JOHANNES KEPLER
UNIVERSITAT LINZ

Netzwerk fur Forschung, Lehre und Praxis

Efficient Solvers for Optimal Design Problems
with PDE Constraints

DISSERTATION

zur Erlangung des akademischen Grades

DOKTOR DER TECHNISCHEN WISSENSCHAFTEN

Angefertigt am Institut fiir Numerische Mathematik

Betreuung:

0.Univ.-Prof. Dr. Ulrich Langer
Prof. Dr. Andreas Griewank

Eingereicht von:

Dipl.-Ing. Wolfram Miihlhuber

Linz, 15. April 2002

Johannes Kepler Universitat
A-4040 Linz - AltenbergerstraBe 69 - Internet: http://www.uni-linz.ac.at - DVR 0093696

To the memory of my friend Gerald Scheinmayr

Abstract

In optimal design we try to improve an object by modifying its shape. These optimization
problems are located on the interface to partial differential equations, numerical analysis and
scientific computing. This makes the solution of optimal design problems very challenging.
During recent years, the importance of optimal design has been growing, especially in the
commercial market. But still nowadays, changes in the design are most often based on long
lasting experience, rather than optimization methods. The main specialty of optimal design
problems is that they are optimization problems governed by differential equations where we
consider only the case of partial differential equations. We present strategies for the numerical
solution of these optimization problems, and discuss the arising problems.

For optimal design problems with only a few design parameters we consider an approach
reducing the number of parameters by eliminating the state parameters. For this reduced
problem we use standard optimization methods based on sequential quadratic programming.
Here, the Hessian is usually approximated by quasi-Newton formulas, like the well-known
BFGS-formula. That is why, we need only function and gradient evaluations of the objective
and the constraints. In most cases it is very difficult to implement gradient evaluation rou-
tines for real life optimal design problems as these involve the solution of the state problem.
As an alternative to hand-coded gradient routines we consider various black-box approaches,
like finite differences or automatic differentiation, and analyze their pros and cons. Combin-
ing the strengths of different approaches we realize a flexible, but also efficient method by
combining automatic differentiation with hand-coded gradient routines. We demonstrate the
good performance using an optimal sizing problem coming from industry.

For optimal design problems with many design parameters approaches eliminating the
state equation are not suitable. We introduce an all-at-once approach considering the opti-
mal design problem in the product space of state and design parameters. This approach treats
the state equation as an equality constraint during the optimization. Besides a method based
on sequential quadratic programming we introduce methods based on sequential quadratic
programming and iterative regularization as we use an ill-posed problem as model problem.
We analyze the well-posedness of the occurring quadratic programming subproblems in a
continuous and a discrete setting. For the considered model problem, the numerical approxi-
mation of the Karush-Kuhn-Tucker systems of the quadratic subproblems leads to equation
systems with large, sparse, symmetric, but indefinite matrices. We consider the numerical
solution of these problems using Uzawa-type methods, reduced SQP methods or simultaneous
methods. A nested iteration approach additionally accelerates the proposed method. The
considered examples show the good numerical performance of the proposed method.

vi

ABSTRACT

Zusammenfassung

In vielen Bereichen des téglichen Lebens gewinnt die rationelle Nutzung von Ressourcen ei-
ne immer groflere Bedeutung. Insbesondere im industriellen Umfeld ist es heute notwendig,
Produkte moglichst kosteneflizient zu erzeugen, um konkurrenzfihig zu bleiben. Gleichzeitig
werden aber die Produktions- und Entwicklungszyklen immer kiirzer, da der Kunde nach im-
mer besseren Produkten verlangt. Um wettbewerbsfihig bleiben und seine Stellung am Markt
behaupten oder gar verbessern zu kénnen, mufy verstirkt auf rechnergestiitzte Produktopti-
mierung gesetzt werden, obwohl nachwievor viele Anderungen ausschlieflich aufgrund von
Erfahrungswerten durchgefiihrt werden.

In der vorliegenden Arbeit betrachten wir mathematische Methoden zur Produktoptimie-
rung. Diese versuchen durch Verdnderung der Form gewisser Teile eine Verbesserung des Pro-
dukts zu erreichen, wobei beispielsweise die Lebensdauer (z.B. bei tragenden Teilen) erhdht,
das Gewicht reduziert, die Produktionskosten verringert oder der Energieverbrauch reduziert
werden soll. Die Losung solch komplexer Optimierungsaufgaben erfordert das Zusammenspiel
mehrerer mathematischer Disziplinen, insbesondere der Optimierung, Analysis und Numerik
von Differentialgleichungen, sowie des Wissenschaftlichen Rechnens.

Bei der Frage, welche Form eines Teils fiir den vorgesehenen Zweck am giinstigsten ist,
handelt es sich um ein Optimierungsproblem, dessen Zulissigkeitsbereich durch Differential-
gleichungen restringiert wird, wobei es sich hierbei meist um partielle Differentialgleichungen
handelt. In dieser Arbeit sollen vor allem die numerische Losung derartiger Optimierungspro-
bleme und die dabei auftretenden Schwierigkeiten diskutiert werden.

Fiir Probleme mit nur wenigen Designparametern ist es zweckméfig, jene Variablen, die
den Zustand in der Differentialgleichung reprisentieren, aus dem Optimierungsproblem zu eli-
minieren. Das dadurch entstehende Optimierungsproblem hat bei weitem weniger Parameter,
wodurch Standardoptimierungsmethoden auf der Basis von SQP-Methoden verwendet wer-
den kénnen. Diese Verfahren approximieren die Hessematrix mittels Quasi-Newton-Formeln,
wie der bekannten BFGS-Formel, sodafl nur Routinen zur Auswertung und zur Gradienten-
berechnung von Zielfunktional und Restriktionen notwendig sind.

Fiir industriell relevante Probleme ist die Implementierung von Gradientenroutinen meist
sehr arbeitsaufwendig, da eine Funktionsauswertung auch die Losung der Zustandsgleichung,
im hier betrachteten Fall einer partiellen Differentialgleichung, inkludiert. Als Alternativen
bieten sich die Verwendung von finiten Differenzen oder auch automatisches Differenzieren an.
Nach einer Analyse der Stirken und Schwéchen dieser Verfahren wird gezeigt, wie man durch
Kombination von automatischem Differenzieren und handkodierten Gradientenroutinen auf
flexible aber auch effiziente Art und Weise Sensitivitdtsinformation berechnen kann, wobei
die Vorteile dieses Zugangs anhand einer industrierelevanten Dickenoptimierung illustriert
werden.

Fiir Probleme mit einer grofien Anzahl an Designparametern ist ein Zugang, der die Zu-

vii

viii ZUSAMMENFASSUNG

standsvariablen eliminiert, nicht geeignet. Stattdessen wird die Zustandsgleichung als Re-
striktion eines Optimierungsproblems im Produktraum von Zustands- und Designvariablen
betrachtet. Da als Modellbeispiel ein schlechtgestelltes Problem betrachtet wird, werden nicht
nur Losungsverfahren auf Basis von SQP-Methoden, sondern auch solche, die SQP-Methoden
mit Regularisierungsverfahren kombinieren, eingefithrt. Es wird sowohl die Wohldefiniertheit
der prasentierten Verfahren als auch deren numerische Approximation betrachtet. Letztere
fiihrt auf grossdimensionierte Gleichungssysteme mit symmetrischen, indefiniten Matrizen,
welche mit Uzawa-artigen Verfahren, reduzierten SQP-Verfahren, aber auch simultan gelost
werden konnen. Zusétzlich wird durch Verwendung geschachtelter Ansatzriume das vorge-
stellte Verfahren beschleunigt.

Preface

After T had finished my diploma in September 1997, T was looking for a position in Linz
because I was renovating an old house in Linz at that time. Prof. Ulrich Langer offered
me a position as research assistant at a new research programme starting in March 1998. I
joined the new Special Research Initiative — Numerical and Symbolic Scientific Computing
and started to write my PhD.

Optimal design problems were not really the topic of my choice because I had only very
little knowledge on that. Nevertheless, I have learned to appreciate the hidden beauties of this
field up to now. During that time, Ewald Lindner spent much time explaining optimization
stuff to me for which I want to thank him a lot.

In summer 1999 Prof. Andreas Griewank visited our university to give a course on Au-
tomatic Differentiation. Up to that time I mainly used finite differences to get gradient
information and had focused on accelerating the function evaluations by using fast iterative
solvers for the state equation. Using automatic differentiation I was able to solve also prob-
lems with a hundred design parameters, an amount I had not dared to dream of a few months
before. Thanks also to Olaf Vogel and Andrea Walther.

Then, the development slowed down. I realized, that the strategy used up to that time
was only able to solve optimal design problems with a few hundred design parameters. At
that time, my colleague Stefan Reitzinger helped me a lot to overcome this scientific low.

At the same time, Martin Burger explained me inverse problems from a point of view
which was very similar to what I did for optimal design problems. Getting motivated by his
explanations we developed an all-at-once strategy for inverse problems which could also be
used for optimal design problems, although this leads to additional difficulties. Thank you
for the good collaboration during that time.

During all the years both supervisors, Prof. Langer and Prof. Griewank guided my work
and I am very thankful for all the discussions which led to several improvements of my work.
I also want to thank all the other colleagues at the Special Research Initiative and at the
Department for Computational Mathematics for their interest in my work and for the good
working climate. T do not want to forget my parents, my brother and Anke, for all their
support through the years. Thanks to all of them.

Last but not least, this work would not have been possible without the financial support
of the Austrian Science Fund Fonds zur Forderung der wissenschaftlichen Forschung (FWF)
within the subproject F1309 of the Special Research Initiative (SFB) F013 — Numerical and
Symbolic Scientific Computing.

ix

PREFACE

Notations and Abbriviations

R, R?

d

u

up, 1

K

('7 >

-1z
Q,'=00
n

grad
grad/\a Va
\&¥

A

I

E

AT
dim(u)
meas I’

Set of real numbers and set of vectors x = (xi)zT:L..,dv z; € R,
i=1,..d.

Space dimension.

Scalar or vector valued function.

Finite element function and its vector representation.
System matrix K € R™*™,

Duality product or scalar product in an Hilbert space.
Norm in Z.

Bounded domain (open and connected subset of R?, d = 1,2,3)
with sufficiently smooth boundary I' = 99.

Normal unit (outward) direction with respect to the boundary
I' = 99 of some domain €.

T
Gradient, grad u(z) = (%‘if)) - for z € RY.

Gradient with respect to A.
Hessian of J.

Laplace operator, Au(z) = Zgzl Pul@) for ¢ € RY.

P
Ox;

Identity matrix.
Observation operator.

Transpose of A.

Dimension of the vector u.
Measure of the set I

x1

xii

NOTATIONS AND ABBRIVIATIONS
Kronecker’s delta, ;; = 1 for 1 = j, 6;; = 0 for 7 # j.

Space of scalar square—integrable functions on 2.

Space of vector valued square—integrable functions on 2.

LP(Q) = {f:Q — R|uis Lebesque measureable, |lul, < oo}
1

with [|ull, = ([, [uP dz)?.

H'(Q) = {v e L*(Q) | gradv € (L?(2))¢} .

Trace space of H'().

H{(Q) ={ve HY(Q) |v=0o0n 00Q}.

(Hl(ﬂ)) = {vewr@) | g e L@ vij=1,....d}.

State space.

Discretized state space.

Design space.

Discretized design space.

Space for the data z.

Image space of the state equation e.
Dual space of U.

State variable.

Design variable.

Lagrangian multiplier.

Discretized state and design variable.

Vector representation of discretized state and design variable.
Exact and noisy data.

Objective.

State equation.

Lagrangian.

Number of state parameters.
Number of design parameters.
Components of a vector.

Automatic differentiation.
Algebraic multigrid.
Computer aided design.

CG

FE

FEM

GMRES
IRSQP-method
KKT-system
LM method
LMSQP method
MINRES

MG

MMA

PDE

PSSQP method
QMR

QP

SQP

xiii

Conjugate gradient.

Finite element.

Finite element method.

Generalized minimal residual.
Iteratively regularized SQP method.
Karush-Kuhn-Tucker system.
Feasible path Levenberg-Marquardt method.
Levenberg Marquardt SQP method.
Minimal residual.

Multigrid.

Method of moving asymptotes.
Partial differential equation.
Product space SQP method.

Quasi minimal residual.

Quadratic programming.

Sequential quadratic programming.

xiv NOTATIONS AND ABBRIVIATIONS

Contents

Abstract

Zusammenfassung

Preface

Notations and Abbriviations

1 An Overview to Optimal Design Problems
1.1 Introduction. e e e e
1.2 Optimal sizing problems o o
1.3 Boundary shape optimization problems
1.4 Topology optimization problems
1.5 1Inverse problems
1.6 Abstract problemclass

2 Basic Ingredients
2.1 Introduction e
2.2 Constrained optimization L oo
2.3 The finite element method o o o oo
2.4 Tterative solvers and preconditioningo

3 Automatic Differentiation, an Introduction

3.1 Motivation
3.2 Framework and notation o o
3.3 The forward mode — Propagation of tangents
3.4 The reverse mode — Propagation of gradients
3.5 Tools e

3.5.1 The source-to-source translator TAF

3.5.2 The operator overloading package ADOL-C

4 A Black-Box Strategy Using an Elimination Approach
4.1 Introduction L
4.2 Model example: Optimal sizing of a machine frame
4.3 A black-box strategy for optimal design
4.4 Calculating gradients L L
4.4.1 Finite differenceso

XV

vii

ix

xi

O ~J Ot W = -

10

13
13
14
18
21

29
29
30
32
35
39
42
47

51
ol
52
95
56
o8

xvi CONTENTS

4.4.2 Automatic differentiationo L o000 59
4.4.3 Direct and adjoint method oo 0oL 60
444 Hybrid method 61

4.5 Numerical results L 62
5 An All-At-Once Approach for Large Design Spaces 69
5.1 Imtroduction L e e 69
5.2 Model problem: Parameter identification. 71
5.3 Optimization procedures in the product space 72
5.3.1 SQP methods in the product space 72
5.3.2 Well-posedness of the quadratic programming problems 74
5.3.3 The Karush-Kuhn-Tucker system 74
5.3.4 Comparison to the feasible path method 7

5.4 Discretization techniqueso oo 78
5.4.1 The discretized LMSQP method and its well-posedness 79
5.4.2 The discretized Karush-Kuhn-Tucker system 80

5.5 Numerical realization of the SQP-iteration 82
5.5.1 Scaling of state variable, parameter and Lagrangian multiplier 83
5.5.2 Globalization strategies 83
5.5.3 Nested multi-level optimization techniques 83

5.6 Numerical solution of the KKT-system 84
5.6.1 Thesystem matrix ML L oo 85
5.6.2 Reduced SQP approaches 86
5.6.3 Simultaneous solution of the KKT-system 87

5.7 Examples and numerical results 00 0L 89
5.7.1 The identification of a reaction coefficient 89
5.7.2 The identification of a conductivity 94

5.8 Necessary changes for optimal design 96
6 Some Remarks on the Software Design 99
6.1 Introduction. 99
6.2 The optimization modules Lo 99
6.3 The optimal design problem L o000 100
6.3.1 ParameterMap 102
6.3.2 StateConstraint e e 102
6.3.3 ProductSpaceFunction e 104

Bibliography 105

Chapter 1

An Overview to Optimal Design
Problems

1.1 Introduction

Optimization plays a role of increasing importance in today’s every day life. Its basic principle
is very simple: Usually one has a set of parameters which describe e.g. a form, a path,
quantities to buy or sell or a capacity to store certain goods. Each element of this set of
parameters is rated by a so-called cost functional or objective. The goal of an optimization is
to find a parameter vector to minimize the cost. Typical costs are as the name implies prices
or costs in the financial sense, but may also be the drag of an airplane, the loss of energy,
the time to follow a path, the length of a journey or the weight of a structure, to name only
a few, or a (non) linear combination of (some of) them. Usually, one has to fulfill additional
constraints during the optimization which restrict the choice of the parameter.

Optimal design problems are no typical optimization problems, although they fulfill the
requirements above. These problems are located on the interface of different fields, and only
one of them is optimization. The others are

e partial differential equations,

e numerical analysis,

e scientific computing, and last but not least, for the numerical realization,
¢ information technology.

This peculiarity makes the solution of optimal design problems rather complicated but on the
other hand very interesting.

In optimal design one tries to improve an object by modifying its shape. The quality
is measured by a criterion which can be interpreted as a cost-functional in the optimization
sense. During recent years, the importance of optimal design has been growing, especially
in the commercial market. But still nowadays, changes in the design are most often based
on long lasting experience, rather than optimization methods. The main specialty of optimal
design problems is that they are governed by differential equations, in many cases partial
differential equations (PDESs) or even systems of coupled PDEs.

PDEs describe many physical models, e.g.

2 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

e the Mazwell equations electromagnetic fields (see e.g. IDA AND BASTOS [91] and refer-
ences therein, or Kost [100]),

e the Cauchy-Navier equations model continuum mechanics (see e.g. CIARLET [40] or
HucHES [90]), or

e the Navier-Stokes equations describe the dynamics of fluids (see e.g. GIRAULT AND
RAVIART [64]).

Usually, analytical solutions for PDEs are not known. That is why, numerical approximation
schemes are used for the calculation of approximate solutions. Nowadays, the most popular
discretization technique is certainly the finite element method, which is based on a variational
formulation of the PDE. For linear PDEs the finite element method leads to a large, sparse
linear equation system which has to be solved. For time dependent problems appropriate
time-integration schemes have to be used, for non-linear problems Newton’s method or a
fix-point approach.

One key-task in the approximate solution of a PDE is the solution of a large sparse linear
equation system. For non-linear or time-dependent problems such a kind of system has to be
solved repeatedly, e.g. once per time step or non-linear iteration step.

As long as the number of unknowns in this linear equation system is not too large, direct
solution methods, e.g. variants of Gaussian elimination method (see e.g. GEORGE AND
L1u [57] or DUFF, ERISMAN, AND REID [47]) can be used. Software packages implementing
these techniques are e.g. SPARSEKIT [131] of SUPERLU [45]. These methods try to reduce
the costs by reordering rows and columns in such a way that the fill-in is minimized, i.e. they
try to minimize the number of nonzero elements introduced by the factorization process at
positions where the original matrix was zero. For large systems of equations, these direct
elimination methods become inefficient and iterative methods have to be used.

Iterative methods exploit sparsity to a much higher extent than direct elimination meth-
ods. They mainly need matrix-vector multiplications and other operations whose calcula-
tion time is proportional to the number of unknowns. The best-known iterative methods
are Krylov subspace correction methods (see e.g. HACKBUSCH [77], AXELSSON [3], MEU-
RANT [112] or SAAD [132]). Examples for well-known Krylov subspace correction methods
are

e the Conjugate Gradient Method by HESTENES AND STIEFEL [85],

e the Minimal Residual Method by PAIGE AND SAUNDERS [117],

e the Quasi-minimal Residual Method by FREUND AND NACHTIGAL [56], or
e the Generalized Minimal Residual Method by SAAD AND SCHULTZ [133].

Appropriate preconditioners are necessary for fast convergence of these methods. There-
with it is possible to construct solvers of optimal order, i.e. the CPU-time and the memory
requirements are proportional to the number of unknowns. Multigrid methods, respectively
multigrid preconditioners fulfill these requirements (JUNG AND LANGER [92]). They are based
on a well-balanced interplay between a smoothing operator and a coarse grid correction. One
possibility to calculate the coarse grid correction is by using nested finite element spaces.
This is called geometric multigrid method. If no nested finite element spaces are available,

1.2. OPTIMAL SIZING PROBLEMS 3

algebraic multigrid methods can be used which construct a matrix hierarchy only by using
fine-grid information.

Coming back to optimal design problems in general, we want to emphasize that these are
PDE-constrained optimization problems, although this term contains by far more. In the
following sections we want to introduce three classes of optimal design problems, namely

e optimal sizing problems,
e boundary shape optimization problems, and

e topology optimization problems.

These problems have in common, that the design parameters influence the domain in which
the PDE has to be fulfilled in some sense. Two other problems classes which are not treated
here, are of similar structure, namely

e inverse problems, and

e optimal control problems.

We will make a few general remarks on inverse problem, as one of our model examples is an
inverse problem. Optimal control problems are not treated here, for these we want to refer
to the literature. At the end of this chapter, we introduce an abstract problem class which
will be treated in the following chapters.

1.2 Optimal sizing problems

Optimal sizing problems are PDE constrained optimization problems where the design pa-
rameters influence the domain in which the PDE has to be fulfilled. This is also valid for
boundary shape optimization and topology optimization. The main specialty of optimal sizing
problems is the easy dependence of the geometry on the design parameters.

Optimal sizing is a 2%—dimensional optimization, where the design parameter is the thick-
ness over a constant cross section, i.e. the parameter dependent domain is of the form

Qq) = {(z1,22,23) € R | (21,22) € w,x3 € (—q(21,72),q(71,22)) } (1.1)

where w denotes the cross section and 0 < ¢ < ¢q(z,y) <7, ¢,q € R*. In the design domain
Q(q) the Lame-equations have to be fulfilled, i.e.

a(qu,v) = F(gv), YveU(g) (1.2)
with

a(q;u,v) = / i g Oz, B(gv) = / (f,v) do + / (g,v) ds
o) Oz Oz Q(q) T (q)
q

J
where Fjjj; denotes the elasticity tensor, f the volume force density and g the surface force
density on a part I'y of the boundary. We use Einstein’s summation convention where
necessary. U denotes the set of admissible displacements, i.e.

U(q) = {v € [H'(2(g))]* | v =0 on I'p,meas T'p > 0} (1.3)

where 0Q =T'pUl'y, I'p = fD and Tp NIy = 0.
Typical problem settings are e.g.

4 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

/ p(z)dz

q)

where p denotes the density of the material, under constraints on the displacements or
on the maximal stress, or

e minimize the mass

e minimize the variance of the stress under constraints on the maximal stress; this shall
result in an equal-distribution of the stresses.

Up to now, this is a very general optimal design problem. For optimal sizing we additionally
assume:

e We consider a plane stress problem, i.e. {2(g) is thin in z3 direction.
e () is considered as a plate that can carry only stresses parallel to the 1 — z5 plane.

e The applied surface tractions g and the body forces f are independent of 3. Addition-
ally I'y does not depend on gq.

e Last but not least, we want to assume that no displacements in z3-direction exist and
that the displacements in z; and zo-direction are both independent of x3.

Under these assumptions we can simplify the problem (1.2), which leads to

a(q; u,v) = F(q;v), Vovel,

with P P
Uj UV,
a(qv U,U) q 8:1:9 Jkl al’l z
and
U={ve[H"w)?|v=0onvyp,meas yp > 0} (1.4)

In the integral defining the bilinearform the summation runs only from one to two, as the
domain w is twodimensional. The main advantage of this formulation is that the parameter
does no more influence the computational domain, but is a scalar multiplier in the state
equation. Ejji; denotes the material elasticity tensor, whereas q - F;jx; can be interpreted as
the effective elasticity tensor. Due to the assumptions on the external forces, F (q;v) can also
be rewritten in a form that contains only integrals over constant domains, i.e.

Flav) = [at7.0) dx+/w<g,v> s

where vp and vy denote the boundary part of w corresponding to I'p and Ty, respectively.
As can be seen, the design parameter ¢ appears only as a scalar multiplier in the variational
formulation. In most cases, ¢ is discretized by a piecewise constant function when using
the finite element method. Then, the thickness plays the role of a multiplier of the element
stiffness matrix which simplifies the calculation of derivatives of the state equation a lot.

This problem class was treated by several people. The first to solve this problem numeri-
cally were ROSSOW AND TAYLOR [128] in 1973 using the finite element method.

1.3. BOUNDARY SHAPE OPTIMIZATION PROBLEMS 5

MAHMOUD [111] used this approach for minimizing the weight of a unit injector rocker
arm. For a faster evaluation of the gradients he used approximation models to approximate
the objective and the constraints in a trust region of the current iterate. For a class of
nonlinear materials STANGL [142] showed existence of a solution for such a problem using
fixed-point arguments.

In Chapter 4 we will use an optimal sizing problem as a model example for an optimal
design problem with a small number of design parameters. We will focus our interest mainly
on the numerical solution and the realization of such a method in an industrial environment.
Most attention will be paid to a fast and flexible gradient evaluation and to the possibility to
handle very complicated objectives and constraints.

This problem was also considered from a completely different point of view. By allowing
the design variable to take values close to zero, this problem changes its nature to a topol-
ogy optimization problem. Then, the maximization of the stiffness which is equivalent to
the minimization of the compliance is considered as objective. For this problem CEA AND
MALANOWSKI [35] showed existence of a solution for strictly positive lower thickness bound.
PETERSSON [118] generalized the results to a problem with zero lower thickness bound and
unilateral displacement constraints. Convergence of a finite element analysis in LP was shown
again by PETERSSON [119] under certain assumptions on the optimal stress field. For publi-
cations dealing with the problem of checkerboard patterns see Section 1.4.

1.3 Boundary shape optimization problems

Boundary shape optimization problems are in some sense a generalization of optimal sizing
problems. Optimal sizing problems are a 2 %—dimensional optimization with a very simple
parameterization of the domain. Additionally, various assumptions were made to reformulate
the state problem on a fixed domain. In many problems these assumptions can not be fulfilled.
Furthermore, the domain can not be represented in the form needed for an optimal sizing
problem.

In boundary shape optimization the design parameter is the boundary of the computa-
tional domain. In this sense it is a generalization of an optimal sizing problem. As the
dependency of the computational domain on the corresponding parameter can be very gen-
eral we can not assume to be able to transform the state problem into a state problem on a
fixed domain. On the other hand, this enables us to handle a much larger problem class.

One of the most difficult parts in the numerical treatment of boundary shape optimization
problems is the parameterization of the boundary. The main problem is that the results of
the subsequent design optimization depend on the used parameterization in a critical way, as
the parameterization determines the set of admissible designs. That is why, the choice of the
parameterization also restricts the possible gain in the objective.

For illustration, let us consider the following example: Assume you have a boundary shape
optimization in 2D. The whole boundary is kept fixed, except one part between two points.
If one uses a straight line for parameterizing this boundary, the set of admissible domains
has only one point, as the two endpoints determine all parameters of the line. When using a
circular arc, one design parameter is left (describing e.g. the radius of the circular arc). Using
a b-spline curve of a fixed order gives us more degrees of freedom, but still the admissible
set of designs is limited by the choice of the parameters of the b-spline (e.g. the number of
control nodes or the degree).

6 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

In practice, two different approaches are used:
e Either the domain is parameterized using geometric parameters, or
e for the calculation, a discretization of the boundary is used as parameterization.

The use of geometric parameters is of course coupled to using geometric primitives to describe
the boundary. Geometric primitives have a natural parameterization, e.g. a circle its center
and radius. Additionally, constraints have to ensure the consistency of the geometry, i.e. the
end of one edge is the starting point of another, that the boundary shall not self-intersect, or
that the connection of two edges should be smooth. All these constraints have to be incor-
porated into a geometry handler mapping the vector of design parameters to an admissible
geometry, which makes the implementation rather challenging. In 2D this can still be done,
as the boundary consists only of curves, but in 3D this can be very complicated. Commercial
computer aided design (CAD) tools often have the functionality to maintain a parametric
model of a geometry. But usually it is very complicated to integrate these tools into an
optimal design code, as the geometry handler has to provide derivative information, at least
if gradient based optimization routines are used. Additionally, constraints on the geometry
may exist, which can not be easily represented in the parameter domain, e.g. the minimal
distance between two opposite edges is limited from below.

Often, one tries to escape some of the problems described above by using spline-curves
and spline-surfaces to represent the design boundary. Then, some of the parameters of the
spline are the design parameters. Usually, the location of the control knots and their weight
(if rational b-splines are used) is taken as design parameter and the degree remains fixed.
For details on the representation of splines see e.g. HOSCHEK AND LASSER [89]. EGARTNER
AND SCHULZ [48] use this approach in the design of turbine blades. Also in aerodynamic
optimization, e.g. airfoil design, it is often applied (e.g. BARTELHEIMER [6]).

The main advantage of this description is that the number of design parameters is usually
rather low, especially in 2D. Nevertheless, problems with several hundred design parameters
are often found in 3D. But in most cases, it is still possible to apply optimization routines
based on dense linear algebra, like NLPQL by SCHITTKOWSKI [137] or NPSOL by GILL,
MURRAY, SAUNDERS, AND WRIGHT [62].

When using a discretization of the boundary also for parameterizing the boundary, each
boundary node of the FE mesh is one design parameter. This approach does not need a
complicated geometry handler based on a CAD system. That is why, this approach is often
named CAD-free parameterization (see e.g. MOHAMMADI AND PIRONNEAU [113]). This
approach is very flexible, but usually results in problems with very many design parameters.
Additionally, one has to restrict the set of shapes which can be described by this approach to a
set of desired shapes. This can be done e.g. by introducing bounds on the maximal curvature
of the boundary (see e.g. LUKAS [108]) or by using smoothing operators as proposed by
MOHAMMADI AND PRIONNEAU [113].

When doing boundary shape optimization it is necessary to avoid re-meshing of the com-
putational domain during one optimization step, as re-meshing usually introduces jumps in
the objective. That is why not only a parameterized geometry but also a parameterized mesh
is needed. An often used alternative are mesh-moving strategies. These try to deform the
mesh of a reference geometry to get a mesh of the current one. In order to get good results,
tests on the quality of the computational mesh which are also used in mesh generation have
to be included in these mesh-moving strategies.

1.4. TOPOLOGY OPTIMIZATION PROBLEMS 7

The use of mesh-moving algorithms has usually also implications on the optimizer. As
these algorithms are not very stable with respect to very large deformations it is better to
use trust region methods. By the trust region parameter it is rather easy to restrict the
maximal change of the design parameters and therefore of the geometry. When using line
search methods more robust mesh-moving algorithms are needed.

Most of the aspects presented above deal with the realization of a boundary shape opti-
mization by discretizing the problem and then optimizing this discretized optimization prob-
lem. Nevertheless, derivatives of the objective with respect to the boundary can also be
calculated by a completely different approach, so-called shape-derivatives. SOKOLOWSKI AND
ZOLESIO [141] and DELFOUR AND ZOLESIO [44] focus on this approach. A shape-derivative
is a derivative of the continuous objective with respect to the boundary. Usually this results
in a partial differential equation for the gradient. For numerical purposes this PDE has to be
discretized, but the solution of this discrete problem is then not a gradient of the discretized
objective any more. That is why, for numerical purposes the previously described concept is
often preferred. In contrast, shape derivatives are often used to show existence or uniqueness
of solutions (see e.g. DAMBRINE AND PIERRE [43]).

Besides these approaches, also other ones exist, e.g. using ficticious domains (KUNISCH
AND PEICHL [103]) or using level set methods (HINTERMULLER AND RING [86]). But up to
now these methods were not used for real life problems.

1.4 Topology optimization problems

As explained in Section 1.3 boundary shape optimization problems depend strongly on the
way the design boundary is parameterized. Additionally, the results depend strongly on the
topology of the design domain, as boundary shape optimization can not change the topology
e.g. by adding or removing holes.

