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Abstra
t

In optimal design we try to improve an obje
t by modifying its shape. These optimization

problems are lo
ated on the interfa
e to partial di�erential equations, numeri
al analysis and

s
ienti�
 
omputing. This makes the solution of optimal design problems very 
hallenging.

During re
ent years, the importan
e of optimal design has been growing, espe
ially in the


ommer
ial market. But still nowadays, 
hanges in the design are most often based on long

lasting experien
e, rather than optimization methods. The main spe
ialty of optimal design

problems is that they are optimization problems governed by di�erential equations where we


onsider only the 
ase of partial di�erential equations. We present strategies for the numeri
al

solution of these optimization problems, and dis
uss the arising problems.

For optimal design problems with only a few design parameters we 
onsider an approa
h

redu
ing the number of parameters by eliminating the state parameters. For this redu
ed

problem we use standard optimization methods based on sequential quadrati
 programming.

Here, the Hessian is usually approximated by quasi-Newton formulas, like the well-known

BFGS-formula. That is why, we need only fun
tion and gradient evaluations of the obje
tive

and the 
onstraints. In most 
ases it is very diÆ
ult to implement gradient evaluation rou-

tines for real life optimal design problems as these involve the solution of the state problem.

As an alternative to hand-
oded gradient routines we 
onsider various bla
k-box approa
hes,

like �nite di�eren
es or automati
 di�erentiation, and analyze their pros and 
ons. Combin-

ing the strengths of di�erent approa
hes we realize a 
exible, but also eÆ
ient method by


ombining automati
 di�erentiation with hand-
oded gradient routines. We demonstrate the

good performan
e using an optimal sizing problem 
oming from industry.

For optimal design problems with many design parameters approa
hes eliminating the

state equation are not suitable. We introdu
e an all-at-on
e approa
h 
onsidering the opti-

mal design problem in the produ
t spa
e of state and design parameters. This approa
h treats

the state equation as an equality 
onstraint during the optimization. Besides a method based

on sequential quadrati
 programming we introdu
e methods based on sequential quadrati


programming and iterative regularization as we use an ill-posed problem as model problem.

We analyze the well-posedness of the o

urring quadrati
 programming subproblems in a


ontinuous and a dis
rete setting. For the 
onsidered model problem, the numeri
al approxi-

mation of the Karush-Kuhn-Tu
ker systems of the quadrati
 subproblems leads to equation

systems with large, sparse, symmetri
, but inde�nite matri
es. We 
onsider the numeri
al

solution of these problems using Uzawa-type methods, redu
ed SQP methods or simultaneous

methods. A nested iteration approa
h additionally a

elerates the proposed method. The


onsidered examples show the good numeri
al performan
e of the proposed method.
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Zusammenfassung

In vielen Berei
hen des t

�

agli
hen Lebens gewinnt die rationelle Nutzung von Ressour
en ei-

ne immer gr

�

o�ere Bedeutung. Insbesondere im industriellen Umfeld ist es heute notwendig,

Produkte m

�

ogli
hst kosteneÆzient zu erzeugen, um konkurrenzf

�

ahig zu bleiben. Glei
hzeitig

werden aber die Produktions- und Entwi
klungszyklen immer k

�

urzer, da der Kunde na
h im-

mer besseren Produkten verlangt. Um wettbewerbsf

�

ahig bleiben und seine Stellung am Markt

behaupten oder gar verbessern zu k

�

onnen, mu� verst

�

arkt auf re
hnergest

�

utzte Produktopti-

mierung gesetzt werden, obwohl na
hwievor viele

�

Anderungen auss
hlie�li
h aufgrund von

Erfahrungswerten dur
hgef

�

uhrt werden.

In der vorliegenden Arbeit betra
hten wir mathematis
he Methoden zur Produktoptimie-

rung. Diese versu
hen dur
h Ver

�

anderung der Form gewisser Teile eine Verbesserung des Pro-

dukts zu errei
hen, wobei beispielsweise die Lebensdauer (z.B. bei tragenden Teilen) erh

�

oht,

das Gewi
ht reduziert, die Produktionskosten verringert oder der Energieverbrau
h reduziert

werden soll. Die L

�

osung sol
h komplexer Optimierungsaufgaben erfordert das Zusammenspiel

mehrerer mathematis
her Disziplinen, insbesondere der Optimierung, Analysis und Numerik

von Di�erentialglei
hungen, sowie des Wissens
haftli
hen Re
hnens.

Bei der Frage, wel
he Form eines Teils f

�

ur den vorgesehenen Zwe
k am g

�

unstigsten ist,

handelt es si
h um ein Optimierungsproblem, dessen Zul

�

assigkeitsberei
h dur
h Di�erential-

glei
hungen restringiert wird, wobei es si
h hierbei meist um partielle Di�erentialglei
hungen

handelt. In dieser Arbeit sollen vor allem die numeris
he L

�

osung derartiger Optimierungspro-

bleme und die dabei auftretenden S
hwierigkeiten diskutiert werden.

F

�

ur Probleme mit nur wenigen Designparametern ist es zwe
km

�

a�ig, jene Variablen, die

den Zustand in der Di�erentialglei
hung repr

�

asentieren, aus dem Optimierungsproblem zu eli-

minieren. Das dadur
h entstehende Optimierungsproblem hat bei weitem weniger Parameter,

wodur
h Standardoptimierungsmethoden auf der Basis von SQP-Methoden verwendet wer-

den k

�

onnen. Diese Verfahren approximieren die Hessematrix mittels Quasi-Newton-Formeln,

wie der bekannten BFGS-Formel, soda� nur Routinen zur Auswertung und zur Gradienten-

bere
hnung von Zielfunktional und Restriktionen notwendig sind.

F

�

ur industriell relevante Probleme ist die Implementierung von Gradientenroutinen meist

sehr arbeitsaufwendig, da eine Funktionsauswertung au
h die L

�

osung der Zustandsglei
hung,

im hier betra
hteten Fall einer partiellen Di�erentialglei
hung, inkludiert. Als Alternativen

bieten si
h die Verwendung von �niten Di�erenzen oder au
h automatis
hes Di�erenzieren an.

Na
h einer Analyse der St

�

arken und S
hw

�

a
hen dieser Verfahren wird gezeigt, wie man dur
h

Kombination von automatis
hem Di�erenzieren und handkodierten Gradientenroutinen auf


exible aber au
h eÆziente Art und Weise Sensitivit

�

atsinformation bere
hnen kann, wobei

die Vorteile dieses Zugangs anhand einer industrierelevanten Di
kenoptimierung illustriert

werden.

F

�

ur Probleme mit einer gro�en Anzahl an Designparametern ist ein Zugang, der die Zu-

vii



viii ZUSAMMENFASSUNG

standsvariablen eliminiert, ni
ht geeignet. Stattdessen wird die Zustandsglei
hung als Re-

striktion eines Optimierungsproblems im Produktraum von Zustands- und Designvariablen

betra
htet. Da als Modellbeispiel ein s
hle
htgestelltes Problem betra
htet wird, werden ni
ht

nur L

�

osungsverfahren auf Basis von SQP-Methoden, sondern au
h sol
he, die SQP-Methoden

mit Regularisierungsverfahren kombinieren, eingef

�

uhrt. Es wird sowohl die Wohlde�niertheit

der pr

�

asentierten Verfahren als au
h deren numeris
he Approximation betra
htet. Letztere

f

�

uhrt auf grossdimensionierte Glei
hungssysteme mit symmetris
hen, inde�niten Matrizen,

wel
he mit Uzawa-artigen Verfahren, reduzierten SQP-Verfahren, aber au
h simultan gel

�

ost

werden k

�

onnen. Zus

�

atzli
h wird dur
h Verwendung ges
ha
htelter Ansatzr

�

aume das vorge-

stellte Verfahren bes
hleunigt.
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Notations and Abbriviations

R, R

d

{ Set of real numbers and set of ve
tors x = (x

i

)

T

i=1;::;d

, x

i

2 R,

i = 1; ::; d.

d { Spa
e dimension.

u { S
alar or ve
tor valued fun
tion.

u

h

, u { Finite element fun
tion and its ve
tor representation.

K { System matrix K 2 R

m�m

.

h�; �i { Duality produ
t or s
alar produ
t in an Hilbert spa
e.

k � k

Z

{ Norm in Z.


, � = �
 { Bounded domain (open and 
onne
ted subset of R

d

, d = 1; 2; 3)

with suÆ
iently smooth boundary � = �
.

n { Normal unit (outward) dire
tion with respe
t to the boundary

� = �
 of some domain 
.

grad { Gradient, gradu(x) =

�

�u(x)

�x

i

�

T

i=1;::;d

for x 2 R

d

.

grad

�

, r

�

{ Gradient with respe
t to �.

r

2

J { Hessian of J.

� { Lapla
e operator, �u(x) =

P

d

i=1

�

2

u(x)

�x

2

i

for x 2 R

d

.

I { Identity matrix.

E { Observation operator.

A

T

{ Transpose of A.

dim(u) { Dimension of the ve
tor u.

meas � { Measure of the set �.
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xii NOTATIONS AND ABBRIVIATIONS

Æ

ij

{ Krone
ker's delta, Æ

ij

= 1 for i = j, Æ

ij

= 0 for i 6= j:

L

2

(
) { Spa
e of s
alar square{integrable fun
tions on 
.

(L

2

(
))

d

{ Spa
e of ve
tor valued square{integrable fun
tions on 
.

L

p

(
) { L

p

(
) = ff : 
! R j u is Lebesque measureable, kuk

p

<1g

with kuk

p

=

�R




juj

p

dx

�

1

p

.

H

1

(
) { H

1

(
) =

�

v 2 L

2

(
) j grad v 2 (L

2

(
))

d

	

:

H

1=2

(�
) { Tra
e spa
e of H

1

(
).

H

1

0

(
) { H

1

0

(
) =

�

v 2 H

1

(
) j v = 0 on �


	

:

(H

1

(
))

d

{ (H

1

(
))

d

=

n

v 2 (L

2

(
))

d

j

�v

i

�x

j

2 L

2

(
) 8i; j = 1; : : : ; d

o

:

U { State spa
e.

U

h

{ Dis
retized state spa
e.

Q { Design spa
e.

Q

h

{ Dis
retized design spa
e.

Z { Spa
e for the data z.

Y { Image spa
e of the state equation e.

U

�

{ Dual spa
e of U .

u { State variable.

q { Design variable.

� { Lagrangian multiplier.

u

h

; q

h

{ Dis
retized state and design variable.

u;q { Ve
tor representation of dis
retized state and design variable.

z; z

Æ

{ Exa
t and noisy data.

J { Obje
tive.

e(u; q) { State equation.

L { Lagrangian.

m { Number of state parameters.

n { Number of design parameters.

u = (u

1

; : : : ; u

m

) { Components of a ve
tor.

AD { Automati
 di�erentiation.

AMG { Algebrai
 multigrid.

CAD { Computer aided design.



xiii

CG { Conjugate gradient.

FE { Finite element.

FEM { Finite element method.

GMRES { Generalized minimal residual.

IRSQP-method { Iteratively regularized SQP method.

KKT-system { Karush-Kuhn-Tu
ker system.

LM method { Feasible path Levenberg-Marquardt method.

LMSQP method { Levenberg Marquardt SQP method.

MINRES { Minimal residual.

MG { Multigrid.

MMA { Method of moving asymptotes.

PDE { Partial di�erential equation.

PSSQP method { Produ
t spa
e SQP method.

QMR { Quasi minimal residual.

QP { Quadrati
 programming.

SQP { Sequential quadrati
 programming.
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Chapter 1

An Overview to Optimal Design

Problems

1.1 Introdu
tion

Optimization plays a role of in
reasing importan
e in today's every day life. Its basi
 prin
iple

is very simple: Usually one has a set of parameters whi
h des
ribe e.g. a form, a path,

quantities to buy or sell or a 
apa
ity to store 
ertain goods. Ea
h element of this set of

parameters is rated by a so-
alled 
ost fun
tional or obje
tive. The goal of an optimization is

to �nd a parameter ve
tor to minimize the 
ost. Typi
al 
osts are as the name implies pri
es

or 
osts in the �nan
ial sense, but may also be the drag of an airplane, the loss of energy,

the time to follow a path, the length of a journey or the weight of a stru
ture, to name only

a few, or a (non) linear 
ombination of (some of) them. Usually, one has to ful�ll additional


onstraints during the optimization whi
h restri
t the 
hoi
e of the parameter.

Optimal design problems are no typi
al optimization problems, although they ful�ll the

requirements above. These problems are lo
ated on the interfa
e of di�erent �elds, and only

one of them is optimization. The others are

� partial di�erential equations,

� numeri
al analysis,

� s
ienti�
 
omputing, and last but not least, for the numeri
al realization,

� information te
hnology.

This pe
uliarity makes the solution of optimal design problems rather 
ompli
ated but on the

other hand very interesting.

In optimal design one tries to improve an obje
t by modifying its shape. The quality

is measured by a 
riterion whi
h 
an be interpreted as a 
ost-fun
tional in the optimization

sense. During re
ent years, the importan
e of optimal design has been growing, espe
ially

in the 
ommer
ial market. But still nowadays, 
hanges in the design are most often based

on long lasting experien
e, rather than optimization methods. The main spe
ialty of optimal

design problems is that they are governed by di�erential equations, in many 
ases partial

di�erential equations (PDEs) or even systems of 
oupled PDEs.

PDEs des
ribe many physi
al models, e.g.

1



2 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

� the Maxwell equations ele
tromagneti
 �elds (see e.g. Ida and Bastos [91℄ and refer-

en
es therein, or Kost [100℄),

� the Cau
hy-Navier equations model 
ontinuum me
hani
s (see e.g. Ciarlet [40℄ or

Hughes [90℄), or

� the Navier-Stokes equations des
ribe the dynami
s of 
uids (see e.g. Girault and

Raviart [64℄).

Usually, analyti
al solutions for PDEs are not known. That is why, numeri
al approximation

s
hemes are used for the 
al
ulation of approximate solutions. Nowadays, the most popular

dis
retization te
hnique is 
ertainly the �nite element method, whi
h is based on a variational

formulation of the PDE. For linear PDEs the �nite element method leads to a large, sparse

linear equation system whi
h has to be solved. For time dependent problems appropriate

time-integration s
hemes have to be used, for non-linear problems Newton's method or a

�x-point approa
h.

One key-task in the approximate solution of a PDE is the solution of a large sparse linear

equation system. For non-linear or time-dependent problems su
h a kind of system has to be

solved repeatedly, e.g. on
e per time step or non-linear iteration step.

As long as the number of unknowns in this linear equation system is not too large, dire
t

solution methods, e.g. variants of Gaussian elimination method (see e.g. George and

Liu [57℄ or Duff, Erisman, and Reid [47℄) 
an be used. Software pa
kages implementing

these te
hniques are e.g. Sparsekit [131℄ of SuperLU [45℄. These methods try to redu
e

the 
osts by reordering rows and 
olumns in su
h a way that the �ll-in is minimized, i.e. they

try to minimize the number of nonzero elements introdu
ed by the fa
torization pro
ess at

positions where the original matrix was zero. For large systems of equations, these dire
t

elimination methods be
ome ineÆ
ient and iterative methods have to be used.

Iterative methods exploit sparsity to a mu
h higher extent than dire
t elimination meth-

ods. They mainly need matrix-ve
tor multipli
ations and other operations whose 
al
ula-

tion time is proportional to the number of unknowns. The best-known iterative methods

are Krylov subspa
e 
orre
tion methods (see e.g. Ha
kbus
h [77℄, Axelsson [3℄, Meu-

rant [112℄ or Saad [132℄). Examples for well-known Krylov subspa
e 
orre
tion methods

are

� the Conjugate Gradient Method by Hestenes and Stiefel [85℄,

� the Minimal Residual Method by Paige and Saunders [117℄,

� the Quasi-minimal Residual Method by Freund and Na
htigal [56℄, or

� the Generalized Minimal Residual Method by Saad and S
hultz [133℄.

Appropriate pre
onditioners are ne
essary for fast 
onvergen
e of these methods. There-

with it is possible to 
onstru
t solvers of optimal order, i.e. the CPU-time and the memory

requirements are proportional to the number of unknowns. Multigrid methods, respe
tively

multigrid pre
onditioners ful�ll these requirements (Jung and Langer [92℄). They are based

on a well-balan
ed interplay between a smoothing operator and a 
oarse grid 
orre
tion. One

possibility to 
al
ulate the 
oarse grid 
orre
tion is by using nested �nite element spa
es.

This is 
alled geometri
 multigrid method. If no nested �nite element spa
es are available,
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algebrai
 multigrid methods 
an be used whi
h 
onstru
t a matrix hierar
hy only by using

�ne-grid information.

Coming ba
k to optimal design problems in general, we want to emphasize that these are

PDE-
onstrained optimization problems, although this term 
ontains by far more. In the

following se
tions we want to introdu
e three 
lasses of optimal design problems, namely

� optimal sizing problems,

� boundary shape optimization problems, and

� topology optimization problems.

These problems have in 
ommon, that the design parameters in
uen
e the domain in whi
h

the PDE has to be ful�lled in some sense. Two other problems 
lasses whi
h are not treated

here, are of similar stru
ture, namely

� inverse problems, and

� optimal 
ontrol problems.

We will make a few general remarks on inverse problem, as one of our model examples is an

inverse problem. Optimal 
ontrol problems are not treated here, for these we want to refer

to the literature. At the end of this 
hapter, we introdu
e an abstra
t problem 
lass whi
h

will be treated in the following 
hapters.

1.2 Optimal sizing problems

Optimal sizing problems are PDE 
onstrained optimization problems where the design pa-

rameters in
uen
e the domain in whi
h the PDE has to be ful�lled. This is also valid for

boundary shape optimization and topology optimization. The main spe
ialty of optimal sizing

problems is the easy dependen
e of the geometry on the design parameters.

Optimal sizing is a 2

1

2

-dimensional optimization, where the design parameter is the thi
k-

ness over a 
onstant 
ross se
tion, i.e. the parameter dependent domain is of the form


(q) =

�

(x

1

; x

2

; x

3

) 2 R

3

j (x

1

; x

2

) 2 !; x

3

2 (�q(x

1

; x

2

); q(x

1

; x

2

))

	

(1.1)

where ! denotes the 
ross se
tion and 0 < q � q(x; y) � q, q; q 2 R

+

. In the design domain


(q) the Lame-equations have to be ful�lled, i.e.

â(q;u; v) =

^

F (q; v); 8 v 2

^

U(q) (1.2)

with

â(q;u; v) =

Z


(q)

�u

i

�x

j

E

ijkl

�v

k

�x

l

dx;

^

F (q; v) =

Z


(q)

hf; vi dx+

Z

�

N

(q)

hg; vi ds

where E

ijkl

denotes the elasti
ity tensor, f the volume for
e density and g the surfa
e for
e

density on a part �

N

of the boundary. We use Einstein's summation 
onvention where

ne
essary.

^

U denotes the set of admissible displa
ements, i.e.

^

U(q) =

�

v 2 [H

1

(
(q))℄

3

j v = 0 on �

D

;meas �

D

> 0

	

(1.3)

where �
 = �

D

[ �

N

, �

D

= �

D

and �

D

\ �

N

= ;.

Typi
al problem settings are e.g.
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� minimize the mass

Z


(q)

�(x) dx

where � denotes the density of the material, under 
onstraints on the displa
ements or

on the maximal stress, or

� minimize the varian
e of the stress under 
onstraints on the maximal stress; this shall

result in an equal-distribution of the stresses.

Up to now, this is a very general optimal design problem. For optimal sizing we additionally

assume:

� We 
onsider a plane stress problem, i.e. 
(q) is thin in x

3

dire
tion.

� 
 is 
onsidered as a plate that 
an 
arry only stresses parallel to the x

1

� x

2

plane.

� The applied surfa
e tra
tions g and the body for
es f are independent of x

3

. Addition-

ally �

N

does not depend on q.

� Last but not least, we want to assume that no displa
ements in x

3

-dire
tion exist and

that the displa
ements in x

1

and x

2

-dire
tion are both independent of x

3

.

Under these assumptions we 
an simplify the problem (1.2), whi
h leads to

a(q;u; v) = F (q; v); 8 v 2 U;

with

a(q;u; v) =

Z

!

q

�u

i

�x

j

E

ijkl

�v

k

�x

l

dx

and

U =

�

v 2 [H

1

(!)℄

2

j v = 0 on 


D

;meas 


D

> 0

	

(1.4)

In the integral de�ning the bilinearform the summation runs only from one to two, as the

domain ! is twodimensional. The main advantage of this formulation is that the parameter

does no more in
uen
e the 
omputational domain, but is a s
alar multiplier in the state

equation. E

ijkl

denotes the material elasti
ity tensor, whereas q � E

ijkl


an be interpreted as

the e�e
tive elasti
ity tensor. Due to the assumptions on the external for
es,

^

F (q; v) 
an also

be rewritten in a form that 
ontains only integrals over 
onstant domains, i.e.

