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Abstract

Estimating the regular normal cone to constraint systems plays an important role for
the derivation of sharp necessary optimality conditions. We present two novel approaches
and introduce a new stationarity concept which is stronger than M-stationarity. We apply
our theory to three classes of mathematical programs frequently arising in the literature.
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1 Introduction
This paper deals with the computation of the reqular normal cone No (Z) to sets of the form
Q:={x eR"|F(z) € D} (1)

at some point & € ), where F' : R® — R is a mapping continuously differentiable at z and
D C R™ is a closed set.

This task is of particular importance for the development of first order optimality condi-
tions of the nonlinear program

min f(z) subject to x € (2)

since the basic optimality condition, see e.g. [27, Theorem 6.12], states that the negative
gradient of the objective at a local minimizer Z belongs to the regular normal cone to the
constraints at z, i.e. R

—V[f(Z) € Na(z).

When D is convex, the computation of the regular normal cone is well understood, see
e.g. [2]. Under some constraint qualification condition an exact formula reads as

No(#) = VF(z)" Np(F(%)). 3)
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Quite more complicated is the situation, when D is not convex. This occurs for instance,
when among the constraints so-called equilibrium constraints are present. Such programs are
usually termed mathematical programs with equilibrium constraints (MPEC). The equilibrium
can be often described by a lower-level optimization problem, by variational inequalities or
by complementarity constraints. Some of these equilibrium constraints can be written as
smooth equalities and inequalities, but these constraints usually do not satisfy the common
constraint qualifications of nonlinear programming. Alternative formulations yield either a
nonsmooth mapping or the system (1) with nonconvex D, the case considered in this paper.
Prominent examples are mathematical programs with complementarity constraints (MPCC)
or mathematical programs with vanishing constraints (MPVC). We refer the reader to the
paper [28] for some more examples on this subject.

In case when D is not convex, only inclusions for the regular normal cone are known in
general. The lower estimate is given by

VF(#)" Np(F(z)) C No(z) (4)

and is known to hold with equality, if the Jacobian VF'(z) has full rank, cf. [27, Example 6.7].
When we have equality in (4), the corresponding optimality conditions are usually called S-
stationarity (strong stationarity) conditions in the literature on mathematical programs with
equilibrium constraints (MPECs). The main drawback of the S-stationarity conditions is the
requirement of strong constraint qualification conditions.

If one weakens the used constraint qualification condition then the inclusion (4) will be
strict in general. In this situation one has to consider an upper estimate to the regular
normal cone NQ (Z). A commonly used upper estimate is provided by the so-called limiting
normal cone to ) at T. The use of the limiting normal cone has the advantage, that a lot of
calculus rules are available for its calculation; we refer the readers to the textbooks [22, 23, 27].
Optimality conditions based on this upper estimate involving the limiting normal cone are
usually called M-stationarity conditions. A main disadvantage of this approach is, that in
general the regular normal cone is strictly included in the limiting normal cone. Therefore,
in general M-stationarity does not preclude the existence of feasible descent directions.

The aim of this paper is to provide estimates to the regular normal cone Ng(Z) which are
valid under very weak constraint qualification conditions and are tighter than the one based
on the limiting normal cone.

For this purpose we present two new approaches. The first one is motivated by a result
due to Pang and Fukushima [24] and yields an upper bound for the regular normal cone which
is exact under some suitable assumptions. This upper estimate for the regular normal cone
constitutes a new stationarity concept called Qjs-stationarity which is shown to be stronger
than M-stationarity. We apply this approach to MPCC and improve the result due to Pang
and Fukushima [24]. For MPVC we derive a new qualification condition, which resembles the
well known Mangasarian Fromovitz constraint qualification (MFCQ) of nonlinear program-
ming, and allows the exact computation of the regular normal cone for MPVC. The obtained
results are much stronger than the known results from literature [1, 3, 18, 19, 20, 21]. Finally
we analyze MPECs where the constraints are given by a generalized equation (GE) involving
the normal cone mapping to C? inequalities together with parameter constraints. Again we
derive upper bounds for the regular normal cone which can be exact under certain conditions
and can be employed to replace the commonly used conditions as in [16, Theorem 3.4].

In the second approach treated in this paper we focus on the lower inclusion (4) for the
regular normal cone and state a condition which ensures equality. This new condition is



an extension of the recent result [10, Theorem 4] and we apply it also to MPECs with an
additional parameter constraint.

The paper is organized as follows. In section 2 we present some basic definitions and
results from variational analysis together with the definitions of various stationarity concepts.
In section 3 we give the theoretical background for the two approaches presented in this
paper for estimating the regular normal cone as well as the new concepts of O-stationarity
and Q)s-stationarity, respectively. In sections 4, 5 and 6 we apply the results from section 3
to MPCC, MPVC and an MPEC, respectively.

Our notation is basically standard. K° stands for the polar to a cone K and span {uy,...,un}
stands for the subspace generated by the vectors uy,...,uy. By VF(Z) we normally denote
the Jacobian of the mapping F' at T, but occasionally we use it like a linear mapping to write

VF@)'Q :={u|VF(z)u € Q}
for a set ). To ease the notation the Minkowski sum of a singleton {a} and a set A is denoted
by a + A.
2 Preliminaries

Let us start with geometric objects. Given a set I' € R? and a point zZ € T, define the
(Bouligand-Severi) tangent/contingent cone to I' at z by

Tr(z) := {u e RY|3t, \,0, up — u with Z+tu, €TV k} (5)

Note that one has T1(zZ) = R4 (' — Z) when T is a convex polyhedron.
The (Fréchet) regular normal cone to I' at Z € I' can be defined as the polar cone to the
tangent cone by

Nr(z) := (Tr(2))°. (6)
Further, the (Mordukhovich) limiting/basic normal cone to I" at z € T" is given by
Nr(z) :={2z"|3 z Lz, zf — 2% with 2} € Np(z) V k}. (7)

Note that the tangent/contingent cone and the regular normal cone reduce to the classical
tangent cone and normal cone of convex analysis, respectively, when the set I' is convex. We
put Tr(z) = Nr(z) = Np(z) =0, if Z € I'. Note that we always have

Nr(z) € Np(2).

Next we recall some rules for calculating polar cones. For two closed convex cones C] and
C5 we have

(Cl U CQ)O = (Cl + CQ)O = Cf N Cg, (Cl N CQ)O =cl (Cf + Cg)
and for closed convex cones Pj,Qj, j = 1,...,m we have

(T17) ~(I1@) = (I17) n (T1@7) =TT nen =TT Ruer.
1=1 =1 1=1 i=1

=1 =1



Proposition 1. Let A be an s x d matriz, let C C R® be a cone and assume that either there
exists some u such that Au € riconv C or C' is polyhedral, i.e. C is the union of finitely many
convex polyhedral cones C1,...,C,. Then

{u| Au € convC}° = ATC® (9)

Proof. In case when there exists some u with Au € riconv C, the statement follows from [26,
Corollary 16.3.2]. Now consider the case when C' is polyhedral. Then convC =% | C;is a
convex polyhedral set by [26, Corollary 19.3.2] and so is its polar (conv C)° = C° = !_, CY?
by [26, Corollary 19.2.2]. By virtue of [26, Theorem 19.3] the set ATC® is again convex and
polyhedral and now the statement follows from [26, Corollary 16.3.2] by taking into account
that convex polyhedral sets are always closed. O

Lemma 1. Let A be an s x d matriz and let Sy, Sy C R be two sets. Then
(AS1) N (ASy) = A(S1 N (ker A + S)).

Proof. If z € (AS7) N (AS>), then there are s1 € S1, s3 € So with z = As; = Asg. Since s1 =
So+(s1—s2) and A(s1—s2) = 0, the properties s; € SiN(ker A+Ss) and z € A(S1N(ker A+S55))
follow. Conversely, if z € A(S; N (ker A+ S3)), then there are s; € S1, s € Sy and r € ker A
such that s; = r + s9 and z = As; € AS;. It follows that z = A(r + s9) = Asy € AS, and
thus z € (AS1) N (AS?). O

We now introduce generalizations of the Abadie constraint qualification condition and the
Guignard constraint qualification condition, respectively, as known from nonlinear program-
ming.

Definition 1. Let Q be given by (1) and let & € Q.
1. We say that the generalized Abadie constraint qualification (GACQ) holds at T if
To(7) = T4 (), (10)
where Ta"(z) := {u € R" | VF(Z)u € Tp(F(z))} denotes the linearized cone.

2. We say that the generalized Guignard constraint qualification (GGCQ) holds at T if
(Ta(2))° = (T4 (2))°. (11)

Obviously GGCQ is weaker than GACQ, but GACQ is easier to verify because several
advanced methods from variational analysis are available. To this end we need the concepts
of metric regularity and metric subregularity of multifunctions.

Definition 2. Let U : RY = R® be a multifunction, (4,7) € gph ¥ and x > 0. Then

1. W is called metrically regular with modulus k near (@, v) if there are neighborhoods U
of uw and V of v such that

d(u, T71(v)) < kd(v, U(u)) Y(u,v) € U x V. (12)



2. U is called metrically subregular with modulus « at (@, ) if there is a neighborhood U
of u such that
d(u, ¥71(9)) < kd(7, ¥(u)) Yu € U. (13)

It is well known that metric regularity of the multifunction ¥ near (u,v) is equivalent to
the Aubin property (also called Lipschitz-like or pseudo-Lipschitz) of the inverse multifunction
U~! and metric subregularity of ¥ at (i, ) is equivalent with the property of calmness of its
inverse.

Obviously, metric regularity of ¥ near (4, v) implies metric subregularity of ¥ at (a, ).

Proposition 2 (cf.[14, Proposition 1]). Let & belong to the set Q given by (1). If the pertur-
bation mapping
M(x):=F(z)—D (14)

associated with the constraint system (1) is metrically subregular at (z,0), then GACQ holds
at T.