Topology optimization problems are material distribution problems. For these problems
the density of the material is the design parameter. In each point of the computational
domain, the density should be either one or zero, indicating material or void respectively. In
some sense, the structure of these problems is quite similar to optimal sizing problems, where
the thickness played a similar role.

The best analyzed topology optimization problem is the maximum-stiffness problem, often
called also minimal-compliance problem which looks as follows: Find a density ¢ € (Q and a
state u € U, such that

F(u) - min
(u,q)EUXQ

subject to a(q;u,v) = F(v), Vovel,

/quz Vi, (1.5)

Q
0<g<q<l1
with
8’U,i ka
. — R =
g5, v) ! Pla) G B G

8 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

and

F(v)z/ﬂ(f,v) d:c—i—/wgv ds.

Vb denotes a prescribed volume, f the volume force density, g prescribed surface tractions on
I'y. For defining the bilinearform Einstein’s summation convention is used. We introduced
the parameter ¢ to be in [g, 1] with ¢ > 0. In order to prevent ¢ to attain intermediate values,
special functions p(q) are used, e.g.

p(q) =q™ (1.6)

for a given m which is known as SIMP (Solid Isotropic Material with Penalization, see e.g.

BENDSQE [12]) or
q

1+ (m-1)(1-9)
which was introduced and analyzed by STOLPE AND SVANBERG [144]. m is usually chosen
larger than 1. BORRVALL AND PETERSSON [24] presented an alternative to prevent ¢ to attain
intermediate values. They allow m to be 1 in (1.6), but introduced an additional constraint.
An overview on many aspects of topology optimization is presented by the monograph of
BENDS@E [13] and the review articles by ESCHAUER AND OLHOFF [53] or ROZVANY [129].

The main difficulty is that the problem (1.5) is ill-posed, i.e. there are generally no so-
lutions. BORRVALL AND PETERSSON [24] motivated that the set of feasible designs is not
sufficiently closed, i.e. it is not closed with respect to the relevant topology. This introduces
several effects which are quite typical for problem (1.5). On the one hand, mesh dependent
solutions can appear. These are a consequence of the fact that a solution of the continu-
ous problem need not exist. On the other hand, checkerboard patterns and other numerical
anomalies occur (see e.g. BENDSQE [13]), which are a consequence of non-convergence when
the mesh is refined. All solution methods now try to enlarge or restrict the set of admissible
designs in such a way that the new set is closed (with respect to a suitable topology) and
solutions exist.

One possibility is to restrict the gradient of the design parameter, i.e.

p(q)

| grad gl| < c (1.7)

where the norm is taken in some LP space. Depending on the choice of p, we distinguish
several problems:

For p =1, (1.7) can be interpreted as a bound on the total variation of q. This restriction
is usually called perimeter constraint and was first numerically treated by HABER, JOG, AND
BENDS@E [75]. PETERSSON [120] provides results on the existence of solutions, as well as on
convergence aspects. Unfortunately, the advantage of perimeter constraints seems mainly of
theoretical nature. From the numerical point of view, it seems that a solution algorithm is in
general unstable and sensitive to local optima (HABER, JOG, AND BENDSOE [75]).

A different approach are slope constraints which correspond to (1.7) for p = co. These were
introduced in the optimal design of elastic plates by NIORDSON [114]. In topology optimization
they were first used by PETERSSON AND SIGMUND [121] where bounds on the directional
derivatives were used. Again, existence of a solution can be shown. From the numerical point
of view, this approach results in many constraints. PETERSSON AND SIGMUND [121] reported
this as a significant drawback of the method. ZHOU, SHYY, AND THOMAS [161] presented
an algorithm which exploits the characteristics of the constraints. They reported that the
incorporation of the constraints required hardly any extra computational cost.

1.5. INVERSE PROBLEMS 9

The use of LP norms for 1 < p < 0o was never treated numerically in literature.

A completely different approach are restrictions using filters. By introducing a low-pass
filter, the unwanted high frequency components in the design variable can be reduced. Several
approaches were proposed in literature:

SIGMUND [140] used a filter for the sensitivities of the objective in order to prevent too
thin structures. Although there is no theoretical justification at the moment, this approach
proved to be quite effective. Moreover, the solutions seem to be mesh independent.

BRUNS AND TORTORELLI [32] apply a mollifier between every optimization iterate to
stabilize the numerical procedure and to filter high frequency components of g. BOURDIN [25]
showed the existence of solutions for this approach and also the influence of the filter radius
on the solution.

Usually, in (1.6) m is taken larger than 1. In BORRVALL AND PETERSSON [24] a filter
method is presented which works also for m = 1. In order to eliminate intermediate densities,
they penalize them. To get also existence of solutions, they use a mollifier to smooth the
density. In BORRVALL AND PETERSSON [23] results for large scale optimization problems in
3D are presented using this approach.

The main advantage of filter methods to methods bounding the gradient is that it is pos-
sible to prove mesh independence of the numerical solution (see BOURDIN [25] and BORRVALL
AND PETERSSON [24] for finite element convergence of the latter two methods). For a good
and detailed overview of these methods see BORRVALL [22].

For the numerical solution most papers exploit the special structure of problem (1.5)
to derive an efficient solver. SVANBERG [145] developed the Method of moving asymptotes
(MMA) which is still nowadays used by most topology optimization codes. It is based on a
convex and separable expansion of the objective, which accelerates the calculation of a search
direction in the optimization.

An exception is the paper of MAAR AND SCHULZ [110]. They use an interior point
method for optimizing the problem. Each quadratic programming problem is solved by a
multigrid method using transforming smoothers. As they used no regularization, they got
mesh-dependent results which could also be seen at the presented pictures. Nevertheless the
approach itself seems interesting, although the code is not faster than codes based on MMA
up to now.

As mentioned above, most topology optimization papers focus on a solution of (1.5).
Recently, HOPPE, PETROVA, AND SCHULZ [87, 88] presented a solution procedure for a
topology optimization in electro-magnetics. Up to now, no analysis is available, nevertheless
the numerical results look very promising.

1.5 Inverse problems

Inverse problems are concerned with determining causes for desired or observed effects. There-
fore, they appear quite frequently. A very important subclass are parameter identification
problems (see e.g. BANKS AND KUNISCH [5] or OMATU AND SEINFELD [116]). There, dis-
tributed parameters in an underlying model (usually a partial differential equation) are de-
termined from indirect measurements. We will use a member of this class as model example
in Chapter 5.

The majority of inverse problems is #ll-posed, i.e. either the solution does not exist in a
strict sense, or solutions might not be unique and / or might not depend continuously on

10 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

the data. Therefore, regularization methods have to be used in order to obtain a stable
approximation of the solution in the presence of data noise (introduced e.g. by a measuring
device). We refer to ENGL, HANKE, AND NEUBAUER [50] and to KIRSCH [99] for an overview
of regularization methods for inverse ill-posed problems.

The most well-known classical approach to regularize an inverse problem is Tikhonov reg-
ularization (see e.g. CHAVENT AND KUNISCH [37] or ENGL, KUNISCH, AND NEUBAUER [51]).
There we replace the least-squares problem by a close stable problem. Recently, also the ap-
plication of iterative regularization methods became more and more popular (see e.g. HANKE,
NEUBAUER, AND SCHERZER [80], HANKE [79], or KALTENBACHER [94, 95]). The regularizing
effect of an iterative regularization method comes form the early termination of the iteration
procedure, where the stopping index is chosen in dependence of the noise level. We refer to
the survey paper by ENGL AND SCHERZER [52] for an overview.

1.6 Abstract problem class

All previously presented problems have in common that each of these problems can be de-
scribed as a PDE constrained optimization problem. Of coarse, the objective has certain
specialties depending on the specific type of problem which can be exploited in numerical
algorithms. Additionally, due to the similar nature, ideas from one problem type can be
transferred to another.

In general, in each of these problems we try to solve an optimization problem

J(u,q) - min 1.8
(u,q) wmin (1.8)

under a constraining state equation
e(u,q) = F. (1.9)

Additionally, other constraints on the parameter ¢ € @, the state v € U or on both variables
may be present.

The objective J can be of different type: For the presented topology optimization problem
it is a linear function in » and does not depend on ¢ explicitly. For inverse problems it is
usually a function of least-squares type comparing the observation which depends on the state
solution with the given data. Additionally, it contains usually a regularization term. For sizing
and boundary shape optimization often very general objectives can be found, in many cases
depending on the state solution u alone. Then, the parameter appears only in the constraints.
Especially for these rather general functions it is often difficult and very time consuming
to calculate gradient information which is needed by the optimizer. In these situations,
automatic differentiation (AD) can help a lot. The main references of this technique are the
proceedings of the AD conferences in BRECKENRIDGE [68], SANTA FE [15] and NICE [42],
and the monograph by GRIEWANK [67]. We will show how this technique can be used to
accelerate the development of routines for the calculation of derivatives.

The state equation can also be of very different type. We will treat only problems of
elliptic type here, nevertheless optimization problems constrained by time-dependent or non-
linear state equations are of high practical importance. We want to mention also the field
of multidisciplinary design optimization which is gaining more and more attention during
the last years. Here, the state parameter consists of several state variables describing dif-
ferent physical quantities (e.g. mechanical displacements of an airfoil and the surrounding

1.6. ABSTRACT PROBLEM CLASS 11

flow field). The constraining state equation is in most cases a coupled field problem (e.g. a
fluid-solid interaction). For this problem class already the solution of the direct problem is
very challenging (for examples coupling electric and mechanical fields see e.g. ALURU AND
WHITE [2], KALTENBACHER, LANDES, LERCH, AND LINDINGER [96], KALTENBACHER, L AN-
DES, NIEDERER, AND LERCH [97] LERCH, KALTENBACHER, LANDES, AND LINDINGER [106],
or WACHUTKA [155]).

The remaining part of this work is organized as follows: In Chapter 2 we introduce the
basic ingredients which will be necessary in the remaining chapters. We give a short overview
on constrained optimization and the numerical solution of elliptic partial differential equations
using the finite element method. Additionally, we give an introduction into the numerical
solution of large sparse linear equations using direct elimination methods or iterative methods
with appropriate preconditioning.

Chapter 3 contains a short introduction into automatic differentiation. After motivating
its basic ideas, we present the two basic calculation strategies for derivatives — directional
derivatives and gradients — in the concept of automatic differentiation. Although the basic
principle is the chain rule which is known from basic calculus, this presentation is necessary
to understand the properties of the forward and the reverse mode, as well as their drawbacks.
This section is completed by a short presentation of two classes of AD tools, tools based on
source to source transformation and tools based on operator overloading.

In Chapter 4 we present a new method for solving optimal design problems with few
design parameters. At the beginning we introduce a model problem which originates from an
industrial design process. This problem will be used in the following considerations. The main
part is the investigation of different gradient calculation strategies and an analysis of their
pros and cons. We end up with a new method for the efficient calculation of derivatives which
combines automatic differentiation with hand-coded gradient routines. Numerical results
show the efficiency of this method.

Chapter 5 starts with an analysis of the properties of the optimization strategies presented
in Chapter 4. We work out, why this strategy can only be used for optimal design problems
with few design parameters. After introducing a model problem coming from parameter
identification, we will introduce and analyze an optimization method working in the product
space of design and state space. Unlike the approach in Chapter 4 this approach treats
the state equation as a constraint during the optimization and does not formally eliminate
it. This introduces additional difficulties but enables us to solve also design problems with
large design spaces. The numerical solution is based on a sequential quadratic programming
method, where we use iterative methods for solving the underlying QP problem. Hierarchical
strategies can be used for gaining additional speedup. Numerical results showing the efficiency
conclude this section.

In Chapter 6 we present a software design for the implementation of optimal design prob-
lems. It is based on the strict splitting of the optimizer and the optimization problem. The
optimization problem itself is subdivided into three parts: One establishing the communica-
tion between optimizer and state problem solver, into the state problem itself and into the
objective. The latter is treated as a function mapping the product space U x @ into the
real numbers where U denotes the state space and @ the design space. These three parts
are described in more detail, as well as the functionality they have to provide to realize the
solution strategies for optimal design problems presented here.

12

CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

Chapter 2

Basic Ingredients

2.1 Introduction

For the numerical treatment of optimal design problems as well as inverse problems various
basic ingredients are necessary which originate from different fields. On the one hand it is quite
natural that the area of optimization is of major importance. But due to the special structure
of the problem (1.8), (1.9) it is necessary to have also a good overview on the numerical
solution of partial differential equations. This is a very wide field, where many different aspects
need to be treated. That is why we want to limit ourselves here to elliptic problems and their
discretization using the finite element method. Optimal design problems for parabolic and
hyperbolic problems are also of high practical importance, but the numerical treatment of
the forward problem is already completely different and they are therefore excluded (cf. e.g.
QUARTERONI AND VALLI [123] or GROSSMANN AND R00S [72]). The usual solution method
for elliptic problems using the finite element method is as follows:

e Subdivide the computational domain into geometric elements on which finite elements
are defined. These form a finite dimensional test and solution space for the variational
form of the partial differential equation.

e By replacing the continuous test and solution spaces by their finite dimensional approx-
imations the variational form of the partial differential equation is equivalent to a set
of equations, possibly non-linear.

e The central part of most numerical solution schemes for this set of equations is a solver
for a set of linear equations. As the coefficient matrix is large and sparse, nowadays more
and more iterative solvers using appropriate preconditioners are applied. These replace
the up to now used direct solvers, especially for systems with a very large number of
unknowns.

This chapter shall give an overview on the various tools needed in the later chapters. We
give a short introduction into constrained optimization, as well as into the finite element
method. Last but not least we present an overview on some iterative solution methods for
linear systems of equations and to remember some basic facts on preconditioning, especially
to multi-grid preconditioners.

13

14 CHAPTER 2. BASIC INGREDIENTS

2.2 Constrained optimization

This section deals with the optimization of a given objective where several constraints on
the variables have to be enforced. For simplicity, we want to restrict ourselves to a finite
dimensional setting. A general formulation of this problem is

J(x) — min

xER™
subject to ci(x) =0, i€ Iy, (2.1)
ci(x) <0, i € Ir.

All the functions J and ¢;,7 € I1 U Iy, are assumed to be sufficiently smooth and real-valued,
I, and I are finite index sets. J denotes the objective, ¢;,i € I, the equality constraints,
¢, i € Iy, the inequality constraints. In unconstrained optimization one can specify conditions
on J which are necessary or even sufficient for the existence of a local minimum. In constrained
optimization these conditions do not operate on the objective alone but on the Lagrangian

LN =J(x)+ > Aci(x) (2.2)
1€l Ul

which also includes the influence of the constraints. In (2.2) A;,4 € I} U Iy denote the compo-
nents of the Lagrangian multiplier A. These conditions are known as the Karush- Kuhn- Tucker
conditions (KKT conditions) and may be stated as follows:

Theorem 2.1 (First order necessary conditions). Suppose that x* is a local solution of
(2.1). Additionally assume that the gradients of the active constraints

{gradc;(x*) |i € L V (i € I, Aci(x*) =0)} (2.3)

are linearly independent. Then there exists a Lagrangian multiplier X* with components X}, i €
Iy U I5 such that the following conditions are satisfied:

grad, L(x*,A*) =0,

¢i(x*) =0, i €I,
ci(x*) <0, i €I, (2.4)
AF >0, i€ I,
Ajci(x®) =0, 1€ 1 UI.
Proof. Can be found in NOCEDAL AND WRIGHT [115]. O

Similar to unconstrained optimization these conditions are only necessary and do not
provide any information whether x* is a local minimum or not. In unconstrained optimization
a necessary condition for x* to be a local minimum is that the Hessian of the objective is
positive semidefinite. If it is even positive definite, this condition is sufficient for a local
minimum. The corresponding conditions for a constrained optimization problem are:

Theorem 2.2 (Second order necessary conditions). Suppose that the assumptions of
Theorem 2.1 are valid, that (x*,X*) satisfy the KKT conditions and that w fulfills

grad ¢;(x*) T w = 0, i €1,
grad ¢;(x")T w = 0, i€ Nei(x")=0A N >0, (2.5)
grad ¢;(x")T w < 0, i€ Nci(x")=0AN =0.

2.2. CONSTRAINED OPTIMIZATION 15

Then
w! V2 L(x*,A*)w > 0. (2.6)

Proof. Can be found in NOCEDAL AND WRIGHT [115]. O

Theorem 2.3 (Second order sufficient conditions). Suppose, the assumptions of Theo-
rem 2.2 are fulfilled. If for all w satisfying (2.5)

w! V2 L(x*, A*)w > 0, (2.7)
then x* is a strict local minimum of (2.1).
Proof. Can be found in NOCEDAL AND WRIGHT [115]. O

In the following we will give an overview on Sequential Quadratic Programming (SQP), a
method for effectively solving nonlinear optimization problems. The SQP method generates
a sequence of iterates minimizing approximations of (2.1). The key idea is to model (2.1) at
the iterate x; by a suitable quadratic approximation (the so-called Quadratic Programming
subproblem) and use the minimizer of this subproblem to define the new iterate xj 1.

In order to motivate the choice of the quadratic subproblem let us forget for a moment the
inequality constraints in (2.1). The KKT conditions for this equality constrained optimization
problem form a system of nonlinear equations for (x,A) of the form

rad J(x T(x
F(x,\) = <g dJ ():(:)A ())‘> —0 (2.8)
with
AT(x) = (gradei(x) -+ grade(x)) (2.9)

and [denoting the number of equality constraints. Under the assumption that A has full
rank, any minimum of the equality constrained optimization problem satisfies (2.8).
One approach to solve (2.8) is Newton’s method. Then, the Newton-step at (xj, Ax) fulfills

Xk+1 Xk Px
= + 2.10
()\k-i-l) <>\k> <p>\> (2.10)
where py and py satisfy

(Wi AT (p) < (T ATEIN)

and W denotes the Hessian of the Lagrangian with respect to x, i.e.
W = VZ L(x,). (2.12)

The linear equation system (2.11) together with the update formula (2.10) can be reformulated

as (MR) () = () 21

which can be reinterpreted as KKT-system in the following sense:

16 CHAPTER 2. BASIC INGREDIENTS

px and Mgy solve the first order necessary conditions of the optimization problem

1 T
= pTW(xp, A dJ —
5 P W(xk, Ar) p +gra (xx)"p min (2.14)

subject to AT(x)p = —c(xp)

This quadratic programming (QP) subproblem has a unique solution which can be calculated
by solving (2.13) if the second order sufficient conditions are satisfied.

This equivalence between SQP and Newton’s method applied to the optimality condition
(2.8) is quite useful: For analysis one uses often the Newton point of view, whereas the SQP
framework is of advantage for extending the technique also to inequality constraints and for
deriving practical algorithms.

The QP framework in (2.14) can be extended straightforward to include also inequality
constraints. Then, for problem (2.1) this read as follows:

1
= p’ W(xp, Ap) p + grad J(x;)” p — min
2 peR”
Subject to grad C’i(xk) P = —Ci(xk)’ 7 c Il, (215)
grad ci(xg) p < —ci(xp), i € I.

This QP subproblem can be solved e.g. by an active set strategy (see e.g. NOCEDAL AND
WRIGHT [115] or GILL, MURRAY, AND WRIGHT [63]). If the linearized constraints are
inconsistent, i.e. the feasible set of the optimization problem is empty, additional variables
are introduced and the objective and the constraints are modified. E.g. in FLETCHER [55]
the following modification is proposed (the big-M method):

L p’ W (x, A\p) p + grad J(x;)" p—I—M(6‘2—|—0) — min
2 peR™ AR
subject to grad ¢;(x;) p + (1 — 0)ci(x) = 0, i € 1, (2.16)
grad ¢;(x;) p + (1 — 0)ci(x) <0, i€ I
grad ¢;(x;) p + ci(xx) <0, iel,,

with I = {i € Iy | ¢;(x) >0}, I, = Iy \ L. For this problem p = 0, # = 1 denotes a
feasible point.

As the SQP method is a variant of Newton’s method it is only locally convergent. For an
analysis of conditions which guarantee local convergence see e.g. Bocgas AND TOLLE [21]. In
order to make it also globally convergent to a local optimum, so-called globalization strategies
are needed. The two best known ones are line search methods and trust region methods.

Line search methods introduce a merit function ® to measure the progress to a solution.
Similar to damped Newton’s method the calculation of the correction in (2.10) is split into
two parts:

e the calculation of a descent direction and
e the calculation of an appropriate step length.

Unlike to unconstrained optimization we can not use the objective itself as a criterion for
calculating the step length, but use a merit function which balances the minimization of the

2.2. CONSTRAINED OPTIMIZATION 17

objective with the feasibility with respect to the constraints. Popular choices are e.g. the
¢'-merit function (cf. HAN [78] or POWELL [122])

B(x) = J(x) + % S e+~ S leso) (2.17)

i€ 1€1

and its variants where [z]T = max {z,0}. An alternative is the augmented Lagrangian (cf.
SCHITTKOWSKI [136])

B,) = () + () + 5 %)) = 5= 0 A% (2.18)
iel i€\T

where I = I U{i € I | ¢;(x) > \; u} and X is an approximation to the Lagrangian multiplier.
In both examples p denotes a scalar penalty parameter. Both merit functions are exact
in the sense that for u sufficiently large minimizers of the original constrained optimization
problem also minimize the merit function. For the search direction we solve (2.15) or (2.16),
respectively.

The step length has to be chosen in such a way that it ensures a sufficient decrease of
the merit function. One set of conditions which guarantee that are the Armijo-Goldstein-
conditions

B(xp) + poou (P (xk), Pr) < D(xp + i) < P(xk) + p1ap(Py(Xk), Pr) (2.19)

with 0 < 1 < 1/2 < ps < 1 (cf. GiLL, MURRAY, AND WRIGHT [63]). When oy satisfies
(2.19) the step is neither too large nor too small. The easiest procedure for calculating
a suitable « are simple backtracking procedures starting with @ = 1 and reducing « in
a geometric manner until (2.19) is satisfied. For a more elaborated one using parabolic
interpolation see e.g. LUENBERGER [107].

A crucial property in the design of a merit function is that is should accept step length
one close to a solution in order to preserve the quadratic convergence of the SQP method.
The augmented Lagrangian works well, as long as the estimate of the Lagrangian multiplier is
accurate enough, whereas the ¢'-merit function sometimes suffers from the so-called Maratos-
effect, i.e. it does not accept unit step length close to a local minimum and therefore causes
a slow-down of the convergence. Strategies to overcome this difficulty using second order
corrections can be found e.g. in NOCEDAL AND WRIGHT [115] or CONN, GOULD, AND
ToOINT [41].

Trust region methods are motivated in a different way. Unlike line search methods which
calculate the search direction and the step length in two autonomous steps, trust region meth-
ods try to incorporate both aspects into one calculation step. In unconstrained optimization
this means that an additional constraint on the maximal increment is added to the quadratic
sub-problem which insures that the increment to the iterate is not too large. A straight
forward generalization of that approach to constrained optimization problems would lead to

3 P WOk, N p o+ grad J o) p — iy
subject to grad ¢;(x) p = —¢;(xx), i €1, (2.20)
grad ¢;(xx) p < —ci(xk), i € Iy,
Ipll < Ag.

18 CHAPTER 2. BASIC INGREDIENTS

The trust region radius Ay is updated in each outer iteration based on comparing the actual
decrease in a merit function with the predicted decrease in the QP model. If both are in good
agreement the radius is kept or even increased, otherwise it is decreased. The main difficulty
of this generalization is that (2.20) need not always have a solution as the admissible set may
be empty. That is why other generalizations were developed. One can use e.g. a quadratic
model of the augmented Lagrangian merit function instead of the Lagrangian in the QP
problem. This results then in

1 1
= p" W(xp, Ap) p +grad J(x)" p + §u||v||2 — _min

2 pER™ weR
subject to grad ¢;(x;) p = —¢;i(xk) + po, i€, (2.21)
grad ¢;(x) p < —¢;i(xk) + po, i € Iy,
Ipll < A,

which always has a feasible point. Other alternatives can be found e.g. in CONN, GOULD,
AND TOINT [41].

2.3 The finite element method

Optimal design problems often incorporate partial differential equations (PDEs) describing
the state. As analytic solutions of these PDEs are usually not available, methods for calcu-
lating an approximation to the solution of the PDE are needed. Among the most well-known
there are

e the Finite Element Method (see e.g. BATHE [7], BABUSKA AND STROUBOULIS [4],
BRAESS [26], BRENNER AND ScoOTT [29], CIARLET [39], HUGHES [90], JUNG AND
LANGER [93], or ZIENKIEWICZ [163]),

e the Finite Difference Method (see e.g. GROSSMANN AND R0OOS [72], or SAMARSK1J [135]),
e the Finite Volume Method (see e.g. GROSSMANN AND R0OS [72], or HEINRICH [83]),

e the Finite Integration Technique (see e.g. VAN RIENEN [153], or WEILAND [156]),

e or the Boundary Element Method (see e.g. WENDLAND [157], or CHEN AND ZHOU [38]).

Each of these methods has its specific area of application. In the following we want to focus
on the finite element method (FEM) and want to explain the basic properties which are
needed later on. Furthermore we want restrict ourselves to elliptic boundary value problems
for scalar elliptic PDEs of second order of the form

—div(A(z) grad u(z)) + (B(z), grad u(z)) + C(z)u(z) = f(x), z € Q,
u(r) = g(), z€lD, (2.9
O (#) = (Ale) grad u(a), n(z)) = h(a) rely,

where (2 is a bounded domain of R? (d is usually 2 or 3) with sufficiently smooth boundary,
I'p=Ip, 'pUl'y =09, 'p NIy = 0. n denotes the unit outside normal of 2, g—]% the
co-normal derivative. Additionally, A(z) is assumed to be symmetric and uniformly positive

2.3. THE FINITE ELEMENT METHOD 19

definite with respect to z. g(z) and h(z) denote the Dirichlet and Neumann boundary data,
respectively. Although we restrict ourselves to linear elliptic problems, we want to mention
that optimal design problems where the state variable fulfills a transient or nonlinear equation
or even a mixed system of equations are important for many practical applications but would
make the presentation by far more complicated. We will remark on this where necessary.

In the following we will use the abbreviation

Lu=f in Q,
ou
B—N =h on FN

instead of (2.22). The FEM takes the weak form of the PDE as its starting point. For the
problem stated in (2.22) this looks as

/ [(A(x) grad u(z), grad v(z)) + (B(z),grad u(z))v(z) + C(a:)u(a:)v(x)} dz =

“ (2.24)

/f(a:)v(x) d:c—l—/h(s)v(s)ds
Q T'n

or in short

a(u,v) = F(v), VoeU (2.25)

with the bilinear form a(u,v) and the linear form F'(v) defined by the left-hand side and the
right-hand side of (2.24), respectively. Up to now it was not specified in which spaces we look
for a solution, as well with which functions we test. We could use the Banach space C*(Q),
but these turn out to be rather unsuitable for analyzing PDEs. The appropriate spaces are
Sobolev-spaces, which are defined in a similar way to C* but with LP taking over the role of
continuous functions. The appropriate space for stating (2.24), respectively (2.25) is H'(Q)
which is defined as

HY Q) ={u e L*(Q) | gradu € L*(Q)} . (2.26)
The complete weak form of (2.21) looks as follows: Find
uef{ve H(Q) |v=gonTp}. (2.27)
such that
a(u,v) =F(v) VYveU={veH(Q)|v=00onTp}. (2.28)

The appropriate space for F' is U*, the dual space of U, g must be in the trace space H 1/ 2(T'p)
of H'(Q) on I'p. For a complete overview of Sobolev spaces see ADAMS [1].

For showing existence and uniqueness of a solution we transform the variational form
(2.25) into homogeneous form by introducing

U=u—4g
with § € H'(Q) and § = g on T'p. Then, 4 € U fulfills
a(t,v) = F(v) —a(g,v), VoeUl. (2.29)

The right-hand side of (2.29) is an element of the dual space of U. The existence and
uniqueness of a solution can by shown by a rather simple abstract principle, the so-called
Lax-Milgram lemmoa.

20 CHAPTER 2. BASIC INGREDIENTS

Theorem 2.4 (Lax-Milgram lemma). Let U be a Hilbert space and assume that
a:UxU—R (2.30)

1 a continuous and elliptic bilinear mapping, i.e. that there exist constants o, 8 > 0 € R such
that
a(u,v) < allulllvl, Yu,v €U, (2.31)

and

a(v,v) > B||v|%, VoeU. (2.32)

Finally let F : U — R be a bounded linear functional on U, i.e. F € U*.
Then there exists a unique element u € U such that

a(u,v) = F(v) VoeU. (2.33)
Proof. Can be found in EVANS [54] or RENARDY AND ROGERS [127]. O

The FEM constructs an approximation to the solution u of the variational equality (2.28).
Therefore the solution space as well as the test space are approximated by a sequence of finite
dimensional subspaces which are constructed as follows:

Let 7, be a regular triangulation (c.f. CIARLET [39]) of the domain into geometric
elements, e.g. triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D. On these
geometric elements we define so called finite elements using shape functions with local support,
e.g. linear, bilinear or quadratic shape functions. Therewith we define solution and test spaces
e.g. with piecewise linear, bilinear or quadratic functions. The discretization parameter
h of the family of finite dimensional subspaces is usually related to the mesh-size of the
triangulation. Additionally we impose that the FE-spaces are nested, i.e.

Vhy C© Vi, ifhy <hg (2.34)

and that this family of FE-space is complete in the limit, i.e.

U v=H"9). (2.35)
h>0

In order to calculate an approximation to the solution of (2.28) we need finite dimensional
approximations of the solution and the test space in (2.28). The finite dimensional approxi-
mation of the solution space in (2.28) is

ng{thVhM)h:ghonFD}

where gy, € V}, is an approximation of g on I'p. The finite dimensional approximation of the
test space is
th{thVh|vh=00nFD}.

By replacing the solution and the test space in (2.28) by their finite dimensional analogs we
get a finite dimensional approximation of (2.28) which results in

a(uh,vh) = F(Uh), Y € Uh, (2.36)

2.4. ITERATIVE SOLVERS AND PRECONDITIONING 21

with u € U,f. For the solution of (2.36) we again homogenize the variational equality. Choos-
ing a basis
¢ = (¢17'-'7¢m)T €V (237)

of the finite dimensional subspace U, we may represent uy € U,“l} via
Up = u’® + g (238)

with a coefficient vector u € R™. In order to transform (2.36) into a linear system of equations,
we define the stiffness matrix

K= (a(¢37 ¢i))i,j=1,...,m (239)
and the load vector
£ = (F(¢)) — algn b)) ;—y . - (2.40)

This allows us to write the discretized variational problem (2.36) as
Ku=f. (2.41)

In the following section we want to analyze the properties of the stiffness matrix K and show
efficient algorithms for solving (2.41).

2.4 Iterative solvers and preconditioning

Before we begin the discussion on efficient solution methods for linear systems of equations as
in (2.41) we repeat the basic properties of the system matrix K. Furthermore we introduce
the basic notation used below.

In many practical applications the bilinear form a(-,-) in (2.36) is symmetric, that is
why we restrict our presentations to this case. Additionally we want to assume that the
propositions of the Lax-Milgram lemma are fulfilled, i.e. the continuous system is well-posed.