F (q; v) =

Z

!

q hf; vi dx+

Z




N

hg; vi ds

where 


D

and 


N

denote the boundary part of ! 
orresponding to �

D

and �

N

, respe
tively.

As 
an be seen, the design parameter q appears only as a s
alar multiplier in the variational

formulation. In most 
ases, q is dis
retized by a pie
ewise 
onstant fun
tion when using

the �nite element method. Then, the thi
kness plays the role of a multiplier of the element

sti�ness matrix whi
h simpli�es the 
al
ulation of derivatives of the state equation a lot.

This problem 
lass was treated by several people. The �rst to solve this problem numeri-


ally were Rossow and Taylor [128℄ in 1973 using the �nite element method.
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Mahmoud [111℄ used this approa
h for minimizing the weight of a unit inje
tor ro
ker

arm. For a faster evaluation of the gradients he used approximation models to approximate

the obje
tive and the 
onstraints in a trust region of the 
urrent iterate. For a 
lass of

nonlinear materials Stangl [142℄ showed existen
e of a solution for su
h a problem using

�xed-point arguments.

In Chapter 4 we will use an optimal sizing problem as a model example for an optimal

design problem with a small number of design parameters. We will fo
us our interest mainly

on the numeri
al solution and the realization of su
h a method in an industrial environment.

Most attention will be paid to a fast and 
exible gradient evaluation and to the possibility to

handle very 
ompli
ated obje
tives and 
onstraints.

This problem was also 
onsidered from a 
ompletely di�erent point of view. By allowing

the design variable to take values 
lose to zero, this problem 
hanges its nature to a topol-

ogy optimization problem. Then, the maximization of the sti�ness whi
h is equivalent to

the minimization of the 
omplian
e is 
onsidered as obje
tive. For this problem C

�

ea and

Malanowski [35℄ showed existen
e of a solution for stri
tly positive lower thi
kness bound.

Petersson [118℄ generalized the results to a problem with zero lower thi
kness bound and

unilateral displa
ement 
onstraints. Convergen
e of a �nite element analysis in L

p

was shown

again by Petersson [119℄ under 
ertain assumptions on the optimal stress �eld. For publi-


ations dealing with the problem of 
he
kerboard patterns see Se
tion 1.4.

1.3 Boundary shape optimization problems

Boundary shape optimization problems are in some sense a generalization of optimal sizing

problems. Optimal sizing problems are a 2

1

2

-dimensional optimization with a very simple

parameterization of the domain. Additionally, various assumptions were made to reformulate

the state problem on a �xed domain. In many problems these assumptions 
an not be ful�lled.

Furthermore, the domain 
an not be represented in the form needed for an optimal sizing

problem.

In boundary shape optimization the design parameter is the boundary of the 
omputa-

tional domain. In this sense it is a generalization of an optimal sizing problem. As the

dependen
y of the 
omputational domain on the 
orresponding parameter 
an be very gen-

eral we 
an not assume to be able to transform the state problem into a state problem on a

�xed domain. On the other hand, this enables us to handle a mu
h larger problem 
lass.

One of the most diÆ
ult parts in the numeri
al treatment of boundary shape optimization

problems is the parameterization of the boundary. The main problem is that the results of

the subsequent design optimization depend on the used parameterization in a 
riti
al way, as

the parameterization determines the set of admissible designs. That is why, the 
hoi
e of the

parameterization also restri
ts the possible gain in the obje
tive.

For illustration, let us 
onsider the following example: Assume you have a boundary shape

optimization in 2D. The whole boundary is kept �xed, ex
ept one part between two points.

If one uses a straight line for parameterizing this boundary, the set of admissible domains

has only one point, as the two endpoints determine all parameters of the line. When using a


ir
ular ar
, one design parameter is left (des
ribing e.g. the radius of the 
ir
ular ar
). Using

a b-spline 
urve of a �xed order gives us more degrees of freedom, but still the admissible

set of designs is limited by the 
hoi
e of the parameters of the b-spline (e.g. the number of


ontrol nodes or the degree).
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In pra
ti
e, two di�erent approa
hes are used:

� Either the domain is parameterized using geometri
 parameters, or

� for the 
al
ulation, a dis
retization of the boundary is used as parameterization.

The use of geometri
 parameters is of 
ourse 
oupled to using geometri
 primitives to des
ribe

the boundary. Geometri
 primitives have a natural parameterization, e.g. a 
ir
le its 
enter

and radius. Additionally, 
onstraints have to ensure the 
onsisten
y of the geometry, i.e. the

end of one edge is the starting point of another, that the boundary shall not self-interse
t, or

that the 
onne
tion of two edges should be smooth. All these 
onstraints have to be in
or-

porated into a geometry handler mapping the ve
tor of design parameters to an admissible

geometry, whi
h makes the implementation rather 
hallenging. In 2D this 
an still be done,

as the boundary 
onsists only of 
urves, but in 3D this 
an be very 
ompli
ated. Commer
ial


omputer aided design (CAD) tools often have the fun
tionality to maintain a parametri


model of a geometry. But usually it is very 
ompli
ated to integrate these tools into an

optimal design 
ode, as the geometry handler has to provide derivative information, at least

if gradient based optimization routines are used. Additionally, 
onstraints on the geometry

may exist, whi
h 
an not be easily represented in the parameter domain, e.g. the minimal

distan
e between two opposite edges is limited from below.

Often, one tries to es
ape some of the problems des
ribed above by using spline-
urves

and spline-surfa
es to represent the design boundary. Then, some of the parameters of the

spline are the design parameters. Usually, the lo
ation of the 
ontrol knots and their weight

(if rational b-splines are used) is taken as design parameter and the degree remains �xed.

For details on the representation of splines see e.g. Hos
hek and Lasser [89℄. Egartner

and S
hulz [48℄ use this approa
h in the design of turbine blades. Also in aerodynami


optimization, e.g. airfoil design, it is often applied (e.g. Bartelheimer [6℄).

The main advantage of this des
ription is that the number of design parameters is usually

rather low, espe
ially in 2D. Nevertheless, problems with several hundred design parameters

are often found in 3D. But in most 
ases, it is still possible to apply optimization routines

based on dense linear algebra, like NLPQL by S
hittkowski [137℄ or NPSOL by Gill,

Murray, Saunders, and Wright [62℄.

When using a dis
retization of the boundary also for parameterizing the boundary, ea
h

boundary node of the FE mesh is one design parameter. This approa
h does not need a


ompli
ated geometry handler based on a CAD system. That is why, this approa
h is often

named CAD-free parameterization (see e.g. Mohammadi and Pironneau [113℄). This

approa
h is very 
exible, but usually results in problems with very many design parameters.

Additionally, one has to restri
t the set of shapes whi
h 
an be des
ribed by this approa
h to a

set of desired shapes. This 
an be done e.g. by introdu
ing bounds on the maximal 
urvature

of the boundary (see e.g. Luk

�

a

�

s [108℄) or by using smoothing operators as proposed by

Mohammadi and Prionneau [113℄.

When doing boundary shape optimization it is ne
essary to avoid re-meshing of the 
om-

putational domain during one optimization step, as re-meshing usually introdu
es jumps in

the obje
tive. That is why not only a parameterized geometry but also a parameterized mesh

is needed. An often used alternative are mesh-moving strategies. These try to deform the

mesh of a referen
e geometry to get a mesh of the 
urrent one. In order to get good results,

tests on the quality of the 
omputational mesh whi
h are also used in mesh generation have

to be in
luded in these mesh-moving strategies.



1.4. TOPOLOGY OPTIMIZATION PROBLEMS 7

The use of mesh-moving algorithms has usually also impli
ations on the optimizer. As

these algorithms are not very stable with respe
t to very large deformations it is better to

use trust region methods. By the trust region parameter it is rather easy to restri
t the

maximal 
hange of the design parameters and therefore of the geometry. When using line

sear
h methods more robust mesh-moving algorithms are needed.

Most of the aspe
ts presented above deal with the realization of a boundary shape opti-

mization by dis
retizing the problem and then optimizing this dis
retized optimization prob-

lem. Nevertheless, derivatives of the obje
tive with respe
t to the boundary 
an also be


al
ulated by a 
ompletely di�erent approa
h, so-
alled shape-derivatives. Sokolowski and

Zol

�

esio [141℄ and Delfour and Zol

�

esio [44℄ fo
us on this approa
h. A shape-derivative

is a derivative of the 
ontinuous obje
tive with respe
t to the boundary. Usually this results

in a partial di�erential equation for the gradient. For numeri
al purposes this PDE has to be

dis
retized, but the solution of this dis
rete problem is then not a gradient of the dis
retized

obje
tive any more. That is why, for numeri
al purposes the previously des
ribed 
on
ept is

often preferred. In 
ontrast, shape derivatives are often used to show existen
e or uniqueness

of solutions (see e.g. Dambrine and Pierre [43℄).

Besides these approa
hes, also other ones exist, e.g. using �
ti
ious domains (Kunis
h

and Pei
hl [103℄) or using level set methods (Hinterm

�

uller and Ring [86℄). But up to

now these methods were not used for real life problems.

1.4 Topology optimization problems

As explained in Se
tion 1.3 boundary shape optimization problems depend strongly on the

way the design boundary is parameterized. Additionally, the results depend strongly on the

topology of the design domain, as boundary shape optimization 
an not 
hange the topology

e.g. by adding or removing holes.

Topology optimization problems are material distribution problems. For these problems

the density of the material is the design parameter. In ea
h point of the 
omputational

domain, the density should be either one or zero, indi
ating material or void respe
tively. In

some sense, the stru
ture of these problems is quite similar to optimal sizing problems, where

the thi
kness played a similar role.

The best analyzed topology optimization problem is the maximum-sti�ness problem, often


alled also minimal-
omplian
e problem whi
h looks as follows: Find a density q 2 Q and a

state u 2 U , su
h that

F (u)! min

(u;q)2U�Q

subje
t to a(q;u; v) = F (v); 8 v 2 U;

Z




q dx = V

0

;

0 < q � q � 1

(1.5)

with

a(q;u; v) =

Z




�(q)

�u

i

�x

j

E

ijkl

�v

k

�x

l

dx
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and

F (v) =

Z




hf; vi dx+

Z




N

g v ds:

V

0

denotes a pres
ribed volume, f the volume for
e density, g pres
ribed surfa
e tra
tions on

�

N

. For de�ning the bilinearform Einstein's summation 
onvention is used. We introdu
ed

the parameter q to be in [q; 1℄ with q > 0. In order to prevent q to attain intermediate values,

spe
ial fun
tions �(q) are used, e.g.

�(q) = q

m

(1.6)

for a given m whi
h is known as SIMP (Solid Isotropi
 Material with Penalization, see e.g.

Bends�e [12℄) or

�(q) =

q

1 + (m� 1)(1 � q)

whi
h was introdu
ed and analyzed by Stolpe and Svanberg [144℄. m is usually 
hosen

larger than 1. Borrvall and Petersson [24℄ presented an alternative to prevent q to attain

intermediate values. They allow m to be 1 in (1.6), but introdu
ed an additional 
onstraint.

An overview on many aspe
ts of topology optimization is presented by the monograph of

Bends�e [13℄ and the review arti
les by Es
hauer and Olhoff [53℄ or Rozvany [129℄.

The main diÆ
ulty is that the problem (1.5) is ill-posed, i.e. there are generally no so-

lutions. Borrvall and Petersson [24℄ motivated that the set of feasible designs is not

suÆ
iently 
losed, i.e. it is not 
losed with respe
t to the relevant topology. This introdu
es

several e�e
ts whi
h are quite typi
al for problem (1.5). On the one hand, mesh dependent

solutions 
an appear. These are a 
onsequen
e of the fa
t that a solution of the 
ontinu-

ous problem need not exist. On the other hand, 
he
kerboard patterns and other numeri
al

anomalies o

ur (see e.g. Bends�e [13℄), whi
h are a 
onsequen
e of non-
onvergen
e when

the mesh is re�ned. All solution methods now try to enlarge or restri
t the set of admissible

designs in su
h a way that the new set is 
losed (with respe
t to a suitable topology) and

solutions exist.

One possibility is to restri
t the gradient of the design parameter, i.e.

k grad qk � 
 (1.7)

where the norm is taken in some L

p

spa
e. Depending on the 
hoi
e of p, we distinguish

several problems:

For p = 1, (1.7) 
an be interpreted as a bound on the total variation of q. This restri
tion

is usually 
alled perimeter 
onstraint and was �rst numeri
ally treated by Haber, Jog, and

Bends�e [75℄. Petersson [120℄ provides results on the existen
e of solutions, as well as on


onvergen
e aspe
ts. Unfortunately, the advantage of perimeter 
onstraints seems mainly of

theoreti
al nature. From the numeri
al point of view, it seems that a solution algorithm is in

general unstable and sensitive to lo
al optima (Haber, Jog, and Bends�e [75℄).

A di�erent approa
h are slope 
onstraints whi
h 
orrespond to (1.7) for p =1. These were

introdu
ed in the optimal design of elasti
 plates byNiordson [114℄. In topology optimization

they were �rst used by Petersson and Sigmund [121℄ where bounds on the dire
tional

derivatives were used. Again, existen
e of a solution 
an be shown. From the numeri
al point

of view, this approa
h results in many 
onstraints. Petersson and Sigmund [121℄ reported

this as a signi�
ant drawba
k of the method. Zhou, Shyy, and Thomas [161℄ presented

an algorithm whi
h exploits the 
hara
teristi
s of the 
onstraints. They reported that the

in
orporation of the 
onstraints required hardly any extra 
omputational 
ost.
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The use of L

p

norms for 1 < p <1 was never treated numeri
ally in literature.

A 
ompletely di�erent approa
h are restri
tions using �lters. By introdu
ing a low-pass

�lter, the unwanted high frequen
y 
omponents in the design variable 
an be redu
ed. Several

approa
hes were proposed in literature:

Sigmund [140℄ used a �lter for the sensitivities of the obje
tive in order to prevent too

thin stru
tures. Although there is no theoreti
al justi�
ation at the moment, this approa
h

proved to be quite e�e
tive. Moreover, the solutions seem to be mesh independent.

Bruns and Tortorelli [32℄ apply a molli�er between every optimization iterate to

stabilize the numeri
al pro
edure and to �lter high frequen
y 
omponents of q. Bourdin [25℄

showed the existen
e of solutions for this approa
h and also the in
uen
e of the �lter radius

on the solution.

Usually, in (1.6) m is taken larger than 1. In Borrvall and Petersson [24℄ a �lter

method is presented whi
h works also for m = 1. In order to eliminate intermediate densities,

they penalize them. To get also existen
e of solutions, they use a molli�er to smooth the

density. In Borrvall and Petersson [23℄ results for large s
ale optimization problems in

3D are presented using this approa
h.

The main advantage of �lter methods to methods bounding the gradient is that it is pos-

sible to prove mesh independen
e of the numeri
al solution (see Bourdin [25℄ and Borrvall

and Petersson [24℄ for �nite element 
onvergen
e of the latter two methods). For a good

and detailed overview of these methods see Borrvall [22℄.

For the numeri
al solution most papers exploit the spe
ial stru
ture of problem (1.5)

to derive an eÆ
ient solver. Svanberg [145℄ developed the Method of moving asymptotes

(MMA) whi
h is still nowadays used by most topology optimization 
odes. It is based on a


onvex and separable expansion of the obje
tive, whi
h a

elerates the 
al
ulation of a sear
h

dire
tion in the optimization.

An ex
eption is the paper of Maar and S
hulz [110℄. They use an interior point

method for optimizing the problem. Ea
h quadrati
 programming problem is solved by a

multigrid method using transforming smoothers. As they used no regularization, they got

mesh-dependent results whi
h 
ould also be seen at the presented pi
tures. Nevertheless the

approa
h itself seems interesting, although the 
ode is not faster than 
odes based on MMA

up to now.

As mentioned above, most topology optimization papers fo
us on a solution of (1.5).

Re
ently, Hoppe, Petrova, and S
hulz [87, 88℄ presented a solution pro
edure for a

topology optimization in ele
tro-magneti
s. Up to now, no analysis is available, nevertheless

the numeri
al results look very promising.

1.5 Inverse problems

Inverse problems are 
on
erned with determining 
auses for desired or observed e�e
ts. There-

fore, they appear quite frequently. A very important sub
lass are parameter identi�
ation

problems (see e.g. Banks and Kunis
h [5℄ or Omatu and Seinfeld [116℄). There, dis-

tributed parameters in an underlying model (usually a partial di�erential equation) are de-

termined from indire
t measurements. We will use a member of this 
lass as model example

in Chapter 5.

The majority of inverse problems is ill-posed, i.e. either the solution does not exist in a

stri
t sense, or solutions might not be unique and / or might not depend 
ontinuously on
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the data. Therefore, regularization methods have to be used in order to obtain a stable

approximation of the solution in the presen
e of data noise (introdu
ed e.g. by a measuring

devi
e). We refer to Engl, Hanke, and Neubauer [50℄ and to Kirs
h [99℄ for an overview

of regularization methods for inverse ill-posed problems.

The most well-known 
lassi
al approa
h to regularize an inverse problem is Tikhonov reg-

ularization (see e.g. Chavent and Kunis
h [37℄ or Engl, Kunis
h, and Neubauer [51℄).

There we repla
e the least-squares problem by a 
lose stable problem. Re
ently, also the ap-

pli
ation of iterative regularization methods be
ame more and more popular (see e.g. Hanke,

Neubauer, and S
herzer [80℄, Hanke [79℄, or Kaltenba
her [94, 95℄). The regularizing

e�e
t of an iterative regularization method 
omes form the early termination of the iteration

pro
edure, where the stopping index is 
hosen in dependen
e of the noise level. We refer to

the survey paper by Engl and S
herzer [52℄ for an overview.

1.6 Abstra
t problem 
lass

All previously presented problems have in 
ommon that ea
h of these problems 
an be de-

s
ribed as a PDE 
onstrained optimization problem. Of 
oarse, the obje
tive has 
ertain

spe
ialties depending on the spe
i�
 type of problem whi
h 
an be exploited in numeri
al

algorithms. Additionally, due to the similar nature, ideas from one problem type 
an be

transferred to another.

In general, in ea
h of these problems we try to solve an optimization problem

J(u; q)! min

(u;q)2U�Q

(1.8)

under a 
onstraining state equation

e(u; q) = F: (1.9)

Additionally, other 
onstraints on the parameter q 2 Q, the state u 2 U or on both variables

may be present.

The obje
tive J 
an be of di�erent type: For the presented topology optimization problem

it is a linear fun
tion in u and does not depend on q expli
itly. For inverse problems it is

usually a fun
tion of least-squares type 
omparing the observation whi
h depends on the state

solution with the given data. Additionally, it 
ontains usually a regularization term. For sizing

and boundary shape optimization often very general obje
tives 
an be found, in many 
ases

depending on the state solution u alone. Then, the parameter appears only in the 
onstraints.

Espe
ially for these rather general fun
tions it is often diÆ
ult and very time 
onsuming

to 
al
ulate gradient information whi
h is needed by the optimizer. In these situations,

automati
 di�erentiation (AD) 
an help a lot. The main referen
es of this te
hnique are the

pro
eedings of the AD 
onferen
es in Bre
kenridge [68℄, Santa Fe [15℄ and Ni
e [42℄,

and the monograph by Griewank [67℄. We will show how this te
hnique 
an be used to

a

elerate the development of routines for the 
al
ulation of derivatives.

The state equation 
an also be of very di�erent type. We will treat only problems of

ellipti
 type here, nevertheless optimization problems 
onstrained by time-dependent or non-

linear state equations are of high pra
ti
al importan
e. We want to mention also the �eld

of multidis
iplinary design optimization whi
h is gaining more and more attention during

the last years. Here, the state parameter 
onsists of several state variables des
ribing dif-

ferent physi
al quantities (e.g. me
hani
al displa
ements of an airfoil and the surrounding
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ow �eld). The 
onstraining state equation is in most 
ases a 
oupled �eld problem (e.g. a


uid-solid intera
tion). For this problem 
lass already the solution of the dire
t problem is

very 
hallenging (for examples 
oupling ele
tri
 and me
hani
al �elds see e.g. Aluru and

White [2℄, Kaltenba
her, Landes, Ler
h, and Lindinger [96℄, Kaltenba
her, Lan-

des, Niederer, and Ler
h [97℄ Ler
h, Kaltenba
her, Landes, and Lindinger [106℄,

or Wa
hutka [155℄).

The remaining part of this work is organized as follows: In Chapter 2 we introdu
e the

basi
 ingredients whi
h will be ne
essary in the remaining 
hapters. We give a short overview

on 
onstrained optimization and the numeri
al solution of ellipti
 partial di�erential equations

using the �nite element method. Additionally, we give an introdu
tion into the numeri
al

solution of large sparse linear equations using dire
t elimination methods or iterative methods

with appropriate pre
onditioning.

