
On estimating the regular normal cone to constraint systems

and stationarity conditions∗
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Abstract

Estimating the regular normal cone to constraint systems plays an important role for
the derivation of sharp necessary optimality conditions. We present two novel approaches
and introduce a new stationarity concept which is stronger than M-stationarity. We apply
our theory to three classes of mathematical programs frequently arising in the literature.
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1 Introduction

This paper deals with the computation of the regular normal cone N̂Ω(x̄) to sets of the form

Ω := {x ∈ Rn |F (x) ∈ D} (1)

at some point x̄ ∈ Ω, where F : Rn → Rm is a mapping continuously differentiable at x̄ and
D ⊂ Rm is a closed set.

This task is of particular importance for the development of first order optimality condi-
tions of the nonlinear program

min f(x) subject to x ∈ Ω (2)

since the basic optimality condition, see e.g. [27, Theorem 6.12], states that the negative
gradient of the objective at a local minimizer x̄ belongs to the regular normal cone to the
constraints at x̄, i.e.

−∇f(x̄) ∈ N̂Ω(x̄).

When D is convex, the computation of the regular normal cone is well understood, see
e.g. [2]. Under some constraint qualification condition an exact formula reads as

N̂Ω(x̄) = ∇F (x̄)T N̂D(F (x̄)). (3)
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Quite more complicated is the situation, when D is not convex. This occurs for instance,
when among the constraints so-called equilibrium constraints are present. Such programs are
usually termed mathematical programs with equilibrium constraints (MPEC). The equilibrium
can be often described by a lower-level optimization problem, by variational inequalities or
by complementarity constraints. Some of these equilibrium constraints can be written as
smooth equalities and inequalities, but these constraints usually do not satisfy the common
constraint qualifications of nonlinear programming. Alternative formulations yield either a
nonsmooth mapping or the system (1) with nonconvex D, the case considered in this paper.
Prominent examples are mathematical programs with complementarity constraints (MPCC)
or mathematical programs with vanishing constraints (MPVC). We refer the reader to the
paper [28] for some more examples on this subject.

In case when D is not convex, only inclusions for the regular normal cone are known in
general. The lower estimate is given by

∇F (x̄)T N̂D(F (x̄)) ⊂ N̂Ω(x̄) (4)

and is known to hold with equality, if the Jacobian ∇F (x̄) has full rank, cf. [27, Example 6.7].
When we have equality in (4), the corresponding optimality conditions are usually called S-
stationarity (strong stationarity) conditions in the literature on mathematical programs with
equilibrium constraints (MPECs). The main drawback of the S-stationarity conditions is the
requirement of strong constraint qualification conditions.

If one weakens the used constraint qualification condition then the inclusion (4) will be
strict in general. In this situation one has to consider an upper estimate to the regular
normal cone N̂Ω(x̄). A commonly used upper estimate is provided by the so-called limiting
normal cone to Ω at x̄. The use of the limiting normal cone has the advantage, that a lot of
calculus rules are available for its calculation; we refer the readers to the textbooks [22, 23, 27].
Optimality conditions based on this upper estimate involving the limiting normal cone are
usually called M-stationarity conditions. A main disadvantage of this approach is, that in
general the regular normal cone is strictly included in the limiting normal cone. Therefore,
in general M-stationarity does not preclude the existence of feasible descent directions.

The aim of this paper is to provide estimates to the regular normal cone N̂Ω(x̄) which are
valid under very weak constraint qualification conditions and are tighter than the one based
on the limiting normal cone.

For this purpose we present two new approaches. The first one is motivated by a result
due to Pang and Fukushima [24] and yields an upper bound for the regular normal cone which
is exact under some suitable assumptions. This upper estimate for the regular normal cone
constitutes a new stationarity concept called QM -stationarity which is shown to be stronger
than M-stationarity. We apply this approach to MPCC and improve the result due to Pang
and Fukushima [24]. For MPVC we derive a new qualification condition, which resembles the
well known Mangasarian Fromovitz constraint qualification (MFCQ) of nonlinear program-
ming, and allows the exact computation of the regular normal cone for MPVC. The obtained
results are much stronger than the known results from literature [1, 3, 18, 19, 20, 21]. Finally
we analyze MPECs where the constraints are given by a generalized equation (GE) involving
the normal cone mapping to C2 inequalities together with parameter constraints. Again we
derive upper bounds for the regular normal cone which can be exact under certain conditions
and can be employed to replace the commonly used conditions as in [16, Theorem 3.4].

In the second approach treated in this paper we focus on the lower inclusion (4) for the
regular normal cone and state a condition which ensures equality. This new condition is
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an extension of the recent result [10, Theorem 4] and we apply it also to MPECs with an
additional parameter constraint.

The paper is organized as follows. In section 2 we present some basic definitions and
results from variational analysis together with the definitions of various stationarity concepts.
In section 3 we give the theoretical background for the two approaches presented in this
paper for estimating the regular normal cone as well as the new concepts of Q-stationarity
and QM -stationarity, respectively. In sections 4, 5 and 6 we apply the results from section 3
to MPCC, MPVC and an MPEC, respectively.

Our notation is basically standard. K◦ stands for the polar to a coneK and span {u1, . . . , uN}
stands for the subspace generated by the vectors u1, . . . , uN . By ∇F (x̄) we normally denote
the Jacobian of the mapping F at x̄, but occasionally we use it like a linear mapping to write

∇F (x̄)−1Q := {u | ∇F (x̄)u ∈ Q}

for a set Q. To ease the notation the Minkowski sum of a singleton {a} and a set A is denoted
by a+A.

2 Preliminaries

Let us start with geometric objects. Given a set Γ ⊂ Rd and a point z̄ ∈ Γ, define the
(Bouligand-Severi) tangent/contingent cone to Γ at z̄ by

TΓ(z̄) :=
{
u ∈ Rd | ∃ tk ↘ 0, uk → u with z̄ + tkuk ∈ Γ ∀ k

}
. (5)

Note that one has TΓ(z̄) = R+(Γ− z̄) when Γ is a convex polyhedron.
The (Fréchet) regular normal cone to Γ at z̄ ∈ Γ can be defined as the polar cone to the

tangent cone by
N̂Γ(z̄) := (TΓ(z̄))◦. (6)

Further, the (Mordukhovich) limiting/basic normal cone to Γ at z̄ ∈ Γ is given by

NΓ(z̄) := {z∗ | ∃ zk
Γ→ z̄, z∗k → z∗ with z∗k ∈ N̂Γ(zk) ∀ k}. (7)

Note that the tangent/contingent cone and the regular normal cone reduce to the classical
tangent cone and normal cone of convex analysis, respectively, when the set Γ is convex. We
put TΓ(z̄) = N̂Γ(z̄) = NΓ(z̄) = ∅, if z̄ 6∈ Γ. Note that we always have

N̂Γ(z̄) ⊂ NΓ(z̄).

Next we recall some rules for calculating polar cones. For two closed convex cones C1 and
C2 we have

(C1 ∪ C2)◦ = (C1 + C2)◦ = C◦1 ∩ C◦2 , (C1 ∩ C2)◦ = cl (C◦1 + C◦2 )

and for closed convex cones Pj , Qj , j = 1, . . . ,m we have

( m∏
i=1

Pi

)◦
∩
( m∏
i=1

Qi

)◦
=
( m∏
i=1

P ◦i

)
∩
( m∏
i=1

Q◦i

)
=

m∏
i=1

(P ◦i ∩Q◦i ) =

m∏
i=1

(Pi ∪Qi)◦ . (8)
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Proposition 1. Let A be an s× d matrix, let C ⊂ Rs be a cone and assume that either there
exists some u such that Au ∈ ri convC or C is polyhedral, i.e. C is the union of finitely many
convex polyhedral cones C1, . . . , Cp. Then

{u |Au ∈ convC}◦ = ATC◦ (9)

Proof. In case when there exists some u with Au ∈ ri convC, the statement follows from [26,
Corollary 16.3.2]. Now consider the case when C is polyhedral. Then convC =

∑p
i=1Ci is a

convex polyhedral set by [26, Corollary 19.3.2] and so is its polar (convC)◦ = C◦ =
⋂p
i=1C

◦
i

by [26, Corollary 19.2.2]. By virtue of [26, Theorem 19.3] the set ATC◦ is again convex and
polyhedral and now the statement follows from [26, Corollary 16.3.2] by taking into account
that convex polyhedral sets are always closed.

Lemma 1. Let A be an s× d matrix and let S1, S2 ⊂ Rd be two sets. Then

(AS1) ∩ (AS2) = A(S1 ∩ (kerA+ S2)).

Proof. If z ∈ (AS1)∩ (AS2), then there are s1 ∈ S1, s2 ∈ S2 with z = As1 = As2. Since s1 =
s2+(s1−s2) andA(s1−s2) = 0, the properties s1 ∈ S1∩(kerA+S2) and z ∈ A(S1∩(kerA+S2))
follow. Conversely, if z ∈ A(S1 ∩ (kerA+ S2)), then there are s1 ∈ S1, s2 ∈ S2 and r ∈ kerA
such that s1 = r + s2 and z = As1 ∈ AS1. It follows that z = A(r + s2) = As2 ∈ AS2 and
thus z ∈ (AS1) ∩ (AS2).

We now introduce generalizations of the Abadie constraint qualification condition and the
Guignard constraint qualification condition, respectively, as known from nonlinear program-
ming.

Definition 1. Let Ω be given by (1) and let x̄ ∈ Ω.

1. We say that the generalized Abadie constraint qualification (GACQ) holds at x̄ if

TΩ(x̄) = T lin
Ω (x̄), (10)

where T lin
Ω (x̄) := {u ∈ Rn | ∇F (x̄)u ∈ TD(F (x̄))} denotes the linearized cone.

2. We say that the generalized Guignard constraint qualification (GGCQ) holds at x̄ if

(TΩ(x̄))◦ = (T lin
Ω (x̄))◦. (11)

Obviously GGCQ is weaker than GACQ, but GACQ is easier to verify because several
advanced methods from variational analysis are available. To this end we need the concepts
of metric regularity and metric subregularity of multifunctions.

Definition 2. Let Ψ : Rd ⇒ Rs be a multifunction, (ū, v̄) ∈ gph Ψ and κ > 0. Then

1. Ψ is called metrically regular with modulus κ near (ū, v̄) if there are neighborhoods U
of ū and V of v̄ such that

d(u,Ψ−1(v)) ≤ κd(v,Ψ(u)) ∀(u, v) ∈ U × V. (12)

4



2. Ψ is called metrically subregular with modulus κ at (ū, v̄) if there is a neighborhood U
of ū such that

d(u,Ψ−1(v̄)) ≤ κd(v̄,Ψ(u)) ∀u ∈ U. (13)

It is well known that metric regularity of the multifunction Ψ near (ū, v̄) is equivalent to
the Aubin property (also called Lipschitz-like or pseudo-Lipschitz) of the inverse multifunction
Ψ−1 and metric subregularity of Ψ at (ū, v̄) is equivalent with the property of calmness of its
inverse.

Obviously, metric regularity of Ψ near (ū, v̄) implies metric subregularity of Ψ at (ū, v̄).

Proposition 2 (cf.[14, Proposition 1]). Let x̄ belong to the set Ω given by (1). If the pertur-
bation mapping

M(x) := F (x)−D (14)

associated with the constraint system (1) is metrically subregular at (x̄, 0), then GACQ holds
at x̄.

Metric regularity of the mapping (14) can be verified by the so-called Mordukhovich cri-
terion, see, e.g., [27, Example 9.44]. Tools for verifying metric subregularity of constraint
systems can be found e.g. in [9].

The following theorem states some fundamental relations between the regular and the
limiting normal cone.

Theorem 1. Let Ω be given by (1) and let x̄ ∈ Ω. Then

∇F (x̄)T N̂D(F (x̄)) ⊂ N̂Ω(x̄). (15)

On the other hand, if the multifunction (14) is metrically subregular at (x̄, 0) then

NΩ(x̄) ⊂ ∇F (x̄)TND(F (x̄)). (16)

If ∇F (x̄) has full rank, then both inclusions (15) and (16) hold with equality.

Proof. The inclusion (15) can be found in [27, Theorem 6.14], whereas (16) follows from
[15, Theorem 4.1]. For the statement on equality in the inclusions we refer to [27, Exercise
6.7].

At the end of this section we consider different stationarity concepts.

Definition 3. Let x̄ be feasible for the program (2), where Ω is given by (1) and f is assumed
to be smooth.

1. We say that x̄ is B-stationary (Bouligand stationary) if

0 ∈ ∇f(x̄) + N̂Ω(x̄).

2. We say that x̄ is S-stationary (strongly stationary) if

0 ∈ ∇f(x̄) +∇F (x̄)T N̂D(F (x̄)).

3. We say that x̄ is M-stationary (Mordukhovich stationary) if

0 ∈ ∇f(x̄) +∇F (x̄)TND(F (x̄)).
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By the definition of the regular normal cone we have

〈∇f(x̄), u〉 ≥ 0 ∀u ∈ TΩ(x̄)

at a B-Stationary point, which expresses that no feasible descent direction exists. Every local
minimizer is known to be B-stationary. Conversely, if x̄ is B-stationary then there exists some
smooth mapping f̂ : Rn → R with ∇f̂(x̄) = ∇f(x̄) such that x̄ is a global minimizer of the
problem minx∈Ω f̂(x), cf. [27, Theorem 6.11].