Metric regularity of the mapping (14) can be verified by the so-called Mordukhovich cri-
terion, see, e.g., [27, Example 9.44]. Tools for verifying metric subregularity of constraint
systems can be found e.g. in [9].

The following theorem states some fundamental relations between the regular and the
limiting normal cone.

Theorem 1. Let Q be given by (1) and let & € Q. Then

VF@)T Np(F(2)) € No(z). (15)
On the other hand, if the multifunction (14) is metrically subregular at (z,0) then

Nq(z) € VF(2)TNp(F(z)). (16)
If VF(Z) has full rank, then both inclusions (15) and (16) hold with equality.

Proof. The inclusion (15) can be found in [27, Theorem 6.14], whereas (16) follows from
[15, Theorem 4.1]. For the statement on equality in the inclusions we refer to [27, Exercise
6.7]. O

At the end of this section we consider different stationarity concepts.

Definition 3. Let T be feasible for the program (2), where Q is given by (1) and f is assumed
to be smooth.

1. We say that T is B-stationary (Bouligand stationary) if
0 € Vf(Z)+ No(z).
2. We say that T is S-stationary (strongly stationary) if
0 € Vf(z) + VF(@) Np(F(z)).
3. We say that T is M-stationary (Mordukhovich stationary) if

0€ Vf(z)+ VF@) T Np(F(z)).



By the definition of the regular normal cone we have
(Vf(Z),u) >0Vu e To(x)

at a B-Stationary point, which expresses that no feasible descent direction exists. Every local
minimizer is known to be B-stationary. Conversely, if Z is B-stationary then there exists some
smooth mapping f : R” — R with Vf(z) = Vf(z) such that Z is a global minimizer of the
problem mingcq f(z), cf. [27, Theorem 6.11].

From (15) it is easy to see that every S-stationary point is also B-stationary, but the
reverse statement is not true in general, unless we have equality in (15).

On the other hand, a B-stationary point Z is also M-stationary provided that the per-
turbation mapping M is metrically subregular at (z,0). However, M-stationarity does not
preclude the existence of feasible descent directions, unless we have Nqo(Z) = Nq(z) =
VF(z)TNp(F(z)).

Since we have No(Z) C No(z) by the definition, we derive from Theorem 1 the inclusion

No(z) c VF(z) Np(F(z)).

under the assumption of metric subregularity of (14) at (z,0). This relation can be strength-
ened by the following proposition.

Proposition 3. Let Q be given by (1), let T € Q and assume that GGCQ is fulfilled, while
the mapping v = VF(Z)u — Tp(F(Z)) is metrically subregular at (0,0). Then

Na(@) € VE@) Niy(py(0) € VE(@) Np(F()).

Proof. By virtue of GGCQ we have Nq(z) = (Thn(z))° = ]VTgn(j) (0) and since u =% VF(Z)u—
Tp(F (7)) is assumed to be metrically subregular at (0,0), we can apply Theorem 1 to ob-
tain Nyyin(z)(0) C Npin((0) C VFE(Z)" Nrp, () (0). By [27, Proposition 6.27] we have
Nty (r(z))(0) € Np(F(7)) and this finishes the proof. O

If Tp(F(z)) is the union of finitely many convex polyhedral cones, then the mapping
u= VF(z)u—Tp(F(Z)) is a polyhedral multifunction and consequently metrically subregular
at (0,0) by Robinson’s result [25]. Hence we arrive at the following corollary which slightly
improves [6, Theorem 7).

Corollary 1. Let & be B-stationary for the program (2), where Q is given by (1) and f is
assumed to be smooth. If GGCQ is fulfilled at T and Tp(F(Z)) is the union of finitely many
convex polyhedral cones, then T is M-stationary and even the stronger condition

0e Vf(i‘) + VF(@)TNTD(F@))(O)

holds.

3 Estimating the regular normal cone

Throughout this section we assume that the set Q is given by (1), where F' : R" — R™ is
continuously differentiable at the reference point T € 2 and D C R™ is closed. Further we



assume that the objective f : R™ — R of the program (2) is continuously differentiable at z
and GGCQ holds.

The main goal of this section is to provide a tight estimate for the regular normal cone
Na(z), which, thanks to GGCQ, amounts to (THn(z))°. To this end we discuss two possibil-
ities, the first one being motivated by the paper of Pang and Fukushima [24] is based on the
following observation.

Theorem 2. Let Q1 and Qo denote two closed convex cones contained in Tp(F(z)). If

(VF(z)7'Q:)° =VF@)TQe, i=1,2 (17)
then
No(z) € VF(@)" (QF N (ker VF(2)" + @Q5)) = (VF(2)'Q}) N (VF(2)"Q3).  (18)
Further, if

VF(@)" (7N (ker VF(z)" +Q3)) C VF(2)" Np(F(z)), (19)
then equality holds in (18).
Proof. Since VF(z)7'Q; C VF(2) 'Tp(F(z)) = Ti™(z), i = 1,2 we have

~

No(z) = (IgM2))° € (F(2)"'QuUVF(2)7'Q2)° = (F(2)7'Q1)° N (VF(2)7'Q2)°
= VF(@)"QinVF ()" Q3

and (18) follows from Lemma 1. To show the sufficiency of condition (19) for equality in
(18), note that condition (19) together with (18) implies No(z) C VF(z)" Np(F(z)). Now,
equality in (18) follows from (15). O

The proper choice of @1 and @2 is crucial in order that (18) provides a good estimate
for the regular normal cone. It is obvious that we want to choose the cones Q;, i = 1,2 as
large as possible in order that the inclusion (18) is tight. Further it is reasonable that a good
choice of @)1, Q9 fulfills R

Q1N Q3 = Np(F(z)) (20)
because then condition (19) holds whenever VF(z) has full rank.

Since Q; C Tp(F(z)), we have Q7 D (Tp(F(z)))° = Np(F(z)), i = 1,2 and consequently,
Q5N (ker VF(Z)T+Q3%) 2 Q5NQS D Np(F(z)). Hence the inclusion (19) can never be strict.

The following definition is motivated by Theorem 2.

Definition 4. Let Q denote some collection of pairs (Q1,Q2) of closed convex cones fulfilling
Qi C Tp(F (%)), (VF(2)'Q:)° = VF(2)TQ5,i=1,2. (21)

(1) Given (Q1,Q2) € Q we say that T is Q-stationary with respect to (Q1,Q2) for the
program (2), if
0€ V@) +VF@T (Q5N (ker VE(2)T +Q3)) .
(ii) We say that T is Q-stationary for the program (2), if T is Q-stationary with respect
to some pair (Q1,Q2) € Q.
(iii) We say that T is Qpr-stationary, if there exists a pair (Q1,Q2) € Q such that

0€ V(@) +VFE@)" (Q)n (ke VF(z)" + Q3) N Np(F(z))) .



The following corollary follows immediately from the definitions and Theorem 2.

Corollary 2. Assume that T is B-stationary for the program (2). Then T is Q-stationary
with respect to every pair (Q1,Q2) € Q. Conversely, if T is Q-stationary with respect to
some pair (Q1,Q2) € Q fulfilling condition (19), then T is S-stationary and consequently,
also B-stationary.

The following lemma follows immediately from (18) and the definition of Q-stationarity.

Lemma 2. Let (Q1,Q2) € Q. Then T is Q-stationary with respect to (Q1,Q2) for the program
(2) if and only if =V f(z) € VF(2)TQ5, i =1,2.

Corollary 3. Let T be S-stationary for the program (2). Then T is Q-stationary with respect
to every (Q1,Qa) € Q.

Proof. Since Q; C Tp(F(Z)), we have ND(F(:E)) C Q7,1 = 1,2. Hence S-stationarity of z
implies

—Vf(z) € VF(z)" Np(F(2)) C VF(2)"Q;

and the assertion follows from Lemma 2.

Remark 1. Note that for i = 1,2 the program

(P;) m]%n Vfi(@)u subject to VF(Z)u€ Q;
ucR™

s a convex program and therefore the first-order optimality condition

~Vf(z) € Nyp@)-1q,(0) = (VF(@)7'Q)° = VF(2)" Q;

is both necessary and sufficient in order that w = 0 is a solution of (P;). Hence T is Q-
stationary with respect to (Q1,Q2) if and only if 0 is a solution for the programs (Py) and
(Ps), respectively.

By the definition, a Qs-stationary point is both M-stationary and Q-stationary. However,
a B-stationary point is Qjs-stationary only under some additional condition. This is due to
the fact that under the assumptions of Theorem 1 we have

No(z) € VF(@)" (@5 N (ker VF(2)" + Q3)) N VF(2)" Np(F(x)) V(Q1,Q2) €
but in general
F(@)" (Qf N (ker VF(2)" + Q3)) N VF(z)" Np(F())
# VF(@)" (Qi N (ker VE(2)" + Q3) N Np(F(z))).

Clearly, equality holds when VF(Z) possesses full row rank, but in this case a B-stationary
point is already S-stationary. In the following theorem we state three more sufficient condi-
tions ensuring Qs stationarity of a B-stationary point.

Theorem 3. Assume that T is B-stationary for the program (2). Then T is Qpr-stationary
if any of the following three conditions holds:



1. There exists a pair (Q1,Q2) € Q such that

Q5N (ker VF(2)T + Q3) € Np(F(%)). (22)

2. & is M-stationary and for every A\ € Np(F(x)) there is some pair (Q1,Q2) € Q with
A€ Q.

3. Tp(F(z)) is the union of finitely many convex polyhedral sets and for everyt € Tp(F(x))
there is some pair (Q1,Q2) € Q satisfying t € Q1.