Chapter 3 
ontains a short introdu
tion into automati
 di�erentiation. After motivating

its basi
 ideas, we present the two basi
 
al
ulation strategies for derivatives { dire
tional

derivatives and gradients { in the 
on
ept of automati
 di�erentiation. Although the basi


prin
iple is the 
hain rule whi
h is known from basi
 
al
ulus, this presentation is ne
essary

to understand the properties of the forward and the reverse mode, as well as their drawba
ks.

This se
tion is 
ompleted by a short presentation of two 
lasses of AD tools, tools based on

sour
e to sour
e transformation and tools based on operator overloading.

In Chapter 4 we present a new method for solving optimal design problems with few

design parameters. At the beginning we introdu
e a model problem whi
h originates from an

industrial design pro
ess. This problem will be used in the following 
onsiderations. The main

part is the investigation of di�erent gradient 
al
ulation strategies and an analysis of their

pros and 
ons. We end up with a new method for the eÆ
ient 
al
ulation of derivatives whi
h


ombines automati
 di�erentiation with hand-
oded gradient routines. Numeri
al results

show the eÆ
ien
y of this method.

Chapter 5 starts with an analysis of the properties of the optimization strategies presented

in Chapter 4. We work out, why this strategy 
an only be used for optimal design problems

with few design parameters. After introdu
ing a model problem 
oming from parameter

identi�
ation, we will introdu
e and analyze an optimization method working in the produ
t

spa
e of design and state spa
e. Unlike the approa
h in Chapter 4 this approa
h treats

the state equation as a 
onstraint during the optimization and does not formally eliminate

it. This introdu
es additional diÆ
ulties but enables us to solve also design problems with

large design spa
es. The numeri
al solution is based on a sequential quadrati
 programming

method, where we use iterative methods for solving the underlying QP problem. Hierar
hi
al

strategies 
an be used for gaining additional speedup. Numeri
al results showing the eÆ
ien
y


on
lude this se
tion.

In Chapter 6 we present a software design for the implementation of optimal design prob-

lems. It is based on the stri
t splitting of the optimizer and the optimization problem. The

optimization problem itself is subdivided into three parts: One establishing the 
ommuni
a-

tion between optimizer and state problem solver, into the state problem itself and into the

obje
tive. The latter is treated as a fun
tion mapping the produ
t spa
e U � Q into the

real numbers where U denotes the state spa
e and Q the design spa
e. These three parts

are des
ribed in more detail, as well as the fun
tionality they have to provide to realize the

solution strategies for optimal design problems presented here.
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Chapter 2

Basi
 Ingredients

2.1 Introdu
tion

For the numeri
al treatment of optimal design problems as well as inverse problems various

basi
 ingredients are ne
essary whi
h originate from di�erent �elds. On the one hand it is quite

natural that the area of optimization is of major importan
e. But due to the spe
ial stru
ture

of the problem (1.8), (1.9) it is ne
essary to have also a good overview on the numeri
al

solution of partial di�erential equations. This is a very wide �eld, where many di�erent aspe
ts

need to be treated. That is why we want to limit ourselves here to ellipti
 problems and their

dis
retization using the �nite element method. Optimal design problems for paraboli
 and

hyperboli
 problems are also of high pra
ti
al importan
e, but the numeri
al treatment of

the forward problem is already 
ompletely di�erent and they are therefore ex
luded (
f. e.g.

Quarteroni and Valli [123℄ or Grossmann and Roos [72℄). The usual solution method

for ellipti
 problems using the �nite element method is as follows:

� Subdivide the 
omputational domain into geometri
 elements on whi
h �nite elements

are de�ned. These form a �nite dimensional test and solution spa
e for the variational

form of the partial di�erential equation.

� By repla
ing the 
ontinuous test and solution spa
es by their �nite dimensional approx-

imations the variational form of the partial di�erential equation is equivalent to a set

of equations, possibly non-linear.

� The 
entral part of most numeri
al solution s
hemes for this set of equations is a solver

for a set of linear equations. As the 
oeÆ
ient matrix is large and sparse, nowadays more

and more iterative solvers using appropriate pre
onditioners are applied. These repla
e

the up to now used dire
t solvers, espe
ially for systems with a very large number of

unknowns.

This 
hapter shall give an overview on the various tools needed in the later 
hapters. We

give a short introdu
tion into 
onstrained optimization, as well as into the �nite element

method. Last but not least we present an overview on some iterative solution methods for

linear systems of equations and to remember some basi
 fa
ts on pre
onditioning, espe
ially

to multi-grid pre
onditioners.

13
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2.2 Constrained optimization

This se
tion deals with the optimization of a given obje
tive where several 
onstraints on

the variables have to be enfor
ed. For simpli
ity, we want to restri
t ourselves to a �nite

dimensional setting. A general formulation of this problem is

J(x)! min

x2R

n

subje
t to 


i

(x) = 0; i 2 I

1

;




i

(x) � 0; i 2 I

2

:

(2.1)

All the fun
tions J and 


i

; i 2 I

1

[ I

2

, are assumed to be suÆ
iently smooth and real-valued,

I

1

and I

2

are �nite index sets. J denotes the obje
tive, 


i

; i 2 I

1

, the equality 
onstraints,




i

; i 2 I

2

, the inequality 
onstraints. In un
onstrained optimization one 
an spe
ify 
onditions

on J whi
h are ne
essary or even suÆ
ient for the existen
e of a lo
al minimum. In 
onstrained

optimization these 
onditions do not operate on the obje
tive alone but on the Lagrangian

L(x;�) = J(x) +

X

i2I

1

[I

2

�

i




i

(x) (2.2)

whi
h also in
ludes the in
uen
e of the 
onstraints. In (2.2) �

i

; i 2 I

1

[ I

2

denote the 
ompo-

nents of the Lagrangian multiplier �. These 
onditions are known as the Karush-Kuhn-Tu
ker


onditions (KKT 
onditions) and may be stated as follows:

Theorem 2.1 (First order ne
essary 
onditions). Suppose that x

�

is a lo
al solution of

(2.1). Additionally assume that the gradients of the a
tive 
onstraints

fgrad 


i

(x

�

) j i 2 I

1

_ (i 2 I

2

^ 


i

(x

�

) = 0)g (2.3)

are linearly independent. Then there exists a Lagrangian multiplier �

�

with 
omponents �

�

i

; i 2

I

1

[ I

2

su
h that the following 
onditions are satis�ed:

grad

x

L(x

�

;�

�

) = 0;




i

(x

�

) = 0; i 2 I

1

;




i

(x

�

) � 0; i 2 I

2

;

�

�

i

� 0; i 2 I

2

;

�

�

i




i

(x

�

) = 0; i 2 I

1

[ I

2

:

(2.4)

Proof. Can be found in No
edal and Wright [115℄.

Similar to un
onstrained optimization these 
onditions are only ne
essary and do not

provide any information whether x

�

is a lo
al minimum or not. In un
onstrained optimization

a ne
essary 
ondition for x

�

to be a lo
al minimum is that the Hessian of the obje
tive is

positive semide�nite. If it is even positive de�nite, this 
ondition is suÆ
ient for a lo
al

minimum. The 
orresponding 
onditions for a 
onstrained optimization problem are:

Theorem 2.2 (Se
ond order ne
essary 
onditions). Suppose that the assumptions of

Theorem 2.1 are valid, that (x

�

;�

�

) satisfy the KKT 
onditions and that w ful�lls

grad 


i

(x

�

)

T

w = 0; i 2 I

1

;

grad 


i

(x

�

)

T

w = 0; i 2 I

2

^ 


i

(x

�

) = 0 ^ �

�

i

> 0;

grad 


i

(x

�

)

T

w � 0; i 2 I

2

^ 


i

(x

�

) = 0 ^ �

�

i

= 0:

(2.5)
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Then

w

T

r

2

xx

L(x

�

;�

�

)w � 0: (2.6)

Proof. Can be found in No
edal and Wright [115℄.

Theorem 2.3 (Se
ond order suÆ
ient 
onditions). Suppose, the assumptions of Theo-

rem 2.2 are ful�lled. If for all w satisfying (2.5)

w

T

r

2

xx

L(x

�

;�

�

)w > 0; (2.7)

then x

�

is a stri
t lo
al minimum of (2.1).

Proof. Can be found in No
edal and Wright [115℄.

In the following we will give an overview on Sequential Quadrati
 Programming (SQP), a

method for e�e
tively solving nonlinear optimization problems. The SQP method generates

a sequen
e of iterates minimizing approximations of (2.1). The key idea is to model (2.1) at

the iterate x

k

by a suitable quadrati
 approximation (the so-
alled Quadrati
 Programming

subproblem) and use the minimizer of this subproblem to de�ne the new iterate x

k+1

.

In order to motivate the 
hoi
e of the quadrati
 subproblem let us forget for a moment the

inequality 
onstraints in (2.1). The KKT 
onditions for this equality 
onstrained optimization

problem form a system of nonlinear equations for (x;�) of the form

F(x;�) =

�

gradJ(x) +A

T

(x)�


(x)

�

= 0 (2.8)

with

A

T

(x) =

�

grad 


1

(x) � � � grad 


l

(x)

�

(2.9)

and l denoting the number of equality 
onstraints. Under the assumption that A has full

rank, any minimum of the equality 
onstrained optimization problem satis�es (2.8).

One approa
h to solve (2.8) is Newton's method. Then, the Newton-step at (x

k

;�

k

) ful�lls

�

x

k+1

�

k+1

�

=

�

x

k

�

k

�

+

�

p

x

p

�

�

(2.10)

where p

x

and p

�

satisfy

�

W(x

k

;�

k

) A

T

(x

k

)

A(x

k

) 0

� �

p

x

p

�

�

=

�

� gradJ(x

k

)�A

T

(x

k

)�

k

�
(x

k

)

�

(2.11)

and W denotes the Hessian of the Lagrangian with respe
t to x, i.e.

W = r

2

xx

L(x;�): (2.12)

The linear equation system (2.11) together with the update formula (2.10) 
an be reformulated

as

�

W(x

k

;�

k

) A

T

(x

k

)

A(x

k

) 0

� �

p

x

�

k+1

�

=

�

� gradJ(x

k

)

�
(x

k

)

�

(2.13)

whi
h 
an be reinterpreted as KKT-system in the following sense:
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p

x

and �

k+1

solve the �rst order ne
essary 
onditions of the optimization problem

1

2

p

T

W(x

k

;�

k

)p+ gradJ(x

k

)

T

p! min

p2R

n

subje
t to A

T

(x

k

)p = �
(x

k

)

(2.14)

This quadrati
 programming (QP) subproblem has a unique solution whi
h 
an be 
al
ulated

by solving (2.13) if the se
ond order suÆ
ient 
onditions are satis�ed.

This equivalen
e between SQP and Newton's method applied to the optimality 
ondition

(2.8) is quite useful: For analysis one uses often the Newton point of view, whereas the SQP

framework is of advantage for extending the te
hnique also to inequality 
onstraints and for

deriving pra
ti
al algorithms.

The QP framework in (2.14) 
an be extended straightforward to in
lude also inequality


onstraints. Then, for problem (2.1) this read as follows:

1

2

p

T

W(x

k

;�

k

)p+ gradJ(x

k

)

T

p! min

p2R

n

subje
t to grad 


i

(x

k

)p = �


i

(x

k

); i 2 I

1

;

grad 


i

(x

k

)p � �


i

(x

k

); i 2 I

2

:

(2.15)

This QP subproblem 
an be solved e.g. by an a
tive set strategy (see e.g. No
edal and

Wright [115℄ or Gill, Murray, and Wright [63℄). If the linearized 
onstraints are

in
onsistent, i.e. the feasible set of the optimization problem is empty, additional variables

are introdu
ed and the obje
tive and the 
onstraints are modi�ed. E.g. in Flet
her [55℄

the following modi�
ation is proposed (the big-M method):

1

2

p

T

W(x

k

;�

k

)p+ grad J(x

k

)

T

p+M(

1

2

�

2

+ �)! min

p2R

n

;�2R

subje
t to grad 


i

(x

k

)p+ (1� �)


i

(x

k

) = 0; i 2 I

1

;

grad 


i

(x

k

)p+ (1� �)


i

(x

k

) � 0; i 2 I

+

2

grad 


i

(x

k

)p+ 


i

(x

k

) � 0; i 2 I

�

2

;

(2.16)

with I

+

2

= fi 2 I

2

j 


i

(x

k

) � 0g, I

�

2

= I

2

n I

+

2

. For this problem p = 0, � = 1 denotes a

feasible point.

As the SQP method is a variant of Newton's method it is only lo
ally 
onvergent. For an

analysis of 
onditions whi
h guarantee lo
al 
onvergen
e see e.g. Boggs and Tolle [21℄. In

order to make it also globally 
onvergent to a lo
al optimum, so-
alled globalization strategies

are needed. The two best known ones are line sear
h methods and trust region methods.

Line sear
h methods introdu
e a merit fun
tion � to measure the progress to a solution.

Similar to damped Newton's method the 
al
ulation of the 
orre
tion in (2.10) is split into

two parts:

� the 
al
ulation of a des
ent dire
tion and

� the 
al
ulation of an appropriate step length.

Unlike to un
onstrained optimization we 
an not use the obje
tive itself as a 
riterion for


al
ulating the step length, but use a merit fun
tion whi
h balan
es the minimization of the
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obje
tive with the feasibility with respe
t to the 
onstraints. Popular 
hoi
es are e.g. the

`

1

-merit fun
tion (
f. Han [78℄ or Powell [122℄)

�(x) = J(x) +

1

�

X

i2I

1

j


i

(x)j +

1

�

X

i2I

2

[


i

(x)℄

+

(2.17)

and its variants where [x℄

+

= max fx; 0g. An alternative is the augmented Lagrangian (
f.

S
hittkowski [136℄)

�(x;�) = J(x) +

X

i2

�

I

(�

i




i

(x) +

1

2

� 


i

(x)

2

)�

1

2�

X

i2I

2

n

�

I

�

2

i

; (2.18)

where

�

I = I

1

[fi 2 I

2

j 


i

(x) � �

i

�g and � is an approximation to the Lagrangian multiplier.

In both examples � denotes a s
alar penalty parameter. Both merit fun
tions are exa
t

in the sense that for � suÆ
iently large minimizers of the original 
onstrained optimization

problem also minimize the merit fun
tion. For the sear
h dire
tion we solve (2.15) or (2.16),

respe
tively.

The step length has to be 
hosen in su
h a way that it ensures a suÆ
ient de
rease of

the merit fun
tion. One set of 
onditions whi
h guarantee that are the Armijo-Goldstein-


onditions

�(x

k

) + �

2

�

k

h�

0

k

(x

k

);p

k

i � �(x

k

+ �

k

p

k

) � �(x

k

) + �

1

�

k

h�

0

k

(x

k

);p

k

i (2.19)

with 0 < �

1

< 1=2 < �

2

< 1 (
f. Gill, Murray, and Wright [63℄). When �

k

satis�es

(2.19) the step is neither too large nor too small. The easiest pro
edure for 
al
ulating

a suitable � are simple ba
ktra
king pro
edures starting with � = 1 and redu
ing � in

a geometri
 manner until (2.19) is satis�ed. For a more elaborated one using paraboli


interpolation see e.g. Luenberger [107℄.

A 
ru
ial property in the design of a merit fun
tion is that is should a

ept step length

one 
lose to a solution in order to preserve the quadrati
 
onvergen
e of the SQP method.

The augmented Lagrangian works well, as long as the estimate of the Lagrangian multiplier is

a

urate enough, whereas the `

1

-merit fun
tion sometimes su�ers from the so-
alled Maratos-

e�e
t, i.e. it does not a

ept unit step length 
lose to a lo
al minimum and therefore 
auses

a slow-down of the 
onvergen
e. Strategies to over
ome this diÆ
ulty using se
ond order


orre
tions 
an be found e.g. in No
edal and Wright [115℄ or Conn, Gould, and

Toint [41℄.

Trust region methods are motivated in a di�erent way. Unlike line sear
h methods whi
h


al
ulate the sear
h dire
tion and the step length in two autonomous steps, trust region meth-

ods try to in
orporate both aspe
ts into one 
al
ulation step. In un
onstrained optimization

this means that an additional 
onstraint on the maximal in
rement is added to the quadrati


sub-problem whi
h insures that the in
rement to the iterate is not too large. A straight

forward generalization of that approa
h to 
onstrained optimization problems would lead to

1

2

p

T

W(x

k

;�

k

)p+ gradJ(x

k

)

T

p! min

p2R

m

subje
t to grad 


i

(x

k

)p = �


i

(x

k

); i 2 I

1

;

grad 


i

(x

k

)p � �


i

(x

k

); i 2 I

2

;

kpk � �

k

:

(2.20)
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The trust region radius �

k

is updated in ea
h outer iteration based on 
omparing the a
tual

de
rease in a merit fun
tion with the predi
ted de
rease in the QP model. If both are in good

agreement the radius is kept or even in
reased, otherwise it is de
reased. The main diÆ
ulty

of this generalization is that (2.20) need not always have a solution as the admissible set may

be empty. That is why other generalizations were developed. One 
an use e.g. a quadrati


model of the augmented Lagrangian merit fun
tion instead of the Lagrangian in the QP

problem. This results then in

1

2

p

T

W(x

k

;�

k

)p+ grad J(x

k

)

T

p+

1

2

�kvk

2

! min

p2R

n

;v2R

subje
t to grad 


i

(x

k

)p = �


i

(x

k

) + �v; i 2 I

1

;

grad 


i

(x

k

)p � �


i

(x

k

) + �v; i 2 I

2

;

kpk � �

k

;

(2.21)

whi
h always has a feasible point. Other alternatives 
an be found e.g. in Conn, Gould,

and Toint [41℄.

2.3 The �nite element method

Optimal design problems often in
orporate partial di�erential equations (PDEs) des
ribing

the state. As analyti
 solutions of these PDEs are usually not available, methods for 
al
u-

lating an approximation to the solution of the PDE are needed. Among the most well-known

there are

� the Finite Element Method (see e.g. Bathe [7℄, Babuska and Strouboulis [4℄,

Braess [26℄, Brenner and S
ott [29℄, Ciarlet [39℄, Hughes [90℄, Jung and

Langer [93℄, or Zienkiewi
z [163℄),

� the Finite Di�eren
e Method (see e.g. Grossmann and Roos [72℄, or Samarskij [135℄),

� the Finite Volume Method (see e.g. Grossmann and Roos [72℄, or Heinri
h [83℄),

� the Finite Integration Te
hnique (see e.g. van Rienen [153℄, or Weiland [156℄),

� or the Boundary Element Method (see e.g. Wendland [157℄, or Chen and Zhou [38℄).

Ea
h of these methods has its spe
i�
 area of appli
ation. In the following we want to fo
us

on the �nite element method (FEM) and want to explain the basi
 properties whi
h are

needed later on. Furthermore we want restri
t ourselves to ellipti
 boundary value problems

for s
alar ellipti
 PDEs of se
ond order of the form

�div(A(x) grad u(x)) + hB(x); grad u(x)i+ C(x)u(x) = f(x); x 2 
;

u(x) = g(x); x 2 �

D

;

�u

�N

(x) = hA(x) grad u(x);n(x)i = h(x); x 2 �

N

;

(2.22)

where 
 is a bounded domain of R

d

(d is usually 2 or 3) with suÆ
iently smooth boundary,

�

D

= �

D

, �

D

[ �

N

= �
, �

D

\ �

N

= ;. n denotes the unit outside normal of 
,

�u

�N

the


o-normal derivative. Additionally, A(x) is assumed to be symmetri
 and uniformly positive
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de�nite with respe
t to x. g(x) and h(x) denote the Diri
hlet and Neumann boundary data,

respe
tively. Although we restri
t ourselves to linear ellipti
 problems, we want to mention

that optimal design problems where the state variable ful�lls a transient or nonlinear equation

or even a mixed system of equations are important for many pra
ti
al appli
ations but would

make the presentation by far more 
ompli
ated. We will remark on this where ne
essary.

