H1,per(0, 1) = {u ∈ H1(0, 1) : u(0) = u(1)}.

Analogously, we have

Lper2 (0, 1) = L2(0, 1),

Hr,per(0, 1) = {u ∈ Hr(0, 1) : d
dxsu(0) = d

dxsu(1) for s = 0, . . . , r − 1},
Cr,per(0, 1) = {u ∈ Cr(0, 1) : d

dxsu(0) = d
dxsu(1) for s = 0, . . . , r},

Sperp,h (0, 1) = {u ∈ Sp,h(0, 1) : d
dxsu(0) = d

dxsu(1) for s = 0, . . . , p− 1}.

The desired estimate – for the periodic case – reads as follows.

inf
uh∈Sperp,h (0,1)

‖u− uh‖L2(0,1) ≤
√

2h|u|H1(0,1), for all u ∈ H1,per(0, 1).

We prove this using a hierarchical argument. Let Πper
p,h be the H1-orthogonal projection

H1,per(0, 1)→ Sperp,h (0, 1).

Then, we have using the triangle inequality and using Πper
p,ηΠper

p,2−1η
= Πper

p,η that

‖u−Πper
p,hu‖L2(0,1) ≤ ‖u−Πper

p,2−Nh
u‖L2(0,1) + ‖Πper

p,2−Nh
u−Πper

p,2−N+1h
u‖L2(0,1)

+ ‖Πper
p,2−N+1h

u−Πper
p,2−N+2h

u‖L2(0,1) + · · ·+ ‖Πper
p,2−1h

u−Πper
p,hu‖L2(0,1)

= ‖u−Πper
p,2−Nh

u‖L2(0,1) + ‖(I −Πper
p,2−Nh

)Πper
p,2−N+1h

u‖L2(0,1)

+ ‖(I −Πper
p,2−N+1h

)Πper
p,2−N+2h

u‖L2(0,1) + · · ·+ ‖(I −Πper
p,h)Πper

p,2−1h
u‖L2(0,1).

Now, we use the following estimates.

• There is a non-p-robust error estimate:

‖u−Πper
p,η u‖L2(0,1) ≤ c(p)η|u|H1(0,1) for all u ∈ H1,per(0, 1).

Note that this is just a slight extension what we know from Chapter 2. So, we assume

that to be true.

• We assume that there is a p robust error estimate for two consecutive grids:

‖(I −Πper
p,η )uη/2‖L2(0,1) ≤ 1√

2
η|uη/2|H1(0,1) for all uη/2 ∈ S

per
p,η/2(0, 1). (3.7)

We will show this estimate below.
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• The H1-orthogonal projector Πper
p,h is obviously stable in H1:

|Πper
p,hu|H1(0,1) ≤ |u|H1(0,1).

Using these three estimates, we obtain

‖u−Πper
p,hu‖L2(0,1) ≤ c(p)2−Nh|u|H1(0,1) + 1√

2
2−Nh|Πper

p,2−N+1h
u|H1(0,1)

+ 1√
2
2−N+1h|Πper

p,2−N+2h
u|H1(0,1) + · · ·+ 1√

2
h|Πper

p,2−1h
u|H1(0,1)

≤ c(p)2−Nh|u|H1(0,1) + 1√
2
2−Nh|u|H1(0,1)

+ 1√
2
2−N+1h|u|H1(0,1) + · · ·+ 1√

2
h|u|H1(0,1)

=
(
c(p)2−N + 1√

2

N∑
i=0

2−i
)
h|u|H1(0,1)

≤
(
c(p)2−N + 1√

2

∞∑
i=0

2−i
)
h|u|H1(0,1)

=
(
c(p)2−N +

√
2
)
h|u|H1(0,1).

Now, we obtain the desired result for N →∞.

The next step is to show (3.7). Our idea is to rewrite that in matrix-vector formulation. To

do so, we need a basis. We observe that

• statements, like the statement (3.7) are independent of the chosen basis,

• the B-spline basis is not the only basis of a spline space.

Note that all the B-splines splines based on p-open knot vectors on equidistant grids in the

interior are just shifts of each other, but the first p functions and the last p functions look

differently, cf. Figure 3.2.
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Figure 3.2: B-Splines of degree 2

An alternative construction of a spline basis for an equidistant grid is to take just shifts of

these spline functions in the interior and restrict them always to (0, 1). Such splines are

known as cardinal splines (Ci,p,h)n+p
i=1 , cf. Figure 3.3. As for the B-splines, we have again

n+ p basis functions and a basis of the spline space.
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Figure 3.3: Cardinal splines of degree 2

Based on these cardinal splines, we can easily set up a basis for Sperp,h (0, 1):

• The cardinal splines Cp+1,p,h, . . . , Cn,p,h whose support is in [0, 1] are already in Sperp,h

and are taken unchanged into our new basis:

Ĉi,p,h := Ci,p,h for i = p+ 1, . . . , n.

• From the remaining cardinal splines we group always those two functions together such

that their sum is in Sperp,h . In Figure 3.3, this would be blue+red and purple+orange.

We add always those sums to the new basis:

Ĉi,p,h := Ci,p,h + Ci+n,p,h for i = 1, . . . , p.

By this construction, we get a basis (Ĉi,p,h)ni=1 with n elements, cf. Figure 3.4.
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Figure 3.4: Cardinal splines of degree 2 for Sper2,h (0, 1)

The advantage of these splines is that the stiffness matrix (1.12) is a circulant matrix. We

call a symmetric matrix M = (mi,j)
n
i,j=1 circulant, if there are coefficients (µl)

n−1
l=0 such that

mi,j = µ(i−j) modn,

where imodn := i − bi/ncn ∈ {0, . . . , n − 1} is the remainder when differentiating. So, a

5× 5 matrix looks as follows

M =


µ0 µ1 µ2 µ3 µ4

µ4 µ0 µ1 µ2 µ3

µ3 µ4 µ0 µ1 µ2

µ2 µ3 µ4 µ0 µ1

µ1 µ2 µ3 µ4 µ0

 .
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From the construction of the periodic cardinal splines, we immediately obtain

(Ĉi,p,h, Ĉj,p,h)L2(0,1) = (Ĉi+n,p,h, Ĉj+n,p,h)L2(0,1)

and

(Ĉi,p,h, Ĉj,p,h)H1(0,1) = (Ĉi+n,p,h, Ĉj+n,p,h)H1(0,1).

Therefore, the mass matrix

Mh := [(Ĉi,p,h, Ĉj,p,h)L2(0,1)]
n
i,j=1

and the stiffness matrix

Ah := [(Ĉi,p,h, Ĉj,p,h)H1(0,1)]
n
i,j=1

are circulant matrices.

For being able to set up a matrix-vector formulation of (3.7), we need to be able to give a

matrix representation of the canonical embedding Sp,η → Sp,η/2, i.e, we need to know how

coarse-grid basis functions can be represented by fine-grid basis functions.

Lemma 3.7. For all p ∈ N, all grid sizes h and all x ∈ R,

Cj,p,h(x) = 2−p
p+1∑
l=0

(
p+ 1
l

)
C2j+1,p,h/2(x)

is satisfied for all j = −p, . . . , n− p− 1.

The lemma can be shown by induction in p; a proof can be found in [9, (4.3.4)].

This directly carries over to the periodic splines, i.e., we obtain

Ĉj,p,h(x) =
∑
i∈Z

2−p
(

p+ 1
i− 2j

)
︸ ︷︷ ︸
ph/2,i,j :=

Ĉi,p,h/2(x). (3.8)

Here, we use that the binomial coefficient

(
a
b

)
vanishes for b 6∈ {0, . . . , a}. We define the

matrix

Ph/2 := [ph/2,i,j ]
j=1,...,n
i=1,...,2n.

Having the prolongation matrix Ph/2, and the stiffness matrix Ah, we can represent the

projector Πper
p,h as follows.

Lemma 3.8. Provided

uh/2 := Πper
p,hvh/2 and wh/2 := Ph/2A

−1
h P Th/2Ah/2vh/2

for all vh/2 ∈ S
per
p,h/2, we have

uh/2 = wh/2.
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Proof. As uh/2 = Πper
p,hvh/2, Galerkin orthogonality states

(uh/2 − vh/2, qh)H1(0,1) = 0 for all qh ∈ Sperp,h .

We also obtain

(wh/2 − vh/2, qh)H1(0,1) = (Ah/2(wh/2 − vh/2), Ph/2qh)`2

= (P Th/2Ah/2(Ph/2A
−1
h P Th/2Ah/2vh/2 − vh/2), q

h
)`2

= (P Th/2Ah/2Ph/2︸ ︷︷ ︸
= Ah

A−1
h P Th/2Ah/2vh/2 − P

T
h/2Ah/2vh/2, qh)`2

= (P Th/2Ah/2vh/2 − P
T
h/2Ah/2vh/2, qh)`2 = 0 for all qh ∈ Sperp,h .

The combination of the last two statements yields

0 = (wh/2 − uh/2, qh)H1(0,1) for all qh ∈ Sperp,h . (3.9)

Note that we have wh/2 ∈ S
per
p,h and uh/2 ∈ S

per
p,h by construction. So, (3.9) implies wh/2 =

uh/2, which finishes the proof.

We observe that this Lemma yields a matrix formulation of the projector Πper
p,h .

Let ‖ · ‖ be the Euclidean norm and let the square root A1/2 of a symmetric and positive

definite matrix A be that symmetric and positive definite matrix that satisfies A1/2A1/2 = A.

Using this notation, we can rewrite (3.7) in matrix-vector notation as

‖M1/2
h (I − Ph/2A−1

h P Th/2Ah/2)vh/2‖ ≤ 1√
2
h‖A1/2

h vh/2‖ for all vh ∈ Rnh/2

and in matrix notation as

‖M1/2
h (I − Ph/2A−1

h P Th/2Ah/2)A
−1/2
h ‖ ≤ 1√

2
h.

This is equivalent to

ρ
(
Mh(I − Ph/2A−1

h P Th/2Ah/2)A−1
h/2Mh

)
≤ h

2 , (3.10)

where ρ denotes the spectral radius.

3.3.2 Fourier Analysis

Fourier Analysis is a tool to analyze circulant matrices. Consider the matrix

Ah :=


a b c
c a b

c a b
c a b

b c a


and for any j ∈ Z the vector

ϕ
j

:=


e2iπ∗0∗j/5

e2iπ∗1∗j/5

e2iπ∗2∗j/5

e2iπ∗3∗j/5

e2iπ∗4∗j/5
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and observe

Ahϕj = aϕ
j

+ b


e2iπ∗1∗j/5

e2iπ∗2∗j/5

e2iπ∗3∗j/5

e2iπ∗4∗j/5

e2iπ∗0∗j/5

+ c


e2iπ∗4∗j/5

e2iπ∗0∗j/5

e2iπ∗1∗j/5

e2iπ∗2∗j/5

e2iπ∗3∗j/5


= a ϕ

j
+ b e2iπ∗1∗j/5ϕ

j
+ c e2iπ∗(−1)∗j/5ϕ

j

= (a+ b e2iπ∗1∗j/5 + c e2iπ∗(−1)∗j/5)ϕ
j
.

We observe that ϕ
j

is an eigenvector and the symbol

a+ b e2iπ∗1∗j/5 + c e2iπ∗(−1)∗j/5

is a corresponding eigenvalue. Note that the symbol is real for symmetric matrices.

We can generalize this to n× n circulant matrices. In this case, we choose

ϕj := [e2iπ∗i∗j/n]ni=1.

We can combine these vectors to a matrix

Fn := [e2iπ∗i∗j/n]ni,j=1,

which can be proven to be non-singular. Since the vectors ϕ
j

are eigenvectors, we obtain

that Fn diagonalizes any circulant matrix: the diagonal entries are then the values of the

symbol, evaluated for j = 1, 2, . . ..

We can apply this technique to diagonalize the mass matrix and the stiffness matrix; so the

following terms are diagonal matrices:

F∗h−1AhFh−1 , F∗h−1MhFh−1 , F∗2h−1Ah/2F2h−1 , F∗2h−1Mh/2F2h−1 .

We can show moreover that

F∗2h−1Ph/2Fh−1 =



∗
. . .

∗
∗

. . .

∗


,

i.e., that F∗2h−1Ph/2Fh−1 is a 2× 1 block matrix, consisting of two diagonal matrices.

Based on these terms, we can compute the Fourier transform of the matrix in (3.10) and

obtain that it has the following form:

â1 b̂1
. . .

. . .

ân b̂n
ĉ1 d̂1

. . .
. . .

ĉn d̂n


,
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i.e., it is a 2 × 2 block-matrix consisting of diagonal matrices. The spectral radius of this

matrix is

max
i=1,...,n

ρ
(( âi b̂i

ĉi d̂i

))
.

So, the problem boils down to compute the spectral radius of 2× 2-matrices. Doing all the

details is a lot of work. Computers might help.

3.3.3 A proof for the non-periodic case
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Figure 3.5: A proof for the non-periodic case

Using the definition

S̃p,h(0, 1) := {v ∈ Sp,h(0, 1) : d
dxr u(0) = d

dxr u(1) = 0 for r = 1, 3, . . . , 2bp2c − 1},

we obtain the following result.

Theorem 3.9. Provided p ∈ N, h = 1/n, n ∈ N, hp < |(0, 1)| = 1, we have

‖u− Π̃p,hu‖L2(0,1) ≤
√

2h|u|H1(0,1)

for all u ∈ H1(0, 1), where Π̃p,h is the H1-orthogonal projector H1(0, 1)→ S̃p,h(0, 1).

The proof is visualized in Figure 3.5.

Proof. Let u ∈ H1(0, 1). Then define w(x) := u(|x|) and observe w ∈ H1,per(−1, 1). Then

‖w −Πper
p,hw‖L2(−1,1) ≤

√
2h|w|H1(−1,1).

We have by construction Πper
p,hw ∈ Sperp,h (−1, 1). We can show (Πper

p,hw)(x) = (Πper
p,hw)(−x)

and we have by construction w(x) = w(−x). Using these two statements, we obtain that

(Πper
p,hw)|(0,1) ∈ S̃p,h(0, 1).

Now, we define uh := (Πper
p,hw)|(0,1) and observe

‖u− uh‖L2(0,1)

|u|H1(0,1)
=

1√
2
‖w − Π̃p,hw‖L2(−1,1)

1√
2
|w|H1(−1,1)

≤
√

2h.

This shows the error bound ‖u − uh‖L2(0,1) ≤
√

2h|u|H1(0,1). Finally, we have to show

(uh − Π̃p,hu, v)H1(0,1) = 0 for all v ∈ S̃p,h to know that uh = Π̃p,hu.
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We immediately obtain

• ‖u − Qp,hu‖L2(0,1) = infuh∈Sp,h ‖u − uh‖L2(0,1) ≤
√

2h|u|H1(0,1), where Qp,h is the L2-

orthogonal projector into Sp,h(0, 1).

• ‖u−Πp,hu‖L2(0,1) ≤ ‖u− Π̃p,hu‖L2(0,1) + ‖Π̃p,h−Πp,hu‖L2(0,1) = ‖(I − Π̃p,h)u‖L2(0,1) +

‖(I − Π̃p,h)Πp,hu‖L2(0,1) ≤
√

2h(|u|H1(0,1) + |Πp,hu|H1(0,1)) ≤ 2
√

2h|u|H1(0,1).

3.4 Literature

The results of the first section follow results given in [7, Section 3.3] and [10]. The results

of the second section originate in [8]. The results of the last section can be found in [11].

A completely different proof (with better constants) has been given in [12]. In [13], that

analysis is extended to the non-equidistant case.



Chapter 4

Inverse inequalities

4.1 Some inverse inequalities

For the space of polynomials Pp, the following statement holds, cf. [7, Corollary 3.94].

Theorem 4.1. Provided p ∈ Z+, the estimate

|v|H1(0,1) ≤ 2
√

3p2‖v‖L2(0,1)

holds for all v ∈ Pp.

This result was recently improved in [14] to√
p(p+ 1)(p+ 2)(p+ 3)

4
≤ sup

v∈Pp

|v|H1(0,1)

‖v‖L2(0,1)
≤
√
p(p+ 1)(p+ 2)(p+ 3)

2
,

which shows sharpness.

This result can be easily carried over to splines.

Theorem 4.2. Let p ∈ Z+ and Ξ be a p-open knot vector. Then, the estimate

|vh|H1(0,1) ≤ 2
√

3p2h−1
min‖vh‖L2(0,1)

holds for all vh ∈ Sp,Ξ(0, 1), where

hmin := min
i=1,...,N−1

(ζi+1 − ζi)

is the size of the smallest interval.

Proof. Observe that Theorem 4.1 and a standard scaling argument imply

|vh|H1(ζi,ζi+1) ≤
2
√

3p2

ζi+1 − ζi
‖vh‖L2(ζi,ζi+1) ≤ 2

√
3p2h−1

min‖vh‖L2(ζi,ζi+1)

for all i = 1, . . . , N − 1. (The scaling argument is just the application of Theorems 2.15

and 2.16 to F (x) = ζi + x(ζi+1 − ζi).) By squaring the formula, and taking the sum for

i = 1, . . . , N − 1, we obtain the desired result.

51
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Note that this proof does not use any information on the smoothness of the spline function.

We only use that we are dealing with a piecewise polynomial function. Now the question

may arise if we can do better for splines with more smoothness.

Theorem 4.3. Let p ∈ Z+ and let Ξ be a p-open knot vector on (−1, 1) without repeated

knots. Define

Sperp,Ξ(−1, 1) := {vh ∈ Sp,Ξ(−1, 1) : dr

dxr vh(−1) = dr

dxr vh(1) for r = 0, . . . , p− 1}

to be the space of periodic splines (with maximum smoothness). Then, we have

|vh|H1(−1,1) ≤ 2
√

3h−1
min‖vh‖L2(−1,1)

for all vh ∈ Sperp,Ξ(−1, 1).

Proof. This theorem is shown by induction. For p = 1, the result follows from Theorem 4.2.

Now, consider some fixed vh ∈ Sperp,Ξ(−1, 1). Using integration by parts and Cauchy-Schwarz

inequality, we obtain

|vh|2H1(−1,1) = (vh, vh)H1(−1,1) = (−v′′h, vh)L2(−1,1) ≤ |v′h|H1(−1,1)‖vh‖L2(−1,1)

Observe that wh := v′h ∈ S
per
p−1,Ξ(−1, 1). So, we can apply the induction hypothesis for p− 1,

i.e.,

|wh|H1(−1,1) ≤ 2
√

3h−1
min‖wh‖L2(−1,1) for all wh ∈ Sperp−1,Ξ(−1, 1),

and obtain

|vh|2H1(−1,1) ≤ 2
√

3h−1
min‖u

′
h‖L2(−1,1)‖vh‖L2(−1,1) = 2

√
3p2h−1

min|uh|H1(−1,1)‖vh‖L2(−1,1).

Now, we divide by |uh|H1(−1,1) and obtain

|vh|H1(−1,1) ≤ 2
√

3h−1
min‖vh‖L2(−1,1),

i.e., the desired statement. (If |uh|H1(−1,1) = 0, we cannot do the last step. But in this case,

the desired statement is anyway obvious.)

The same result is possible for the tilde-spaces.