Proof. Under the condition (22), Qs-stationarity of Z follows immediately from the definition
and Corollary 2. Let us prove the second case. Since T is M-stationary, there exists some A\ €
Np(F (7)) verifying —V f(z) = VF(z)T X and by the assumption there is some (Q1,Q2) € Q
with A € Q implying —V f(z) € VF(z)T(Q; N Np(F(z))). By using that Z is B-stationary
and therefore also Q-stationary with respect to (Q1,@Q2) by Corollary 2, by virtue of Lemmas
2 and 1 we obtain

~Vf(z) € VF(@)"(QINNp(F(z))NVF()" Qs
= VF(@)"(Q1 N Np(F(2)) N (ker VF(2)" + Q%)) (23)

showing Qps-stationarity of Z. Now let us prove the sufficiency of the third condition. By
Corollary 1 there is some A € Ny, (p(z))(0) with =V f(z) = VF(z)" X and by using [7, Lemma
3.4], we can find some t € Tp(F'(7)) with A € Ny, (p(z))(t). Our assumption guarantees that
there is some pair (Q1,Q2) € Q with t € Q1 C Tp(F(z)) and therefore A € Ny, (pez))(t) C
NQl(t) = Q5 N {t}* C QS by convexity of Q1. By [27, Proposition 6.27] we obtain \ €
Nty (rz)(0) € Np(F(7)) and the same arguments as used just before yield (23) showing
Qps-stationarity of T. O

We summarize the relations between the various stationarity concepts in the following
picture.

’loc. minimizer‘
+
GGCQ,
- e

ielelele) \
OQ-stat. w.r.t.

Condition (19) every (@1,@2) € Q M-stat.
!

Q-stat. w.r.t.
some (Q1,Q2) € Q

W

Below we will work out the concepts of O- and Qjs-stationarity for the special cases
of mathematical programs with complementarity constraints, vanishing constraints and con-
straints involving a generalized equation, respectively, and in the first two cases we will present
explicit expressions for the pair (Q1,Q2) establishing Qj/-stationarity.



Now we consider another possibility to estimate the regular normal cone to €2, which is
an enhancement of the approach used in the recent paper [10]. For every nonempty convex
cone Q C R™ we define

T(Q) := To(F(@)) N ((Range VF(2) N Tn(F (@) + Q).
i.e. T(Q) is the collection of all t € Tp(F(Z)) such that there are u € R” and ¢ € Q with
VFE(@)u=1t—q € Tp(F(x)).

Further we define )

C(Q) :={u|VF(Z)u € conv T (Q)}.
It is easy to see that both 7(Q) and C(Q) are cones, that C(Q) is convex and that Tp(F(z))N
QCT(Q).

Theorem 4. For every nonempty convex cone QQ C R™ satisfying

No(z) C {u| VF(z)u € Q}° (24)
there holds R B
No(z) = (C(Q))°. (25)

Proof. We first show the inclusion Nqo(z) C (C(Q))°. Let #* € No(Z) be arbitrarily fixed. In

order to show z* € (C(Q))° we have to prove (z*,u) < 0 Vu € C(Q). Consider any u € C(Q).

Since VF(z)u € conv T(Q), VF(Z)u can be represented as convex combination Efv L oyt of

elements t; € T(Q), i = 1,..., N with coefficients o; € [0, 1], Zl 1 & = 1. By the definition

of the set 7(Q) we can find for each i = 1,..., N, elements u; € R" and ¢; € Q such that
VF(E:)ul =1, —q; € TD(F(f))

By taking into account that z* € No(z) = {u| VF(Z)u € Tp(F(Z))}° by GGCQ, we obtain
(x*,u;) <0 Vi. Further we have

N N
F(z)u= Z oty = Z a;(VF(Z)u; + q;)
i=1 i=1
and therefore
N N
z)(u— Z Q) = Z ;i G;.
i=1 i=1

Since @ is assumed to be convex, we conclude VF(Z)(u— Zf\i 1 a;u;) € @ and hence, by using
(24), we can argue (z*,u — Z]\i1 a;u;) < 0. This yields

N
(" uy < (x ZazuZ Zoq(w*,ui) <0
i=1

and, since u € C(Q) was arbitrary, we derive the claimed inclusion z* € (C(Q))°. In order
to show the reverse inclusion ]/\}Q(fi') D (C(Q))° consider z* € (C(Q))°. Then for arbitrary
u € Ti"(F) we have

t:=VF(@)u=t—0¢eTp(F(z)),
showing t € T(Q) and u € C(Q). Hence, (z*,u) < 0 and, because u € Ta"(z) was chosen
arbitrarily, we conclude z* € (T4%(z))° = No(z) by GGCQ, and (C(Q))° C Nq(z) follows. [
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Remark 2. Condition (24) is in particular fulfilled, if Q C Tp(F(Z)).

Of course, in practice it is a difficult task to compute (C(Q))°. In practical applications,
for given @ we try to find a cone 7 C T(Q) and then apply Proposition 1 to obtain

(C(Q))° C {u|VF(Z)u € convT}° = VF(@)IT°, (26)

provided there exists some u with VF(Z)u € riconvT or T is polyhedral. Using (26) we
obtain the following corollary from Theorem 4.

Corollary 4. Assume that there exists some convex cone Q C R™ fulfilling (24) and some
cone T C T(Q) such that Np(F()) = T° and either there is some u € R™ with VF(Z)u €
riconv T or T is polyhedral. Then

No(#) = VF(z)" Np(F(%)).

Proof. Using (15), Theorem 4 and (26) together with the assumptions of the corollary we
obtain

~

VE(z)"Np(F(z)) C No(z) = (C(Q))° C VF(2)"T° = VF(2)" Np(F(2))

and the assertion follows. ]

4 Application to MPCC

In this section we consider a mathematical program with complementarity constraints (MPCC)
of the form

min  f(
subject to h(z) =0,
9(z) <0, (27)
0<G(z) L H(z)>0,

8
~—

where f : R" - R, A : R" - R™# g : R*” - R™ G :R" - R and H : R” — R™¢
are assumed to be continuously differentiable. There are several possibilities to write the
constraints of (27) in the form (1), we use here the formulation with

F(x) = (h(m),g(az), —Gi(x),—Hi(x),...,—Gme(x), —Hp, (JJ)), D ={0}"E x R™ x DL,

where

D¢ = {(a,b) € R? | ab = 0}.

In what follows we denote the feasible set of (27) by Q¢. Given a feasible point Z € Q¢ we
introduce the following index sets of constraints active at Z:

Y o= {ie{l,...,mr}|gi(z) =0},

I = {ie{l,...,mc}|Gi(z) =0 < Hy(z)},
I = {ie{l,...,mc}|Gi(&) = 0= Hi(2)},
I = {ie{l,...,mc}|Gi(z) > 0= Hiz)}



Straightforward calculations yield that
Tp(F(2)) = {0} x Tpmi (9(2)) x | [ T (—Gi(#), —Hi(%)) (28)
with Tpmr (g(z)) = {v € R™ [v; < 0,i € 19},
{0} xR ifie I°F,
Tpo (~Gil®), ~Hi(7) = { Do ifie I,
R x {0} ifie ™Y

and consequently T, 3%2 (Z) is the collection of all u € R™ fulfilling the system

Vh(z)u =0,
Vgi()u <0, i el
—VGi(Z)u=0, i € I°F (29)

~VH(Z)u=0, i eI
0> -VGi(z)u L —VH;(z)u <0, i€ I

Further we have

R x {0} ifie I°F,
Npo(=Gi(7), —Hi(z)) = { Ry x R, if i € I%,
{0} xR ifie It

Np,(—Gi(z), —H;i(z)) = NDC(—Gi(i), —H;(7)) fori € I"OUI°F and Np_(—G;(z), —H;(7)) =
Ry x Ry) U ({0} x R) U (R x {0}) for i € I°; cf. [5, 6, 29].

Note that GACQ for MPCC is equivalent to MPEC-ACQ as introduced by Flegel and
Kanzow [4]. Similarly, GGCQ for MPCC ie equivalent to MPEC-GCQ [5].

In order to apply Theorem 2 and the concept of Q-stationarity we define for every partition
(B1, B2) of the biactive index set I'C the convex polyhedric cone

leéﬁQ = {0} x T, m[ ) x HTﬁlﬂz

where 777 .= T (=G4(Z), —H;(z)) if i € 1T U I10 and

g _ J{O} xR ifiepy,
Y | Rox {0} ifi€ B

Lemma 3. For every partition (31, B2) € P(I%) the pair (Q1,Q2) = (Q[é}c’fb, QBQ’ﬁl) consists
of two closed convex cones fulfilling (21) and (20).

Proof. It is easy to see that both cones @), j = 1,2 are closed convex polyhedral cones fulfilling
Q; C Tp(F(z)) and by using Proposition 1 we conclude that (VF(z)~ 1QJ)O = VF(@)T(Q,)°.

There remains to show that (Qg}éﬁz) (ng(’jﬁl) = ND(F( ). Since for every i € 1% = B1Uf,
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we have 7707 U 77200 = ({0} x R_) U (R_ x {0}) = D¢ = Tp.(—Gi(Z), —H;(z)) and for
every i € It U I+0 we have Tiﬁl’ﬁz U TZ-BQ’Bl = Tp.(—Gi(x),—H;(z)) by the definition, we
obtain from (8) that

QU (@& = <{0}mE>°x(TRTI<g<x>>)°xnﬁ(ffl’%#m)"

i=1
= ({0}"5) x (Tumi (9(2))) % [] (Toe(~Gil@), — Hi(@)))* = Np(F(2))
=1

and the lemma is proved. O

It is easy to see that Tp(F(z)) is the union taken over all partitions (B1,B2) € P(I")
of the cones lec’ig? and therefore Np(F(Z)) = (5, 5,)ep(100) (QCC 2) . We have shown in

Lemma 3 that this intersection of 2//" many polar cones can be replaced by the intersection
of two polar cones (lec’ig )°n (Qg"é’g 1)°. Since

@= U V@ 'ea”
(B1,B82)€P(190)
and under the assumption of GGCQ

No(@) = (I§@)° = ()  (VF@'Qas™) ' = [ VF@" QL")

(B1,B2)€P(199) (B1,82)€P(1%9)

we expect that the replacement of the intersection of the 2/ *| many cones VF (Q_:)T(leéﬂ 2)0
by the intersection (leéﬂ 2)en (Qg?éﬂ 1)° of two cones can result in a tight inclusion which can
be even exact under some reasonable assumptions.