In the following we will use the abbreviation

Lu = f in 
;

u = g on �

D

;

�u

�N

= h on �

N

(2.23)

instead of (2.22). The FEM takes the weak form of the PDE as its starting point. For the

problem stated in (2.22) this looks as

Z




h

hA(x) grad u(x); grad v(x)i+ hB(x); grad u(x)iv(x) +C(x)u(x)v(x)

i

dx =

Z




f(x)v(x) dx+

Z

�

N

h(s)v(s) ds

(2.24)

or in short

a(u; v) = F (v); 8 v 2 U (2.25)

with the bilinear form a(u; v) and the linear form F (v) de�ned by the left-hand side and the

right-hand side of (2.24), respe
tively. Up to now it was not spe
i�ed in whi
h spa
es we look

for a solution, as well with whi
h fun
tions we test. We 
ould use the Bana
h spa
e C

k

(
),

but these turn out to be rather unsuitable for analyzing PDEs. The appropriate spa
es are

Sobolev-spa
es, whi
h are de�ned in a similar way to C

k

but with L

p

taking over the role of


ontinuous fun
tions. The appropriate spa
e for stating (2.24), respe
tively (2.25) is H

1

(
)

whi
h is de�ned as

H

1

(
) =

�

u 2 L

2

(
) j gradu 2 L

2

(
)

	

: (2.26)

The 
omplete weak form of (2.21) looks as follows: Find

u 2

�

v 2 H

1

(
) j v = g on �

D

	

: (2.27)

su
h that

a(u; v) = F (v) 8 v 2 U =

�

v 2 H

1

(
) j v = 0 on �

D

	

: (2.28)

The appropriate spa
e for F is U

�

, the dual spa
e of U , g must be in the tra
e spa
e H

1=2

(�

D

)

of H

1

(
) on �

D

. For a 
omplete overview of Sobolev spa
es see Adams [1℄.

For showing existen
e and uniqueness of a solution we transform the variational form

(2.25) into homogeneous form by introdu
ing

~u = u� ~g

with ~g 2 H

1

(
) and ~g � g on �

D

. Then, ~u 2 U ful�lls

a(~u; v) = F (v)� a(~g; v); 8 v 2 U: (2.29)

The right-hand side of (2.29) is an element of the dual spa
e of U . The existen
e and

uniqueness of a solution 
an by shown by a rather simple abstra
t prin
iple, the so-
alled

Lax-Milgram lemma.
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Theorem 2.4 (Lax-Milgram lemma). Let U be a Hilbert spa
e and assume that

a : U � U ! R (2.30)

is a 
ontinuous and ellipti
 bilinear mapping, i.e. that there exist 
onstants �; � > 0 2 R su
h

that

a(u; v) � � kuk kvk; 8u; v 2 U; (2.31)

and

a(v; v) � � kvk

2

; 8 v 2 U: (2.32)

Finally let F : U ! R be a bounded linear fun
tional on U , i.e. F 2 U

�

.

Then there exists a unique element u 2 U su
h that

a(u; v) = F (v) 8 v 2 U: (2.33)

Proof. Can be found in Evans [54℄ or Renardy and Rogers [127℄.

The FEM 
onstru
ts an approximation to the solution u of the variational equality (2.28).

Therefore the solution spa
e as well as the test spa
e are approximated by a sequen
e of �nite

dimensional subspa
es whi
h are 
onstru
ted as follows:

Let �

h

be a regular triangulation (
.f. Ciarlet [39℄) of the domain 
 into geometri


elements, e.g. triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D. On these

geometri
 elements we de�ne so 
alled �nite elements using shape fun
tions with lo
al support,

e.g. linear, bilinear or quadrati
 shape fun
tions. Therewith we de�ne solution and test spa
es

e.g. with pie
ewise linear, bilinear or quadrati
 fun
tions. The dis
retization parameter

h of the family of �nite dimensional subspa
es is usually related to the mesh-size of the

triangulation. Additionally we impose that the FE-spa
es are nested, i.e.

V

h

1

� V

h

2

if h

1

� h

2

(2.34)

and that this family of FE-spa
e is 
omplete in the limit, i.e.

[

h>0

V

h

= H

1

(
): (2.35)

In order to 
al
ulate an approximation to the solution of (2.28) we need �nite dimensional

approximations of the solution and the test spa
e in (2.28). The �nite dimensional approxi-

mation of the solution spa
e in (2.28) is

U

g

h

= fv

h

2 V

h

j v

h

= g

h

on �

D

g

where g

h

2 V

h

is an approximation of g on �

D

. The �nite dimensional approximation of the

test spa
e is

U

h

= fv

h

2 V

h

j v

h

= 0 on �

D

g :

By repla
ing the solution and the test spa
e in (2.28) by their �nite dimensional analogs we

get a �nite dimensional approximation of (2.28) whi
h results in

a(u

h

; v

h

) = F (v

h

); 8 v

h

2 U

h

; (2.36)
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with u 2 U

g

h

. For the solution of (2.36) we again homogenize the variational equality. Choos-

ing a basis

� = (�

1

; : : : ; �

m

)

T

2 V

h

(2.37)

of the �nite dimensional subspa
e U

h

, we may represent u

h

2 U

g

h

via

u

h

= u

T

�+ g

h

(2.38)

with a 
oeÆ
ient ve
tor u 2 R

m

. In order to transform (2.36) into a linear system of equations,

we de�ne the sti�ness matrix

K =

�

a(�

j

; �

i

)

�

i;j=1;:::;m

(2.39)

and the load ve
tor

f =

�

F (�

j

)� a(g

h

; �

j

)

�

j=1;:::;m

: (2.40)

This allows us to write the dis
retized variational problem (2.36) as

Ku = f : (2.41)

In the following se
tion we want to analyze the properties of the sti�ness matrix K and show

eÆ
ient algorithms for solving (2.41).

2.4 Iterative solvers and pre
onditioning

Before we begin the dis
ussion on eÆ
ient solution methods for linear systems of equations as

in (2.41) we repeat the basi
 properties of the system matrix K. Furthermore we introdu
e

the basi
 notation used below.

In many pra
ti
al appli
ations the bilinear form a(�; �) in (2.36) is symmetri
, that is

why we restri
t our presentations to this 
ase. Additionally we want to assume that the

propositions of the Lax-Milgram lemma are ful�lled, i.e. the 
ontinuous system is well-posed.

Due to the 
onstru
tion of the FE spa
es in Se
tion 2.3 the number of base fun
tions in

(2.37) is large, typi
ally the dimension of K is asymptoti
ally

dim(K) = O(h

�d

) (2.42)

where the dis
retization parameter h denotes the typi
al average mesh size and d the spa
e

dimension of the 
omputational domain. Fortunately, the matrix is sparse. As the �nite

element base fun
tions have only lo
al support most entries in K vanish, i.e. the system

matrix is sparse. For a regular triangulation only a �xed number of entries are nonzero in ea
h

line, i.e. the total number of nonzero entries is proportional to the dimension of the matrix.

That is why, a matrix-ve
tor multipli
ation 
an be realized with O(h

�d

) multipli
ations.

Due to the assumptions on the bilinear form made above, the sti�ness matrix K is sym-

metri
. Furthermore, the dis
rete system (2.41) is well-posed, i.e. K is regular. But, K

is even positive de�nite, as a(�; �) ful�lls the ellipti
ity 
ondition (2.32), i.e. the eigenvalues

�

i

(K); i = 1; : : : ;m of K are real and

0 < �

1

(K) � � � � � �

m

(K): (2.43)

This 
an be exploited by solution algorithms as we will see later. The 
orresponding eigen-

ve
tors '

i

(K); i = 1; : : : ;m form an ortho-normal system, i.e.

h'

i

(K); '

j

(K)i

2

= Æ

ij

(2.44)
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where h�; �i

2

denotes the Eu
lidian s
alar produ
t and Æ

ij

the Krone
ker symbol.

The spe
tral 
ondition number of the sti�ness matrix, de�ned by

�(K) =

�

m

(K)

�

1

(K)

; (2.45)

is very large as h tends to zero, for the dis
retization of a PDE of se
ond order

�(K) = O(h

�2

): (2.46)

We want to solve a sparse linear system of equations with a symmetri
, positive de�nite

matrix of very large dimension with a rather large 
ondition number.

There are two di�erent approa
hes for solving linear systems of equation: Either using

dire
t methods or using iterative ones.

Dire
t methods for solving sparse linear systems perform a Cholesky or Gauss fa
torization

of the matrix, i.e. they look for a representation of the form

K = U

T

U

or

K = LU;

respe
tively. L is a lower triangular matrix where all diagonal elements are 1, and U denotes

an upper triangular matrix. For this fa
torization, sparse dire
t solvers try to redu
e the


osts by reordering rows and 
olumns in su
h a way that the �ll-in is minimized, i.e. they

try to minimize the number of nonzero elements introdu
ed by the fa
torization pro
ess at

positions where the original matrix was zero. Typi
ally, a sparse dire
t solver 
onsists of the

following phases:

� First, a 
olumn pre-ordering solely on the nonzero pattern of the matrix is performed.

This is done in su
h a way that the fa
torization of the reordered matrix is as sparse

as possible. Unfortunately, this problem is NP-hard (Yannakakis [159℄), so heuristi
s

are used. Two popular methods are minimum degree ordering and nested-disse
tion

ordering.

� Then the matrix is fa
torized. In the symmetri
 and positive de�nite 
ase, �rst a sym-

boli
 fa
torization using only the matrix pattern is done to get the matrix pattern of

the fa
torization and then the fa
tors are 
al
ulated. In this 
ase, the 
olumn renum-

bering of the �rst phase is also used for renumbering the rows, sin
e any symmetri


permutation of the rows and 
olumns will be numeri
ally a

eptable. If the matrix is

not symmetri
 and positive de�nite, the 
al
ulation of the pattern of the fa
tors 
an

not be separated from the fa
torization itself. In this 
ase pivoting is ne
essary whi
h

is done without regard to sparsity.

� Finally forward and ba
kward triangular sweeps are exe
uted.

Two referen
es to this topi
 are the books by George and Liu [57℄ or Duff, Erisman,

and Reid [47℄. These te
hniques have also been implemented e.g. in Sparskit [131℄ or

SuperLU [45℄.
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Algorithm 2.1 Pre
onditioned Ri
hardson iteration

De�ne a damping parameter � , 0 < � <

2




2

Initialize start value u

0

i = 0

while not 
onverged do

u

i+1

= u

i

+ �C

�1

(f �Ku

i

)

i = i+ 1

end while

Iterative methods for solving large sparse linear systems have been gaining popularity

during the last de
ade. Until re
ently dire
t methods were often preferred by engineers, es-

pe
ially in real life appli
ations due to their robustness and predi
table behavior. However,

dire
t solvers are ineÆ
ient, not only the 
omputational e�ort but also the memory 
on-

sumption is very high, espe
ially for very large sparse matri
es. On the other hand, iterative

solvers exploit sparsity to a mu
h higher extent. They mainly need matrix-ve
tor multipli
a-

tions and other operations whose 
al
ulation time is proportional to the number of unknowns.

Iterative solvers are usually eÆ
ient only when 
ombined with appropriate pre
onditioners.

That is why we want to treat both aspe
ts together. For the rest of this se
tion we want to

assume that the symmetri
 and positive de�nite pre
onditioner C is spe
trally equivalent to

the matrix K, i.e.

9


1

; 


2

2 R

+




1

hCu;ui � hKu;ui � 


2

hCu;ui; 8u 2 R

m

; (2.47)

with positive spe
tral equivalen
e 
onstants 


1

; 


2

. A pre
onditioner is 
onstru
ted in su
h a

way that the quotient




2




1

is as small as possible under the restri
tion that the pre
onditioning

operation C

�1

d is eÆ
iently evaluable. The optimal 
hoi
es for the spe
tral equivalen
e


onstants are




1

= �

min

(C

�1

K)




2

= �

max

(C

�1

K);

(2.48)

where �

min

(C

�1

K) and �

max

(C

�1

K) denote the minimal and maximal eigenvalue of C

�1

K

respe
tively, whi
h are both real. In the following we will abbreviate the spe
tral equivalen
e

(2.47) by




1

C � K � 


2

C: (2.49)

As K is assumed to be symmetri
 and positive de�nite, (2.41) is a ne
essary and suÆ
ient


riterion for a minimizer of the energy fun
tional

1

2

u

T

Ku� f

T

u! min

u2R

m

: (2.50)

That is why, many iteration s
hemes 
an be motivated as minimization algorithms for (2.50).

The easiest method is a variant of the steepest des
ent method where the step length is


hosen a-priorily. This iteration is usually named Ri
hardson iteration. A pre
onditioned

version 
an be found in Algorithm 2.1. The error iteration s
heme 
an be formulated as

u

i+1

� u = (I� �C

�1

K)(u

i

� u) (2.51)
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Algorithm 2.2 Pre
onditioned steepest des
ent iteration

Initialize start value u

0

i = 0

while not 
onverged do

/* Cal
ulate des
ent dire
tion */

r

i

= f �Ku

i

s

i

= C

�1

r

i

/* Cal
ulate step length */

�

i

=

hr

i

;s

i

i

hs

i

;Ks

i

i

/* Update iterate */

u

i+1

= u

i

+ �

i

s

i

i = i+ 1

end while

where I 2 R

m�m

denotes the identity matrix. It 
an be seen, that the step length does not

depend on the iteration. This implies that the iteration 
onverges if and only if

�(I� �C

�1

K) < 1: (2.52)

The spe
tral radius � of the iteration matrix 
an be bounded using the spe
tral equivalen
e


onstants 


1

; 


2

by

�(I� �C

�1

K) � max fj1� �


1

j; j1 � �


2

jg (2.53)

i.e. the iteration 
onverges for 0 < � < 2=


2

. The right hand side of the above inequality is

minimal for � =

1




1

+


2

whi
h leads to a 
onvergen
e rate of

�(I� �C

�1

K) �

�(C

�1

K)� 1

�(C

�1

K) + 1

�




2

� 


1




2

+ 


1

: (2.54)

An improved version is the steepest des
ent method. There, the step length parameter

is no more 
hosen a-priorily, but depends on the iteration. A pre
onditioned version 
an be

found in Algorithm 2.2.

A method whi
h is more elaborated is the 
onjugate gradient (CG) method, developed

by Hestenes and Stiefel [85℄. It is one of the best known iterative te
hniques for solving

sparse symmetri
 positive de�nite linear systems. It is a representative of a larger 
lass of

methods, the Krylov-subspa
e-
orre
tion methods. The basi
 idea of these methods is to

minimize the defe
t in the Krylov-subspa
e

K

k

(A;y) =

n

y;Ay; : : :A

k�1

y

o

(2.55)

generated by a matrix A and a ve
tor y in the k-th iteration step. The pre
onditioned

CG-method takes as generating matrix C

�1=2

KC

�1=2

, and as generating ve
tor the initial

residual. The algorithm is presented in Algorithm 2.3. Compared to the Ri
hardson itera-

tion it 
an be seen that the CG algorithm is no more a linear method but it is nonlinear.

Furthermore it is not ne
essary to provide a suitable damping fa
tor for whi
h knowledge

or some bounds on the extreme eigenvalues of C

�1=2

KC

�1=2

is needed. The CG iteration
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Algorithm 2.3 Pre
onditioned 
onjugate gradient iteration

Initialize start value u

0

r

0

= f �Ku

0

d

0

= C

�1

r

0

s

0

= d

0

i = 0

while not 
onverged do




i

= hs

i

; r

i

i

�

i

=




i

hKd

i

;d

i

i

u

i+1

= u

i

+ �

i

d

i

r

i+1

= r

i

� �

i

Kd

i

s

i+1

= C

�1

r

i+1

�

i

=




i

hs

i+1

;d

i

i

d

i+1

= s

i+1

+ � d

i

i = i+ 1

end while


al
ulates an optimal damping fa
tor by itself using the underlying minimization property.

The 
onvergen
e 
an be estimated in the K-energy norm

kyk

K

= hy;Kyi

1=2

: (2.56)

The error in the k-th iteration step of the pre
onditioned CG algorithm is bounded by

ku

k

� uk

K

� q

k

ku

0

� uk

K

(2.57)

with

q

k

=




k

1 + 


2k

with 
 =

p

�(C

�1

K)� 1

p

�(C

�1

K) + 1

�

q




2




1

� 1

q




2




1

+ 1

(2.58)

(see e.g. Ha
kbus
h [77℄, Meurant [112℄, Axelsson [3℄, or Jung and Langer [93℄ for

details). 


1

; 


2

denote the spe
tral equivalen
e 
onstants (see (2.49)). It 
an be seen that

this bound is similar to that of the Ri
hardson iteration, ex
ept that the 
ondition number

of C

�1

K is repla
ed by its square root.

For both algorithms we get the unpre
onditioned versions by taking C to be the identity

matrix. But it 
an be seen immediately that the unpre
onditioned iterations 
onverge very

slowly be
ause the 
onvergen
e rate is very 
lose to 1 for large 
ondition numbers �(K). That

is why the 
hoi
e of e�e
tive pre
onditioners is very important. In the following we want to

motivate properties for good pre
onditioners.

From (2.58) it is immediately 
lear that one has to take C = K to minimize the 
on-

vergen
e rate, whi
h is of no help due to the e�ort for inverting K. In order to get good


onvergen
e properties the quotient 


2

=


1

shall be 
lose to one. In pra
ti
e, it should be

at least independent or almost independent of the mesh-size h. Nevertheless applying C

�1

should not be too mu
h e�ort. The following properties turned out to be very useful:

� The 
ondition number �(C

�1

K) shall be 
lose to 1. Additionally it should be bounded

from above independently of the mesh-size parameter h of the dis
retization.
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� The 
omputational e�ort of the pre
onditioning operation C

�1

should be not too high,

if possible proportional to a multipli
ation with K.

� The memory requirements for realizing the pre
onditioning step should be 
omparable

with the ones needed for a multipli
ation with K.

No pre
onditioning, i.e. C = I 
learly ful�lls the latter two requirements, but the 
ondition

number �(C

�1

K) behaves like O(h

�2

) whi
h implies that the iteration 
onverges extremely

slowly. Classi
al iteration pro
edures like the Ja
obi- or the Gau�-Seidel method do not

improve this behavior. On the other hand, taking C = K results in a dire
t solver, for whi
h

the �rst property is 
learly ful�lled. Nevertheless it is in general impossible to ful�ll the other

two.

Multigrid pre
onditioners have shown to ful�ll all 3 properties (see e.g. Ha
kbus
h [76℄ or

Jung and Langer [92℄). They are based on a well-balan
ed interplay between a smoothing

operator and a 
oarse grid 
orre
tion and 
an be motivated in the following way:

Let's 
onsider the error after k iterations

z

k

= u

k

� u (2.59)

and develop it into a Fourier sequen
e taking the eigenfun
tions of K as basis. From the

analysis of 
lassi
al iteration methods like Ja
obi of Gau�-Seidel it it known, that they redu
e

the high-frequen
y 
omponents of the error very fast (Ha
kbus
h [77℄) whereas they have

problems to redu
e the low frequen
y 
omponents of the error. That is why, the smooth part

of the error (after smoothing the high-frequen
y 
omponents on the �ne grid) is approximated

on a 
oarser grid. The 
orresponding equation system on the 
oarser grid 
an be solved easier,

as it 
ontains by far fewer unknowns. Furthermore the idea 
an be applied re
ursively whi
h

leads to the multigrid iteration presented in Algorithm 2.4. The key-point is the eÆ
ient

interplay between the smoothing operator and the 
oarse grid 
orre
tion.

The idea presented above is based on nested �nite element spa
es whi
h are needed for

the de�nition of the 
oarse grid system. These are often not available due to limitations of the


omputer program or the 
oarsest equation system is still too large for an eÆ
ient appli
ation

of a sparse dire
t solver. Then, algebrai
 multigrid methods 
an be applied. These mimi


the 
oarse grid and de�ne smoothing and prolongation operators using only the sti�ness

matrix itself or using only information on the �nest grid. An overview of standard multigrid

methods as well as algebrai
 multigrid methods is presented in Trottenberg, Oosterlee,

and S
h

�

uller [152℄. For publi
ations fo
using more on algebrai
 multigrid methods see

Reitzinger [126℄ or Ruge and St

�

uben [130℄ and referen
es therein.
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Algorithm 2.4 Basi
 
on
ept of a symmetri
 multigrid V-
y
le MgStep (`, K

`

, f

`

, u

`

)

/* ` denotes the level, ` = 1 is the 
oarsest level */

if ` == 1 then

solve the system on the 
oarsest grid, u

`

= K

�1

`

f

`

else

/* Pre-smoothing: */

/* S denotes the smoothing operator */

/* � denotes the number of smoothing steps */

u

`

= S

�

`

(u

`

; f

`

)

/* Defe
t 
al
ulation */

d

`

= f

`

�K

`

u

`

/* Restri
tion onto 
oarser grid */

/* P

`

denotes the prolongation operator between level `� 1 and ` */

d

`�1

= P

T

`

d

`

/* Solve 
oarse grid system */

/* K

`�1

denotes the sti�ness matrix on the 
oarser grid */

MgSTEP(`� 1, K

`�1

, d

`�1

, w

`�1

)

/* Prolongation from the 
oarser mesh to the 
urrent one */

w

`

= P

`

w

`�1

/* Add 
oarse grid 
orre
tion */

u

`

= u

`

+w

`

/* Post-smoothing */

u

`

= (S

�

`

)

T

(u

`

; f

`

)

end if
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Chapter 3

Automati
 Di�erentiation, an

Introdu
tion

3.1 Motivation

During the last de
ades the simulation tools used in produ
t design be
ame faster and more

and more elaborated. Therefore, the interest on sensitivities of the output with respe
t to


hanges in the design or other input quantities (e.g. material parameters) in
reased. The

main problem, whi
h arose, resulted from the fa
t that meanwhile good simulation tools

were available, but non of the program designers ever thought on derivatives during the

development of the simulation tool. Still nowadays people often use �nite di�eren
es (see e.g.