Due to the construction of the FE spaces in Section 2.3 the number of base functions in
(2.37) is large, typically the dimension of K is asymptotically

dim(K) = O(h~%) (2.42)

where the discretization parameter h denotes the typical average mesh size and d the space
dimension of the computational domain. Fortunately, the matrix is sparse. As the finite
element base functions have only local support most entries in K vanish, i.e. the system
matrix is sparse. For a regular triangulation only a fixed number of entries are nonzero in each
line, i.e. the total number of nonzero entries is proportional to the dimension of the matrix.
That is why, a matrix-vector multiplication can be realized with O(h~%) multiplications.

Due to the assumptions on the bilinear form made above, the stiffness matrix K is sym-
metric. Furthermore, the discrete system (2.41) is well-posed, i.e. K is regular. But, K
is even positive definite, as a(-,-) fulfills the ellipticity condition (2.32), i.e. the eigenvalues
wi(K),i=1,...,m of K are real and

0 <p(K) <o < pum(K). (2.43)

This can be exploited by solution algorithms as we will see later. The corresponding eigen-
vectors ;(K),7 = 1,...,m form an ortho-normal system, i.e.

(9i(K), 9 (K))2 = di; (2.44)

22 CHAPTER 2. BASIC INGREDIENTS

where (-,)2 denotes the Euclidian scalar product and ¢;; the Kronecker symbol.
The spectral condition number of the stiffness matrix, defined by

K(K) = (2.45)

k(K) = O(h72). (2.46)

We want to solve a sparse linear system of equations with a symmetric, positive definite
matrix of very large dimension with a rather large condition number.

There are two different approaches for solving linear systems of equation: Either using
direct methods or using iterative ones.

Direct methods for solving sparse linear systems perform a Cholesky or Gauss factorization
of the matrix, i.e. they look for a representation of the form

K=U"Uu

or

K=LU,

respectively. L is a lower triangular matrix where all diagonal elements are 1, and U denotes
an upper triangular matrix. For this factorization, sparse direct solvers try to reduce the
costs by reordering rows and columns in such a way that the fill-in is minimized, i.e. they
try to minimize the number of nonzero elements introduced by the factorization process at
positions where the original matrix was zero. Typically, a sparse direct solver consists of the
following phases:

e First, a column pre-ordering solely on the nonzero pattern of the matrix is performed.
This is done in such a way that the factorization of the reordered matrix is as sparse
as possible. Unfortunately, this problem is NP-hard (YANNAKAKIS [159]), so heuristics
are used. Two popular methods are minimum degree ordering and nested-dissection
ordering.

e Then the matrix is factorized. In the symmetric and positive definite case, first a sym-
bolic factorization using only the matrix pattern is done to get the matrix pattern of
the factorization and then the factors are calculated. In this case, the column renum-
bering of the first phase is also used for renumbering the rows, since any symmetric
permutation of the rows and columns will be numerically acceptable. If the matrix is
not symmetric and positive definite, the calculation of the pattern of the factors can
not be separated from the factorization itself. In this case pivoting is necessary which
is done without regard to sparsity.

e Finally forward and backward triangular sweeps are executed.

Two references to this topic are the books by GEORGE AND LiU [57] or DUFF, ERISMAN,
AND REID [47]. These techniques have also been implemented e.g. in SPARSKIT [131] or
SuPERLU [45].

2.4. ITERATIVE SOLVERS AND PRECONDITIONING 23

Algorithm 2.1 Preconditioned Richardson iteration

Define a damping parameter 7, 0 < 7 < %

Initialize start value ug
1=0

while not converged do
u=u+7C7 ! (f - Ku)
1=1+1

end while

Tterative methods for solving large sparse linear systems have been gaining popularity
during the last decade. Until recently direct methods were often preferred by engineers, es-
pecially in real life applications due to their robustness and predictable behavior. However,
direct solvers are inefficient, not only the computational effort but also the memory con-
sumption is very high, especially for very large sparse matrices. On the other hand, iterative
solvers exploit sparsity to a much higher extent. They mainly need matrix-vector multiplica-
tions and other operations whose calculation time is proportional to the number of unknowns.
Iterative solvers are usually efficient only when combined with appropriate preconditioners.
That is why we want to treat both aspects together. For the rest of this section we want to
assume that the symmetric and positive definite preconditioner C is spectrally equivalent to
the matrix K, i.e.

Jer,co € RT ¢1(Cu,u) < (Ku,u) < ¢3(Cu,u), Yu € R, (2.47)

with positive spectral equivalence constants cy,co. A preconditioner is constructed in such a
way that the quotient i—f is as small as possible under the restriction that the preconditioning
operation C~'d is efficiently evaluable. The optimal choices for the spectral equivalence
constants are
1 = N’min(c_1 K)
Cy = N’max(cil K),

where Jimin(C ' K) and pimax(C ! K) denote the minimal and maximal eigenvalue of C~' K
respectively, which are both real. In the following we will abbreviate the spectral equivalence
(2.47) by

(2.48)

C1 C S K S Co C. (2.49)

As K is assumed to be symmetric and positive definite, (2.41) is a necessary and sufficient
criterion for a minimizer of the energy functional

1 u'Ku—f"u— min . (2.50)
2 ucRm
That is why, many iteration schemes can be motivated as minimization algorithms for (2.50).
The easiest method is a variant of the steepest descent method where the step length is
chosen a-priorily. This iteration is usually named Richardson iteration. A preconditioned
version can be found in Algorithm 2.1. The error iteration scheme can be formulated as

't —u=(I-7C'K)(u’ — u) (2.51)

24 CHAPTER 2. BASIC INGREDIENTS

Algorithm 2.2 Preconditioned steepest descent iteration

Initialize start value ug
1=0

while not converged do
/* Calculate descent direction */

r, = f—K u;
S; = c! r;
/* Calculate step length */
T; = TS
<SZ,K sz>

/* Update iterate */
i1 =W + 78
=141

end while

where I € R™*™ denotes the identity matrix. It can be seen, that the step length does not
depend on the iteration. This implies that the iteration converges if and only if

p(I-7C7'K) < 1. (2.52)

The spectral radius p of the iteration matrix can be bounded using the spectral equivalence
constants ¢y, ca by
p(I —7C'K) <max {|1 — 7e1|, |1 — Tea|} (2.53)

i.e. the iteration converges for 0 < 7 < 2/co. The right hand side of the above inequality is

minimal for 7 = ﬁ which leads to a convergence rate of

CflK) —1 Ccy) — C1
- rc-1K) < & < .
p(I-7)< K(CTIK)+1 ~ e+

(2.54)

An improved version is the steepest descent method. There, the step length parameter
is no more chosen a-priorily, but depends on the iteration. A preconditioned version can be
found in Algorithm 2.2.

A method which is more elaborated is the conjugate gradient (CG) method, developed
by HESTENES AND STIEFEL [85]. It is one of the best known iterative techniques for solving
sparse symmetric positive definite linear systems. It is a representative of a larger class of
methods, the Krylov-subspace-correction methods. The basic idea of these methods is to
minimize the defect in the Krylov-subspace

Kr(A,y) = {y, Ay,... A’Hy} (2.55)

generated by a matrix A and a vector y in the k-th iteration step. The preconditioned
CG-method takes as generating matrix C~1/2K C~1/2, and as generating vector the initial
residual. The algorithm is presented in Algorithm 2.3. Compared to the Richardson itera-
tion it can be seen that the CG algorithm is no more a linear method but it is nonlinear.
Furthermore it is not necessary to provide a suitable damping factor for which knowledge
or some bounds on the extreme eigenvalues of C~ /2K C~1/2 is needed. The CG iteration

2.4. ITERATIVE SOLVERS AND PRECONDITIONING 25

Algorithm 2.3 Preconditioned conjugate gradient iteration

Initialize start value ug

I‘OZf—KuU
dgchlro
S():dg
1=0

while not converged do
¥i = (S, Ti)
% =K gz,di)
w1 = u; + a;d;
riy1 =1 —o; Kd,
Sit1 =C ey

Bi = <Si+’yll,di>
dit1 =s;y1 +6d;
1=1+1

end while

calculates an optimal damping factor by itself using the underlying minimization property.
The convergence can be estimated in the K-energy norm

Iyl = (v, Ky)'/?. (2.56)
The error in the k-th iteration step of the preconditioned CG algorithm is bounded by
lu* —ullx < g [[u® - ullk (2.57)

with

A VL (i Dk Ve~ ! (2.58)
S 142k CVE(CTK)+1 7 Je '
C1

(see e.g. HACKBUSCH [77], MEURANT [112], AXELSSON [3], or JUNG AND LANGER [93] for
details). ¢1,c2 denote the spectral equivalence constants (see (2.49)). It can be seen that
this bound is similar to that of the Richardson iteration, except that the condition number
of C™'K is replaced by its square root.

For both algorithms we get the unpreconditioned versions by taking C to be the identity
matrix. But it can be seen immediately that the unpreconditioned iterations converge very
slowly because the convergence rate is very close to 1 for large condition numbers x(K). That
is why the choice of effective preconditioners is very important. In the following we want to
motivate properties for good preconditioners.

From (2.58) it is immediately clear that one has to take C = K to minimize the con-
vergence rate, which is of no help due to the effort for inverting K. In order to get good
convergence properties the quotient cz/cy shall be close to one. In practice, it should be
at least independent or almost independent of the mesh-size h. Nevertheless applying C~!
should not be too much effort. The following properties turned out to be very useful:

dk

e The condition number x(C~'K) shall be close to 1. Additionally it should be bounded
from above independently of the mesh-size parameter h of the discretization.

26 CHAPTER 2. BASIC INGREDIENTS

e The computational effort of the preconditioning operation C~! should be not too high,
if possible proportional to a multiplication with K.

e The memory requirements for realizing the preconditioning step should be comparable
with the ones needed for a multiplication with K.

No preconditioning, i.e. C =1 clearly fulfills the latter two requirements, but the condition
number £(C'K) behaves like O(h~?) which implies that the iteration converges extremely
slowly. Classical iteration procedures like the Jacobi- or the GauB-Seidel method do not
improve this behavior. On the other hand, taking C = K results in a direct solver, for which
the first property is clearly fulfilled. Nevertheless it is in general impossible to fulfill the other
two.

Multigrid preconditioners have shown to fulfill all 3 properties (see e.g. HACKBUSCH [76] or
JUNG AND LANGER [92]). They are based on a well-balanced interplay between a smoothing
operator and a coarse grid correction and can be motivated in the following way:

Let’s consider the error after k iterations

¥ =uf —u (2.59)

and develop it into a Fourier sequence taking the eigenfunctions of K as basis. From the
analysis of classical iteration methods like Jacobi of Gaufi-Seidel it it known, that they reduce
the high-frequency components of the error very fast (HACKBUSCH [77]) whereas they have
problems to reduce the low frequency components of the error. That is why, the smooth part
of the error (after smoothing the high-frequency components on the fine grid) is approximated
on a coarser grid. The corresponding equation system on the coarser grid can be solved easier,
as it contains by far fewer unknowns. Furthermore the idea can be applied recursively which
leads to the multigrid iteration presented in Algorithm 2.4. The key-point is the efficient
interplay between the smoothing operator and the coarse grid correction.

The idea presented above is based on nested finite element spaces which are needed for
the definition of the coarse grid system. These are often not available due to limitations of the
computer program or the coarsest equation system is still too large for an efficient application
of a sparse direct solver. Then, algebraic multigrid methods can be applied. These mimic
the coarse grid and define smoothing and prolongation operators using only the stiffness
matrix itself or using only information on the finest grid. An overview of standard multigrid
methods as well as algebraic multigrid methods is presented in TROTTENBERG, OOSTERLEE,
AND SCHULLER [152]. For publications focusing more on algebraic multigrid methods see
REITZINGER [126] or RUGE AND STUBEN [130] and references therein.

2.4. ITERATIVE SOLVERS AND PRECONDITIONING

27

Algorithm 2.4 Basic concept of a symmetric multigrid V-cycle MgStep (¢, Ky, f;, up)

/* ¢ denotes the level, £ =1 is the coarsest level */

if /==1 then
solve the system on the coarsest grid, u, = Kzl fy
else

/* Pre-smoothing: */
/* S denotes the smoothing operator */
/* v denotes the number of smoothing steps */
u, = S}/ (uy, fy)
/* Defect calculation */
d =1 —-Kyu
/* Restriction onto coarser grid */
/* Py denotes the prolongation operator between level £ — 1 and £ */
d—1 =P dg
/* Solve coarse grid system */
/* Ky_1 denotes the stiffness matriz on the coarser grid */
MgSTEP(E - 17 Kf*la df*h wf*l)
/* Prolongation from the coarser mesh to the current one */
wy=Pyrwy
/* Add coarse grid correction */
u=uy+wy
/* Post-smoothing */
w = (S7)" (ug, fr)
end if

28

CHAPTER 2. BASIC INGREDIENTS

Chapter 3

Automatic Differentiation, an
Introduction

3.1 Motivation

During the last decades the simulation tools used in product design became faster and more
and more elaborated. Therefore, the interest on sensitivities of the output with respect to
changes in the design or other input quantities (e.g. material parameters) increased. The
main problem, which arose, resulted from the fact that meanwhile good simulation tools
were available, but non of the program designers ever thought on derivatives during the
development of the simulation tool. Still nowadays people often use finite differences (see e.g.
HAASE AND LINDNER [73]) due to this fact.

One alternative to finite differences would be to use computer algebra and symbolic meth-
ods for generating code to calculate derivatives. Symbolic methods take a closed form repre-
sentation of a formula as their starting point. Usually this is of the form

y = f(x) with x € R",y € R™. (3.1)

These methods do not use any information on how to evaluate f and which intermediate
results to store. They apply the elementary rules of calculus to f, get a huge expression
representing the derivative and try to simplify this expression using algebraic manipulation.
Typical examples for software packages of that kind are MAPLE [125] or MATHEMATICA [158].
This approach works fine for small examples but reaches its bounds for more complicated ones
or when higher order derivatives are needed. Table 3.1 contains the complexity of a C-code
to evaluate the calculated derivatives (the numbers were taken from presentation notes of
A. Griewank). As can be seen, the complexity of the code for calculating the derivative
explodes exponentially which makes a symbolic approach completely unattractive if not even
impossible.

During the same time a completely different and not so well known scientific community
grew up, which mainly focused on doing derivatives. This area is now called Automatic differ-
entiation or Algorithmic differentiation, short AD. Their approach was completely different
to the one in computer algebra and symbolic computation. In AD the starting point is a
computer program to evaluate the function. This computer program can also be seen as a
closed form representation, nevertheless it is completely different to the input of computer

29

30 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

derivative order | lines of C-Code
0 1
1
2 49
3 421
4 4164
5 57027

Table 3.1: C code generated by Mathematica (CForm), courtesy by A. Griewank

algebra packages. In a computer program the implementing person grouped several state-
ments together to calculate intermediate results. These intermediate results are then used to
calculate new intermediate results or the function value, respectively. When implementing
a derivative there is no need to propagate all the symbolic derivative information of the ele-
mentary functions into one final formula. It is by far better to exploit the structure using the
intermediate results generated in a computer program also to calculate derivatives.

In AD two different ways to calculate derivatives were developed: On the one hand the
forward mode which is comparable to directional derivatives, on the other hand the reverse
mode which can be compared to gradient evaluation. Both are explained in more detail in
Section 3.3 and Section 3.4, respectively. At the beginning there is a short introduction into
the framework and notation used in the following sections. We use the same notation as in
the monograph by GRIEWANK [67] which can be seen as the standard reference on this topic.

3.2 Framework and notation

On a very basic level every routine for evaluating a function can be subdivided into 3 com-
ponents:

e Copy the values of the independent variables to internal variables.

e Evaluate the body of the function using only internal variables for storing intermediate
results.

e Assign the internal variables containing the results to the dependent variables.

As the first and the last part contain only assignments it is enough to analyze the middle-
section with uses only internal variables. This variable vector can be written as

(V1 —py e ey U0, Uy e v s Vlmmy Vlmm 1y« - + 5 V1) (3.2)
e’ —_————
x y

Each value v; is obtained by applying an elementary function ¢; to some set of arguments v;
with 7 < 4, so that we can write

vi = $i((vj)j<i)- (3.3)
Some elementary functions are listed in Table 3.2. For a more complete list see GRIEWANK [67,

p. 25]. For simplicity we restrict our attention to smooth functions here. For real life situations
also Lipschitz continuous function like e.g. |u|, min(u,v), ||(u1,...,uy)ll2, max(u,v) or even

3.2. FRAMEWORK AND NOTATION 31

Essential Optional
U+, U-v U —0
—u, C c-u, ctu
1/u u/v
exp(u), log(u) u®
sin(u), cos(u) tan(u), arcsin(u)

‘ u, v variables, ¢ constant ‘

Table 3.2: Examples for elementary functions

non-smooth functions like e.g. the sign of a number sign(u) or the Heaviside-function heav(u)
are needed (e.g. to represent branches in the control flow). For a treatment of these functions
see GRIEWANK [67, Chapter 11].

The dependence relation j < ¢ in (3.3) means that v; depends directly only on some of
the v;, j <, typically on one or two indices j < 4. This dependence relation defines a partial
ordering of all indices ¢ = 1 — n,...,[. The relations of the variables v;,42 =1 —mn,...,[can
be visualized in a computational graph. This is an acyclic graph in which the vertices define
variables and an arc runs from v; to v; if and only if 5 < 7. The roots of the graph represent
the independent variables, the leafs the dependent ones.

To summarize the considerations the general evaluation procedure of a function can be
seen in Algorithm 3.1. We highlighted the three evaluation phases using comment statements
in a C-like syntax. In the following sections we will use this general evaluation procedure to
show how directional derivatives and gradients can be implemented in principle.

In order to make this notation clearer let us consider the following example taken from
GRIEWANK [67]. This example will also be used for the illustration of the forward and reverse
mode in the following sections.

Let f: R? — R be defined as

y= (sin (2 4 2L exp(x2)> : (i—; - exp(x2)> . (3.4)

The evaluation procedure for this simple formula can be seen in Algorithm 3.2. The three dis-

Algorithm 3.1 General evaluation procedure of a function

/* Assignment phase */
for i =1 ton do
Vi—n = T4
end for
/* Calculation phase */
fori=1to!l do
vi = $i((v5))<i)
end for
/* Assignment phase */
for i =m — 1 to 0 step —1 do
Ym—i = Vi—i
end for

32 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

Algorithm 3.2 Evaluation trace of a simple model example
/* Assignment phase */
V-1 =21 = 1.5000
Vo = T2 = 0.5000
/* Calculation phase */
v1 = v_1/vp = 1.5000/0.5000 = 3.0000
vy = sin(vy) = sin(3.0000) = 0.1411
v3 = exp(vg) = exp(0.5000) = 1.6487
vy = v1 — vy = 3.000 — 1.6487 = 1.3513
vs = vg +vg = 0.1411 + 1.3513 = 1.4924
ve = s - vy = 1.4924 - 1.3513 = 2.0167
/* Assignment phase */
y = vg = 2.0167

Figure 3.1: Computational graph of a simple model example

tinct phases of the evaluation can be seen clearly, the first phase containing only assignments,
the calculation phase and finally the phase assigning the output variables. A computational
graph of the calculation phase can be found in Figure 3.1. We see that the evaluation of
the formula is not done straightforward, but in a clever way by eliminating common sub-
expressions and using internal variables for them. As we will see, this is one of the secrets
to reduce the evaluation effort for derivatives compared to the evaluation of a derivative gen-
erated by a symbolic computation package. We want to reuse this very simple example to
illustrate how the forward and the reverse mode calculate derivatives.

3.3 The forward mode — Propagation of tangents

In this section we want to calculate directional derivatives, also called tangents of functions.
It is assumed that the function can be decomposed into a sequence of elementary functions
which are continuously differentiable. In contrast to approximating the derivative by finite
differences, we obtain truncation error free numerical values for the derivative by using the
method presented here.

For the forward mode let us consider a function

f:R" > R", xw—f(x). (3.5)
As we want to calculate a directional derivative, let us further introduce a curve

x:R—=>R", ¢t~ x(t) (3.6)

3.3. THE FORWARD MODE — PROPAGATION OF TANGENTS 33

and define the resulting curve
y:R—=>R" ¢t f(x(1)). (3.7)
According to the chain rule the derivative of y is defined by

y(t) = d%f(X(t)) = f'(x(t)) - %(t), (3-8)
where f' € R™*" denotes the Jacobian of f. x can be interpreted as direction at the point x(#)
and y denotes the directional derivative of f into the direction of x then. From a geometrical
point of view x and y can be interpreted as tangents of x(t) respectively y(¢). f' maps
tangents along curves in the definition space of f onto tangents of curves in its image space.
That is why this approach is also called propagation of tangents.
Let us now assume that f can be decomposed into elementary functions as described in
Section 3.2, i.e.

f(z) = (qrodr-10--0¢20¢1)(x). (3.9)
Then using the chain rule one obtains
flz) k=¢p ¢ -y)% (3.10)
for its derivative, which can be evaluated as
£'(x) % = ¢p- (91 (- (D2 (41 %))) (3.11)

due to associativity. In the framework of Section 3.2 the evaluation procedure for (3.11) can
be described as in Algorithm 3.3. Assembling the complete Jacobian is not needed and usually

Algorithm 3.3 General evaluation procedure of the directional derivative of a function
/* Assignment phase */
for : =1 ton do

Vi—n = T4
Vi—n = T4
end for

/* Calculation phase */
fori=1tol do
v; = ¢ ((v))j<i)
Vi =D i %@((%)k«) - 0;
end for
/* Assignment phase */
for i =m — 1 to 0 step —1 do
Ym—i = Vi—i
YUm—i = V1
end for

quite uneconomical except when very many different directional derivatives at a fixed point
x are needed. In this directional derivative procedure ©; can be interpreted as the directional
derivative of v; into the direction x. The main difference of the AD approach compared to

34 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

¢ [¢,]
w=c w=c
w=0
w=uxtv |w=uxv
w=uxv
wW=1u-v W=0-v+u-0
w=u-v
w=1/u w=1/u
W= —w- w-u
w=+/u w=+/u
w=0.5-4/w
w = u’ w=1u/u
w = u°
w=c-w-w
w =exp(u) | w=exp(u)
w=w-u
w=log(u) | w="1d/u
w = log(u)
w =sin(u) | W= cos(u) - u
w = sin(u)

Table 3.3: Elementary functions and their tangent statements

the symbolic calculation of derivatives is the fact that numerical values of the derivatives are
propagated rather than their corresponding symbolic expressions.

In Algorithm 3.3 we placed the tangent statement to calculate v; after the original state-
ment as this order of calculation seems quite natural. As long as two variables do not overwrite
it is not necessary to think of a special execution order of the statements calculating the func-
tion value and its derivative. However, in real programs several variables v; often share one
common storage location. Especially when v; shares the storage location with one of the
arguments v; of ¢; it is necessary to update v; before v; is updated. That is why, source
to source transformers (see also Section 3.5) always put the derivative statement ahead of
the original one. On the other hand the value of the derivative ©; can often be calculated
easier when v; is already known. Therefore ¢; and ¢Z should be evaluated simultaneously
sharing intermediate results. The most elementary cases are listed in Table 3.3. It is easy
to observe that for the computation of y each elementary function is processed exactly once.
With respect to the computational complexity of evaluating y this implies the following:

Theorem 3.1. Assume that for each ¢; the effort for evaluating ¢} -% is of the same order as
evaluating ¢; itself, i.e. there exists a constant ¢ > 0 such that for each elementary function

bi
WORK(¢! - x) < ¢ WORK(¢;) (3.12)

is valid (which is obviously true for the functions listed in Table 3.3), then also the effort for
evaluating y is of the same order as evaluating y, i.e.

WORK(y) < ¢ WORK(y). (3.13)

3.4. THE REVERSE MODE — PROPAGATION OF GRADIENTS 35

For assembling the complete Jacobian of f n forward propagations are needed, indepen-
dent of the dimension of the image space. This makes the forward mode very attractive for
calculating Jacobians of functions with low dimensional definition space and high dimensional
image space. We will see in the next section, that for the reverse mode the computational
complexity of calculating a gradient is proportional to the dimension of the image space and
not the definition space, which is advantageous for many optimization problems.

Let us now return to our example of Section 3.2. In order to illustrate the presented
approach the evaluation procedure for the directional derivative into the direction (i1, 2)
can be found in Algorithm 3.4.

Algorithm 3.4 Evaluation trace of the directional derivative for a simple model example

/* Assignment phase */

V-1 =T1 = 1.5000

v_1 = 1 = 1.0000

Vo = T2 = 0.5000

vy = x2 = 0.0000

/* Calculation phase */

v1 = v_1/vp = 1.5000/0.5000 = 3.0000

01 = (v_1 —v_1 - 0p)/vo = 1.0000/0.5000 = 2.0000
vy = sin(v;) = sin(3.0000) = 0.1411

0y = cos(vy) - 01 = —0.9900 - 2.0000 = —1.9800
vz = exp(vg) = exp(0.5000) = 1.6487

U3 = v3 - g = 1.6487 - 0.0000 = 0.0000

vg = v — vz = 3.000 — 1.6487 = 1.3513

U4 = U1 — 03 = 2.0000 — 0.0000 = 2.0000

vs = vy +vg = 0.1411 + 1.3513 = 1.4924

U5 = Vg + 04 = —1.9800 + 2.0000 = 0.0200

v = U5 - v4 = 1.4924 - 1.3513 = 2.0167

Vg = VU5 - V4 + v5 - 04 = 0.0200 - 1.3513 + 1.4924 - 2.0000 = 3.0118
/* Assignment phase */

y = vg = 2.0167

= 16 = 3.0118

3.4 The reverse mode — Propagation of gradients

This section deals with the calculation of gradients. As in Section 3.3 it is assumed that the
function to be differentiated can be decomposed into a finite sequence of elementary functions
being continuously differentiable.

Let us consider a function

f:R" > R", x~ f(x). (3.14)
and a weighting vector ¥y € R™ and define a scalar valued function z by

2:R* 5 R, x> (y,f(x))gm =y £(x). (3.15)

36 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

According to the chain rule the gradient of z is defined by
x = grad z = grad (ny(x)) = y7f'(x) (3.16)

where f' € R™*" denotes the Jacobian of f. Geometrically y and z can be interpreted in the
following sense: The set {y |yTy = c} defines a hyperplane in the image space and due to the
implicit function theorem {x | y7f(x) = c} defines a smooth hypersurface in the definition
space. y denotes the normal of the hyperplane in the image space, x the corresponding normal
onto the hypersurface in the definition space.

In analogy to the previous section let us assume that f can be decomposed into elementary
functions, i.e.

£(x) = (prodrr0-- 0o ¢i)(x). (3.17)
For the gradient of z we get
X=3 G- b by P, (3.18)
which can be grouped as
x=((- (5" 01) - bl 1)) - dh) - &} (3.19)

due to associativity. In the frame of Section 3.2 the evaluation procedure for (3.19) can be
written as shown in Algorithm 3.5. In a computer program the information to build

Z'l_)j %¢i((vk)k<i) (3.20)

1=

is not available. For each ¢; it is known which arguments it depends on, but not which
functions ¢; depend on a given v;. That is why one usually avoids to form the sum over
i > j and uses an incremental setup instead. This can be found in Algorithm 3.6. It can be
seen that first all intermediate variables are calculated using a normal function evaluation.
Then all the adjoint quantities are calculated by executing the according statements in reverse
order. The values of the intermediate variables are needed for the evaluation of the derivatives
of the elementary functions and can usually not be calculated on the fly as in the forward
mode. That is why they have to be saved during the forward run for the evaluation of the
derivative.

One interpretation of the adjoint variables which also explains their name, is via La-
grangian multipliers. Let us view the evaluation of z in the following way: We define a
constrained optimization problem

'y — min (3.21)

subject to the following equality constraints:

qﬁi((vk)Hi) —V; = 0 Vi = 1, Ce ,l (3.22)
V-3 —Yl— = 0 Vi = 1, “e ,l. (3.23)

Then, the Lagrangian variables corresponding to the equality constraints are exactly the
adjoint variables computed by the reverse mode.
In Table 3.4 the adjoint operations for some elementary functions can be found. We

3.4. THE REVERSE MODE — PROPAGATION OF GRADIENTS

Algorithm 3.5 General evaluation procedure of the gradient of a function

/* Function evaluation to calculate values of intermediate variables */
/* Assignment phase */
for i =1 ton do
Vi—n = Zj
end for
/* Calculation phase */
fori=1tol do
vi = ¢i (Vi) k<)
end for
/* Assignment phase */
for i =m —1 to 0 step —1 do
Ym—i = Vi
end for

/* Reverse sweep to calculate adjoint variables */
/* Assignment phase */
fori=0tom —1do
U—i = Ym—i
end for
/* Calculation phase */
for j=1—mto1l—mnstep —1 do
vj = Zly]’ v; %@((Uls)k«)
end for
/* Assignment phase */
for i =n to 1 step —1 do
Ti = Vj—n
end for

¢ ¢
w=c w=0
w=utv |u=u+w
V=0+W
w=u-v U=1u+w-v
V=0+wW-u
w=1/u U=U—w-w-w
w=+/u te=u+0.5 - w/w
w = u® u=u+(c-w) w/u
w=exp(u) | 4=0+w-w
w=1log(u) | a=1u+w/u
w=sin(u) |4 =14+ w-cos(u)

Table 3.4: Elementary functions and their reverse statements for an incremental setup

38 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

Algorithm 3.6 General evaluation procedure of the gradient of a function, incremental setup

/* Function evaluation to calculate values of intermediate variables */
/* Assignment phase */
for i =1ton do
Vi—n = T4
end for
/* Calculation phase */
fori=1tol do
vi = ¢ ((Vk) <)
end for
/* Assignment phase */
for i =m — 1 to 0 step —1 do
Ym—i = Vi
end for

/* Reverse sweep to calculate adjoint variables */
/* Assignment phase */
fori=0tom —1do
V—i = Ym—i
end for
fori=1tol—m do
v, =0
end for
/* Calculation phase */
for : =1 to 1 step —1 do
for all j < do
v =0 +; %@((%)k«)
end for
end for
/* Assignment phase */
for i =n to 1 step —1 do
Ti = Vj—n
end for

3.5. TOOLS 39

presented an incremental setup in the table because in practice only incremental setups are
used.

Up to now we always assumed no overwriting of variables, i.e. two variables never share
the same storage location. However, this can be justified only for the theoretical motivation.
In real programs usually several variables v; share one common memory location. As the
values of the intermediate variables are needed in the reverse sweep, one has to enhance the
evaluation procedure found in Algorithm 3.6 to cope with overwriting. One way is to add
load and store commands which store the values on an external file (often called tape) before
being overwritten and load them from the file before being used in the reverse sweep. The
enhanced version of the evaluation procedure of Algorithm 3.6 can be found in Algorithm 3.7.
For a more details see GRIEWANK [67].

Coming back to Algorithm 3.6 wee see easily that for the computation of 3 each elemen-
tary function is processed exactly once. This implies the following for the computational
complexity of a gradient evaluation.

Theorem 3.2. Under the assumption that for each ¢; the effort for the reverse operation ¢;
1s of the same order as evaluating the elementary function itself, i.e. there exists a constant
¢ > 0 such that for each elementary function ¢;

WORK(¢;) < ¢ WORK(¢;) (3.24)

is wvalid (which is obviously true for the functions listed in Table 3.4), then the effort for
evaluating x is of the same order as calculating z, i.e.