From (15) it is easy to see that every S-stationary point is also B-stationary, but the
reverse statement is not true in general, unless we have equality in (15).

On the other hand, a B-stationary point x̄ is also M-stationary provided that the per-
turbation mapping M is metrically subregular at (x̄, 0). However, M-stationarity does not
preclude the existence of feasible descent directions, unless we have N̂Ω(x̄) = NΩ(x̄) =
∇F (x̄)TND(F (x̄)).

Since we have N̂Ω(x̄) ⊂ NΩ(x̄) by the definition, we derive from Theorem 1 the inclusion

N̂Ω(x̄) ⊂ ∇F (x̄)TND(F (x̄)).

under the assumption of metric subregularity of (14) at (x̄, 0). This relation can be strength-
ened by the following proposition.

Proposition 3. Let Ω be given by (1), let x̄ ∈ Ω and assume that GGCQ is fulfilled, while
the mapping u⇒ ∇F (x̄)u− TD(F (x̄)) is metrically subregular at (0, 0). Then

N̂Ω(x̄) ⊂ ∇F (x̄)TNTD(F (x̄))(0) ⊂ ∇F (x̄)TND(F (x̄)).

Proof. By virtue of GGCQ we have N̂Ω(x̄) = (T lin
Ω (x̄))◦ = N̂T lin

Ω (x̄)(0) and since u⇒ ∇F (x̄)u−
TD(F (x̄)) is assumed to be metrically subregular at (0, 0), we can apply Theorem 1 to ob-
tain N̂T lin

Ω (x̄)(0) ⊂ NT lin
Ω (x̄)(0) ⊂ ∇F (x̄)TNTD(F (x̄))(0). By [27, Proposition 6.27] we have

NTD(F (x̄))(0) ⊂ ND(F (x̄)) and this finishes the proof.

If TD(F (x̄)) is the union of finitely many convex polyhedral cones, then the mapping
u⇒ ∇F (x̄)u−TD(F (x̄)) is a polyhedral multifunction and consequently metrically subregular
at (0, 0) by Robinson’s result [25]. Hence we arrive at the following corollary which slightly
improves [6, Theorem 7].

Corollary 1. Let x̄ be B-stationary for the program (2), where Ω is given by (1) and f is
assumed to be smooth. If GGCQ is fulfilled at x̄ and TD(F (x̄)) is the union of finitely many
convex polyhedral cones, then x̄ is M-stationary and even the stronger condition

0 ∈ ∇f(x̄) +∇F (x̄)TNTD(F (x̄))(0)

holds.

3 Estimating the regular normal cone

Throughout this section we assume that the set Ω is given by (1), where F : Rn → Rm is
continuously differentiable at the reference point x̄ ∈ Ω and D ⊂ Rm is closed. Further we
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assume that the objective f : Rn → R of the program (2) is continuously differentiable at x̄
and GGCQ holds.

The main goal of this section is to provide a tight estimate for the regular normal cone
N̂Ω(x̄), which, thanks to GGCQ, amounts to (T lin

Ω (x̄))◦. To this end we discuss two possibil-
ities, the first one being motivated by the paper of Pang and Fukushima [24] is based on the
following observation.

Theorem 2. Let Q1 and Q2 denote two closed convex cones contained in TD(F (x̄)). If

(∇F (x̄)−1Qi)
◦ = ∇F (x̄)TQ◦i , i = 1, 2 (17)

then

N̂Ω(x̄) ⊂ ∇F (x̄)T
(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2)

)
= (∇F (x̄)TQ◦1) ∩ (∇F (x̄)TQ◦2). (18)

Further, if
∇F (x̄)T

(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2)

)
⊂ ∇F (x̄)T N̂D(F (x̄)), (19)

then equality holds in (18).

Proof. Since ∇F (x̄)−1Qi ⊂ ∇F (x̄)−1TD(F (x̄)) = T lin
Ω (x̄), i = 1, 2 we have

N̂Ω(x̄) = (T lin
Ω (x̄))◦ ⊂ (F (x̄)−1Q1 ∪∇F (x̄)−1Q2)◦ = (F (x̄)−1Q1)◦ ∩ (∇F (x̄)−1Q2)◦

= ∇F (x̄)TQ◦1 ∩∇F (x̄)TQ◦2

and (18) follows from Lemma 1. To show the sufficiency of condition (19) for equality in
(18), note that condition (19) together with (18) implies N̂Ω(x̄) ⊂ ∇F (x̄)T N̂D(F (x̄)). Now,
equality in (18) follows from (15).

The proper choice of Q1 and Q2 is crucial in order that (18) provides a good estimate
for the regular normal cone. It is obvious that we want to choose the cones Qi, i = 1, 2 as
large as possible in order that the inclusion (18) is tight. Further it is reasonable that a good
choice of Q1, Q2 fulfills

Q◦1 ∩Q◦2 = N̂D(F (x̄)) (20)

because then condition (19) holds whenever ∇F (x̄) has full rank.
Since Qi ⊂ TD(F (x̄)), we have Q◦i ⊃ (TD(F (x̄)))◦ = N̂D(F (x̄)), i = 1, 2 and consequently,

Q◦1∩ (ker∇F (x̄)T +Q◦2) ⊃ Q◦1∩Q◦2 ⊃ N̂D(F (x̄)). Hence the inclusion (19) can never be strict.
The following definition is motivated by Theorem 2.

Definition 4. Let Q denote some collection of pairs (Q1, Q2) of closed convex cones fulfilling

Qi ⊂ TD(F (x̄)), (∇F (x̄)−1Qi)
◦ = ∇F (x̄)TQ◦i , i = 1, 2. (21)

(i) Given (Q1, Q2) ∈ Q we say that x̄ is Q-stationary with respect to (Q1, Q2) for the
program (2), if

0 ∈ ∇f(x̄) +∇F (x̄)T
(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2)

)
.

(ii) We say that x̄ is Q-stationary for the program (2), if x̄ is Q-stationary with respect
to some pair (Q1, Q2) ∈ Q.

(iii) We say that x̄ is QM -stationary, if there exists a pair (Q1, Q2) ∈ Q such that

0 ∈ ∇f(x̄) +∇F (x̄)T
(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2) ∩ND(F (x̄))

)
.
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The following corollary follows immediately from the definitions and Theorem 2.

Corollary 2. Assume that x̄ is B-stationary for the program (2). Then x̄ is Q-stationary
with respect to every pair (Q1, Q2) ∈ Q. Conversely, if x̄ is Q-stationary with respect to
some pair (Q1, Q2) ∈ Q fulfilling condition (19), then x̄ is S-stationary and consequently,
also B-stationary.

The following lemma follows immediately from (18) and the definition of Q-stationarity.

Lemma 2. Let (Q1, Q2) ∈ Q. Then x̄ is Q-stationary with respect to (Q1, Q2) for the program
(2) if and only if −∇f(x̄) ∈ ∇F (x̄)TQ◦i , i = 1, 2.

Corollary 3. Let x̄ be S-stationary for the program (2). Then x̄ is Q-stationary with respect
to every (Q1, Q2) ∈ Q.

Proof. Since Qi ⊂ TD(F (x̄)), we have N̂D(F (x̄)) ⊂ Q◦i , i = 1, 2. Hence S-stationarity of x̄
implies

−∇f(x̄) ∈ ∇F (x̄)T N̂D(F (x̄)) ⊂ ∇F (x̄)TQ◦i

and the assertion follows from Lemma 2.

Remark 1. Note that for i = 1, 2 the program

(Pi) min
u∈Rn

∇f(x̄)u subject to ∇F (x̄)u ∈ Qi

is a convex program and therefore the first-order optimality condition

−∇f(x̄) ∈ N∇F (x̄)−1Qi
(0) = (∇F (x̄)−1Qi)

◦ = ∇F (x̄)TQi

is both necessary and sufficient in order that u = 0 is a solution of (Pi). Hence x̄ is Q-
stationary with respect to (Q1, Q2) if and only if 0 is a solution for the programs (P1) and
(P2), respectively.

By the definition, a QM -stationary point is both M-stationary and Q-stationary. However,
a B-stationary point is QM -stationary only under some additional condition. This is due to
the fact that under the assumptions of Theorem 1 we have

N̂Ω(x̄) ⊂ ∇F (x̄)T
(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2)

)
∩∇F (x̄)TND(F (x̄)) ∀(Q1, Q2) ∈ Q,

but in general

∇F (x̄)T
(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2)

)
∩∇F (x̄)TND(F (x̄))

6= ∇F (x̄)T
(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2) ∩ND(F (x̄))

)
.

Clearly, equality holds when ∇F (x̄) possesses full row rank, but in this case a B-stationary
point is already S-stationary. In the following theorem we state three more sufficient condi-
tions ensuring QM stationarity of a B-stationary point.

Theorem 3. Assume that x̄ is B-stationary for the program (2). Then x̄ is QM -stationary
if any of the following three conditions holds:
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1. There exists a pair (Q1, Q2) ∈ Q such that

Q◦1 ∩ (ker∇F (x̄)T +Q◦2) ⊂ ND(F (x̄)). (22)

2. x̄ is M-stationary and for every λ ∈ ND(F (x̄)) there is some pair (Q1, Q2) ∈ Q with
λ ∈ Q◦1.

3. TD(F (x̄)) is the union of finitely many convex polyhedral sets and for every t ∈ TD(F (x̄))
there is some pair (Q1, Q2) ∈ Q satisfying t ∈ Q1.

Proof. Under the condition (22), QM -stationarity of x̄ follows immediately from the definition
and Corollary 2. Let us prove the second case. Since x̄ is M-stationary, there exists some λ ∈
ND(F (x̄)) verifying −∇f(x̄) = ∇F (x̄)Tλ and by the assumption there is some (Q1, Q2) ∈ Q
with λ ∈ Q◦1 implying −∇f(x̄) ∈ ∇F (x̄)T

(
Q◦1 ∩ND(F (x̄))

)
. By using that x̄ is B-stationary

and therefore also Q-stationary with respect to (Q1, Q2) by Corollary 2, by virtue of Lemmas
2 and 1 we obtain

−∇f(x̄) ∈ ∇F (x̄)T
(
Q◦1 ∩ND(F (x̄))

)
∩∇F (x̄)TQ◦2

= ∇F (x̄)T
(
Q◦1 ∩ND(F (x̄)) ∩ (ker∇F (x̄)T +Q◦2)

)
(23)

showing QM -stationarity of x̄. Now let us prove the sufficiency of the third condition. By
Corollary 1 there is some λ ∈ NTD(F (x̄))(0) with −∇f(x̄) = ∇F (x̄)Tλ and by using [7, Lemma

3.4], we can find some t ∈ TD(F (x̄)) with λ ∈ N̂TD(F (x̄))(t). Our assumption guarantees that

there is some pair (Q1, Q2) ∈ Q with t ∈ Q1 ⊂ TD(F (x̄)) and therefore λ ∈ N̂TD(F (x̄))(t) ⊂
N̂Q1(t) = Q◦1 ∩ {t}⊥ ⊂ Q◦1 by convexity of Q1. By [27, Proposition 6.27] we obtain λ ∈
NTD(F (x̄))(0) ⊂ ND(F (x̄)) and the same arguments as used just before yield (23) showing
QM -stationarity of x̄.

We summarize the relations between the various stationarity concepts in the following
picture.

S-stat. −→ B-stat.
GGCQ,
Thm.3−→ QM -stat.

Q-stat. w.r.t.
every (Q1, Q2) ∈ Q

Q-stat. w.r.t.
some (Q1, Q2) ∈ Q

M-stat.

loc. minimizer

↓

↓ GGCQ

↓

J
J
J
J
J
J
JJ]

Condition (19)

HH
HHHj















�

J
J
Ĵ

Below we will work out the concepts of Q- and QM -stationarity for the special cases
of mathematical programs with complementarity constraints, vanishing constraints and con-
straints involving a generalized equation, respectively, and in the first two cases we will present
explicit expressions for the pair (Q1, Q2) establishing QM -stationarity.
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Now we consider another possibility to estimate the regular normal cone to Ω, which is
an enhancement of the approach used in the recent paper [10]. For every nonempty convex
cone Q ⊂ Rm we define

T̄ (Q) := TD(F (x̄)) ∩
((

Range∇F (x̄) ∩ TD(F (x̄))
)

+Q
)
,

i.e. T̄ (Q) is the collection of all t ∈ TD(F (x̄)) such that there are u ∈ Rn and q ∈ Q with

∇F (x̄)u = t− q ∈ TD(F (x̄)).

Further we define
C̄(Q) := {u | ∇F (x̄)u ∈ conv T̄ (Q)}.

It is easy to see that both T̄ (Q) and C̄(Q) are cones, that C̄(Q) is convex and that TD(F (x̄))∩
Q ⊂ T̄ (Q).