Haase and Lindner [73℄) due to this fa
t.

One alternative to �nite di�eren
es would be to use 
omputer algebra and symboli
 meth-

ods for generating 
ode to 
al
ulate derivatives. Symboli
 methods take a 
losed form repre-

sentation of a formula as their starting point. Usually this is of the form

y = f(x) with x 2 R

n

;y 2 R

m

. (3.1)

These methods do not use any information on how to evaluate f and whi
h intermediate

results to store. They apply the elementary rules of 
al
ulus to f , get a huge expression

representing the derivative and try to simplify this expression using algebrai
 manipulation.

Typi
al examples for software pa
kages of that kind areMaple [125℄ orMathemati
a [158℄.

This approa
h works �ne for small examples but rea
hes its bounds for more 
ompli
ated ones

or when higher order derivatives are needed. Table 3.1 
ontains the 
omplexity of a C-
ode

to evaluate the 
al
ulated derivatives (the numbers were taken from presentation notes of

A. Griewank). As 
an be seen, the 
omplexity of the 
ode for 
al
ulating the derivative

explodes exponentially whi
h makes a symboli
 approa
h 
ompletely unattra
tive if not even

impossible.

During the same time a 
ompletely di�erent and not so well known s
ienti�
 
ommunity

grew up, whi
h mainly fo
used on doing derivatives. This area is now 
alled Automati
 di�er-

entiation or Algorithmi
 di�erentiation, short AD. Their approa
h was 
ompletely di�erent

to the one in 
omputer algebra and symboli
 
omputation. In AD the starting point is a


omputer program to evaluate the fun
tion. This 
omputer program 
an also be seen as a


losed form representation, nevertheless it is 
ompletely di�erent to the input of 
omputer

29
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derivative order lines of C-Code

0 1

1 2

2 49

3 421

4 4164

5 57027

Table 3.1: C 
ode generated by Mathemati
a (CForm), 
ourtesy by A. Griewank

algebra pa
kages. In a 
omputer program the implementing person grouped several state-

ments together to 
al
ulate intermediate results. These intermediate results are then used to


al
ulate new intermediate results or the fun
tion value, respe
tively. When implementing

a derivative there is no need to propagate all the symboli
 derivative information of the ele-

mentary fun
tions into one �nal formula. It is by far better to exploit the stru
ture using the

intermediate results generated in a 
omputer program also to 
al
ulate derivatives.

In AD two di�erent ways to 
al
ulate derivatives were developed: On the one hand the

forward mode whi
h is 
omparable to dire
tional derivatives, on the other hand the reverse

mode whi
h 
an be 
ompared to gradient evaluation. Both are explained in more detail in

Se
tion 3.3 and Se
tion 3.4, respe
tively. At the beginning there is a short introdu
tion into

the framework and notation used in the following se
tions. We use the same notation as in

the monograph by Griewank [67℄ whi
h 
an be seen as the standard referen
e on this topi
.

3.2 Framework and notation

On a very basi
 level every routine for evaluating a fun
tion 
an be subdivided into 3 
om-

ponents:

� Copy the values of the independent variables to internal variables.

� Evaluate the body of the fun
tion using only internal variables for storing intermediate

results.

� Assign the internal variables 
ontaining the results to the dependent variables.

As the �rst and the last part 
ontain only assignments it is enough to analyze the middle-

se
tion with uses only internal variables. This variable ve
tor 
an be written as

[v

1�n

; : : : ; v

0

| {z }

x

; v

1

; : : : ; v

l�m

; v

l�m+1

; : : : ; v

l

| {z }

y

℄: (3.2)

Ea
h value v

i

is obtained by applying an elementary fun
tion �

i

to some set of arguments v

j

with j < i, so that we 
an write

v

i

= �

i

�

(v

j

)

j�i

�

: (3.3)

Some elementary fun
tions are listed in Table 3.2. For a more 
omplete list seeGriewank [67,

p. 25℄. For simpli
ity we restri
t our attention to smooth fun
tions here. For real life situations

also Lips
hitz 
ontinuous fun
tion like e.g. juj, min(u; v), k(u

1

; : : : ; u

n

)k

2

, max(u; v) or even
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Essential Optional

u+ v, u � v u� v

�u, 
 
 � u, 
� u

1=u u=v

exp(u), log(u) u




sin(u), 
os(u) tan(u), ar
sin(u)

u; v variables, 
 
onstant

Table 3.2: Examples for elementary fun
tions

non-smooth fun
tions like e.g. the sign of a number sign(u) or the Heaviside-fun
tion heav(u)

are needed (e.g. to represent bran
hes in the 
ontrol 
ow). For a treatment of these fun
tions

see Griewank [67, Chapter 11℄.

The dependen
e relation j � i in (3.3) means that v

i

depends dire
tly only on some of

the v

j

; j < i, typi
ally on one or two indi
es j < i. This dependen
e relation de�nes a partial

ordering of all indi
es i = 1 � n; : : : ; l. The relations of the variables v

i

; i = 1 � n; : : : ; l 
an

be visualized in a 
omputational graph. This is an a
y
li
 graph in whi
h the verti
es de�ne

variables and an ar
 runs from v

j

to v

i

if and only if j � i. The roots of the graph represent

the independent variables, the leafs the dependent ones.

To summarize the 
onsiderations the general evaluation pro
edure of a fun
tion 
an be

seen in Algorithm 3.1. We highlighted the three evaluation phases using 
omment statements

in a C-like syntax. In the following se
tions we will use this general evaluation pro
edure to

show how dire
tional derivatives and gradients 
an be implemented in prin
iple.

In order to make this notation 
learer let us 
onsider the following example taken from

Griewank [67℄. This example will also be used for the illustration of the forward and reverse

mode in the following se
tions.

Let f : R

2

! R be de�ned as

y =

�

sin

�

x

1

x

2

�

+

x

1

x

2

� exp(x

2

)

�

�

�

x

1

x

2

� exp(x

2

)

�

: (3.4)

The evaluation pro
edure for this simple formula 
an be seen in Algorithm 3.2. The three dis-

Algorithm 3.1 General evaluation pro
edure of a fun
tion

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

end for

/* Cal
ulation phase */

for i = 1 to l do

v

i

= �

i

�

(v

j

)

j�i

�

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

end for
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Algorithm 3.2 Evaluation tra
e of a simple model example

/* Assignment phase */

v

�1

= x

1

= 1:5000

v

0

= x

2

= 0:5000

/* Cal
ulation phase */

v

1

= v

�1

=v

0

= 1:5000=0:5000 = 3:0000

v

2

= sin(v

1

) = sin(3:0000) = 0:1411

v

3

= exp(v

0

) = exp(0:5000) = 1:6487

v

4

= v

1

� v

3

= 3:000 � 1:6487 = 1:3513

v

5

= v

2

+ v

4

= 0:1411 + 1:3513 = 1:4924

v

6

= v

5

� v

4

= 1:4924 � 1:3513 = 2:0167

/* Assignment phase */

y = v

6

= 2:0167

PSfrag repla
ements

v

�1

v

0

v

1

v

2

v

3

v

4

v

5

v

6

Figure 3.1: Computational graph of a simple model example

tin
t phases of the evaluation 
an be seen 
learly, the �rst phase 
ontaining only assignments,

the 
al
ulation phase and �nally the phase assigning the output variables. A 
omputational

graph of the 
al
ulation phase 
an be found in Figure 3.1. We see that the evaluation of

the formula is not done straightforward, but in a 
lever way by eliminating 
ommon sub-

expressions and using internal variables for them. As we will see, this is one of the se
rets

to redu
e the evaluation e�ort for derivatives 
ompared to the evaluation of a derivative gen-

erated by a symboli
 
omputation pa
kage. We want to reuse this very simple example to

illustrate how the forward and the reverse mode 
al
ulate derivatives.

3.3 The forward mode { Propagation of tangents

In this se
tion we want to 
al
ulate dire
tional derivatives, also 
alled tangents of fun
tions.

It is assumed that the fun
tion 
an be de
omposed into a sequen
e of elementary fun
tions

whi
h are 
ontinuously di�erentiable. In 
ontrast to approximating the derivative by �nite

di�eren
es, we obtain trun
ation error free numeri
al values for the derivative by using the

method presented here.

For the forward mode let us 
onsider a fun
tion

f : R

n

! R

m

; x 7! f(x): (3.5)

As we want to 
al
ulate a dire
tional derivative, let us further introdu
e a 
urve

x : R ! R

n

; t 7! x(t) (3.6)
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and de�ne the resulting 
urve

y : R ! R

m

; t 7! f(x(t)): (3.7)

A

ording to the 
hain rule the derivative of y is de�ned by

_
y(t) =

d

dt

f(x(t)) = f

0

(x(t)) �
_
x(t); (3.8)

where f

0

2 R

m�n

denotes the Ja
obian of f .
_
x 
an be interpreted as dire
tion at the point x(t)

and
_
y denotes the dire
tional derivative of f into the dire
tion of

_
x then. From a geometri
al

point of view
_
x and

_
y 
an be interpreted as tangents of x(t) respe
tively y(t). f

0

maps

tangents along 
urves in the de�nition spa
e of f onto tangents of 
urves in its image spa
e.

That is why this approa
h is also 
alled propagation of tangents.

Let us now assume that f 
an be de
omposed into elementary fun
tions as des
ribed in

Se
tion 3.2, i.e.

f(x) = (�

l

Æ �

l�1

Æ � � � Æ �

2

Æ �

1

)(x): (3.9)

Then using the 
hain rule one obtains

f

0

(x) �
_
x = �

0

l

� �

0

l�1

� � � � � �

0

2

� �

0

1

�
_
x (3.10)

for its derivative, whi
h 
an be evaluated as

f

0

(x) �
_
x = �

0

l

�

�

�

0

l�1

�

�

� � �

�

�

0

2

�

�

�

0

1

�
_
x

��

� � �

��

(3.11)

due to asso
iativity. In the framework of Se
tion 3.2 the evaluation pro
edure for (3.11) 
an

be des
ribed as in Algorithm 3.3. Assembling the 
omplete Ja
obian is not needed and usually

Algorithm 3.3 General evaluation pro
edure of the dire
tional derivative of a fun
tion

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

_v

i�n

= _x

i

end for

/* Cal
ulation phase */

for i = 1 to l do

v

i

= �

i

�

(v

j

)

j�i

�

_v

i

=

P

j�i

�

�v

j

�

i

�

(v

k

)

k�i

�

� _v

j

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

_y

m�i

= _v

l�i

end for

quite une
onomi
al ex
ept when very many di�erent dire
tional derivatives at a �xed point

x are needed. In this dire
tional derivative pro
edure _v

i


an be interpreted as the dire
tional

derivative of v

i

into the dire
tion
_
x. The main di�eren
e of the AD approa
h 
ompared to
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� [�;

_

�℄

w = 
 w = 


_w = 0

w = u� v w = u� v

_w = _u� _v

w = u � v _w = _u � v + u � _v

w = u � v

w = 1=u w = 1=u

_w = �w � w � _u

w =

p

u w =

p

u

_w = 0:5 � _u=w

w = u




_w = _u=u

w = u




_w = 
 � w � _w

w = exp(u) w = exp(u)

_w = w � _u

w = log(u) _w = _u=u

w = log(u)

w = sin(u) _w = 
os(u) � _u

w = sin(u)

Table 3.3: Elementary fun
tions and their tangent statements

the symboli
 
al
ulation of derivatives is the fa
t that numeri
al values of the derivatives are

propagated rather than their 
orresponding symboli
 expressions.

In Algorithm 3.3 we pla
ed the tangent statement to 
al
ulate _v

i

after the original state-

ment as this order of 
al
ulation seems quite natural. As long as two variables do not overwrite

it is not ne
essary to think of a spe
ial exe
ution order of the statements 
al
ulating the fun
-

tion value and its derivative. However, in real programs several variables v

j

often share one


ommon storage lo
ation. Espe
ially when v

i

shares the storage lo
ation with one of the

arguments v

j

of �

i

it is ne
essary to update _v

i

before v

i

is updated. That is why, sour
e

to sour
e transformers (see also Se
tion 3.5) always put the derivative statement ahead of

the original one. On the other hand the value of the derivative _v

i


an often be 
al
ulated

easier when v

i

is already known. Therefore �

i

and

_

�

i

should be evaluated simultaneously

sharing intermediate results. The most elementary 
ases are listed in Table 3.3. It is easy

to observe that for the 
omputation of
_
y ea
h elementary fun
tion is pro
essed exa
tly on
e.

With respe
t to the 
omputational 
omplexity of evaluating
_
y this implies the following:

Theorem 3.1. Assume that for ea
h �

i

the e�ort for evaluating �

0

i

�
_
x is of the same order as

evaluating �

i

itself, i.e. there exists a 
onstant 
 > 0 su
h that for ea
h elementary fun
tion

�

i

WORK(�

0

i

�
_
x) � 
 WORK(�

i

) (3.12)

is valid (whi
h is obviously true for the fun
tions listed in Table 3.3), then also the e�ort for

evaluating
_
y is of the same order as evaluating y, i.e.

WORK(
_
y) � 
 WORK(y): (3.13)
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For assembling the 
omplete Ja
obian of f n forward propagations are needed, indepen-

dent of the dimension of the image spa
e. This makes the forward mode very attra
tive for


al
ulating Ja
obians of fun
tions with low dimensional de�nition spa
e and high dimensional

image spa
e. We will see in the next se
tion, that for the reverse mode the 
omputational


omplexity of 
al
ulating a gradient is proportional to the dimension of the image spa
e and

not the de�nition spa
e, whi
h is advantageous for many optimization problems.

Let us now return to our example of Se
tion 3.2. In order to illustrate the presented

approa
h the evaluation pro
edure for the dire
tional derivative into the dire
tion ( _x

1

; _x

2

)


an be found in Algorithm 3.4.

Algorithm 3.4 Evaluation tra
e of the dire
tional derivative for a simple model example

/* Assignment phase */

v

�1

= x

1

= 1:5000

_v

�1

= _x

1

= 1:0000

v

0

= x

2

= 0:5000

_v

0

= _x

2

= 0:0000

/* Cal
ulation phase */

v

1

= v

�1

=v

0

= 1:5000=0:5000 = 3:0000

_v

1

= ( _v

�1

� v

�1

� _v

0

)=v

0

= 1:0000=0:5000 = 2:0000

v

2

= sin(v

1

) = sin(3:0000) = 0:1411

_v

2

= 
os(v

1

) � _v

1

= �0:9900 � 2:0000 = �1:9800

v

3

= exp(v

0

) = exp(0:5000) = 1:6487

_v

3

= v

3

� _v

0

= 1:6487 � 0:0000 = 0:0000

v

4

= v

1

� v

3

= 3:000 � 1:6487 = 1:3513

_v

4

= _v

1

� _v

3

= 2:0000 � 0:0000 = 2:0000

v

5

= v

2

+ v

4

= 0:1411 + 1:3513 = 1:4924

_v

5

= _v

2

+ _v

4

= �1:9800 + 2:0000 = 0:0200

v

6

= v

5

� v

4

= 1:4924 � 1:3513 = 2:0167

_v

6

= _v

5

� v

4

+ v

5

� _v

4

= 0:0200 � 1:3513 + 1:4924 � 2:0000 = 3:0118

/* Assignment phase */

y = v

6

= 2:0167

_y = _v

6

= 3:0118

3.4 The reverse mode { Propagation of gradients

This se
tion deals with the 
al
ulation of gradients. As in Se
tion 3.3 it is assumed that the

fun
tion to be di�erentiated 
an be de
omposed into a �nite sequen
e of elementary fun
tions

being 
ontinuously di�erentiable.

Let us 
onsider a fun
tion

f : R

n

! R

m

; x 7! f(x): (3.14)

and a weighting ve
tor
�
y 2 R

m

and de�ne a s
alar valued fun
tion z by

z : R

n

! R; x 7! h
�
y; f(x)i

R

m

=
�
y

T

f(x): (3.15)
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A

ording to the 
hain rule the gradient of z is de�ned by

�
x = grad z = grad

�

�
y

T

f(x)

�

=
�
y

T

f

0

(x) (3.16)

where f

0

2 R

m�n

denotes the Ja
obian of f . Geometri
ally
�
y and �z 
an be interpreted in the

following sense: The set

�

y j
�
y

T

y � 


	

de�nes a hyperplane in the image spa
e and due to the

impli
it fun
tion theorem

�

x j
�
y

T

f(x) � 


	

de�nes a smooth hypersurfa
e in the de�nition

spa
e.
�
y denotes the normal of the hyperplane in the image spa
e,

�
x the 
orresponding normal

onto the hypersurfa
e in the de�nition spa
e.

In analogy to the previous se
tion let us assume that f 
an be de
omposed into elementary

fun
tions, i.e.

f(x) = (�

l

Æ �

l�1

Æ � � � Æ �

2

Æ �

1

)(x): (3.17)

For the gradient of z we get

�
x =

�
y

T

� �

0

l

� �

0

l�1

� � � � � �

0

2

� �

0

1

; (3.18)

whi
h 
an be grouped as

�
x =

��

� � �

��

�
y

T

� �

0

l

�

� �

0

l�1

�

� � �

�

� �

0

2

�

� �

0

1

(3.19)

due to asso
iativity. In the frame of Se
tion 3.2 the evaluation pro
edure for (3.19) 
an be

written as shown in Algorithm 3.5. In a 
omputer program the information to build

X

i�j

�v

j

�

�v

j

�

i

�

(v

k

)

k�i

�

(3.20)

is not available. For ea
h �

i

it is known whi
h arguments it depends on, but not whi
h

fun
tions �

i

depend on a given v

j

. That is why one usually avoids to form the sum over

i � j and uses an in
remental setup instead. This 
an be found in Algorithm 3.6. It 
an be

seen that �rst all intermediate variables are 
al
ulated using a normal fun
tion evaluation.

Then all the adjoint quantities are 
al
ulated by exe
uting the a

ording statements in reverse

order. The values of the intermediate variables are needed for the evaluation of the derivatives

of the elementary fun
tions and 
an usually not be 
al
ulated on the 
y as in the forward

mode. That is why they have to be saved during the forward run for the evaluation of the

derivative.

One interpretation of the adjoint variables whi
h also explains their name, is via La-

grangian multipliers. Let us view the evaluation of z in the following way: We de�ne a


onstrained optimization problem

�
y

T

y! min (3.21)

subje
t to the following equality 
onstraints:

�

i

�

(v

k

)

k�i

�

� v

i

= 0 8i = 1; : : : ; l (3.22)

v

l�i

� y

l�i

= 0 8i = 1; : : : ; l: (3.23)

Then, the Lagrangian variables 
orresponding to the equality 
onstraints are exa
tly the

adjoint variables 
omputed by the reverse mode.

In Table 3.4 the adjoint operations for some elementary fun
tions 
an be found. We
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Algorithm 3.5 General evaluation pro
edure of the gradient of a fun
tion

/* Fun
tion evaluation to 
al
ulate values of intermediate variables */

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

end for

/* Cal
ulation phase */

for i = 1 to l do

v

i

= �

i

�

(v

k

)

k�i

�

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

end for

/* Reverse sweep to 
al
ulate adjoint variables */

/* Assignment phase */

for i = 0 to m� 1 do

�v

l�i

= �y

m�i

end for

/* Cal
ulation phase */

for j = l �m to 1� n step �1 do

�v

j

=

P

i�j

�v

i

�

�v

j

�

i

�

(v

k

)

k�i

�

end for

/* Assignment phase */

for i = n to 1 step �1 do

�x

i

= �v

i�n

end for

�

�

�

w = 
 �w = 0

w = u� v �u = �u+ �w

�v = �v + �w

w = u � v �u = �u+ �w � v

�v = �v + �w � u

w = 1=u �u = �u� �w � w � w

w =

p

u �u = �u+ 0:5 � �w=w

w = u




�u = �u+ (
 � �w) � w=u

w = exp(u) �u = �u+ �w � w

w = log(u) �u = �u+ �w=u

w = sin(u) �u = �u+ �w � 
os(u)

Table 3.4: Elementary fun
tions and their reverse statements for an in
remental setup
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Algorithm 3.6 General evaluation pro
edure of the gradient of a fun
tion, in
remental setup

/* Fun
tion evaluation to 
al
ulate values of intermediate variables */

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

end for

/* Cal
ulation phase */

for i = 1 to l do

v

i

= �

i

�

(v

k

)

k�i

�

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

end for

/* Reverse sweep to 
al
ulate adjoint variables */

/* Assignment phase */

for i = 0 to m� 1 do

�v

l�i

= �y

m�i

end for

for i = 1 to l �m do

�v

i

= 0

end for

/* Cal
ulation phase */

for i = l to 1 step �1 do

for all j � i do

�v

j

= �v

j

+ �v

i

�

�v

j

�

i

�

(v

k

)

k�i

�

end for

end for

/* Assignment phase */

for i = n to 1 step �1 do

�x

i

= �v

i�n

end for
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presented an in
remental setup in the table be
ause in pra
ti
e only in
remental setups are

used.