WORK(x) < ¢ WORK(z) (3.25)
where the constant is small.

For assembling the whole Jacobian of f m reverse propagations are needed, independently
of the number of design parameters. This makes the reverse mode very attractive for many
real life problems in large scale optimization, where the image space is usually of rather low
dimension whereas the definition space is high dimensional.

Let us now return to our model example of Section 3.2. In order to illustrate the presented
approach the evaluation procedure for the gradient can be found in Algorithm 3.8.

3.5 Tools

Up to now we concentrated mainly on the theoretical background of the forward and the
reverse mode and showed how directional derivatives and gradient information can be obtained
by transforming the original computer program into a new one. But if the transformed code
would have to be implemented by hand, this would not only be time consuming but also
pretty error-prone. Furthermore, there would be only few advantages to completely hand-
coded routines (the most important one is that it is clear which part of the derivative code
has to be changed when the code for the function evaluation changes). That is why in the
AD-community tools were developed to support this program transformation during the last
decade. Nevertheless it is necessary to understand the fundamentals of AD in order to apply
these tools efficiently.

40 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

Algorithm 3.7 General evaluation procedure of the gradient of a function, incremental setup
with overwriting of variables

/* Function evaluation to calculate values of intermediate variables */
/* Assignment phase */
for i =1ton do
Vi—n = Zj
end for
/* Calculation phase */
fori=1tol do
STORE wv;
vi = ¢ ((vk) <)
end for
/* Assignment phase */
for i =m — 1 to 0 step —1 do
Ym—i = Vi
end for

/* Reverse sweep to calculate adjoint variables */
/* Assignment phase */
for i =0tom —1do
Vl—i = Ym—i
end for
fori=1to!l—m do
v, =0
end for
/* Calculation phase */
for : =1 to 1 step —1 do
LOAD w;
for all j <4 do
vj = vj +; ,%J.@((Uk)k«)
end for
v; =0
end for
/* Assignment phase */
for i =n to 1 step —1 do
ZTj = Vj—n
end for

3.5. TOOLS

Algorithm 3.8 Evaluation trace of the gradient for a simple model example

/* Function evaluation to calculate values of intermediate variables */
/* Assignment phase */

V-1 =21 = 1.5000

Vo = T2 = 0.5000

/* Calculation phase */

v1 = v_1/vp = 1.5000/0.5000 = 3.0000
vy = sin(vy) = sin(3.0000) = 0.1411

vz = exp(vg) = exp(0.5000) = 1.6487

vg = v1 —v3 = 3.000 — 1.6487 = 1.3513
vy = vy +vg = 0.1411 + 1.3513 = 1.4924
v = U5 - v4 = 1.4924 - 1.3513 = 2.0167
/* Assignment phase */

y = vg = 2.0167

/* Reverse sweep to calculate adjoint variables */

/* Assignment phase */

vg =y = 1.0000

Vo = U1 = U9 = V3 = U4 = v5 = 0.0000

/* Calculation phase */

U5 = U5 + y - v4 = 0.0000 + 1.0000 - 1.3513 = 1.3513

Ug = Ug + ¢ - v5 = 0.0000 + 1.0000 - 1.4924 = 1.4924

Uy = U9 + U5 = 1.3513

Uy = V4 + U5 = 1.4924 + 1.3513 = 2.8437

U3 = U3 — U4 = —2.8437

U1 = Uy + 04 = 2.8437

Vo = Vo + U3 - v3 = 0.0000 — 2.8437 - 1.6487 = —4.6884

By = By + T - cos(vy) = 2.8437 + 1.3514 - (—0.9900) = 1.5059
Vo = Vg — U1 - vy /vg = —4.6884 — 1.5059 - 3.0000/0.5000 = —13.7239
-1 = 0_1 + 91 /v = 0.0000 + 1.5059/0.5000 = 3.0118

/* Assignment phase */

To = vg = —13.7239

r1 = v_1 = 3.0118

42 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

SOURCE-TO-SOURCE TRANSFORMATION

func.src func&der.src
AUGMENTATION COMPILATION
func++.src func&der.obj
COMPILATION

Figure 3.2: From function sources to object files containing derivative information

The two basic methodologies used by these tools are operator overloading and source-to-
source transformation. Even though these concepts look very different, both can be brought
into a common frame which can be found in Figure 3.2.

Both approaches start from an implementation of the function evaluation. When applying
tools based on operator overloading (e.g. ADOL-C [69], FADBAD [14]) this source has to
be augmented by hand in order to define the independent and the dependent variables as
well as the intermediate ones. Then, this augmented function evaluation is compiled using a
standard compiler.

The situation is slightly different, when using tools based on source-to-source transforma-
tion tools (e.g. ADIFOR [18], TAF [150], or ADIC [20]). Here the source of the function
evaluation is analyzed using a tool which works similar to a compiler. It analyzes the function
evaluation to set up a dependence graph. For this analysis the user has to specify the indepen-
dent and the dependent variables. Using the dependence graph these tools generate source
code of the derivatives as their output which can be compiled using a standard compiler. In
both cases the object files together with libraries delivered by the tool implementers contain
all the information needed for evaluating derivatives. In the following we want to discuss this
process using two of the tools, TAF and ADOL-C as typical examples for source-to-source
translators and tools based on operator overloading, respectively.

3.5.1 The source-to-source translator TAF

TAF, which stands short for Transformation of Algorithms in Fortran is a source-to-source
translator that generates Fortran routines out of Fortran routines. It is a commercial prod-
uct developed by Giering and Kaminsky at FastOpt (http://www.fastopt.de) and is the
successor of TAMC, the Tangent linear and Adjoint Model Compiler (GIERING [58], GIER-
ING AND KAMINSKI [61]) which is available under http://puddle.mit.edu/~ralf/tamc/.
The routines to be differentiated have to be implemented in Fortran-77 or Fortran-90, only
operator overloading is not supported. Derivatives are computed in forward mode using a
tangent-linear model or in reverse mode using an adjoint model. Additionally, a code for
products between the Jacobian and a vector or matrix can be generated.

3.5. TOOLS 43

double precision function f (x1, x2)
double precision x1, x2
double precision q, d, dummy, mysin, myexp

q=x1/x2
d = q - myexp(x2)
dummy = q * x2

f = (mysin(g) + d) * d

return
end

double precision function mysin(x)
double precision x

mysin = dsin(x)
return
end

double precision function myexp(x)
double precision x

myexp = dexp(x)
return
end

Figure 3.3: Fortran-77 code for a simple model problem

Given the independent and dependent variables of the top-level routine (all these quan-
tities are specified using command line parameters) TAF applies an inter-procedural data
dependence analysis and an inter-procedural data flow analysis to determine all code parts
which have to be differentiated and all intermediate variables for which derivatives have to
be calculated.

The principles of source-to-source transformation can be found in GIERING AND KAMIN-
SKY [59, 60]. They describe rules for deriving the adjoint statements needed which can also be
used for manual adjoint derivation. These rules form the basis for the algorithms implemented
in TAMC and TAF.

An implementation of our simple model problem in Fortran-77 as well as its derivatives
via forward and reverse mode can be found in Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6
respectively. The code for the derivatives was generated using TAMC with the commands

tamc -toplevel f -input "x1,x2" -forward func.f

44 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

subroutine g_f(x1, x2, f, g_x1, g_x2, g_g)
(C ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok k
Cx* This routine was generated by the *ok
Cx*x Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 *%
ks sk ks sk sk ok sk o ok ok sk o ok ok sk s ke sk sk s sk sk e ok sk ok sk o ok sk s s ok sk sk ke sk sk sk sk e ok sk ok sk ok ok ok sk
double precision f, x1, x2, g_g, g_x1, g_x2
double precision d, dh, fh, q, g_d, g_dh, g_fh, g_q, myexp, mysin

C __
C TANGENT LINEAR AND FUNCTION STATEMENTS
C __
g_q = g_x1/x2-g_x2x(x1/(x2*x2))
q = x1/x2
call g_hmyexp(x2,dh,g_x2,g_dh)
g_d = (-g_dh)+g_q
d = q-dh
call g_hmysin(q,fh,g_q,g_fh)
g_g = g_dx(fh+2xd)+g_fhxd
f = (fh+d)*d
end
subroutine g_hmyexp(x, myexp, g_x, g_myexp)
double precision g_myexp, g_X, myexp, X
C __
C TANGENT LINEAR AND FUNCTION STATEMENTS
C __
g_myexp = g_x*dexp(x)
myexp = dexp(x)
end
subroutine g_hmysin(x, mysin, g_x, g_mysin)
double precision g_mysin, g_x, mysin, X
C __
C TANGENT LINEAR AND FUNCTION STATEMENTS
C __

g_mysin = g_x*dcos(x)
mysin = dsin(x)

end

Figure 3.4: Fortran-77 code for the directional derivative, generated by TAMC V 5.3.2

3.5. TOOLS

subroutine adf(x1, x2, f, adxl, adx2, adg)
Qo sk sk sk ok sk ok ok ok sk ok ok ok sk ok ok ok sk o ok sk ok s ok ok sk ok ok ok sk ok ke ok sk ok ok ok ok sk ok sk ok sk ok o ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok
Cx*x This routine was generated by the *k
C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 *%
(C 5k 3k 3k 3k >k >k 3k 3k ok >k 3k 3k 3k ok >k 3k 3k 3k ok >k 3k 3k ok 5k 3k 3k ok >k 3k 3k >k 5k 3k 3k >k >k 3k 3k >k 3k 3k 3k >k 5k 3k >k >k 3k 3k >k >k >k 3k >k >k >k 3k %k >k > %k %k *k

double precision adg, adxl, adx2, f, x1, x2

double precision add, addi, adfi, adq, d, q, myexp, mysin

C __
C RESET LOCAL ADJOINT VARIABLES
C __
add = 0.40
adq = 0.40
C __
C ROUTINE BODY
C __
C __
C FUNCTION AND TAPE COMPUTATIONS
C __
q = x1/x2
d = g-myexp(x2)
f = (mysin(q)+d)*d
C __
C ADJOINT COMPUTATIONS
C __

add = add+adg*(2*d+mysin(q))
adfi = adg*d
call adhmysin(q,adq,adfi)

adfi = 0.d0
adg = 0.d0
addi = -add

adq = adg+add

call adhmyexp(x2,adx2,addi)
addi = 0.d0

add = 0.40

adxl = adxl+adq/x2

adx2 = adx2-adqg*(x1/(x2%x2))
adq = 0.d0

end

Figure 3.5: Fortran-77 code for the gradient, generated by TAMC V 5.3.2, Part 1

45

46

CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

subroutine adhmyexp(x, adx, admyexp)

(C 3k sk 3k 5k 5k ok sk sk ok ok ok ok 3k ok ok ok sk 3k ok ok ok ok 3k 3k ok ok ok 3k sk 5k >k ok ok k sk 3k ok ok ok ok 3k 3k 5k >k ok ok 3k 3k ok >k ok ok sk 3k 3k >k >k ok %k sk %k ok K

Cx*x This routine was generated by the *%
C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 *%
(C 3k 5k ok 3k 3k ok 5k ok 3k 3k ok 5k ok 3k >k ok 3k ok 3k 5k ok 3k 3k ok 3k 3k ok 3k >k ok 5k ok ok 3k >k ok 5k ok ok 3k ok 3k 5k ok ok 3k ok 3k >k >k 3k >k ok 3k >k ok %k >k >k %k >k %k %k

double precision admyexp, adx, x

adx+admyexp*dexp (x)

admyexp = 0.d0

subroutine adhmysin(x, adx, admysin)

(C 3k 5k ok 3k 5k ok 5k ok 3k 3k ok 5k ok ok 5k ok 3k ok 3k 5k ok 3k 3k ok 3k 3k ok 3k 3k ok 5k ok ok 3k >k ok 5k ok ok 3k ok 3k 5k ok ok 3k ok 3k >k >k ok >k ok 3k >k ok %k >k >k %k >k %k %k

C** This routine was generated by the *ok
Cx*x Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 *k
Gtk sk s s sk ok ks sk s s s o ko sk sk sk s s ke sk sk sk s s o ke ks s s o ok ok sk s s e ok sk sk s ke ek sk sk sk e ke sk sk sk ok ok ke sk ok

double precision admysin, adx, x

adx+admysinx*dcos (x)

admysin = 0.d0

Figure 3.6: Fortran-77 code for the gradient, generated by TAMC V 5.3.2, Part 2

3.5. TOOLS 47

and
tamc -toplevel f -input "x1,x2" -reverse func.f,

respectively. In the implementation of the function evaluation we added a dummy variable,
which depends on the input variables but does not influence the output quantities. When
the function evaluation is compiled, an optimizing compiler detects this fact and does not
generate code for this statement. TAMOC applies similar data flow and data dependence
analysis and also detected this fact. That is why it does not generate any derivative code for
this unnecessary statement.

3.5.2 The operator overloading package ADOL-C

ADOL-C (GRIEWANK ET AL. [70, 69]) which stands short for Automatic differentiation by
overloading in C++ is one example for AD-packages based on operator overloading. It is
developed by the group of Griewank at the Technical University of Dresden and is available
free of charge under http://www.math.tu-dresden.de/wir/project/adolc/index.html.
The routines to be differentiated have to be implemented in C or C++, the augmented code
is C++ code. The package facilitates the evaluation of first and higher order derivatives.
The resulting derivative evaluation routines may be called from C/C++, Fortran, or any
other language that can be linked with C. For scalar-valued functions ADOL-C provides easy
to use drivers for function and gradient evaluation as well as Hessian times vector products
and Hessian evaluation. For vector valued function besides function and Jacobian evaluation
routines also products between a vector and the Jacobian are available.

In order to get derivative information the code must be augmented in the following sense:
First the active region containing the function evaluation has to be specified. The key ingre-
dient of all AD packages using operator overloading is the concept of active variables. Within
the active region, all variables depending directly or indirectly on the independent variables
have to be replaced by active variables. In ADOL-C this is realized by replacing the corre-
sponding double variables by variables of the type adouble. For these variables derivative
information is generated. To complete the augmentation of the code, the dependent and the
independent variables have to be specified. Special care has to be taken on the taping of
conditional statements, but we do not want go into details here (see GRIEWANK ET AL. [69]).

During the evaluation of the active region the overloaded operations for the type adouble
record all the operations within the active region where active variables are involved on a so
called tape. This tape is used by an interpreter to evaluate the function, gradients, etc. These
evaluations only use the tape, no more the augmented function. That is why it is possible to
generate a tape using one program and to use the function defined by the tape for example
as objective of an optimization within another.

In order to illustrate this let us look at our simple model example. An implementation in
C can be found in Figure 3.7. It is more or less a transcript of the Fortran implementation in
Figure 3.3. For brevity we removed all necessary preprocessor statements and pre-declarations
needed to get the code fragment to compile. Figure 3.8 contains the augmented code. We
assumed that f contains the top-level function to be differentiated. It can be seen that the
two code fragments differ only sightly in the evaluation itself. The main difference is that all
intermediate variables were changed from double to adouble. Additionally in the top-level
function the dependent and independent variables as well as the active region have to be
specified.

48 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

double f (double x1, double x2)

{
double q, d, value;

x1l / x2;
q - myexp(x2);

q
d

value = (mysin(q) + d) * d;

return value;

double mysin(double x)
{

double value;

value = sin(x);
return value;

}

double myexp(double x)
{

double value;

value = exp(x);
return value;

Figure 3.7: C code for a simple model problem

3.5. TOOLS

double f (double dx1, double dx2)

{
trace_on(1234); // the active region starts here
adouble x1, x2;
xl <<= dx1; // define x1 and x2 as
x2 <<= dx2; // independent variables
// define all intermediate variables as active
adouble q, d, value;
q = x1 / x2;
d = q - myexp(x2);
value = (mysin(q) + d) * d;
double dummy;
value >>= dummy; // define dependent variables
trace_off (1234); // the active region ends here
return dummy;
}

adouble mysin(adouble x)

{
adouble value;
value = sin(x);
return value;

}

adouble myexp(adouble x)

{
adouble value;
value = exp(x);
return value;

}

Figure 3.8: Augmented C++ code for a simple model problem

49

50 CHAPTER 3. AUTOMATIC DIFFERENTIATION, AN INTRODUCTION

void main ()

{
double x[2], f, grad[2];
x[0] = 1.5; // initialize the parameter
x[1] = 0.5;
// evaluate the function
function (1234, 2, x, &f);
// evaluate the gradient
gradient (1234, 2, x, grad);
}

Figure 3.9: Function and gradient evaluation for a simple model example in ADOL-C

When the tape is generated it can be used as a replacement for the function evaluation
itself as the evaluation drivers only take the information on the tape. A code fragment in C
for evaluating the function and its gradient can be found in Figure 3.9.

Chapter 4

A Black-Box Strategy Using an
Elimination Approach

4.1 Introduction

Optimal design problems are often divided, accordingly to their number of design param-
eters, into problems with few design parameters (maximal dimension of the design param-
eter vector q is approximately 100) and into problems with very large design spaces (e.g.
dim(q) ~ dim(u)). In this chapter we want to present a strategy suitable for rather few
design parameters only. The objective and constraints can be more or less arbitrary, but
smooth. We restrict ourselves to elliptic state problems, but remark on the changes for time-
dependent state problems where necessary. The next chapter will deal with the situation of
having many design parameters. The method presented there differs considerably, although
common aspects exist which will be discussed there.

In order to illustrate the method we use a model example — the minimization of the mass
of the frame of an injection moulding machine under constraints on the deformation and
stresses. This real life example shall also demonstrate the applicability of the method in an
industrial design process. There, mainly two goals have to be fulfilled:

e On the one hand, tools are needed which are flexible enough to handle the various re-
quirements. Nevertheless, they have to be robust to produce reliable results. Especially
it is desirable to spend only a little work on modifying the code, when the requirements
change.

e On the other hand, these tools have to be fast. Up to now, design changes are often made
by engineers by hand following mainly their experience and intuition. Unfortunately,
due to lack of time, this process has to be stopped after a few iterations, in most
cases only two or three. Then, the best design obtained so far, is taken. Fast tools
automatizing some parts of the design process strongly accelerate the design process
itself, and by far more design drafts can be considered.

This chapter will begin with the introduction and modeling of our model problem, fol-
lowed by the corresponding optimal design problem. By using a solution operator for the
state problem this optimal design problem can be transformed into an equivalent optimiza-
tion problem which is easier manageable by the optimizer. Additionally, extensions to the

o1

52 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

Figure 4.1: Cross section of the original shape

general SQP-frame presented in Section 2.2 are introduced which remove the demand for
second order derivatives of the Lagrangian. The main part of this chapter is devoted to
gradient and sensitivity calculation. Since implementing analytic derivatives is rather error
prone and an improper approach for an industrial design process, various alternatives are pre-
sented, analyzed, and compared to each other. Besides finite differences, the direct and the
adjoint sensitivity method, several approaches using automatic differentiation are presented.
A numerical comparison of some of the presented approaches concludes this chapter.

4.2 Model example: Optimal sizing of a machine frame

The frame of an injection moulding machine is briefly sketched by its 2D-cut {2 given in
Figure 4.1. For a frame of homogeneous thickness, typical dimensions are:

e thickness of one plate: 180 mm

e mass of one plate: 3.8 tons

clumping force (surface force): 300 tons = 16 N/mm?

length: 2.8 m

height: 1.7 m
e 2 supporting areas

The primary goal of the design phase is to minimize the mass of the frame of the injection
moulding machine. Several other requirements have to be fulfilled in addition, e.g.

vM

e maximal v. Mises stress: '™ < oM |

ten

e maximal tensile stress: o' < oten

4.2. MODEL EXAMPLE: OPTIMAL SIZING OF A MACHINE FRAME 53

e shrinking angle of the clumping unit (vertical edges on top, called wings): a < amax,
e handling of the machine or the feeding mechanism,
e easy and cost efficient manufacturing.

For the definition of the v. Mises stress and the tensile stress see e.g. ZIEGLER [162].

Some of these constraints can be integrated into the optimization procedure directly (e.g.
restrictions on the stresses), whereas others like the easy manufacturing have to be considered
in a post-processing step.

In order to evaluate the stresses o, the displacement field u of the frame under some load
F has to be known.

For a fixed thickness ¢(z) € @, the displacement field u(x),z = (z1,22) € Q, fulfills

a(q; u,v) = F(v), Voel, (4.1)

with
8ui 8’Uk

a(q;u,v) = — FE;ijpy — dx, F(v =/ v ds
(q) Qqaxj Gkl 9z, (v) FNQ

where E;ji; denotes the elasticity tensor and g the surface force density on a part I'y of the
boundary. Volume forces are neglected. u and v are assumed to be in

U= {ve[H () |v=0o0nTp,meas 'p >0} (4.2)

(set of admissible displacements) where 9Q =TpUTxN, 'p =Tp and Tp NTx = (.
Eijkl is given by
Eijky = Xoij0pr + p(0indj1 + 0idjk), (4.3)

where §;; denotes the Kronecker-Delta and X, p# denote Lame’s constants. These can be
calculated from Young’s modulus £ and Poisson’s ratio v by

Fv FE

S (T A ()

(4.4)
In (4.1) we have assumed that
e a generalized plane stress problem is considered, i.e. we consider a body 2 as a plate
that is thin in z3-direction (compared to the other coordinate directions) and that can
carry stresses only parallel to the zi-zs-plane, and
e the applied surface tractions are independent of z3, i.e.

g(l‘) = (gl(f),QQ(f)),

and therefore, there is no displacement in z3-direction and the other two displacement
components are also independent of x3.

54 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

The design problem can be stated as follows:

/ q¢(z) dz — min
Q

(u,q)€EUXQ
subject to a(q;u,v) = F(v), Vovel,
o M(u) < oM a.e. in Q, (4.5)
o (u) < ofen a.e. in €,
a(u) < amax,
0<¢g<q<yq, a.e. in Q.

o"M(u) denotes the v. Mises stress, c* (u) the tensile stress in the frame, ¢, € R¥. The
change in the shrinking angle of the clumping unit (vertical edges on top, called wings) is
denoted by a(u).

For discretizing the problem, we use triangular finite elements with piece-wise constant
shape functions for approximating ¢ and piece-wise quadratic ones for approximating u. In
many situations it is additionally assumed that ¢ is constant in certain non-overlapping sub-
regions ;. We denote the discrete approximation of ¢ and u by ¢, and u, where g, € Qp,
and uy, € Up,.

Summarizing all those considerations, the discretized optimization problem can be formu-
lated as follows:

/ qn(z)dz — min
Q (un,qn)EURXQp

a(gn; up,vp) = F(vp), V vy, € Up,

o™M(up) < o¥L (4.6)
J‘cen (u

S

~—

2

£

N
IAIA A IA

ten
max?

S

>
~—

maxy

<q,

=]
A
BN
2 9

where 0, denotes the discretized domain.
Choosing bases

q):(qsla"'aqsm)TEUh and Z:(Jla"'agn)Tth (47)
of the finite dimensional spaces Uy, and @), we may represent (up,q,) € Uy X Qp, via
u,=u’®, gq,=q'% (4.8)

with coordinate vectors u € R™ and q € R”. This allows us to rewrite (4.6) in matrix-vector
form as

m q— min
(u,q)ER™ xR™
K(qgju=F
M(u) < oy (4.9)
N) < oleh,
a(u) < amax
0<gq¢<q<yq,

4.3. A BLACK-BOX STRATEGY FOR OPTIMAL DESIGN 5%)

with the symmetric positive definite, large, sparse stiffness matrix K and the vectors m and
F. The constraints on "M, o*" and q have to be understood component-wise.

In our application, the upper limits on the angle and the stresses are either treated as
constraints or as soft limits, which can be violated to some extent, if the mass would be
severely smaller then. Furthermore, the pointwise constraints on ¢"™ and o are replaced

by using a higher order /Z norm
IVl =P/ Lol

Treating the upper limits as soft constraints leads to the following reformulation:

m” g + w (max (|o*™M(u) |, — o3, 0))
2

+w (max (0" ()l — o35ay: 0))

max’
2 .
+ a u) — ,0 — 4.10
w3 (max (a(u) — max, 0)) (u’q)renﬁngn (4.10)
K(qu=F
0<g<aq<qg
where w;,7 = 1,...,3 denote user-chosen factors of influence. Note that this modification

leads to an objective in C'. It looks similar to a penalty formulation of the constraints, but
the weights w;, i = 1,...,3 are kept fixed during the iteration and do not tend to infinity like
in penalty methods. Therefore, the problem of ill-conditioning of the Hessian is avoided.

Usually, the state equation in (4.10) is not fulfilled exactly as iterative solvers are used.
Then, it is necessary to adopt the convergence criterion of the iterative solver to the dis-
cretization parameter h. As long as the difference between the exact discrete solution and
the approximate solution calculated by the iterative solver is of the same order as the ap-
proximation of the continuous solution by the used discretization scheme, we do not have to
pay special attention to the iterative solver. The exact discrete solution and the approximate
solution are both approximations of the solution of the continuous problem of the same order.
From now on, we will always assume this, and therefore, we will not distinguish between the
exact discrete solution and the one calculated by an iterative solver.

4.3 A black-box strategy for optimal design

From the optimization’s point of view the problem (4.10) is a special case of

J(u,q) — min
(.q) (u,q)€R™ xR™
F

(4.11)

IA

subject to K(q)
q

AN
=l

u
q)
where q denotes the vector of design parameters and u the solution of the governing finite
element (FE) state equation. The splitting of the parameter vector into design parameters
q and the solution of the state equation u is typical for problems for optimal design. From
the optimization’s point of view the discretized state equation can be interpreted as equality
constraints. For our model example it is linear with respect to u and K(q) is symmetric

56 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

and positive definite for all admissible parameters q. We introduce a solution operator S(q)
fulfilling
S:q+ u(q) with K(q)u(q) = F(q). (4.12)

For a general nonlinear state equation e(u,q) = F the solution operator can be defined
in an analogous way. Also for time dependent state problems a solution operator can be
introduced. We want to remark, that such an operator does not always exist (e.g. for our
model problems, if ¢;, vanishes on several neighboring elements). But from now on, we always
assume the existence of S(q) for all admissible q.

Using this solution operator, we can eliminate u formally which leads to

J(a) = J(S(q),q) = min
aer (4.13)
subject to g<q<7q.

Since we want to use a standard SQP method for optimizing the problem, the formulation
(4.13) is advantageous compared to (4.11) as it has much fewer parameters. This relies on
the fact, that standard implementations of the SQP method are based on linear algebra with
dense matrices.

On the contrary to the presentation in Section 2.2 standard SQP methods do not use the
Hessian of the Lagrangian. They replace it by approximate Hessian information, e.g. using
a Quasi-Newton approximation formula. Our code uses a modified BFGS update formula
following POWELL [122] in order to avoid the need for second derivatives of the objective.
The quadratic subproblem is solved by a range space based QP method (c.f. GILL, MURRAY,
AND WRIGHT [63]) combined with an active index set strategy. Other alternatives would be
e.g. null-space based QP methods or the dual method of GOLDFARB AND IDNANI [65] which
is used for instance in the code of SCHITTKOWSKI [137]. The main advantage of the latter
compared to the other two is that it does not need a feasible start point.

We use a line search procedure for globalizing our SQP method, which uses an exact
penalty function

Op(q) = J(q) + Y _ 7} max(g; — 7,0) + o} max(q — g;,0) (4.14)
7j=1

with suitable chosen penalty parameters 69?, af as merit function (c.f. HAN [78]). As usual,

¢; denotes the i-th component of q in (4.14), ¥ denotes the iteration index.
A short sketch onto a model SQP algorithm for solving

J(q) — min
qer™ (4.15)
subject to c(q) <0

is given in Algorithm 4.1.

4.4 Calculating gradients

Using a Quasi-Newton strategy and update formulas within the SQP method as proposed in
the section before, the remaining main problem is the calculation of gradients for the objective
and the constraints. As the problem was transformed into a problem with box constraints

4.4. CALCULATING GRADIENTS o7

Algorithm 4.1 SQP model algorithm
Require: A suitable starting point qq

Bo=1
go = grad J(qo)

/* linearize constraints, = denotes a first order approzimation */
c(qo +8)=Ayd + by
k=0

while not converged do
/* Calculate search direction s, */
Solve
%ST B.s+ g{ S — ming

under the constraints Ays < —b, — A, qx

/* Line search procedure */

Calculate ay, € (0, 1] as large as possible such that
D (ar) + pro @ (ar) < Pr(ar + agsk) < Pr(qr) + poak D) (qk)
with 0 <y < % < po < 1 with a suitable merit function @y

/* Update several quantities */
Ak+1 = Qi + O Sk
8k+1 = grad j(CIk-H)
c(Qpt1 + 6)=Ag110 + by
Update Hessian approximation — By
k=k+1
end while

58 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

only, routines providing analytic gradients for these constraints can be implemented easily.
But for the objective, the implementation of an analytic derivative is by far too complicated
and time consuming. Furthermore, it would not be well suited for the use in a design process,
as we would loose the flexibility of the code completely. That is the reason why we have to
think of alternative methods for calculating the gradients.

Several methods are presented and compared to each other in this section. On the one
hand we have black box methods like finite differences or automatic differentiation (c.f.
GRIEWANK [67]), on the other hand, methods exploiting the special structure of the state
equation are available, e.g. the direct method or the adjoint method (c.f. HASLINGER AND
NEITTAANMAKI [81]).

As none of these methods is well suited for an industrial design process, a hybrid method
combining automatic differentiation and the adjoint method is developed.

4.4.1 Finite differences

If no analytic derivatives of a function can be implemented due to the high complexity then
an approximation by finite differences is often the first idea. One approximation is the central

difference quotient
z+h)— f(z—h

The choice of the increment h is rather critical for getting accurate results and depends on
estimates of the third derivative of f.

In order to improve the accuracy of finite differences, extrapolation methods can be used.
For an initial increment H the sequence

(4.16)

D f, D f, Dy foooo D foo. (4.17)
2’L

is calculated and extrapolated for ¢ — 0o. These methods return not only a value for the

derivative, but also an estimate of the accuracy of that value which can be used for controlling

the order of the extrapolation scheme (c.f. STOER [143] or DEUFLHARD AND HOHMANN [46]).
The main properties are summarized as follows:

e Two function evaluations are needed per difference quotient and in most cases several
difference quotients are needed in order to reach the desired accuracy of the derivative.
Furthermore, the number of function evaluations is proportional to the number of design
parameters. Due to the high effort finite differences are only well suited for problems
with few design parameters.

¢ Finite differences can easily be used for very complex functions, as they do not rely on
any special properties. On the other hand they can not exploit any special properties of
the function which makes the use of finite differences rather inefficient in certain cases.

e From the user’s point of view finite differences are very flexible. Changes in the desired
objective imply only a re-implementation of the function calculating the objective. Time
consuming changes of the gradient routine do not appear, which is especially important
for the acceptance of such a method in an industrial design process.

e The possible use of iterative methods for solving the state equation is very important
for our problem as the number of parameters in the state equation may be rather large.

4.4. CALCULATING GRADIENTS 99

As finite differences do not rely on any special properties of the function the coupling
with iterative solvers can be done without any problems.