Theorem 4. For every nonempty convex cone Q ⊂ Rm satisfying

N̂Ω(x̄) ⊂ {u | ∇F (x̄)u ∈ Q}◦ (24)

there holds
N̂Ω(x̄) = (C̄(Q))◦. (25)

Proof. We first show the inclusion N̂Ω(x̄) ⊂ (C̄(Q))◦. Let x∗ ∈ N̂Ω(x̄) be arbitrarily fixed. In
order to show x∗ ∈ (C̄(Q))◦ we have to prove 〈x∗, u〉 ≤ 0 ∀u ∈ C̄(Q). Consider any u ∈ C̄(Q).
Since ∇F (x̄)u ∈ conv T̄ (Q), ∇F (x̄)u can be represented as convex combination

∑N
i=1 αiti of

elements ti ∈ T̄ (Q), i = 1, . . . , N with coefficients αi ∈ [0, 1],
∑N

i=1 αi = 1. By the definition
of the set T̄ (Q) we can find for each i = 1, . . . , N , elements ui ∈ Rn and qi ∈ Q such that

∇F (x̄)ui = ti − qi ∈ TD(F (x̄)).

By taking into account that x∗ ∈ N̂Ω(x̄) = {u | ∇F (x̄)u ∈ TD(F (x̄))}◦ by GGCQ, we obtain
〈x∗, ui〉 ≤ 0 ∀i. Further we have

∇F (x̄)u =
N∑
i=1

αiti =
N∑
i=1

αi(∇F (x̄)ui + qi)

and therefore

∇F (x̄)(u−
N∑
i=1

αiui) =

N∑
i=1

αiqi.

Since Q is assumed to be convex, we conclude ∇F (x̄)(u−
∑N

i=1 αiui) ∈ Q and hence, by using

(24), we can argue 〈x∗, u−
∑N

i=1 αiui〉 ≤ 0. This yields

〈x∗, u〉 ≤ 〈x∗,
N∑
i=1

αiui〉 =
N∑
i=1

αi〈x∗, ui〉 ≤ 0

and, since u ∈ C̄(Q) was arbitrary, we derive the claimed inclusion x∗ ∈ (C̄(Q))◦. In order
to show the reverse inclusion N̂Ω(x̄) ⊃ (C̄(Q))◦ consider x∗ ∈ (C̄(Q))◦. Then for arbitrary
u ∈ T lin

Ω (x̄) we have
t := ∇F (x̄)u = t− 0 ∈ TD(F (x̄)),

showing t ∈ T̄ (Q) and u ∈ C̄(Q). Hence, 〈x∗, u〉 ≤ 0 and, because u ∈ T lin
Ω (x̄) was chosen

arbitrarily, we conclude x∗ ∈ (T lin
Ω (x̄))◦ = N̂Ω(x̄) by GGCQ, and (C̄(Q))◦ ⊂ N̂Ω(x̄) follows.
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Remark 2. Condition (24) is in particular fulfilled, if Q ⊂ TD(F (x̄)).

Of course, in practice it is a difficult task to compute (C̄(Q))◦. In practical applications,
for given Q we try to find a cone T̃ ⊂ T̄ (Q) and then apply Proposition 1 to obtain

(C̄(Q))◦ ⊂ {u | ∇F (x̄)u ∈ conv T̃ }◦ = ∇F (x̄)T T̃ ◦, (26)

provided there exists some u with ∇F (x̄)u ∈ ri conv T̃ or T̃ is polyhedral. Using (26) we
obtain the following corollary from Theorem 4.

Corollary 4. Assume that there exists some convex cone Q ⊂ Rm fulfilling (24) and some
cone T̃ ⊂ T̄ (Q) such that N̂D(F (x̄)) = T̃ ◦ and either there is some u ∈ Rn with ∇F (x̄)u ∈
ri conv T̃ or T̃ is polyhedral. Then

N̂Ω(x̄) = ∇F (x̄)T N̂D(F (x̄)).

Proof. Using (15), Theorem 4 and (26) together with the assumptions of the corollary we
obtain

∇F (x̄)T N̂D(F (x̄)) ⊂ N̂Ω(x̄) = (C̄(Q))◦ ⊂ ∇F (x̄)T T̃ ◦ = ∇F (x̄)T N̂D(F (x̄))

and the assertion follows.

4 Application to MPCC

In this section we consider a mathematical program with complementarity constraints (MPCC)
of the form

min f(x)

subject to h(x) = 0,

g(x) ≤ 0, (27)

0 ≤ G(x) ⊥ H(x) ≥ 0,

where f : Rn → R, h : Rn → RmE , g : Rn → RmI , G : Rn → RmC and H : Rn → RmC

are assumed to be continuously differentiable. There are several possibilities to write the
constraints of (27) in the form (1), we use here the formulation with

F (x) =
(
h(x), g(x),−G1(x),−H1(x), . . . ,−GmC (x),−HmC (x)

)
, D = {0}mE ×RmI

− ×D
mC
C ,

where
DC := {(a, b) ∈ R2

− | ab = 0}.

In what follows we denote the feasible set of (27) by ΩC . Given a feasible point x̄ ∈ ΩC we
introduce the following index sets of constraints active at x̄:

Ig := {i ∈ {1, . . . ,mI} | gi(x̄) = 0},
I0+ := {i ∈ {1, . . . ,mC} |Gi(x̄) = 0 < Hi(x̄)},
I00 := {i ∈ {1, . . . ,mC} |Gi(x̄) = 0 = Hi(x̄)},
I+0 := {i ∈ {1, . . . ,mC} |Gi(x̄) > 0 = Hi(x̄)}.
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Straightforward calculations yield that

TD(F (x̄)) = {0}mE × TRmI
−

(g(x̄))×
mC∏
i=1

TDC
(−Gi(x̄),−Hi(x̄)) (28)

with TRmI
−

(g(x̄)) = {v ∈ RmI | vi ≤ 0, i ∈ Ig},

TDC
(−Gi(x̄),−Hi(x̄)) =


{0} × R if i ∈ I0+,

DC if i ∈ I00,

R× {0} if i ∈ I+0,

and consequently T lin
ΩC

(x̄) is the collection of all u ∈ Rn fulfilling the system

∇h(x̄)u = 0,

∇gi(x̄)u ≤ 0, i ∈ Ig

−∇Gi(x̄)u = 0, i ∈ I0+ (29)

−∇Hi(x̄)u = 0, i ∈ I+0,

0 ≥ −∇Gi(x̄)u ⊥ −∇Hi(x̄)u ≤ 0, i ∈ I00.

Further we have

N̂DC
(−Gi(x̄),−Hi(x̄)) =


R× {0} if i ∈ I0+,

R+ × R+ if i ∈ I00,

{0} × R if i ∈ I+0,

NDC
(−Gi(x̄),−Hi(x̄)) = N̂DC

(−Gi(x̄),−Hi(x̄)) for i ∈ I+0∪I0+ andNDC
(−Gi(x̄),−Hi(x̄)) =

(R+ × R+) ∪ ({0} × R) ∪ (R× {0}) for i ∈ I00; cf. [5, 6, 29].
Note that GACQ for MPCC is equivalent to MPEC-ACQ as introduced by Flegel and

Kanzow [4]. Similarly, GGCQ for MPCC ie equivalent to MPEC-GCQ [5].
In order to apply Theorem 2 and the concept ofQ-stationarity we define for every partition

(β1, β2) of the biactive index set I00 the convex polyhedric cone

Qβ1,β2

CC := {0}mE × TRmI
−

(g(x̄))×
mC∏
i=1

τβ1,β2
i ,

where τβ1,β2
i := TDC

(−Gi(x̄),−Hi(x̄)) if i ∈ I0+ ∪ I+0 and

τβ1,β2
i :=

{
{0} × R− if i ∈ β1,

R− × {0} if i ∈ β2.

Lemma 3. For every partition (β1, β2) ∈ P(I00) the pair (Q1, Q2) = (Qβ1,β2

CC , Qβ2,β1

CC ) consists
of two closed convex cones fulfilling (21) and (20).

Proof. It is easy to see that both conesQj , j = 1, 2 are closed convex polyhedral cones fulfilling
Qj ⊂ TD(F (x̄)) and by using Proposition 1 we conclude that

(
∇F (x̄)−1Qj

)◦
= ∇F (x̄)T (Qj)

◦.

There remains to show that (Qβ1,β2

CC )◦∩(Qβ2,β1

CC )◦ = N̂D(F (x̄)). Since for every i ∈ I00 = β1∪β2
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we have τβ1,β2
i ∪ τβ2,β1

i = ({0} × R−) ∪ (R− × {0}) = DC = TDC
(−Gi(x̄),−Hi(x̄)) and for

every i ∈ I0+ ∪ I+0 we have τβ1,β2
i ∪ τβ2,β1

i = TDC
(−Gi(x̄),−Hi(x̄)) by the definition, we

obtain from (8) that

(Qβ1,β2

CC )◦ ∩ (Qβ2,β1

CC )◦ = ({0}mE )◦ ×
(
TRmI
−

(g(x̄))
)◦
×
mC∏
i=1

(
τβ1,β2
i ∪ τβ2,β1

i

)◦
= ({0}mE )◦ ×

(
TRmI
−

(g(x̄))
)◦
×
mC∏
i=1

(TDC
(−Gi(x̄),−Hi(x̄)))◦ = N̂D(F (x̄))

and the lemma is proved.

It is easy to see that TD(F (x̄)) is the union taken over all partitions (β1, β2) ∈ P(I00)

of the cones Qβ1,β2

CC and therefore N̂D(F (x̄)) =
⋂

(β1,β2)∈P(I00)

(
Qβ1,β2

CC

)◦
. We have shown in

Lemma 3 that this intersection of 2|I
00| many polar cones can be replaced by the intersection

of two polar cones (Qβ1,β2

CC )◦ ∩ (Qβ2,β1

CC )◦. Since

T lin
Ω (x̄) =

⋃
(β1,β2)∈P(I00)

∇F (x̄)−1Qβ1,β2

CC

and under the assumption of GGCQ

N̂Ω(x̄) = (T lin
Ω (x̄))◦ =

⋂
(β1,β2)∈P(I00)

(
∇F (x̄)−1Qβ1,β2

CC

)◦
=

⋂
(β1,β2)∈P(I00)

∇F (x̄)T
(
Qβ1,β2

CC

)◦
,

we expect that the replacement of the intersection of the 2|I
00| many cones ∇F (x̄)T

(
Qβ1,β2

CC

)◦
by the intersection (Qβ1,β2

CC )◦ ∩ (Qβ2,β1

CC )◦ of two cones can result in a tight inclusion which can
be even exact under some reasonable assumptions.

Note that

∇F (x̄)−1Qβ1,β2

CC = {u ∈ Rn | ∇h(x̄)u = 0, ∇gi(x̄)u ≤ 0, i ∈ Ig,
−∇Gi(x̄)u = 0, i ∈ I0+ ∪ β1, −∇Hi(x̄)u ≤ 0, i ∈ β1,
−∇Gi(x̄)u ≤ 0, i ∈ β2, −∇Hi(x̄)u = 0, i ∈ I+0 ∪ β2}.

In the sequel we will use the sets of multipliers

RCC := {(µh, µg, µG, µH) ∈ RmE × RmI × RmC × RmC |
µgi = 0, i ∈ {1, . . . ,mI} \ Ig, µGi = 0, i ∈ I+0, µHi = 0, i ∈ I0+}

and

NCC := kerF (x̄)T ∩RCC
= {(µh, µg, µG, µH) ∈ RCC |

mE∑
i=1

µhi∇hi(x̄) +

mI∑
i=1

µgi∇gi(x̄)−
mC∑
i=1

(µGi ∇Gi(x̄) + µHi ∇Hi(x̄)) = 0}.

Note that

N̂D(F (x̄)) = {(λh, λg, λG, λH) ∈ RCC |λgi ≥ 0, i ∈ Ig, λGi ≥ 0, λHi ≥ 0, i ∈ I00} (30)

13



and

ND(F (x̄)) = {(λh, λg, λG, λH) ∈ RCC |λgi ≥ 0, i ∈ Ig, λGi > 0, λHi > 0 or λGi λ
H
i = 0, i ∈ I00}.

(31)
We now apply Theorem 2 to estimate the regular normal cone N̂ΩC

(x̄) of the MPCC (27).

Proposition 4. Let x̄ belong to the feasible region ΩC of the MPCC (27) and assume that
GGCQ is fulfilled at x̄. Then for every partition (β1, β2) of the index set I00 we have

N̂ΩC
(x̄) ⊂

{ mE∑
i=1

λhi∇hi(x̄) +

mI∑
i=1

λgi∇gi(x̄)−
mC∑
i=1

(λGi ∇Gi(x̄) + λHi ∇Hi(x̄)) |

(λh, λg, λG, λH) ∈ Ñβ1,β2

CC

}
=: Mβ1,β2

CC , (32)

where

Ñβ1,β2

CC := {(λh, λg, λG, λH) ∈ RCC | ∃(µh, µg, µG, µH) ∈ NCC : λgi ≥ max{µgi , 0}, i ∈ Ig,
λGi ≥ µGi , λHi ≥ 0, i ∈ β1,
λGi ≥ 0, λHi ≥ µHi , i ∈ β2}

= (Qβ1,β2

CC )◦ ∩ (ker∇F (x̄)T + (Qβ2,β1

CC )◦). (33)

Proof. We apply (18) with (Q1, Q2) = (Qβ1,β2

CC , Qβ2,β1

CC ). All we have to show is the equation

(33). Obviously we have (Qβ1,β2

CC )◦ = RmE×NRmI
−

(g(x̄))×
∏mC
i=1(τβ1,β2

i )◦ and the set (Qβ1,β2

CC )◦∩

(ker∇F (x̄)T + (Qβ2,β1

CC )◦) consists of all λ = (λh, λg, λG, λH) such that there exists η =

(ηh, ηg, ηG, ηH) ∈ (Qβ2,β1

CC )◦ and some µ = (µh, µg, µG, µH) ∈ ker∇F (x̄)T such that

λ = η + µ ∈ (Qβ1,β2

CC )◦.