Theorem 4.4. Let p ∈ Z+ and let Ξ be a p-open knot vector without repeated knots. Define

S̃p,Ξ(0, 1) := {vh ∈ Sp,Ξ(0, 1) : dr

dxr vh(0) = dr

dxr vh(1) = 0 for r = 1, 3, . . . , 2dp−1
2 e − 1}

to be the space of splines (with maximum smoothness) whose odd derivatives vanish on the

boundary. Then, we have

|vh|H1(0,1) ≤ 2
√

3h−1
min‖vh‖L2(0,1)

for all vh ∈ S̃p,Ξ(0, 1).
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Proof. Let vh ∈ S̃p,Ξ(0, 1) arbitrary but fixed. Define on (−1, 1) a function wh by wh(x) :=

vh(|x|) and observe wh ∈ Sperp,Ξ(−1, 1).

Observe moreover that Theorem 4.4 yields

|vh|H1(0,1)

‖vh‖L2(0,1)
=

1√
2
|wh|H1(0,1)

1√
2
‖wh‖L2(0,1)

≤ 2
√

3h−1
min,

which yields the desired result.

The results of the last two theorems can be easily extended to splines with lower smoothness.

Theorem 4.5. Let p, k ∈ Z+ with k < p and let Ξ be a p-open knot vector with at most

p− k repeated knots, i.e., with smoothness of at least k, and let

S̃p,k,Ξ(0, 1) := {vh ∈ Sp,Ξ(0, 1) : dr

dxr vh(0) = dr

dxr vh(1) = 0 for r = 1, 3, . . . , 2dk2e − 1}.

Then, we obtain

|vh|H1(0,1) ≤ 2
√

3h−1
min(p− k)2‖vh‖L2(0,1)

for all vh ∈ S̃p,k,Ξ(0, 1).

We obtain an analogous result for the periodic splines.

Now, the question may arise if it is possible to extend the p-robust error estimates to the

whole spline space Sp,Ξ(0, 1). The following remark shows that this is impossible.

Remark 4.6. Let Ξ be a p-open knot vector and let ζ1 = 0 and ζ2 > 0 be the first two

breakpoints. Observe that the first B-spline basis function looks as follows:

B̂1,p,Ξ(x) =

{
(1− x

ζ2
)p for x < ζ2

0 otherwise.

We can explicitly compute its L2-norm and its H1-seminorm:

‖B̂1,p,Ξ‖L2(0,1) = ζ
1/2
2

√
1

2p+ 1

|B̂1,p,Ξ|H1(0,1) = ζ
−1/2
2 p

√
1

2p− 1

This shows
‖B̂1,p,Ξ‖L2(0,1)

|B̂1,p,Ξ|H1(0,1)

= ζ2p
−1

√
2p− 1

2p+ 1
≤ hp−1,

which implies

|B̂1,p,Ξ|H1(0,1) ≥ ph−1‖B̂1,p,Ξ‖L2(0,1),

i.e., that a robust estimate is not possible. Note that here p only enters linearly, but in

Theorem (4.3), it enters quadratically.

The results of the last two theorems can be easily extended to higher Sobolev indices.
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Remark 4.7. Provided k ≥ r and uh ∈ Sperp,k,Ξ(−1, 1), we have dr

dxr uh ∈ S
per
p−1,k−1,Ξ(−1, 1).

In this case, we have

|uh|Hr+1(−1,1) = | drdxr uh|H1(−1,1) ≤ 2
√

3hmin‖ d
r

dxr uh‖L2(−1,1) = 2
√

3hmin|uh|Hr(−1,1).

Analogous results are possible for S̃p,k,Ξ(0, 1) and Sp,k,Ξ(0, 1).

Also the extension to the multivariate case and to the physical domain are straight-forward.

Remark 4.8. Let Ω̂ := (0, 1)2 and uh ∈ Ŝp,Ξ(Ω̂). Note that uh(x, ·) is a spline, so we obtain

|uh(x, ·)|H1(0,1) ≤ 2
√

3phmin‖uh(x, ·)‖L2(0,1)

and by integrating the square

‖ ∂∂xuh‖L2(Ω̂)
≤ 2
√

3phmin‖uh‖L2(Ω̂)
.

Using the definition of the H1-seminorm, we obtain

|uh|H1(Ω̂)
≤ 2
√

3 dphmin‖uh‖L2(Ω̂)
.

where d = 2.

The extension to the physical domain follows using Theorems 2.15 and 2.16.

Analogous results are possible for the extension of the spaces Sperp,k,Ξ(−1, 1) and S̃p,k,Ξ(0, 1).

4.2 The spectrum of the splines

The inverse estimate is strongly related to the spectrum of M−1
h Ah, where Mh is the mass

matrix and Ah is the stiffness matrix:

|uh|H1(0,1)

‖uh‖L2(0,1)
=
‖uh‖Ah
‖uh‖Mh

∈ σ(M−1
h Ah),

where σ denotes the spectrum.
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Figure 4.1: Generalized spectrum for S1,h (left) and S2,h (right)
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Figure 4.2: Generalized spectrum for S3,h (left) and S4,h (right)
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Figure 4.3: Generalized spectrum for S5,h (left) and S6,h (right)
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Figure 4.4: Generalized spectrum for S1,0,h (left) and S2,0,h (right)
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Figure 4.5: Generalized spectrum for S3,0,h (left) and S4,0,h (right)

Fig. 4.1, 4.2 and 4.3 show the spectra of the splines of maximum smoothness. We see that

for p ≥ 2, there are some outliers and that the outliers come pairwise and that the value of
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the outliers is increasing. The number of outliers is bounded by

dimSp,h − dim S̃p,h = 2
⌊p

2

⌋
.

Fig. 4.4 and 4.5 depict the spectra of the C0-splines. Here, we observe that the spectrum is

split up into p branches, where the branches on the right-hand-side again diverge.

4.3 Why inverse inequalities show sharpness of approxima-
tion error estimates (and vice versa)?

Assume that we could improve the approximation error estimate compared to Theorem 3.9

qualitatively, i.e., assume that we can show

inf
vH∈S̃p,H(0,1)

‖u− vH‖L2(0,1) ≤ Φ(p)H|u|H1(0,1) for all u ∈ H1(0, 1), (4.1)

where Φ(p)→ 0 as p→∞.

Let n ∈ N and let h := 1/n and H := 1/(n− 1). Let Πp,H be the L2-orthogonal projection

into S̃p,H(0, 1). As dim S̃p,h(0, 1) > dim S̃p,H(0, 1), there is some uh ∈ S̃p,h such that

(uh, vH)L2(0,1) = 0 for all vH ∈ S̃p,H(0, 1),

i.e., it is in the L2-orthogonal complement. This means that

Πp,Huh = 0.

Now, we have using (4.1) and the robust inverse estimate

‖uh‖L2(0,1) = ‖uh −Πp,Huh‖L2(0,1) = inf
vH∈S̃p,H(0,1)

‖uh − vH‖L2(0,1) ≤ φ(p)H|uh|H1(0,1)

≤ 2
√

3Φ(p)
n

n+ 1
‖uh‖L2(0,1) ≤ 4

√
3Φ(p)‖uh‖L2(0,1),

and, therefore,

Φ(p) ≥ 1

4
√

3
.

This contradicts our assumption that Φ(p)→ 0 as p→∞.

4.4 Literature

The standard results can be found in [7]. The results on the periodic splines and on the tilde

splines can be found in [11].



Chapter 5

Assembling matrices in IgA

5.1 Introduction

In this chapter, we discuss the computation of the stiffness matrix

Ah = [a(ϕi, ϕj)]
N
i,j=1,

where the functions ϕi are the basis functions of Vh, i.e., on the physical domain and

a(·, ·) = (∇·,∇·)L2(Ω).

Using the pull-back definition ϕi = ϕ̂i ◦ F−1 and the chain-rule, we obtain

a(ϕi, ϕj) =

∫
Ω
∇xϕi(x) · ∇xϕj(x) dx

=

∫
Ω̂

[(∇ξϕ̂i) ◦ F−1(x) ∗ ∇xF−1(x)] · [(∇ξϕ̂j) ◦ F−1(x) ∗ ∇xF−1(x)] dx.

Using the usual rule for the derivative of an inverse function

d

dξ
g−1︸︷︷︸

inverse function

(ξ) =

inverse matrix︷ ︸︸ ︷(
d

dx
g(x)

)−1 ∣∣∣
x=g−1︸︷︷︸

inverse function

(ξ)
,

we obtain further

a(ϕi, ϕj) =

∫
Ω

[(∇ξϕ̂i) ◦ F−1(x)[∇ξF ]−1 ◦ F−1(x)] · [(∇ξϕ̂j) ◦ F−1(x)[∇ξF ]−1 ◦ F−1(x)] dx,

where [∇ξF ]−1 is the inverse (matrix) of the Jacobi matrix.

Now, the substitution rule yields further

a(ϕi, ϕj) =

∫
Ω̂

(
∇ξϕ̂i(ξ)[∇ξF (ξ)]−1

)
·
(
∇ξϕ̂j(ξ)[∇ξF (ξ)]−1

)
|det∇ξF (ξ)| dξ

=

∫
Ω̂

(
∇ξϕ̂i(ξ)

)T (∇ξF (ξ)
)−T (∇ξF (ξ)

)−1(∇ξϕ̂j(ξ))| det∇ξF (ξ)| dξ.

57
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• For the mass matrix, we only need to use the substitution rule. For other differential

operators, we can do similar steps.

• We note that we never have to evaluate F−1, the inverse (function) of the geometry

mapping. This is good because evaluating the inverse function is hard.

• We have to evaluate a(ϕi, ϕj) for any pair (i, j). As we know that our basis functions

have local support, we know that the matrix is sparse. The sparsity pattern can be

determined easily. So, we have to evaluate a(ϕi, ϕj) only for the pairs (i, j), for which

we do not know that the bilinear form a vanishes.

• In standard high- or low-order FEM, the stiffness matrix and the mass matrix are

computed element-wise. We can do the same for IgA, see Section 5.2.

• In standard low-order FEM, the quadrature is done exactly. In IgA, particularly if

NURBS are used, the integrals are approximated by quadrature rules.

5.2 Element-wise quadrature

In this section, we consider element-wise quadrature. So, we have just polynomials instead

of splines.

Let ϕ and ψ be polynomials of degree p. For the univariate stiffness matrix, we are interested

in computing ∫
Î
ϕ′(x)ψ′(x) dx.

Here, both ϕ′ and ψ′ are polynomials of degree p−1. Their product is a polynomial of degree

2p− 2. In two dimensions, we have∫
Î

∂

∂x1
ϕ(x)

∂

∂x1
ψ(x)︸ ︷︷ ︸

degree 2p− 2× 2

+
∂

∂x1
ϕ(x)

∂

∂x1
ψ(x)︸ ︷︷ ︸

degree 2p× 2p− 2︸ ︷︷ ︸
degree 2p× 2p

dx,

i.e., a polynomial of degree 2p× 2p.

Such integrals could be solved directly, but it is more efficient to solve them with quadrature

rules. Quadrature rules are usually specified and discussed for the interval (−1, 1). Integrals

for a general interval Î = (a, b) are just computed via the substitution rule∫ b

a
u(x) dx =

b− a
2

∫ 1

−1
u

(
b+ a

2
+
b− a

2
t

)
dt.

Each quadrature rule is specified by its quadrature weights ω1, . . . , ωm and its quadrature

nodes t1, . . . , tm. Then,

Qω,t(u) :=

m∑
i=1

ωiu(ti)

is an approximation (or the exact value) of the integral∫ 1

−1
u(x) dx.
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How many quadrature nodes do we need? Optimal are Gauss-quadrature rules, which resolve

polynomials of degree up to 2m − 1 exactly. Gauss-quadrature rules are set up based on

orthogonal polynomials. We have learned in Chapter 3 that the Legendre polynomials are

the family of orthogonal polynomials if the scalar product (·, ·)L2(−1,1) is considered. Other

orthogonal polynomials are obtained if other scalar products are considered.

For simplicity, we restrict ourselves to the Gauss-Legendre rule. The Gauss-Legendre rule of

order m uses as nodes the roots of the Legendre polynomial Lm. First we show that there

are exactly m distinct roots in (−1, 1).

Lemma 5.1. The Legendre polynomial Lm has m distinct roots in (−1, 1).

Proof. For m = 0, this is obvious. Now, let m > 0. Observe that orthogonality yields∫ 1

−1
Lm(x) dx =

∫ 1

−1
Lm(x)L0(x) dx = 0.

Therefore, the sign of Lm(x) changes at least once in (−1, 1). Let −1 < η1 < η2 < · · · <
ηs < 1 be the locations where Lm changes its sign. Certainly 1 ≤ s ≤ degLm = m.

Consider the case s < m first. Using orthogonality, we obtain∫ 1

−1
Lm(x)

s∏
i=1

(x− ηs)︸ ︷︷ ︸
degree s

dx = 0.

This is only possible if Lm(x)
∏s
i=1(x − ηs) changes its sign in (−1, 1) at least once. This

cannot be true because Lm and
∏s
i=1(x − ηs) change signs exactly at the same places. So,

their product cannot change its sign at all.

This shows that s < m was wrong, so we obtain s = m. So, Lm changes its sign at the

points η1, . . . , ηm, i.e., these points are roots of Lm. Since Lm is a polynomial of degree m,

there are no other roots.

This finishes the proof.

Theorem 5.2. Let t1, . . . , tm be the roots of Lm and

ωi =

∫ 1

−1
Ii(x) dx, where Ii(x) :=

∏
j∈{1,...,m}\{i}

x− tj
ti − tj

. (5.1)

Then, we have

Qω,t(u) =

∫ 1

−1
u(x) dx for all u ∈ P2m−1,

i.e., Qω,t is a Gauss-quadrature.

Proof. Let u ∈ P2m−1 be arbitrary but fixed and let v ∈ Pm−1 such that

u(ti) = v(ti) for i = 1, . . . ,m,

i.e., v is the interpolation polynomial of u. By construction, we know that

w(x) := u(x)− v(x)
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has roots t1, . . . , tm. Therefore, we have another polynomial q(x) such that

w(x) =

(
m∏
i=1

(x− ti)

)
q(x).

Since degw ≤ 2m− 1, we have deg q ≤ m− 1. We obtain

u(x) = v(x) +

(
m∏
i=1

(x− ti)

)
︸ ︷︷ ︸

r(x) :=

q(x).

Since both Lm and r are polynomials of degree m sharing the same m roots, we have r = Lm.

Observe that the functions Ii Lagrange interpolation functions, which satisfy

Ii ∈ Pm−1 and Ii(tj) = δi,j .

Therefore, we have

v(x) =

m∑
i=1

v(ti)Ii.

Concluding, we obtain∫ 1

−1
u(x) dx =

∫ 1

−1
v(x) dx+

∫ 1

−1
Lm(x)q(x) dx︸ ︷︷ ︸

= 0 since q ∈ Pm−1 and Lm is orthogonal to all q ∈ Pm−1

=

m∑
i=1

∫ 1

−1
Iiv(ti) dx =

m∑
i=1

∫ 1

−1
Ii dx︸ ︷︷ ︸

= ωi

v(ti) = Qω,t(u),

i.e., that the polynomial u is integrated exactly.

Note that (5.1) is one way of defining the weights. For practical computations, there are

alternatives which are easier to compute.

The Gauss quadrature rule with m nodes does not allow to integrate all polynomials of

degree 2m exactly.

Lemma 5.3. Let (ω, t) be the Gauss-quadrature of order m. Then, we have Qω,t(L
2
m) 6=∫ 1

−1 L
2
m(x) dx.

Proof. Recall that t1, . . . , tm are the roots of Lm and, consequently, of L2
m. Therefore, we

have

Qω,t(L
2
m) =

m∑
i=1

ωiL
2
m(ti) = 0 < ‖Lm‖2L2(−1,1) =

∫ 1

−1
L2
m(x) dx,

which shows the desired result. Here we use that Lm 6= 0 implies ‖Lm‖L2(−1,1) > 0.

The following Lemma is of importance for numerical stability.

Lemma 5.4. For a Gauss-quadrature, all weights are positive.
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Proof. Consider I2
i ∈ P2m−2. As we have exact quadrature for this function, we obtain

ωi =
m∑
j=1

ωjI
2
i (tj) = Q(I2

i ) =

∫ 1

−1
I2
i (x) dx = ‖Ii‖2L2(−1,1) > 0,

i.e., that the weights are positive.

It is straight-forward to extend Gauss quadrature to the multivariate case. Consider for

simplicity only two dimensions. Let f ∈ P2m−1 ⊗ P2m−1, i.e.,

f(x, y) =
2m−1∑
i=0

2m−1∑
j=0

ai,jx
iyj .

Then, we have∫ 1

−1

∫ 1

−1
f(x, y) dx dy =

∫ 1

−1

m∑
i=1

ω
(1)
i f(t

(1)
i , y) dy =

n∑
j=1

m∑
i=1

ω
(1)
i ω

(2)
j f(t

(1)
i , t

(2)
j )

since

f(·, y) ∈ P2m−1 for all y ∈ (−1, 1)

and

f(t
(1)
i , ·) ∈ P2m−1 for all i ∈ {1, . . . ,m}.

This shows that quadrature rules can be directly extended to tensor-products and that also

the exactness conditions carry over to tensor-products. We have

n∑
j=1

m∑
i=1

ω
(1)
i ω

(2)
j f(t

(1)
i , t

(2)
j ) = Qω,t(f),

where

ω = (ω
(1)
1 ω

(2)
1 , ω

(1)
1 ω

(2)
2 , . . . , ω

(1)
1 ω(2)

n , ω
(1)
2 ω

(2)
1 , ω

(1)
2 ω

(2)
2 . . .)

and

t := t(1) × t(2) = ((t
(1)
1 , t

(2)
1 ), (t

(1)
1 , t

(2)
2 ), . . . , (t

(1)
1 , t(2)

n ), (t
(1)
2 , t

(2)
1 ), (t

(1)
2 , t

(2)
2 ), . . .)

Based on the integration rules from this section, we can evaluate integrals like∫
Ω̂
B̂i,p,Ξ(x)B̂j,p,Ξ(x) dx or

∫
Ω̂
∇B̂i,p,Ξ(x)∇B̂j,p,Ξ(x) dx

on an element-by-element basis. The quadrature gets more involved, if also a geometry

transformation is present or if NURBS are considered.

5.3 Inexact quadrature

The quadrature gets more involved if also a geometry function is present. Consider the mass

matrix. Let F be a polynomial of degree p× p. Then,

det ∇F
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is a polynomial of degree 2p. Thus,∫
Î
ϕ(x)ψ(x)det ∇F (x)︸ ︷︷ ︸

degree 4p× 4p

dx.

This means, that we need 2p+ 1× 2p+ 1 quadrature nodes.

Consider now the stiffness matrix:∫
Î
(∇ϕ(x))T (∇F (x))−T (∇F (x))−1∇ψ(x)det ∇F (x) dx

and observe that (if ∇F is not constant) the term to be integrated is not a polynomial.

Thus, there is no Gauss quadrature that yields exact results.

So, the idea is to use inexact quadrature. This means that we use Gauss quadrature on terms

that are not polynomials of degree 2m − 1. Certainly, in this case the question arise how

many quadrature nodes should be chosen.

To answer this question, we have to do error analysis. For doing error analysis, we have

always to go back to the question of our original interest: solving a PDE. So, indeed the

question is: how does the usage of an inexact quadrature affect the accuracy of the solution

of the PDE? Strang’s lemma yields such an estimate.