Note that
F(2)7'Q” = {u e R"| Vh(z)u =0, Vgi(z)u <0, i e I9,
~VGi(@)u=0, i€ I°"Up, —VH;(Z)u<0, i€ p,
—VG@(.ZE)USO, i € Ba, _VHz( ) =0, ZEI+OUBQ}

In the sequel we will use the sets of multipliers

Ree = {(u" pd, u% pf) € R™E x R™ x R™MC x R™C |
pl =0, i€ {l,...omI\I% puf=0,iel™ pff=0icI®}

and
Nce = ker F(a_j)T NRec
= {(Hh 1ty € Rec |
my mo
Z HVhi(@) + Y pd V(@) = Y (ufVGi(@) + pi VH () = 0}
i=1 i=1
Note that

~

Np(F(z)) = {(A\" N2 ) e Ree [N >0, i€ 19, Y > 0,0 >0, i € 1) (30)
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and

Np(F(z)) = {(A\" M0 N € Ree [M > 0,0 €19, 08 > 0,0 > 0 or AN =0, i € 10},
(31)
We now apply Theorem 2 to estimate the regular normal cone NQC< ) of the MPCC (27).

Proposition 4. Let T belong to the feasible region Q¢ of the MPCC (27) and assume that
GGCQ is fulfilled at T. Then for every partition (B1,32) of the index set I°° we have

mc

No.(z) {Z)\th T) + %Angi(f) =) (\VGi(z) + A VH(z))]

=1 i=1

(M A9, NE M) € NOW™ Y = Mow>, (32)
where
NP = { N NG N € Ree | At w9, 1€ ufT) € Nee: A > m ax{uf, 0}, i € I,
/\ZG > ,u /\H > O i€ Bl,
)\ZC: Z 0 lu’z Y ,L G B2}
= QG N (ker VE@)" +(QE)°). (33)

Proof. We apply (18) with (Q1,Q2) = (Qg}éﬁz, Q'BQ”Bl) All we have to show is the equation

(33). Obviously we have (lec’??)o = R™E x Npmi (9(2)) x [ 129 (7'2-’31’62)0 and the set (leé&)oﬂ

(ker VF (7)1 + (Q%é’gl)O) consists of all A = (A", A9, A4 AH) such that there exists n =

(", m9,n% ) € (QE™)° and some p = (P, p9, u®, pH) € ker VF ()" such that
A=n+ue QA"

We proceed with an analysis of the different cases:

1. Equality constraints: We obtain \* = n + ph € R™e yh € R™2 € R™2 je.,
Mol € Rme,

2. Inequality constraints: For i € I9 we have A = 7! 4+ > 0, ! > 0 or equivalently
A > max{0, 1Y}, whereas for i € {1,...,m} \ I9 we obtain \Y = nJ = 0 which yields

9 _

My =

3. i € I°F: Since (Tfl’BQ)O = (7‘1-52’51)O = R x {0}, we obtain A7 = n// = 0 and consequently
also u{{ = 0.
4. i € I'9: Similarly as in the previous case we obtain )\zG =uf =0.

)

5. i € 1: Since (7, ’81’62) =R xRy, (7 ﬁz”gl) = R4 x R we have

AF AT = (") + (0 1i') € R x Ry,
and (n¥,nf) € R, x R. This can be written equivalently as A¥ > u& A > 0.

6. i € Po: Similarly as in the previous case we obtain )\Z-G >0, )\fl > ,uf{ .

14



We see that N, glcﬁ 2= *g}éﬁ 2N (ker VF(2)T + (Qg%ﬁ 1)°) and the claimed result follows from
(18). O

Theorem 5. Let T belong to the feasible region Q¢ of the MPCC (27) and assume that
GGCQ is fulfilled at T. Further assume that there is some partition (51, 32) of the index set
1% such that for every u € Noc we have

pd G > 0, puf pll >0 (i) € By x B,
pSull >0 V(i) € 1 x B,
S pull > 09(i,i') € By x Ba.

Then
Noo(s) = Mge™ = VE@) Np(F (@)
Proof. Due to (33), (32) and Theorem 2 we only have to show that (19), i.e.
MEg™ < VF (@) Np(F(7)),

holds. Consider z* € Mglcﬂ 2. Then we have the representation

mg my mc

z* = D N'Vhi(T)+ ) MVgi(@) - > (AIVGi(x) + A\ VH;(T))

i=1 i=1 i=1
with (A, N9, \¢ \H) ¢ Nglc:BQ. If A& >0 for every i € 81 and A > 0 for every i € (2, then
the claimed inclusion 2* € VF(zZ)T Np(F(z)) follows from (30). Otherwise, either there is
some j € (B such that )\]-G < 0 or some j € (3 such that /\f < 0. We consider first the case
when /\jG < 0 for some j € ;. Take the element (u", 9, u®, ) € Nge associated with
(A, A9, AG AH) according to (33) and set (M, A9, NG N) = (W — ph N9 — 49, NG — G NH —
p). Then

¥ = %E: N Vhi(z) + f: NVgi(z) - %(X? VGi(Z) + NIV H;(z))

=1 =1 i=1

and
N >0,iel? N >0,i€b, M >0, i¢€p

by virtue of (33). Further, since 0 > AJG > ,uJG we deduce by the assumptions of the theorem
‘Ehat uZ»G < 0Vi e py, u{{ < 0Vie p and co~nsequently /~\JG = )\l-G — ,u,Z.G > )\Z-G > 0Vi e By,
)\Z-H = )\fl — Mf{ > )\f{ > 0 Vi € 31. Therefore )\? > (0 and )\iH > 0 holds for every ¢ € 81 U B9
and z* = VF(2)TNp(F(z)) follows. Similar arguments can be applied in the alternative
situation when there exists some j € 2 with )\5»{ < 0. O

Let us compare our approach with the results of Pang and Fukushima [24]. In [24] the
authors try to detect certain redundancies in the description of the linearized tangent cone
and then analyze an equivalent representation of the linearized cone. In this paper we treat
only so-called (non)singular inequalities, a more general approach goes beyond the scope of
this work.
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Given a linear system

Ax <b, Cx=d

an inequality a;x < b; is said to be nonsingular if there exists a feasible solution of this
system which satisfies this inequality strictly. Here a; denotes the i-th row of the matrix A.
An inequality is called singular if it is not nonsingular.

Let us denote by ng r(Z) the set of all u fulfilling the linear system

Vh(z)u =0,
Vgi(Z)u <0, i€ 1Y
~VGi(z)u=0, i€ I°F (34)

—VH;(Z)u=0, i € I,
0> —VG;(#)u, —VH;(z)u <0, iec I

which is obtained from (29) by relaxing the complementarity condition. Obviously we have
Tflzlg( z)C Tslig r(T)-

Now let BG denote the set consisting of all indices i € I° such that the inequality
—VG;(Z)u < 0 is nonsingular in the system (34). Similarly, we denote by A the non-
singular set pertaining to the inequalities —V H;(Z)u < 0. For notational convenience we
introduce also the set fEH = & N pH.

Using the set S5 we arrive at the following description of the linearized cone:

T4 (z) = {u e R"| Vh(z)u =0, (35)
Vgi(Z)u <0, iel9,
—VG;(T)u =0, ZEIO+
~VH;(z)u=0, i€ I
0> —VGi(Z)u, —VH;(z)u <0, i€ [0\ gGH,
0> —VGi(:L‘)uJ_ ~VH;(Z)u <0, i € BEHY.

This can be seen from the fact that every u belonging to the set on the right hand side of (35)
also belongs to Tgn £(Z) and therefore for every i € 100\ BEH = (100 gy (190 gH) either
the inequality VG (Z)u < 0 or the inequality —V H;(Z)u < 0 is singular and consequently
fulfilled with equality, implying that complementarity holds. Now the representation (35)
of the linearized cone has the same structure as the original representation (29) and we can
apply Theorem 5 to (35) in order to obtain the following corollary.

Corollary 5. Let & belong to the feasible region Q¢ of the MPCC (27) and assume that
GGCQ is fulfilled at T. Further assume that there is some partition ( 1GH, g;H) of the index

set BCH such that for every u € Noco there holds
pS S >0, u >0 v, i) e pFH x pFH
ui g > 0 (1) € BT < gt (36)
pi g > 0V(,i) € g5 x gt

Then

~

No.(z) = VF(&)"Np(F(z)).
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Proof. The representation (35) has the form Tglllg (z) = {u € R"|VF(z)u € T¢H} with

R2 if i e 00\ gGH
{O}mE XT m[ XHTGH TGH — 1 Z € \ﬁ , i
=1 Tpo(—Gi(T), —Hi(z)) ifie "rurtdug

and from Theorem 5 we obtain ]\Afgc (z) = VF(z)T(TCH)°. Tt is easy to see that (T¢H)°
(Tp(F(z)))° = Np(F(z)) and thus the assertion follows.

ool

The statement of Corollary 5 was shown in [24, Theorem 2] under the assumption (A3),
which reads in our notation that there exists a partition ( 1GH , QGH ) of the index set BEH
such that for every u € Moo one has

pS s > 0v(i,i) € B x (B9 \ pEH),
pd il >0V, ) e pEH < (B BgH, (37)
pl il > 09,1 € BFH x (B \ p5H),
pd pll >0V, € (B9\ B x g

Since pSH = pEH\ gFH < pG\ BEH and BFH < pH \ BGH . our assumption (36) is not
stronger than assumption (A3) used by Pang and Fukushima [24]. In case when ¢ # g¢H
or B £ BGH our assumption (36) is actually weaker, as the following example demonstrates.