4.4.2 Automatic differentiation

Compared to finite differences, AD follows a completely different approach. Finite differences
try to approximate the derivative and therefore do not provide accurate results, whereas AD
methods incur no truncation error at all and usually yield derivatives with working accuracy.
Starting point is a computer program that calculates numerical values for a function. First,
a symbolic evaluation graph mapping the design parameters to the function values is built.
Like symbolic differentiation, AD operates by systematic application of the chain rule, familiar
from elementary differential calculus. However, in the case of AD, the chain rule is applied
not to symbolic expressions, but to numerical values. By using all the intermediate results
generated by the function evaluation, the exponential growth of the evaluation complexity
of symbolic differentiation can be avoided, as many common subexpressions can be used
repeatedly when the gradient is evaluated at any particular point. Furthermore, optimizations
made for the function evaluation also pay off for its derivative. Details on how the AD
technique works, as well as many related issues on calculating higher order derivatives can be
found in GRIEWANK [67]. A short introduction into the methodology of AD is presented in
Chapter 3.

Two different kinds of tools are known in the AD community: The first group is based
on source-to-source transformation, e.g. ADIFOR (c.f. BiscHOF, CARLE, KHADEMI, AND
MAUER [19]) written for FORTRAN codes , of TAF (http://www.fastopt.de) written also
for FORTRAN codes. The other group is based on evaluation graphs generated at runtime,
e.g. ADOL-C written for C and C++ codes (c.f. GRIEWANK, JUEDES, AND UTKE [70]). As
our finite element code is completely written in C++ and uses heavily virtual inheritance,
source code transformation tools can not be used. It has to be mentioned, that some of the
properties of AD listed in the following rely on the use of runtime tools.

e ADOL-C needs a file containing the evaluation graph in a symbolic form for evaluating
the function and its gradient. This file is generated at runtime. For optimal design
problems, huge memory and disk capabilities are required for that purpose. Due to the
need of an evaluation graph, ADOL-C can only be applied to functions of moderate
complexity. The limiting factor is not the inherent complexity of the function itself, but
the size of the generated files and the time needed for reading and writing the data. To
give an example, the files storing the evaluation graph for our model problem discretized
with about 450 design parameters and about 7500 DOF's in the FE state equation needs
about 1 GB of disk space.

e The flexibility of AD with respect to changes in the objective is similar to finite differ-
ences. Changes in the objective need only a re-implementation of the objective function,
but no changes in the gradient routine when runtime tools are used. Sometimes, special
care has to be taken for a correct generation of the evaluation graph, especially in the
context of conditional statements.

e AD using ADOL-C is a black box method. The use of the evaluation graph is a drawback
of the method, especially when debugging is needed. This is compensated to some extent
by the good runtime behavior of the method. For the reverse mode (c.f. Section 3.4),

60 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

the calculation time of the gradient is independent of the number of design parameters
and takes the time of about 15 — 20 native C++ function evaluations as long as the
evaluation graph can be stored in the main memory of the computer. Compared to the
use of finite differences, this is a tremendous speedup, even for problems with only 10 —
20 design parameters.

e The coupling of AD with iterative solvers is a problem of current research (see e.g.
GRIEWANK [67] and references therein). Since the use of iterative methods (e.g. mul-
tilevel methods) is important for solving fine discretizations of the state equation effi-
ciently, the applicability is limited to problems, where direct solvers can be used.

4.4.3 Direct and adjoint method

The direct and the adjoint method are both well-known in the shape optimization community
(see e.g. HASLINGER AND NEITTAANMAKI [81]) and take into account the special structure of
the state equation. They differentiate the state equation with respect to a design parameter
q;. For our model example, this leads to

K OF K
dq; Oq;i Iqi

(4.18)

For the direct method, (4.18) is solved numerically using the same methods as for the state
problem itself. Then the gradient of the objective can be calculated by

dJ _0J | ,0J Ou

S = T (2,). 4.19
dg; 0Oq; <3u 3qz'> (4.19)

On the contrary to the direct method, the adjoint method solves (4.18) formally and
inserts the result in (4.19) which leads to

dJ aJ 0J OF 0K
— = KT ————u 4.20
dg; g (du dq; g > (4:20)
For a general state equation
e(u,q) = F

the situation is slightly more difficult. Here, we introduce a solution operator for the linearized
state problem (linearized with respect to u) of the form

Sin(@) = (%) (421)
1inlq) = ou . .
For the direct method we get the representation

ou OF Oe

— =Sjiy - [— - — 4.22

o <3qz' 3%‘) (422)

and calculate the gradient of the objective using (4.19). For the adjoint method, we insert
the formal representation of g—; into (4.19) which leads to

dJ aJ 0J OF Oe
= sk = = - 4.23
a0~ o (o Do -) (4.23)

4.4. CALCULATING GRADIENTS 61

instead of (4.20).

We want to mention that for time dependent state problems Sy;;, represents a forward inte-
gration of the linearized state equation in time with given initial values, whereas Slj;n represents
a backward integration of the linearized state problem with given final values. If the state
equation is non-linear with respect to u the adjoint method needs the complete evaluation
trace of the forward integration to evaluate S;‘irn. This usually results in huge memory require-
ments for storing the values of the forward run. For an alternative using a check-pointing
strategy, i.e. storing only a view intermediate values and recalculating the remaining ones,
see e.g. GRIEWANK [66], GRIEWANK AND WALTHER [71], or CHARPENTIER [36].

In the following the main properties are summarized:

e The direct method needs one solution of the state equation per design parameter,
whereas the adjoint method needs the solution of one adjoint problem for the objective
and in principle for each constraint. As K is symmetric in our case, the effort for solv-
ing the adjoint problem is the same as for solving the state equation itself. Depending
on the number of design parameter and constraints, the better suited method can be
chosen.

e As analytic partial derivatives of J with respect to q and u are needed (g—é, %, %—Ig,
%), both methods can only be applied to simple objectives, where this can easily be
done. Furthermore, the flexibility of the method suffers from the need of hand-coded
gradient routines.

e Compared to finite differences or the use of AD for the whole function, this approach
is much faster. Finite differences need much more solutions of the design problem,
compared to AD the huge evaluation graph which originates mainly from the solution
of the state equation is avoided.

e Any solver can be used for solving the state problem, especially the use of iterative
solvers like conjugated gradient methods with multilevel preconditioning is appropriate.

4.4.4 Hybrid method

Comparing the methods presented in the last two sections, it can be seen that the strengths of
these methods lie in completely different areas. AD provides very high flexibility with respect
to the used objective, but has severe drawbacks with respect to memory requirements of the
used computer, the use of iterative solvers for the state equation and with respect to longer
runtime. In contrast, the direct and the adjoint method can be combined easily with iterative
solvers and provide a fast way for calculating the needed gradients, but they lack from the
needed flexibility. Hence, we combine both approaches into a new hybrid method.

The main drawback of the direct or the adjoint method is the need of analytic partial
derivatives of the objective and the constraints with respect to q and u. But these derivatives
can easily be provided by using AD. Then, only %—Ié and ‘g—g remain, for which hand-coded
routines have to be implemented or AD can be used. For optimal sizing problems, these
routines can be hand-coded easily. Furthermore, they do not depend on the specific problem
which justifies the additional effort for coding even for complex state problems.

62 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

_/

Figure 4.2: Frame with 24 sub-domains

Finite Diff. | Pure AD | Hybrid M.

Problem Nr. of design params 24 24 24
dim. Nr. of elements (quad.) 3981 3981 3981
DOFs of state equ. 16 690 16 690 16 690

Optimizer Iterations 83 100 100
statistics Function evaluations 19752 315 236
Gradient evaluations 84 101 101

Runtime Total CPU time 124 h 4.88 h 0.39 h
Total elapsed time 12.6 h 8.42 h 0.40 h

Elapsed time | Optimizer 0.01 h 0.03 h 0.01 h
Function evaluation 0.23 h 2.36 h 0.20 h

Gradient evaluation 12.40 h 6.00 h 0.18 h

Table 4.1: Comparison of the runtime for various differentiation strategies

4.5 Numerical results

In the following, some numerical results for the problem stated in Section 4.2 are presented.
They were calculated on an SGI Origin 2000 with 300 MHz.

At the beginning, we tried to use only a few design parameters. Therefore, we divided our
domain into a number of sub-domains (see Figure 4.2) and approximated the thickness with
a constant function in each sub-domain. The state equation was discretized using triangular
finite elements with quadratic FE functions.

For evaluating the gradient, either finite differences, a pure AD approach or the hybrid
method were used. For a better comparison, the calculation was terminated after a fixed
number of steps (the run using finite differences terminated earlier because the search direction
was no descent direction anymore). Detailed results can be found in Table 4.1. All three
methods lead to a similar design with about 5 % reduction of the mass compared to the

4.5. NUMERICAL RESULTS 63

Figure 4.3: Optimized thickness distribution for 24 sub-domains

starting configuration (which is the current design of the frame). The optimized thickness
distribution can be seen in Figure 4.3 (the darker the color, the thicker the frame), Figure 4.4
shows the distribution of the van Mises stresses in the optimized frame (the lighter the color,
the higher the stresses).

It can be seen in Table 4.1 that for a few design parameters the main effort consists in solv-
ing the FE state equation, respectively calculating the gradient of the objective. Compared to
finite differences and the pure AD approach, the hybrid method is much faster, as it combines
a fast function evaluation and a fast gradient evaluation. The gradient evaluation is the main
drawback of finite differences. For the pure AD approach we had to implement additional
safeguards. In order to detect when a regeneration of the evaluation graph was necessary, we
compared the value of the objective using the evaluation graph with the value using a native
C++ implementation which explains the longer runtime of the function evaluation.

In order to find a better suited splitting of the domain in few sub-domains we increased
the number of sub-domains to about 450. We used the coarsest grid of our FE triangula-
tion also for discretizing the thickness distribution (c.f. Figure 4.5). For solving the design
problem, each coarse grid finite element was subdivided into 16 elements using 2 levels of
uniform refinement. On this refined triangulation the state equation was discretized using
finite elements with quadratic FE functions. As finite differences are no more suitable for this

number of design parameters, Table 4.2 contains only results for the pure AD approach and
the hybrid method.

The values reported for the evaluation graph have the following meaning: Independents is
the number of independent variables of the function differentiated automatically, dependents
the number of dependent ones (there is only one dependent variable, as only the objective
is differentiated using ADOL-C). Operations gives us the number of arithmetic operations in
the evaluation graph, mazlive the maximal number of active variables (maximal number of
variables allocated at one point of time during the evaluation of the objective), valstacksize
the number of intermediate results which have to be stored in AD’s reverse mode.

64 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

Figure 4.4: Van Mises stresses for 24 sub-domains

- VAVAVAVAVAVAVAVA
OOOORRSPRE

ZREOBETRD
O AR ACRILEY

AVAY

Q)
AN o N AVANVAS CYAVAVAR L TAaY,
'%AV‘“V#V%&%'%V%%@%‘V
V4

X
BEK

<
>
A

Figure 4.5: Frame with 449 sub-domains

4.5. NUMERICAL RESULTS 65

Pure AD | Hybrid M.

Problem Nr. of design params 449 449
dim. Nr. of elements (quad.) 1796 1796
DOFs of state equ. 7518 7518

Evaluation Independents 449 9314
graph Dependents 1 1
Operations 45521797 1399910

Maxlive 540 302 28 140

Valstacksize 51995116 1644 461

Total file size 953 MB 32.4 MB

Optimizer Tterations 800 800
Statistics Function evaluations 5811 3744
Gradient evaluations 801 801

Runtime Total CPU time 32.3 h 3.73 h
Total runtime 38.5 h 3.76 h

Elapsed time | Optimizer 4.0h 1.93 h
Function evaluation 16.5 h 1.29 h

Gradient evaluation 18.0 h 0.54 h

Table 4.2: Comparison of the runtime for many design parameters

The optimized thickness distribution can be seen in Figure 4.6, the corresponding stress
distribution in Figure 4.7. Analyzing the runtime behavior of the two methods in Table 4.2, it
can be seen that the pure AD approach is no more competitive due to the large file containing
the evaluation graph. Furthermore, it can be seen that for the hybrid approach the optimizer
needs already a considerable amount of the total runtime.

In Table 4.3 we compared the runtime of the hybrid method for different discretizations
of the state and design space. It can be seen that the relative amount of the runtime needed
by the optimizer even grows when using more design parameters as the complexity of one
optimization step is proportional to (dimq)? (due to the use of dense matrix linear algebra),
whereas the complexity of solving one FE state equation is proportional to dimu (if solvers
with optimal complexity e.g. the conjugate gradient method with appropriate multigrid or
multilevel preconditioning are used).

For comparison to the results in Figure 4.6 and Figure 4.7, the thickness distribution was
discretized using about 1100 design parameters (see Table 4.3). The optimized thickness dis-
tribution and the corresponding distribution of the v. Mises stresses can be found in Figure 4.8
and Figure 4.9 respectively. The main problem using this large number of design parameters
is the runtime needed by our optimization module, which dominates the time needed by all
function and gradient evaluations completely (about 90 % of the runtime, about 18000 DOF's
of the FE state equation). In the next chapter we will develop a method which can also cope
with even larger numbers of design parameters.

66 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

Figure 4.6: Optimized thickness distribution for 449 sub-domains

Figure 4.7: Van Mises stresses for 449 sub-domains

4.5. NUMERICAL RESULTS

Hybrid M. | Hybrid M. | Hybrid M.

General Nr. of design params 449 449 1078
Nr. of elements 1796 7184 4312

DOFs of state equ. 7518 29402 9028

Evaluation Independents 9314 36 586 22 368
graph Operations 1399910 5578 270 3361017
Total file size 32.4 MB | 129.2 MB 77.9 MB

Runtime Tterations 800 800 2200
Total CPU time 3.73 h 14.01 h 104.0 h

Total runtime 3.76 h 14.12 h 105.1 h

Elapsed time | Optimizer 1.93 h 2.64 h 90.3 h
Function evaluation 1.29 h 8.13 h 9.8 h

Gradient evaluation 0.54 h 3.35 h 3.9 h

Table 4.3:

Scale up of the hybrid method in design and state space

Figure 4.8: Optimized thickness distribution for 1078 sub-domains

67

68 CHAPTER 4. A BLACK-BOX STRATEGY USING AN ELIMINATION APPROACH

Figure 4.9: Van Mises stresses for 1078 sub-domains

Chapter 5

An All-At-Once Approach for Large
Design Spaces

5.1 Introduction

In the previous chapter we introduced a method which is very flexible due to the use of AD.
On the other hand problems with respect to the runtime appear if the number of design pa-
rameters increases. As early as about 1000 design parameters the method reaches practically
its limits as one optimization run takes about 4 days computing time (c.f. Table 4.3). In
the current realization, increasing the number of design parameters to 2000 would let the
computing time increase about by a factor of 16 resulting in 2 months computing time.

Analyzing the runtime behavior of the black-box strategy presented in Section 4.3 in more
detail one observes the following;:

e The solution of the state problem can not be significantly improved any more. When
using a multilevel preconditioned CG method for solving our state problem the order of
complexity of our solver would be optimal. We currently use a sparse direct solver as
preconditioner in our CG method. Additionally, we update the preconditioner, i.e. fac-
torize the current stiffness matrix, only when the number of CG steps exceeds a certain
limit, otherwise we use the factorization of a previous stiffness matrix as preconditioner.
This explains the non-optimal increase in the runtime for function and gradient eval-
uation in Table 4.3 as both need the solution of the state problem, respectively of the
adjoint linearized state problem.

e The optimizer itself can only slightly be improved. The most time consuming part —
solving the QP problem — already uses update formulas for a faster calculation of the
basis of the range space when constraints are added or removed.

The main reason for the strong increase in the runtime when increasing the number of design
parameters is inherent in the used optimization strategy and is twofold:

e On the one hand, by introducing a solution operator it is necessary to solve the state
problem in each function evaluation, i.e. the state variable is always admissible with
respect to the state equation. This calculation is rather easy for state problems linear
in the state variable u, but can be highly time consuming for nonlinear state problems.

69

70 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

Additionally each gradient evaluation of the objective needs one solution of a problem
adjoined to the linearized state equation.

e On the other hand, the introduction of a solution operator S and formal elimination
of the state variable as presented in Section 4.3 destroy the sparsity structure of the
underlying optimal design problem in most cases. This can be explained as follows: Let
us consider the optimization problem

J(u,q) — min
(u,q)ER™ xR™ (5_1)

subject to e(u,q)=F

where e(u,q) = F denotes the state equation. Additionally, assume that the Hessian
of the Lagrangian
L(u,q) = J(u,q) + A" (e(u,q) - F) (5.2)

and the Jacobian of the state equation e(u, q) are sparse. These are assumptions which
are fulfilled very often for optimal design problems. When applying the strategy pre-
sented in the previous chapter, we introduce a solution operator S for the state equation,
which is usually not sparse anymore. For the model problem treated in the previous
chapter S = K~'(q) F(q) holds. Then the Hessian of the reduced problem

J(a) = J(S(a).q) — min (5.3)
with
e(S(a),q) =F (5.4)

is given by

Veal = VaqL — VauL Sin Ve —

5.5
(Vqe)" Sh, VagL+ (Vqe)" Si, VauL Sin Ve (5:5)

lin lin

where Sj;, denotes the solution operator of the linearized state problem with respect to
u, and S{‘irn denotes the solution operator of its adjoint problem. As Sy, is usually not
sparse (c.f. Section 4.3), the Hessian of J, the objective used in the approach of the
previous section, is usually dense. This does not matter, as long as the design space is

small, but is a severe problem when the design space becomes large.

As a consequence a different approach without introducing a solution operator is used. This
all-at-once approach considers the optimal design problem in the product space U x Q of state
space U and design space). The state equation is no more eliminated formally but treated
as an equality constraint during the optimization.

We will begin this chapter by introducing a simple model problem in Section 5.2. This
parameter identification problem has the same structure as an optimal design problem, but
usually simpler objectives are used. We will continue with the presentation of the optimiza-
tion procedures in Section 5.3. An analysis of the well-posedness of the occurring quadratic
programming subproblems as well as an overview over the necessary preliminaries is also
presented. Section 5.4 deals with the discretization, Section 5.5 and Section 5.6 with the
numerical realization of the presented algorithm. As we use an iterative scheme, we describe

5.2. MODEL PROBLEM: PARAMETER IDENTIFICATION 71

also several ways of preconditioning the occurring equation systems. Section 5.7 presents nu-
merical results showing the potential of this approach for problems with large design spaces.
At the end of this chapter we will discuss how this method can be applied for optimal de-
sign problems, which changes are necessary and which problems occur there, as well as some
approaches how to handle these problems.

5.2 Model problem: Parameter identification

Since distributed parameters have to be determined from indirect measurements in many
applications that are modeled by PDEs, parameter identification has become an important
part of mathematical modeling. One of the main characteristics of the majority of these
problems is that they are ill-posed, i.e. the parameter does not depend on the data in a stable
way. As the data can not be measured exactly in practice, regularization methods have to
be used in order to obtain a stable solution in the presence of data noise. We do not want to
focus here on the various aspects of regularization but refer to the literature (see e.g. ENGL,
HANKE, AND NEUBAUER [50] or KIrscH [99]). Furthermore, the analysis with respect to
convergence to the exact solution when the data noise tends to 0 is excluded, we refer to
BURGER AND MUHLHUBER [33] for details on this topic. Also the convergence of the discrete
approximation to the solution of the parameter identification will not be presented in this
frame, for details see BURGER AND MUHLHUBER [34].

In this context we only want to present the class of parameter identification problems.
We will see that from an abstract point of view these are very similar to optimal design
problems. The main difference between these two classes is that the latter has typically by
far more complicated objectives. In the last section we come back to this aspect with a short
discussion.

The basic setup of the identification problems treated as model examples is as follows:
Given an observation

z = Fu, (5.6)

where F : U — Z is a bounded linear operator and @ denotes the exact state. We want to
identify the parameter ¢ € Q,q¢ C @ in an underlying equation

e(u,q) =f, (57)

where e : U X) — Y is a continuous nonlinear operator. In this setup we assume that () and
Z are Hilbert spaces, that QQqq is a closed subset of () with nonempty interior and that U and
Y are appropriate Banach spaces. In addition, we assume that the operator e is homogeneous,
i.e,

e(0,0) =0, (5.8)
which is no restriction of generality, since for an arbitrary operator e we can transform (5.7)
into an equivalent equation with homogeneous operator via

é(u,q) = e(u,q) —e(0,0), f=f- e(0,0).

In practice one has to deal with data z° that are corrupted by noise instead of the exact
data z. We assume that the observation error is bounded by

Iz =212 <6, (5.9)

72 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

where z = FE4 such that there exists a § € QQ,q With

e(4,q) = f. (5.10)

The pair (4, §) denotes an exact solution of the parameter identification problem (as intro-
duced above).

Note that under typical conditions, parameter identification problems in equations of
the form (5.6), (5.7) are ill-posed, i.e., an arbitrarily small error in the data z can lead
to an arbitrarily large deviation in the reconstructed parameter g. In presence of noise, a
solution of the equation Fu = 2° does not always exist, and therefore one has to consider the
corresponding normal equation respectively the least-squares problem

1
—||[Eu - 2°|> - min (5.11)
2 (1,q)EUXQ

subject to the equality constraint (5.7) and to ¢ € Q4q. Since our main focus is the treatment
of the state equation as equality constraint, we will omit the additional constraint ¢ € Qg in
the following. This results in the problem

1
~||Bu - 2°||> - min
2 (u,q)EUXQ (5.12)

subject to e(u,q) = f

which will be used as model problem.

5.3 Optimization procedures in the product space

One possibility to solve our model problem is to apply an SQP method as presented in
Section 2.2 or Algorithm 4.1 to (5.12). As explained in the introduction of this chapter, an
SQP method in the product space U x) has advantages compared to the introduction of a
solution operator of the state problem, when the dimension of the discretized design space is
large. We will introduce the SQP method here in a function space frame and will consider
the influence of the discretization later.

5.3.1 SQP methods in the product space

Applying a standard SQP scheme to our model example (5.12) leads to the following method:

Method 1 (Sequential Quadratic Programming Method in Product Space). Let
(1o, qo, o) € U X Q x Y* be a given initial value. The method of product space sequential
quadratic programming (PSSQP) consists of the iteration procedure

(Wt 15 Q1> Mot1) = Uk, Ty Ak (5.13)

where (U, qy) is the minimizer of the quadratic programming problem

Ny € (ks qi) (u — ug, g — qg)?) = min (5.14)
(u,)EUXQ

DN | =

1 5
§HEU -2z +

5.3. OPTIMIZATION PROCEDURES IN THE PRODUCT SPACE 73

with (-,-) denoting the usual duality product on Y* xY. By ' (u,q)(v,s) and " (u, q)(v, s)? we
denote the first and second directional derivatives of e in direction (v,s) evaluated at (u,q).
The minimization is subject to the linear constraint

e(uk, qr) + € (up, qr) (v — ug, q — qr) = f, (5.15)
where Ny, is the corresponding Lagrange-multiplier.

Because of the ill-posedness of our model problem, a direct application of standard SQP-
type methods as presented in Method 1 is not possible, since a minimizer of the quadratic
problems arising in each of the iteration steps needs not exist and if one exists, it might not
depend on the data in a stable way. Therefore we will modify our SQP-type approach, which
leads to stable quadratic subproblems due to an additional penalty term in the parameter
space. In BURGER AND MUHLHUBER [33] the following iterative regularization scheme was
proposed, which is a modification of Method 1:

Method 2 (Iteratively Regularized Sequential Quadratic Programming Method).
Let (ug,q0,No) € U X Q x Y™ be a given initial value and let (Bi)ren be a bounded sequence
of positive real numbers. The method of iteratively regularized sequential quadratic program-
ming (IRSQP) consists of the iteration procedure

(Ut 1y @t 1, Met1) = (Thy Tpo» Mk, (5.16)

where (Tg,qy) is the minimizer of the quadratic programming problem

1 B 1 i
B — 202+ 2 g — el + = O € (s @) (0 — gy g — qi)?) = min . (5.17
Sl Bu =227 + 5 lla = allg + 5 (s € (un, g) (w = 1, ¢ = gi)7) L (5.17)

The minimization is subject to the linear constraint

e(uk, qr) + € (ur, qr) (u — ug, ¢ — qr) = f, (5.18)
where X\, is the corresponding Lagrange-multiplier.

The TRSQP-method involves second order derivatives of the operator e. As we are in-
terested in the case of attainable data here, the Lagrangian variable must be small close to
a solution. That is why, these second order derivatives are usually ignored for least square
problems. Exploiting this fact, we introduce a variant of Method 2, which takes into account
the special structure of the objective functional.

Method 3 (Levenberg-Marquardt Sequential Quadratic Programming Method).
Let (ug,qo) € U x Q be a given initial value and let (Bk)ren be a bounded sequence of positive
real numbers. The Levenberg-Marquardt sequential quadratic programming method (LM-
SQP) consists of the iteration procedure

(Uk41, Gh1) = (Tk, Gg.)s (5.19)

where (g, q,) € U X Q is the minimizer of the quadratic programming problem

1 sz, B 9)
1B = 2% + 2 - anlld — : 5.20
2|| u—2°||7 5 lg — allo (u’qf)rélélw (5.20)

subject to the linear constraint

e(ug, qx) + € (uk,) (v — ug, ¢ — qx) = f- (5.21)

74 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

An important issue of applying the above stated methods is the question, whether the
iteration procedure is well-defined. Besides the existence and uniqueness of minimizers of
the quadratic programming problems, the stable dependence of the iterates on the previous
iterates and on the data is of high interest. We will investigate these questions in the following
subsection.

5.3.2 Well-posedness of the quadratic programming problems

In the following we will verify the well-posedness of the quadratic programming problem
(5.20), (5.21) under reasonable assumptions on the state equation e. Besides that, we will
also analyze the KKT-System of the problem in the frame of linear saddle point problems.
Later in this chapter this approach will also be used for solving the occurring quadratic
programming problems.

In typical applications, the equation (5.7), respectively its linearization, admits a unique
solution with respect to the state, i.e.,

ew(t,q) ™! 1Y — U exists and is a continuous linear operator for all (u,q) € U x Q. (5.22)

Under this assumption we can prove the well-posedness of Method 3 which is done in the
following proposition:

Proposition 5.1. Let e be continuously Fréchet-differentiable, let (5.22) hold and let By > 0.
Then the quadratic programming problem (5.20), (5.21) has a unique solution (uy,q;) € UXQ,
which is also the only local minimum.

Proof. The basis of the proof is that the admissible set of the linearized state equation is
closed, convex and non-empty. Furthermore the objective is strictly convex. Using the main
theorem of convex optimization we may conclude that there exists a unique global minimum
and no further local minima. Details can be found in BURGER AND MUHLHUBER [33]. O

In a similar way we can show that under certain restrictions on the regularization param-
eter, the IRSQP method is well-defined and that the quadratic programming problem (5.17),
(5.18) has a unique solution which is also the only local minimum. For the details of the
proof, as well as the exact assumptions see BURGER AND MUHLHUBER [33].

As already explained in the previous section, the well-posedness can usually not be shown
for Method 1. Due to the ill-posedness of our model problem, the quadratic programming
problem (5.14), (5.15) need not have a unique solution. Even if a unique minimizer exists, it
need not depend on the data or on the previous iterate in a stable way.

So far we have not discussed the Lagrangian of the problem and the arising first-order
optimality conditions. These are not only necessary but also sufficient under the assumptions
needed for showing the well-posedness of the quadratic programming problems, since the
objective functionals are strictly convex.

5.3.3 The Karush-Kuhn-Tucker system

Based on the standard theory of convex optimization, we can formulate the Lagrangian of
the problems (5.17), (5.18) and (5.20), (5.21) as

1 Bk n
Lr(u,q;2) = 5l Bu ~ 2%+ 3 la— ally + o (ks e" (up, i) (v — wp, q — qi)?)

+ (A, € (ug, i) (v — wk, g — qi) + e(uk, qr) — f),

(5.23)

5.3. OPTIMIZATION PROCEDURES IN THE PRODUCT SPACE 75

where 7 = 1 in the case of Method 2 (IRSQP method) and 1 = 0 for Method 3 (LMSQP
method). The solutions (u, G, A\x) of the quadratic programming problems are saddle points
of the Lagrangian £ (cf. ZEIDLER [160, p. 392ff]), i.e.,

ﬁk(ﬂkaaka >\) S Ek(ﬂkaakaxk) S ‘Ck(’uﬂqaxk% v (ana >‘) e U x Q X Y*a (524)
and satisfy the optimality condition
0= [’;s:(ﬂkaakaxk)a (525)

where L) denotes the Fréchet-derivative of £ in U x Q x Y™*.
In order to rewrite (5.25) as a linear system for (u, ¢, A), the so-called Karush-Kuhn-Tucker
system, we define the following operators:

Kp:U =Y, Kyu = ey (ug, qp)u, Y u €U, (5.26)
Lp:Q—Y, Liq = eq(ug,qr)q, ¥V q€Q, (5.27)
My :U - U, (Miu,v) = (eyu(uk, g) (u, v), Ag), (u,v) €U x U, (5.28)
Ni:Q— Q, (Niq,s) = (eqq(ur, a)(a,5), Ak, V (g:8) € Q x Q, (5.29)
Pp:U — QF, (Pyu, q) = (equ(ur, qr) (g u); Ae), ¥V (u,q) €U X Q (5.30)

Using these operators and the notation Ig for the identity on (), we may conclude that
(Ugr1 — Uk, Qi1 — Qry Mk+1) Solves the linear system

E*E + nM, np; K; u E* (20 — Euy,)
nby Bilg +nNi, Ly q | = 0 : (5.31)
K, Ly, 0 A f—e(ur, qr)

Note that assumption (5.22) implies that K}, is a regular operator, while L, is not necessarily
invertible.

In the last part of this section we want to analyze the Karush-Kuhn-Tucker system (5.31).
As it forms a symmetric, and indefinite linear system of equations, the analysis can be done
in the framework of linear saddle-point problems.

The solution and numerical approximation of linear saddle-point problems arising from
Lagrangian multipliers have been well-studied over the last decades after the seminal paper
by BRrEZzI [30]. In the following let X and A be two Hilbert spaces, let g € X*, f € A* and
let a: X x X - Rand b: X x A = R be continuous bilinear forms. Then a symmetric
linear saddle-point problem in variational formulation consists of searching for a solution

(z,A) € X x A of

a(z,v) + b(v, A) = (g,v), VovelX, (5.32)
b(z,) = (f, 1), VueA, (5.33)

where a(-,-) is supposed to be symmetric on X x X. The well-posedness of (5.32), (5.33) can
be studied under additional assumptions on a and b, namely the so-called kernel-ellipticity of
a7

Jag €RY : a(v,v) > aglv]%, Voe Kb:={ve X |buu) =0YpnecA}, (534

76 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

and the LBB-condition upon b,
b
Jap € R" @ inf sup _blo.w) > . (5.35)
nedpex [lollx llulia

Under these assumptions, the following classical result can be shown (cf. BRrEzzI [30] or
BRrEzz1 AND FORTIN [31]):

Theorem 5.2. Let a, b as above, such that (5.34) and (5.35) are satisfied. Then the linear
saddle-point problem (5.32), (5.33) has a unique solution (z,\) € X x A, which depends
continuously on the data (f,g) € A* x X*.