Lemma 5.5 (First Lemma of Strang). Let Vh and V be Hilbert spaces such that Vh ⊂ V .

Let a be the exact bilinear form, ah be a perturbed bilinear form, f be the exact linear

functional (for the right-hand side) and fh be a perturbed linear functional.

Let u ∈ V be such that

a(u, v) = 〈f, v〉 for all v ∈ V.

Let uh ∈ Vh be such that

ah(uh, vh) = 〈fh, vh〉 for all vh ∈ Vh.

Assume that there are constants µ and µ such that the assumptions of the Theorem of Lax

Milgram (Theorem 1.11) hold for both a and ah.

Then, there is a constant c that depends only on µ and µ such that

‖u− uh‖V

≤ c
(

inf
vh∈Vh

(
‖u− vh‖V︸ ︷︷ ︸

discretization
error, like in the
Lemma of Ceá

+ sup
wh∈Vh

|a(vh, wh)− ah(vh, wh)|
‖wh‖V

)
+ sup
wh∈Vh

|〈f, wh〉 − 〈fh, wh〉|
‖wh‖V︸ ︷︷ ︸

consistency error

)
.

Some remarks:

• It is important that the assumptions on ah are satisfied, particularly the (uniform)

coercivity.

• The quadrature rule should be chosen such that the discretization error and the con-

sistency error are in the same size of magnitude (discrepancy principle).
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In the following, we consider the standard discretization of the Poisson problem with Dirichlet

boundary conditions, i.e., V = H1
0 (Ω), Vh = V̂h ◦ F−1 and V̂h = Sp,Ξ(Ω̂),

a(u, v) =

∫
Ω
∇u(x) · ∇v(x) dx

=

∫
Ω̂
∇T û(x̂)

(
∇F (x̂)

)−T (∇F (x̂)
)−1| det∇F (x̂)|︸ ︷︷ ︸

G(x̂) :=

∇v̂(x̂) dx̂

=
∑

i

d∑
α,β=1

∫
Îi

∇T û(x̂) G(x̂) ∇û(x̂) dx̂,

where û = u ◦ F and v̂ = v ◦ F . The discrete bilinear form ah is obtained from the last

representation of a, where the integrals are replaced by the quadrature rule Qω,t, i.e.,

ah(u, v) =
∑

i

2d

|Îi|
Qω,t

(
∇T û(ψi(x̂)) G(ψi(x̂)) ∇û(ψi(x̂))

)
,

where |Îi| = (x(1) − x(1)) · · · (x(d) − x(d)) is the area of Îi = (x(1), x(1))× · · · × (x(d), x(d)) and

ψi(x̂) :=
(

1
2(x + x) + x̂1

2(x− x)
)

maps (−1, 1) to Îi.

Theorem 5.6. Provided that we have a quadrature rule with positive weights and which is

is exact for polynomials of degree 2p and that λmin(G) > 0. Then, the bilinear form ah is

coercive and bounded with

µ =
1

cG
µ

0
and µ = cGµ0, (5.2)

where

cG = max
i
‖(λmin(G))−1‖

L∞(Îi)
‖λmax(G)‖

L∞(Îi)
(5.3)

and µ
0

and µ0 are the corresponding constants from the Lax Milgram theorem.

Note that Gauss-quadrature with m = p+ 1 is exact up to degree 2p+ 1 (Theorem 5.2) and

yields positive weighs (Lemma 5.4).

Also the condition λmin(G) > 0 is satisfied for our model problem. Note that the factor cG
only depends on the local variation of G within each element, i.e., we obtain µ → µ

0
and

µ→ µ0 for h→ 0.

Proof. For any uh ∈ Vh, we have

ah(uh, uh) =
∑

i

2d

|Îi|
Qω,t

(
∇T ûh(ψi(x̂)) G(ψi(x̂)) ∇ûh(ψi(x̂))

)
=
∑

i

2d

|Îi|

m∑
j=1

ωj ∇T ûh(ψi(tj)) G(ψi(tj)) ∇ûh(ψi(tj)).
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Since all ωj ≥ 0 and since wTGw ≥ λmin(G)wTw, we obtain further

ah(uh, uh) ≥
∑

i

2d

|Îi|

m∑
j=1

ωjλmin(G(ψi(tj)) ∇T ûh(ψi(tj)) ∇ûh(ψi(tj))

≥
∑

i

2d

|Îi|
‖(λmin(G))−1‖−1

L∞(Îi)

m∑
j=1

ωj ∇T ûh(ψi(tj)) ∇ûh(ψi(tj)).

Since the chosen quadrature rule can resolve the integral of a polynomial of degree 2p exactly,

we obtain

ah(uh, uh) ≥
∑

i

2d

|Îi|
‖(λmin(G))−1‖−1

L∞(Îi)

∫
(−1,1)d

∇T ûh(ψi(t)) ∇ûh(ψi(t)) dt

=
∑

i

‖(λmin(G))−1‖−1

L∞(Îi)

∫
Îi

∇T ûh(x̂) ∇ûh(x̂) dx̂

≥
∑

i

‖(λmin(G))−1‖−1

L∞(Îi)
‖λmax(G)‖−1

L∞(Îi)

∫
Îi

∇T ûh(x̂) G(x)∇ûh(x̂) dx̂

≥
(

min
i
‖(λmin(G))−1‖−1

L∞(Îi)
‖λmax(G)‖−1

L∞(Îi)

)
|u|2H1(Ω)

≥
(

max
i
‖(λmin(G))−1‖

L∞(Îi)
‖λmax(G)‖

L∞(Îi)

)−1

µ
0
‖u‖2H1(Ω).

Using the same arguments, we also obtain

ah(uh, uh) ≤
(

min
i
‖(λmin(G))−1‖

L∞(Îi)
‖λmax(G)‖

L∞(Îi)

)
µ0‖u‖2H1(Ω).

Note that we can apply Cauchy-Schwarz inequality to ah, so we have

ah(uh, vh) ≤ ah(uh, uh)1/2ah(vh, vh)1/2

≤
(

min
i
‖(λmin(G))−1‖

L∞(Îi)
‖λmax(G)‖

L∞(Îi)

)
µ0‖u‖H1(Ω)‖v‖H1(Ω),

which finishes the proof.

This shows that we can apply Strang’s Lemma and that the constants µ and µ are well

bounded. The next step is give a consistency error estimate. Note that that error estimate

should be as good as the discretization error estimate.

For the discretization error estimate, we need results on the Lagrange interpolation. For any

u ∈ H1(−1, 1), we define the Lagrange interpolation as follows:

w ∈ Pm−1 such that w(ti) = u(ti) for all i = 1, . . . ,m, (5.4)

i.e., w is the Lagrange interpolation polynomial of u.

Theorem 5.7. Let u ∈ Cm(−1, 1) and w be the Lagrange interpolation (5.4) with −1 ≤
t0 ≤ · · · ≤ tm ≤ 1. Then,

|u(x)− w(x)| ≤
∏m
i=1(x− ti)
m!

sup
ξ∈(−1,1)

|u(m)(ξ)| for all x ∈ R.
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Proof. There is certainly some function q such that

u(x)− w(x) =

m∏
i=1

(x− ti)q(x).

Let x ∈ R be arbitrary but fixed. Define

g(t) := u(t)− w(t)−
m∏
i=1

(t− ti) q(x)︸︷︷︸
this is q(x), not q(t).

.

The function g has m + 1 roots at: t1, . . . , tm and x. Using the mean value theorem, there

is some ξ ∈ (min{x, t1},max{x, tm}) ⊆ (−1, 1) such that g(m)(ξ) = 0. For this value of ξ, we

have

0 = g(m)(ξ) = u(m)(ξ)− w(m)(ξ)︸ ︷︷ ︸
= 0

− dm

dξm

m∏
i=1

(ξ − ti)︸ ︷︷ ︸
=

dm

dξm
ξm = m!

q(x),

which shows u(x) − w(x) =
∏m
i=1(x − ti)q(x) =

∏m
i=1(x−ti)
m! u(m)(ξ). The desired result is

obtained by taking the supremum.

We immediately obtain that there is some constant c(m) such that

‖u− w‖L2(−1,1) ≤
√

2‖u− w‖L∞(−1,1) ≤ c(m)‖u‖Wm
∞(−1,1). (5.5)

Theorem 5.8. Let m, k ∈ N with k ≤ m and let Qω,t be a quadrature formula with m

quadrature nodes which is exact for polynomials up to degree 2m− 1. Then,∣∣∣∣∫ 1

−1
g(x)u(x)v(x) dx−Qω,t(guv)

∣∣∣∣ ≤ c(m)‖g‖Wm
∞(−1,1)‖u‖Hk(−1,1)‖v‖L2(−1,1).

holds for all g ∈Wm
∞(−1, 1), u ∈ Pm and v ∈ Pm.

Proof. Let w ∈ Pm−1 be such that

w(tj) = g(tj)u(tj) for all j = 1, . . . ,m.

Using this setting, we obtain Qω,t(gu) = Qω,t(w) and, consequently, Qω,t(guv) = Qω,t(wv).

Since wv ∈ P2m−1, we know that the quadrature rule is exact, i.e., we obtain using the

Cauchy-Schwarz inequality∣∣∣∣∫ 1

−1
g(x)u(x)v(x) dx−Qω,t(guv)

∣∣∣∣ =

∣∣∣∣∫ 1

−1
g(x)u(x)v(x)− w(x)v(x) dx

∣∣∣∣
≤ ‖v‖L2(−1,1)‖gu− w‖L2(−1,1).

Using the Lagrange interpolation error estimate (5.5), we further obtain∣∣∣∣∫ 1

−1
g(x)u(x)v(x) dx−Qω,t(guv)

∣∣∣∣ ≤ c0(m)‖v‖L2(−1,1)‖gu‖Wm
∞(−1,1).
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Using the product rule, we further obtain∣∣∣∣∫ 1

−1
g(x)u(x)v(x) dx−Qω,t(guv)

∣∣∣∣ ≤ c1(m)‖v‖L2(−1,1)‖g‖Wm
∞(−1,1)‖u‖Wm

∞(−1,1).

Now, using a trace estimate, we obtain ‖q‖L∞(−1,1) ≤ c‖q‖H1(−1,1) and therefore,∣∣∣∣∫ 1

−1
g(x)u(x)v(x) dx−Qω,t(guv)

∣∣∣∣ ≤ c2(m)‖v‖L2(−1,1)‖g‖Wm
∞(−1,1)‖u‖Hm+1(−1,1).

Since u is a polynomial of degree m, we have ‖u‖Hm+1(−1,1) = ‖u‖Hm(−1,1). This yields the

desired result for k = m. For k < m, a standard inverse estimate (Theorem 4.1) yields the

desired result.

Let k, p,m ∈ N0 be such that 0 ≤ k < p + 1 ≤ m. Using standard scaling arguments, we

obtain ∣∣∣∣∫ 1

−1
g(x)u(x)v(x) dx−Qω,t(guv)

∣∣∣∣ ≤ c(m)hk‖g‖Wm
∞(0,1)‖u‖Hk(0,1)‖v‖L2(0,1)

for splines u, v ∈ Sp,Ξ(0, 1). Again, the result can be extended to tensor-product splines. We

obtain ∣∣∣∣∫
Ω̂
g(x)u(x)v(x) dx−Qω,t(guv)

∣∣∣∣ ≤ c(m)hk‖g‖
Wm
∞(Ω̂)
‖u‖

Hk(Ω̂)
‖v‖

L2(Ω̂)
.

for splines u ∈ Sp,Ξ(Ω̂) and v ∈ Sp,Ξ(Ω̂). Using this estimate, we can show a statement as

follows.

Theorem 5.9. Let k, p,m ∈ N0 be such that 0 ≤ k < p + 1 ≤ m. Assume that we have

a quadrature rule with m positive weights such that the quadrature formula is exact for

polynomials of degree 2m− 1. Then,

|a(uh, vh)− ah(uh, vh)| ≤ max
i
cG,i︸ ︷︷ ︸

cG :=

hk‖uh‖Hk+1(Ω)‖vh‖H1(Ω)

for all uh, vh ∈ Vh, where cG,i only depends on G|Ii, m, p and k, but is independent of h.

Here, we obtain ‖uh‖Hk+1(Ω) and ‖vh‖H1(Ω) instead of ‖uh‖Hk(Ω) and ‖vh‖L2(Ω) form above

since we get one additional derivative from the derivative in the definition of the bilinear

form a.

By plugging this result into the estimate of Strang’s lemma and by assuming that there was

no quadrature error for f , we obtain using a standard inverse estimate

‖u− uh‖H1(Ω) . inf
vh∈Vh

(
‖u− vh‖H1(Ω) + hkcG‖vh‖Hk+1(Ω)

)
≤ hkcG‖u‖Hk+1(Ω) + inf

vh∈Vh

(
‖u− vh‖H1(Ω) + hkcG‖u− vh‖Hk+1(Ω)

)
. hkcG‖u‖Hk+1(Ω) + (1 + cG) inf

vh∈Vh
‖u− vh‖H1(Ω)

. hkcG‖u‖Hk+1(Ω) + (1 + cG)hk|u|H1+k(Ω) . hk(1 + cG)‖u‖Hk+1(Ω).

Consistency error estimates for f can be derived analogous.
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5.4 Assembling costs and sum factorization

In the following, we discuss the costs of the assembling approaches. For simplicity, we restrict

ourselves to computing the mass matrix.

We assume to have a tensor-product grid with n elements in each direction, spline degree p

and smoothness k = p− 1.

We use the following notation.

• The computational complexity is measured in floating point operations (flops), i.e.,

additions, multiplications, etc.

• The computational complexity is expressed in terms of the spline degree p and n h h−1,

the number of elements per direction. The spacial dimension d is only written in the

exponent, not as multiplicative factor.

More precisely, we write that the number of flops Cn,p satisfies

Cn,p = O(nαpβ)

if there are a constants c > 0, cn > 0 and cp > 0, independent of h and p such that

Cn,p ≤ cnαpβ for all n ≥ cn and p ≥ cp.

• The evaluation of the B-spline basis functions cannot be done in O(1) flops. However,

it is possible to evaluate the basis functions at all quadrature nodes of interest in a

pre-processing step.

If the basis functions and the quadrature nodes follow a tensor-product structure, we

simply use

B̂i,p,h(tk) = B̂i1,p1,h1(tk1)︸ ︷︷ ︸
φi1(tk1) :=

· · · B̂id,pd,hd(tkd)︸ ︷︷ ︸
φid(tkd) :=

and pre-compute the values of the univariate splines φij (tkj ).

As we assume that the splines have been pre-evaluated, we assume the costs to access

that value of a basis function to be O(1).

• We moreover assume that the geometry function can be evaluated in O(1) flops. This

is possible for simple geometry functions. For more complicated geometry mappings,

like B-spline surfaces, this is not possible, cf. Remark 5.10.

Before we proceed, we remember that the number of non-zero entries of the mass matrix is

O(pdnd).

The most naive approach to assemble the mass matrix using Gauss quadrature is to compute

each matrix entry separately. So for each pair (i, j), the quadrature is done as follows. We

first determine the intersection of the supports of the basis functions B̂i,p,h and B̂j,p,h. The

intersection of the supports is at least 1 element Ik and at most O(pd) elements.1

1Note that the overall costs are dominated by the case with O(pd) elements.
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Within each element, we have O(pd) quadrature nodes. Therefore, we have O(p2d) quadra-

ture nodes in the intersection of the supports. The overall costs are

# non-zeros ∗ # quadrature points in intersection of support,

i.e.,

Cn,p = O(p3dnd).

Numerical experiments show that the assembling costs are a big issue in IgA. Particularly,

this approach of naive Gauss quadrature is a way to slow. So, better approaches are required.

The first approach which we consider, is Sum factorization. This approach is already known

from FEM, where it is typically only applied element-wise. Consider for simplicity only the

two-dimensional case. Let entries of the mass matrix Mh be denoted by

mi,j = mi1+n(i2−1),i1+n(i2−1) = c(i1,i2),(j1,j2) = ci,j.

Assume that the mass matrix is computed with a Gauss quadrature rule. In the last section,

we have written down the quadrature rules only element-wise but the idea of quadrature can

be applied also to the whole spline space.

Consider the the univariate case first. Provided, we choose to have p+1 quadrature nodes per

element, we obtain (p+1)n quadrature nodes in total. We denote the nodes by t1, . . . , t(p+1)n

and the corresponding weights by ω1, . . . , ω(p+1)n.

For the multivariate case, we use again standard tensor-product quadrature:

mi,j =

(p+1)n∑
k1=1

(p+1)n∑
k2=1

ωk1ωk2 g(tk1 , tk2) B̂i,p,h(tk)B̂j,p,h(tk)

=

(p+1)n∑
k1=1

(p+1)n∑
k2=1

ωk1ωk2g(tk1 , tk2)φi1(tk1)φi2(tk2)φj1(tk1)φj2(tk2)

=

(p+1)n∑
k1=1

ωk1φi1(tk1)φj1(tk1)

(p+1)n∑
k2=1

ωk2φi2(tk2)φj2(tk2) g(tk1 , tk2)︸ ︷︷ ︸
ak1,k2 :=︸ ︷︷ ︸

bk1,(i2,j2) :=︸ ︷︷ ︸
c(i1,j1),(i2,j2) :=

For computing the mass matrix, we perform the following steps.

• Compute ak1,k2 : We have (p + 1)n quadrature nodes per direction, so we have to

consider (p + 1)2n2 quadrature nodes in total. For simplicity, we have assumed that

the evaluation of the geometry function can be done on O(1) flops. So, the costs are

O(p2n2).

• Compute bk1,(i2,j2): Again, we have (p+1)n quadrature nodes (choices of k1). Moreover,

we have n + p basis functions i2. For each fixed i2, there are not more than 2p + 1

basis functions j2 such that the supports of the basis functions are not disjoint. So, we
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have O(p2n(n+ p)) coefficients b to compute. For each particular coefficient, we have

to take the sum over p2 quadrature nodes (choices of k1). So, the overall costs are

O(p4n(n+ p))

• Compute c(i1,j1),(i2,j2): Here, we have (n + p)(2p + 1) pairs (i1, i2) and as many pairs

(j1, j2). So, we have O(p2(n + p)2) coefficients c to compute. For each particular

coefficient, we have to take the sum over p2 quadrature nodes (choices of k2). So, the

overall costs are

O(p4(n+ p)2).

The overall costs follow the dominant summand. Thus, we obtain

Cn,p = O(p4(n+ p)2).

If we consider the d-dimensional case, we obtain

Cn,p = O(pd+2(n+ p)d).

Provided the usual case n ≥ p, we have

Cn,p = O(pd+2nd).

Sometimes, sum factorization is provided element-wise. Here, we perform for each of the nd

elements the following steps.

• Compute ak1,k2 : We have p+ 1 quadrature nodes per direction, so we have to consider

(p+1)2 quadrature nodes in total. For simplicity, we have assumed that the evaluation

of the geometry function can be done on O(1) flops. So, the costs are

O(p2).