Example 1. Consider the system

gl( ) :—xg—x4<0
g2(x) = x2 <0,
0 S Gl(.%') =T 1 Hl(l‘) = X9 Z 0,
0< GQ(.%') =x1 +x3 L HQ(JE) =24 >0
at £ = (0,0,0,0). Since all constraint functions are linear, GACQ is fulfilled, cf. also [4,

Theorem 3.2], and consequently GGCQ holds as well. It is easy to see that & = {1,2} and
BEH = gH — {2} and therefore condition (36) amounts to

—u?—u?-o ué’— H=0,—g—u§=0, —pf =yl =0 (38)
g i >0/~cz pit 20 V(i i) e BE x g

= ul uz >0 V(z,z)GBGHxﬁIGH (39)
uGull >0 V(i i) € x gt

Since (38) is equivalent to pil = uf, pbl = u§ = —,u1G = —uf, (39) holds with any of the
two partitions fFH = {2}, BSH = () and BFH = 0, BFH = {2} and therefore Corollary 5 is
applicable. On the other hand, condition (37) reads as

—p§ = p§ =0, ug—u{[=0 —pf —p§ =0, —pf — pff =0

,uz-,ui,ZO Vi,z’ 23\ B3
T\ w20 Vi) e BGH <{2}\/32 o8 (40)
WOl >0 V(i) € (1,2} B77) x
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Taking (pd, 8, u§, 1§, pdl, pdl) = (1,1,1,—1,1 — 1) we obtain that for the partition fFH =
0, BSH = {2} the condition uf il > 0 is violated, whereas in case when G = {2}, BFH = ()
the inequality pS'u$ > 0 fails to hold. Thus [24, Assumption (A8)] does not hold for this
example and therefore the assumption used in our Corollary 5 is strictly weaker.

We introduce now the following stationarity concepts for MPCC which correspond to
Definition 4 with Q@ = Q¢¢, where

Qcc = {(leéBQ, Qg?éﬁl) | (B1, B2) is partition of 1°°}.

Note that there is a one-to-one correspondence between the sets (Q1,Q2) € Qcc and parti-
tions (31, B2) of the biactive index set 1

Definition 5. Let = € Q¢.

1. We say that T is Q-stationary for the MPCC (27) with respect to the partition (51, 52)
of the index set 1% if
0e Vf(@)+ M,

where ]\4&6:1(/1,62 is given by (32).

2. We say that T is Q-stationary for the MPCC (27) if it is Q-stationary with respect to
some partition (B1, B2) of the index set 1%,

3. We say that T is Qpr-stationary for the MPCC (27) if there is some partition (B1, f2)
of I° such that

0€ V(@) + V@) (@) N (ker VF(@)T + Q")) N Np(F(@)) ) .

Theorem 6. Assume that GGCQ is fulfilled at the point & € Q¢. If T is B-stationary, then
T is Q-stationary for the MPCC (27) with respect to every partition (81, 52) of I°° and it is
also Qpr stationary. Conversely, if T is Q-stationary with respect to a partition (51, 52) of
I which fulfills also the assumptions of Theorem 5, then T is S-stationary and consequently
B-stationary.

Proof. In view of the definitions of B-stationarity and S-stationarity together with Proposition
4 and Theorem 5 there is only to show the assertion about Qjs-stationarity. This follows easily
from Theorem 3(3.) because Tp(F(z)) = Us, g,)ep(ro0) leéﬁ % is the union of finitely many
convex polyhedral cones generating the collection Q. O

Remark 3. Given a multiplier A € Np(F(z)) verifying the M-stationarity condition 0 €
Vf(z)+ VEF(@)T\ we can use the partition (81, f2) € P(I°°) defined by

Pr={icI®|\ >0}, pp={icI®\ <0}

for testing T on Qpr-stationarity, because this choice ensures \ € (lec’,ﬁz)o. The computation
of such a multiplier A can be done by means of the algorithm presented in the proof of [8,
Theorem 4.3].
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We see that Q-stationarity is a first order necessary condition for Z being a local minimizer,
provided GGCQ is fullfilled, which is to be considered as a very weak constraint qualification.
In order to verify Q-stationarity, only a system of linear equalities and linear inequalities has
to be solved, but the main difference to the usual first-order optimality conditions is, that a
second multiplier p is involved.

Note that postulating GGCQ in our problem setting is equivalent to MPEC-GCQ as
given in [5]. It was shown in [5] that under MPEC-GCQ any B-stationary point of MPCC is
M-stationary. Theorem 6 improves this result by stating that even Qjs-stationarity holds.

Let us now turn our attention to the case when the gradients of the constraints active at
the point Z,

Vhi(z),i € {1,...,mg}, Vgi(z),i € 19, VGi(x),€ I°TUTI® VH(z),ic IT°UI®

are linearly independent. This constraint qualification is usually named MPEC-LICQ in the
literature. Then we obviously have Noeo = {0} and therefore the assumptions of Theorem
5 hold. Hence, under MPEC-LICQ Q-stationarity automatically implies S-stationarity and
B-stationarity. This is remarkable because M-stationarity does not have this property: Under
MPEC-LICQ an M-stationary point is neither S-stationary nor B-stationary in general. How-
ever, in case when MPEC-LICQ does not hold, there also exist examples where a O-stationary
point is not M-stationary and therefore neither M-stationarity implies Q-stationarity nor vice
versa. However, the following example shows that Qj,-stationarity is strictly stronger than
M-stationarity.

Example 2. (c¢f./8, Example 3]) Consider the MPCC

min f(x) = T4+ x2 — 223
TER3
subject to gi1(x) = —x1 —x3<0
go(x) = —x2+23<0
OSGl(CIi) = le_JIQ =: Hl(x) ZO

Then z = (0,0,0) is not a local minimizer because for every a > 0 the point x® = (0, a, ) s
feasible and f(x*) = —a < 0= f(z). GACQ is fulfilled because all constraints are linear and
the linearized cone amounts to

—up —uz3 <0, —ug+uz <0, 0> —u; L —uz <0.

Straightforward calculations yield that T is M-stationary and A = (A, A3, A\, M) = (1, 3,0, —2)
s the unique multiplier fulfilling the M-stationarity conditions. However, we will now show
that T is not Qpr-stationary. Assuming that T is Qps-stationary, by taking 1 = 0, B2 = {1},
there would exist some p = (uf, u3, n§, pdl) verifying

—pf —pf =0, —p§ —pi' =0, —pf +u§ =0

py <A =1, pp <X =3, pif <M =-2.
But a solution of this system must fulfill

ph=py <1, p§ = —pit > 2

which is obviously not possible. On the other hand, if we take $1 = {1}, B2 = 0 then

A (leé’gQ)o. Hence T is not Qs-stationary and we have demonstrated that Qs-stationarity
is a stronger property than M-stationarity.
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5 Application to MPVC

In this section we consider a mathematical program with vanishing constraints (MPVC) of the
form

min  f(z)
subject to h(z) =0,
g(z) <0,
Hi(z) >0, Gij(z)Hi(z) <0, i=1,...,my, (41)

where f : R" - R, A : R®* > R™#, g : R" - R™ G : R" - R™ and H : R" - R"™
are assumed to be at least continuously differentiable. To transform the constraints into the

format (1) we use
F(z) = (M), g(x), —H1(x), G1(), . ..,

—Hpy (%), Gy (2)), D ={0}" xR™ x D}V,

where

Dy :={(a,b) e R_ x R|ab > 0}.

Now we denote the feasible region of (41) by Qy and we introduce the following index sets
of constraints active at a feasible point Z € Qy:

¢ o= {ie{l,...,ms}|gi(x) =0},
17 = {ie{l,...,my}|Hy(z) = 0> Gi(z)},
1" = {ie{l,...,my}|Hi(z) = 0= Gi(7)},
I = {ie{l,...,my}|H(z) =0 < Gi(2)},
I = fie{l,....mv}| Hi(7) >0=Gi(2)},
I~ = {Lie{l,...,my}|Hi(Z) > 0> Gi(2)}
Straightforward calculations yield that
Tp(F(z)) = {0} x Tami(9()) x [ [ Toy (- Hi(2), Gi(2))
i=1

with Tpmi (9(z)) = {v € R™ |v; < 0,7 € 19},

R_ xR ifiecl0, (R, x {0} ifiecI%,
Dy if i € 199, R, x {0} ifie 1%,
Tp, (—Hi(Z),Gi(z)) = { {0} x R ifi e I°F, Np,(—Hi(Z),Gi(z)) = { R x {0} ifie I°F,
RxR_ ifiel™ {0}y x Ry ifie I10,
RxR ifiel™, {0} x {0} ifiel™™
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and consequently, T, gll”‘; (z) is the collection of all v € R™ fulfilling the system

=0, i e I°F, (42)

Ju)(VH;(2)u) >0, i € I,
w<0,iel™

)
Further note that Np,, (—H;(Z),Gi(z)) = Np, (—H;(z),Gi(Z)), i ¢ I and Np,, (—H;(z), G;(Z)) =
(R x {0}) U ({0} x Ry), i € I*.
Similar to MPCC we define for every partition (81, 32) of the set 1% the cone

Q?/l(}ﬁ? — {O}mE < T m1 >< H7_51752

where 7707 .= T (—H;(z),G(z)) if i ¢ I and

7_'51’52 — {O} x R if ¢ S /817
Y | ROx R ifie B,

Lemma 4. For every partition (81, B2) € P(I%) the pair (Q1,Q2) = (Q?}C’?Q, QBQ’ﬁl) consists
of two closed convex cones fulfilling (21) and (20).
Proof. The proof follows the same lines as the proof of Lemma 3 and is therefore omitted. [
Similar to the case of MPCC we have
o(F@) = |J QU™
(B1,B2)€P(199)
Consider the following two sets of multipliers,
Rye = {(uh pd pl, ;%) € R™E x R™ x R™ x R™V |

pd=0,ie{l,...,m}\ 1Y,

p =0, ie{l,...,my}\ I UI®UI),

pe =0, ie{l,...,my}\ (ITOUTY)}

and
Nve = {(u", ug p %) € Rye|
mr
Zuth T)+ Y pdVgi(z) + Z (4§’ VGi(z) — pi' VHi(2)) = 0}.
Note that
Np(F(@)={AeRyc| M >0,iel9 X >0, iel® A\ >0, ieIlt (43)