We proceed with an analysis of the different cases:

1. Equality constraints: We obtain λh = ηh + µh ∈ RmE , µh ∈ RmE , ηh ∈ RmE , i.e.,
λh, µh ∈ RmE .

2. Inequality constraints: For i ∈ Ig we have λgi = ηgi + µgi ≥ 0, ηgi ≥ 0 or equivalently
λgi ≥ max{0, µgi }, whereas for i ∈ {1, . . . ,mI} \ Ig we obtain λgi = ηgi = 0 which yields
µgi = 0.

3. i ∈ I0+: Since (τβ1,β2
i )◦ = (τβ2,β1

i )◦ = R×{0}, we obtain λHi = ηHi = 0 and consequently
also µHi = 0.

4. i ∈ I+0: Similarly as in the previous case we obtain λGi = µGi = 0.

5. i ∈ β1: Since (τβ1,β2
i )◦ = R× R+, (τβ2,β1

i )◦ = R+ × R we have

(λGi , λ
H
i ) = (ηGi , η

H
i ) + (µGi , µ

H
i ) ∈ R× R+,

and (ηGi , η
H
i ) ∈ R+ × R. This can be written equivalently as λGi ≥ µGi , λHi ≥ 0.

6. i ∈ β2: Similarly as in the previous case we obtain λGi ≥ 0, λHi ≥ µHi .
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We see that Ñβ1,β2

CC = (Qβ1,β2

CC )◦∩(ker∇F (x̄)T +(Qβ2,β1

CC )◦) and the claimed result follows from
(18).

Theorem 5. Let x̄ belong to the feasible region ΩC of the MPCC (27) and assume that
GGCQ is fulfilled at x̄. Further assume that there is some partition (β1, β2) of the index set
I00 such that for every µ ∈ NCC we have

µGi µ
G
i′ ≥ 0, µHi µ

H
i′ ≥ 0 ∀(i, i′) ∈ β1 × β2,

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ β1 × β1,

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ β2 × β2.

Then

N̂ΩC
(x̄) = Mβ1,β2

CC = ∇F (x̄)T N̂D(F (x̄)).

Proof. Due to (33), (32) and Theorem 2 we only have to show that (19), i.e.

Mβ1,β2

CC ⊂ ∇F (x̄)T N̂D(F (x̄)),

holds. Consider x∗ ∈Mβ1,β2

CC . Then we have the representation

x∗ =

mE∑
i=1

λhi∇hi(x̄) +

mI∑
i=1

λgi∇gi(x̄)−
mC∑
i=1

(λGi ∇Gi(x̄) + λHi ∇Hi(x̄))

with (λh, λg, λG, λH) ∈ Ñβ1,β2

CC . If λGi ≥ 0 for every i ∈ β1 and λHi ≥ 0 for every i ∈ β2, then

the claimed inclusion x∗ ∈ ∇F (x̄)T N̂D(F (x̄)) follows from (30). Otherwise, either there is
some j ∈ β1 such that λGj < 0 or some j ∈ β2 such that λHj < 0. We consider first the case

when λGj < 0 for some j ∈ β1. Take the element (µh, µg, µG, µH) ∈ NCC associated with

(λh, λg, λG, λH) according to (33) and set (λ̃h, λ̃g, λ̃G, λ̃H) := (λh−µh, λg−µg, λG−µG, λH −
µH). Then

x∗ =

mE∑
i=1

λ̃hi∇hi(x̄) +

mI∑
i=1

λ̃gi∇gi(x̄)−
mC∑
i=1

(λ̃Gi ∇Gi(x̄) + λ̃Hi ∇Hi(x̄))

and

λ̃gi ≥ 0, i ∈ Ig, λ̃Gi ≥ 0, i ∈ β1, λ̃Hi ≥ 0, i ∈ β2

by virtue of (33). Further, since 0 > λGj ≥ µGj we deduce by the assumptions of the theorem

that µGi ≤ 0 ∀i ∈ β2, µHi ≤ 0 ∀i ∈ β1 and consequently λ̃Gi = λGi − µGi ≥ λGi ≥ 0 ∀i ∈ β2,
λ̃Hi = λHi − µHi ≥ λHi ≥ 0 ∀i ∈ β1. Therefore λ̃Gi ≥ 0 and λ̃Hi ≥ 0 holds for every i ∈ β1 ∪ β2

and x∗ = ∇F (x̄)T N̂D(F (x̄)) follows. Similar arguments can be applied in the alternative
situation when there exists some j ∈ β2 with λHj < 0.

Let us compare our approach with the results of Pang and Fukushima [24]. In [24] the
authors try to detect certain redundancies in the description of the linearized tangent cone
and then analyze an equivalent representation of the linearized cone. In this paper we treat
only so-called (non)singular inequalities, a more general approach goes beyond the scope of
this work.
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Given a linear system
Ax ≤ b, Cx = d

an inequality aix ≤ bi is said to be nonsingular if there exists a feasible solution of this
system which satisfies this inequality strictly. Here ai denotes the i-th row of the matrix A.
An inequality is called singular if it is not nonsingular.

Let us denote by T lin
ΩC ,R

(x̄) the set of all u fulfilling the linear system

∇h(x̄)u = 0,

∇gi(x̄)u ≤ 0, i ∈ Ig

−∇Gi(x̄)u = 0, i ∈ I0+ (34)

−∇Hi(x̄)u = 0, i ∈ I+0,

0 ≥ −∇Gi(x̄)u, −∇Hi(x̄)u ≤ 0, i ∈ I00.

which is obtained from (29) by relaxing the complementarity condition. Obviously we have
T lin

ΩC
(x̄) ⊂ T lin

ΩC ,R
(x̄).

Now let βG denote the set consisting of all indices i ∈ I00 such that the inequality
−∇Gi(x̄)u ≤ 0 is nonsingular in the system (34). Similarly, we denote by βH the non-
singular set pertaining to the inequalities −∇Hi(x̄)u ≤ 0. For notational convenience we
introduce also the set βGH := βG ∩ βH .

Using the set βGH we arrive at the following description of the linearized cone:

T lin
ΩC

(x̄) = {u ∈ Rn | ∇h(x̄)u = 0,
∇gi(x̄)u ≤ 0, i ∈ Ig,
−∇Gi(x̄)u = 0, i ∈ I0+,
−∇Hi(x̄)u = 0, i ∈ I+0,
0 ≥ −∇Gi(x̄)u, −∇Hi(x̄)u ≤ 0, i ∈ I00 \ βGH ,
0 ≥ −∇Gi(x̄)u ⊥ −∇Hi(x̄)u ≤ 0, i ∈ βGH}.

(35)

This can be seen from the fact that every u belonging to the set on the right hand side of (35)
also belongs to T lin

ΩC ,R
(x̄) and therefore for every i ∈ I00 \βGH = (I00 \βG)∪ (I00 \βH) either

the inequality −∇Gi(x̄)u ≤ 0 or the inequality −∇Hi(x̄)u ≤ 0 is singular and consequently
fulfilled with equality, implying that complementarity holds. Now the representation (35)
of the linearized cone has the same structure as the original representation (29) and we can
apply Theorem 5 to (35) in order to obtain the following corollary.

Corollary 5. Let x̄ belong to the feasible region ΩC of the MPCC (27) and assume that
GGCQ is fulfilled at x̄. Further assume that there is some partition (βGH1 , βGH2 ) of the index
set βGH such that for every µ ∈ NCC there holds

µGi µ
G
i′ ≥ 0, µHi µ

H
i′ ≥ 0 ∀(i, i′) ∈ βGH1 × βGH2 ,

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ βGH1 × βGH1 , (36)

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ βGH2 × βGH2 .

Then

N̂ΩC
(x̄) = ∇F (x̄)T N̂D(F (x̄)).
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Proof. The representation (35) has the form T lin
ΩC

(x̄) = {u ∈ Rn | ∇F (x̄)u ∈ TGH} with

TGH = {0}mE×TRmI
−

(g(x̄))×
mC∏
i=1

T̃GHi , T̃GHi =

{
R2
− if i ∈ I00 \ βGH ,

TDC
(−Gi(x̄),−Hi(x̄)) if i ∈ I0+ ∪ I+0 ∪ βGH

and from Theorem 5 we obtain N̂ΩC
(x̄) = ∇F (x̄)T (TGH)◦. It is easy to see that (TGH)◦ =

(TD(F (x̄)))◦ = N̂D(F (x̄)) and thus the assertion follows.

The statement of Corollary 5 was shown in [24, Theorem 2] under the assumption (A3),
which reads in our notation that there exists a partition (βGH1 , βGH2 ) of the index set βGH

such that for every µ ∈ NCC one has

µGi µ
G
i′ ≥ 0 ∀(i, i′) ∈ βGH1 × (βG \ βGH1 ),

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ βGH1 × (βH \ βGH2 ), (37)

µHi µ
H
i′ ≥ 0 ∀(i, i′) ∈ βGH2 × (βH \ βGH2 ),

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ (βG \ βGH1 )× βGH2 .

Since βGH2 = βGH \ βGH1 ⊂ βG \ βGH1 and βGH1 ⊂ βH \ βGH2 , our assumption (36) is not
stronger than assumption (A3) used by Pang and Fukushima [24]. In case when βG 6= βGH

or βH 6= βGH our assumption (36) is actually weaker, as the following example demonstrates.

Example 1. Consider the system

g1(x) := −x3 − x4 ≤ 0,

g2(x) := x2 ≤ 0,

0 ≤ G1(x) := x1 ⊥ H1(x) := x2 ≥ 0,

0 ≤ G2(x) := x1 + x3 ⊥ H2(x) := x4 ≥ 0

at x̄ = (0, 0, 0, 0). Since all constraint functions are linear, GACQ is fulfilled, cf. also [4,
Theorem 3.2], and consequently GGCQ holds as well. It is easy to see that βG = {1, 2} and
βGH = βH = {2} and therefore condition (36) amounts to

−µG1 − µG2 = 0, µg2 − µ
H
1 = 0, −µg1 − µ

G
2 = 0, −µg1 − µ

H
2 = 0 (38)

⇒


µGi µ

G
i′ ≥ 0, µHi µ

H
i′ ≥ 0 ∀(i, i′) ∈ βGH1 × βGH2

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ βGH1 × βGH1

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ βGH2 × βGH2

(39)

Since (38) is equivalent to µH1 = µg2, µH2 = µG2 = −µG1 = −µg1, (39) holds with any of the
two partitions βGH1 = {2}, βGH2 = ∅ and βGH1 = ∅, βGH2 = {2} and therefore Corollary 5 is
applicable. On the other hand, condition (37) reads as

−µG1 − µG2 = 0, µg2 − µ
H
1 = 0, −µg1 − µ

G
2 = 0, −µg1 − µ

H
2 = 0

⇒


µGi µ

G
i′ ≥ 0 ∀(i, i′) ∈ βGH1 × ({1, 2} \ βGH1 )

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ βGH1 × ({2} \ βGH2 )

µHi µ
H
i′ ≥ 0 ∀(i, i′) ∈ βGH2 × ({2} \ βGH2 )

µGi µ
H
i′ ≥ 0 ∀(i, i′) ∈ ({1, 2} \ βGH1 )× βGH2

(40)
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Taking (µg1, µ
g
2, µ

G
1 , µ

G
2 , µ

H
1 , µ

H
2 ) = (1, 1, 1,−1, 1 − 1) we obtain that for the partition βGH1 =

∅, βGH2 = {2} the condition µG1 µ
H
2 ≥ 0 is violated, whereas in case when βGH1 = {2}, βGH2 = ∅

the inequality µG2 µ
G
1 ≥ 0 fails to hold. Thus [24, Assumption (A3)] does not hold for this

example and therefore the assumption used in our Corollary 5 is strictly weaker.

We introduce now the following stationarity concepts for MPCC which correspond to
Definition 4 with Q = QCC , where

QCC := {(Qβ1,β2

CC , Qβ2,β1

CC ) | (β1, β2) is partition of I00}.

Note that there is a one-to-one correspondence between the sets (Q1, Q2) ∈ QCC and parti-
tions (β1, β2) of the biactive index set I00

Definition 5. Let x̄ ∈ ΩC .

1. We say that x̄ is Q-stationary for the MPCC (27) with respect to the partition (β1, β2)
of the index set I00 if

0 ∈ ∇f(x̄) +Mβ1,β2

CC ,

where Mβ1,β2

CC is given by (32).

2. We say that x̄ is Q-stationary for the MPCC (27) if it is Q-stationary with respect to
some partition (β1, β2) of the index set I00.