• Compute bk1,(i2,j2): Again, we have p+1 quadrature nodes (choices of k1). Moreover, we

have 2p+ 1 basis functions i2 and j2. So, we have O(p3) coefficients b to compute. For

each particular coefficient, we have to take the sum over p quadrature nodes (choices

of k1). So, the overall costs are

O(p4)

• Compute c(i1,j1),(i2,j2): Here, we have (2p+ 1)2 pairs (i1, i2) and as many pairs (j1, j2).

So, we have O(p4) coefficients c to compute. For each particular coefficient, we have

to take the sum over p quadrature nodes (choices of k2). So, the overall costs are

O(p5).

Thus, the costs per element are O(p5) or, for the d-dimensional case

O(p2d+1).
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Since we have to apply quadrature for each element, the overall costs are obtained if the

per-element costs are multiplied with the number of elements:

Cn,p = O(p2d+1nd).

This is the result that has been obtained in [15]. We observe that the per-element sum

factorization is more expensive than the global sum factorization. A careful analysis shows

that one can do a box-wise quadrature. Here we always combine p × · · · × p elements to a

box and apply our sum-factorization algorithm box-wise. The costs per box are

O(p2d+2).

The number of boxes is O((n/p)d). Thus, the overall costs are

Cn,p = O(pd+2nd),

which coincides with the case of global sum factorization.

Remark 5.10. If the geometry function is a B-spline surface (or volume), the evaluation

of the geometry function on all quadrature nodes is as expensive as the assembling procedure

itself. Similar to assembling, also the evaluation of the geometry function can be done using

element-wise, box-wise or global sum factorization, see [16] for details.

5.5 Weighted quadrature

For simplicity, consider the one dimensional case first. Consider again the problem of deriving

the coefficients mi,j of the mass matrix, representing∫ 1

0
g(x)φi(x)φj(x) dx,

where g is the Jacobi determinant of the geometry function and φi and φj are the basis

function of V̂h = Sp,Ξ(0, 1). For the computation of the computational complexity, we

assume to have n elements per direction and no repeated knots.

Now, we introduce for each row i of the mass matrix a separate quadrature rule:

Qi(ψ) :=

N∑
l=1

ωi,lψ(ti),

which aims to resolve the integral ∫ 1

0
φi(x)ψ(x) dx.

We choose ψ := gφj as the function to be integrated. The function φi is part of the quadrature

weights. (The quadrature nodes for all quadrature rules Qi are the same.)

We require the following exactness condition:

Qi(vh) =

∫
Ω̂
φi(x)vh(x) dx for all vh ∈ V̂h. (5.6)
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This is similar to the Gauss quadrature, where we had also required exactness for the case

that g = 1.

Moreover, we require the following locality condition:

φi(tl) = 0 ⇒ ωi,l = 0. (5.7)

The exactness condition (5.6) contains n + p conditions. This means, that the work could

be done theoretically with n + p quadrature nodes. (The Gauss quadrature approach uses

pn quadrature nodes.)

To have some more freedom, in weighted quadrature, one uses 2 quadrature per direction.

Since the nodes are also located on the element-boundary, we have basically 3d quadrature

nodes that belong to the closure of the element. For the elements on the boundary, p + 1

quadrature nodes per direction are used. In total, we obtain 2n+ 2p+ 1 quadrature nodes,

cf. Figure 5.1.

Figure 5.1: Quadrature nodes of weighted quadrature

It is outlined in [17], that it is possible to find a quadrature rule Qi such that (5.6) and (5.7)

hold. Since these conditions do not yield exactness, a quadrature rule with minimum norm

is chosen.

The quadrature is now done using the quadrature rules Qi:

mi,j = Qi(g(x)φj(x)) =

2n+2p+1∑
l=1

ωi,lφj(tl).

The extension to tensor-product discretizations is straight forward. First, a tensor-product

grid is introduced, cf. Figure 5.2.

Figure 5.2: Quadrature nodes of weighted quadrature
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The quadrature is now rather straight forward:

mi1+n(i2−1),j1+n(j2−1) =

2n+2p+1∑
l1=1

2n+2p+1∑
l2=1

ωi1,l1ωi2,l2g(tl1 , tl2)φj1(tl1)φj2(tl2)

h
∫

Ω̂
g(x1, x2)φi1(x1)φi2(x2)︸ ︷︷ ︸φj1(x1)φj2(x2)︸ ︷︷ ︸ d(x1, x2).

This integral is again resolved using sum factorization. A careful analysis shows that the

overall computational complexity is

O(pd+1n)

flops.

Some remarks:

• The stiffness matrix can be handled analogously, e.g., by computing the integrals∫
Ω̂

( ∂
∂xu)( ∂

∂xv) dx and
∫

Ω̂
( ∂∂yu)( ∂∂yv) dx separately.

• The method treats the ansatz functions different to the test functions. This approach

yields non-symmetric matrices. (If the g was constant, all integrals were exact. In this

case, the overall matrix was certainly symmetric.)

• There is a detailed error analysis (based on Strang’s lemma) which also takes into

account that the matrices are non-symmetric, cf. [17].

• The resulting matrix could be symmetrized, i.e., it could be replaced by 1
2(Mh +MT

h ).

In this case, the error analysis from [17] breaks apart. So, one has to stick to the

original, non-symmetric matrix.

5.6 Low-tensor-rank quadrature

Consider once more the mass matrix Mh = [mi,j ]
n2

i,j=1 first. Here, we first discuss the case

that g = 1. For d = 2, we have

mi1+(i2−1)n,j1+(j2−1)n =

∫
Ω̂

︷ ︸︸ ︷
φi1(x1)φi2(x2)

︷ ︸︸ ︷
φj1(x1)φj2(x2) d(x1, x2)

=

∫ 1

0
φi1(x1)φj1(x1) dx1︸ ︷︷ ︸
m

(1)
i1,j1

:=

∫ 1

0
φi2(x2)φj2(x2) dx2︸ ︷︷ ︸
m

(2)
i2,j2

:=

.

The coefficients m
(1)
i1,j1

and m
(2)
i2,j2

can be combined to univariate mass matrices:

M
(1)
h = [m

(1)
i,j ]Ni,j=1 and M

(2)
h = [m

(2)
i,j ]Ni,j=1.

The overall mass matrix Mh is just the Kronecker product:

Mh = M
(1)
h ⊗M

(2)
h (5.8)
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or

Mh = [mi,j ]
N2

i,j=1 with mi1+(i2−1)n,j1+(j2−1)n = m
(1)
i1,j1

m
(2)
i2,j2

.

Such a Kronecker product structure has many advantages. Instead of assembling the mass

matrix Mh as a whole, we can assemble the mass matrices M
(1)
h and M

(2)
h .

Each of those matrices has

O(np)

non-zero entries. The costs for assembling each of those matrices (using Gauss quadrature)

are

O(np3)

flops, which is very small compared to the assembling costs for assembling the matrix Mh as

a whole. After assembling the univariate mass matrices, we can derive the Kronecker product

to obtain Mh. The computational complexity of derivation of the Kronecker product is

O(n2p2),

i.e., as large as the number of non-zero entries of Mh.

In many contexts, we can work with matrix-free approaches. Often, we do not need the

matrix Mh at all, but only the possibility to compute matrix-vector products Mhuh. The

computation of these matrix-vector products can be evaluated using the formula

Mhuh = (M
(1)
h ⊗M

(2)
h )uh = (M

(1)
h ⊗ I) (I ⊗M (2)

h )uh︸ ︷︷ ︸
vh :=︸ ︷︷ ︸

wh :=

.

Here, the computation of vh can be realized by n matrix-vector products of the matrix M
(2)
h

and appropriate blocks of uh. The vector wh can be computed analogously from vh. Using

this approach, the computational complexity is only

O(pnd),

compared to

O(pdnd)

for the straight-forward approach.

The idea of low-tensor rank assembling easily extends to the stiffness matrix. Here, we obtain

Ah = A
(1)
h ⊗M

(2)
h +M

(1)
h ⊗A

(2)
h , (5.9)

where A
(1)
h and A

(2)
h are the univariate stiffness matrices and M

(1)
h and M

(2)
h are the univariate

mass matrices.

For general geometry mappings, we can observe that the geometry function typically has a

low-tensor-rank structure:

F (x, y) h
r∑
l=1

f
(1)
l (x)f

(2)
l (y)
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for some (not too large) value of r. Since we are only interested in the values at the quadrature

nodes (ti1 , ti2), we can formalize this in a discrete setting. Consider the vector F h, given by

F h = (fi)
N
i=1 with fi1+n(i2−1) = F (ti1 , ti2).

A low-tensor-rank representation has the form

F h h
r∑
l=1

f (1)
l
⊗ f (2)

l
,

where f
(1)
l , f

(2)
l ∈ Rn. In the discrete setting, we know that such a decomposition exists

certainly for r = n. A low-tensor-rank formulation has a smaller tensor rank.

Provided to have a low-tensor-rank representation of F , we also have a low-tensor-rank

approximation of the Jacobi matrix (or its individual entries). For assembling the mass

matrix, we are interested in a low-tensor-rank approximation of the determinant of the

Jacobi matrix. Having a representation of the Jacobi matrix with tensor rank r, we can

show that there is a representation of its determinant that is not larger than d r2. Numerical

experiments show that this, however, is too pessimistic. Since the transformation required

for the stiffness matrix also contains the inverse of the Jacobi matrix, we have no guarantee

on the rank. Also in this case, experiments show that these typically have a low rank.

So, provided we have a function g with low tensor rank, how can we evaluate the integral

mi,j =

∫
Ω̂
g(x)ϕi(x)ϕj(x) dx

efficiently?

We use the tensor-product structure

ϕi1+n(i2−1)(x, y) = φi1(x)φi2(y)

g(x, y) =

r∑
l=1

g
(1)
l (x)g

(2)
l (x)

and obtain

mi1+n(i2−1),j1+n(j2−1) =
r∑
l=1

∫
Ω̂
g

(1)
l (x)g

(2)
l (x)φi1(x)φi2(y)φj1(x)φj2(y) d(x, y)

=
r∑
l=1

∫ 1

0
g

(1)
l (x)φi1(x)φj1(x) dx︸ ︷︷ ︸

m
(1)
l,i1,j1

:=

∫ 1

0
g

(2)
l (y)φi2(y)φj2(y) dy︸ ︷︷ ︸

m
(2)
l,i2,j2

:=

.

In matrix notation, this yields

M =

r∑
l=1

M
(1)
l ⊗M

(2)
l .

This also shows the assembling procedure:

• Assume to have a low-tensor-representation of g.
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• Assemble the univariate matrices M
(1)
l and M

(2)
l .

• Compute the Kronecker product (if desired).

The assembling of the univariate matrices can be done, e.g., with Gauss quadrature. Here,

the computational complexity is

O(rp3n),

which is (for n large) much smaller than nd, the number of degrees of freedom. The compu-

tation of the Kronecker product can be done with

O(rpdnd)

flops, which would be the dominant part. Thus, whenever low-tensor-rank representations

are available, it makes much sense to use matrix-free solvers.

5.7 An algebraic low-tensor-rank quadrature

Assume to have a low-tensor-rank matrix

M =
r∑
l=1

Al ⊗Bl (5.10)

with

M = (mi,j)
n2

i,j=1 with mi1+n(i2−1),j1+n(j2−1) = m(i1,i2),(j1,j2),

and Al = (a
(l)
i,j)

n
i,j=1 and Bl = (b

(l)
i,j)

n
i,j=1. Consider the following reordered matrix

M̂ = (m̂i,j)
n2

i,j=1 with m̂i,j = mi1+n(j1−1),i2+n(j2−1),

cf. Figure 5.3.

⇒

Figure 5.3: Reordering

Similarly, we reorder the entries of Al and Bl such that they get vectors:

Âl = (â
(l)
i )n

2

i=1 with â
(l)
i+n(j−1) = a

(l)
i,j ,

B̂l = (̂b
(l)
i )n

2

i=1 with b̂
(l)
i+n(j−1) = b

(l)
i,j .
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Now the low-tensor-rank representation (5.10) reads as follows:

M̂ =

r∑
l=1

ÂTl B̂l,

i.e., M̂ is a low-rank matrix.

There are many (black-box) algorithms around that allow the treatment of low-rank matrices,

like

• the singular value decomposition (SVD) or

• the adaptive cross approximation (ACA) algorithm.

The SVD algorithm can be applied to any known (i.e., already assembled) matrix to a

representation of the form

M̂ =
n∑
l=1

σlÂ
T
l B̂l.

The best possible low-rank approximation is obtained by only taking the contributions with

the largest singular values σ.

The ACA algorithm can be used to get a low-rank representation

M̂ =
r∑
l=1

ÂTl B̂l,

without the need of knowing the matrix M̂ in advance. So, it is suitable for assembling. The

only ingredient is that one has to be able to compute individual matrix entries of the matrix

M̂ . This can be done, e.g., with Gauss quadrature. The ACA algorithm is beneficial if not

too many matrix entries have to be computed.

In numerical experiments, it was shown that this approach works well, cf. [18].

5.8 Literature

For the orthogonal polynomials and Gauss quadrature, see [10]. Sum factorization (Sec-

tion 5.4) is a known technique in FEM, cf. [19] and others. Sum factorization in the IgA

context was first discussed in [15]. Global and box-wise sum factorization for IgA was pro-

posed in [16]. Weighted quadrature (Section 5.5) was proposed and analyzed in [17].

For low-tensor-rank approaches (Section 5.7), see [20]. The corresponding algebraic ap-

proaches (Section 5.7) have been proposed in [18].



Chapter 6

Adaptive discretizations in
Isogeometric Analysis

Figure 6.1: Spline zoo

Splines that allow local refinement include, but are not restricted to:

• HB-splines: hierarchical B-splines

• THB-splines: truncated hierarchical B-splines

• T-splines: splines over meshes with T-junctions

• AST-splines: analysis suitable T-splines

• DCT-splines: dual compatible T-splines

• LR-splines: locally refined splines

• WEB-splines: weighted extended B-splines

• PB-spines: patchwork B-splines

• TPB-splines: truncated patchwork B-splines

• T-NURCCS: non-uniform rational Catmull-Clark
surfaces with T-junctions

• PHT-spines: polynomial splines over hierarchical
T-meshes

• G-spines: splines with geometric continuity

• TURBS: topologically unrestricted rational B-
splines

• MPBES: multi-patch B-splines with enhanced
smoothness

Figure 6.1 visualizes a part of the spline zoo. We will restrict ourselves to THB-splines and

T-splines.

77
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6.1 Error estimates for locally refined spaces

We assume to have given some basis B of piecewise polynomial functions and some dual

basis Λ, i.e.,

λj(Bi) = δi,j for all Bi ∈ B and λj ∈ Λ.

Let Ω̂ be the parameter domain. For simplicity, we only consider that space. We assume

that

Ω̂ =
⋃
k

Qk,

where Qk = I1
k × . . .× Idk are axis aligned boxes and Q◦k ∩Q◦` = ∅ for k 6= `.

The basis and dual basis need to satisfy some reasonable properties.

• The basis satisfies ∑
i

Bi ≤ 1 everywhere on Ω̂.

• The space spanned by the basis contains all tensor-product polynomials of degree p on

Ω̂, i.e., Pp ⊆ span(B).

• The dual functionals have support inside the support of the basis functions, i.e.,

λj(f) = 0 if supp(f) ∩ supp(Bj) = ∅.

• The dual functionals are stable in L∞, i.e.,

|λj(f)| ≤ C∞‖f‖L∞(supp(Bj)).

Standard tensor-product B-splines together with the Schumaker dual basis satisfy all prop-

erties.

We directly obtain the following.

Lemma 6.1. The projector Π : L2(Ω̂)→ span(B) with

Π(f) =
∑

i

λi(f)Bi (6.1)

satisfies

‖Π(f)‖L∞(Q) ≤ C∞‖f‖L∞(Q̃)
, (6.2)

where Q is some box and Q̃ is its support extension, i.e.,

Q̃ =
⋃

i∈I(Q)

supp(Bi)

where I(Q) = {i : supp(Bi) ∩Q 6= ∅}.
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Proof. We have

‖Π(f)‖L∞(Q) =

∥∥∥∥∥∑
i

λi(f)Bi

∥∥∥∥∥
L∞(Q)

≤

∥∥∥∥∥∥
∑

i∈I(Q)

max
j∈I(Q)

|λj(f)|Bi

∥∥∥∥∥∥
L∞(Q)

≤ max
j∈I(Q)

(|λj(f)|) ≤ C∞‖f‖L∞(Q̃)
,

which concludes the proof.

We can now combine standard polynomial approximation results with the local boundedness

of the operator Π to obtain the following.

Theorem 6.2. Let Q ⊂ Ω̂ be some element of the mesh. If Π(g)|
Q̃

= g|
Q̃

for all g ∈ Pp,
then

|(I −Π)u|Hr(Q) ≤ K

(
1 +

h
Q̃,max

h
Q̃,min

)d
(h
Q̃,max

)s

(hQ,min)r
|u|

Hs(Q̃)
, (6.3)

for all u ∈ Hs(Q̃), with 0 ≤ r < s ≤ p+ 1.

Proof. Given a polynomial g ∈ Pp, we have

|(I −Π)u|Hr(Q) = |u− g −Π(u− g)|Hr(Q) (6.4)

≤ |u− g|Hr(Q) + |Π(u− g)|Hr(Q) . (6.5)

For suitable g (being an averaged Taylor polynomial), the first part satisfies

|u− g|Hr(Q) ≤ |u− g|Hr(Q̃)
≤ C1

(h
Q̃,max

)s

(h
Q̃,min

)r
|u|Hs(Q), (6.6)

where C1 is a constant independent of the mesh size. The second part in (6.5) is a Sobolev

semi-norm of a polynomial, so we can apply a standard inverse estimate

|Π(u− g)|Hr(Q) ≤ Cinv(hQ,min)−r‖Π(u− g)‖L2(Q). (6.7)

We have

‖Π(u− g)‖L2(Q) ≤ (hQ,max)d/2‖Π(u− g)‖L∞(Q) ≤ (hQ,max)d/2C∞‖u− g‖L∞(Q̃)
, (6.8)

due to Lemma 6.1. Again, for g being an averaged Taylor polynomial, we obtain

‖u− g‖
L∞(Q̃)

≤ C2

(
1 +

h
Q̃,max

h
Q̃,min

)d
(h
Q̃,max

)s−d/2|u|
Hs(Q̃)

.

So, in total, we obtain

|(I −Π)u|Hr(Q) ≤ |u− g|Hr(Q) + |Π(u− g)|Hr(Q)

≤ C1

(h
Q̃,max

)s

(h
Q̃,min

)r
|u|Hs(Q) +K ′

(
1 +

h
Q̃,max

h
Q̃,min

)d
(h
Q̃,max

)s

(hQ,min)r
|u|

Hs(Q̃)
,

where K ′ = CinvC∞C2.
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In this estimate, the support extension should be shape regular, that is, h
Q̃,max

/h
Q̃,min

should

be bounded. It is reasonable to assume that all elements are shape regular. Moreover for

r > 0, the sizes of the element hQ,min and support extension h
Q̃,max

should be of similar

order. Otherwise, the estimate might blow up.

We will now discuss two different constructions to obtain suitable locally refineable bases

and dual bases. One can distinguish two different approaches:

• Domain based refinement (THB-splines)

• Function based refinement (T-splines)

6.2 THB-splines

Let Ω∗ ⊃ Ω̂ be a box containing our domain of interest. Let moreover

S0 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sn

be a nested sequence of tensor-product B-spline spaces on Ω∗, where S` has the basis B` =

{B`
i }.