ME>0, M =0, i€}
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and

Np(F(z)) ={ e Ryc| N >0,5€I9 N >0,icI', \¢>0,iecIt, (44)
A >0, NEXG =0, i€ 190},

Proposition 5. Let & belong to the feasible region Qv of the MPVC (41) and assume that
GGCQ is fulfilled at . Then for every partition (B1,32) of the index set I°° we have

mpg mr my
No, () © {d_A'Vhi(@) + ) MNVai(@) + Y (AVGCi(@) ~ A VH;(1)) | (45)
i=1 i=1 =1
(NN NNG) € N2y = Mgy,
where
NP = {VNMNG) € Rye | 3(uh, 19, 1, 1€) € Nye

AN > max{u?,0}, i € 19,
M > max{pf, 0}, i e 197, AF > max{u¥,0}, i e 0,
M o> pl e <A =0,iep, M >0, A =uf >0, icp)
= (QUE™)° N (ker VE(@)" + (QU")°).
Proof. We can proceed similarly to the proof of Proposition 4. We have (Q"é}éﬁ ?)° =R™E x
Ngmi(g(2)) % H?;‘{(T-ﬁl’&)o and the set Négﬁ =( gléBQ)oﬂ(ker VF(E)T—i—(QgZéBl)O) consists

of all A = (A", M, AH A®) such that there exists n = (", n9,n%,n%) € (Q@%’Bl)" and some
p= (" p9, 1", %) € ker VF(z)T such that

A=+ pe Q).
Similar as in the proof of Proposition 4 this yields

A >max{p!,0}, iel?, N =p=0ie{l,...,m}\ 1Y,
M > max{uf, 0}, N =uf =0,ie1°7, X =uf=0,iecI'F,
M=y =0, A > max{p&,0}, iel™ M =)\=pl=)F=0,iecIt.
Now consider i € 1. Then (7'14671’62)o =R x {0} and (TfQ’ﬁl)o = R4 x Ry. Hence
(N 08) = (5,6 + (a1, 1€ € R x {0}
and (nf,n¥) € Ry x Ry, or equivalently
Nt u < AT =0, i€ By
In case that i € 2 we have (Tfl’BQ)O =Ry xRy and (Tf2’ﬁl)o =R x {0},
M) = (0 n) + (uff, 1) € Ry x Ry,
and (nf1,n¢) € R x {0}, which is equivalent to
M >0, A = pf >0, i€ B
These arguments show that Nélcﬁ % has the claimed representation and the assertion follows

from (18). O
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In the following theorem we give a sufficient condition for equality in (45).

Theorem 7. Let T belong to the feasible region Qy of the MPVC (41) and assume that
GGCQ is fulfilled at T. Further assume that there is a partition (31, B2) of I°® such that

(:U'h7 :U'gv MHa MG) € NVC

Then
N =) — AfBLB2 =\T A7 =
Nay () = Myg™ = VF(z)" Np(F(z)).
Proof. Under the assumption of the theorem we conclude that

NP o (VNN NG € Rye [N >0, i€ 17,
M >0,iel”, A >0 ieTl"
H G_q . H G _n 5 _
AT>0, 07 =0,i€p, A'>0, A =0, i€ p}=Np(F(x)).

Now the claimed result follows from Theorem 2 together with Proposition 5 by taking

(Q1,Q2) = (QV™, Q). O
Next we establish an equivalent formulation of condition (46).
Lemma 5. Let (81, 82) be a partition of I°°. Then the following statements are equivalent:
(i) Condition (46) is fulfilled.
(ii) For every j € 3! there exists some 2’ such that
Vh(z)z =0,
Vgi(%)2) =0, i e 1Y,
VGi(2)2 =0, i€ I, (47)

VGZ(E)ZJ > 07 (S /817
< 07 (S /827

VH;(7)2! =0, i € I°7UIP U I\ {j},
VHj(f)Zj =-1

and there is some z such that
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Proof. Condition (46) is fulfilled if and only if for every j € 5 the linear program
min g subject to (i, pf, 1, 1) € Nye, u <0, i€ By, u¥ >0, i€ By (49)

has a solution and the linear program

max 3§ subject to  (u", pf, 4", u%) € Ny, pf <0, i€ By, pf >0, i€ By (50)
1€82

has a solution. Since the feasible regions of these linear programs are not empty, by duality
theory of linear programming this is equivalent to the statement that the feasible regions
of the corresponding dual programs are not empty. Since the feasible regions of the dual
programs to (49) and (50), respectively, are given by (47) and (48), respectively, the two
statements (i) and (ii) are equivalent. O

The characterization of condition (46) by Lemma 5 resembles the well-known Mangasarian-
Fromovitz constraint qualification of nonlinear programming. It appears to be not very re-
strictive, e.g. in case when 81 = (), B2 = I°° condition (46) is fulfilled when the system

Vh(z)z =0,
Vgi(a’;)é =0,i€l,
Gi(z)z2=0, i € I,
Gi(z)z2 <0, i € IV,
VH;(2)2=0, i € IO* u %y ot
has a solution. Hence we think that Theorem 7 is likely to be applicable in many situations.

At the end of this section we consider Q-stationarity for MPVC with respect to @ = Qy ¢,
where

Qve == QU2 Q%) | (By, Ba) is partition of 10}.
Definition 6. Let z € Q.

1. We say that T is Q-stationary for the MPVC (41) with respect to the partition (51, 52)
of the index set 1% if
0€ Vf(@)+ M,

where M‘élc’ﬁz is given by (45).

2. We say that T is Q-stationary for the MPVC (41) if it is Q-stationary with respect to
some partition (31, B2) of the index set I,

3. We say that T is Qps-stationary for the MPVC (41) if there is some partition (S1, B2)
of 1% such that

0€ V@) + V@) ((QU*) N (ker VF(@)" + (Q¥%M)°) N Np(F(a)) ) .

It follows from the definition that

NI { NN XC) € Rye | M >0, iel9, M >0, ie I
AG >0, i eI, A =0, i€l C Np(F(z)).

Hence, if Z is Q-stationary with respect to (I°°,()), it is automatically Q/-stationary and the
following theorem follows from Proposition 5, Theorem 7 and Theorem 3(1.).
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Theorem 8. Assume that GGCQ is fulfilled at the point T € Qy . If T is B-stationary, then
T is Q-stationary for the MPVC (41) with respect to every partition (B1,32) of I and, in
particular, it is Q—stationary with respect to the partition (I°°,0) implying Qs — stationarity.
Conversely, if T is Q-stationary with respect to a partition (31, B2) of I°°, which fulfills also
the assumptions of Theorem 7, then T is S-stationary and consequently B-stationary as well.

Further we have

NOE € 8= {(\N, N, A AG) € Rye| M >0, ie19, M >0 icIo
A =0, i€l A >0, A >0, i€ ).

It was stated in [1, Theorem 4] that, under some weak constraint qualification, the condition
0 € V() + VF(2)TS is a necessary condition for a local minimizer. Hence, if 7 is Q-
stationary with respect to (0, I°°), then it fulfills also the necessary conditions of [1, Theorem
5.3]. From Lemma 2 we obtain that z is Q-stationary with respect to (31, 52), if and only if it
Q-stationary with respect to (52, 31). Hence we conclude, that Q-stationarity with respect to
(I, 0) implies both Qj-stationary and the necessary optimality conditions of [1, Theorem
4].

Finally note that GGCQ for MPVC is equivalent to the condition MPVC-GCQ introduced
in [17], where it is also shown in [17, Theorem 6.1.8] that under MPVC-GCQ any B-stationary
point of MPVC is already M-stationary.

6 Application to generalized equations
Now we consider the problem
oD fz,y)
subject to 0 € G(x,y) + Nr(y),
xz e C, (51)

where the mappings f : R” x R™ — R, G : R” x R™ — R are assumed to be continuously
differentiable, C is a closed subset of R” and the set I' C R™ is given by C? inequalities, i.e.
I:={yeR"|g(y) <0,i=1,...,1}, where g : R™ — R is twice continuously differentiable.
The constraints fit into our general setting (1) with

x

F(z,y) = ( (v, —G(z,y)) > , D :=C x gph Nr. (52)

We denote the feasible region of (51) by Qgr. We consider a point (Z,y) € Qagg, fixed
throughout this section, and we suppose the following assumptions:

Assumption 1. 1. The tangent cone Tc(Z) is convex and Tp(F(z, 7)) = To(Z)x T, 5.(4, —G(Z,7)).

gp
2. GGCQ holds at (Z,7).

3. There is some v € R™ such that
i.e. MFCQ holds at .
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The first assumption is e.g. fulfilled if C' is given by C'-inequalities h;(z) <0i=1,...,s
and MFCQ is fulfilled at . Note that the third assumption, that MFCQ holds at g, is only
made in order to ease the presentation. We claim that it can be weakened to the weaker
assumption of metric regularity in the vicinity of g (cf. [10]) or metric subregularity and the
bounded extreme point property as used in the recent paper [11].

In what follows we set §* := —G(Z,y) and we define by

A= {Xe Np (99) | Vo) "\ =57,
the set of Lagrange multipliers associated with (y,y*) and by
K = Tr(y) N (7")*

the critical cone to I' at y with respect to y*. Thanks to the assumed MFCQ for the inequalities
describing I' we have T1(y) = TH"(y) = {v| Vg;(y)v <0, i € I}, Nr(y) = Vg(y)TﬁRz (9(9))
and that A # () is compact. Note that we do not require that the gradients Vg;(3), i € T are
linearly independent and hence the set A can contain more than one element.