3. We say that x̄ is QM -stationary for the MPCC (27) if there is some partition (β1, β2)
of I00 such that

0 ∈ ∇f(x̄) +∇F (x̄)T
(

(Qβ1,β2

CC )◦ ∩ (ker∇F (x̄)T + (Qβ2,β1

CC )◦) ∩ND(F (x̄))
)
.

Theorem 6. Assume that GGCQ is fulfilled at the point x̄ ∈ ΩC . If x̄ is B-stationary, then
x̄ is Q-stationary for the MPCC (27) with respect to every partition (β1, β2) of I00 and it is
also QM stationary. Conversely, if x̄ is Q-stationary with respect to a partition (β1, β2) of
I00, which fulfills also the assumptions of Theorem 5, then x̄ is S-stationary and consequently
B-stationary.

Proof. In view of the definitions of B-stationarity and S-stationarity together with Proposition
4 and Theorem 5 there is only to show the assertion aboutQM -stationarity. This follows easily
from Theorem 3(3.) because TD(F (x̄)) =

⋃
(β1,β2)∈P(I00)Q

β1,β2

CC is the union of finitely many
convex polyhedral cones generating the collection Q.

Remark 3. Given a multiplier λ ∈ ND(F (x̄)) verifying the M-stationarity condition 0 ∈
∇f(x̄) +∇F (x̄)Tλ we can use the partition (β1, β2) ∈ P(I00) defined by

β1 = {i ∈ I00 |λHi ≥ 0}, β2 = {i ∈ I00 |λHi < 0}

for testing x̄ on QM -stationarity, because this choice ensures λ ∈
(
Qβ1,β2

CC

)◦
. The computation

of such a multiplier λ can be done by means of the algorithm presented in the proof of [8,
Theorem 4.3].
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We see thatQ-stationarity is a first order necessary condition for x̄ being a local minimizer,
provided GGCQ is fullfilled, which is to be considered as a very weak constraint qualification.
In order to verify Q-stationarity, only a system of linear equalities and linear inequalities has
to be solved, but the main difference to the usual first-order optimality conditions is, that a
second multiplier µ is involved.

Note that postulating GGCQ in our problem setting is equivalent to MPEC-GCQ as
given in [5]. It was shown in [5] that under MPEC-GCQ any B-stationary point of MPCC is
M-stationary. Theorem 6 improves this result by stating that even QM -stationarity holds.

Let us now turn our attention to the case when the gradients of the constraints active at
the point x̄,

∇hi(x̄), i ∈ {1, . . . ,mE}, ∇gi(x̄), i ∈ Ig, ∇Gi(x̄),∈ I0+ ∪ I00, ∇Hi(x̄), i ∈ I+0 ∪ I00

are linearly independent. This constraint qualification is usually named MPEC-LICQ in the
literature. Then we obviously have NCC = {0} and therefore the assumptions of Theorem
5 hold. Hence, under MPEC-LICQ Q-stationarity automatically implies S-stationarity and
B-stationarity. This is remarkable because M-stationarity does not have this property: Under
MPEC-LICQ an M-stationary point is neither S-stationary nor B-stationary in general. How-
ever, in case when MPEC-LICQ does not hold, there also exist examples where a Q-stationary
point is not M-stationary and therefore neither M-stationarity implies Q-stationarity nor vice
versa. However, the following example shows that QM -stationarity is strictly stronger than
M-stationarity.

Example 2. (cf.[8, Example 3]) Consider the MPCC

min
x∈R3

f(x) := x1 + x2 − 2x3

subject to g1(x) := −x1 − x3 ≤ 0

g2(x) := −x2 + x3 ≤ 0

0 ≤ G1(x) := x1 ⊥ x2 =: H1(x) ≥ 0

Then x̄ = (0, 0, 0) is not a local minimizer because for every α > 0 the point xα = (0, α, α) is
feasible and f(xα) = −α < 0 = f(x̄). GACQ is fulfilled because all constraints are linear and
the linearized cone amounts to

−u1 − u3 ≤ 0, −u2 + u3 ≤ 0, 0 ≥ −u1 ⊥ −u2 ≤ 0.

Straightforward calculations yield that x̄ is M-stationary and λ = (λg1, λ
g
2, λ

G
1 , λ

H
1 ) = (1, 3, 0,−2)

is the unique multiplier fulfilling the M-stationarity conditions. However, we will now show
that x̄ is not QM -stationary. Assuming that x̄ is QM -stationary, by taking β1 = ∅, β2 = {1},
there would exist some µ = (µg1, µ

g
2, µ

G
1 , µ

H
1 ) verifying

−µg1 − µ
G
1 = 0, −µg2 − µ

H
1 = 0, −µg1 + µg2 = 0

µ1
g ≤ λ

g
1 = 1, µ2

g ≤ λ
g
2 = 3, µH1 ≤ λH1 = −2.

But a solution of this system must fulfill

µg2 = µ1
g ≤ 1, µg2 = −µH1 ≥ 2

which is obviously not possible. On the other hand, if we take β1 = {1}, β2 = ∅ then

λ 6∈ (Qβ1,β2

CC )◦. Hence x̄ is not QM -stationary and we have demonstrated that QM -stationarity
is a stronger property than M-stationarity.
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5 Application to MPVC

In this section we consider a mathematical program with vanishing constraints (MPVC) of the
form

min f(x)

subject to h(x) = 0,

g(x) ≤ 0,

Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . . ,mV , (41)

where f : Rn → R, h : Rn → RmE , g : Rn → RmI , G : Rn → RmV and H : Rn → RmV

are assumed to be at least continuously differentiable. To transform the constraints into the
format (1) we use

F (x) = (h(x), g(x),−H1(x), G1(x), . . . ,−HmV (x), GmV (x)) , D = {0}mE × RmI
− ×D

mV
V ,

where
DV := {(a, b) ∈ R− × R | ab ≥ 0}.

Now we denote the feasible region of (41) by ΩV and we introduce the following index sets
of constraints active at a feasible point x̄ ∈ ΩV :

Ig := {i ∈ {1, . . . ,mI} | gi(x̄) = 0},
I0− := {i ∈ {1, . . . ,mV } |Hi(x̄) = 0 > Gi(x̄)},
I00 := {i ∈ {1, . . . ,mV } |Hi(x̄) = 0 = Gi(x̄)},
I0+ := {i ∈ {1, . . . ,mV } |Hi(x̄) = 0 < Gi(x̄)},
I+0 := {i ∈ {1, . . . ,mV } |Hi(x̄) > 0 = Gi(x̄)},
I+− := {i ∈ {1, . . . ,mV } |Hi(x̄) > 0 > Gi(x̄)}.

Straightforward calculations yield that

TD(F (x̄)) = {0}mE × TRmI
−

(g(x̄))×
mV∏
i=1

TDV
(−Hi(x̄), Gi(x̄))

with TRmI
−

(g(x̄)) = {v ∈ RmI | vi ≤ 0, i ∈ Ig},

TDV
(−Hi(x̄), Gi(x̄)) =



R− × R if i ∈ I0−,

DV if i ∈ I00,

{0} × R if i ∈ I0+,

R× R− if i ∈ I+0,

R× R if i ∈ I+−,

N̂DV
(−Hi(x̄), Gi(x̄)) =



R+ × {0} if i ∈ I0−,

R+ × {0} if i ∈ I00,

R× {0} if i ∈ I0+,

{0} × R+ if i ∈ I+0,

{0} × {0} if i ∈ I+−
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and consequently, T lin
ΩV

(x̄) is the collection of all u ∈ Rn fulfilling the system

∇h(x̄)u = 0,

∇gi(x̄)u ≤ 0, i ∈ Ig,
−∇Hi(x̄)u = 0, i ∈ I0+, (42)

−∇Hi(x̄)u ≤ 0, i ∈ I0− ∪ I00,

(∇Gi(x̄)u)(∇Hi(x̄)u) ≥ 0, i ∈ I00,

∇Gi(x̄)u ≤ 0, i ∈ I+0.

Further note thatNDV
(−Hi(x̄), Gi(x̄)) = N̂DV

(−Hi(x̄), Gi(x̄)), i 6∈ I00 andNDV
(−Hi(x̄), Gi(x̄)) =

(R× {0}) ∪ ({0} × R+), i ∈ I00.
Similar to MPCC we define for every partition (β1, β2) of the set I00 the cone

Qβ1,β2

V C := {0}mE × TRmI
−

(g(x̄))×
mV∏
i=1

τβ1,β2
i ,

where τβ1,β2
i := TDV

(−Hi(x̄), G(x̄)) if i 6∈ I00 and

τβ1,β2
i :=

{
{0} × R if i ∈ β1,

R− × R− if i ∈ β2,

Lemma 4. For every partition (β1, β2) ∈ P(I00) the pair (Q1, Q2) = (Qβ1,β2

V C , Qβ2,β1

V C ) consists
of two closed convex cones fulfilling (21) and (20).

Proof. The proof follows the same lines as the proof of Lemma 3 and is therefore omitted.

Similar to the case of MPCC we have

TD(F (x̄)) =
⋃

(β1,β2)∈P(I00)

Qβ1,β2

V C .

Consider the following two sets of multipliers,

RV C := {(µh, µg, µH , µG) ∈ RmE × RmI × RmV × RmV |
µgi = 0, i ∈ {1, . . . ,mI} \ Ig,
µHi = 0, i ∈ {1, . . . ,mV } \ (I0− ∪ I00 ∪ I0+),

µGi = 0, i ∈ {1, . . . ,mV } \ (I+0 ∪ I00)}

and

NV C := {(µh, µg, µH , µG) ∈ RV C |
mE∑
i=1

µhi∇hi(x̄) +

mI∑
i=1

µgi∇gi(x̄) +

mV∑
i=1

(µGi ∇Gi(x̄)− µHi ∇Hi(x̄)) = 0}.

Note that

N̂D(F (x̄)) = {λ ∈ RV C | λgi ≥ 0, i ∈ Ig, λHi ≥ 0, i ∈ I0−, λGi ≥ 0, i ∈ I+0,
λHi ≥ 0, λGi = 0, i ∈ I00}

(43)
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and

ND(F (x̄)) = {λ ∈ RV C | λgi ≥ 0, i ∈ Ig, λHi ≥ 0, i ∈ I0−, λGi ≥ 0, i ∈ I+0,
λGi ≥ 0, λHi λ

G
i = 0, i ∈ I00}.

(44)

Proposition 5. Let x̄ belong to the feasible region ΩV of the MPVC (41) and assume that
GGCQ is fulfilled at x̄. Then for every partition (β1, β2) of the index set I00 we have

N̂ΩV
(x̄) ⊂ {

mE∑
i=1

λhi∇hi(x̄) +

mI∑
i=1

λgi∇gi(x̄) +

mV∑
i=1

(λGi ∇Gi(x̄)− λHi ∇Hi(x̄)) | (45)

(λh, λg, λH , λG) ∈ Ñβ1,β2

V C } =: Mβ1,β2

V C ,

where

Ñβ1,β2

V C := {(λh, λg, λH , λG) ∈ RV C | ∃(µh, µg, µH , µG) ∈ NV C :

λgi ≥ max{µgi , 0}, i ∈ I
g,

λHi ≥ max{µHi , 0}, i ∈ I0−, λGi ≥ max{µGi , 0}, i ∈ I+0,

λHi ≥ µHi , µGi ≤ λGi = 0, i ∈ β1, λHi ≥ 0, λGi = µGi ≥ 0, i ∈ β2}
= (Qβ1,β2

V C )◦ ∩ (ker∇F (x̄)T + (Qβ2,β1

V C )◦).

Proof. We can proceed similarly to the proof of Proposition 4. We have (Qβ1,β2

V C )◦ = RmE ×
NRmI
−

(g(x̄))×
∏mV
i=1(τβ1,β2

i )◦ and the set Ñβ1,β2

V C = (Qβ1,β2

CC )◦∩(ker∇F (x̄)T +(Qβ2,β1

CC )◦) consists

of all λ = (λh, λg, λH , λG) such that there exists η = (ηh, ηg, ηH , ηG) ∈ (Qβ2,β1

V C )◦ and some
µ = (µh, µg, µH , µG) ∈ ker∇F (x̄)T such that

λ = η + µ ∈ (Qβ1,β2

V C )◦.

Similar as in the proof of Proposition 4 this yields

λgi ≥ max{µgi , 0}, i ∈ I
g, λgi = µgi = 0, i ∈ {1, . . . ,mI} \ Ig,

λHi ≥ max{µHi , 0}, λGi = µGi = 0, i ∈ I0−, λGi = µGi = 0, i ∈ I0+,

λHi = µHi = 0, λGi ≥ max{µGi , 0}, i ∈ I+0, λHi = λGi = µHi = µGi = 0, i ∈ I+−.

Now consider i ∈ β1. Then (τβ1,β2
i )◦ = R× {0} and (τβ2,β1

i )◦ = R+ × R+. Hence

(λHi , λ
G
i ) = (ηHi , η

G
i ) + (µHi , µ

G
i ) ∈ R× {0}

and (ηHi , η
G
i ) ∈ R+ × R+, or equivalently

λHi ≥ µHi , µGi ≤ λGi = 0, i ∈ β1.