In addition, we have given a nested sequence of subdomains

Ω̂ = Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ . . . ⊇ Ωn,

where each Ω` is the union of elements of level `.

We can now define the hierarchical basis corresponding to the spaces S` and domains Ω`.

Definition 6.3. The hierarchical bases H` are defined recursively with

1. H0 = {B0
i ∈ B0 : supp(B0

i ) ∩ Ω0 6= ∅}.

2. For ` = 0, . . . , n− 1:

H`+1
C = {Bk

i ∈ H` : supp(Bk
i ) * Ω`+1}, (6.9)

H`+1
F = {B`+1

i ∈ B`+1 : supp(B`+1
i ) ⊆ Ω`+1}, (6.10)

H`+1 = H`+1
C ∪H`+1

F . (6.11)

We call the functions in Hn the hierarchical B-splines.

Obviously, the functions in Hn are linearly independent, so they form a basis. The space

spanned by the basis contains all polynomials. However, they do not form a partition of

unity.

To obtain a partition of unity, we need to define the so-called truncation of a basis function.

Let s ∈ S`+1 have the form

s =
∑

i

c`+1
i B`+1

i ,

then the truncation of s is defined as

trunc`+1(s) =
∑

i : supp(B`+1
i )*Ω`+1

c`+1
i B`+1

i .

Now we can define truncated bases as follows.
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Definition 6.4. The truncated hierarchical bases T ` are defined recursively with

1. T 0 = H0.

2. For ` = 0, . . . , n− 1:

T `+1
C = {B̂k

i = trunc`+1(Bk
i ) : Bk

i ∈ T `, supp(Bk
i ) * Ω`+1}, (6.12)

T `+1
F = {B̂`+1

i = B`+1
i ∈ B`+1 : supp(B`+1

i ) ⊆ Ω`+1}, (6.13)

T `+1 = T `+1
C ∪ T `+1

F . (6.14)

We call the functions in T n the truncated hierarchical B-splines (THB-splines).

The THB-splines satisfy the following.

Theorem 6.5. The THB-splines T n form a partition of unity on Ω̂. Moreover

span(T n) = span(Hn).

What remains to be shown is the existence of a suitable dual basis. Let therefore Λ` be a

dual basis for B`.
We can now define the hierarchical projector

Π(f) =
n∑
`=0

∑
i∈I`n

λ`i(f)B̂`
i ,

where B̂`
i ∈ T ` and λ`i ∈ Λ`. The operator Π reproduces polynomials.

Theorem 6.6. If ∑
i

λ`i(g)B`
i = g

for all g ∈ Pp, then

Π(g) = g

for all g ∈ Pp.

Moreover, we have the following.

Theorem 6.7. We assume that each λ`i , for i ∈ I`n, used in the projector satisfies

f |Ω`\Ω`+1 = 0⇒ λ`i(f) = 0.

Then, if ∑
i

λ`i(s)B
`
i = s

for all s ∈ S`, we have

Π(s) = s

for all s ∈ span(T n).
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The condition on the support is not satisfied for the Schumaker dual basis, but one can show

that such a dual basis exists.

We now have all the ingredients to apply the results from Subsection 6.1, as the dual basis

can be chosen such that all functionals are suitably bounded and the operator Π reproduces

polynomials.

To be able to bound hQ,min ≥ c h
Q̃,min

, we use the notion of mesh level disparity.

Definition 6.8. The mesh level disparity δ is the largest difference of levels of THB-splines

supported on any element Q.

If the mesh on level 0 is regular of size H0 and the refinement is diadic, then we have

hQ,min = hQ,max = h` = H02−`

and

h
Q̃,min

≤ h
Q̃,max

≤ C pH02δ−` = C p 2δh`,

for any Q being an element of level `. From this we obtain c = (C p 2δ)−1.

6.3 T-splines

In this section we consider T-splines for local refinement. T-spline basis functions are stan-

dard tensor-product B-splines over a non-tensor-product mesh. The definition of T-splines

is based on the fact that B-spline basis functions only depend on their local knot vectors.

We assume to have given a planar box mesh over which we define T-splines. Note that

T-splines generalize also to arbitrary dimensions.

Definition 6.9. A box mesh over a two dimensional domain Ω̂ is a collection of axis-aligned

boxes Qk, such that

Ω̂ =
⋃
k

Qk,

vertices x` and horizontal and vertical edge segments [xj ,xj′ ].

6.3.1 Index T-mesh

An index T-mesh is defined to be a box mesh over an integer grid.

Definition 6.10. Let (m,m), (n, n) ∈ Z×Z be the minimal and maximal indices in the first

and second direction, respectively. An index T-mesh M is a box mesh over [m,n] × [m,n],

where all vertices are integer indices x` ∈ Z× Z. All vertices in the interior have valency 3

or 4.

For given polynomial degrees in the two dimensions we can define an admissible T-mesh.

Definition 6.11. Let p1, p2 ∈ Z+
0 be the degrees in the first and second direction, respectively.

An index T-mesh is called admissible, if

{`} × [n, n] for ` = m, . . . ,m+

⌊
p1 + 1

2

⌋
and ` = m−

⌊
p1 + 1

2

⌋
, . . . ,m,
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[m,m]× {`} for ` = n, . . . , n+

⌊
p2 + 1

2

⌋
and ` = n−

⌊
p2 + 1

2

⌋
, . . . , n

are contained as edges in the mesh and all vertices in

]m,n[× ]m,n[ \AR

have valency four. Here

AR =

[
m+

⌊
p1 + 1

2

⌋
, n+

⌊
p2 + 1

2

⌋]
×
[
m−

⌊
p1 + 1

2

⌋
, n−

⌊
p2 + 1

2

⌋]
is the active region.

We can now define the degrees of freedom within our index T-mesh. Then

• for odd p1, p2, all vertices in AR,

• for odd p1 and even p2, all vertical edge segments in AR,

• for even p1 and odd p2, all horizontal edge segments in AR,

• for even p1, p2, all faces in AR,

are called anchors, denoted by A ∈ A(M).

6.3.2 T-mesh and T-splines

We can now define one T-spline for every anchor. But before we need to define a T-mesh.

Definition 6.12. We assign a knot value for every index of the index T-mesh, with

0 = t1m = . . . = t1m+p1
< t1m+p1+1 ≤ . . . ≤ t1m−p1−1 < t1m−p1

= . . . = t1m = 1

as well as

0 = t2n = . . . = t2n+p2
< t2n+p2+1 ≤ . . . ≤ t2n−p2−1 < t2n−p2

= . . . = t2n = 1.

The mesh introduced by these knots is called the T-mesh of M, in short T (M). For every

anchor A ∈ A(M) we can now extract local knot vectors in horizontal and vertical direction,

hkv(A) and vkv(A), respectively.

We describe the extraction for odd degree p = 2k + 1 in horizontal direction: Let the anchor

A be the vertex (m′, n′) in index space. Then the extraction for the horizontal knot vector

takes the knot t1m′ as the central knot. Then, moving left, the first k + 1 knots are collected,

where the horizontal line through A intersects vertical knot lines. Similarly, the next k + 1

knots to the right are collected, see Figure 6.2.
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Figure 6.2: Knot vector extraction for different degrees.

Definition 6.13. The T-splines of degree (p1, p2) over the admissible T-mesh T (M) are

given by

B(M) = {Bp1 [hkv(A)](t1)Bp2 [vkv(A)](t2) : for A ∈ A(M)}.

Here, Bp[Ξ](t) is the B-spline of degree p having the local knot vector Ξ of length p+ 2.

6.3.3 Dual-compatible T-splines

In the following we define locally dual functionals for the T-splines. It turns out that under

certain geometric conditions the locally dual functionals actually form a dual basis.

Before we can define the dual basis, we need some additional notation.

Definition 6.14. We say that two local knot vectors Ξ and Ξ′ of length p + 2 overlap, if

for every knot t ∈ Ξ with min(Ξ′) ≤ t ≤ max(Ξ′) we have t ∈ Ξ′; as well as for every knot

t′ ∈ Ξ′ with min(Ξ) ≤ t′ ≤ max(Ξ) we have t′ ∈ Ξ, see Figure 6.3.

Figure 6.3: Overlapping (left) and non-overlapping (right) knot vectors.

We say that two anchors A and A′ partially overlap, if they overlap either horizontally (with

hkv(A) and hkv(A′) overlapping) or vertically (with vkv(A) and vkv(A′) overlapping).

Definition 6.15. Given a local knot vector Ξ of length p+ 2. Let λp[Ξ](f) be a functional,

such that λp[Ξ](Bp[Ξ]) = 1 and λp[Ξ](Bp[Ξ′]) = 0 for all knot vectors Ξ′ that are overlapping

with Ξ.

Theorem 6.16. Let B(M) be T-splines of degree (p1, p2). We assume that all pairs of

anchors in A(M) partially overlap. Then, the functionals

Λ(M) = {λp1 [hkv(A)](t1)⊗ λp2 [vkv(A)](t2) : for A ∈ A(M)}
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form a dual basis for B(M).

A proof of this theorem is straight-forward. We call T-splines where all anchors partially

overlap dual-compatible T-splines.

Dual-compatible T-splines have a nice geometric interpretation.

Definition 6.17. A T-node extension is a line segment that extends any T-node (a vertex of

valency 3) bp+1
2 c forward and dp−1

2 e elements back, where p = p1 for horizontal and p = p2

for vertical T-node extensions. See Figure 6.4.

Figure 6.4: T-node extensions of degree 2 (horizontally) and 3 (vertically).

Theorem 6.18. An index T-meshM is called analysis-suitable, if no vertical and horizontal

T-node extensions intersect. If M is analysis-suitable, then B(M) are dual-compatible.

6.4 Literature

Section 6.1 follows mainly [21, 22]. Local error bounds for polynomials and splines can be

found in [5]. Section 6.2 is based on [23, 21]. T-Splines were first described in [24]. Section 6.3

is based on [25, 26].
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Chapter 7

Linear solvers for Isogeometric
Analysis

7.1 Introduction

After assembling, we end up with the linear system

Ahuh = f
h

to be solved. The stiffness matrix Ah has the following properties.

• Ah is large-scale: The number of degrees of freedom (dofs) is O((n+ p)d) h O(nd).

• Ah is sparse: The number of non-zero entries per row is O(pd).

• The condition number of Ah is as follows:

κ(Ah) = O(h−2︸︷︷︸
like in FEM

very bad︷︸︸︷
2p )

(If we consider the pure Neumann problem and do not take the averaging condition∫
Ω u(x) dx = 0 into account, we certainly have λmin(Ah) = 0 and thus also κ(Ah) =∞.)

• The condition number of the mass matrix Mh is as follows:

κ(Mh) = O(2p).

Here, as for standard FEM, the condition number is independent of h.

• The condition number of K−1
h Mh: Using ‖u‖H1 ≥ ‖u‖L2 (in combination with coer-

civity of a(·, ·)), we obtain

Ah &Mh

and using a standard inverse estimate (Theorem 4.2), we obtain

Ah . p4h−2Mh.

87
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Here and in what follows within this chapter, we assume for simplicity that h = hmax h
hmin. Thus,

κ(M−1
h Ah) ≤ O(p4h−2),

which is much better than an exponential dependence on p. If we restrict ourselves to

the space S̃p,Ξ, we have even

κ(M̃−1
h Ãh) = O(h−2),

which is exactly the same as we know from standard FEM.

We call a solver optimal if it can solve the linear system (up to a fixed precision) in

O(nd) = O(# dofs)

flops. We call a solver quasi optimal if it can solve the linear system (up to a fixed precision)

in

O(pdnd) = O(# non-zeros(Ah))

flops. Note that this definitions are not accepted by everybody.

In general, we can distinguish between direct solvers and iterative solvers. In both classes, we

can consider methods that are available for all matrices which satisfy some properties (like

being symmetric and/or positive definite). We call these solvers generic solvers. Besides

them, there are solvers which are only applicable to matrices that have a very particular

structure (like a Kronecker structure) or which represent the discretization of a PDE.

In the following list, we only consider solvers that are of particular interest for us.

1. Direct solvers

(a) Generic direct solvers

i. Standard algorithms: Gaussian elimination, Cholesky decomposition, LU de-

composition, . . .

ii. Non-standard algorithms: matlab backslash \, PARDISO, . . .

(b) Direct solvers for special cases

i. Direct solvers for Kronecker products

2. Iterative solvers

(a) Generic iterative solvers

i. Linear iterations: Richardson iteration, Jacobi iteration, Gauss-Seidel itera-

tion, . . .

ii. Krylov-space methods: conjugate gradient, (generalized) minimum residual

method, . . .

(b) Iterative solvers for special cases

i. Single-patch case: multigrid, . . .

ii. Multi-patch case: multigrid, IETI, . . .
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Standard Generic direct solvers (1.a.ii) usually do not show optimal complexity. Some of

those algorithms are efficient for matrices with bounded bandwidth, cf. Section 7.2. We will

see that those algorithms are efficient only for d = 1.

In the last decades, much effort was put on developing fast direct solvers (1.a.ii). In general,

one can say that there are good direct solvers that yield very good results for up to d = 2. In

IgA, such direct solvers typically suffer from the fact that the number of non-zeros per row,

grows with the spline degree. Also the exponential dependence of the condition number on

the spline degree might cause numerical instability. For further information, see [1, Table 8.1].

We focus to iterative solvers (2.a). Krylov space methods (2.a.ii) are in general good methods

to solve linear systems. Since we only consider elliptic problems, we have symmetric and

positive definite matrices. Thus, the conjugate gradient method is our choice. Its convergence

rates depend on the spectrum of the matrix of interest. The classical estimate depends on

the condition number. Since we know that the condition number grows if we refine the

problem, we need to do something about that: preconditioning, see Section 7.3.

Direct solvers for Kronecker products (1.b.i) are very fast. However, typically, the mass

matrix and the stiffness matrix are not Kronecker products. In Chapter 8, we discuss how

to apply them to realize a preconditioner.

In the finite element context, multigrid solvers (2.b) are known to be very efficient. We can

extend these solvers to the context of Isogeometric Analysis. Since multigrid solvers are

linear iterations, we can again use them as a preconditioner.

The IsogEometric Tearing and Interconnecting (IETI) method is a variant of the Finite

Element Tearing and Interconnection (FETI) method that realizes the coupling of patch-

local solvers. This means, by choosing IETI as solver, we still have the freedom to choose a

patch-local solver.

7.2 Cholesky factorization

One possible direct solver is the Cholesky factorization, cf. [27]: Each symmetric and positive

definite (or Hermitian positive-definite) matrix A can be represented as

A = L L∗,

where L is a lower triangular matrix with positive diagonal entries and L∗ denotes the

(conjugate) transpose of L. The algorithm is shown in Fig. 7.1. One can easily observe that

the algorithm only reads every entry of the matrix A once: The entry Ai,j is read before one

writes the entry Li,j . Thus, the algorithm can be applied in-place, i.e., in lines 08 and 10, one

could write to Ai,j and the final result would be the lower-triangular part of A.

After computing the Cholesky factorization, a linear system

A−1f = L−∗L−1f

can be realized by back-substitution.

In general, the computational complexity grows like n3, where n is the number of unknowns.

A better result can be obtained if the bandwidth of the matrix of interest is appropriately
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01 function cholesky(A)
02 for i = 1, . . . , n
03 for j = 1, . . . , i
04 ξ ← Ai,j
05 for k = 1, . . . , j − 1
06 ξ ← ξ − Li,k Lj,k
07 if i > j
08 Li,j ← ξ/Lj,j
09 else // here i = j
10 Li,j ←

√
ξ

11 return L // undefined values are 0

Figure 7.1: Cholesky decomposition

bounded. The bandwidth of a matrix A is the smallest non-negative integer q such that

Ai,j = 0 for all indices i and j with |i− j| > q.

Note that in this case, we do not have a fill-in. Let q be the bandwidth. Consider that we

have chosen j < i − q in line 03. Thus, we have Ai,j = 0 in line 04. All choices k in line 05

satisfy k < j < i− q. Thus, Ai,k = 0 in line 06. Thus, ξ = 0 and nothing is changed by line

08. Concluding, we can replace line 03 by ”for j = max{1, i− q}, . . . , i” and line 05 by ”for

k = max{1, i− q}, . . . , j − 1”.

Thus, the computational costs of a Cholesky solver are as follows:

• for computing the factorization: O(nq2) flops,

• for the back-substitution: O(nq) flops,

where n is the number of unknowns and q is the bandwidth, cf. [27, p. 180].

In one dimension, the mass matrix Mh and the stiffness matrix Ah are band matrices with

bandwidth p. Therefore, the application of a Cholesky solver is feasible. We will make use

of that.

This does not carry over to two and more dimensions. Here, the bandwidth of a standard

tensor-product discretization is q = nd−1 + p. Provided p . n, we have

• for computing the factorization: O(n3d−2) flops,

• for the back-substitution: O(n2d−1) flops,

where the number of unknowns is nd, i.e., n per direction.

7.3 (Preconditioned) conjugate gradient method

The conjugate gradient method allows to solve linear systems with symmetric and positive

definite matrix iteratively. For a given matrix Ah, right-hand-side f
h
, initial guess xh and

error tolerance ε, the conjugate gradient method is as given in Fig. 7.2, if we choose P−1
h := I.
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01 function pcg(Ah, P
−1
h , f

h
, xh, ε)

02 rh ← f
h
−Ahxh

03 if ‖rh‖ < ε‖f
h
‖

04 return xh
05 p

h
← P−1

h rh
06 γ ← rh · ph
07 do

08 zh ← Ah ph
09 α← γ/(p

h
· zh)

10 xh ← xh + α p
h

11 rh ← rh − α zh
12 if ‖rh‖ < ε‖f

h
‖

13 return xh
14 zh ← P−1

h rh
15 β ← 1/γ
16 γ ← rh · zh
17 β ← β γ
18 p

h
← zh + β p

h

Figure 7.2: Preconditioned conjugate gradient method

Note that for the realization of the algorithm, we do not need to know the matrix Ah itself,

we only need to be able to evaluate Ah qh for any given vector q
h
.

The convergence rate of the conjugate gradient iteration is bounded by√
κ(Ah)− 1√
κ(Ah) + 1

.

Note that this is only one possible bound; better results can be obtained if the whole spectrum

of Ah is taken into account.

Since κ(Ah) can be very large, we need a preconditioner. Let Ph be a SPD matrix. Consider

the problem

P−1
h Ahxh = P−1

h f
h
.

Note that P−1
h Ah is self-adjoined in the scalar product (·, ·)Ph . Thus, we can apply a variant

of the conjugate gradient method, the preconditioned conjugate gradient (PCG) method.

Here, the pseudo code is given in Fig. 7.2. The standard convergence analysis shows that

the PCG method converges with a rate that is bounded by√
κ(P−1

h Ah)− 1√
κ(P−1

h Ah) + 1
.

So, we are interested in choosing a preconditioner Ph. As for the matrix Ah, we do not need

the matrix Ph itself. We only need an algorithm that computes P−1
h q

h
for a given vector q

h
.

Among others, we are interested in the following approaches.

• One possibility for the single-patch case is to choose the stiffness matrix for the pa-
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rameter domain Ph as preconditioner, where we define

Ph := ((ϕi ◦ F−1, ϕj ◦ F−1)
H1(Ω̂)

)i,j=1,...,n,

where the functions ϕi are the basis functions in the space Vh (on the physical domain).