Up to now we always assumed no overwriting of variables, i.e. two variables never share

the same storage lo
ation. However, this 
an be justi�ed only for the theoreti
al motivation.

In real programs usually several variables v

j

share one 
ommon memory lo
ation. As the

values of the intermediate variables are needed in the reverse sweep, one has to enhan
e the

evaluation pro
edure found in Algorithm 3.6 to 
ope with overwriting. One way is to add

load and store 
ommands whi
h store the values on an external �le (often 
alled tape) before

being overwritten and load them from the �le before being used in the reverse sweep. The

enhan
ed version of the evaluation pro
edure of Algorithm 3.6 
an be found in Algorithm 3.7.

For a more details see Griewank [67℄.

Coming ba
k to Algorithm 3.6 wee see easily that for the 
omputation of �y ea
h elemen-

tary fun
tion is pro
essed exa
tly on
e. This implies the following for the 
omputational


omplexity of a gradient evaluation.

Theorem 3.2. Under the assumption that for ea
h �

i

the e�ort for the reverse operation

�

�

i

is of the same order as evaluating the elementary fun
tion itself, i.e. there exists a 
onstant


 > 0 su
h that for ea
h elementary fun
tion �

i

WORK(

�

�

i

) � 
 WORK(�

i

) (3.24)

is valid (whi
h is obviously true for the fun
tions listed in Table 3.4), then the e�ort for

evaluating
�
x is of the same order as 
al
ulating z, i.e.

WORK(
�
x) � 
 WORK(z) (3.25)

where the 
onstant is small.

For assembling the whole Ja
obian of f m reverse propagations are needed, independently

of the number of design parameters. This makes the reverse mode very attra
tive for many

real life problems in large s
ale optimization, where the image spa
e is usually of rather low

dimension whereas the de�nition spa
e is high dimensional.

Let us now return to our model example of Se
tion 3.2. In order to illustrate the presented

approa
h the evaluation pro
edure for the gradient 
an be found in Algorithm 3.8.

3.5 Tools

Up to now we 
on
entrated mainly on the theoreti
al ba
kground of the forward and the

reverse mode and showed how dire
tional derivatives and gradient information 
an be obtained

by transforming the original 
omputer program into a new one. But if the transformed 
ode

would have to be implemented by hand, this would not only be time 
onsuming but also

pretty error-prone. Furthermore, there would be only few advantages to 
ompletely hand-


oded routines (the most important one is that it is 
lear whi
h part of the derivative 
ode

has to be 
hanged when the 
ode for the fun
tion evaluation 
hanges). That is why in the

AD-
ommunity tools were developed to support this program transformation during the last

de
ade. Nevertheless it is ne
essary to understand the fundamentals of AD in order to apply

these tools eÆ
iently.
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Algorithm 3.7 General evaluation pro
edure of the gradient of a fun
tion, in
remental setup

with overwriting of variables

/* Fun
tion evaluation to 
al
ulate values of intermediate variables */

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

end for

/* Cal
ulation phase */

for i = 1 to l do

STORE v

i

v

i

= �

i

�

(v

k

)

k�i

�

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

end for

/* Reverse sweep to 
al
ulate adjoint variables */

/* Assignment phase */

for i = 0 to m� 1 do

�v

l�i

= �y

m�i

end for

for i = 1 to l �m do

�v

i

= 0

end for

/* Cal
ulation phase */

for i = l to 1 step �1 do

LOAD v

i

for all j � i do

�v

j

= �v

j

+ �v

i

�

�v

j

�

i

�

(v

k

)

k�i

�

end for

�v

i

= 0

end for

/* Assignment phase */

for i = n to 1 step �1 do

�x

i

= �v

i�n

end for
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Algorithm 3.8 Evaluation tra
e of the gradient for a simple model example

/* Fun
tion evaluation to 
al
ulate values of intermediate variables */

/* Assignment phase */

v

�1

= x

1

= 1:5000

v

0

= x

2

= 0:5000

/* Cal
ulation phase */

v

1

= v

�1

=v

0

= 1:5000=0:5000 = 3:0000

v

2

= sin(v

1

) = sin(3:0000) = 0:1411

v

3

= exp(v

0

) = exp(0:5000) = 1:6487

v

4

= v

1

� v

3

= 3:000 � 1:6487 = 1:3513

v

5

= v

2

+ v

4

= 0:1411 + 1:3513 = 1:4924

v

6

= v

5

� v

4

= 1:4924 � 1:3513 = 2:0167

/* Assignment phase */

y = v

6

= 2:0167

/* Reverse sweep to 
al
ulate adjoint variables */

/* Assignment phase */

�v

6

= �y = 1:0000

�v

0

= �v

1

= �v

2

= �v

3

= �v

4

= �v

5

= 0:0000

/* Cal
ulation phase */

�v

5

= �v

5

+ �y � v

4

= 0:0000 + 1:0000 � 1:3513 = 1:3513

�v

4

= �v

4

+ �y � v

5

= 0:0000 + 1:0000 � 1:4924 = 1:4924

�v

2

= �v

2

+ �v

5

= 1:3513

�v

4

= �v

4

+ �v

5

= 1:4924 + 1:3513 = 2:8437

�v

3

= �v

3

� �v

4

= �2:8437

�v

1

= �v

1

+ �v

4

= 2:8437

�v

0

= �v

0

+ �v

3

� v

3

= 0:0000 � 2:8437 � 1:6487 = �4:6884

�v

1

= �v

1

+ �v

2

� 
os(v

1

) = 2:8437 + 1:3514 � (�0:9900) = 1:5059

�v

0

= �v

0

� �v

1

� v

1

=v

0

= �4:6884 � 1:5059 � 3:0000=0:5000 = �13:7239

�v

�1

= �v

�1

+ �v

1

=v

0

= 0:0000 + 1:5059=0:5000 = 3:0118

/* Assignment phase */

�x

2

= �v

0

= �13:7239

�x

1

= �v

�1

= 3:0118
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PSfrag repla
ements

Sour
e-to-sour
e transformation

fun
.sr
 fun
&der.sr


Augmentation

Compilation

Compilation

fun
++.sr


fun
&der.obj

Figure 3.2: From fun
tion sour
es to obje
t �les 
ontaining derivative information

The two basi
 methodologies used by these tools are operator overloading and sour
e-to-

sour
e transformation. Even though these 
on
epts look very di�erent, both 
an be brought

into a 
ommon frame whi
h 
an be found in Figure 3.2.

Both approa
hes start from an implementation of the fun
tion evaluation. When applying

tools based on operator overloading (e.g. ADOL-C [69℄, FADBAD [14℄) this sour
e has to

be augmented by hand in order to de�ne the independent and the dependent variables as

well as the intermediate ones. Then, this augmented fun
tion evaluation is 
ompiled using a

standard 
ompiler.

The situation is slightly di�erent, when using tools based on sour
e-to-sour
e transforma-

tion tools (e.g. ADIFOR [18℄, TAF [150℄, or ADIC [20℄). Here the sour
e of the fun
tion

evaluation is analyzed using a tool whi
h works similar to a 
ompiler. It analyzes the fun
tion

evaluation to set up a dependen
e graph. For this analysis the user has to spe
ify the indepen-

dent and the dependent variables. Using the dependen
e graph these tools generate sour
e


ode of the derivatives as their output whi
h 
an be 
ompiled using a standard 
ompiler. In

both 
ases the obje
t �les together with libraries delivered by the tool implementers 
ontain

all the information needed for evaluating derivatives. In the following we want to dis
uss this

pro
ess using two of the tools, TAF and ADOL-C as typi
al examples for sour
e-to-sour
e

translators and tools based on operator overloading, respe
tively.

3.5.1 The sour
e-to-sour
e translator TAF

TAF, whi
h stands short for Transformation of Algorithms in Fortran is a sour
e-to-sour
e

translator that generates Fortran routines out of Fortran routines. It is a 
ommer
ial prod-

u
t developed by Giering and Kaminsky at FastOpt (http://www.fastopt.de) and is the

su

essor of TAMC, the Tangent linear and Adjoint Model Compiler (Giering [58℄, Gier-

ing and Kaminski [61℄) whi
h is available under http://puddle.mit.edu/�ralf/tam
/.

The routines to be di�erentiated have to be implemented in Fortran-77 or Fortran-90, only

operator overloading is not supported. Derivatives are 
omputed in forward mode using a

tangent-linear model or in reverse mode using an adjoint model. Additionally, a 
ode for

produ
ts between the Ja
obian and a ve
tor or matrix 
an be generated.
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double pre
ision fun
tion f (x1, x2)

double pre
ision x1, x2

double pre
ision q, d, dummy, mysin, myexp

q = x1 / x2

d = q - myexp(x2)

dummy = q * x2

f = (mysin(q) + d) * d

return

end

double pre
ision fun
tion mysin(x)

double pre
ision x

mysin = dsin(x)

return

end

double pre
ision fun
tion myexp(x)

double pre
ision x

myexp = dexp(x)

return

end

Figure 3.3: Fortran-77 
ode for a simple model problem

Given the independent and dependent variables of the top-level routine (all these quan-

tities are spe
i�ed using 
ommand line parameters) TAF applies an inter-pro
edural data

dependen
e analysis and an inter-pro
edural data 
ow analysis to determine all 
ode parts

whi
h have to be di�erentiated and all intermediate variables for whi
h derivatives have to

be 
al
ulated.

The prin
iples of sour
e-to-sour
e transformation 
an be found in Giering and Kamin-

sky [59, 60℄. They des
ribe rules for deriving the adjoint statements needed whi
h 
an also be

used for manual adjoint derivation. These rules form the basis for the algorithms implemented

in TAMC and TAF.

An implementation of our simple model problem in Fortran-77 as well as its derivatives

via forward and reverse mode 
an be found in Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6

respe
tively. The 
ode for the derivatives was generated using TAMC with the 
ommands

tam
 -toplevel f -input "x1,x2" -forward fun
.f
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subroutine g_f( x1, x2, f, g_x1, g_x2, g_g )

C***************************************************************

C** This routine was generated by the **

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **

C***************************************************************

double pre
ision f, x1, x2, g_g, g_x1, g_x2

double pre
ision d, dh, fh, q, g_d, g_dh, g_fh, g_q, myexp, mysin

C----------------------------------------------

C TANGENT LINEAR AND FUNCTION STATEMENTS

C----------------------------------------------

g_q = g_x1/x2-g_x2*(x1/(x2*x2))

q = x1/x2


all g_hmyexp( x2,dh,g_x2,g_dh )

g_d = (-g_dh)+g_q

d = q-dh


all g_hmysin( q,fh,g_q,g_fh )

g_g = g_d*(fh+2*d)+g_fh*d

f = (fh+d)*d

end

subroutine g_hmyexp( x, myexp, g_x, g_myexp )

double pre
ision g_myexp, g_x, myexp, x

C----------------------------------------------

C TANGENT LINEAR AND FUNCTION STATEMENTS

C----------------------------------------------

g_myexp = g_x*dexp(x)

myexp = dexp(x)

end

subroutine g_hmysin( x, mysin, g_x, g_mysin )

double pre
ision g_mysin, g_x, mysin, x

C----------------------------------------------

C TANGENT LINEAR AND FUNCTION STATEMENTS

C----------------------------------------------

g_mysin = g_x*d
os(x)

mysin = dsin(x)

end

Figure 3.4: Fortran-77 
ode for the dire
tional derivative, generated by TAMC V 5.3.2
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subroutine adf( x1, x2, f, adx1, adx2, adg )

C***************************************************************

C** This routine was generated by the **

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **

C***************************************************************

double pre
ision adg, adx1, adx2, f, x1, x2

double pre
ision add, addi, adfi, adq, d, q, myexp, mysin

C----------------------------------------------

C RESET LOCAL ADJOINT VARIABLES

C----------------------------------------------

add = 0.d0

adq = 0.d0

C----------------------------------------------

C ROUTINE BODY

C----------------------------------------------

C----------------------------------------------

C FUNCTION AND TAPE COMPUTATIONS

C----------------------------------------------

q = x1/x2

d = q-myexp(x2)

f = (mysin(q)+d)*d

C----------------------------------------------

C ADJOINT COMPUTATIONS

C----------------------------------------------

add = add+adg*(2*d+mysin(q))

adfi = adg*d


all adhmysin( q,adq,adfi )

adfi = 0.d0

adg = 0.d0

addi = -add

adq = adq+add


all adhmyexp( x2,adx2,addi )

addi = 0.d0

add = 0.d0

adx1 = adx1+adq/x2

adx2 = adx2-adq*(x1/(x2*x2))

adq = 0.d0

end

Figure 3.5: Fortran-77 
ode for the gradient, generated by TAMC V 5.3.2, Part 1
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subroutine adhmyexp( x, adx, admyexp )

C***************************************************************

C** This routine was generated by the **

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **

C***************************************************************

double pre
ision admyexp, adx, x

C----------------------------------------------

C ROUTINE BODY

C----------------------------------------------

adx = adx+admyexp*dexp(x)

admyexp = 0.d0

end

subroutine adhmysin( x, adx, admysin )

C***************************************************************

C** This routine was generated by the **

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **

C***************************************************************

double pre
ision admysin, adx, x

C----------------------------------------------

C ROUTINE BODY

C----------------------------------------------

adx = adx+admysin*d
os(x)

admysin = 0.d0

end

Figure 3.6: Fortran-77 
ode for the gradient, generated by TAMC V 5.3.2, Part 2
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and

tam
 -toplevel f -input "x1,x2" -reverse fun
.f,

respe
tively. In the implementation of the fun
tion evaluation we added a dummy variable,

whi
h depends on the input variables but does not in
uen
e the output quantities. When

the fun
tion evaluation is 
ompiled, an optimizing 
ompiler dete
ts this fa
t and does not

generate 
ode for this statement. TAMC applies similar data 
ow and data dependen
e

analysis and also dete
ted this fa
t. That is why it does not generate any derivative 
ode for

this unne
essary statement.

3.5.2 The operator overloading pa
kage ADOL-C

ADOL-C (Griewank et al. [70, 69℄) whi
h stands short for Automati
 di�erentiation by

overloading in C++ is one example for AD-pa
kages based on operator overloading. It is

developed by the group of Griewank at the Te
hni
al University of Dresden and is available

free of 
harge under http://www.math.tu-dresden.de/wir/proje
t/adol
/index.html.

The routines to be di�erentiated have to be implemented in C or C++, the augmented 
ode

is C++ 
ode. The pa
kage fa
ilitates the evaluation of �rst and higher order derivatives.

The resulting derivative evaluation routines may be 
alled from C/C++, Fortran, or any

other language that 
an be linked with C. For s
alar-valued fun
tions ADOL-C provides easy

to use drivers for fun
tion and gradient evaluation as well as Hessian times ve
tor produ
ts

and Hessian evaluation. For ve
tor valued fun
tion besides fun
tion and Ja
obian evaluation

routines also produ
ts between a ve
tor and the Ja
obian are available.

In order to get derivative information the 
ode must be augmented in the following sense:

First the a
tive region 
ontaining the fun
tion evaluation has to be spe
i�ed. The key ingre-

dient of all AD pa
kages using operator overloading is the 
on
ept of a
tive variables. Within

the a
tive region, all variables depending dire
tly or indire
tly on the independent variables

have to be repla
ed by a
tive variables. In ADOL-C this is realized by repla
ing the 
orre-

sponding double variables by variables of the type adouble. For these variables derivative

information is generated. To 
omplete the augmentation of the 
ode, the dependent and the

independent variables have to be spe
i�ed. Spe
ial 
are has to be taken on the taping of


onditional statements, but we do not want go into details here (see Griewank et al. [69℄).

During the evaluation of the a
tive region the overloaded operations for the type adouble

re
ord all the operations within the a
tive region where a
tive variables are involved on a so


alled tape. This tape is used by an interpreter to evaluate the fun
tion, gradients, et
. These

evaluations only use the tape, no more the augmented fun
tion. That is why it is possible to

generate a tape using one program and to use the fun
tion de�ned by the tape for example

as obje
tive of an optimization within another.

In order to illustrate this let us look at our simple model example. An implementation in

C 
an be found in Figure 3.7. It is more or less a trans
ript of the Fortran implementation in

Figure 3.3. For brevity we removed all ne
essary prepro
essor statements and pre-de
larations

needed to get the 
ode fragment to 
ompile. Figure 3.8 
ontains the augmented 
ode. We

assumed that f 
ontains the top-level fun
tion to be di�erentiated. It 
an be seen that the

two 
ode fragments di�er only sightly in the evaluation itself. The main di�eren
e is that all

intermediate variables were 
hanged from double to adouble. Additionally in the top-level

fun
tion the dependent and independent variables as well as the a
tive region have to be

spe
i�ed.
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double f (double x1, double x2)

{

double q, d, value;

q = x1 / x2;

d = q - myexp(x2);

value = (mysin(q) + d) * d;

return value;

}

double mysin(double x)

{

double value;

value = sin(x);

return value;

}

double myexp(double x)

{

double value;

value = exp(x);

return value;

}

Figure 3.7: C 
ode for a simple model problem
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double f (double dx1, double dx2)

{

tra
e_on(1234); // the a
tive region starts here

adouble x1, x2;

x1 <<= dx1; // define x1 and x2 as

x2 <<= dx2; // independent variables

// define all intermediate variables as a
tive

adouble q, d, value;

q = x1 / x2;

d = q - myexp(x2);

value = (mysin(q) + d) * d;

double dummy;

value >>= dummy; // define dependent variables

tra
e_off(1234); // the a
tive region ends here

return dummy;

}

adouble mysin(adouble x)

{

adouble value;

value = sin(x);

return value;

}

adouble myexp(adouble x)

{

adouble value;

value = exp(x);

return value;

}

Figure 3.8: Augmented C++ 
ode for a simple model problem
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void main ()

{

double x[2℄, f, grad[2℄;

x[0℄ = 1.5; // initialize the parameter

x[1℄ = 0.5;

// evaluate the fun
tion

fun
tion (1234, 2, x, &f);

// evaluate the gradient

gradient (1234, 2, x, grad);

}

Figure 3.9: Fun
tion and gradient evaluation for a simple model example in ADOL-C

When the tape is generated it 
an be used as a repla
ement for the fun
tion evaluation

itself as the evaluation drivers only take the information on the tape. A 
ode fragment in C

for evaluating the fun
tion and its gradient 
an be found in Figure 3.9.



Chapter 4

A Bla
k-Box Strategy Using an

Elimination Approa
h

4.1 Introdu
tion

Optimal design problems are often divided, a

ordingly to their number of design param-

eters, into problems with few design parameters (maximal dimension of the design param-

eter ve
tor q is approximately 100) and into problems with very large design spa
es (e.g.

dim(q) � dim(u)). In this 
hapter we want to present a strategy suitable for rather few

design parameters only. The obje
tive and 
onstraints 
an be more or less arbitrary, but

smooth. We restri
t ourselves to ellipti
 state problems, but remark on the 
hanges for time-

dependent state problems where ne
essary. The next 
hapter will deal with the situation of

having many design parameters. The method presented there di�ers 
onsiderably, although


ommon aspe
ts exist whi
h will be dis
ussed there.

In order to illustrate the method we use a model example { the minimization of the mass

of the frame of an inje
tion moulding ma
hine under 
onstraints on the deformation and

stresses. This real life example shall also demonstrate the appli
ability of the method in an

industrial design pro
ess. There, mainly two goals have to be ful�lled:

� On the one hand, tools are needed whi
h are 
exible enough to handle the various re-

quirements. Nevertheless, they have to be robust to produ
e reliable results. Espe
ially

it is desirable to spend only a little work on modifying the 
ode, when the requirements


hange.

� On the other hand, these tools have to be fast. Up to now, design 
hanges are often made

by engineers by hand following mainly their experien
e and intuition. Unfortunately,

due to la
k of time, this pro
ess has to be stopped after a few iterations, in most


ases only two or three. Then, the best design obtained so far, is taken. Fast tools

automatizing some parts of the design pro
ess strongly a

elerate the design pro
ess

itself, and by far more design drafts 
an be 
onsidered.