Given a multiplier A € NRz (9(y)) we introduce the index sets

IO ={ie{1,..., 13|\ >0}, I°(O\) =T\ IT(\).

Apart from them we will be working with

"= JI1tw, I°:=1\I"

By convexity of the set A a multiplier \* € A verifying IT(AT) = I'" exists. Further we have

(D Vgi@n=0,v>0iel’) = 5 =0,icl’ (53)
i€l

Indeed, if there would exist numbers ~;, i € Z violating (53), then, by setting

‘o, i¢T

with ¢ > 0 sufficiently small, we would obtain the contradiction that IT is strictly contained
in IT(\).

Note that K = {v|Vgi(7)v = 0,5 € I'T, Vgi(g)v < 0,i € I°}, cf. [10, Lemma 2] and
therefore K° = {}",c7 tiVgi(y) | i > 0,1 € I°}.

For a direction v € K we further introduce the directional multiplier set

A(v) := argmaxv? V2(\ g)(7)v.
AEA

Application of [27, Exercise 13.17, Corollary 13.43(a)] (see also [10, Theorem 1]) yields
the representation

~

T 5 (007 = {(v,0%) [v € K, 3N € Av) : 0" € V2(\g)(§)v + Ng(v)}. (54)
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A description of the regular normal cone N oh Np (g, 7*) can be found in [10, Theorem 2].
In general the structure of the tangent cone (54) is rather complicated. E.g., it is not
known whether it always can be represented as the union of finitely many convex polyhedral
cones or whether Assumption 1 is sufficient for M-stationarity of a B-stationary point.
In the following theorem we state a sufficient condition that the formula NQGE = VF(z, gj)T]VD (F(z,7))
is valid, i.e., that S-stationarity holds at (Z,y) provided it is B-stationary. We denote by
lin Te(z) the lineality space of To(Z), i.e. the largest linear space contained in T (Z). Since
Tc(Z) is a closed convex cone by our assumption, we have lin To(z) = To(z) N (=T (Z)).

Theorem 9. Assume that Assumption 1 holds and that for every w € K, every Ay, € A(w)
and every z € R™ verifying

one has

(VG (z,9) + V(AL g)(5)w = 0. (55)

(@
Further suppose that there exist some i € 1i To(z), w € K, Ae A(@) and some reals fi;, i € T
such that

fi; >0, i € I° and V,G(7, ) + V,G(Z,7)w + V(AT g) w-l-Zng (56)
i€

Then one has

< _VJJG z,y Tw +c* * S * S = %
Nogp = {( —VyG((j,g))Tw B ) |c* € No(2), (w*,w) € nghﬁr(y,y )} (57)

Proof. By Assumption 1 we obtain that
TSIQI?;E(_ Zj) {(uv U) | u € TC(j)v (Uv _va(j> g)u - vyG(jv g)v) € Tgph]/\\/p (gy g*)}

and, together with (54), that Q := Tg(z) x {0}™ x K° is a convex cone contained in
Tp(z,9,y"). We shall apply Corollary 4 with this cone @Q by showing that T (Z, 7, 7*) = T(Q)
and that there is some (u,v) such that VF(Z,9)(u,v) € riconv T (Q). In a first step we show
Tp(z,9,7") = T(Q), i.e. we prove that for every (t,w,w*) € Tp(z,y,y*) there is some
q:= (t4,0,k*) € Q and some (u,v) € R" x R™ such that

U U t—1 "
VE@g) < v > = < (v, ~VoG(Z, §)u — V,G(Z, §)v) > = ( (w, 0" — k) > € To(@,5.9").
(58)
Let (t,w,w*) € Tp(Z,y,y*) be arbitrarily fixed and let w* = VZ(A\Lg)(y)w + n* with \,, €
A(w) and n* € Nk(w)
Denoting by A the |I*| x m matrix, whose rows are given by Vg;(7), i € I'", we obtain
from (55) that

(V,G(E9) + VL)@ € (ker AN (VoG5 T (inTe(@)")

= Range AT 4+ V,G(z, y)(linTe (7))
= —Range AT — V,G(z,9)(lin Tc ().
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Hence there is some k* € Range AT = span {Vg;(7)|7 € I} and some [ € linTc(Z) such
that (V,G(Z,7) + V2(A\Lg)(7)w = —k* — V,G(Z,9)l. Setting t, ==t —1, u:=1,v:=w
and k* := n* — k* and taking into account that n* € Ng(w) = K° N {w}+ c K° and that
span {Vg;(y)|i € I} is exactly the lineality space of K°, we have t, € T¢:(Z), k* € K° and

—V.G(7,9)u — V,G(,7)v = —V.G(Z,9) — V,G(Z, 7)w = V2 A\Lg)(§)w + k* = w* — k*.
Thus

(0w vio@mn ) = (e ) )
(w20 g i) ) €T X Ty 5,057 = Tz o)

verifying (58), and therefore Tp(Z, 7, 7*) = T (Q) holds.
In order to show that there are (u,v) such that VF(z,%)(u,v) € riconv T (Q), we observe
first that
conv T (Q) = convTp(z,9,y") = (convSy) + So, (59)

where S; 1= {(0,w, V2(A\Tg)(5)w) |w € K,\ € A(w)} and Sa —T(; 7) x {0}™ x K°. Indeed,
by Assumption 1 and (54) it can be easily seen that Tp(Z,y,y") C S + S2 and by convexity
of & the inclusion

convTp(Z,y,7") C conv (S + S2) = (convSy) + So

readily follows. On the other hand we have S1,S; C Tp(Z,y,y*) implying conv Sy, Ss C
conv Ip(Z,y,y*) and, together with the fact that convTp(Z,y,y*) is a convex cone, the
reverse inclusion

conv Ip(Z,y,5") D (convSi) + Sa

follows as well and the validity of (59) is shown.
Now consider (0,w,w*) € riconvS;. Then there are nonnegative coefficients a; > 0, j =

++8, 2_j—1 @; = 1L and elements (0, w;, w}) € 1 such that (0,w,w*) = >77_; a;(0, w;, wy).

Then, by proceeding as before, for every j = 1,...,s we can find l;:;‘ € span{Vg;(y)|i € I}
and [; € lin To(z) such that
VLG~ VG Ty =+ E

By setting L := 320 ajly, u = [+ @ v = w+ 1, 0 = V2T ) (§)ib, K 1= 23, oyh; +
zzez Vgi(y)fi;, we obtain

Vﬂi@(ﬁ)

B ( (0~ 4Gz 7 — V,G(z,9)v) ) - ( <w+w,gu* + %) ) i ( <133§*Z> ) '

Since Y7 Vgi(9)fii € ri K° by [26, Theorem 6.6], Y75, ajl%;-‘ € span{Vg;(z)|i € I} C
lin K°, @ € riTe(7) and [ € lin To(7), we conclude

( (g—;*l) > €EriSy +1linSy =1iSs.
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Further, since (0,w,w*) € riconvS, (0,0,w0*) € S and S is a cone, we obtain (0,w +
W, w* +w*) € riconvSy. Thus, by taking into account [26, Corollary 6.6.2],

u
v

VF(z,y) ( > € riconvS) +riSy = ri((convSy) + S2) = riconv Tp(Z, §,7")

and this finishes the proof. O

Remark 4. Theorem 9 improves [10, Theorem 5], where the assumption
Vo G(7,§)(linTe (7)) + span {Vg;(7) |i € IT} = R™

is used. Note that this assumption is equivalent to {0} = (span{Vg(z)|i € IT})* N
(V.G(z,9)(lin T(;(:f))) and thus the only element z with Vg;(%)z = 0,4 € I and V. G(z,9)!
(lin Te(7))* is z = 0 and therefore (55) trivially holds. Further, this assumption also implies
(56), because for arbitrary u € riTo(Z) and ji; > 0, i € IV, we can find | € linTe (%) and fi;,
i € I with V,G(Z,9)l + > e+ iV Gi(T) = =V G(Z,9)u — > o 1V gi(Z) and now (56)
follows with i =u+1 € riTe(z), w = 0.

Next we consider Q-stationarity for the problem (51) under an additional assumption
which allows a simplified description of the contingent cone T oh N (g,y*) as stated in [10,

Theorem 3.

Theorem 10. Assume that Assumption 1(3.) holds at §. Further assume that A(vy) = A(vs)
Y0 # v1,v2 € K and let \ be an arbitrary multiplier from A(v) for some0 #v € K, if K # {0}
and X € A otherwise. Then

Ty 50 @:77) = {(v,07) [v € K, v* € V2 (N g)(g)v + Ni(v)} (60)

and

~

N 5 7:77) = {(w",w) [w € K, w" € =V*(\g) ()w + K°}. (61)

The assumption A(v1) = A(vg) V0 # vy, ve € K is for instance fulfilled, if the inequalities
9i(y) < 0 fulfill the constant rank constraint qualification at g, see e.g. [13, Corollary 3.2].

In what follows we will assume that the assumptions of Theorem 10 hold and that the
tangent cone T¢(Z) is a convex polyhedral cone. For every index set 3 C I° we define the
convex polyhedral cone

Qe = To(®) x {(v,0") | (v,v" = VXA g)(g)v) € K5 x K5}, (62)

where

=0, i€ltUp
Kg =3 v|Vg(y)v T T, K= 1iVgi(y) | pi >0, i€ p
{ <0, ZGIO\B ’ ie;r:uﬂ

Then we have

- 0, iclT,
(Kp x K3)° = ZMVQ, Vs >0,5€I°\Bp x<2|Vgi(y)z _
i€T <0 7,65
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and

N 2T N
(Q?;E)o _ NC(@) % < é \Y% ()} g)(y) >(K,3 > KE)O

= No(@) x {(w",w)| (w + V2(3g)(g)w, w) € (K5 x K5)°}.