Using Theorem 2.16, we obtain

κ(P−1
h Ah) ≤ ‖∇F‖1+d/2

L∞(Ω̂)
‖(∇F )−1‖1+d/2

L∞(Ω̂)
,

which is obviously independent of h and p. Since this heavily depends on the geometry

function, we can apply this approach only if the geometry function is not too distorted.

In the next section, we discuss how to solve linear systems of the form

Phwh = g
h

using a direct solver cheaply.

• An alternative approach for preconditioning is to take one or a few steps of a linear

iterative solver. (Note that the conjugate gradient method is not linear.) Linear

iterative solvers are, e.g., the Gauss-Seidel method, the Jacobi method and (typically)

also multigrid solvers.

So, consider one step of a multigrid iteration. Let x
(0)
h be the initial guess and x

(1)
h be

the first iterate. As for any other linear iteration scheme, there is a matrix MGh such

that

x
(1)
h −A

−1
h f

h︸ ︷︷ ︸
error after 1 iteration

= (I −MGh Ah)︸ ︷︷ ︸
iteration matrix

(x
(0)
h −A

−1
h f

h
)︸ ︷︷ ︸

initial error

.

We will see that the multigrid method converges. Thus

ρ(I −MGh Ah) ≤ q0 < 1. (7.1)

Now consider a preconditioner P−1
h , which realizes P−1

h q
h

by one step of the multigrid

method with initial guess x
(0)
h := 0 and f

h
:= q

h
:

x
(1)
h = MGhfh.

From (7.1), we obtain

1− q0 ≤ MGh Ah ≤ 1 + q0

and thus

κ(MGh Ah) ≤ 1 + q0

1− q0
.

This yields a convergence result for the PCG method:

q ≤
√

1 + q0 −
√

1− q0√
1 + q0 +

√
1− q0

< q0

for q0 ∈ (0, 1). The statement q < q0 means that the preconditioned conjugate gradient

method where one multigrid cycle is applied as preconditioner is always faster than the

multigrid method itself. (Note that this is only true if the multigrid method is set up

such that it is symmetric.)



Chapter 8

Low-tensor-rank solvers

8.1 Introduction

Tensor methods can be used to efficiently solve linear systems

Ahuh = f
h

provided that Ah is known to have a small tensor-rank r. For two dimensions, this would

read as follows:

Ah =
r∑
i=1

Ai,1 ⊗Ai,2

for suitable matrices Ai,j . For more than two dimensions, there is not a unified definition of

a rank. Certainly, one possibility (for d = 3) is that Ah can be expressed as

Ah =
r∑
i=1

Ai,1 ⊗Ai,2 ⊗Ai,3

for suitable matrices Ai,j . Note that for r ≥ 2 and d ≥ 3, the space of matrices with

tensor-rank r is not closed.

We will make use of low-tensor-rank constructions. First, in Section 8.2, we make use of the

fact that for Ω = (0, 1)d, the mass matrix and the stiffness matrix are particularly nice. In

Section 8.3, we comment on low-tensor-rank solvers for the general case.

8.2 Parameter domain preconditioners

Consider the case of Section 5.6, i.e., we have a tensor-product discretization and a mass

matrix M̂h and a stiffness matrix Âh that represent the L2 or the H1 scalar product on the

parameter domain, respectively.

In this case, these matrices have a Kronecker-product form. In the two-dimensional case, we

have

M̂h = M
(1)
h ⊗M

(2)
h and Âh = A

(1)
h ⊗M

(2)
h +M

(1)
h ⊗A

(2)
h ,

where M
(δ)
h are univariate mass matrices and A

(δ)
h are univariate stiffness matrices.
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The univariate matrices are simple band matrices. For those matrices, we can solve linear

systems

M
(δ)
h wh = g

h
and A

(δ)
h wh = g

h

easily, e.g., using the Cholesky factorization (Section 7.2).

Since M̂h is a Kronecker-product of two matrices, we can easily set up a direct solver as

follows. Note that (A⊗B)(C ⊗D) = (AC)⊗ (BD). Thus, we have

M̂−1
h =

(
M

(1)
h

)−1 ⊗
(
M

(2)
h

)−1
=
(
I ⊗

(
M

(2)
h

)−1
)((

M
(1)
h

)−1 ⊗ I
)
.

Note that we also have

((
M

(1)
h

)−1 ⊗ I
)

=



(
M

(1)
h

)−1 (
M

(1)
h

)−1 (
M

(1)
h

)−1

. . . (
M

(1)
h

)−1

 .

This means that ((
M

(1)
h

)−1 ⊗ I
)
g
h

can be computed by applying
(
M

(1)
h

)−1
to the corresponding blocks of g

h
. The term “ap-

plying
(
M

(1)
h

)−1
to some vector f

h
” has to be understood as “solving the linear system

M
(1)
h vh = f

h

with some appropriate direct solver”. Thus, we can realize(
M

(1)
h

)−1 ⊗ I

by solving n linear systems. In the same way, we can realize

I ⊗
(
M

(2)
h

)−1
.

So, we can apply M̂−1
h to any vector by solving n linear systems with matrix M

(1)
h and n

linear systems with matrix M
(2)
h . The costs for realizing M̂−1

h that way using the Cholesky

factorization are O(pnd + p2n) flops, cf. Section 7.2. Here we make use of the fact that

the factorization itself is only computed once. Provided p ≤ n, we obtain that the costs are

bounded by

O(pnd)

flops. This is quasi-optimal since the number of non-zero entries of M̂h is O(pdnd).

We cannot extend the same trick to the stiffness matrix

Âh = A
(1)
h ⊗M

(2)
h +M

(1)
h ⊗A

(2)
h

since that matrix is a sum of Kronecker products.

To construct a direct solver for Âh, we can use the fast diagonalization approach. Here, we

first solve the generalized eigenvalue problems

A
(δ)
h vh = λM

(δ)
h vh,
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which yield each n eigenvalues and corresponding eigenvectors. We set up the vectors to

be orthonormal in the scalar product (·, ·)Mh
and collect the eigenvectors in a matrix Q(δ).

Then, we obtain (
Q(δ)

)T
M (δ)Q(δ) = I

and (
Q(δ)

)T
A(δ)Q(δ) = D(δ),

where D is a diagonal matrix containing all the eigenvalues.

We immediately obtain also

A(δ) =
(
Q(δ)

)−T
D(δ)

(
Q(δ)

)−1
and M (δ) =

(
Q(δ)

)−T
I
(
Q(δ)

)−1
.

Using the Kronecker-product structure, we obtain

Âh = A
(1)
h ⊗M

(2)
h +M

(1)
h ⊗A

(2)
h

=
((
Q(1)

)−T ⊗ (Q(2)
)−T) (

D(1) ⊗ I + I ⊗D(2)
)

︸ ︷︷ ︸
n2 × n2 diagonal matrix

((
Q(1)

)−1 ⊗
(
Q(2)

)−1
)

and

Â−1
h =

(
Q(1) ⊗Q(2)

) (
D(1) ⊗ I + I ⊗D(2)

)−1

︸ ︷︷ ︸
n2 × n2 diagonal matrix

((
Q(1)

)T ⊗ (Q(2)
)T)

.

Using the latter, we can Â−1
h wh for any given vector wh by applying the following steps.

• Compute the matrices Q(δ), which can be done with O(n3) flops each.

• Pre-multiply wh with
(
Q(1)

)T ⊗ I. Since Q(1) is a dense n× n matrix, this requires n3

flops.

• Pre-multiply the result with I ⊗
(
Q(2)

)T
, which again requires n3 flops.

• Pre-multiply the result with the n2×n2 diagonal matrix
(
D(1) ⊗ I + I ⊗D(2)

)−1
, which

requires n2 flops.

• Pre-multiply the result with I ⊗Q(2), which again requires n3 flops.

• Pre-multiply wh with Q(1) ⊗ I, which again requires n3 flops.

The overall costs are O(n3) flops. The extension to more dimensions is straight-forward. For

any d ≥ 2, we obtain overall costs of

O(nd+1).

Obviously, this is not optimal costs but it might be smaller than O(pdnd), which is the

number of non-zero entries of Ah (or of Âh). The numerical experiments have shown that

this approach is very fast in practice particularly because this method only uses standard

algorithms (which are well developed in numerical linear algebra toolboxes). Another reason

is that the costly parts are the multiplications with the matrices Q(δ); here the costs are
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O(nd+1), however the corresponding matrices have only dimension n × n any may fit well

into the cash, therefore.

Since

Ah h Âh and Mh h M̂h

with constants robust in h and p, we can apply the fast diagonalization approach to obtain

good preconditioner also for the problem of interest (which of course lives on the physical

domain).

8.3 Preconditioners for the physical domain

Low-tensor rank techniques also allow the construction of preconditioners that live directly

for the physical domain. Here, usually also the solution uh is expressed as a tensor-product.

Having both the stiffness matrix Ah and the solution vector uh is expressed as a tensor-

product, the total number of degrees of freedom might be much smaller than nd, the usual

number of degrees of freedom.

In the paper [28], several approaches are discussed, which can be applied:

• the Alternating Least Squares (ALS) algorithm,

• the Greedy Rank One Update (GROU) algorithm, and

• the Greedy Tucker Approximation (GTA) algorithm.

The numerical experiments show that these approaches are very efficient.

8.4 Literature

The fast diagonalization approach follows [29]. For more information on tensor methods in

the IgA context, see [28].



Chapter 9

Multigrid for Isogeometric Analysis

9.1 What is multigrid?

Consider the easiest case first. Consider the Poisson problem with Dirichlet boundary con-

ditions for d = 1 and p = 1. Then we have

Ah =
1

h


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

Consider the Jacobi iteration:

u
(i+1)
h := u

(i)
h + τ(diag Ah)−1(f

h
−Ahu

(i)
h ). (9.1)

Using the exact solution u∗h := A−1
h f

h
and the error e

(i)
h := u

(i)
h − u

∗
h, we obtain

e
(i+1)
h = (I − τ(diag Ah)−1Ah)︸ ︷︷ ︸

iteration matrix

e
(i)
h .

We have convergence if

‖I − τ(diag Ah)−1Ah‖ < 1

for some norm ‖·‖. Since Ah is symmetric and positive definite, the iteration (9.1) converges

for

0 < τ <
2

‖(diag Ah)−1Ah‖
.

However, the convergence is very slow.

Consider a (rough) initial error, as seen on Figure 9.1.
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Figure 9.1: Rough initial error

We apply the damped Jacobi iteration to this solve the corresponding problem.
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Figure 9.2: Error after one and after two steps of damped Jacobi iteration

We observe on Figure 9.2 that the Jacobi iteration does not really decrease the error. How-

ever, it makes the error much smoother. Even if the concept of smoothness might be clear

when “looking at the pictures”, we need a mathematical definition to understand it.

The smoothed errors can be much better approximated on coarse grids than the original

(coarse) problem, cf. Figure 9.3 (left). The obtain this approximation, we need to solve the

problem on the coarser grid level as a subproblem. This is feasible because the problem on

the coarser grid level has by a factor of 2d fewer degrees of freedom. If we think of solving

the problem on the next coarser grid level exactly, we obtain a two-grid method. In practice,

we use our algorithm recursively also to solve the problem for the coarser grid level. (Only

on a very coarse level, we need to solve the problem with a direct solver.) This yields the

multigrid method. So, it is easier to solve. When subtracting the approximation on the

coarse grid from the original problem, we obtain a very small, but again rough error, see

Figure 9.3 (right).
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Figure 9.3: Error after one step of damped Jacobi iteration with coarse-grid approximation
(left); Error after coarse grid correction (right)
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So, what is smoothness?

• It can be characterized by considering different Sobolev norms

‖ · ‖L2 , ‖ · ‖H1 , ‖ · ‖H2 , · · ·

The intuition is that for a smooth function, their value is about the same. For a rough

function, the H1-norm is much larger than the L2-norm and again the the H2-norm is

much larger than the H1-norm, etc.

This is not a definition, but it should give some intuition. The definition comes in the next

section.

9.2 An abstract multigrid framework

Assume to have a sequence of grids and, therefore, a sequence of nested function spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VL−1 ⊂ VL ⊂ V,

where V is the function space of the continuous formulation, like V = H1
0 (Ω). The function

space VL is the (Isogeometric) function space where the solution of interest lives in. The

spaces V0, . . . , VL−1 are subspaces.

On each of the spaces V`, we assume to have a basis Φ` := (φ`,i)i=1,...,N` such that

u` =

N∑̀
i=1

u`,iφ`,i ∈ V` ↔ u` = (u`,1, . . . , u`,N`)
T ∈ RN`

are associated.

Since we have a sequence of nested spaces, each function u` ∈ V` satisfies u` ∈ V`+1. The

identity operator

I : V` → V`+1

v` → v`+1 := v`

can be represented using the prolongation matrix P` = [P`,i,j ]
j=1,...,N`+1

i=1,...,N`
∈ RN`+1×N` as

follows:

P`u` = u`+1 ⇔ u` = u`+1.

In other words, we have

φ`,i =

N`+1∑
j=1

P`,i,jφ`+1,j . (9.2)

For the prolongation matrix, see also Sec. 1.2.3.1.

On each grid level, we have a stiffness matrix

A` = [A`,i,j ]i,j=1,...,N` = [a(φ`,i, φ`,j)]i,j=1,...,N` .
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Using (9.2), we obtain

A`,i,j = a

N`+1∑
î=1

P`,i,̂iφ`+1,̂i,

N`+1∑
ĵ=1

P`,i,ĵφ`+1,ĵ

 =

N`+1∑
î=1

N`+1∑
ĵ=1

P`,i,̂iP`,i,ĵ a(φ`+1,̂i, φ`+1,ĵ)︸ ︷︷ ︸
= A`+1,̂i,ĵ

This shows

A` = P T` A`+1P`,

i.e., that the coarse-grid matrices are the Galerkin projections of the fine-grid matrix.

Now, we can introduce an abstract formulation of the multigrid solver. The multigrid solver

on grid level ` consists of two steps:

• Given: Last iterate (or initial guess) u
(i)
` , right-hand side f

`
, stiffness matrix A`,

smoother B`.

• (A) (Pre-)Smoothing. Apply ν > 0 smoothing steps:

u
(i,m+1)
` := u

(i,m)
` +B−1

` (f
`
−A`u

(i,m)
` ),

for m = 0, . . . , ν − 1, where u
(i,0)
` := u

(i)
` .

• (B) Coarse-grid correction. Realize the following steps:

1. Compute defect

r
(i)
` = f

`
−A`u

(i,ν)
` .

2. Restrict defect to coarser grid level

r
(i)
`−1 = P T` r

(i)
` .

3. Solve the problem on the next coarser grid level:

– If ` = 0 or if we choose to apply the two-grid method, we set

p
`−1

:= A−1
`−1r

(i)
`−1.

– If ` > 0 and we choose to apply the V-cycle multigrid method (µ = 1) or the

W-cycle multigrid method (µ = 2), we invoke the multigrid algorithm with

initial guess u
(0)
`−1 := 0 and right-hand-side f

`−1
:= r

(i)
`−1. We compute µ steps

of the algorithm and set

p
`−1

:= u
(µ)
`−1,

i.e., to the result of the algorithm after applying µ steps.

4. Prolongate solution and update:

u
(i+1)
` := u

(i)
` + P`p`−1

.

• Output: next iterate u
(i+1)
` .
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As a third step (C), we can do Post-Smoothing. Here, we apply the smoother again ν times.

The advantage of pre-smoothing is that we obtain a symmetric method. This is of importance

if we want to use multigrid as a preconditioner in a PCG iteration.

The two-grid method is of theoretical interest. Here, we have

u
(i+1)
` := u

(i,ν)
` + P`A

−1
`−1P

T
` (f

`
−A`u

(i,ν)
` ),

For µ = 1, we obtain the most efficient V-cycle approach, cf. Figure 9.4.

l = 0

l = 1

l = 2

l = 3

l = 4Finest level

Coarsest level

Restriction

Prolongation

(Pre-)Smoothing

Post-Smoothing

Exact solver

Figure 9.4: V-cycle multigrid

For µ = 2, we obtain the less efficient, but easier to analyze W-cycle approach, cf. Figure 9.5.

l = 0

l = 1

l = 2

l = 3

l = 4Finest level

Coarsest level

Restriction

Prolongation

(Pre-)Smoothing

Post-Smoothing

Exact solver

Figure 9.5: W-cycle multigrid

Before we proceed, we discuss the computational complexity of the multigrid solver. Here,

we assume that the smoother is a simple iteration scheme, whose costs are linear in the

number of unknowns, i.e., the computational complexity on each level ` is O(N`).

Observe that for any fixed grid level `, also the computational complexity of

• computing the residual (B.1)

• restricting the residual to the next coarser grid level (B.2)

• prolongating the solution and update (B.4)

is O(N`). Since we have N0 = O(1), the costs of the coarse-grid solver are O(1). In practice,

the costs are negligible.
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Since N`−1 h 2−dN`, we obtain that the costs of one V-cycle are

O(NL +NL−1 + · · ·+N0) = O(NL + 2−dNL + 2−2dNL + · · ·+ 2−(L−1)dNL) = O(NL),

i.e., we have optimal complexity. For one W-cycle, the costs are

O(NL+ 2NL−1 + · · ·+ 2L−1N0) = O(NL+ 2−(d−1)NL+ 2−2(d−1)NL+ · · ·+ 2−(L−1)(d−1)N0),

which again yields

O(NL)

for d ≥ 2, but O(LNL) = O(NL logNL) for the (unimportant) case d = 1.

Remark 9.1. This analysis is the standard analysis and does not take the spline degree into

account.

9.3 Hackbusch like convergence analysis

There are several techniques to derive a convergence analysis for multigrid solvers. We use

Hackbusch’s analysis, cf. [30], since it is one of the simplest methods, which is still quite

general.

We first discuss the two-grid method. The overall iteration matrix for the two-grid method

is

(I − P`A−1
`−1P

T
` A`)(I −B−1

` A`)
ν .

Thus, its norm is for any symmetric and positive definite matrix L` given by

q = ‖(I − P`A−1
`−1P

T
` A`)(I −B−1

` A`)
ν‖L`

= ‖L1/2
` (I − P`A−1

`−1P
T
` A`)A`L

−1/2
` L

1/2
` A`−1(I −B−1

` A`)
νL
−1/2
` ‖`2

≤ ‖L1/2
` (I − P`A−1

`−1P
T
` A`)A`L

−1/2
` ‖`2︸ ︷︷ ︸

CA :=

‖L1/2
` A`−1(I −B−1

` A`)
νL
−1/2
` ‖`2︸ ︷︷ ︸

ΨS(ν) :=

.

We are interested in a proof that there is some constant q0 < 1, independent of h, such that

q ≤ q0 < 1.

We call

• the uniform boundedness of CA approximation property and

• the uniform convergence ΨS(ν)→ 0 for ν →∞ smoothing property.