This 
hapter will begin with the introdu
tion and modeling of our model problem, fol-

lowed by the 
orresponding optimal design problem. By using a solution operator for the

state problem this optimal design problem 
an be transformed into an equivalent optimiza-

tion problem whi
h is easier manageable by the optimizer. Additionally, extensions to the

51
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Figure 4.1: Cross se
tion of the original shape

general SQP-frame presented in Se
tion 2.2 are introdu
ed whi
h remove the demand for

se
ond order derivatives of the Lagrangian. The main part of this 
hapter is devoted to

gradient and sensitivity 
al
ulation. Sin
e implementing analyti
 derivatives is rather error

prone and an improper approa
h for an industrial design pro
ess, various alternatives are pre-

sented, analyzed, and 
ompared to ea
h other. Besides �nite di�eren
es, the dire
t and the

adjoint sensitivity method, several approa
hes using automati
 di�erentiation are presented.

A numeri
al 
omparison of some of the presented approa
hes 
on
ludes this 
hapter.

4.2 Model example: Optimal sizing of a ma
hine frame

The frame of an inje
tion moulding ma
hine is brie
y sket
hed by its 2D-
ut 
 given in

Figure 4.1. For a frame of homogeneous thi
kness, typi
al dimensions are:

� thi
kness of one plate: 180 mm

� mass of one plate: 3.8 tons

� 
lumping for
e (surfa
e for
e): 300 tons

b

� 16 N/mm

2

� length: 2.8 m

� height: 1.7 m

� 2 supporting areas

The primary goal of the design phase is to minimize the mass of the frame of the inje
tion

moulding ma
hine. Several other requirements have to be ful�lled in addition, e.g.

� maximal v. Mises stress: �

vM

� �

vM

max

,

� maximal tensile stress: �

ten

� �

ten

max

,
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� shrinking angle of the 
lumping unit (verti
al edges on top, 
alled wings): � � �

max

,

� handling of the ma
hine or the feeding me
hanism,

� easy and 
ost eÆ
ient manufa
turing.

For the de�nition of the v. Mises stress and the tensile stress see e.g. Ziegler [162℄.

Some of these 
onstraints 
an be integrated into the optimization pro
edure dire
tly (e.g.

restri
tions on the stresses), whereas others like the easy manufa
turing have to be 
onsidered

in a post-pro
essing step.

In order to evaluate the stresses �, the displa
ement �eld u of the frame under some load

F has to be known.

For a �xed thi
kness q(x) 2 Q, the displa
ement �eld u(x); x = (x

1

; x

2

) 2 
, ful�lls

a(q;u; v) = F (v); 8 v 2 U; (4.1)

with

a(q;u; v) =

Z




q

�u

i

�x

j

E

ijkl

�v

k

�x

l

dx; F (v) =

Z

�

N

g v ds

where E

ijkl

denotes the elasti
ity tensor and g the surfa
e for
e density on a part �

N

of the

boundary. Volume for
es are negle
ted. u and v are assumed to be in

U =

�

v 2 [H

1

(
)℄

2

j v = 0 on �

D

;meas �

D

> 0

	

(4.2)

(set of admissible displa
ements) where �
 = �

D

[ �

N

, �

D

= �

D

and �

D

\ �

N

= ;.

E

ijkl

is given by

E

ijkl

= �Æ

ij

Æ

kl

+ �(Æ

ik

Æ

jl

+ Æ

il

Æ

jk

); (4.3)

where Æ

ij

denotes the Krone
ker-Delta and �, � denote Lame's 
onstants. These 
an be


al
ulated from Young's modulus E and Poisson's ratio � by

� =

E �

(1 + �)(1� �)

; � =

E

2(1 + �)

: (4.4)

In (4.1) we have assumed that

� a generalized plane stress problem is 
onsidered, i.e. we 
onsider a body 
 as a plate

that is thin in x

3

-dire
tion (
ompared to the other 
oordinate dire
tions) and that 
an


arry stresses only parallel to the x

1

-x

2

-plane, and

� the applied surfa
e tra
tions are independent of x

3

, i.e.

g(x) = (g

1

(x); g

2

(x));

and therefore, there is no displa
ement in x

3

-dire
tion and the other two displa
ement


omponents are also independent of x

3

.
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The design problem 
an be stated as follows:

Z




q(x) dx! min

(u;q)2U�Q

subje
t to a(q;u; v) = F (v); 8 v 2 U;

�

vM

(u) � �

vM

max

a.e. in 
;

�

ten

(u) � �

ten

max

a.e. in 
;

�(u) � �

max

;

0 < q � q � q; a.e. in 
:

(4.5)

�

vM

(u) denotes the v. Mises stress, �

ten

(u) the tensile stress in the frame, q; q 2 R

+

. The


hange in the shrinking angle of the 
lumping unit (verti
al edges on top, 
alled wings) is

denoted by �(u).

For dis
retizing the problem, we use triangular �nite elements with pie
e-wise 
onstant

shape fun
tions for approximating q and pie
e-wise quadrati
 ones for approximating u. In

many situations it is additionally assumed that q is 
onstant in 
ertain non-overlapping sub-

regions 


i

. We denote the dis
rete approximation of q and u by q

h

and u

h

where q

h

2 Q

h

and u

h

2 U

h

.

Summarizing all those 
onsiderations, the dis
retized optimization problem 
an be formu-

lated as follows:

Z




h

q

h

(x) dx! min

(u

h

;q

h

)2U

h

�Q

h

a(q

h

;u

h

; v

h

) = F (v

h

); 8 v

h

2 U

h

;

�

vM

(u

h

) � �

vM

max

;

�

ten

(u

h

) � �

ten

max

;

�(u

h

) � �

max

;

0 < q � q

h

� q;

(4.6)

where 


h

denotes the dis
retized domain.

Choosing bases

� = (�

1

; : : : ; �

m

)

T

2 U

h

and � = (�

1

; : : : ; �

n

)

T

2 Q

h

(4.7)

of the �nite dimensional spa
es U

h

and Q

h

we may represent (u

h

; q

h

) 2 U

h

�Q

h

via

u

h

= u

T

�; q

h

= q

T

� (4.8)

with 
oordinate ve
tors u 2 R

m

and q 2 R

n

. This allows us to rewrite (4.6) in matrix-ve
tor

form as

m

T

q! min

(u;q)2R

m

�R

n

K(q)u = F

�

vM

(u) � �

vM

max

�

ten

(u) � �

ten

max

�(u) � �

max

0 < q � q � q;

(4.9)
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with the symmetri
 positive de�nite, large, sparse sti�ness matrix K and the ve
tors m and

F. The 
onstraints on �

vM

, �

ten

and q have to be understood 
omponent-wise.

In our appli
ation, the upper limits on the angle and the stresses are either treated as


onstraints or as soft limits, whi
h 
an be violated to some extent, if the mass would be

severely smaller then. Furthermore, the pointwise 
onstraints on �

vM

and �

ten

are repla
ed

by using a higher order `

p

norm

kvk

p

=

p

q

X

jv

i

j

p

:

Treating the upper limits as soft 
onstraints leads to the following reformulation:

m

T

q+ !

1

�

max (k�

vM

(u)k

p

� �

vM

max

; 0)

�

2

+ !

2

�

max (k�

ten

(u)k

p

� �

ten

max

; 0)

�

2

+ !

3

�

max (�(u) � �

max

; 0)

�

2

! min

(u;q)2R

m

�R

n

K(q)u = F

0 < q � q � q

(4.10)

where !

i

; i = 1; : : : ; 3 denote user-
hosen fa
tors of in
uen
e. Note that this modi�
ation

leads to an obje
tive in C

1

. It looks similar to a penalty formulation of the 
onstraints, but

the weights !

i

; i = 1; : : : ; 3 are kept �xed during the iteration and do not tend to in�nity like

in penalty methods. Therefore, the problem of ill-
onditioning of the Hessian is avoided.

Usually, the state equation in (4.10) is not ful�lled exa
tly as iterative solvers are used.

Then, it is ne
essary to adopt the 
onvergen
e 
riterion of the iterative solver to the dis-


retization parameter h. As long as the di�eren
e between the exa
t dis
rete solution and

the approximate solution 
al
ulated by the iterative solver is of the same order as the ap-

proximation of the 
ontinuous solution by the used dis
retization s
heme, we do not have to

pay spe
ial attention to the iterative solver. The exa
t dis
rete solution and the approximate

solution are both approximations of the solution of the 
ontinuous problem of the same order.

From now on, we will always assume this, and therefore, we will not distinguish between the

exa
t dis
rete solution and the one 
al
ulated by an iterative solver.

4.3 A bla
k-box strategy for optimal design

From the optimization's point of view the problem (4.10) is a spe
ial 
ase of

J(u;q)! min

(u;q)2R

m

�R

n

subje
t to K(q)u = F

q � q � q;

(4.11)

where q denotes the ve
tor of design parameters and u the solution of the governing �nite

element (FE) state equation. The splitting of the parameter ve
tor into design parameters

q and the solution of the state equation u is typi
al for problems for optimal design. From

the optimization's point of view the dis
retized state equation 
an be interpreted as equality


onstraints. For our model example it is linear with respe
t to u and K(q) is symmetri
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and positive de�nite for all admissible parameters q. We introdu
e a solution operator S(q)

ful�lling

S : q 7! u(q) with K(q)u(q) = F(q): (4.12)

For a general nonlinear state equation e(u;q) = F the solution operator 
an be de�ned

in an analogous way. Also for time dependent state problems a solution operator 
an be

introdu
ed. We want to remark, that su
h an operator does not always exist (e.g. for our

model problems, if q

h

vanishes on several neighboring elements). But from now on, we always

assume the existen
e of S(q) for all admissible q.

Using this solution operator, we 
an eliminate u formally whi
h leads to

~

J(q) = J(S(q);q)! min

q2R

n

subje
t to q � q � q:

(4.13)

Sin
e we want to use a standard SQP method for optimizing the problem, the formulation

(4.13) is advantageous 
ompared to (4.11) as it has mu
h fewer parameters. This relies on

the fa
t, that standard implementations of the SQP method are based on linear algebra with

dense matri
es.

On the 
ontrary to the presentation in Se
tion 2.2 standard SQP methods do not use the

Hessian of the Lagrangian. They repla
e it by approximate Hessian information, e.g. using

a Quasi-Newton approximation formula. Our 
ode uses a modi�ed BFGS update formula

following Powell [122℄ in order to avoid the need for se
ond derivatives of the obje
tive.

The quadrati
 subproblem is solved by a range spa
e based QP method (
.f. Gill, Murray,

and Wright [63℄) 
ombined with an a
tive index set strategy. Other alternatives would be

e.g. null-spa
e based QP methods or the dual method of Goldfarb and Idnani [65℄ whi
h

is used for instan
e in the 
ode of S
hittkowski [137℄. The main advantage of the latter


ompared to the other two is that it does not need a feasible start point.

We use a line sear
h pro
edure for globalizing our SQP method, whi
h uses an exa
t

penalty fun
tion

�

k

(q) =

~

J(q) +

n

X

j=1

�

k

j

max(q

j

� q; 0) + �

k

j

max(q � q

j

; 0) (4.14)

with suitable 
hosen penalty parameters �

k

j

, �

k

j

as merit fun
tion (
.f. Han [78℄). As usual,

q

i

denotes the i-th 
omponent of q in (4.14), k denotes the iteration index.

A short sket
h onto a model SQP algorithm for solving

~

J(q)! min

q2R

n

subje
t to 
(q) � 0

(4.15)

is given in Algorithm 4.1.

4.4 Cal
ulating gradients

Using a Quasi-Newton strategy and update formulas within the SQP method as proposed in

the se
tion before, the remaining main problem is the 
al
ulation of gradients for the obje
tive

and the 
onstraints. As the problem was transformed into a problem with box 
onstraints
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Algorithm 4.1 SQP model algorithm

Require: A suitable starting point q

0

B

0

= I

g

0

= grad

~

J(q

0

)

/* linearize 
onstraints, _= denotes a �rst order approximation */


(q

0

+ Æ) _=A

0

Æ + b

0

k = 0

while not 
onverged do

/* Cal
ulate sear
h dire
tion s

k

*/

Solve

1

2

s

T

B

k

s+ g

T

k

s! min

s

under the 
onstraints A

k

s � �b

k

�A

k

q

k

/* Line sear
h pro
edure */

Cal
ulate �

k

2 (0; 1℄ as large as possible su
h that

�

k

(q

k

) + �

1

�

k

�

0

k

(q

k

) � �

k

(q

k

+ �

k

s

k

) � �

k

(q

k

) + �

2

�

k

�

0

k

(q

k

)

with 0 < �

1

<

1

2

< �

2

< 1 with a suitable merit fun
tion �

k

/* Update several quantities */

q

k+1

= q

k

+ �

k

s

k

g

k+1

= grad

~

J(q

k+1

)


(q

k+1

+ Æ) _=A

k+1

Æ + b

k+1

Update Hessian approximation ! B

k+1

k = k + 1

end while
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only, routines providing analyti
 gradients for these 
onstraints 
an be implemented easily.

But for the obje
tive, the implementation of an analyti
 derivative is by far too 
ompli
ated

and time 
onsuming. Furthermore, it would not be well suited for the use in a design pro
ess,

as we would loose the 
exibility of the 
ode 
ompletely. That is the reason why we have to

think of alternative methods for 
al
ulating the gradients.

Several methods are presented and 
ompared to ea
h other in this se
tion. On the one

hand we have bla
k box methods like �nite di�eren
es or automati
 di�erentiation (
.f.

Griewank [67℄), on the other hand, methods exploiting the spe
ial stru
ture of the state

equation are available, e.g. the dire
t method or the adjoint method (
.f. Haslinger and

Neittaanm

�

aki [81℄).

As none of these methods is well suited for an industrial design pro
ess, a hybrid method


ombining automati
 di�erentiation and the adjoint method is developed.

4.4.1 Finite di�eren
es

If no analyti
 derivatives of a fun
tion 
an be implemented due to the high 
omplexity then

an approximation by �nite di�eren
es is often the �rst idea. One approximation is the 
entral

di�eren
e quotient

D

h

f(x) =

f(x+ h)� f(x� h)

2h

: (4.16)

The 
hoi
e of the in
rement h is rather 
riti
al for getting a

urate results and depends on

estimates of the third derivative of f .

In order to improve the a

ura
y of �nite di�eren
es, extrapolation methods 
an be used.

For an initial in
rement H the sequen
e

D

H

f; D

H

2

f; D

H

4

f; : : : ;D

H

2

i

f; : : : (4.17)

is 
al
ulated and extrapolated for i ! 1. These methods return not only a value for the

derivative, but also an estimate of the a

ura
y of that value whi
h 
an be used for 
ontrolling

the order of the extrapolation s
heme (
.f. Stoer [143℄ or Deuflhard and Hohmann [46℄).

The main properties are summarized as follows:

� Two fun
tion evaluations are needed per di�eren
e quotient and in most 
ases several

di�eren
e quotients are needed in order to rea
h the desired a

ura
y of the derivative.

Furthermore, the number of fun
tion evaluations is proportional to the number of design

parameters. Due to the high e�ort �nite di�eren
es are only well suited for problems

with few design parameters.

� Finite di�eren
es 
an easily be used for very 
omplex fun
tions, as they do not rely on

any spe
ial properties. On the other hand they 
an not exploit any spe
ial properties of

the fun
tion whi
h makes the use of �nite di�eren
es rather ineÆ
ient in 
ertain 
ases.

� From the user's point of view �nite di�eren
es are very 
exible. Changes in the desired

obje
tive imply only a re-implementation of the fun
tion 
al
ulating the obje
tive. Time


onsuming 
hanges of the gradient routine do not appear, whi
h is espe
ially important

for the a

eptan
e of su
h a method in an industrial design pro
ess.

� The possible use of iterative methods for solving the state equation is very important

for our problem as the number of parameters in the state equation may be rather large.



4.4. CALCULATING GRADIENTS 59

As �nite di�eren
es do not rely on any spe
ial properties of the fun
tion the 
oupling

with iterative solvers 
an be done without any problems.

4.4.2 Automati
 di�erentiation

Compared to �nite di�eren
es, AD follows a 
ompletely di�erent approa
h. Finite di�eren
es

try to approximate the derivative and therefore do not provide a

urate results, whereas AD

methods in
ur no trun
ation error at all and usually yield derivatives with working a

ura
y.

Starting point is a 
omputer program that 
al
ulates numeri
al values for a fun
tion. First,

a symboli
 evaluation graph mapping the design parameters to the fun
tion values is built.

Like symboli
 di�erentiation, AD operates by systemati
 appli
ation of the 
hain rule, familiar

from elementary di�erential 
al
ulus. However, in the 
ase of AD, the 
hain rule is applied

not to symboli
 expressions, but to numeri
al values. By using all the intermediate results

generated by the fun
tion evaluation, the exponential growth of the evaluation 
omplexity

of symboli
 di�erentiation 
an be avoided, as many 
ommon subexpressions 
an be used

repeatedly when the gradient is evaluated at any parti
ular point. Furthermore, optimizations

made for the fun
tion evaluation also pay o� for its derivative. Details on how the AD

te
hnique works, as well as many related issues on 
al
ulating higher order derivatives 
an be

found in Griewank [67℄. A short introdu
tion into the methodology of AD is presented in

Chapter 3.

Two di�erent kinds of tools are known in the AD 
ommunity: The �rst group is based

on sour
e-to-sour
e transformation, e.g. ADIFOR (
.f. Bis
hof, Carle, Khademi, and

Mauer [19℄) written for FORTRAN 
odes , of TAF (http://www.fastopt.de) written also

for FORTRAN 
odes. The other group is based on evaluation graphs generated at runtime,

e.g. ADOL-C written for C and C++ 
odes (
.f. Griewank, Juedes, and Utke [70℄). As

our �nite element 
ode is 
ompletely written in C++ and uses heavily virtual inheritan
e,

sour
e 
ode transformation tools 
an not be used. It has to be mentioned, that some of the

properties of AD listed in the following rely on the use of runtime tools.

� ADOL-C needs a �le 
ontaining the evaluation graph in a symboli
 form for evaluating

the fun
tion and its gradient. This �le is generated at runtime. For optimal design

problems, huge memory and disk 
apabilities are required for that purpose. Due to the

need of an evaluation graph, ADOL-C 
an only be applied to fun
tions of moderate


omplexity. The limiting fa
tor is not the inherent 
omplexity of the fun
tion itself, but

the size of the generated �les and the time needed for reading and writing the data. To

give an example, the �les storing the evaluation graph for our model problem dis
retized

with about 450 design parameters and about 7500 DOFs in the FE state equation needs

about 1 GB of disk spa
e.

� The 
exibility of AD with respe
t to 
hanges in the obje
tive is similar to �nite di�er-

en
es. Changes in the obje
tive need only a re-implementation of the obje
tive fun
tion,

but no 
hanges in the gradient routine when runtime tools are used. Sometimes, spe
ial


are has to be taken for a 
orre
t generation of the evaluation graph, espe
ially in the


ontext of 
onditional statements.

� AD using ADOL-C is a bla
k box method. The use of the evaluation graph is a drawba
k

of the method, espe
ially when debugging is needed. This is 
ompensated to some extent

by the good runtime behavior of the method. For the reverse mode (
.f. Se
tion 3.4),
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the 
al
ulation time of the gradient is independent of the number of design parameters

and takes the time of about 15 { 20 native C++ fun
tion evaluations as long as the

evaluation graph 
an be stored in the main memory of the 
omputer. Compared to the

use of �nite di�eren
es, this is a tremendous speedup, even for problems with only 10 {

20 design parameters.

� The 
oupling of AD with iterative solvers is a problem of 
urrent resear
h (see e.g.

Griewank [67℄ and referen
es therein). Sin
e the use of iterative methods (e.g. mul-

tilevel methods) is important for solving �ne dis
retizations of the state equation eÆ-


iently, the appli
ability is limited to problems, where dire
t solvers 
an be used.

4.4.3 Dire
t and adjoint method

The dire
t and the adjoint method are both well-known in the shape optimization 
ommunity

(see e.g. Haslinger and Neittaanm

�

aki [81℄) and take into a

ount the spe
ial stru
ture of

the state equation. They di�erentiate the state equation with respe
t to a design parameter

q

i

. For our model example, this leads to

K

�u

�q

i

=

�F

�q

i

�

�K

�q

i

u: (4.18)

For the dire
t method, (4.18) is solved numeri
ally using the same methods as for the state

problem itself. Then the gradient of the obje
tive 
an be 
al
ulated by

d

~

J

dq

i

=

�J

�q

i

+ h

�J

�u

;

�u

�q

i

i: (4.19)

On the 
ontrary to the dire
t method, the adjoint method solves (4.18) formally and

inserts the result in (4.19) whi
h leads to

d

~

J

dq

i

=

�J

�q

i

+ hK

�T

�J

�u

;

�F

�q

i

�

�K

�q

i

ui (4.20)

For a general state equation

e(u;q) = F

the situation is slightly more diÆ
ult. Here, we introdu
e a solution operator for the linearized

state problem (linearized with respe
t to u) of the form

S

lin

(q) =

�

�e

�u

�

�1

: (4.21)

For the dire
t method we get the representation

�u

�q

i

= S

lin

�

�

�F

�q

i

�

�e

�q

i

�

(4.22)

and 
al
ulate the gradient of the obje
tive using (4.19). For the adjoint method, we insert

the formal representation of

�u

�q

i

into (4.19) whi
h leads to

d

~

J

dq

i

=

�J

�q

i

+ hS

T

lin

�J

�u

;

�F

�q

i

�

�e

�q

i

i (4.23)
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instead of (4.20).