It is easy to see that under the assumptions of Theorem 10 we have

Tp(F(z,5) = | Qs (63)

pcIo

and thus

No(F(2,9)) = No(@) x Ny, 5. 0,57 = [ Q)"
pcIo

Note that for every pair (81, 32) C IV x I the cones (QGE, Qg?E) fulfill (21) because they are
convex polyhedral cones.

Proposition 6. Let (Z,7) € Q_GE and assume in addition to_Assumption 1 that the contingent
cone Tc(Z) is polyhedral and A(vi) = A(va) VO # v1,v2 € K. Then for every pair (81, f2) C
I° x I° we have

7 _ [ (o= VaG(@9) g " FouBe | . phup
Rigs e, € VE@a) N = { (17 G0 It ) [nva ) € % b = Mg o)

where

NGy = {(nc,q q) € Ne(z) x R™ melﬂreRm,uguf,z’ el:

¢ +ViOTg)(7)q = Z,ul Vai(y (65a)
i€l
Vgi(7)g =0, i€ I, Vgi(§)g <0, i € B, pul >0, zeIO\/ﬁl, (65b)
Vgi()r =0, i eI, Vgl( )g < Vgi(y)r, zeﬁz, >u,~, ZEIO\BQ, (65¢)
VG, )+ VA )@ = uiVai(y (65d)
i€l
ne € VaG(a, 5)r + ﬁc@)} (65¢)

and X\ is an arbitrarily fived multiplier from A(v) for some 0 #v € K, if K # {0} and A € A
otherwise.

Proof. The statement follows immediately from Theorem 2 if we can show
Ngi™ = (Qel)” N (ker VE(2,9)" + (Qcip)”). (66)

( 'p)°Nker VF(z, gj)T+(QgZE)O). Then there are elements
o, ¢, q) € (Q%E)O such that

()= )+ (s )
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Since

*

VF(z,5)" %C - ( pc — VoG(z,9)" ) _ < 0 )

we obtain pc = V.G(z,9)Tr = nc — fic and thus ne = V.G(z,9)"r +ijc € V.G(z,5)Tr +
Ne(7) verifying (65e). The relations (65a) and (65b) follow simply from the representation
of (leE)o By using the representations ¢* + VZ(A\'g)(9)§ = >_,c7 1iVg;(§) with pl > 0,
i € I°\ Ba, it follows that

0=r" 43 —q" = V,G&5)"r + VW) ) — @) — > (1! — )V gi().

i€T
Since r = ¢ — G, Vgi(§)§ = Vgi(y)qg = 0,i € [T we have
0= Vy,G(&,9)"r +V*N'9)(@)r — Xicz 1 Vi (D), (67)
Vai(g)r=0,i eI, (68)

where p! = pd — ug, showing (65d). By taking into account Vg;(7)(¢—r) = Vgi(9)§ < 0,i €
Bo, i — pl = ,ug > 0,i € IV\ B2 we obtain together with (68) that (65c) also holds. Hence,
(nc, g%, q) belongs to the set Ngg& and the inclusion (leE)o N (ker VF(z,5)T + (Q%E)O) C
Ng%ﬂ % follows.

To show the reverse inclusion consider (nc, ¢*, q) € Ngbﬁ ? together with r € R™, pd, il i €
7 according to the definition. By setting pc := V,G(z,9)Tr, r* :== V,G(Z,9)Tr, (iic, 7", §) :=
(nc,q*,q) — (pc,r*,r) it follows, by using the same arguments as above, that (pc,r*,r) €
ker VF(Z,9)" and (7o, §*,q) € (Q%E)O. Since we obviously have (n¢,q*,q) € (leE)o, we
obtain (n¢, ¢*,q) € (Q%E)O N (ker VF(z,9)T + (Q%E)O) and this finishes the proof. O

Theorem 11. Assume that the assumptions of Proposition 6 are fulfilled and assume that
we are given a partition (B1,32) of I such that the following two conditions are fulfilled:
(i) For every j € Bo there are I € linT¢(Z), &!, i € I'T and 27 € R™ with

V(@) — Y V(g (VyG(7,9) + V2N 9)(§)) 2 + V.G(z, )l =0,
iel+
Vgi(§)2 =0,ieT.

(ii) For every k € By there are I¥ € linT¢(z), aF, i € It and 2* € R™ with
> Va)ar + (VyG(,9) + V(N 9)(5) 2" = V.G(@ gl =0,

Vai(§)2" = 0.i € T\ {k}, Vg(y)-" = 1.

Then R R
Nog, (#.9) = Mgy = VF(2,9)" Np(F(x,5)).
Proof. In view of Theorem 2 and Proposition 6 the statement follows if we can show N, gbﬁ 2 C
Np(F(z,y)). This inclusion holds true if for every (nc,q,7) € R" x R™ x R™, pd pri € T
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fulfilling the system

Vgi(9)(q—r) =0, ng( Jr=0,i¢el,
Vgi()g <0, i€ Bl ul — ZEO,ZEIO\ﬁzzﬁl,
Vgi(ﬂ)(q—v“)<0 i€ pl>0,iel’\ B =P, (69)

(VyG(z,9)" + V2 (A g)(7 ))T >iez 1 Vi) =0,
nc € No(@), ne — VoG(z,5)"r € No()

we have Vg;(y)r < 0,4 € B and pf > 0, ¢ € (1 because then we have Vg;(y)g < 0,
7>0,i¢ 51 U B = I° and thus the triple (n¢, ¢*,q) € Nﬁl"@ with ¢* = —V2(\Tg)(9)q +
ZZGZ Vi)l = =V2(A\T9)(9)qg + X iz V9i(§) it also belongs to Np(F(z,7)).
The first condltlon Vgi(y)r <0, i € P is equivalent to the requirement that for every
j € B2 the optimization problem

max Vg;(y)r subject to (69) (70)
el RV

has a solution. Since the tangent cone T (Z) is assumed to be convex polyhedral, so also is the
regular normal cone and therefore this program can be written as a linear program for which
obviously the trivial solution is feasible. Hence, by the duality theory of linear programming
the program (70) has a solutlon if and only if its dual program has a feasible solution, i.e.
there are multlphers ozj lie IJr ] >0,7 >0, € B, 53 >0, 53 >0,i € o, 2/ € R™
and 19,19 € (Ne(z))° TC( ) such that

U+ =0,
> Vaimed + > Vel + > Vai@)s! =0,
ielt i€f1 1€82
—Vg;(y Z Vai(y a — a Z Vai(y
iel+ 1€82

+(V,G(z,9) + V(N g) (7)) 2! — V.G(z,5)l =0,
A =0,i€p, 6 =0,icp,
~Vgi(§)2? =0, € I'TU By, —Vgi(5) +7 =0,i € pi.

Hence I/ = —1I/ € Te(Z) N (=Te(z)) = linTe(Z) and by (53) we obtain ’yg =0,7€ f and
5? =0, i € B2. Now it is easy to see that the dual program to (70) is feasible if and only if
condition (i) is fulfilled.

The second requirement pf > 0, i € 51 is equivalent to the condition that for every & € 1
the program

min pp  subject to (69) (71)
ne,q,r,pd,p"

has a solution. Using snnllar arguments as above we obtain that thls is equivalent with the
existence of multipliers a ,ielt, fyk >0,1€ [, 5 >0,i € By, 2F € R™ and IF € lin T (%)
verifying

> Va@al + (VyG(z,9) + V(A g)(1)) 2 — V.G(z,9)I*F =0,

ielt+

—3k=0,ie B, —0F=0,i€po,

~Vgi()z" =0,i € ITU By, —Vgi()z" +3F =0,i€ p1\ {k}, =1 = Var()z" +35 =0
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and it is easy to see that this is equivalent to condition (ii). O

In order to introduce a suitable O-stationarity concept for generalized equations, let us
define -
—0, ieltup }

Bap:=48cI’|3zeR™: Vg(y _
cE {6 | 3= g(y)2{<0, e\ g

and

QcE = {(Q‘SE, Q%E) | (B1, B2) € Bor x Bag, f1U B2 = I°}.
Note that if a subset 3 C I° does not belong to Bgg, then the set 3 := {i € I°|Vg;(y)z =
0Vz € Kg} fulfills 8 C 8 € Bge and Kz = Kj. It follows that Kj C KE and consequently
Qg g C Q'g g+ Since we want to consider closed convex cones () which are as large as possible,

we can discard Qg p from our analysis.

It follows immediately from the definition that IY € Bgg. Further, by [10, Lemma 2] we
have () € Bag.

In contrast to MPCC and MPVC the condition QNQ3 = Np(F(z,§)) does not hold au-
tomatically for every pair (Q1,Q2) € Qgg, but it holds for instance for the pair (Qg) B Q% £)-

Definition 7. Let (Z,7) € Q¢p.

1. We say that (Z,7) is Q-stationary for the program (51) with respect to the pair (81, f2) €
Bar x Bgg satisfying 81 U By = I° if

0€ Vf(z,75) + Mo,

where Mglbiﬂz is given by (64).

2. We say that (Z,7) is Q-stationary for the program (51) if it is Q-stationary with respect
to some pair (B1, B2) € Bae X Bar with 1 U By = IV.

5. We say that (z,y) is Qu-stationary for the program (51) if there is some pair (81, B2) €
Bar x Bap with 1 U B = I° such that

0€ Vf(@.9) + VF@.5)" (@) N (ker VE@E.D)" +(Q¥)°) N Np(F(#.9)))

By using Proposition 6, Theorem 11 and Theorem 3(3.) we obtain the following Theorem.

Theorem 12. Assume that the assumptions of Proposition 6 hold at the B-stationary point
(Z,9) € Qgr. Then (z,y) is Q-stationary with respect to every pair (f1,2) € Bar X Bag
with 81U By = I° and (z,7) is also Qur-stationary. Conversely, if (z,7) is Q-stationary with
respect to some pair (51,052) € Bar X Bgg fulfilling the assumptions of Theorem 11, then
(z,7) is S-stationary and consequently B-stationary as well.
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