In case that i ∈ β2 we have (τβ1,β2
i )◦ = R+ × R+ and (τβ2,β1

i )◦ = R× {0},

(λHi , λ
G
i ) = (ηHi , η

G
i ) + (µHi , µ

G
i ) ∈ R+ × R+,

and (ηHi , η
G
i ) ∈ R× {0}, which is equivalent to

λHi ≥ 0, λGi = µGi ≥ 0, i ∈ β2.

These arguments show that Ñβ1,β2

V C has the claimed representation and the assertion follows
from (18).
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In the following theorem we give a sufficient condition for equality in (45).

Theorem 7. Let x̄ belong to the feasible region ΩV of the MPVC (41) and assume that
GGCQ is fulfilled at x̄. Further assume that there is a partition (β1, β2) of I00 such that

(µh, µg, µH , µG) ∈ NV C
µGi ≤ 0, i ∈ β1, µ

G
i ≥ 0, i ∈ β2

}
=⇒ µHi ≥ 0, i ∈ β1, µ

G
i = 0, i ∈ β2. (46)

Then

N̂ΩV
(x̄) = Mβ1,β2

V C = ∇F (x̄)T N̂D(F (x̄)).

Proof. Under the assumption of the theorem we conclude that

Ñβ1,β2

V C ⊂ {(λh, λg, λH , λG) ∈ RV C |λgi ≥ 0, i ∈ Ig,
λHi ≥ 0, i ∈ I0−, λGi ≥ 0, i ∈ I+0,

λHi ≥ 0, λGi = 0, i ∈ β1, λHi ≥ 0, λGi = 0, i ∈ β2} = N̂D(F (x̄)).

Now the claimed result follows from Theorem 2 together with Proposition 5 by taking
(Q1, Q2) = (Qβ1,β2

V C , Qβ2,β1

V C ).

Next we establish an equivalent formulation of condition (46).

Lemma 5. Let (β1, β2) be a partition of I00. Then the following statements are equivalent:

(i) Condition (46) is fulfilled.

(ii) For every j ∈ β1 there exists some zj such that

∇h(x̄)zj = 0,

∇gi(x̄)zj = 0, i ∈ Ig,
∇Gi(x̄)zj = 0, i ∈ I+0, (47)

∇Gi(x̄)zj

{
≥ 0, i ∈ β1,

≤ 0, i ∈ β2,

∇Hi(x̄)zj = 0, i ∈ I0− ∪ I00 ∪ I0+ \ {j},
∇Hj(x̄)zj = −1

and there is some z̄ such that

∇h(x̄)z̄ = 0,

∇gi(x̄)z̄ = 0, i ∈ Ig,
∇Gi(x̄)z̄ = 0, i ∈ I+0, (48)

∇Gi(x̄)z̄

{
≥ 0, i ∈ β1,

≤ −1 i ∈ β2,

∇Hi(x̄)z̄ = 0, i ∈ I0− ∪ I00 ∪ I0+.
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Proof. Condition (46) is fulfilled if and only if for every j ∈ β1 the linear program

minµHj subject to (µh, µg, µH , µG) ∈ NV C , µGi ≤ 0, i ∈ β1, µ
G
i ≥ 0, i ∈ β2 (49)

has a solution and the linear program

max
∑
i∈β2

µGi subject to (µh, µg, µH , µG) ∈ NV C , µGi ≤ 0, i ∈ β1, µ
G
i ≥ 0, i ∈ β2 (50)

has a solution. Since the feasible regions of these linear programs are not empty, by duality
theory of linear programming this is equivalent to the statement that the feasible regions
of the corresponding dual programs are not empty. Since the feasible regions of the dual
programs to (49) and (50), respectively, are given by (47) and (48), respectively, the two
statements (i) and (ii) are equivalent.

The characterization of condition (46) by Lemma 5 resembles the well-known Mangasarian-
Fromovitz constraint qualification of nonlinear programming. It appears to be not very re-
strictive, e.g. in case when β1 = ∅, β2 = I00 condition (46) is fulfilled when the system

∇h(x̄)z̄ = 0,

∇gi(x̄)z̄ = 0, i ∈ Ig,
∇Gi(x̄)z̄ = 0, i ∈ I+0,

∇Gi(x̄)z̄ < 0, i ∈ I00,

∇Hi(x̄)z̄ = 0, i ∈ I0− ∪ I00 ∪ I0+

has a solution. Hence we think that Theorem 7 is likely to be applicable in many situations.
At the end of this section we consider Q-stationarity for MPVC with respect to Q = QV C ,

where
QV C := {(Qβ1,β2

V C , Qβ2,β1

V C ) | (β1, β2) is partition of I00}.

Definition 6. Let x̄ ∈ ΩV .

1. We say that x̄ is Q-stationary for the MPVC (41) with respect to the partition (β1, β2)
of the index set I00 if

0 ∈ ∇f(x̄) +Mβ1,β2

V C ,

where Mβ1,β2

V C is given by (45).

2. We say that x̄ is Q-stationary for the MPVC (41) if it is Q-stationary with respect to
some partition (β1, β2) of the index set I00.

3. We say that x̄ is QM -stationary for the MPVC (41) if there is some partition (β1, β2)
of I00 such that

0 ∈ ∇f(x̄) +∇F (x̄)T
(

(Qβ1,β2

V C )◦ ∩ (ker∇F (x̄)T + (Qβ2,β1

V C )◦) ∩ND(F (x̄))
)
.

It follows from the definition that

Ñ I00,∅
V C ⊂ {(λh, λg, λH , λG) ∈ RV C | λgi ≥ 0, i ∈ Ig, λHi ≥ 0, i ∈ I0−,

λGi ≥ 0, i ∈ I+0, λGi = 0, i ∈ I00} ⊂ ND(F (x̄)).

Hence, if x̄ is Q-stationary with respect to (I00, ∅), it is automatically QM -stationary and the
following theorem follows from Proposition 5, Theorem 7 and Theorem 3(1.).
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Theorem 8. Assume that GGCQ is fulfilled at the point x̄ ∈ ΩV . If x̄ is B-stationary, then
x̄ is Q-stationary for the MPVC (41) with respect to every partition (β1, β2) of I00 and, in
particular, it is Q−stationary with respect to the partition (I00, ∅) implying QM−stationarity.
Conversely, if x̄ is Q-stationary with respect to a partition (β1, β2) of I00, which fulfills also
the assumptions of Theorem 7, then x̄ is S-stationary and consequently B-stationary as well.

Further we have

Ñ∅,I
00

V C ⊂ S := {(λh, λg, λH , λG) ∈ RV C | λgi ≥ 0, i ∈ Ig, λHi ≥ 0, i ∈ I0−,
λGi ≥ 0, i ∈ I+0, λGi ≥ 0, λHi ≥ 0, i ∈ I00}.

It was stated in [1, Theorem 4] that, under some weak constraint qualification, the condition
0 ∈ ∇f(x̄) + ∇F (x̄)TS is a necessary condition for a local minimizer. Hence, if x̄ is Q-
stationary with respect to (∅, I00), then it fulfills also the necessary conditions of [1, Theorem
5.3]. From Lemma 2 we obtain that x̄ is Q-stationary with respect to (β1, β2), if and only if it
Q-stationary with respect to (β2, β1). Hence we conclude, that Q-stationarity with respect to
(I00, ∅) implies both QM -stationary and the necessary optimality conditions of [1, Theorem
4].

Finally note that GGCQ for MPVC is equivalent to the condition MPVC-GCQ introduced
in [17], where it is also shown in [17, Theorem 6.1.8] that under MPVC-GCQ any B-stationary
point of MPVC is already M-stationary.

6 Application to generalized equations

Now we consider the problem

min
(x,y)∈Rn×Rm

f(x, y)

subject to 0 ∈ G(x, y) + N̂Γ(y),

x ∈ C, (51)

where the mappings f : Rn × Rm → R, G : Rn × Rm → Rm are assumed to be continuously
differentiable, C is a closed subset of Rn and the set Γ ⊂ Rm is given by C2 inequalities, i.e.
Γ := {y ∈ Rm | gi(y) ≤ 0, i = 1, . . . , l}, where g : Rm → Rl is twice continuously differentiable.
The constraints fit into our general setting (1) with

F (x, y) :=

(
x

(y,−G(x, y))

)
, D := C × gph N̂Γ. (52)

We denote the feasible region of (51) by ΩGE . We consider a point (x̄, ȳ) ∈ ΩGE , fixed
throughout this section, and we suppose the following assumptions:

Assumption 1. 1. The tangent cone TC(x̄) is convex and TD(F (x̄, ȳ)) = TC(x̄)×T
gph N̂Γ

(ȳ,−G(x̄, ȳ)).

2. GGCQ holds at (x̄, ȳ).

3. There is some v ∈ Rm such that

∇gi(ȳ)v < 0, i ∈ Ī := {i | gi(ȳ) = 0},

i.e. MFCQ holds at ȳ.
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The first assumption is e.g. fulfilled if C is given by C1-inequalities hi(x) ≤ 0 i = 1, . . . , s
and MFCQ is fulfilled at x̄. Note that the third assumption, that MFCQ holds at ȳ, is only
made in order to ease the presentation. We claim that it can be weakened to the weaker
assumption of metric regularity in the vicinity of ȳ (cf. [10]) or metric subregularity and the
bounded extreme point property as used in the recent paper [11].

In what follows we set ȳ∗ := −G(x̄, ȳ) and we define by

Λ̄ := {λ ∈ N̂Rl
−

(g(ȳ)) | ∇g(ȳ)Tλ = ȳ∗},

the set of Lagrange multipliers associated with (ȳ, ȳ∗) and by

K̄ := TΓ(y) ∩ (ȳ∗)⊥

the critical cone to Γ at ȳ with respect to ȳ∗. Thanks to the assumed MFCQ for the inequalities
describing Γ we have TΓ(ȳ) = T lin

Γ (ȳ) = {v | ∇gi(ȳ)v ≤ 0, i ∈ Ī}, N̂Γ(ȳ) = ∇g(ȳ)T N̂Rl
−

(g(ȳ))

and that Λ̄ 6= ∅ is compact. Note that we do not require that the gradients ∇gi(ȳ), i ∈ Ī are
linearly independent and hence the set Λ̄ can contain more than one element.

Given a multiplier λ ∈ N̂Rl
−

(g(ȳ)) we introduce the index sets

I+(λ) := {i ∈ {1, . . . , l} |λi > 0}, Ī0(λ) := Ī \ I+(λ).

Apart from them we will be working with

Ī+ :=
⋃
λ∈Λ̄

I+(λ), Ī0 := Ī \ Ī+.

By convexity of the set Λ̄ a multiplier λ+ ∈ Λ̄ verifying I+(λ+) = Ī+ exists. Further we have(∑
i∈Ī

∇gi(ȳ)γi = 0, γi ≥ 0, i ∈ Ī0
)
⇒ γi = 0, i ∈ Ī0. (53)

Indeed, if there would exist numbers γi, i ∈ Ī violating (53), then, by setting

λ̃i =

{
λ+
i + tγi, i ∈ Ī,

0, i 6∈ Ī

with t > 0 sufficiently small, we would obtain the contradiction that Ī+ is strictly contained
in I+(λ̃).

Note that K̄ = {v | ∇gi(ȳ)v = 0, i ∈ Ī+, ∇gi(ȳ)v ≤ 0, i ∈ Ī0}, cf. [10, Lemma 2] and
therefore K̄◦ = {

∑
i∈Ī µi∇gi(ȳ) |µi ≥ 0, i ∈ Ī0}.

For a direction v ∈ K̄ we further introduce the directional multiplier set

Λ̄(v) := arg max
λ∈Λ̄

vT∇2(λT g)(ȳ)v.

Application of [27, Exercise 13.17, Corollary 13.43(a)] (see also [10, Theorem 1]) yields
the representation

T
gph N̂Γ

(ȳ, ȳ∗) = {(v, v∗) | v ∈ K̄, ∃λ ∈ Λ̄(v) : v∗ ∈ ∇2(λT g)(ȳ)v + N̂K̄(v)}. (54)
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A description of the regular normal cone N̂
gph N̂Γ

(ȳ, ȳ∗) can be found in [10, Theorem 2].

In general the structure of the tangent cone (54) is rather complicated. E.g., it is not
known whether it always can be represented as the union of finitely many convex polyhedral
cones or whether Assumption 1 is sufficient for M-stationarity of a B-stationary point.

In the following theorem we state a sufficient condition that the formula N̂ΩGE
= ∇F (x̄, ȳ)T N̂D(F (x̄, ȳ))

is valid, i.e., that S-stationarity holds at (x̄, ȳ) provided it is B-stationary. We denote by
linTC(x̄) the lineality space of TC(x̄), i.e. the largest linear space contained in TC(x̄). Since
TC(x̄) is a closed convex cone by our assumption, we have linTC(x̄) = TC(x̄) ∩ (−TC(x̄)).