In order to apply the above theorem we define the symmetric bilinear form a; on (U x
Q) x (U x Q) by
ar(u, q; ¢, 0) := (Eu, E) 7 + B (g, 0) g + n({, Myu) + (0, Npg + Ppu) + (g, Pep)) (5.36)
and the bilinear form by : (U x Q) x Y* = R by
bi(u, q; A) = (Kju, A) + (Lkg,). (5.37)
With the right-hand sides
= f — e(ug, €y,
fe=1f (5 k> Q) (5.38)
gr = (E*(2° — Euy),0) eU* x Q"

we can now rewrite the system (5.31) in the standard form

ak(ua q; ¥, U) + bk(‘Pa o; >‘) = <gka ((Pa U)>7 v (‘pa U) €U x Q7 (539)

Using the abstract theory of linear saddle point problems presented above, we can derive a
statement on the well-posedness of the linear saddle-point problem (5.39), (5.40):

Theorem 5.3. Suppose that n = 0 in (5.36) and the assumptions of Proposition 5.1 are
satisfied. Then the indefinite system (5.39), (5.40), with the bilinear forms aj and by, defined
via (5.36), (5.37), has a unique solution (u,q,\) € U x Q X Y*, which depends continuously
on the right-hand sides fr, € Y and g € U* X Q*.

Proof. We first show the kernel-ellipticity (5.34) of ai. Suppose (u,q) is an element of the
null-space of b, then u = —K,;lqu and thus, with n = 0, we may deduce that

ak(u7q; U,Q) > IBqu“QQ
> e(|ull® + llall*)
for some € > 0. The LBB-condition (5.35) for by follows from
be(w s N) o B EA0N) L [P !
KM 1

inf. sup ———— > in £ = in
AV (et I AL~ xev= K AN rev

Since the continuity of a; and by follows from the continuity of the Fréchet-derivatives, The-
orem 5.2 implies the assertion.]

The well-posedness of the linear saddle-point problem for n = 1 which corresponds to
Method 2 can be shown in a similar way. But similar to the well-posedness result of the
corresponding quadratic-programming problem it requires additional assumptions on the reg-
ularization parameter fj. For details see BURGER AND MUHLHUBER [33].

5.3. OPTIMIZATION PROCEDURES IN THE PRODUCT SPACE 7

5.3.4 Comparison to the feasible path method

In the following we compare the behavior of the LMSQP-iteration with the feasible path
approach presented in Chapter 4. This shall illustrate the differences in the iterates of the
iteration in the product space compared to the ones generated using a solution operator for
the state equation and optimizing only in the design space. The feasible path method looks
as follows:

Method 4 (Feasible-Path Levenberg-Marquardt Method). Let gy € Q be a given
initial value and let (B)ren be a bounded sequence of positive real numbers. The Feasible-
Path Levenberg-Marquardt method consists of the iteration procedure

qk+1 = aka (541)

where G, € Q is the minimizer of the quadratic programming problem
1 sz, B 2 :
SIES(ar) + ESin(ar)(a —ar) = 2l 7 + - la = arllg = min, (5.42)

with S denoting the solution operator of the state equation and Sy, denoting the solution
operator of the linearized state equation.

For the sake of comparison we consider the LMSQP method in the parameter space, i.e.,
after elimination of the state ug, and the Lagrange parameter Ay, which is possible because
of the regularity of Kj (see (5.22)). For a better distinction, we denote the updates of the
LMSQP-method by superscript SQP and those of the feasible path method by superscript
FP.

The updates 2" and A5?” in the LMSQP-method can be computed consecutively from
5QP

q via,
w3 = K" (Lrg®?" — f + e(up, i) (5.43)
AP — _(Kp)'E* (E’U,SQP O Euk) (5.44)
Thus, with the notation G := —EK, 'L, we may rewrite the optimality condition for the
update ¢°9F as
(Belq + GiGr) ¢°%F = Gi(2° — Buy — EK ' (f — e(ug, qr))- (5.45)

For a first comparison with the feasible path method we assume that (ug,qp) € U X @Q solves
(5.7), i.e. the initial iterate is feasible with respect to the state equation. Then the iteration
step ¢f'F for the feasible-path method solves

(Bolg + G§Go) ¢"" = Gi(2° — Euy), (5.46)

which coincides with (5.45) in our particular case, i.e., the iterate ¢; computed with the
LMSQP-method is the same as with the feasible path method. The difference of our SQP
approach to the classical method following the feasible path occurs in the second step of the
iteration, since uy is not on the feasible path anymore. If ¢’ is Lipschitz-continuous, we only
have

17" = uf Py = O(|luf™ = uollZ + llg7 " = a0lB)- (5.47)

78 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

From equation (5.45) one observes that the right-hand side differs from the one for a feasible
path approach, since f — e(u, qr) need not vanish, which is the essential difference of the
LMSQP-method and the feasible path method.

Since the linear systems (5.45) and (5.46) are of the same structure, one could also think
of finding a product-space formulation of the feasible path method. Such an approach was
presented by TAUTENHAHN AND SCHWEIGERT [151] also in the context of inverse problems,
but in connection with a different regularization scheme (Tikhonov regularization). In order to
derive such a formulation we introduce the state u; which is the unique solution of e(u, ¢;) = f
(for given g), and an auxiliary function w such that ESyin(qx)(¢—qr) = E(w—wuy). Then from
the definition of Sj;, as a solution operator of the linearized state problem we may conclude
that e’ (uk, qx)(w — ug, ¢ — qx) = 0. Since the pair (ug, i) satisfies (5.7), we may add the term
e(uk, qr) and obtain that gy, is determined as the minimizer of

1 Bk
Z|Bw — 2°(|% + ZX||lg — gl — in 5.48
SllBw —2°l7 + = lla — allg won (5.48)

subject to the linear constraint

e(ug, qr) + € (ug,) (w — v, q — @) = f. (5.49)

The new iterate ug,; can be computed subsequently as the solution of e(u, qx11) = f.

Since the minimization step yielding qx1 is the same as a step in the LMSQP-method, we
may interpret the feasible path method as a predictor-corrector variant of the LMSQP method,
where the LMSQP-step serves as a predictor and a corrector step back to the feasible path is
performed for fixed parameter g, 1. In this formulation, the only difference of the LMSQP-
method with respect to the feasible path scheme is to avoid the corrector step, which might
be superfluous for many applications. Thus, the LMSQP-method may save some numerical
advantage by avoiding the solution of possibly nonlinear state equations.

5.4 Discretization techniques

In the following we investigate the discretization of the LMSQP-method by a Galerkin ap-
proach. First of all, we assume that we have discretized data 297 € Zy C Z of the form

2" = R,2°, (5.50)
where R,, : Z — Z, is the orthogonal projector onto the finite-dimensional subspace Z,. Note
that we can give an error estimate for 27 using (5.9) and || R, = 1, which yields

0y = IRz = 2|z < |Ry(2" = 2)||2 + | Ryz — 2llz < 6 + Jof fly = 2llz. (5.51)
n

Additionally we assume, that U is a Hilbert space and that the image space of e can be
identified with the dual of U, for which reason we write U* instead of Y in the following.
Finally, we assume that e is continuously Frechet-differentiable on U x) and that the partial
derivative e, is self-adjoint and satisfies the coercivity condition

<6u(u7Q)va> Z Cl{(3“,U“2U7 V(u,q,v) € U X Q X Ua (552)

for some o, € RT.

5.4. DISCRETIZATION TECHNIQUES 79

The above setup is typical for a partial differential equation of elliptic type, which is
also the main type of application we have in mind. We want to mention that the infinite-
dimensional analysis carried out in the previous section was not restricted to elliptic problems,
but only assumed well-posedness of the state equation for given parameter. However, since
the numerical approximation techniques for elliptic problems differ from the ones for parabolic
or hyperbolic problems (cf. e.g. QUARTERONI AND VALLI [123] for an overview), one cannot
expect a successful unified approach to corresponding parameter identification problems. For
this reason we restrict ourselves to the investigation of the elliptic case.

5.4.1 The discretized LMSQP method and its well-posedness

Now let U, C U, Qn C @ be finite-dimensional subspaces of U and @, with the corresponding
orthogonal projectors P, : U — Up and Py, : Q — Q. Then we can discretize the LMSQP-
Method as follows:

Method 5 (Galerkin LMSQP-Method). Let Uy, Q, and Z, be as above and let (ug, qo) €
U X Qp, be a given initial value. Moreover, let (Br)ren be a bounded sequence of positive real
numbers. The Galerkin Levenberg-Marquardt sequential quadratic programming (GLMSQP)
method consists of the iteration procedure
(Ut 1, Qr+1) = (Uk, Qi) (5.53)

where (g, q) € Up X Qp is the minimizer of the quadratic programming problem

1 0\ (12 Bk 2 .

—||Rp(Eu — + —|lg — — , 5.54

5|18 (Bu = 2%)7 + <Ml — axlig L. (5.54)

subject to the linear constraint

<e(uk7Qk)+6,(uk7qk)(u_ukaq_qk)a(p> = (fa (70>7 v ZS Uh. (555)
Note that the constraint (5.55) can be rewritten in operator form as
Py Ky Po(u— ug) + P L Pulq — qr) = P (f — e(ur, ar)), (5.56)

to be solved for (u,q) € U x Qp, with the notation
K,:U—U*, Kiu = ey(ug, qp)u, YV u €U, (5.57)
Ly:Q— U, Liq = eq(uk, qr)q, Y q€Q, (5.58)
and Py : Uy — U* is the adjoint of P,. Under the assumption (5.52), we obtain that
(Pi K Pyv,v) = (K Py, Pyo) = (Ko, v) > aellvl|F (5.59)

for all v € Uy, i.e., the discrete bilinear form associated with the operator Py K}, P, is coercive
on Up,. This implies by the Lax-Milgram theorem, that (5.56) is uniquely solvable with respect
to u for given ¢ € (). Consequently, in an analogous way to the proof of Proposition 5.1 we
may show the following result on the well-posedness of the quadratic programming problem
that has to be solved in each step of Method 5 (GLMSQP method).

Proposition 5.4. Let e be continuously Fréchet-differentiable, let (5.52) hold and let By > 0.
Then the quadratic programming problem (5.54), (5.55) has a unique solution (U, q;) € Up X
Qpn, which is also the only local minimum.

80 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

5.4.2 The discretized Karush-Kuhn-Tucker system

In Subsection 5.3.3, the Karush-Kuhn-Tucker system for the infinite-dimensional version of
the LMSQP-method has been derived and analyzed in the framework of linear saddle point
problems. Now we will discuss the discretized analogue of this system, namely the first-order
optimality conditions for the quadratic programming problem (5.54), (5.55).

The Lagrangian of (5.54), (5.55) is given by

1 Br
L) = || Ry (Eu — 2°)|% + =g — qill
4, 0) = 1Ry (Bu—)% + g - anly+ 5.0
+ <>‘7 el(ukaqk)(u — Ug,q — qk) + 6(uk7qk) - f>7
for (u,q,\) € Uy X Qp x Up,. Since P, and P, are equal to the identity on U, and Q,
respectively, we can rewrite the Lagrangian as

1 B
Li(u,q; X) = §||Rn(EPhu - 29Z + ?HPh(q —au)lo+
+ (P, K Py (u — ug) + L Pu(q — qi) + e(ug,) — f),

(5.61)

with the operators Kj and Lj defined by (5.57), (5.58). The KKT-system can now be
deduced by computing the partial derivatives of the Lagrangian with respect to u, ¢ and A,
e, (Uki1 — Uk, Qri1 — Gk, Akt1) solves the linear saddle-point problem

PyE*R;R,EP, 0 PrKiP, u P}E*R; Ry (2" — Euy)
PKL P, PrLiyP, 0 A P(f = e(ur, k)

(5.62)
As in Subsection 5.3.2, we define the symmetric bilinear form ay : (U x Q) x (U x Q) — R by

a(u, 4; 9, 0) i= (ByEu, Ry Ep) 7 + Br(q,0)0 (5.63)
and the bilinear form b : (U x Q) x U — R by
be(u, g3 A) 1= (Kru, \) + (Liu, A). (5.64)
Moreover, we use the right-hand sides

fe = f—elup,q) €U, (5.65)
gl = (E"R;R,(2° — Bu;),0) €U*xQ. (5.66)

Then the KKT-system (5.62) can be interpreted as the Galerkin approximation of an indefinite
variational problem, i.e., (u,q,\) € U, x Qp X U}, is the solution of

G’Z(ua q; ¢, U) + bk((pa a; }‘) = (g]Za (‘pa U)>7 v (‘pa U) € Uh X Qha (567)
br.(u, g; 1) = (fr> 1), V u € Up. (5.68)

In an analogous way to the proof of Theorem 5.2 we can show that the bilinear form aZ satisfies
the discrete kernel-ellipticity condition on Uy X @y, i.e., there exists a constant a, > 0 such
that

aj(u,q;u,q) > aall(u, @)%,V (u,q) € K}

5.4. DISCRETIZATION TECHNIQUES 81
with

K= {(v,s) € Up x Qp | b(v,530) =0, VX €Uy},
and that b satisfies the discrete LBB-condition

nf osup G
MU (uqretnxa, 1w @)l I =

for some ap > 0. Using the Theorem 5.2 this implies the following well-posedness result for
the discretized problem (5.67), (5.68):

Theorem 5.5. Let e be continuously Fréchet-differentiable, let (5.52) hold and let B > 0.
Then the indefinite system (5.67), (5.68) has a unique solution (u,q,) € Up, X Qp x Uy, which
depends continuously on the right-hand sides fr and QZ-

Since the constants o, and «a; are the same as in the corresponding infinite-dimensional
conditions in U X @, they are in particular independent of the discrete subspaces U, and Q.
This allows us to deduce an approximation result for the solutions of (5.67), (5.68) to the
solution (u,q,A) € U x Q x U of the infinite-dimensional KKT-System, given in variational
form in (5.39), (5.40), i.e.

ak(ua q; ¥, J) + bk((pa a; }‘) = (gka (‘pa U)>7 v (‘;07 J) eU x Qa (569)
be(u, 43 1) = (s 1), Vued, (5.70)

with aj given by
ag(u, q; 9, 0) = (Eu, Ep)z + B¢, 0)q, (5.71)

br, fr as above and g defined by
gr = (E*(2° — Euy),0) € U* x Q. (5.72)

Theorem 5.6. Suppose that the assumptions of Theorem 5.5 are satisfied and let

(th, qh, An) € Up X Qp x Uy,

denote the unique solution of (5.67), (5.68). Then there exists a constant ¢ > 0 independent
of Uy, and Qy, such that

—~ — g A=) <l inf —v,q — 85,A — 5.73
=g = A= e (kg sA-) 67)

where (u,q,\) denotes the unique solution of (5.39), (5.40) and

=Ry =Dz + sup (R, —)Ev|. (5.74)
vEU,[Jo]|=1

Proof. First, let (@, G, Ap) denote the solution of (5.67), (5.68) with ajl, gy replaced by ay,
gi- Then Theorem 2.1 in BREZZI AND FORTIN [31] implies the existence of a constant ¢; > 0
(independent of Uj, and Q) such that

U — Up, —~,)\—5\ <c inf U—V,q— S, A — .
=g = A=Al Ser inf =g = s A=)

82 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

Moreover, the continuous dependence of the solutions of (5.67), (5.68) on the right-hand side
implies the existence of co > 0 with

[(up, — iy qn — Ghs A — M) |

<c sup (gz _gk,(’U,O)> + Sup |a2(ﬂh7q~h7()0) _ak(ahaqha(p”
veU,||v]|=1 €U, [lpll=1

< e < sup (Bv, (R, R, — 1) (2° — Eug))+ sup (Eop, (R, Ry — I)E'ah)>
vEU,[v]|=1 9€Ullell=1

< ||B|l [(By = D)2z + e S [(Ry — D) Ev]|z,
veUy,||v||=

and with the triangle inequality we may conclude (5.73). O

Theorem 5.6 provides an error estimate for the solutions of the discretized saddle-point
problem (5.67), (5.68), consisting of two parts corresponding to the numerical approximation
in the image space Z and in the pre-image spaces U and (). An obvious estimate for the first
term is

5 . 5 . .
rpn < inf fly — 2%z + sup inf ||g — Ev|z
" yEZy veUy,[lolly=19€%n ,
which possibly does not lead to a quantitative estimate, since there is no additional informa-
tion on the smoothness of the noisy data. An alternative estimate is

5 . . -
rop <64+ inf ||ly—=z|[[z+ sup inf ||g — Ev|z.
" yEZy vEUp vl =19€Zn

The infimum of ||y — z||z can usually be estimated more easily, since the exact data z are
smoother due to the fact that 4 is the solution of the state equation for some parameter §.
E.g., if the state equation is of elliptic type with solution & € H'(Q), E : H'(Q) — L*(Q)
is the embedding operator, and R, results from a standard finite element discretization on a
grid with fineness 7, then we have at least

inf ||y — z|| = On).
ylenznlly z|| (n)

Another important observation is that the last term vanishes if the discrete spaces Z, and U,
are equal, which can be achieved in some applications.

The second term in (5.73) shows that the Galerkin approximation of the KKT-system is
of optimal order in Uy, x Qp, X Uy; it can be estimated by standard methods for finite element
discretizations; quantitative estimates can be obtained using the regularity of the iterates.
This part depends of course strongly on the specific application.

5.5 Numerical realization of the SQP-iteration

In the following we want to discuss some numerical methods and variants for the ’outer
iteration’, i.e., the Galerkin LMSQP algorithm under the assumption that we are able to
solve the discretized KKT-system numerically. The ’inner iteration’, namely the numerical
solution of the indefinite system (5.62) will be investigated in Section 5.6.

5.5. NUMERICAL REALIZATION OF THE SQP-ITERATION 83

5.5.1 Scaling of state variable, parameter and Lagrangian multiplier

The performance of an iteration algorithm often depends crucially on the way the problem
is formulated. Scaling is a well-known technique for reformulating an optimization problem
whose main objective is twofold: On the one hand all the variables should be of similar
magnitude, on the other hand also the value of the derivatives should all be of similar size. In
unconstrained optimization, a problem should be rescaled in such a way, that changes of the
iterate in one direction do not result in by far larger changes of the value of the objective than
changes in another direction. In constrained optimization the above statements are also true
for each constraint. Additionally the set of constraints should be well balanced with respect
to each other such that each constraint has equal weight. Furthermore, the set of constraints
should be balanced with respect to the objective. As scaling is of high practical importance
for any optimization problem, many aspects can be found in monographs on optimization (cf.
e.g. GILL, MURRAY, AND WRIGHT [63] or NOCEDAL AND WRIGHT [115]).

We want to consider only the last aspect in this context, i.e., the scaling of the state
constraint with respect to the objective which is also of high importance for achieving fast
convergence of the outer iteration. For the inner iteration, the aspect of scaling can be
included in the construction of a good preconditioner. The outer iteration of an SQP method
tries to attain two goals at the same time: Feasibility of the iterate with respect to the state
constraint and optimality of the iterate with respect to the objective. One aspect dominating
the other results usually in bad convergence properties: If the feasibility aspect dominates,
only very small changes of the iterate are possible in order to ensure 'almost’ feasibility. If
the optimality aspect dominates, any violation of the state constraint is reduced too slowly.

For the LMSQP method in the form of (5.54), (5.55) it turned out that in many situations
the feasibility aspect is strongly dominating. Using line search methods for globalization (see
also Section 2.2) this results usually in step lengths much smaller than one. Replacing the
state constraint by a preconditioned state constraint leads to a better balanced formulation
and to much faster convergence. Furthermore a step length parameter equal to one is accepted
in almost all steps.

5.5.2 Globalization strategies

The LMSQP method is a variant of Newton’s method and therefore only locally convergent.
For this reason, globalization strategies, such as trust region methods or line search strategies
(which are the two most popular classes of globalization techniques in optimization), are
needed. Both classes were introduced in Section 2.2. That is why we want to refer to this
section and the references cited therein for details.

5.5.3 Nested multi-level optimization techniques

Important tools for the efficient numerical approximation of infinite-dimensional optimization
problems are multi-level optimization methods. In the nested multi-level setup, one starts the
optimization procedure at a coarse level Up, X QQp,, where the iteration procedure can be
carried out efficiently. If an appropriate stopping criterion is satisfied, one interpolates the
state and parameter obtained in this way to a finer level Uy, x Qp, (for he < hy), serving now
as a starting value on this level. This procedure is repeated until the finest level is reached.
Usually, nested spaces are used in this approach, i.e., Uy, C Up,, Qn, C Qpn, (for ha < hy),
which leads to simple interpolation operators. Since one cannot choose the discretization of

84 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

the data arbitrarily in general , we consider only the case of fixed n here, but a multi-level
approach in 7 can be realized in an analogous way, if necessary.

Nested multi-level methods outperform standard discretization techniques in many cases
(cf. e.g. HEINKENSCHLOSS [82], HEISE [84], LUKAS [108, 109]); usually a considerable number
of iterations is needed on the coarse level only, where the numerical effort per iteration is very
low. On the finest levels, the stopping criterion is often satisfied already after one iteration
step and so the overall effort is less than for a direct discretization on the finest level. For the
Galerkin LMSQP method, this leads to Algorithm 5.5.3.

Algorithm 5.1 Nested Multi-Level Galerkin LMSQP
Require: a decreasing sequence {hy}¢—; .1 with nested spaces U, C Uhgi1s Qn, C th“
(e.g. hy =2"hy)
Require: (ug,qg) € Uy, X Qp,
for /=1 to L do
h=hy
Perform the Galerkin LMSQP method until the stopping criterion is satisfied.
if / == L then
return
end if

Prolongate the iteration (uf; , qi*) to the finer level Uy, X Qp,, ,, which results in a new

starting value (uj"™, ¢ft).

end for

Up to now we did not talk about the choice of the nested spaces. Of course, they can be
chosen in advance. In the finite element community it is well known, that the accuracy of the
solution can be improved by using a-posteriori error estimators. They provide information
which elements shall be refined to obtain a more precise solution. This information can be used
to construct appropriate fine grid spaces. For an overview of a-posteriori error estimation see
e.g. VERFURTH [154]. In the context of optimization the concept of adaptivity and a-posteriori
error estimation is not as well-known as in the finite element community. An example in the
context of optimization is presented in BECKER, KAPP, AND RANNACHER [11], in the context
of optimal control problems see e.g. BECKER, KAPP, AND RANNACHER [10].

5.6 Numerical solution of the KKT-system

In the following we will discuss the numerical solution of the discretized KKT-system (5.62)
for fixed iteration number k. We have seen above that the Galerkin-type approximation (5.62)
of the original KKT-system is well-posed, now we discuss some of its structural properties,
which are important for the application of iterative solution methods and for the construction
of preconditioners.

Choosing bases

D= (1,) €U, S=(01,...,00)" € Qu, (5.75)

of the finite-dimensional subspaces Uj, and Qp, we may represent (up, qn, Ap) € Up X Qp X Uy,

via
up, =u’ ®d, am=q %, M= 2Td, (5.76)

5.6. NUMERICAL SOLUTION OF THE KKT-SYSTEM 85

with coordinate vectors u, A € R™ and q € R”. In order to transform (5.62) into a linear
system for u, q and A, we define the matrices

G = ((E¢j, E¢i)z)ij=1,..m H := ((0j,0:)Q)ij=1,..n (5.77)
K := ((Kpdj, i))ij=1,..m L := ((Lioj, ¢i))i=1,...myj=1,..n (5.78)

and the vectors

£y := (2" — Bug, Egi) 7)i1,...m» f3 := ((f — e(ur, qr), ©i))i=1,....m- (5.79)

This allows us to rewrite the discretized KKT-system (with penalty parameter 8 = () as

G 0 KT u f;
0 pH LT al=1]01, (5.80)
K L 0 A f3
respectively as
MX =F, (5.81)
with
G 0 KT u f;
M=| 0 pH L |, X=|q|. F=1| 0
K L 0 A f3

The structural properties of M and its sub-matrices will be examined in the following section.

5.6.1 The system matrix M

Due to the well-posedness result on the discretized KKT-system (5.62) (cf. Theorem 5.5), we
may conclude that the system matrix M is regular. In order to obtain further insight into
the structure of M, we investigate the properties of the sub-matrices G, H, K and L.

Proposition 5.7. The matrices K € R™*™ gnd H € R**™ qare symmetric positive definite,
and the matriz G € R™*™ js symmetric positive semi-definite. If in addition the operator E
18 1njective on Uy, then G is regular, too.

Proof. Let uj, and gp, be as in (5.76), then there exist constants ¢;(h) and co(h) such that

lunllo = ex(W)[[ull, — llgrlle = ca(h)lal,

where ||.|| denotes the Euclidian norm in R” and R™, respectively. Thus, we have
u'Ku = (Kyup, up) > aelluplf; > aeer (h)?|[u]?,
and
a"Hq = [lanllg > e2(h)*[lal>.

Moreover, the identity
WG = || Bup| > 0

implies that G is positive semi-definite and regular under the assumption that F is injective
on Up. The symmetry of the matrices G, H and K can be verified in a similar way, using the
symmetry of scalar products and the self-adjointness of the operator Kp. U

86 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

The matrix L € R™*" ig difficult to analyze, it is neither symmetric nor regular in general
(in particular if n # m). However, some fundamental properties of M (such as its regularity)
rely rather on G, H and K than on L. Moreover, the classical splitting of a symmetric
saddle-point problem as

G 0 K7 I 0 0 G 0 0 I 0 G'KT
0 Hz LT | = 0 I 0 0 Hz 0 0 I H;'L" |,
K L 0 KG' LH;' I 0 0 -C 0 0 I
where Hg := SH and C is the Schur-complement
C:=KG 'K" +57'LH,'L", (5.82)

is only possible if both G and Hp are regular. In particular, we may conclude that M has
n + m positive and m negative eigenvalues.

5.6.2 Reduced SQP approaches

The basic idea of reduced SQP-methods is the a-priori elimination of the equality constraint,
which can be written in matrix form as

Ku + Lq = f3, (5.83)

which is equivalent to an elimination of u and A in (5.80).
Due to Proposition 5.7, K is a regular, symmetric matrix and thus, we may compute

u = K !(f; - Lq), (5.84)
A = K '(fj - Gu), (5.85)
which yields after some calculations the n x n-system
Mq=g (5.86)
with
M, :=H; + L"K"GK™'L (5.87)
g =LK T(GK™'f; — f}). (5.88)

The reduced SQP-approach seems of particular interest if n < m, which is a frequently
used discretization strategy for parameter identification and optimal control problems (cf.
e.g. SACHS [134], ScHULZ AND Bock [139], or ScHULZ [138]). The original matrix M is an
indefinite matrix of size (2m +mn) x (2m+n), while the reduced system matrix M, in (5.86) is
of size n x n. However, M, is not a sparse matrix even if all the sub-matrices of M are sparse,
since it involves the inverse of K. Moreover, the evaluation of a matrix-vector product using
M, is more expensive than a matrix-vector product using M, since it involves the solution of
two systems of the form

Kw =g, (5.89)

with different right-hand sides g, while for the evaluation of matrix-vector product with
M only direct evaluations of K are needed, which are very cheap for typical finite element
discretization of the state constraint. In practice, one usually tries to compensate this dis-
advantage of reduced SQP-methods by using a Broyden-type update for the reduced system
matrix instead of the exact matrix M,, which leads to efficient optimization algorithms for
small numbers of design parameters n.

5.6. NUMERICAL SOLUTION OF THE KKT-SYSTEM 87

5.6.3 Simultaneous solution of the KKT-system

Recently, the simultaneous solution of KKT-systems by iterative methods has been inves-
tigated, in particular in connection with optimal control problems (cf. BATTERMANN AND
HEINKENSCHLOSS [8], BIROS AND GHATTAS [16, 17] or HABER AND ASCHER [74]). Compared
to the reduced SQP-approach, a simultaneous solution strategy has the obvious advantage
that the allocation and evaluation of the system matrix M is much cheaper than of M,.. The
pay-off is that M is indefinite and larger than M,., which might cause additional effort. How-
ever, the main effort in the reduced SQP-approach is related to the evaluation or assembly of
the system matrix M,., respectively, and therefore a simultaneous solution of the KKT-system
can result in a tremendous speed-up of the SQP-method, in particular for fine discretizations.

At a first glance, it seems rather straight-forward to solve (5.81) by a standard iterative
method for indefinite systems such as inexact Uzawa methods (cf. BRAMBLE, PASCIAK, AND
VASSILEV [27], ELMAN AND GOLUB [49], LANGER AND QUECK [104, 105], or QUECK [124])
or Krylov-subspace methods such as GMRES (cf. SAAD AND ScHULTZ [133]), MINRES (cf.
PAIGE AND SAUNDERS [117]) and QMR (cf. FREUND AND NACHTIGAL [56]). However, in
the case of large-scale problems, we have to expect a large condition number (note that 3
is usually small and that M is singular for § = 0) and a complicated eigenvalue pattern of
the matrix M, which might cause iterative methods to diverge or to need a high number of
iterations. Therefore, an appropriate preconditioning technique seems necessary for any of
the methods.

In the following we distinguish two types of solvers that seem appropriate for the solution
of the indefinite system (5.81) and discuss their basic properties with respect to the special
structure of M.

Inexact Uzawa iterations

Inexact Uzawa methods and similar iteration procedures have been developed for the solu-
tion of the classical Stokes system and similar problems (cf. QUARTERONI AND VALLI [123]
for an overview). The classical Uzawa method is just a gradient method for the dual of
the corresponding Lagrange functional, the inexact Uzawa method can be interpreted as a
preconditioned version (cf. QUARTERONI AND VALLI [123]). Following the exposition by
ZULEHNER [164], we can write an inexact Uzawa method for a system of the form (5.80) as

A [Wkl —ug fi — Gup — KX\ >
A — : 5.90
(Ak+1 — Ak > < —BHqr — LA (5.90)
followed by
C(}\kJrl —)\k:) = f3 — Kuk+1 — qu+1, (5.91)

where A is a preconditioner for the diagonal matrix

A < %" 52{) , (5.92)

C is a preconditioner for the Schur-complement C defined by (5.82) and k denotes the iteration
index. In terms of (5.81) we can write the inexact Uzawa iteration as

Xpe1 = (I -M'M)X, + M~'F,s (5.93)

88 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

where M is a preconditioner for the system matrix, given by

- A O
M_<B C)’ (5.94)
with B = (K L).

A convergence analysis of this method is available only in the case when A is a regular
matrix (cf. BRAMBLE, PASCIAK, AND VASSILEV [27] or ZULEHNER [164]), which means
that we have to assume that G is regular. The latter is true e.g. if the data z represent
distributed data for the state, i.e., F/ is an embedding operator. In this case, the structure
of A is rather simple and it is not a difficult task to construct a preconditioner, even exact
preconditioning seems possible (note that G is just a mass matrix for a typical finite element
discretization). Since the matrices G and H do not change during the SQP-iteration we may
even compute decompositions in a preprocessing step. The construction of a preconditioner
for the Schur-complement C is more difficult and must take into account the specific nature
of the underlying state equation.