Observe that CA is the smallest constant such that

‖ (I − P`A−1
`−1P

T
` A`)u`︸ ︷︷ ︸

error after coarse-grid correction

‖L` ≤ CA ‖ u`︸︷︷︸
error before coarse-grid correction

‖A`L−1
` A`

holds for all u`. Note that P`A
−1
`−1P

T
` A` is the A`-orthogonal projector into V`−1, so the

approximation property is something like a discretization error estimate.
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Observe that ΨS(ν) is the smallest value such that

‖ (I −B−1
` A`)

νu`︸ ︷︷ ︸
error after smoothing

‖A`L−1
` A`

≤ ΨS(ν) ‖ u`︸︷︷︸
error before smoothing

‖L`

holds for all u`.

We can show the smoothing property using the following theorem provided that the smoother

can be represented as a symmetric and positive definite matrix.

Theorem 9.2. Let A`, B` and L` be symmetric and positive definite matrices with

A` ≤ B` ≤ CSL`,

where CS > 0 is constant. Then, we have

‖L−1/2
` A`(I −B−1

` A`)
νL
−1/2
` ‖`2 ≤

CS
ν + 1

for all ν ∈ N.

Proof. First, we observe

ΨS(ν) := ‖L−1/2
` A`(I −B−1

` A`)
νL
−1/2
` ‖`2 ≤ ‖B

−1/2
` L

1/2
` ‖

2
`2‖B

−1/2
` A`(I −B−1

` A`)
νB
−1/2
` ‖`2

≤ CS‖B−1/2
` A`(I −B−1

` A`)
νB
−1/2
` ‖`2 = CS‖B−1/2

` A`B
−1/2
` (I −B−1/2

` A`B
−1/2
` )ν‖`2

= CS‖W (I −W )ν‖`2

using W := B
−1/2
` A`B

−1/2
` . Since W is symmetric and positive definite, we immediately

obtain that also

W (I −W )ν = −
ν∑
i=0

(
ν
i

)
(−W )i+1

is symmetric. Thus, we obtain

ΨS(ν) = CSρ(W (I −W )ν).

There is a singular value decomposition of W :

W = QDQ−1,

where D = (λ1, . . . , λN ) with λ1 ≤ · · · ≤ λN is diagonal. Thus,

ΨS(ν) = CSρ(QD(I −D)νQ−1) = CSρ(D(I −D)ν) = CS max
i=1,...,N

λi(1− λi)ν

≤ CS sup
λ∈[λ1,λn]

λ(1− λ)ν .

Since W is symmetric and positive definite, we have λ > 0. Since ρ(W ) = ρ(Â−1
` A`) ≤ 1 by

assumption, we have λ ≤ 1. Thus, we obtain

ΨS(ν) ≤ CS sup
λ∈[0,1]

λ(1− λ)ν︸ ︷︷ ︸
f(λ) :=

.
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We have f(0) = f(1) = 0 and f(x) ≥ 0 for x ∈ [0, 1]. So, the maximum must be taken in

the interior. Observe f ′(λ) = (1 − λ)ν − λν(1 − λ)ν−1 = (1 − (ν + 1)λ)(1 − λ)ν−1. Its only

root in (0, 1) is λ = (ν + 1)−1. Thus,

ΨS(ν) ≤ CSf
(

1

ν + 1

)
= CS

1

ν + 1

(
ν

ν + 1

)ν
≤ CS
ν + 1

.

Remark 9.3. This analysis does not cover the Gauss-Seidel smoother, since it is represented

by

B` = D` +R`,

where D` is a diagonal matrix and R` a (strict) lower triangular matrix such that A` =

D` +R` +RT` .

The symmetric Gauss-Seidel smoother, which consists of one forward Gauss-Seidel sweep

and one backward Gauss-Seidel sweep, is represented by the matrix

B` = A` +R`D
−1
` RT` .

Thus, the results of the last Theorem are applicable (provided that we find a good estimate

A` +R`D
−1
` RT` ≤ CSA`).

Before, we apply our theory to IgA in the next section, we show that the convergence

of the two-grid method implies the convergence of the W-cycle multigrid method. (For a

convergence analysis of the V-cycle multigrid method, other tools are required.)

Let (for ` = 1, . . . ,L)

T` := (I − P`A−1
`−1P

T
` A`)(I − Â−1

` A`)
ν

be the iteration matrix of the two-grid method. Now, we assume that we already know the

convergence of the two-grid method, i.e.,

‖T`‖L` ≤ q < 1

for all `. Since T` is self-adjoined in (·, ·)A` , we have

‖T`‖A` = ρ(T`) ≤ ‖T`‖L` ≤ q < 1,

i.e., convergence in the energy norm ‖ · ‖A` .
Now, let W` be the iteration matrix of the W-cycle (µ = 2) or the V-cycle (µ = 1) multigrid

method. We have for all ` = 1, . . . ,L

W` = (I − P`(I −Wµ
`−1)A−1

`−1P
T
` A`)(I − Â−1

` A`)
ν

= T` + P`W
µ
`−1A

−1
`−1P

T
` A`(I − Â−1

` A`)
ν

where we use W0 := 0. Now, we show that the multigrid method is only a small perturbation

of the two-grid method. We obtain using the triangle inequality and semi-multiplicativity of
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the norms that

q̃` := ‖W`‖A` ≤ ‖T`‖A` + ‖P`(I −W`−1)µA−1
`−1P

T
` A`(I − Â−1

` A`)
ν‖A`

≤ q + ‖P`Wµ
`−1A

−1
`−1P

T
` A`‖A`‖I − Â

−1
` A`‖νA`

≤ q + ‖A1/2
` P`A

−1/2
`−1 ‖`2‖A

1/2
`−1W

µ
`−1A

−1/2
`−1 ‖`2‖A

−1/2
`−1 P T` A

1/2
` ‖`2‖I − Â

−1
` A`‖νA`

= q + ‖A1/2
` P`A

−1/2
`−1 ‖

2
`2︸ ︷︷ ︸

= ρ(P T` A`P`A
−1
`−1) = ρ(I) = 1

‖W`−1‖µA`−1︸ ︷︷ ︸
= q̃2

`−1

‖I − Â−1
` A`‖νA` .

Using ρ(Â−1
` A`) ≤ 1, we obtain further q̃` ≤ q + q̃µ`−1 and using W0 = 0 the initial condition

q̃0 = 0. Thus, we have

q̃L ≤ q + (q + (q + · · · )µ)µ︸ ︷︷ ︸
L times

.

For µ = 1, we just obtain

q̃L ≤ Lq,

which would be only uniformly bounded away from 1 if q = O(L−1). We cannot assume this

in general.

For µ = 2, we obtain

q̃L ≤ q + (q + (q + · · · )2)2.

For 0 ≤ q ≤ 1
4 , we obtain by induction that

q̃L ≤ 1−
√

1− 4q ≤ 4q.

Provided q ≤ CACS
1+ν , we obtain that the W-cycle convergence rate is bounded by

q̃L ≤
4CACS
1 + ν

,

i.e., the multigrid method converges if sufficiently many smoothing steps are applied.

9.4 Multigrid solvers for Isogeometric Analysis

To progress further, we have to discuss a particular model problem. Consider a standard

Poisson problem with Neumann boundary conditions.

−∆u = f in Ω,

∫
Ω
udx = 0,

∂

∂n
u = 0 on ∂Ω.

Its variational formulation is as follows. Find u ∈ V := H1(Ω) such that

(u, v)H1,◦(Ω) = (f, v)L2(Ω) for all v ∈ V`, (9.3)

where

(u, v)H1,◦(Ω) := (∇u,∇v)L2(Ω) + (u, 1)L2(Ω)(v, 1)L2(Ω).

We now consider the approximation property

‖L1/2
` (I − P`A−1

`−1P
T
` A`)A

−1
` L

1/2
` ‖`2 ≤ CA.
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Note that P`A
−1
`−1P

T
` A` represents the A`-orthogonal projection into the space V`−1, embed-

ded in A`.

Thus, we have (I − P`A−1
`−1P

T
` A`)

2 = (I − P`A−1
`−1P

T
` A`) and further

‖L1/2
` (I − P`A−1

`−1P
T
` A`)A

−1
` L

1/2
` ‖`2

≤ ‖L1/2
` (I − P`A−1

`−1P
T
` A`)A

−1/2
` ‖`2‖A

1/2
` (I − P`A−1

`−1P
T
` A`)A

−1
` L

1/2
` ‖`2

≤ ‖L1/2
` (I − P`A−1

`−1P
T
` A`)A

−1/2
` ‖2`2 .

Thus, the approximation property can be equivalently rewritten as

‖(I − P`A−1
`−1P

T
` A`)u`‖L` ≤ C

1/2
A ‖u`‖A` for all u` ∈ RN` . (9.4)

In a Hackbusch-like analysis, convergence is typically shown in the L2 norm. If we would

follow that approach, we would define L` := h−2
` M`, where M` is the mass matrix and h`

the grid size. To be able to give robust estimates in h and p, we define

L` := A` + h−2
` M`.

Observe that using a standard inverse estimate, we have

h−2
` M` ≤ L` . h−2p4M`.

This means that if we are only interested in h-robustness, the terms L` and h−2
` M` are

equivalent. So, in this case we could follow the standard definition.

Using the choice of L`, the approximation property reads as follows.

‖(I −Π`−1)u`‖2H1,◦(Ω) + h−2‖(I −Π`−1)u`‖2L2(Ω) ≤ CA‖u`‖
2
H1,◦(Ω) for all u` ∈ V`, (9.5)

where Π`−1 is the H1,◦(Ω)-orthogonal projection into V`−1.

The estimate (9.5) is satisfied if both

‖(I −Π`−1)u`‖H1,◦(Ω) ≤ ‖u`‖H1,◦(Ω) for all u` ∈ V`, (9.6)

and

‖(I −Π`−1)u`‖L2(Ω) . h‖u`‖H1,◦(Ω) for all u` ∈ V`, (9.7)

are satisfied. The estimate (9.6) is obviously true since the H1,◦(Ω)-orthogonal projector Π`

does not increase the H1,◦(Ω)-norm.

So, it remains to show (9.7). By transposing, we obtain that this equation reads as

‖(I −Π`−1)u`‖H1,◦(Ω) . h sup
w`∈V`

(u`, w`)H1,◦(Ω)

‖w`‖L2(Ω)
for all u` ∈ V`, (9.8)

This statement can be shown if the following regularity assumption is satisfied.

Assumption 9.4. For all f ∈ L2(Ω), the solution u ∈ H1(Ω) of the problem (9.3) satisfies

u ∈ H2(Ω) and |u|H2(Ω) . ‖f‖L2(Ω).
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For this regularity assumption, cf. Section 1.5.1.7.

Now, we proceed as follows. Let u` ∈ V` be arbitrary but fixed. Define f` ∈ V` such that

(u`, q`)H1,◦(Ω) = (f`, q`)L2(Ω) for all q` ∈ V`

Now, define u ∈ V to be such that

(u, q)H1,◦(Ω) = (f`, q)L2(Ω) for all q ∈ V

and observe that Assumption 9.4 yields u ∈ H2(Ω) and

|u|H2(Ω) . ‖f‖L2(Ω) = sup
w`∈V`

(f`, w`)L2(Ω)

‖w`‖L2(Ω)
= sup

w`∈V`

(u`, w`)H1,◦(Ω)

‖w`‖L2(Ω)
. (9.9)

Now, observe that by construction u` = Π`u. Thus, we also have Π`−1u` = Π`−1u. Using

the triangle inequality, we obtain

‖(I −Π`−1)u`‖H1,◦(Ω) ≤ ‖(I −Π`)u‖H1,◦(Ω) + ‖(I −Π`−1)u‖H1,◦(Ω).

The only remaining piece of the puzzle is an approximation error estimate. For equidistant

grids, we might use the h- and p- robust estimates. For other grids, we might use an estimate

which is only robust in h. In any case, we obtain

‖(I −Π`−1)u`‖H1,◦(Ω) . (h` + h`−1)︸ ︷︷ ︸
h h`

|u|H2(Ω),

where the constants in . and h are independent of the grid size and might also be indepen-

dent of the spline degree. Using (9.9), we obtain

‖(I −Π`−1)u`‖H1,◦(Ω) . h` sup
w`∈V`

(u`, w`)H1,◦(Ω)

‖w`‖L2(Ω)
,

i.e., (9.8) and, therefore, the approximation property.

The last remaining step is to find a smoother B` that satisfies

A` ≤ B` . L` = A` + h−2
` M`.

Here, we first consider standard smoothers (Jacobi, Gauss-Seidel), where the constant hidden

in the symbol . is independent of the grid size, but depends on the spline degree, see

Section 9.4.1. Then, we discuss a smoother where this hidden constant is independent of

both, the grid size and the spline degree, see Section 9.4.2.

9.4.1 Jacobi and (symmetric) Gauss-Seidel smoothers

The Jacobi smoother is given by

B` := τ−1 diag A`,

where τ > 0 is chosen such that B` ≥ A`.
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Lemma 9.5. A` ≤ (p+ 1)d diag A` holds.

Proof. Let ai,j be the coefficients of A`. We have using Cauchy-Schwarz inequality

ai,j = a(φi, φj) ≤ a(φi, φi)
1/2a(φj , φj)

1/2 = a
1/2
i,i a

1/2
j,j .

Now, observe for all u` = (u1, . . . , uN`) that

(A`u`, u`)`2 =
∑
i,j

ai,juiuj ≤
∑
i,j

(a
1/2
i,i uia

1/2
j,j uj) ≤

1

2

∑
i,j

(ai,iu
2
i + aj,ju

2
j ).

As we have not more than (p+ 1)d non-zero entries per row, we further obtain

(A`u`, u`)`2 ≤
(p+ 1)d

2

∑
i

ai,iu
2
i +

∑
j

aj,ju
2
j

 = (p+ 1)d

(∑
i

ai,iu
2
i

)
= (p+ 1)d(diag A`u`, u`)`2 .

This shows that we can choose τ h (p+ 1)−d independently of the grid size to obtain

A` ≤ B`.

For showing the other direction, we use the following theorem.

Theorem 9.6. Let Mh be the mass matrix for the space Sp,p−1,h(0, 1). Then, κ(Mh) < p 2p.

For a proof, see [31]. The theorem is similar to the deBoor conjecture itself. The conjecture is

not proven; it states κ(Mh) < 2p. The extension to tensor-product splines is straight-forward

and immediately yields

κ(M`) . pd 2pd,

where . depends also on the geometry function.

Using Theorem 9.6, we immediately obtain

diag M` ≤ λmax(M`)I . pd 2pdλmin(M`)I ≤ pd 2pdM`.

Using a simple scaling argument, we obtain

diag M` h diag A`.

By combining these estimates, we obtain

A` ≤ B` . pd 2pd(A` + h−2
` M`).

Thus, we obtain using Theorem 9.2 the smoothing property and using the approximation

property the convergence of the two-grid method. Using the proof outlined in the end of

Section 9.3, we obtain the convergence of the W-cycle multigrid method.
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Theorem 9.7. The W-cycle multigrid method with Jacobi smoother with τ h (p + 1)−d

small enough converges robustly in the grid size h` if sufficiently many smoothing steps are

applied. The required number of smoothing steps and the convergence rate are independent

of the grid size.

The symmetric Gauss-Seidel smoother is given by

B` := A` +R`D
−1
` RT` ,

where B` ≥ A` is obviously true. Using arguments that are similar to those of the proof of

Lemma 9.5, we obtain

R`D
−1
` RT` . D` = diag A`.

Thus, using the arguments derived for the Jacobi smoother, we again obtain

A` ≤ B` . pd 2pd(A` + h−2
` M`)

and the following result.

Theorem 9.8. The W-cycle multigrid method with symmetric Gauss-Seidel smoother con-

verges robustly in the grid size h` if sufficiently many smoothing steps are applied. The

required number of smoothing steps and the convergence rate are independent of the grid

size.

Numerical experiments show that these multigrid method work very well for small spline

degrees. As the theory predicts, the convergence rates are robust in the grid size. However,

if the spline degree is increased, one sees that the convergence rates deteriorate significantly.

9.4.2 Subspace corrected mass smoother

In this subsection, we derive a smoother B` := τ−1B̂` that satisfies

A` . B̂` . A` + h−2
` M`

robustly in the grid size h and the spline degree p.

Let Â` and M̂` are stiffness matrix and mass matrix corresponding to the parameter domain,

cf. Section 8.2. For this case we have A` h Â` and M` h M̂`.

To do so, we first remember the space S̃p,h(0, 1), as defined in Theorem 4.4:

S̃p,h(0, 1) := {vh ∈ Sp,h(0, 1) : dr

dxr vh(0) = dr

dxr vh(1) = 0 for r = 1, 3, . . . , 2dp−1
2 e − 1}.

Now, we write

W := Sp,h(0, 1), W0 := S̃p,h(0, 1)

and

W1 := {w ∈W : (w, q)L2(0,1) = 0 for all q ∈W0}

for the L2-orthogonal complement. Let Q0 be the L2-orthogonal projector W → W0 and

Q1 = I −Q0 be the the L2-orthogonal projector W →W1.
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Since the projector is L2-orthogonal, we immediately obtain

u = Q0u+Q1u and ‖u‖2L2(0,1) = ‖Q0u‖2L2(0,1) + ‖Q1u‖2L2(0,1).

Using the robust inverse estimate Theorem 4.4 and the robust approximation error estimate

Theorem 3.9, we obtain

|u|2H1(0,1) h |Q0u|2H1(0,1) + |Q1u|2H1(0,1)

for all u ∈W , where the constant hidden in h is independent of the grid size and the spline

degree. A proof for this statement is given in [32, Theorem 4].

This result can be directly carried over to the multi-dimensional case. We restrict ourselves

for simplicity to d = 2 with Ω̂ = (0, 1)2. Here, we have the spaces Wα,β := Wα⊗Wβ and the

corresponding L2-orthogonal projectors Qα,β = Qα×Qβ. Again, analogous stability results,

cf. [32, Theorem 5], hold:

‖u‖2
L2(Ω̂)

=
∑

(α,β)∈{0,1}2
‖Qα,βu‖2L2(Ω̂)

and |u|2
H1(Ω̂)

h
∑

(α,β)∈{0,1}2
|Qα,βu|2H1(Ω̂)

for all u ∈ W ⊗W = Sp,h(Ω̂). By adding up (and using the matrix-vector notation), we

obtain

‖u`‖2A`+h−2
` M`

h
∑

(α,β)∈{0,1}2
‖Qα,βu`‖2A`+h−2

` M`
.