Theorem 9. Assume that Assumption 1 holds and that for every w ∈ K̄, every λw ∈ Λ̄(w)
and every z ∈ Rm verifying

∇gi(ȳ)z = 0, i ∈ Ī+

∇xG(x̄, ȳ)T z ∈ (linTC(x̄))⊥

one has
zT (∇yG(x̄, ȳ) +∇2(λTwg)(ȳ))w = 0. (55)

Further suppose that there exist some ũ ∈ riTC(x̄), w̃ ∈ K̄, λ̃ ∈ Λ̄(w̃) and some reals µ̃i, i ∈ Ī
such that

µ̃i > 0, i ∈ Ī0 and ∇xG(x̄, ȳ)ũ+∇yG(x̄, ȳ)w̃ +∇2(λ̃T g)(ȳ)w̃ +
∑
i∈Ī

∇gi(ȳ)µ̃i = 0. (56)

Then one has

N̂ΩGE
=

{(
−∇xG(x̄, ȳ)Tw + c∗

−∇yG(x̄, ȳ)Tw + w∗

)
| c∗ ∈ N̂C(x̄), (w∗, w) ∈ N̂

gph N̂Γ
(ȳ, ȳ∗)

}
. (57)

Proof. By Assumption 1 we obtain that

T lin
ΩGE

(x̄, ȳ) = {(u, v) |u ∈ TC(x̄), (v,−∇xG(x̄, ȳ)u−∇yG(x̄, ȳ)v) ∈ T
gph N̂Γ

(ȳ, ȳ∗)}

and, together with (54), that Q := TC(x̄) × {0}m × K̄◦ is a convex cone contained in
TD(x̄, ȳ, ȳ∗). We shall apply Corollary 4 with this cone Q by showing that TD(x̄, ȳ, ȳ∗) = T̄ (Q)
and that there is some (u, v) such that ∇F (x̄, ȳ)(u, v) ∈ ri conv T̄ (Q). In a first step we show
TD(x̄, ȳ, ȳ∗) = T̄ (Q), i.e. we prove that for every (t, w,w∗) ∈ TD(x̄, ȳ, ȳ∗) there is some
q := (tq, 0, k

∗) ∈ Q and some (u, v) ∈ Rn × Rm such that

∇F (x̄, ȳ)

(
u
v

)
=

(
u

(v,−∇xG(x̄, ȳ)u−∇yG(x̄, ȳ)v)

)
=

(
t− tq

(w,w∗ − k∗)

)
∈ TD(x̄, ȳ, ȳ∗).

(58)
Let (t, w,w∗) ∈ TD(x̄, ȳ, ȳ∗) be arbitrarily fixed and let w∗ = ∇2(λTwg)(ȳ)w + n∗ with λw ∈
Λ̄(w) and n∗ ∈ N̂K̄(w).

Denoting by A the |Ī+| ×m matrix, whose rows are given by ∇gi(ȳ), i ∈ Ī+, we obtain
from (55) that

(∇yG(x̄, ȳ) +∇2(λTwg)(ȳ))w ∈
(

kerA ∩ (∇xG(x̄, ȳ)−T (linTC(x̄))⊥)
)⊥

= RangeAT +∇xG(x̄, ȳ)(linTC(x̄))

= −RangeAT −∇xG(x̄, ȳ)(linTC(x̄)).
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Hence there is some k̃∗ ∈ RangeAT = span {∇gi(ȳ) | i ∈ Ī+} and some l ∈ linTC(x̄) such
that (∇yG(x̄, ȳ) + ∇2(λTwg)(ȳ))w = −k̃∗ − ∇xG(x̄, ȳ)l. Setting tq := t − l, u := l, v := w

and k∗ := n∗ − k̃∗ and taking into account that n∗ ∈ N̂K̄(w) = K̄◦ ∩ {w}⊥ ⊂ K̄◦ and that
span {∇gi(ȳ) | i ∈ Ī+} is exactly the lineality space of K̄◦, we have tq ∈ TC(x̄), k∗ ∈ K̄◦ and

−∇xG(x̄, ȳ)u−∇yG(x̄, ȳ)v = −∇xG(x̄, ȳ)l −∇yG(x̄, ȳ)w = ∇2(λTwg)(ȳ)w + k̃∗ = w∗ − k∗.

Thus (
u

(v,−∇xG(x̄, ȳ)u−∇yG(x̄, ȳ)v)

)
=

(
t− tq

(w,w∗ − k∗)

)
=

(
l

(w,∇2(λTwg)(ȳ)w + k̃∗)

)
∈ TC(x̄)× T

gph N̂Γ
(ȳ, ȳ∗)) = TD(x̄, ȳ, ȳ∗)

verifying (58), and therefore TD(x̄, ȳ, ȳ∗) = T̄ (Q) holds.
In order to show that there are (u, v) such that ∇F (x̄, ȳ)(u, v) ∈ ri conv T̄ (Q), we observe

first that
conv T̄ (Q) = conv TD(x̄, ȳ, ȳ∗) = (convS1) + S2, (59)

where S1 := {(0, w,∇2(λT g)(ȳ)w) |w ∈ K̄, λ ∈ Λ̄(w)} and S2 := TC(x̄)×{0}m× K̄◦. Indeed,
by Assumption 1 and (54) it can be easily seen that TD(x̄, ȳ, ȳ∗) ⊂ S1 + S2 and by convexity
of S2 the inclusion

conv TD(x̄, ȳ, ȳ∗) ⊂ conv (S1 + S2) = (convS1) + S2

readily follows. On the other hand we have S1,S2 ⊂ TD(x̄, ȳ, ȳ∗) implying convS1,S2 ⊂
conv TD(x̄, ȳ, ȳ∗) and, together with the fact that conv TD(x̄, ȳ, ȳ∗) is a convex cone, the
reverse inclusion

conv TD(x̄, ȳ, ȳ∗) ⊃ (convS1) + S2

follows as well and the validity of (59) is shown.
Now consider (0, w, w∗) ∈ ri convS1. Then there are nonnegative coefficients αj ≥ 0, j =

1, . . . , s,
∑s

j=1 αj = 1 and elements (0, wj , w
∗
j ) ∈ S1 such that (0, w, w∗) =

∑s
j=1 αj(0, wj , w

∗
j ).

Then, by proceeding as before, for every j = 1, . . . , s we can find k̃∗j ∈ span {∇gi(ȳ) | i ∈ Ī+}
and lj ∈ linTC(x̄) such that

−∇xG(x̄, ȳ)lj −∇yG(x̄, ȳ)wj = w∗j + k̃∗j

By setting l :=
∑s

j=1 αjlj , u := l + ũ, v := w + w̃, w̃∗ := ∇2(λ̃T g)(ȳ)w̃, k∗ :=
∑s

j=1 αj k̃
∗
j +∑

i∈Ī ∇gi(ȳ)µ̃i, we obtain

∇F (x̄, ȳ)

(
u
v

)
=

(
u

(v,−∇xG(x̄, ȳ)u−∇yG(x̄, ȳ)v)

)
=

(
0

(w + w̃, w∗ + w̃∗)

)
+

(
ũ+ l

(0, k∗)

)
.

Since
∑

i∈Ī ∇gi(ȳ)µ̃i ∈ ri K̄◦ by [26, Theorem 6.6],
∑s

j=1 αj k̃
∗
j ∈ span {∇gi(x̄) | i ∈ Ī+} ⊂

lin K̄◦, ũ ∈ riTC(x̄) and l ∈ linTC(x̄), we conclude(
ũ+ l

(0, k∗)

)
∈ riS2 + linS2 = riS2.
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Further, since (0, w, w∗) ∈ ri convS1, (0, w̃, w̃∗) ∈ S1 and S1 is a cone, we obtain (0, w +
w̃, w∗ + w̃∗) ∈ ri convS1. Thus, by taking into account [26, Corollary 6.6.2],

∇F (x̄, ȳ)

(
u
v

)
∈ ri convS1 + riS2 = ri ((convS1) + S2) = ri conv TD(x̄, ȳ, ȳ∗)

and this finishes the proof.

Remark 4. Theorem 9 improves [10, Theorem 5], where the assumption

∇xG(x̄, ȳ)(linTC(x̄)) + span {∇gi(x̄) | i ∈ Ī+} = Rm

is used. Note that this assumption is equivalent to {0}m = (span {∇gi(x̄) | i ∈ Ī+})⊥ ∩(
∇xG(x̄, ȳ)(linTC(x̄))

)⊥
and thus the only element z with ∇gi(x̄)z = 0, i ∈ Ī+ and ∇xG(x̄, ȳ)T z ∈

(linTC(x̄))⊥ is z = 0 and therefore (55) trivially holds. Further, this assumption also implies
(56), because for arbitrary u ∈ riTC(x̄) and µ̃i > 0, i ∈ Ī0, we can find l ∈ linTC(x̄) and µ̃i,
i ∈ Ī+ with ∇xG(x̄, ȳ)l +

∑
i∈Ī+ µ̃i∇gi(x̄) = −∇xG(x̄, ȳ)u −

∑
i∈Ī0 µ̃i∇gi(x̄) and now (56)

follows with ũ = u+ l ∈ riTC(x̄), w̃ = 0.

Next we consider Q-stationarity for the problem (51) under an additional assumption
which allows a simplified description of the contingent cone T

gph N̂Γ
(ȳ, ȳ∗) as stated in [10,

Theorem 3].

Theorem 10. Assume that Assumption 1(3.) holds at ȳ. Further assume that Λ̄(v1) = Λ̄(v2)
∀0 6= v1, v2 ∈ K̄ and let λ̄ be an arbitrary multiplier from Λ̄(v) for some 0 6= v ∈ K̄, if K̄ 6= {0}
and λ̄ ∈ Λ̄ otherwise. Then

T
gph N̂Γ

(ȳ, ȳ∗) = {(v, v∗) | v ∈ K̄, v∗ ∈ ∇2(λ̄T g)(ȳ)v + N̂K̄(v)} (60)

and
N̂

gph N̂Γ
(ȳ, ȳ∗) = {(w∗, w) |w ∈ K̄, w∗ ∈ −∇2(λ̄T g)(ȳ)w + K̄◦}. (61)

The assumption Λ̄(v1) = Λ̄(v2) ∀0 6= v1, v2 ∈ K̄ is for instance fulfilled, if the inequalities
gi(y) ≤ 0 fulfill the constant rank constraint qualification at ȳ, see e.g. [13, Corollary 3.2].

In what follows we will assume that the assumptions of Theorem 10 hold and that the
tangent cone TC(x̄) is a convex polyhedral cone. For every index set β ⊂ Ī0 we define the
convex polyhedral cone

QβGE := TC(x̄)× {(v, v∗) | (v, v∗ −∇2(λ̄T g)(ȳ)v) ∈ Kβ ×K∗β}, (62)

where

Kβ :=

{
v | ∇gi(ȳ)v

{
= 0, i ∈ Ī+ ∪ β,
≤ 0, i ∈ Ī0 \ β

}
, K∗β :=

 ∑
i∈Ī+∪β

µi∇gi(ȳ) |µi ≥ 0, i ∈ β

 .

Then we have

(Kβ ×K∗β)◦ =

∑
i∈Ī

µi∇gi(ȳ) |µi ≥ 0, i ∈ Ī0 \ β

×
{
z | ∇gi(ȳ)z

{
= 0, i ∈ Ī+,

≤ 0, i ∈ β

}
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and

(QβGE)◦ = N̂C(x̄)×
(
I −∇2(λ̄T g)(ȳ)
0 I

)
(Kβ ×K∗β)◦

= N̂C(x̄)× {(w∗, w) | (w∗ +∇2(λ̄T g)(ȳ)w,w) ∈ (Kβ ×K∗β)◦}.

It is easy to see that under the assumptions of Theorem 10 we have

TD(F (x̄, ȳ)) =
⋃
β⊂Ī0

QβGE (63)

and thus
N̂D(F (x̄, ȳ)) = N̂C(x̄)× N̂

gph N̂Γ
(ȳ, ȳ∗) =

⋂
β⊂Ī0

(QβGE)◦.

Note that for every pair (β1, β2) ⊂ Ī0× Ī0 the cones (Qβ1

GE , Q
β2

GE) fulfill (21) because they are
convex polyhedral cones.

Proposition 6. Let (x̄, ȳ) ∈ ΩGE and assume in addition to Assumption 1 that the contingent
cone TC(x̄) is polyhedral and Λ̄(v1) = Λ̄(v2) ∀0 6= v1, v2 ∈ K̄. Then for every pair (β1, β2) ⊂
Ī0 × Ī0 we have

N̂ΩGE
(x̄, ȳ) ⊂ ∇F (x̄, ȳ)T Ñβ1,β2

GE =

{(
ηC −∇xG(x̄, ȳ)T q
q∗ −∇yG(x̄, ȳ)T q

)
| (ηC , q∗, q) ∈ Ñβ1,β2

GE

}
=: Mβ1,β2

GE (64)

where

Ñβ1,β2

GE :=
{

(ηC , q
∗, q) ∈ N̂C(x̄)× Rm × Rm | ∃r ∈ Rm, µriµ

q
i , i ∈ Ī :

q∗ +∇2(λ̄T g)(ȳ)q =
∑
i∈Ī

µqi∇gi(ȳ), (65a)

∇gi(ȳ)q = 0, i ∈ Ī+, ∇gi(ȳ)q ≤ 0, i ∈ β1, µ
q
i ≥ 0, i ∈ Ī0 \ β1, (65b)

∇gi(ȳ)r = 0, i ∈ Ī+, ∇gi(ȳ)q ≤ ∇gi(ȳ)r, i ∈ β2, µ
q
i ≥ µ

r
i , i ∈ Ī0 \ β2, (65c)

∇yG(x̄, ȳ)T r +∇2(λ̄T g)(ȳ)r =
∑
i∈Ī

µri∇gi(ȳ), (65d)

ηC ∈ ∇xG(x̄, ȳ)T r + N̂C(x̄)
}

(65e)

and λ̄ is an arbitrarily fixed multiplier from Λ̄(v) for some 0 6= v ∈ K̄, if K̄ 6= {0} and λ̄ ∈ Λ̄
otherwise.