Krylov-subspace methods

The Krylov-subspace methods GMRES and QMR are variants of the CG-algorithm that are
applicable to indefinite problems, too. The basic idea of such methods is a defect minimization
in the Krylov-subspace

Kr(M;X;) = {X1,MXy,..., MF1X,}, (5.95)

generated by X, in the k-th iteration step. Since preconditioned CG-methods are probably
the most successful class of iteration methods for positive definite systems, such methods
seem very attractive also in the indefinite case, although additional difficulties may arise (cf.
e.g. SAAD AND SCHULTZ [133]).

The convergence analysis in SAAD AND SCHULTZ [133] and FREUND AND NACHTIGAL [56]
shows that the error bounds obtained for both methods are essentially the same, and mainly
dependent on the eigenvalue distribution and the condition number of the system matrix M.
Therefore, appropriate preconditioning is again of high importance, in this case also with the
possibility that G is singular.

Preconditioning

For the efficient solution of the KKT-system (5.80) it is necessary to use iterative solution
procedures due to the size of the equation system. For these methods appropriate precondi-
tioning strategies are needed to get fast convergence. Unfortunately, for symmetric indefinite
equation systems by far fewer methods compared to the positive definite case are available.

The most popular class of methods are Uzawa type methods. Many publications can be
found, especially in the field of fluid dynamics. Recently, ZULEHNER [164] presented a unified
approach to many of these methods. The methodology presented in the previous subsection
on inexact Uzawa methods can also be used as preconditioner.

A different class of preconditioners originates form reduced SQP methods and can be
explained as follows: The KKT-matrix M can be factorized into

GK'! 0 I K L 0
M = 0 I LTK-T 0 Sc 0 (5.96)
I 0 0 0 —-GK L KT

5.7. EXAMPLES AND NUMERICAL RESULTS 89

where S. denotes the Schur-complement
S. =fH+LTK TGK L. (5.97)

Replacing the matrix K~' by a preconditioner K~* (e.g. a multigrid preconditioner) and
the Schur complement S, by an appropriate preconditioner S. leads to a preconditioner for
M of the form

GK!' 0 I K L 0
M = 0 I L'KT|[o0 S 0 |. (5.98)
I 0 0 0 —-GK 'L KT

It must be noted that for the preconditioning operation M1 only applications of K ! and
S;! are necessary and no applications of K of S.. This preconditioner was used in our
computations (see Section 5.7) , but also by HABER AND ASCHER [74] or BIROS AND GHAT-
TAS [16, 17].

A similar preconditioner was presented by BATTERMANN AND SACHS [9]. They used

0 0 KT
M=|0 S. L7 (5.99)
K L 0

as a preconditioner for an all-at-once approach for an optimal control problem. Their paper
contains also some analysis of the eigenvalue structure of the preconditioned system, which
influences the convergence of the used iterative method to a large extent.

At least for elliptic state problems leading to positive definite matrices K it is clear how
to choose appropriate preconditioners K for the state equation for the previous two precon-
ditioners. On the other hand, it is by far more difficult how to choose preconditioners for the
Schur-complement. One approach is to exploit mapping properties of the underlying pseudo-
differential operator. This approach was used e.g. by TA’ASAN [147, 149, 146, 148] in the
context of shape design for fluid dynamics. He used Fourier transformation to get the symbol
of the Schur-complement and exploited this for preconditioning. A completely different ap-
proach was presented by BRAMBLE, PASCIAK, AND VASSILEVSKI [28]. They developed a way
for the construction of efficient preconditioners of pseudo-differential operators of positive and
negative order, based on multi-level techniques.

5.7 Examples and numerical results

In order to illustrate the previously described methods, we carry out some numerical exper-
iments with our model problem described in Section 5.2. As the description there does not
contain details on the observation as well as on the state equation, we will further restrict
ourselves to two problem classes, namely the identification of a reaction coefficient and the
identification of a conductivity.

5.7.1 The identification of a reaction coefficient

In our first example we want to identify the reaction coefficient ¢ € H{ (£2) in the 1D potential
equation

—u" +qu=Ff in Q= (0,1), (5.100)

u(0) =u(1) =0 (5.101)

90 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

The data z are an observation of u € L?(f2), i.e. the observation operator F is the canonical
embedding from H'(2) into L?(Q2). The right-hand side f € H~'(Q) is given by
1
f(a:)=§+sinx, x €4,
the exact reaction coefficient ¢ € H} (2) by

j(z) = z(l — x).
In other words, we consider the parameter identification problem
% lu = 2720y = (u,q)EHEr(lsizr)leg(Q) (5.102)
subject to
/ 1
/u'(:z:)v'(ﬂv) + q(z)u(z)v(z)de = /0 f(z)v(r)dz Vv e Hy(RQ) (5.103)
0

where 2’ denotes a noisy approximation of the data z.
We use the LMSQP method, for which the KKT-system of the quadratic subproblem
(5.31) looks as follows:

Ir2(q) 0 K; u (20 — uy)
0 Bluyor T | [0)= o). (5.104)
K, Ly, 0 A —TE

with

1
Ky : HY(Q) - H1(Q), (Kru,v) = /0 u'(z)v' (z) + qp(z)u(z)v(z)de Yo e HY(Q)

1
Ly : L?(Q) - H YQ), (Lrq,v) = /0 q(z)ug(z)v(z) dz Ve HH(Q)

and r denoting the residual of the state equation, i.e.

1 1
(rg,v) = /0 ul,(2)v' (z) + qr () ug (z)v(z) doz — /0 f(z)v(x)dz Voe H&(Q)

As the state equation is linear in v and ¢ in our case, the definition of K and Lj is straight-
forward.

For the numerical realization, €2 is discretized uniformly using linear finite elements. The
approximations of the state variable u and the Lagrangian multiplier A has m degrees of
freedom, for approximating the parameter ¢ we use n degrees of freedom. The noisy data z°
are generated by solving the state equation on a fine grid using the exact reaction coefficient,
restricting the fine grid solution to a coarser grid and finally adding some high-frequency
perturbation as noise.

The simple structure of our example implies a rather simple structure of the KKT-sub-
matrices of the Galerkin-LMSQP method, in particular in (5.80) G is an L2-mass matrix,
ie.

G = ((b5, D) 12(0))iri=1,...m>

5.7. EXAMPLES AND NUMERICAL RESULTS 91

Reconstruction of the Parameter for & = 5% Reconstruction of the Parameter for 3=20%
0.35 T T T T T T T 0.35

T T T T T T T
— Reconstruction — Reconstruction
— — Exact Solution — — Exact Solution

0.3 q 031

0.251 = T q 025

02+ 7 N 4 0.2

Figure 5.1: Reconstruction (solid) and exact solution (dashed) for noise level § = 5% (left)
and § = 20% (right)

and H is an H'-stiffness matrix, i.e.

H = ((05,0i) m1(Q))ij=1,..n-

In the linearization of the state equation, K is defined via

K = ((Kpdj, i))ij=1,..m

and L via
L = ((Lioj, ¢i))i=1,...mij=1,...n »

where ¢;,4 = 1,...,m and 0j,j7 = 1,...,m denote the according basis functions. Hardly any
properties of the matrix L are known, except that L approximates a differential operator of
order 0. We refer to (5.77), (5.78) for the definition of these matrices.

This problem is implemented in the software-system MATLAB. The KKT-system (5.80)
is solved using a direct solver in this case, which is probably not the best choice with respect
to the numerical effort for fine discretizations, but still yields reasonable results in our case.
Figure 5.1 shows the results obtained with the LMSQP method for noise level § = 5% and
d = 20%. Surprisingly, the approximation is still reasonable even for a large noise level like
d = 20%, but the reconstruction is not as smooth as for § = 5% The corresponding evolutions
of the error [|gr — ¢l (o) and the residual [|u) — z5]|Lz(Q) are plotted in Figure 5.2. One
observes that in both cases the error decreases up to some iteration index and then starts to
increase again which is a typical phenomenon for inverse problems. That is why the iteration
is not terminated according to the convergence criteria usually used in optimization, but due
to an appropriate stopping rule (see e.g. ENGL, HANKE, AND NEUBAUER [50] for a general
introduction). We used the so-called discrepancy principle as stopping criterion (the details
can be found in BURGER AND MUHLHUBER [33, 34]). We want to mention that the stopping
index obtained from the discrepancy principle was always close to the iteration index, where
the error is minimal.

The convergence of the LMSQP-method was compared to the Feasible-Path Levenberg-
Marquardt method, introduced in Subsection 5.3.4. It turned out, that both methods lead to

92 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

Development of Residual and Error Development of Residual and Error
T T T T

0.7

0.7

T T T T T T T T
—0— Residual —0— Residual
— Error — Error

D=0-0 -4 -0 - 0-D-9-90 -0 -0 0 9= 90— 90— 6 —& & —
WL P90 00 6 0-9-0-6-0-¢0 0 9-0-6-0-9 -0
8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of Iterations Number of Iterations

Figure 5.2: Development of the error ||gx — G|z (o) (solid) and the residual |luy — Z6||L2(Q)
during the iteration for noise 6 = 5% (left) and 6 = 20% (right)

almost the same iteration sequence ¢qi. In particular, the number of iterations needed until
the stopping rule is satisfied, is the same for both methods.

Finally, we compare the numerical efficiency of the LMSQP-method with feasible path
approaches, namely the Feasible-Path Levenberg-Marquardt method (LM) (with the same
Galerkin discretization as for LMSQP) and a Broyden-type variant of the LM-method (cf.
KALTENBACHER [95] for further details).

For this sake we choose different discretization levels (fixed during the iteration) and
measure the CPU-time needed for the LMSQP-method, until the stopping rule is satisfied
(for fixed noise level §). From the results shown in Table 5.1 and Figure 5.3 one observes that
the LMSQP-method with simultaneous solution of the KKT-system outperforms the feasible-
path approaches for all different discretizations. Since the LMSQP and the LM-method need
the same number of outer iterations, the difference in the numerical effort is caused by the
fact that the effort for the evaluation of the system matrix in the LM-method is significantly
higher than evaluation and preconditioning of the system matrix in the simultaneous LMSQP-
method. Obviously, the gain in the numerical effort for the evaluation of the system matrix
increases with the number of discretization points, which explains the extremely large CPU-
time for the LM-method at the finest discretization level (m = 1601). For small m and n, the
Broyden-variant is much faster than the LM-method, which is again caused by the fact that
the evaluation of the system matrix can be carried out efficiently. However, the number of
iterations needed for the Broyden-type variant is much larger than for the other two methods,
which use the full information about the derivatives.

These results also agree with the results presented in the previous chapter. There, we also
used a Broyden update formula (strictly speaking, the BFGS update formula) for approxi-
mating the Hessian of the objective. But the behavior of the iteration was very similar: For
a few design parameters we got a reasonable approximation of the Hessian, whereas for large
design spaces the number of iterations dramatically increased. This led to the extremely large
CPU-time reported in Table 4.3.

5.7. EXAMPLES AND NUMERICAL RESULTS 93

m n | LMSQP LM | Broyden
201 41 0.07 1.37 0.51
201 | 101 0.18 3.44 1.34
201 | 201 0.36 6.94 2.88
401 | 201 0.51 24.83 9.09
401 | 401 1.39 50.39 20.48
801 | 401 2.61 | 193.21 70.69
801 | 801 5.66 | 392.54 158.69

1601 | 801 7.91 | 1564.50 600.66
1601 | 1601 22.86 | 3144.40 | 1356.60

Table 5.1: CPU-time (in seconds) needed for the LMSQP-method, the LM-method and a
Broyden-type variant of the LM-method

10000 T

Broyden

LMSQP ——

1000

100

Runtime

10

0.1 L
1000

Number of parameters

Figure 5.3: Comparison of the CPU-times for the LMSQP-method, the LM-Method and a
Broyden-type variant of the LM-method

94 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

5.7.2 The identification of a conductivity

Our second numerical example is the identification of the conductivity ¢ € L>®(Q) C L?(Q)
in

—div(ggradu) = f in Q, (5.105)
u=0 on 0. (5.106)

The data z are an observation of u € L?(f2), i.e. the observation operator F is the canonical
embedding of H{ () into L?(Q2). The domain (2 is a ball in R? with missing first quadrant
(see also Figure 5.4), i.e., in radial coordinates

Q= {(rcos@,rsinf) | r€0,1),0 € (r/2,2m)}. (5.107)

The exact parameter to be reconstructed is ¢ = 1, the right-hand side f € H~'(2) in (5.105)
is given by

2
f= %(3% cos(?%rr) + - sin(?%rr)) with r = /22 + 2.
3T

The corresponding solution @ € H{(£2) of the state equation is @ = cos(2£r). The noisy z°
data are generated using the exact solution @ perturbed by uniformly distributed random
noise.

Summarizing, we consider the parameter identification problem

1 5112 .
— lu —2° |52 — min 5.108
5 | 1720 (e e @) ()

subject to a weak formulation of the state problem (5.106).
We use the LMSQP-method for which the KKT-system of the quadratic subproblems
looks as follows:

ILQ(Q) 0 K]: u (2'5 - Uk)
0 Bl L q | = 0 : (5.109)
Kk Lk 0 A —Tk

with

Ky : H)(Q) — HY(Q), (Kru,v) = [(qr grad u, grad v) dz Vv e Hy(Q)

S~

Q
Ly : L*(Q) —= H Y(Q), (Lgq,v) = / (ggradug,gradv)dz Y v € Hi(Q)
Q

and 7 denoting the residual of the state equation, i.e.
(re,v) = /(% grad uy, grad v) dz — / f(x)v(x)dz Vo e Hy Q).
0 0

It is clear, that Ljq does not exist for any ¢ € L?(Q), but only for ¢ € L°°(2). Thus, in the
practical realization we have to introduce constraints on the parameter ¢q. Usually, this can
be done easily using a-priori information on the parameter, e.g. bounds on q.

For the discretization we used triangular finite elements with piecewise quadratic shape
functions for the state u and the Lagrange parameter A and piecewise constant shape functions

5.7. EXAMPLES AND NUMERICAL RESULTS 95

Level | dim ¢g | dim » | avg QMR it | SQP it time
2 92 215 200 9 8 sec
3 368 797 200 4 15 sec
4 1472 | 3065 180 5 77 sec
5 5888 | 12017 142 6 450 sec

Table 5.2: CPU-time and number of inner (QMR) and outer (SQP) iterations for exact data

Level | dim ¢ | dim » | avg QMR it | SQP it time | acc. time
2 92 215 200 9 8 sec 8 sec
3 368 797 200 4 15 sec 23 sec
4 1472 3065 175 2 24 sec 47 sec
5 5888 | 12017 80 1 47 sec 94 sec
6 23552 | 47585 121 1 425 sec 520 sec

Table 5.3: CPU-time per level, accumulated time and number of inner (QMR) and outer
(SQP) iterations for exact data using a nested multi-level approach

for the parameter ¢q. This implies a rather simple structure of KKT-sub-matrices in (5.80), in
particular G and H are mass matrices with H being diagonal due to the choice of piecewise
constant shape functions. For the detailed definition of G, H, K, and L, see (5.77), (5.78).

In order to ensure ¢ € L*°(2) we added box-constraints for q to the discretized optimiza-
tion problem which are included using a barrier method (NOCEDAL AND WRIGHT [115]). As
they never become active, we will not go into detail here.

The results were calculated using the finite element code FEPP (see KUHN, LANGER, AND
SCHOBERL [101]), developed at the Institute of Computational Mathematics of the University
of Linz.

We want to mention that this identification problem is quite challenging not only due to
the complicated geometry, but also due to the fact that ¢ is not identifiable along a level
line in the interior, where u attains an extremum. This does not destroy the theoretical
identifiability results, because it is a set of Lebesgue-measure zero, but it can be expected to
create numerical difficulties.

The KKT-system (5.80) was solved using a preconditioned QMR method with the block-
factorization type preconditioner (5.98) with a multi-grid preconditioner K and no precon-
ditioning of the Schur-complement S.. Results for exact data can be found in Table 5.2.
The good performance of the method with respect to both, CPU time and number of outer
iterations can be observed clearly. Especially for problems with fine discretizations of the pa-
rameter ¢, this method can still be realized efficiently, while classical approaches do not yield
results in reasonable time. A plot of the finite dimensional approximation of the parameter
q can be found in Figure 5.4, from which one observes that the parameter is reconstructed
very well except in a neighborhood of the level curve {gradu = 0}.

Additional speed-up can be gained using a multi-level approach as described in Subsec-
tion 5.5.3. We used nested spaces for approximating ¢ and u by subdividing each triangular
element into four smaller elements, when refining the mesh. Table 5.3 presents results for
this approach. It can be seen that on fine discretization levels one SQP step is sufficient for

96 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

Figure 5.4: Parameter distribution for exact data at level 4, gnin = 0.59, ¢mee = 1.4

fulfilling the stopping criterion, which corresponds very well to the theoretical predictions (for
details see BURGER AND MUHLHUBER [34]. A comparison of the results to the ones in Table
5.2 shows that for fixed discretization level, the solution of the identification problem on level
5 is only slightly faster than the identification of ¢ on level 6 (with about the fourfold number
of parameters) using a multi-level approach (see also Figure 5.5).

A plot of the parameter can be found in Figure 5.6. Here the approximation of the
parameter in the area where it can not identified is by far better than in the classical approach
using only one discretization level (compare Figure 5.4). A possible explanation for this effect
is the following: The influence of the level line {grad v = 0} where ¢ can not be identified on
the solution is smaller the coarser the discretization is. The prolongation from coarse levels
to finer ones adds information to the region where the parameter is not identifiable from its
surrounding region. As long as the parameter is smooth this helps to improve the quality of
the numerical results where the parameter can not be identified.

5.8 Necessary changes for optimal design

In the following we want to discuss the necessary changes when changing from our model
problem which is a parameter identification model to an optimal design problem.

First one has to adapt the optimization strategy. As one can not expect the Lagrangian
multiplier to vanish (remember, our model problem was a least-squares problem, where we
considered the special case for attainable data), the second order derivatives of the state equa-
tion can not be neglected. This implies that in the QP problem not a quadratic approximation
of the objective, but of the Lagrangian (5.2) has to be used.

On the other hand, optimal design problems are usually not ill-posed. That is why,
regularization procedures need not be used. Nevertheless, using the Levenberg-Marquardt
modification of the objective can improve the convergence speed as it can also be interpreted
as a trust region for the parameter. Summarizing, for optimal design problems either Method 1
or Method 2 has to be used.

Showing well-posedness of the QP problems for optimal design problems is usually by

5.8. NECESSARY CHANGES FOR OPTIMAL DESIGN 97

10000 T T
LMSQP ——
Nested LMSQP ———

1000

100

Runtime

10

1
1000 10000
Number of parameters

Figure 5.5: Comparison of the CPU-times for the LMSQP-method and its multi-level version

using nested spaces

1.13E+00
1.10E+00

1.00E+00

Figure 5.6: Parameter distribution for exact data at level 4 using a nested multi-level ap-

proach, gmin = 0.66, ¢nmer = 1.13

98 CHAPTER 5. AN ALL-AT-ONCE APPROACH FOR LARGE DESIGN SPACES

far more complicated compared to our model problem. In our case, we had an explicit
representation of the Hessian, as well as of the linearized state equation. Additionally, the
situation was even more simplified by replacing the Hessian of the Lagrangian by the Hessian
of the objective. Taking the Hessian of the Lagrangian, i.e. considering the IRSQP Method,
makes the situation already slightly more complicated. In this situation we can still get well-
posedness, but have to accept further restrictions on the regularization parameter (for details
see BURGER AND MUHLHUBER [33, 34]. Generalizing the objective can lead to situations,
where it is hardly possible to show well-posedness because depending on the objective and the
state equation only very little knowledge on the Hessian of the Lagrangian can be available.

Also the numerical realization of the algorithm is by far more difficult. For the evaluation
of the objective on the QP problem first and second order derivatives are necessary. The
first order derivatives can be calculated efficiently using automatic differentiation. Also the
application of the Hessian, i.e. the evaluation of a Hessian times vector product can be done
efficiently, i.e. the calculation time is proportional to the evaluation of the function itself. The
calculation of the Hessian itself is usually by far more expensive (see e.g. GRIEWANK [67].
For an article on the use of AD in optimal design see e.g. KEYES, HOVLAND, MCINNES, AND
SONYAMO [98].

Even more complicated than the evaluation of the KKT-matrix is its appropriate precon-
ditioning. Although the preconditioning for our model is already quite difficult, here it is
even worse. As usually the Hessian is not available (because of the computational effort) all
preconditioning strategies needing matrix elements can not be applied. Also using mapping
properties of the reduced Hessian is usually very difficult, if not even impossible. One possibil-
ity for preconditioning are strategies usually used for smaller optimization problems. E.g. the
BFGS-update formula can provide you with an approximation of the reduced Hessian which
can be used in combination with the preconditioners of type (5.98) or (5.99). Usually not
the standard BFGS formula, but limited memory variants are used for maintaining sparsity
(NoCEDAL AND WRIGHT [115]) which makes the efficient application of the preconditioners
possible. For an example using this approach see BIROS AND GHATTAS [16, 17].

Chapter 6

Some Remarks on the Software
Design

6.1 Introduction

The goal of our optimal design library is to provide a flexible frame for optimal design prob-
lems. During the development of the here presented design, we put strong emphasis on a
flexible and easy administrable tool and not on the highest possible efficiency. Nevertheless,
the design is also efficient, as could be seen in the results presented in Chapter 4 and Chap-
ter 5. Additionally, we tried to develop a frame which is more or less independent of the
used optimizer and the finite element package used. That is why, one of the main principles
during the development was a strict splitting of the optimizer on the one hand and the real-
ization of the optimization problem on the other. Exchanging the optimizer by a different one
(e.g. an optimizer written in Fortran) induces hardly any changes on the implementation of
the optimal design problem (objective, constraints, state equation). Also different packages
for solving the state problem can be easily integrated. Although we restrict ourselves to an
FE solver for the state equation in the following considerations, using finite differences, the
finite volume method or any other method for calculating an approximate solution of our
state equation would be appropriate. A predecessor of the here presented software design was
presented by KUHN, LUKAS, AND MUHLHUBER [102].

6.2 The optimization modules

In our code, the optimizer is only based on a linear algebra package, which provides vec-
tors, matrices, etc. On top of these basic linear algebra data types, we have built different
optimization strategies:

e An optimizer for unconstrained optimization problems, which is based on a quasi-
Newton method using a BFGS update formula for approximating the Hessian of the
objective. To achieve global convergence we included a line search method. As the
optimizer is based on dense matrices, it is only suitable for small optimization problems
with rather few design parameters.

e A QP optimizer for linearly constrained optimization problems with quadratic objective.
For this optimizer we additionally assumed that the Hessian of the objective is positive

99

100 CHAPTER 6. SOME REMARKS ON THE SOFTWARE DESIGN

definite. The optimizer is based on dense matrices and therefore only suitable for small
optimization problems with rather few design parameters. The QP module is available
in two different implementations: one based on null-space methods and one based on
a range-space approach. Both implementations use formulas for updating a basis of
the null-space of the active constraints which reduce the effort in each iteration when
adding or deleting a constraint from the active index set. The main application of this
optimizer is the calculation of the search direction in an SQP method.

e An SQP optimizer for small nonlinearly constrained optimization problems. This mod-
ule is based on dense matrices and therefore only suitable for optimization problems
with rather few design parameters (c.f. Chapter 4). To get a search direction we solve
a QP problems by one of the optimization modules described in the previous item. For
globalization we use a line search method. The Hessian of the Lagrangian is approx-
imated by a quasi-Newton method using a modified BFGS update formula following
PowELL [122].

e For the approach presented in Chapter 5 we implemented an optimizer which works in
the product space (u,q). Only q is represented by a vector, u uses an abstract base
class vector type to be flexible with respect to the representation of the state solution.
At the moment the state-equation is the only supported constraint but a generalization
to support also constraints on q or u or on both variables would be easily possible. The
Hessian of the Lagrangian as well as the partial derivatives of the state equation need
not be assembled, only corresponding matrix-vector operations need to be provided.
The QP subproblem is solved by an iterative solver (at the moment a QMR module, c.f.
FREUND AND NACHTIGAL [56]) where appropriate preconditioners have to be provided
by the user. This enables us to solve also large scale optimal design problems with many
design and state parameters as long as suitable preconditioners for the QP subproblem
are available.

Each of these optimization modules was implemented in C++ and uses heavily the concepts
of operator overloading and virtual inheritance. In order to obtain good performance we use
a sophisticated memory management to eliminate temporary object creation.

In the following section we describe the general frame for implementing the optimal design
problem.

6.3 The optimal design problem

The frame for the efficient implementation of an optimal design problem presented here en-
capsulates the communication between the optimizer and the finite element code. Both, the
state equation and the objective are treated as abstract objects which enables us to be inde-
pendent of the specific type of problem. Thus, different types of optimal design problems can
be realized in this frame (e.g. shape or topology optimization), but also different classes of
state equations can be easily integrated. Especially, it is not necessary to have state problems
of elliptic type or linear state problems. In this section we will also show how to realize all
methods which are needed to implement the algorithms proposed in Chapter 4 and Chapter 5.

The evaluation of an objective like the one used in Chapter 4 can be split into several
subtasks. A flow graph of the function evaluation for this class of objective can be found in
Figure 6.1. Motivated by this figure, we introduce the following three objects to realize a

6.3. THE OPTIMAL DESIGN PROBLEM 101

Map q to an FE representation @ of the parameter

Use 6 to reassemble the state equation

Solve the state equation to get u

Use q (in most cases it is more natural to use 0)
and u to evaluate the objective

Figure 6.1: Flow graph of a typical function evaluation

102 CHAPTER 6. SOME REMARKS ON THE SOFTWARE DESIGN

function evaluation:
e a ParameterMap,
e a StateConstraint and
e a ProductSpaceFunction.

In the following, we will discuss these objects in more detail and show which functionality is
necessary for each of these objects. Additionally, we will discuss how a direct or an adjoint
method can be realized, as well how to integrate AD into this framework.

6.3.1 ParameterMap

This object is the most important communication layer between the optimizer and the finite
element code. As could be seen in Figure 6.1 it maps the parameter q handled by the optimizer
to a representation @ of the parameter in the FE code. This representation can be of very
different nature for different problems:

e When considering a sizing problem, @ will be a representation of the thickness. In topol-
ogy optimization @ represents the density of the material. In the parameter identification
problem considered in Chapter 5 it was the unknown conductivity to be identified. In
all these cases, the mapping is more or less straight-forward.

e In an optimal control problem @ is the representation of the control in the FE code (e.g.
as a piecewise constant or linear function).

e For shape optimization q represents a parameterization of the computational domain.
In this situation, @ could be a representation of the nodes of the FE mesh, respectively
their coordinates of the domain corresponding to the parameter q. Thus for getting 0 it
is necessary to generate a geometry model corresponding to q by using e.g. a parametric
CAD modeler, and then to deform the mesh of the reference geometry to get a mesh of
the current geometry (see also the remarks in Section 1.3).

The StateConstraint and the ProductSpaceObjective use both the ParameterMap for their
communication with the optimizer. As they calculate derivatives only with respect to @ the
ParameterMap also has to provide functionality to map gradients and other derivatives with
respect to 8 to the corresponding derivatives with respect to q.

6.3.2 StateConstraint

The StateConstraint manages all accesses to the state equation and is therefore an encapsu-
lation of functionality of the FE code, i.e. it represents

e(u,q) =0.

Usually a StateConstraint uses a ParameterMap for the communication to the optimizer i.e.
it accesses only the output 0 of the ParameterMap and not the parameter q directly.
For a product space approach as in Chapter 5 the following functionality is necessary:

e Evaluate e for given state uy and parameter qg.

6.3. THE OPTIMAL DESIGN PROBLEM 103

e Evaluate the gradient with respect to u and q of

T
v e(ug,qo)
for given v, ug, qo.

e Evaluate the linearization of e, i.e. especially evaluate

Oe

Oe
%(UU,QU) Au + %(UO,QU) Aq.

for given ug, qg, Au, Aq.

e Assemble the Jacobian of e if possible with suitable effort, i.e.

e L e
ou & oq

For reduced SQP approaches (as in Chapter 4) we need additional functionality. Especially,
we have to linearize the state equation and to solve the linearized equation and its adjoint.
Usually, the linearized problem is represented as

Au = _(%(uﬂvqo))~ e(up.qo) — (%(uoaqO)) a_q(U-OaQO) Aq,

where (ug,qp) denotes the linearization point. Summarizing we need:

e Linearize the state equation and define the operators

Oe

Oe _
R:—(a—u(uoa%)) ! and Sza—q(um%)-

e Evaluate
Au=RSAq

for given Aq which involves the solution of the linearized state problem with a given
right-hand side.

e Evaluate
Aq=STR" Au
for given Au which involves the solution of the adjoint of the linearized state problem
for a given right-hand side.

e FEvaluate
AX =R" Au

for given Au which again involves the solution of the adjoint linearized state problem
for a given right-hand side.

The direct and the adjoint method can also be realized with this functionality (c.f. (4.21),
(4.22), (4.23)) as long as partial derivatives of the objective with respect to state and design
parameter are available.

The design of the StateConstraint presented here is not only applicable to PDEs of elliptic
type but can be easily used also for time-dependent PDEs.

104 CHAPTER 6. SOME REMARKS ON THE SOFTWARE DESIGN

6.3.3 ProductSpaceFunction

The ProductSpaceFunction encapsulates the evaluation of the objective and its derivatives.
Additionally it can be used to realize constraints depending on state and design parameters.
As the name implies, a ProductSpaceFunction realizes a function depending on design and
state parameters. Similar to the StateConstraint it uses a ParameterMap for the communi-
cation to the optimizer and accesses only the FE representation 6 of the parameter.
For applying the optimization procedures presented in Chapter 4 and Chapter 5 it suffices
to make the following functionality available:

e Evaluate the function for given state and design parameter.

e Evaluate the first derivative of the function for given state and design parameter.
e Apply the second order derivative to a given vector.

e Assemble the Hessian matrix if possible with suitable effort.

The presented frame makes it also easy to incorporate AD. As explained in Chapter 4 it
does not make sense to apply AD in a black-box manner to an optimal design problem.
It is better to use hand-coded parts for solving the linearized state problems (in direct or
adjoint fashion) and apply AD only to get partial derivative of the objective itself (in the
terminology of this section to use hand-coded derivatives for the StateConstraint and AD for
the ProductSpaceFunction). This was also suggested as hybrid method in Subsection 4.4.4.
The here presented design supports the implementation of such a splitting to a large extent.
We tried to keep the information local which makes it easy to realize such a combination of
different differentiation strategies.

Bibliography

1]

2]

[5]

[10]

Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, vol. 65, Academic
Press, New York - San Francisco - London, 1975.

Narayana R. Aluru and James White, Direct Newton finite-element / boundary-element
technique for micro-electro-mechanical analysis, Solid-State Sensor and Actuator Work-
shop (Hilton Head, South Carolina), 1996, pp. 54 — 57.

Owe Axelsson, Iterative solution methods, Cambridge University Press, Cambridge,
1994.

Ivo Babuska and Theolanis Strouboulis, The finite element method and its reliability,
Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford
- New York, 2001.

H. T. Banks and Karl Kunisch, Estimation techniques for distributed parameter systems,
Systems & Control: Foundations & Applications, vol. 1, Birkhauser, Basel - Boston -
Berlin, 1989.