Here, Qα,β = Qα ⊗Qβ = (PαM
−1
α P TαM)⊗ (PβM

−1
β P Tβ M) are the matrix representations of

the L2-orthogonal projectors, where Mα := P TαMPα are the univariate mass matrices in Wα

and Pα represents the canonical embedding Wα → W . Analogously, we define univariate

stiffness matrices Aα := P Tα APα. Based on these definitions, we define Pα,β := Pα ⊗ Pβ and

M̂α,β := P Tα,βM̂`Pα,β = Mα ⊗Mβ and Âα,β := P Tα,βÂ`Pα,β = Aα ⊗Mβ + Mα ⊗ Aβ. Using

these definitions, we obtain

A` + h−2
` M` h Â` + h−2

` M̂`

h
∑

(α,β)∈{0,1}2
M`(PαM

−1
α P Tα ⊗ PβM−1

β P Tβ )(Âα,β + h−2
` M̂α,β)(PαM

−1
α P Tα ⊗ PβM−1

β P Tβ )M`.

and

(A` + h−2
` M`)

−1 h
∑

(α,β)∈{0,1}2
(Pα ⊗ Pβ)(Âα,β + h−2

` M̂α,β)−1(P Tα ⊗ P Tβ ). (9.10)

Theorem 4.4 yields A0 . h−2
` M0. Thus, we have

Â0,0 + h−2
` M̂0,0 = A0 ⊗M0 +M0 ⊗A0 + h−2

` M0 ⊗M0 . h−2
` M0 ⊗M0 =: B̂0,0

Â1,0 + h−2
` M̂1,0 = A1 ⊗M0 +M1 ⊗A0 + h−2

` M1 ⊗M0 . (A1 + h−2
` M1)⊗M0 =: B̂1,0

Â0,1 + h−2
` M̂0,1 = A0 ⊗M1 +M0 ⊗A1 + h−2

` M0 ⊗M1 .M0 ⊗ (A1 + h−2
` M1) =: B̂0,1

Â1,1 + h−2
` M̂1,1 = A1 ⊗M1 +M1 ⊗A1 + h−2

` M1 ⊗M1 =: B̂1,1.
(9.11)
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The matrices B̂0,0, B̂1,0 and B̂0,1 are tensor-products and thus easy to invert using the tech-

niques discussed in Section 8.2. The matrix B̂1,1 has a small dimension; so the corresponding

systems can be solved using a direct solver.

Based on this observation, we define

B̂−1
` :=

∑
(α,β)∈{0,1}2

(Pα ⊗ Pβ)B̂−1
α,β(P Tα ⊗ P Tβ ).

The combination of this definition, (9.11) and (9.10) yields

B̂−1
` h (A` + h−2

` M`)
−1.

Thus, we have

B̂` h A` + h−2
` M`

and using an appropriate choice (independent of the grid size and the spline degree) of τ

also

A` ≤ τ−1B̂`︸ ︷︷ ︸
B` =

. A` + h−2
` M`.

Thus, we obtain using Theorem 9.2 the smoothing property and using the approximation

property the convergence of the two-grid method. Using the proof outlined in the end of

Section 9.3, we obtain the convergence of the W-cycle multigrid method.

Theorem 9.9. The W-cycle multigrid method with subspace corrected mass smoother with an

appropriate choice of τ robustly in the grid size h` and the spline degree p if sufficiently many

smoothing steps are applied. The required number of smoothing steps and the convergence

rate are independent of the grid size and the spline degree.

This multigrid method works very well in numerical experiments. As the theory predicts,

the convergence rates are robust in the grid size and the spline degree. The method suffers

if the geometry function gets too distorted.

Numerical experiments have shown that a hybrid method which combines the strength of

the Gauss-Seidel smoother and the mass smoother works very well. This hybrid approach

consists of the following steps:

• One forward Gauss-Seidel sweep

• ν steps of the subspace corrected mass smoother

• Coarse-grid correction

• ν steps of the subspace corrected mass smoother

• One backward Gauss-Seidel sweep,

where we typically choose ν = 1.

Note that a proof indicating that this method is robust in the geometry function is not known.

(Such a proof is also not known if only the Gauss-Seidel smoother is used.) However, one can

easily extend the proof of the p and h robust convergence of the W-cycle multigrid method

with subspace corrected mass smoother to this hybrid smoother.
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9.5 Literature

The classical multigrid method follows the ideas presented in [30] The results on the approx-

imation property and on the W-cycle convergence follow [33]. Finally, the last subsection on

the subspace corrected mass smoother follows [32].



Chapter 10

Multi-patch Isogeometric Analysis

10.1 Motivation

So far, we have considered only computational domains that are parameterized by one

(global) geometry function. We call this the single-patch case. Having only one global

geometry function restricts the set of possible computational domains to domains that are

topologically equivalent to the unit square or the unit cube. This means, for example, that

computational domains with holes cannot be considered.

Since this is too restrictive, we need a generalization of the classical isogeometric approach.

The idea of multi-patch isogeometric analysis is to decompose the whole computational

domain Ω into patches Ωk, where each of the patches is decomposed with its own geometry

function.

In general, we can distinguish between two cases:

• Non-overlapping decompositions: Here, we assume that the patches Ωk are simply

connected open sets, which are disjoint:

Ωk ∩ Ωl = ∅ for all k 6= l. (10.1)

Moreover, we assume that the closures of the patches cover the closure of the whole

domain:

Ω =
K⋃
k=1

Ωk. (10.2)

Now, the basic idea is to set up isogeometric function spaces on each of the patches.

These patch-local function spaces are then combined to a global function space.

One possibility is to do this in a conforming way (Section 10.2), which means that

the resulting discrete function space is a subspace of the continuous function space V .

Here and in what follows, we assume to consider the standard Poisson problem with

homogenous Neumann boundary conditions. So, V = H1(Ω).

Alternatively, the global space can be defined in a non-conforming way (Section 10.3),

which means that the resulting discrete function space is not a subspace of the continu-

ous function space V . In this case, the setup of the variational formulation (integration

by parts) cannot be done in the usual way. In Section 10.3, we will discuss alternative

approaches.

113
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• Overlapping decompositions: Here, we again assume that the patches Ωk are simply

connected open sets such that (10.2) holds.

The condition (10.1) is not satisfied for such decompositions. Thus, on the overlaps,

we have several function values: consider the case of 2 patches Ω1 and Ω2. On each of

the patches, we have a discrete solution: u
(1)
h and u

(2)
h . Thus, on the overlap Ω1 ∩ Ω2,

both solution functions u
(1)
h and u

(2)
h are defined.

Here, it is not clear how the solution on the overlap should be interpreted. It is possible

that the discretization is set up in a way that the overall discrete solution uh (which

aims to approximate the solution u of the original problem) is just the sum:

uh =


u

(1)
h + u

(2)
h on Ω1 ∩ Ω2

u
(1)
h on Ω1\Ω2

u
(2)
h on Ω2\Ω1

.

An alternative is that both u
(1)
h and u

(2)
h aim to approximate the original problem.

In this case, one can define the overall discrete solution uh on the overlap to be the

average:

uh =


1
2(u

(1)
h + u

(2)
h ) on Ω1 ∩ Ω2

u
(1)
h on Ω1\Ω2

u
(2)
h on Ω2\Ω1

.

If one is interested in a continuous version of that approach, one can introduce distance

functions di : Ω→ R, which could look like

di(x) :=

{
dist(x, ∂Ωi) on Ωi

0 otherwise

for i ∈ {1, 2}, where dist(x, ∂Ωi) = infy∈∂Ωi ‖x− y‖`2 , and define

uh = 1
d1+d2

(d1u
(1)
h + d2u

(2)
h ).

We will not go too much into the details of these approaches.

10.2 Conforming discretizations

For simplicity, we assume d = 2. We assume that the open domain Ω consists of the patches

Ω1, . . . ,Ωk:

Ω =

K⋃
k=1

Ωk,

where each patch Ωk is simply connected and open. Moreover, we assume that the patches

are disjoint:

Ωk ∩ Ωl = ∅ for all k 6= l.

We assume (as for the single patch case) that each of the patches is represented by a bijective

geometry function

Gk : Ω̂ := (0, 1)2 → Ωk := Gk(Ω̂) ⊂ R2,

which can be continuously extended to the closure of Ω̂.

Conforming discretizations are typically only set up on discretizations without T-junctions.
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Assumption 10.1. The intersection of Ωk and Ωl for k 6= l is either (a) empty, (b) one

common vertex or (c) the union of one common edge and two common vertices.

Now, having a representation of the domain, we introduce the isogeometric function space.

First, we define spline spaces V̂k (possibly different for each of the patches) for the parameter

domain. On the physical patch Ωk, we define the ansatz functions using the pull-back

principle

Vk := {u ∈ H1(Ωk) : u ◦Gk ∈ V̂k}. (10.3)

The multi-patch function space Vh is given by

Vh := {u ∈ H1(Ω) : u|Ωk ∈ Vk for k = 1, . . . ,K}. (10.4)

This definition states that the restriction of u to any patch is an isogeometric function and

moreover that u is continuous (this is a sufficient and necessary for u ∈ H1(Ω)).

This means that we impose certain conditions. If we do so, we have to make sure that the

conditions do not contradict each other. If they would contradict, the space Vh would be not

rich enough. This can be clarified by an example. Let Ω1 := (0, 1)2 and Ω2 := (1, 2)× (0, 1).

Ω1 is discretized with

V̂1 = Sp,h ⊗ Sp,h, G1(x, y) = (x, y)

and Ω2 is discretized with

V̂2 = Sq,h ⊗ Sq,h, G2(x, y) = (1 + x, y)

and q < p.

When restricting V1 and V2 to the interface T = {1} ⊗ (0, 1), we obtain the spline spaces

Sp,h and Sq,h.

In (10.9), we have assumed the spline spaces to agree on the interface. Thus, all functions

in Vh are, when restricted to T , are in Sp,h and in Sq,h:

u|T ∈ Cp−1(0, 1), (u|T )(ih,(i+1)h] ∈ Pp, u|T ∈ Cq−1(0, 1), (u|T )(ih,(i+1)h] ∈ Pq.

This yields

u|T ∈ Cp−1(0, 1) ∩ Cq−1(0, 1) = Cp−1(0, 1), (u|T )(ih,(i+1)h] ∈ Pp ∩ Pq = Pq,

so, we have splines of degree q with smoothness p− 1 ≥ q. Thus, we directly obtain

u|T ∈ Pq,

i.e., the function space on the interface only consists of polynomials. This is completely

independent of the chosen grid size h. It is not hard to imagine that the function space Vh
is not a good space for approximating the solution.

Similar effects are possible if the spline degrees agree, but the knot vectors are different.

The following assumption avoids such phenomena.



116 CHAPTER 10. MULTI-PATCH ISOGEOMETRIC ANALYSIS

Assumption 10.2. Let (B
(i)
k )Nki=1 be the basis of Vk for any k = 1, . . . ,K. For any being a

common edge T = ∂Ωk ∩ ∂Ωl of the patches Ωk and Ωl, we assume that the basis functions

of the two patches match, i.e., for all i with B
(i)
k |T 6= 0, there is some j such that

B
(i)
k |T = B

(j)
l |T . (10.5)

If a basis function contributes to several interfaces, we have to find matching basis functions

for all neighboring patches.

If this assumption is satisfied, a global basis is obtained as follows.

• Take the basis functions whose support is in the interior of one patch.

• Take a basis functions whose support touches the interfaces. Take the basis function

on the neighboring patch(es), such that (10.5) is satisfied. Add up all basis functions

obtained with this method and add this sum to the global basis.

Denote the resulting basis with Φ = (φi)
N
i=1.

Using this construction, we see that

(Vh)|Ωk = Vk,

i.e., that the restriction of Vh to any of the patches yields the whole spline space that was

defined on the patch.

Having the function space, we can set up the usual discrete variational formulation

find uh ∈ Vh such that (∇uh,∇vh)L2(Ω) = (f, vh)L2(Ω) for all vh ∈ Vh

and using the basis Φ also the matrix-vector formulation

Ah uh = f
h
.

Some comments:

• Matrix assembling: This is straight-forward: one just assembles the patch-local matri-

ces. Then, the matrices are just added up.

• Existence and uniqueness of a solution: This follows from Lax Milgram lemma, which

does not depend on the discretization.

• Approximation error estimates: Approximation error estimates can be constructed as

it was done in [34]. The basic idea is as follows. First one, constructs univariate

projection operators that are interpolatory on the boundary (i.e., the ends of the unit

interval). Then, one constructs for each patch a patch-local projection operator Πk

which is “interpolatory on the boundary”. This means:

1. The projector is interpolatory on the vertices.

2. On the edges, the projector coincides with the corresponding univariate projector.



10.3. NON-CONFORMING DISCRETIZATIONS 117

If this construction is done properly, one obtains

1. on each patch the desired error estimates

‖u−Πku‖L2(Ωk) . hrk|u|Hr(Ωk) (10.6)

and

2. that the projected function agree on the interfaces, i.e.,

Πku = Πlu on ∂Ωk ∩ ∂Ωl. (10.7)

Thus, we can define a global projection operator Π via

(Πu)|Ωk = Πku.

We obtain from (10.7) that Πu ∈ Vh. And from (10.6), we obtain

‖u−Πu‖L2(Ω) . (max
k

hk)
r|u|Hr(Ω).

• Iterative solvers: Certainly, the standard solvers (Cholesky factorization, MATLAB

backslash, conjugate gradient, multigrid with Jacobi or Gauss-Seidel smoother, . . .)

can be directly extended to the multi-patch case. Also the convergence analysis can

be extended to the multipatch case; some work is required for the extension of the

approximation error estimates that are required for a multigrid analysis, cf. [34] for

such an extension.

The other solvers (fast diagonalization, multigrid with subspace corrected mass smoother)

cannot be directly extended to the multi-patch case. Here, methods from domain de-

composition are required. The extension of the subspace corrected mass smoother to

the multipatch case has been worked out in [34].

10.3 Non-conforming discretizations

For simplicity, we assume d = 2. We assume that the open domain Ω consists of the patches

Ω1, . . . ,Ωk:

Ω =

K⋃
k=1

Ωk,

where each patch Ωk is simply connected and open. Moreover, we assume that the patches

are disjoint:

Ωk ∩ Ωl = ∅ for all k 6= l.

We assume (as for the single patch case) that each of the patches is represented by a bijective

geometry function

Gk : Ω̂ := (0, 1)2 → Ωk := Gk(Ω̂) ⊂ R2,

which can be continuously extended to the closure of Ω̂. Having a representation of the

domain, we introduce the isogeometric function space. First, we define spline spaces V̂k
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(possibly different for each of the patches) for the parameter domain. On the physical patch

Ωk, we define the ansatz functions using the pull-back principle

Vk := {u ∈ H1(Ωk) : u ◦Gk ∈ V̂k}. (10.8)

The multi-patch function space Vh is given by

Vh := {u ∈ L2(Ω) : u|Ωk ∈ Vk for k = 1, . . . ,K}. (10.9)

This definition states that the restriction of u to any patch is an isogeometric function.

We do not impose any continuity on u across the patches (the space L2(Ω) does not imply

any continuity condition.) A basis for Vh is simply obtained by taking the individual basis

functions of the patches (so, the support of each basis function lies within one patch).

We have

Vh 6⊂ H1(Ω).

Thus, we speak of a non-conforming method. Since the basis functions in Vh, we also speak

of discontinuous Galerkin (dG) methods.

The dG methods have originally been developed for the FEM world, see [35] for a survey

paper. One of the simpler dG methods is the symmetric interior penalty discontinuous

Galerkin (SIPG) method. In [36, 37], the SIPG method has been used to couple patches in

a multi-patch IgA framework.

Consider the following model problem. Let f ∈ L2(Ω) be given. Find u ∈ H1(Ω) such that

−∆u = f in Ω

and
∂

∂n
u = 0 on ∂Ω.

Assume that the problem is such that the solution satisfies the regularity assumption

u ∈ H2(Ω).

Now, we multiply the PDE with a test function in Vh. Then, we obtain

−(∆u, vh)L2(Ω) = (f, vh)L2(Ω).

Since vh is not continuous, we cannot apply integration by parts. However, we can represent

the scalar product as sum

−
K∑
k=1

(∆u, vh)L2(Ωk) = (f, vh)L2(Ω).

and apply integration by parts to obtain

K∑
k=1

(
(∇u,∇vh)L2(Ωk) +

( ∂

∂n
u︸︷︷︸

= ∇u · n

, vh
)
L2(∂Ωk)

)
= (f, vh)L2(Ω). (10.10)

Now, introduce for all interfaces Ik,l := ∂Ωk ∩ ∂Ωl with k < l the following objects:
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• n is the outer normal vector of Ωk. Thus, −n is the outer normal vector of Ωl.

• JuK is the jump:

JuK := (u|Ωk)− (u|Ωl).

• {u} is the average:

{u} :=
1

2

(
(u|Ωk) + (u|Ωl)

)
.

Since u ∈ H2(Ω), we have JuK = 0 and {∇u} = (∇u)|Ωk = (∇u)|Ωl . Using this notation and

using the homogenous Neumann boundary conditions, (10.10) can be equivalently rewritten

as
K∑
k=1

(∇u,∇vh)L2(Ωk) +
∑
(k,l)

({∇u} · n, JvhK)L2(Ik,l) = (f, vh)L2(Ω). (10.11)

Since JuK = 0, we can rewrite this equivalently as

ah(u, vh) = (f, vh)L2(Ω), (10.12)

where

ah(u, v) =

K∑
k=1

(∇u,∇v)L2(Ωk)

+
∑
(k,l)

({∇u} · n, JvK)L2(Ik,l) +
∑
(k,l)

({∇v} · n, JuK)L2(Ik,l)

+
σ

h

∑
(k,l)

(JuK, JvK)L2(Ik,l).

With this choice, we obtain that ah(u, v) is symmetric. If σ is large enough, we obtain that

ah(u, v) is bounded and coercive, i.e.,

ah(uh, vh) . ‖uh‖Qh‖vh‖Qh and ah(uh, uh) & ‖uh‖2Qh (10.13)

for all uh, vh ∈ Vh and with the choice

‖u‖2Qh :=
K∑
k=1

‖∇u‖2L2(Ωk) +
σ

h

∑
(k,l)

‖JuK‖2L2(Ik,l)
.

Remark 10.3. When using this method, one has really to choose σ large enough such that

the bilinear form is coercive.

While it is possible to just choose σ to be excessively large (over-penalization), this cannot be

advised because all the estimates deteriorate if σ is chosen too large. From another viewpoint,

over-penalization forces the solution to be smooth; this makes the method conforming. If the

discretizations at the interfaces agree, this is fine. If they do not agree, we have the same

locking phenomena which we would also have for conforming discretizations.

If one increases the spline degree p, the parameter σ has to be chosen to increase like p2.
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Moreover, we can show that

ah(u, vh) . ‖u‖Q+
h
‖vh‖Qh and (10.14)

for all u ∈ H2(Ω) and vh ∈ Vh and with the choice

‖u‖2
Q+
h

:= ‖u‖2Qh + h2
K∑
k=1

|u|2H2(Ωk).

Using some standard inverse and trace estimates, we further obtain

‖u‖2
Q+
h

≤ σ
(
|u|2H1(Ω) + h2|u|2H2(Ω)

)
(10.15)

for any u ∈ H2(Ω).

Now, we can write down the discrete problem, which reads as follows. Find uh ∈ Vh such

that

ah(uh, vh) = (f, vh)L2(Ω) for all vh ∈ Vh.

Using a basis, we can set up a linear system

Ah uh = f
h
.

Using (10.13) and Lax-Milgram, we obtain existence and uniqueness of a solution of this

discrete problem. Using consistency (10.12), i.e., that the exact solution satisfies the varia-

tional problem, and using the estimates (10.13) and (10.14), we obtain using a result similar

to Ceá’s lemma

‖u− uh‖Qh . inf
vh∈Vh

‖u− vh‖Q+
h
,

where u is the solution of the continuous problem and uh is the solution of the discretized

problem. Using (10.15) and a standard approximation error estimate, we further obtain

‖u− uh‖2Qh . σh2|u|2H2 ,

i.e., error estimates of the desired kind.

10.4 Literature

The framework discussed in Section 10.2 is standard; the notation follows [34]. The Sec-

tion 10.3 follows the ideas of [36, 37].
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