Proof. The statement follows immediately from Theorem 2 if we can show

Ñβ1,β2

GE = (Qβ1

GE)◦ ∩ (ker∇F (x̄, ȳ)T + (Qβ2

GE)◦). (66)

Consider an element (ηC , q
∗, q) ∈ (Qβ1

GE)◦∩(ker∇F (x̄, ȳ)T +(Qβ2

GE)◦). Then there are elements

(ρC , r
∗, r) ∈ ker∇F (x̄, ȳ)T and (η̃C , q̃

∗, q̃) ∈ (Qβ2

GE)◦ such that(
ηC

(q∗, q)

)
=

(
ρC

(r∗, r)

)
+

(
η̃C

(q̃∗, q̃)

)
.
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Since

∇F (x̄, ȳ)T

 ρC
r∗

r

 =

(
ρC −∇xG(x̄, ȳ)T r
r∗ −∇yG(x̄, ȳ)T r

)
=

(
0
0

)
,

we obtain ρC = ∇xG(x̄, ȳ)T r = ηC − η̃C and thus ηC = ∇xG(x̄, ȳ)T r + η̃C ∈ ∇xG(x̄, ȳ)T r +
N̂C(x̄) verifying (65e). The relations (65a) and (65b) follow simply from the representation

of (Qβ1

GE)◦. By using the representations q̃∗ + ∇2(λ̄T g)(ȳ)q̃ =
∑

i∈Ī µ
q̃
i∇gi(ȳ) with µq̃i ≥ 0,

i ∈ Ī0 \ β2, it follows that

0 = r∗ + q̃∗ − q∗ = ∇yG(x̄, ȳ)T r +∇2(λ̄T g)(ȳ)(q − q̃)−
∑
i∈Ī

(µqi − µ
q̃
i )∇gi(ȳ).

Since r = q − q̃, ∇gi(ȳ)q̃ = ∇gi(ȳ)q = 0, i ∈ Ī+ we have

0 = ∇yG(x̄, ȳ)T r +∇2(λ̄T g)(ȳ)r −
∑

i∈Ī µ
r
i∇gi(ȳ), (67)

∇gi(ȳ)r = 0, i ∈ Ī+, (68)

where µri := µqi −µ
q̃
i , showing (65d). By taking into account ∇gi(ȳ)(q− r) = ∇gi(ȳ)q̃ ≤ 0, i ∈

β2, µqi − µri = µq̃i ≥ 0, i ∈ Ī0 \ β2 we obtain together with (68) that (65c) also holds. Hence,

(ηC , q
∗, q) belongs to the set Ñβ1,β2

GE and the inclusion (Qβ1

GE)◦ ∩ (ker∇F (x̄, ȳ)T + (Qβ2

GE)◦) ⊂
Ñβ1,β2

GE follows.

To show the reverse inclusion consider (ηC , q
∗, q) ∈ Ñβ1,β2

GE together with r ∈ Rm, µqi , µri , i ∈
Ī according to the definition. By setting ρC := ∇xG(x̄, ȳ)T r, r∗ := ∇yG(x̄, ȳ)T r, (η̃C , q̃

∗, q̃) :=
(ηC , q

∗, q) − (ρC , r
∗, r) it follows, by using the same arguments as above, that (ρC , r

∗, r) ∈
ker∇F (x̄, ȳ)T and (η̃C , q̃

∗, q̃) ∈ (Qβ2

GE)◦. Since we obviously have (ηC , q
∗, q) ∈ (Qβ1

GE)◦, we

obtain (ηC , q
∗, q) ∈ (Qβ1

GE)◦ ∩ (ker∇F (x̄, ȳ)T + (Qβ2

GE)◦) and this finishes the proof.

Theorem 11. Assume that the assumptions of Proposition 6 are fulfilled and assume that
we are given a partition (β1, β2) of Ī0 such that the following two conditions are fulfilled:

(i) For every j ∈ β2 there are lj ∈ linTC(x̄), α̃ji , i ∈ Ī+ and zj ∈ Rm with

∇gj(ȳ)−
∑
i∈Ī+

∇gi(ȳ)α̃ji −
(
∇yG(x̄, ȳ) +∇2(λ̄T g)(ȳ)

)
zj +∇xG(x̄, ȳ)lj = 0,

∇gi(ȳ)zj = 0, i ∈ Ī.

(ii) For every k ∈ β1 there are lk ∈ linTC(x̄), α̃ki , i ∈ Ī+ and zk ∈ Rm with∑
i∈Ī+

∇gi(ȳ)α̃ki +
(
∇yG(x̄, ȳ) +∇2(λ̄T g)(ȳ)

)
zk −∇xG(x̄, ȳ)lk = 0,

∇gi(ȳ)zk = 0, i ∈ Ī \ {k}, ∇gk(ȳ)zk = −1.

Then
N̂ΩGE

(x̄, ȳ) = Mβ1,β2

GE = ∇F (x̄, ȳ)T N̂D(F (x̄, ȳ)).

Proof. In view of Theorem 2 and Proposition 6 the statement follows if we can show Ñβ1,β2

GE ⊂
N̂D(F (x̄, ȳ)). This inclusion holds true if for every (ηC , q, r) ∈ Rn × Rm × Rm, µqi , µ

r
i , i ∈ Ī
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fulfilling the system

∇gi(ȳ)(q − r) = 0, ∇gi(ȳ)r = 0, i ∈ Ī+,
∇gi(ȳ)q ≤ 0, i ∈ β1, µqi − µri ≥ 0, i ∈ Ī0 \ β2 = β1,
∇gi(ȳ)(q − r) ≤ 0, i ∈ β2, µqi ≥ 0, i ∈ Ī0 \ β1 = β2,
(∇yG(x̄, ȳ)T +∇2(λ̄T g)(ȳ))r −

∑
i∈Ī µ

r
i∇gi(ȳ) = 0,

ηC ∈ N̂C(x̄), ηC −∇xG(x̄, ȳ)T r ∈ N̂C(x̄)

(69)

we have ∇gi(ȳ)r ≤ 0, i ∈ β2 and µri ≥ 0, i ∈ β1 because then we have ∇gi(ȳ)q ≤ 0,

µqi ≥ 0, i ∈ β1 ∪ β2 = Ī0 and thus the triple (ηC , q
∗, q) ∈ Ñβ1,β2

GE with q∗ = −∇2(λ̄T g)(ȳ)q +∑
i∈Ī ∇gi(ȳ)µqi = −∇2(λ̄T g)(ȳ)q +

∑
i∈Ī ∇gi(ȳ)µ̃i also belongs to N̂D(F (x̄, ȳ)).

The first condition ∇gi(ȳ)r ≤ 0, i ∈ β2 is equivalent to the requirement that for every
j ∈ β2 the optimization problem

max
ηC ,q,r,µq ,µr

∇qj(ȳ)r subject to (69) (70)

has a solution. Since the tangent cone TC(x̄) is assumed to be convex polyhedral, so also is the
regular normal cone and therefore this program can be written as a linear program for which
obviously the trivial solution is feasible. Hence, by the duality theory of linear programming
the program (70) has a solution, if and only if its dual program has a feasible solution, i.e.
there are multipliers αji , α̃

j
i , i ∈ Ī+, γji ≥ 0, γ̃ji ≥ 0, i ∈ β1, δji ≥ 0, δ̃ji ≥ 0, i ∈ β2, zj ∈ Rm

and l̃j , lj ∈ (N̂C(x̄))◦ = TC(x̄) such that

l̃j + lj = 0,∑
i∈Ī+

∇gi(ȳ)αji +
∑
i∈β1

∇gi(ȳ)γji +
∑
i∈β2

∇gi(ȳ)δji = 0,

−∇gj(ȳ)−
∑
i∈Ī+

∇gi(ȳ)(αji − α̃
j
i )−

∑
i∈β2

∇gi(ȳ)δji

+
(
∇yG(x̄, ȳ) +∇2(λ̄T g)(ȳ)

)
zj −∇xG(x̄, ȳ)lj = 0,

γ̃ji = 0, i ∈ β1, δ̃ji = 0, i ∈ β2,

−∇gi(ȳ)zj = 0, i ∈ Ī+ ∪ β2, −∇gi(ȳ)zj + γ̃ji = 0, i ∈ β1.

Hence lj = −l̃j ∈ TC(x̄) ∩ (−TC(x̄)) = linTC(x̄) and by (53) we obtain γji = 0, i ∈ β1 and

δji = 0, i ∈ β2. Now it is easy to see that the dual program to (70) is feasible if and only if
condition (i) is fulfilled.

The second requirement µri ≥ 0, i ∈ β1 is equivalent to the condition that for every k ∈ β1

the program
min

ηC ,q,r,µq ,µr
µrk subject to (69) (71)

has a solution. Using similar arguments as above we obtain that this is equivalent with the
existence of multipliers α̃ki , i ∈ Ī+, γ̃ki ≥ 0, i ∈ β1, δ̃ki ≥ 0, i ∈ β2, zk ∈ Rm and lk ∈ linTC(x̄)
verifying∑

i∈Ī+

∇gi(ȳ)α̃ki +
(
∇yG(x̄, ȳ) +∇2(λ̄T g)(ȳ)

)
zk −∇xG(x̄, ȳ)lk = 0,

−γ̃ki = 0, i ∈ β1, −δ̃ki = 0, i ∈ β2,

−∇gi(ȳ)zk = 0, i ∈ Ī+ ∪ β2, −∇gi(ȳ)zk + γ̃ki = 0, i ∈ β1 \ {k}, −1−∇gk(ȳ)zk + γ̃kk = 0
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and it is easy to see that this is equivalent to condition (ii).

In order to introduce a suitable Q-stationarity concept for generalized equations, let us
define

BGE :=

{
β ⊂ Ī0 | ∃z ∈ Rm : ∇gi(ȳ)z

{
= 0, i ∈ Ī+ ∪ β
< 0, i ∈ Ī0 \ β

}
and

QGE := {(Qβ1

GE ,Q
β2

GE) | (β1, β2) ∈ BGE × BGE , β1 ∪ β2 = Ī0}.

Note that if a subset β ⊂ Ī0 does not belong to BGE , then the set β̄ := {i ∈ Ī0 | ∇gi(ȳ)z =
0∀z ∈ Kβ} fulfills β ⊂ β̄ ∈ BGE and Kβ = Kβ̄. It follows that K∗β ⊂ K∗

β̄
and consequently

QβGE ⊂ Q
β̄
GE . Since we want to consider closed convex cones Q which are as large as possible,

we can discard QβGE from our analysis.
It follows immediately from the definition that Ī0 ∈ BGE . Further, by [10, Lemma 2] we

have ∅ ∈ BGE .
In contrast to MPCC and MPVC the condition Q◦1 ∩Q◦2 = N̂D(F (x̄, ȳ)) does not hold au-

tomatically for every pair (Q1, Q2) ∈ QGE , but it holds for instance for the pair (QĪ
0

GE , Q
∅
GE).

Definition 7. Let (x̄, ȳ) ∈ ΩGE.

1. We say that (x̄, ȳ) is Q-stationary for the program (51) with respect to the pair (β1, β2) ∈
BGE × BGE satisfying β1 ∪ β2 = Ī0 if

0 ∈ ∇f(x̄, ȳ) +Mβ1,β2

GE ,

where Mβ1,β2

GE is given by (64).

2. We say that (x̄, ȳ) is Q-stationary for the program (51) if it is Q-stationary with respect
to some pair (β1, β2) ∈ BGE × BGE with β1 ∪ β2 = Ī0.

3. We say that (x̄, ȳ) is QM -stationary for the program (51) if there is some pair (β1, β2) ∈
BGE × BGE with β1 ∪ β2 = Ī0 such that

0 ∈ ∇f(x̄, ȳ) +∇F (x̄, ȳ)T
(

(Qβ1

GE)◦ ∩
(

ker∇F (x̄, ȳ)T + (Qβ2

GE)◦
)
∩ND(F (x̄, ȳ))

)
.

By using Proposition 6, Theorem 11 and Theorem 3(3.) we obtain the following Theorem.

Theorem 12. Assume that the assumptions of Proposition 6 hold at the B-stationary point
(x̄, ȳ) ∈ ΩGE. Then (x̄, ȳ) is Q-stationary with respect to every pair (β1, β2) ∈ BGE × BGE
with β1 ∪ β2 = Ī0 and (x̄, ȳ) is also QM -stationary. Conversely, if (x̄, ȳ) is Q-stationary with
respect to some pair (β1, β2) ∈ BGE × BGE fulfilling the assumptions of Theorem 11, then
(x̄, ȳ) is S-stationary and consequently B-stationary as well.
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