Wolf Bartelheimer, Ein Entwurfsverfahren fiir Tragfligel in transsonischer Stromunyg,
DLR-Forschungsbericht 96-30, Deutsche Forschungsanstalt fur Luft- und Raumfahrt
(DLR), Braunschweig, 1996, ISSN 0939 - 2963.

Klaus-Jirgen Bathe, Finite element procedures, Prentice Hall, 1996.

Astrid Battermann and Matthias Heinkenschloss, Preconditioners for Karush-Kuhn-
Tucker matrices arising in the optimal control of distributed systems, Optimal Control
of Partial Differential Equations (Vorau 1997) (Wolfgang Desch, Franz Kappel, and
Karl Kunisch, eds.), Birkhduser, Basel - Bosten - Berlin, 1998, pp. 15 — 32.

Astrid Battermann and Ekkehard W. Sachs, Block preconditioners for KKT systems in
PDE-governed optimal control problems, Fast solution of discretized optimization prob-
lems (Workshop held at the Weierstrass Institute for Applied Analysis and Stochastics,
Berlin, Germany) (Heinz-Karl Hoffmann, Ronald H. W. Hoppe, and Volker Schulz,
eds.), ISNM, Internat. Series Numer. Math., vol. 138, Birkhauser, Basel, 2001, pp. 1 —
18.

Roland Becker, Hartmut Kapp, and Rolf Rannacher, Adaptive finite element methods

for optimal control of partial differential equations: Basic concepts, STAM J. Control
Optim. 39 (2000), no. 1, 113 — 132.

105

106

[11]

[14]

[15]

[16]

[17]

BIBLIOGRAPHY

, Adaptive finite element methods for optimization problems, Proceedings of the
18th Dundee biennial conference (University of Dundee, GB) (D. F. Griffiths et al.,
ed.), CRC Res. Notes Math., no. 420, Chapman & Hall / CRC, Boca Raton, FL, 2000,
pp. 21 — 42.

Martin P. Bendsge, Optimal shape design as a material distribution problem, Struct.
Multidisc. Optim. 1 (1989), 193 — 202.

Martin P. Bendsge, Optimization of structural topology, shape and material, Springer,
1995.

Claus Bendtsen and Ole Stauning, FADBAD, a flezible C++ package for automatic dif-
ferentiation, Tech. Report IMM-REP-1996-17, Technical University of Denmark, IMM,
Department of Mathematical Modeling, Lyngby, Denmark, 1996.

Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank (eds.), Compu-
tational differentiation: Techniques, applications, and tools, Philadelphia, Penn., STAM,
1996.

George Biros and Omar Ghattas, Parallel Lagrange-Newton-Krylov-Schwarz methods
for PDE-constrained optimization problems. Part 1: The Krylov-Schur solver, Preprint,
Carnegie-Mellon University, 2000.

, Parallel Lagrange-Newton-Krylov-Schwarz methods for PDE-constrained opti-
mization problems. Part 2: The Lagrange-Newton solver and its application to optimal
control of steady viscous flow, Preprint, Carnegie-Mellon University, 2001.

Christian H. Bischof, Alan Carle, George F. Corliss, Andreas Griewank, and Paul Hov-
land, ADIFOR: Generating derivative code from Fortran programs, Scientific Program-
ming 1 (1992), 11 — 29.

Christian H. Bischof, Alan Carle, Peyvand M. Khademi, and Andrew Mauer, The ADI-
FOR 2.0 system for the automatic differentiation of Fortran 77 programs, Comput. Sci.
Engrg. 3 (1996), no. 3, 18 — 32.

Christian H. Bischof, Lucas Roh, and Andrew Mauer, ADIC' — An eztensible automatic
differentiation tool for ANSI-C, Software—Practice and Experience 27 (1997), no. 12,
1427 — 1456.

Paul T. Boggs and Jon W. Tolle, Sequential quadratic programming, Acta Numerica 4
(1995), 1 — 51.

Thomas Borrvall, Computational topology optimization of elastic continua by design
restrictions, Linkoping Studies in Science and Technology, Thesis 848, Division of Me-
chanics, Department of Mechanical Engineering, Linkoping University, Sweden, 2000.

Thomas Borrvall and Joakim Petersson, Large scale topology optimization in 3D using
parallel computing, Tech. Report LiTH-IKP-R-1130, Department of Mechanical Engi-
neering, Linkoping University, 2000.

BIBLIOGRAPHY 107

[24]

[33]

[34]

, Topology optimization using reqularized intermediate density control, Tech. Re-
port LiTH-IKP-R-1086, Department of Mechanical Engineering, Linkoping University,
2000, To appear in Comput. Methods Appl. Mech. Engrg.

Blaise Bourdin, Filters in topology optimization, DCAMM Report 627, Technical Uni-
versity of Denmark, 1999.

Dietrich Braess, Finite Elemente — Theorie, schnelle Léser und Anwendungen in der
Elastizitatstheorie, second ed., Springer, Berlin - Heidelberg - New York, 1997.

James H. Bramble, Joseph E. Pasciak, and Apostol T. Vassilev, Analysis of the inexact
Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34 (1997), 1072 —
1092.

James H. Bramble, Joseph E. Pasciak, and Panayot S. Vassilevski, Computational scales
of Sobolev norms with application to preconditioning, Math. Comp. 69 (2000), 463 —
480.

Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element
methods, Texts in Applied Mathematics, vol. 15, Springer, New York - Berlin - Heidel-
berg, 1994.

Franco Brezzi, On the ezistence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers, RATIRO Anal. Numér. 8 (1974), 129 — 151.

Franco Brezzi and Michel Fortin, Mized and hybrid finite element methods, Springer
Series in Computational Mathematics, vol. 15, Springer, New York - Berlin - Heidelberg,
1991.

Tyler E. Bruns and Daniel A. Tortorelli, Topology optimization of nonlinear elastic
structures and compliant mechanisms, Report, Department of Mechanical and Industrial
Engineering, University of Illinois, Urbana-Champaign, 1999.

Martin Burger and Wolfram Miihlhuber, Iterative regularization of parameter identi-
fication problems by SQP methods, SFB-Report 01-18, SFB F013, University of Linz,
Austria, May 2001, submitted to Inverse Problems.

, Numerical approzimation of an SQP-type method for parameter identification,
SEB-Report 01-19, SFB F013, University of Linz, Austria, May 2001, submitted to
SIAM J. Numer. Anal.

Jean Céa and Kazimierz Malanowski, An example of a maz-min problem in partial
differential equations, STAM J. Control Optim. 8 (1970), 305 — 316.

Isabelle Charpentier, Checkpointing schemes for adjoint codes: Applications to the me-
teorological model meso-NH, STAM J. Sci. Comput. 22 (2001), no. 6, 2135 — 2151.

Guy Chavent and Karl Kunisch, On weakly nonlinear inverse problems, SIAM J. Appl.
Math. 56 (1996), 542 — 572.

Goong Chen and Jianxin Zhou, Boundary element methods, Computational Mathemat-
ics and Applications, Academic Press, Harcourt Brace Jovanovich, London - San Diego
- New York, 1992.

108

[39]

[40]

[41]

[42]

[49]

[50]

BIBLIOGRAPHY

Philippe G. Ciarlet, The finite element method for elliptic problems, second ed., A
Series of Comprehensive Studies in Mathematics, North-Holland Publishing Company,
Amsterdam - New York - Oxford-Tokyo, 1987.

, Mathematical elasticity: Three-dimensional elasticity, Studies in Mathematics
and Its Applications, vol. 20, North-Holland Publishing Company, Amsterdam - New
York - Oxford - Tokyo, 1994.

Andrew R. Conn, Nicolas I. M. Gould, and Philippe L. Toint, Trust-region methods,
MPS-STAM Series on Optimization, vol. 1, STAM, Philadelphia, 2000.

George Corliss, Christéle Faure, Andreas Griewank, Laurent Hascoét, and Uwe Nau-
mann (eds.), Automatic differentiation of algorithms: From simulation to optimization,
New York, Springer, 2001.

Marc Dambrine and Michel Pierre, About stability of equilibrium shapes, Math. Mod-
elling Numer. Anal. 34 (2000), no. 8, 811 — 834.

Michel C. Delfour and Jean-Paul Zolésio, Shapes and geometries: Analysis, differential
calculus, and optimization, Advances in Design and Control, vol. 4, STAM, 2001.

James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph
W. H. Liu, A supernodal approach to sparse partial pivoting, STAM J. Matrix Anal.
Appl. 20 (1999), no. 3, 720 — 755.

Peter Deuflhard and Andreas Hohmann, Numerische Mathematik I, second ed., Walter
de Gruyter & Co., Berlin - New York, 1993.

Tain S. Duff, Albert M. Erisman, and John K. Reid, Direct methods for sparse matrices,
Monographs on Numerical Analysis, Clarendon Press, Oxford, 1986.

Wolfgang Egartner and Volker Schulz, Partially reduced SQP methods for optimal tur-
bine and compressor blade design, ENUMATH 97, Proceedings of the Second European
Conference on Numerical Mathematics and Advanced Applications (Hans Georg Bock,
Guido Kanschat, Rolf Rannacher, Franco Brezzi, Roland Glowinski, Yuri A. Kuznetsov,
and Jacques Periaux, eds.), World Scientific Publishers, 1998, pp. 286 — 293.

Howard C. Elman and Gene H. Golub, Inexact and preconditioned Uzawa algorithms
for saddle point problems, STAM J. Numer. Anal. 31 (1994), 1645 — 1661.

Heinz W. Engl, Martin Hanke, and Andreas Neubauer, Regularization of inverse prob-
lems, Mathematics and Its Applications, vol. 375, Kluwer Academic Publishers, Dor-
drecht - Boston - London, 1996.

Heinz W. Engl, Karl Kunisch, and Andreas Neubauer, Convergence rates for Tikhonov
reqularization on nonlinear ill-posed problems, Inverse Problems 5 (1989), 523 — 540.

Heinz W. Engl and Otmar Scherzer, Convergence rate results for iterative methods for
solving nonlinear ill-posed problems, Solution Methods for Inverse Problems (David
Colton, Heinz W. Engl, Joyce R. McLaughlin, Alfred K. Louis, and William Rundell,
eds.), Springer, Vienna - New York, 2000.

BIBLIOGRAPHY 109

[53]

[54]

[55]

[56]

[57]

Hans A. Eschenauer and Niels Olhoff, Topology optimization of continuum structures:
A review, ASME Appl. Mech. Rev. 54 (2001), no. 4, 331 — 390.

Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics,
vol. 19, American Mathematical Society, Providence, Rhode Island, 1998.

Robert Fletcher, Practical methods of optimization, vol. 2, John Wiley & Sons, New
York, 1981.

Roland W. Freund and Noél M. Nachtigal, QMR: a quasi-minimal residual method for
non-Hermitian linear systems, Numer. Math. 60 (1991), 315 — 339.

Alan George and Joseph W. H. Liu, Computer solution of large sparse positive definite
systems, Prentice-Hall Series in Computational Mathematics, Prentice-Hall, Englewood
Cliffs, New Jersey, 1981.

Ralf Giering, Tangent linear and adjoint model compiler, USER manual, 1997, available
under http://puddle .mit.edu/~ralf/tamc/.

Ralf Giering and Thomas Kaminski, Recipes for adjoint code construction, Tech. Report
212, Max-Planck Institut fiir Meteorologie Hamburg, 1996.

, Recipes for adjoint code construction, ACM Trans. Math. Software 24 (1998),
no. 4, 437 — 474.

, On the performance of derivative code generated by TAMC, Tech. report, Max-
Planck Institut fir Meteorologie, Hamburg, Germany, 2000, submitted to Optim. Meth-
ods Softw.

Philip E. Gill, Walter Murray, Michael Saunders, and Margaret H. Wright, Some theo-
retical properties of an augmented Lagrangian merit function, Advances in Optimization
and Parallel Computing (P. M. Pardalos, ed.), North-Holland, 1992, pp. 101 — 128.

Philip E. Gill, Walter Murray, and Margaret H. Wright, Practical optimization, Aca-
demic Press, Inc., London - San Diego - New York, 1981.

Vivette Girault and Pierre-Arnoud Raviart, Finite element methods for the Navier-
Stokes equations — theory and algorithms, Springer, Berlin - Heidelberg - New York,
1986.

Donald Goldfarb and A. Idnani, A numerically stable dual method for solving strictly
convex quadratic programs, Math. Programming 27 (1983), 1 — 33.

Andreas Griewank, Achieving logarithmic growth of temporal and spatial complezity in
reverse automatic differentiation, Optim. Methods Softw. 1 (1992), 35 — 54.

, Fvaluating derivatives: Principles and techniques of algorithmic differentiation,
Frontiers in Applied Mathematics, vol. 19, STAM, Philadelphia, 2000.

Andreas Griewank and George F. Corliss (eds.), Automatic differentiation of algorithms:
Theory, implementation, and application, Philadelphia, Penn., STAM, 1991.

110

[69]

[75]

[76]

[77]

[78]

[79]

[80]

BIBLIOGRAPHY

Andreas Griewank, David Juedes, Hristo Mitev, Jean Utke, Olaf Vogel, and Andrea
Walther, ADOL-C: A package for the automatic differentiation of algorithms written
in C/C++, Tech. report, Technical University of Dresden, Institute of Scientific Com-
puting and Institute of Geometry, 1999, Updated version of the paper published in
[70].

Andreas Griewank, David Juedes, and Jean Utke, ADOL-C: A package for the auto-
matic differentiation of algorithms written in C/C++, ACM Trans. Math. Software 22
(1996), no. 2, 131 — 167.

Andreas Griewank and Andrea Walther, Algorithm 799: Revolve: An implementation
of checkpointing for the reverse or adjoint mode of computational differentiation, ACM
Trans. Math. Software 26 (2000), no. 1, 19 — 45.

Christian Grossmann and Hans-Georg Roos, Numerik partieller Differentialgleichungen,
Teubner, Stuttgart, 1992.

Gundolf Haase and Ewald Lindner, Advanced solving techniques in optimization of ma-
chine components, Comput. Assist. Mech. Engrg. Sci. 6 (1999), no. 3, 337 — 343.

Eldad Haber and Uri Ascher, Preconditioned all-at-once methods for large, sparse pa-
rameter estimation problems, Tech. report, University of British-Columbia, Vancouver,
Canada, July 2001.

Robert B. Haber, Chandrashekhar S. Jog, and Martin P. Bendsge, A new approach
to wvariable-topology shape design using a constraint on perimeter, Struct. Multidisc.
Optim. 11 (1996), 1 — 12.

Wolfgang Hackbusch, Multigrid methods and applications, Springer, Berlin - Heidelberg
- New York, 1985.

, Iterative Losung grofler schwachbesetzter Gleichunssysteme, Teubner Studi-
enbiicher Mathematik, B. G. Teubner, Stuttgart, 1991.

Shih-Ping Han, A globally convergent method for nonlinear programming, J. Optim.
Theory Appl. 22 (1977), 297 — 3009.

Martin Hanke, A reqularizing Levenberg-Marquardt scheme with applications to inverse
groundwater filtration problems, Inverse Problems 13 (1997), 79 — 95.

Martin Hanke, Andreas Neubauer, and Otmar Scherzer, A convergence analysis of the
Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995), 21 — 37.

Jaroslav Haslinger and Pekka Neittaanmaki, Finite element approzimation for optimal
shape design: Theory and applications, John Wiley & Sons Ltd., Chinchester, 1988.

Matthias Heinkenschloss, The numerical solution of a control problem governed by a
phase field model, Optim. Methods Softw. 7 (1997), 211 — 263.

Bernd Heinrich, Finite difference methods on irreqular networks. a generalized approach
to second order elliptic problems, International Series of Numerical Mathematics, vol. 82,
Birkhauser, Basel, 1987.

BIBLIOGRAPHY 111

[84]

[85]

[36]

[94]

[95]

[96]

[97]

[98]

[99]

Bodo Heise, Nonlinear field calculations with multigrid Newton methods, Impact Com-
put. Sci. Engrg. 5 (1993), 75 — 110.

Magnus R. Hestenes and Eduard Stiefel, Methods of conjugate gradients for solving
linear systems, J. Res. Nat. Bur. Standards 49 (1952), 409 — 436.

Michael Hintermiiller and Wolfgang Ring, A level set approach for the solution of a state
constrained optimal control problem, Tech. report, Institute of Mathematics, University
of Graz, Austria, February 2002.

Ronald W. Hoppe, Svetozara Petrova, and Volker Schulz, 3D structural optimization
in electromagnetics, Proceedings of Domain Decomposition Methods and Applications
(Lyon, Oct. 9-12, 2000) (M. Garbey et al., ed.), 2001.

, A primal-dual Newton-type interior-point method for topology optimization, J.
Optim. Theory Appl. 114 (2002), no. 3, to appear.

Josef Hoschek and Dieter Lasser, Grundlagen der geometrischen Datenverarbeitung, B.
G. Teubner, Stuttgart, 1989.

Thomas J. R. Hughes, The finite element method: Linear static and dynamic finite
element analysis, Dover Publications, 2000.

Nathan Ida and Joao P. A. Bastos, Electromagnetics and calculation of fields, Springer,
1997.

Michael Jung and Ulrich Langer, Applications of multilevel methods to practical prob-
lems, Surveys Math. Indust. (1991), 217 — 257.

, Methode der finiten Elemente fir Ingenieure — Eine Einfuhrung in die nu-
merischen Grundlagen und Computersimulation, Teubner, Stuttgart - Leipzig - Wies-
baden, 2001.

Barbara Kaltenbacher, Some Newton-type methods for the regularization of nonlinear
ill-posed problems, Inverse Problems 13 (1997), 729 — 753.

, On Broyden’s method for the reqularization of non-linear ill-posed problems,
Numer. Funct. Anal. Optim. 19 (1998), 807 — 833.

Manfred Kaltenbacher, Hermann Landes, Reinhard Lerch, and Franz Lindinger, A
finite-element / boundary element method for the simulation of coupled electrostatic-
mechanical systems, J. Physique II1 7 (1997), 1975 — 1982.

Manfred Kaltenbacher, Hermann Landes, Kurt Niederer, and Reinhard Lerch, 8D sim-
ulation of controlled micro-machined capacitive ultrasound transducers, Proceedings of
the TEEE Ultrasonic Symposium (Lake Tahoe), 1999, accepted for publication.

David E. Keyes, Paul D. Hovland, Lois C. Mclnnes, and Widodo Samyono, Using
automatic differentiation for second-order matriz-free methods in PDE-constrained op-
timization, in Corliss et al. [42], pp. 35 — 50.

Andreas Kirsch, An introduction to the mathematical theory of inverse problems,
Springer Series in Applied Mathematical Sciences, vol. 120, Springer, Berlin, 1996.

112

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

BIBLIOGRAPHY

Arnulf Kost, Numerische Methoden in der Berechnung elektromagnetischer Felder,
Springer, Berlin - Heidelberg - New York, 1995.

Michael Kuhn, Ulrich Langer, and Joachim Schéberl, Scientific computing tools for 3D
magnetic field problems, The Mathematics of Finite Elements and Applications (J. R.
Whiteman, ed.), vol. X, Elsevier, Amsterdam, 2000, pp. 239 — 258.

Michael Kuhn, Dalibor Luk&s, and Wolfram Miihlhuber, An object-oriented library for
shape optimization problems governed by systems of linear elliptic partial differential
equations, Trans. VSB — Techn. Univ. Ostrava, Comput. Sci. Math. Ser. 1 (2001),
no. 1, 115 — 128.

Karl Kunisch and Gunther Peichl, Embedding domain technique representation of the
gradient for some shape optimization problems, Adv. Math. Sci. Appl. 9 (1999), no. 2,
717 — 736.

Ulrich Langer and Werner Queck, On the convergence factor of Uzawa’s algorithm, J.
Comput. Appl. Math. 15 (1986), 191 — 202.

, Preconditioned Uzawa-type iterative methods for solving mized finite element
equations. theory — applications — software, Wissenschaftliche Schriftenreihe 3, Techn.
Univ. Karl-Marx-Stadt, 1987.

Reinhard Lerch, Manfred Kaltenbacher, Hermann Landes, and Franz Lindinger, Com-
puterunterstitzte Entwicklung elektromechanischer Transducer, e & 17 / 8 (1996), 532
— b45.

David G. Luenberger, Introduction to linear and nonlinear programming, Addison-
Wesley Publishing Company, 1973.

Dalibor Lukas, Shape optimization of homogeneous electromagnets, SFB-Report 00-30,
SFB F013, University of Linz, Austria, September 2000.

, Shape optimization of homogeneous electromagnets, Proceedings of SCEE, Lec-
ture Notes in Computational Science and Engineering, Springer, 2000, submitted.

Bernd Maar and Volker Schulz, Interior point multigrid methods for topology optimiza-
tion, Struct. Multidisc. Optim. 19 (2000), no. 3, 214 — 224.

Kamel G. Mahmoud, Approximations in optimum structural design, Advances in Struc-
tural Optimization (Barry H. V. Topping and Manolis Papadrakakis, eds.), Civil-Comp
Press, Edingburgh, 1994, pp. 57 — 67.

Gérard Meurant, Computer solution of large linear systems, Studies in Mathematics
and its Applications, vol. 28, Elsevier, Amsterdam, 1999.

Bijan Mohammadi and Olivier Pironneau, Applied shape optimization for fluids, Numer-
ical Mathematics and Scientific Computation, Oxford Science Publications, Clarendon
Press, Oxford, 2001.

Frithiof Niordson, Optimal design of elastic plates with a constraint on the slope of the
thickness function, Internat. J. Solids Structures 19 (1983), 141 — 151.

BIBLIOGRAPHY 113

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Jorge Nocedal and Stephen J. Wright, Numerical optimization, Springer Series in Op-
erations Research, Springer, New York, 1999.

Sigeru Omatu and John H. Seinfeld, Distributed parameter systems. theory and appli-
cations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1989.

Christopher C. Paige and Michael A. Saunders, Solution of sparse indefinite linear
systems of linear equations, SIAM J. Numer. Anal. 12 (1975), 617 — 629.

Joakim Petersson, On stiffness mazimization of variable thickness sheet with unilateral
contact, Quart. Appl. Math. 54 (1996), 541 — 550.

, A finite element analysis of optimal variable thickness sheets, STAM J. Numer.
Anal. 36 (1999), no. 6, 1759 — 1778.

, Some convergence results in perimeter-controlled topology optimization, Com-
put. Methods Appl. Mech. Engrg. 171 (1999), 123 — 140.

Joakim Petersson and Ole Sigmund, Slope constrained topology optimization, Internat.
J. Numer. Methods Engrg. (1998), 1417 — 1434.

Michael J. D. Powell, A fast algorithm for nonlinearly constraint optimization calcula-
tions, Numerical Analysis (G. A. Watson, ed.), Lecture Notes in Mathematics, vol. 630,
Springer, Berlin, 1978, pp. 144 — 157.

Alfio Quarteroni and Alberto Valli, Numerical approzimation of partial differential equa-
tions, Springer Series in Computational Mathematics, vol. 23, Springer, Berlin - Hei-
delberg - New York, 1994.

Werner Queck, The convergence factor of preconditioned algorithms of the Arrow-
Hurwicz type, STAM J. Numer. Anal. 26 (1989), no. 4, 1016 — 1030.

Darren Redfern, The MAPLE handbook — Maple V Release 4, Springer, 1996.

Stefan Reitzinger, Algebraic multigrid methods for large scale finite element equations,
Schriften der Johannes-Kepler-Universitat Linz, Reihe C, vol. 36, Universitatsverlag
Rudolf Trauner, Linz, 2001.

Michael Renardy and Robert C. Rogers, An introduction to partial differential equations,
Texts in Applied Mathematics, vol. 13, Springer, New York, 1992.

Mark P. Rossow and John E. Taylor, A finite element method for the optimal design of
variable thickness sheets, ATAA J. 11 (1973), 1566 — 1569.

George I. N. Rozvany, Aims, scope, methods, history and unified terminology of
computer-aided topology optimization in structural mechanics, Struct. Multidisc. Op-
tim. 21 (2001), no. 2, 90 — 108.

John W. Ruge and Klaus Stiiben, Algebraic multigrid (AMG), Multigrid Methods,
Frontiers in Applied Mathematics, vol. 3, STAM, 1986, pp. 73 — 130.

114

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139)]

[140]

[141]

[142]

[143]

[144]

[145]

BIBLIOGRAPHY

Yousef Saad, Sparskit: A basic tool-kit for sparse matriz computations, Tech. Re-
port 90-20, Research Institute for Advanced Computer Science, NASA Ames Research
Center, Moffet Field, CA, 1990, for version 2 and additional information see also
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html.

, Iterative methods for sparse linear systems, PWS, 1996, second edition available
under http://www.cs.emn.edu/~saad/books.html.

Yousef Saad and Martin H. Schultz, GMRES: a generalized minimal residual algorithm
for solving non-symmetric linear systems, SITAM J. Sci. Statist. Comput. 7 (1986), 856
- 869.

Ekkehard W. Sachs, Control applications of reduced SQP methods, Computational Op-
timal Control. Proceedings of the 9th TFAC Workshop on Control Applications of Op-
timization (R. Bulirsch and D. Kraft, eds.), Birkhauser, 1994, pp. 89 — 104.

Alexander A. Samarskij, Theorie der Differenzenverfahren, Mathematik und ihre An-
wendung in Physik und Technik, vol. 40, Akademische Verlagsgesellschaft Geest & Port-
ing K.-G., Leipzig, 1984.

Klaus Schittkowski, On the convergence of a sequential quadratic programming method
with an augmented Lagrangian search direction, Mathematische Operationsforschung
und Statistik 14 (1983), 197 — 216.

, NLPQL: A Fortran subroutine for nonlinear programming, Ann. Oper. Res. 5
(1985), 485 — 500.

Volker Schulz, Solving discretized optimization problems by partially reduced SQP meth-
ods, Comput. Visualization Sci. 1 (1998), 83 — 96.

Volker Schulz and Hans-Georg Bock, Partially reduced SQP methods for large-scale
nonlinear optimization problems, Nonlinear Anal. (1997), 4723 — 4734.

Ole Sigmund, Design of material structures using topology optimization, Ph.D. thesis,
DCAMM, Technical University of Denmark, 1994.

Jan Sokolowski and Jean-Paul Zolésio, Introduction to shape optimization, Springer
Series in Computational Mathematics, vol. 16, Springer, Berlin - Heidelberg - New
York, 1992.

Christoph Stangl, Optimal sizing for a class of nonlinearly elastic materials, STAM J.
Optim. 9 (1999), no. 2, 414 — 443.

Josef Stoer, Numerische Mathematik 1, 8-th ed., Springer, Berlin, 1999.

Mathias Stolpe and Krister Svanberg, An alternative interpolation scheme for mini-
mum compliance topology optimization, Report TRITA/MAT-00-OS13, Optimization
and Systems Theory, Royal Institute of Technology, Stockholm, Sweden, 2000.

Krister Svanberg, The method of moving asymptotes - a new method for structural
optimization, Internat. J. Numer. Methods Engrg. 24 (1987), 359 — 373.

BIBLIOGRAPHY 115

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

Shlomo Ta’asan, Infinite dimensional preconditioners for optimal design problems, Tech.
report, Carnegie Mellon University, Pittsburgh, PA, 1997.

, Introduction to shape design and control, Tech. report, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1997.

, Multigrid one-shot methods and design strategy, Tech. report, Carnegie Mellon
University, Pittsburgh, PA, 1997.

, Theoretical tools for problem setup, Tech. report, Carnegie Mellon University,
Pittsburgh, PA, 1997.

TAF, see http://www.fastopt.de/taf/taf .html.

Ulrich Tautenhahn and Dietmar Schweigert, Effective numerical methods for solving
implicit ill-posed inverse problems, Theory and Practice of Geophysical Data Inversion
(Andreas Vogel, ed.), Vieweg, Braunschweig - Wiesbaden, 1992, pp. 3 — 19.

Ulrich Trottenberg, Cornelis W. Oosterlee, and Anton Schiiller, Multigrid, Academic
Press, London, 2000.

Ursula van Rienen, Numerical methods in computational electrodynamics, Lecture Notes
in Computational Science and Engineering, vol. 12, Springer, Berlin - Heidelberg - New
York, 2000.

Riidiger Verfiirth, A review of a-posteriori error estimation and adaptive mesh-
refinement techniques, Wiley-Teubner Series on Advances in Numerical Mathematics,
John Wiley & Sons, Chinchester, 1996.

Gerhard Wachutka, Tailored modeling of miniaturized electrothermomechanical systems
using thermodynamic methods, Micromechanical Systems 40 (1992), 183 — 198.

Thomas Weiland, A discretization method for the solution of Mazwell’s equation for
siz-component fields, Electronics and Communications AEU 3 (1977), 116 — 120.

Wolfgang L. Wendland, On asymptotic error estimates for combined BEM and FEM,
Finite Element and Boundary Element Techniques from Mathematical and Engineering
Point of View (Erwin Stein and Wolfgang L. Wendland, eds.), CISM Cources and
Lectures, vol. 301, Springer, Vienna - New York, 1989, pp. 273 — 333.

Stephen Wolfram, The MATHEMATICA book, 4th ed., Cambridge University Press,
Cambridge, 1999.

Mihalis Yannakakis, Computing the minimum fill-in is NP-complete, STAM J. Algebraic
Discrete Methods 2 (1981), 77 — 79.

Eberhard Zeidler, Nonlinear functional analysis and its application, vol. IT1, Variational
Methods and Optimization, Springer, New York, 1985.

M. Zhou, Y. K. Shyy, and H. L. Thomas, Checkerboard and minimum member size
control in topology optimization, WCSMO-3, Proceedings of the Third World Congress
of Structural and Multidisciplinary Optimization (C. L. Bleobaum, K. E. Lewis, and
R. W. Mayne, eds.), 1999, pp. 440 — 442.

116 BIBLIOGRAPHY

[162] Franz Ziegler, Technische Mechanik der festen und fliissigen Korper, Springer, Wien -
New York, 1985.

[163] Olgierd C. Zienkiewics, The finite element method in engineering science, third ed.,
McGraw-Hill, London, 1977.

[164] Walter Zulehner, Analysis of iterative methods for saddle point problems: A wunified
approach, Math. Comp. 71 (2002), 479 — 505.

Eidesstattliche Erklarung

Ich erkldre an Eides statt, dal ich die vorliegende Dissertation selbstindig und ohne fremde
Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die
wortlich oder sinngemifl entnommenen Stellen als solche kenntlich gemacht habe.

Linz, im April 2002 Dipl.-Ing. Wolfram Miihlhuber

Curriculum Vitae

Name: Wolfram Friedrich Miihlhuber
Date of Birth: March 7, 1972

Place of Birth: Linz

Nationality: Austria

Affiliation: Special Research Program (SFB) F013
Numerical and Symbolic Scientific Computing
Institute of Computational Mathematics
Johannes Kepler University Linz
Freistadter Strafie 313, A-4040 Linz, Austria
http://www.sfb013.uni-linz.ac.at

Education:
1982 - 1990: Grammer School
1990 - 1997: Studies in Technical Mathematics at the Johannes Kepler Uni-
versity Linz, graduated to Dipl.-Ing. in September 1997
since 1998: PhD student at the University of Linz
Employment:

Since 1998: Research Assistant at the SFB F013