We want to mention that for time dependent state problems S

lin

represents a forward inte-

gration of the linearized state equation in time with given initial values, whereas S

T

lin

represents

a ba
kward integration of the linearized state problem with given �nal values. If the state

equation is non-linear with respe
t to u the adjoint method needs the 
omplete evaluation

tra
e of the forward integration to evaluate S

T

lin

. This usually results in huge memory require-

ments for storing the values of the forward run. For an alternative using a 
he
k-pointing

strategy, i.e. storing only a view intermediate values and re
al
ulating the remaining ones,

see e.g. Griewank [66℄, Griewank and Walther [71℄, or Charpentier [36℄.

In the following the main properties are summarized:

� The dire
t method needs one solution of the state equation per design parameter,

whereas the adjoint method needs the solution of one adjoint problem for the obje
tive

and in prin
iple for ea
h 
onstraint. As K is symmetri
 in our 
ase, the e�ort for solv-

ing the adjoint problem is the same as for solving the state equation itself. Depending

on the number of design parameter and 
onstraints, the better suited method 
an be


hosen.

� As analyti
 partial derivatives of J with respe
t to q and u are needed (

�J

�q

,

�J

�u

,

�K

�q

,

�F

�q

), both methods 
an only be applied to simple obje
tives, where this 
an easily be

done. Furthermore, the 
exibility of the method su�ers from the need of hand-
oded

gradient routines.

� Compared to �nite di�eren
es or the use of AD for the whole fun
tion, this approa
h

is mu
h faster. Finite di�eren
es need mu
h more solutions of the design problem,


ompared to AD the huge evaluation graph whi
h originates mainly from the solution

of the state equation is avoided.

� Any solver 
an be used for solving the state problem, espe
ially the use of iterative

solvers like 
onjugated gradient methods with multilevel pre
onditioning is appropriate.

4.4.4 Hybrid method

Comparing the methods presented in the last two se
tions, it 
an be seen that the strengths of

these methods lie in 
ompletely di�erent areas. AD provides very high 
exibility with respe
t

to the used obje
tive, but has severe drawba
ks with respe
t to memory requirements of the

used 
omputer, the use of iterative solvers for the state equation and with respe
t to longer

runtime. In 
ontrast, the dire
t and the adjoint method 
an be 
ombined easily with iterative

solvers and provide a fast way for 
al
ulating the needed gradients, but they la
k from the

needed 
exibility. Hen
e, we 
ombine both approa
hes into a new hybrid method.

The main drawba
k of the dire
t or the adjoint method is the need of analyti
 partial

derivatives of the obje
tive and the 
onstraints with respe
t to q and u. But these derivatives


an easily be provided by using AD. Then, only

�K

�q

and

�F

�q

remain, for whi
h hand-
oded

routines have to be implemented or AD 
an be used. For optimal sizing problems, these

routines 
an be hand-
oded easily. Furthermore, they do not depend on the spe
i�
 problem

whi
h justi�es the additional e�ort for 
oding even for 
omplex state problems.
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Figure 4.2: Frame with 24 sub-domains

Finite Di�. Pure AD Hybrid M.

Problem Nr. of design params 24 24 24

dim. Nr. of elements (quad.) 3 981 3 981 3 981

DOFs of state equ. 16 690 16 690 16 690

Optimizer Iterations 83 100 100

statisti
s Fun
tion evaluations 19 752 315 236

Gradient evaluations 84 101 101

Runtime Total CPU time 12.4 h 4.88 h 0.39 h

Total elapsed time 12.6 h 8.42 h 0.40 h

Elapsed time Optimizer 0.01 h 0.03 h 0.01 h

Fun
tion evaluation 0.23 h 2.36 h 0.20 h

Gradient evaluation 12.40 h 6.00 h 0.18 h

Table 4.1: Comparison of the runtime for various di�erentiation strategies

4.5 Numeri
al results

In the following, some numeri
al results for the problem stated in Se
tion 4.2 are presented.

They were 
al
ulated on an SGI Origin 2000 with 300 MHz.

At the beginning, we tried to use only a few design parameters. Therefore, we divided our

domain into a number of sub-domains (see Figure 4.2) and approximated the thi
kness with

a 
onstant fun
tion in ea
h sub-domain. The state equation was dis
retized using triangular

�nite elements with quadrati
 FE fun
tions.

For evaluating the gradient, either �nite di�eren
es, a pure AD approa
h or the hybrid

method were used. For a better 
omparison, the 
al
ulation was terminated after a �xed

number of steps (the run using �nite di�eren
es terminated earlier be
ause the sear
h dire
tion

was no des
ent dire
tion anymore). Detailed results 
an be found in Table 4.1. All three

methods lead to a similar design with about 5 % redu
tion of the mass 
ompared to the
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Figure 4.3: Optimized thi
kness distribution for 24 sub-domains

starting 
on�guration (whi
h is the 
urrent design of the frame). The optimized thi
kness

distribution 
an be seen in Figure 4.3 (the darker the 
olor, the thi
ker the frame), Figure 4.4

shows the distribution of the van Mises stresses in the optimized frame (the lighter the 
olor,

the higher the stresses).

It 
an be seen in Table 4.1 that for a few design parameters the main e�ort 
onsists in solv-

ing the FE state equation, respe
tively 
al
ulating the gradient of the obje
tive. Compared to

�nite di�eren
es and the pure AD approa
h, the hybrid method is mu
h faster, as it 
ombines

a fast fun
tion evaluation and a fast gradient evaluation. The gradient evaluation is the main

drawba
k of �nite di�eren
es. For the pure AD approa
h we had to implement additional

safeguards. In order to dete
t when a regeneration of the evaluation graph was ne
essary, we


ompared the value of the obje
tive using the evaluation graph with the value using a native

C++ implementation whi
h explains the longer runtime of the fun
tion evaluation.

In order to �nd a better suited splitting of the domain in few sub-domains we in
reased

the number of sub-domains to about 450. We used the 
oarsest grid of our FE triangula-

tion also for dis
retizing the thi
kness distribution (
.f. Figure 4.5). For solving the design

problem, ea
h 
oarse grid �nite element was subdivided into 16 elements using 2 levels of

uniform re�nement. On this re�ned triangulation the state equation was dis
retized using

�nite elements with quadrati
 FE fun
tions. As �nite di�eren
es are no more suitable for this

number of design parameters, Table 4.2 
ontains only results for the pure AD approa
h and

the hybrid method.

The values reported for the evaluation graph have the following meaning: Independents is

the number of independent variables of the fun
tion di�erentiated automati
ally, dependents

the number of dependent ones (there is only one dependent variable, as only the obje
tive

is di�erentiated using ADOL-C). Operations gives us the number of arithmeti
 operations in

the evaluation graph, maxlive the maximal number of a
tive variables (maximal number of

variables allo
ated at one point of time during the evaluation of the obje
tive), valsta
ksize

the number of intermediate results whi
h have to be stored in AD's reverse mode.
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Figure 4.4: Van Mises stresses for 24 sub-domains

Figure 4.5: Frame with 449 sub-domains



4.5. NUMERICAL RESULTS 65

Pure AD Hybrid M.

Problem Nr. of design params 449 449

dim. Nr. of elements (quad.) 1 796 1 796

DOFs of state equ. 7 518 7 518

Evaluation Independents 449 9 314

graph Dependents 1 1

Operations 45 521 797 1 399 910

Maxlive 540 302 28 140

Valsta
ksize 51 995 116 1 644 461

Total �le size 953 MB 32.4 MB

Optimizer Iterations 800 800

Statisti
s Fun
tion evaluations 5 811 3 744

Gradient evaluations 801 801

Runtime Total CPU time 32.3 h 3.73 h

Total runtime 38.5 h 3.76 h

Elapsed time Optimizer 4.0 h 1.93 h

Fun
tion evaluation 16.5 h 1.29 h

Gradient evaluation 18.0 h 0.54 h

Table 4.2: Comparison of the runtime for many design parameters

The optimized thi
kness distribution 
an be seen in Figure 4.6, the 
orresponding stress

distribution in Figure 4.7. Analyzing the runtime behavior of the two methods in Table 4.2, it


an be seen that the pure AD approa
h is no more 
ompetitive due to the large �le 
ontaining

the evaluation graph. Furthermore, it 
an be seen that for the hybrid approa
h the optimizer

needs already a 
onsiderable amount of the total runtime.

In Table 4.3 we 
ompared the runtime of the hybrid method for di�erent dis
retizations

of the state and design spa
e. It 
an be seen that the relative amount of the runtime needed

by the optimizer even grows when using more design parameters as the 
omplexity of one

optimization step is proportional to (dimq)

3

(due to the use of dense matrix linear algebra),

whereas the 
omplexity of solving one FE state equation is proportional to dimu (if solvers

with optimal 
omplexity e.g. the 
onjugate gradient method with appropriate multigrid or

multilevel pre
onditioning are used).

For 
omparison to the results in Figure 4.6 and Figure 4.7, the thi
kness distribution was

dis
retized using about 1100 design parameters (see Table 4.3). The optimized thi
kness dis-

tribution and the 
orresponding distribution of the v. Mises stresses 
an be found in Figure 4.8

and Figure 4.9 respe
tively. The main problem using this large number of design parameters

is the runtime needed by our optimization module, whi
h dominates the time needed by all

fun
tion and gradient evaluations 
ompletely (about 90 % of the runtime, about 18000 DOFs

of the FE state equation). In the next 
hapter we will develop a method whi
h 
an also 
ope

with even larger numbers of design parameters.
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Figure 4.6: Optimized thi
kness distribution for 449 sub-domains

Figure 4.7: Van Mises stresses for 449 sub-domains
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Hybrid M. Hybrid M. Hybrid M.

General Nr. of design params 449 449 1 078

Nr. of elements 1 796 7 184 4 312

DOFs of state equ. 7 518 29 402 9 028

Evaluation Independents 9 314 36 586 22 368

graph Operations 1 399 910 5 578 270 3 361 017

Total �le size 32.4 MB 129.2 MB 77.9 MB

Runtime Iterations 800 800 2 200

Total CPU time 3.73 h 14.01 h 104.0 h

Total runtime 3.76 h 14.12 h 105.1 h

Elapsed time Optimizer 1.93 h 2.64 h 90.3 h

Fun
tion evaluation 1.29 h 8.13 h 9.8 h

Gradient evaluation 0.54 h 3.35 h 3.9 h

Table 4.3: S
ale up of the hybrid method in design and state spa
e

Figure 4.8: Optimized thi
kness distribution for 1078 sub-domains
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Figure 4.9: Van Mises stresses for 1078 sub-domains



Chapter 5

An All-At-On
e Approa
h for Large

Design Spa
es

5.1 Introdu
tion

In the previous 
hapter we introdu
ed a method whi
h is very 
exible due to the use of AD.

On the other hand problems with respe
t to the runtime appear if the number of design pa-

rameters in
reases. As early as about 1000 design parameters the method rea
hes pra
ti
ally

its limits as one optimization run takes about 4 days 
omputing time (
.f. Table 4.3). In

the 
urrent realization, in
reasing the number of design parameters to 2000 would let the


omputing time in
rease about by a fa
tor of 16 resulting in 2 months 
omputing time.

Analyzing the runtime behavior of the bla
k-box strategy presented in Se
tion 4.3 in more

detail one observes the following:

� The solution of the state problem 
an not be signi�
antly improved any more. When

using a multilevel pre
onditioned CG method for solving our state problem the order of


omplexity of our solver would be optimal. We 
urrently use a sparse dire
t solver as

pre
onditioner in our CG method. Additionally, we update the pre
onditioner, i.e. fa
-

torize the 
urrent sti�ness matrix, only when the number of CG steps ex
eeds a 
ertain

limit, otherwise we use the fa
torization of a previous sti�ness matrix as pre
onditioner.

This explains the non-optimal in
rease in the runtime for fun
tion and gradient eval-

uation in Table 4.3 as both need the solution of the state problem, respe
tively of the

adjoint linearized state problem.

� The optimizer itself 
an only slightly be improved. The most time 
onsuming part {

solving the QP problem { already uses update formulas for a faster 
al
ulation of the

basis of the range spa
e when 
onstraints are added or removed.

The main reason for the strong in
rease in the runtime when in
reasing the number of design

parameters is inherent in the used optimization strategy and is twofold:

� On the one hand, by introdu
ing a solution operator it is ne
essary to solve the state

problem in ea
h fun
tion evaluation, i.e. the state variable is always admissible with

respe
t to the state equation. This 
al
ulation is rather easy for state problems linear

in the state variable u, but 
an be highly time 
onsuming for nonlinear state problems.

69
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Additionally ea
h gradient evaluation of the obje
tive needs one solution of a problem

adjoined to the linearized state equation.

� On the other hand, the introdu
tion of a solution operator S and formal elimination

of the state variable as presented in Se
tion 4.3 destroy the sparsity stru
ture of the

underlying optimal design problem in most 
ases. This 
an be explained as follows: Let

us 
onsider the optimization problem

J(u;q)! min

(u;q)2R

m

�R

n

subje
t to e(u;q) = F

(5.1)

where e(u;q) = F denotes the state equation. Additionally, assume that the Hessian

of the Lagrangian

L(u;q) = J(u;q) + �

T

(e(u;q) � F) (5.2)

and the Ja
obian of the state equation e(u;q) are sparse. These are assumptions whi
h

are ful�lled very often for optimal design problems. When applying the strategy pre-

sented in the previous 
hapter, we introdu
e a solution operator S for the state equation,

whi
h is usually not sparse anymore. For the model problem treated in the previous


hapter S = K

�1

(q)F(q) holds. Then the Hessian of the redu
ed problem

~

J(q) = J(S(q);q)! min

q2R

n

(5.3)

with

e(S(q);q) = F (5.4)

is given by

r
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qq

~
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L+ (r
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L S

lin

r

q

e

(5.5)

where S

lin

denotes the solution operator of the linearized state problem with respe
t to

u, and S

T

lin

denotes the solution operator of its adjoint problem. As S

lin

is usually not

sparse (
.f. Se
tion 4.3), the Hessian of

~

J , the obje
tive used in the approa
h of the

previous se
tion, is usually dense. This does not matter, as long as the design spa
e is

small, but is a severe problem when the design spa
e be
omes large.

As a 
onsequen
e a di�erent approa
h without introdu
ing a solution operator is used. This

all-at-on
e approa
h 
onsiders the optimal design problem in the produ
t spa
e U�Q of state

spa
e U and design spa
e Q. The state equation is no more eliminated formally but treated

as an equality 
onstraint during the optimization.

We will begin this 
hapter by introdu
ing a simple model problem in Se
tion 5.2. This

parameter identi�
ation problem has the same stru
ture as an optimal design problem, but

usually simpler obje
tives are used. We will 
ontinue with the presentation of the optimiza-

tion pro
edures in Se
tion 5.3. An analysis of the well-posedness of the o

urring quadrati


programming subproblems as well as an overview over the ne
essary preliminaries is also

presented. Se
tion 5.4 deals with the dis
retization, Se
tion 5.5 and Se
tion 5.6 with the

numeri
al realization of the presented algorithm. As we use an iterative s
heme, we des
ribe
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also several ways of pre
onditioning the o

urring equation systems. Se
tion 5.7 presents nu-

meri
al results showing the potential of this approa
h for problems with large design spa
es.

At the end of this 
hapter we will dis
uss how this method 
an be applied for optimal de-

sign problems, whi
h 
hanges are ne
essary and whi
h problems o

ur there, as well as some

approa
hes how to handle these problems.

5.2 Model problem: Parameter identi�
ation

Sin
e distributed parameters have to be determined from indire
t measurements in many

appli
ations that are modeled by PDEs, parameter identi�
ation has be
ome an important

part of mathemati
al modeling. One of the main 
hara
teristi
s of the majority of these

problems is that they are ill-posed, i.e. the parameter does not depend on the data in a stable

way. As the data 
an not be measured exa
tly in pra
ti
e, regularization methods have to

be used in order to obtain a stable solution in the presen
e of data noise. We do not want to

fo
us here on the various aspe
ts of regularization but refer to the literature (see e.g. Engl,

Hanke, and Neubauer [50℄ or Kirs
h [99℄). Furthermore, the analysis with respe
t to


onvergen
e to the exa
t solution when the data noise tends to 0 is ex
luded, we refer to

Burger and M

�

uhlhuber [33℄ for details on this topi
. Also the 
onvergen
e of the dis
rete

approximation to the solution of the parameter identi�
ation will not be presented in this

frame, for details see Burger and M

�

uhlhuber [34℄.

In this 
ontext we only want to present the 
lass of parameter identi�
ation problems.

We will see that from an abstra
t point of view these are very similar to optimal design

problems. The main di�eren
e between these two 
lasses is that the latter has typi
ally by

far more 
ompli
ated obje
tives. In the last se
tion we 
ome ba
k to this aspe
t with a short

dis
ussion.

The basi
 setup of the identi�
ation problems treated as model examples is as follows:

Given an observation

z = Eû; (5.6)

where E : U ! Z is a bounded linear operator and û denotes the exa
t state. We want to

identify the parameter q 2 Q

ad

� Q in an underlying equation

e(u; q) = f; (5.7)

where e : U �Q! Y is a 
ontinuous nonlinear operator. In this setup we assume that Q and

Z are Hilbert spa
es, that Q

ad

is a 
losed subset of Q with nonempty interior and that U and

Y are appropriate Bana
h spa
es. In addition, we assume that the operator e is homogeneous,

i.e,

e(0; 0) = 0; (5.8)

whi
h is no restri
tion of generality, sin
e for an arbitrary operator e we 
an transform (5.7)

into an equivalent equation with homogeneous operator via

~e(u; q) := e(u; q)� e(0; 0);

~

f = f � e(0; 0):

In pra
ti
e one has to deal with data z

Æ

that are 
orrupted by noise instead of the exa
t

data z. We assume that the observation error is bounded by

kz � z

Æ

k

Z

� Æ; (5.9)
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where z = Eû su
h that there exists a q̂ 2 Q

ad

with

e(û; q̂) = f: (5.10)

The pair (û; q̂) denotes an exa
t solution of the parameter identi�
ation problem (as intro-

du
ed above).

Note that under typi
al 
onditions, parameter identi�
ation problems in equations of

the form (5.6), (5.7) are ill-posed, i.e., an arbitrarily small error in the data z 
an lead

to an arbitrarily large deviation in the re
onstru
ted parameter q. In presen
e of noise, a

solution of the equation Eu = z

Æ

does not always exist, and therefore one has to 
onsider the


orresponding normal equation respe
tively the least-squares problem

1

2

kEu� z

Æ

k

2

! min

(u;q)2U�Q

(5.11)

subje
t to the equality 
onstraint (5.7) and to q 2 Q

ad

. Sin
e our main fo
us is the treatment

of the state equation as equality 
onstraint, we will omit the additional 
onstraint q 2 Q

ad

in

the following. This results in the problem

1

2

kEu� z

Æ

k

2

! min

(u;q)2U�Q

subje
t to e(u; q) = f

(5.12)

whi
h will be used as model problem.

5.3 Optimization pro
edures in the produ
t spa
e

One possibility to solve our model problem is to apply an SQP method as presented in

Se
tion 2.2 or Algorithm 4.1 to (5.12). As explained in the introdu
tion of this 
hapter, an

SQP method in the produ
t spa
e U �Q has advantages 
ompared to the introdu
tion of a

solution operator of the state problem, when the dimension of the dis
retized design spa
e is

large. We will introdu
e the SQP method here in a fun
tion spa
e frame and will 
onsider

the in
uen
e of the dis
retization later.

5.3.1 SQP methods in the produ
t spa
e

Applying a standard SQP s
heme to our model example (5.12) leads to the following method:

Method 1 (Sequential Quadrati
 Programming Method in Produ
t Spa
e). Let

(u

0

; q

0

; �

0

) 2 U � Q � Y

�

be a given initial value. The method of produ
t spa
e sequential

quadrati
 programming (PSSQP) 
onsists of the iteration pro
edure

(u

k+1

; q

k+1

; �

k+1

) = (u

k

; q

k

; �

k

); (5.13)

where (u

k

; q

k

) is the minimizer of the quadrati
 programming problem

1

2

kEu� z

Æ

k

2

Z

+

1

2

h�

k

; e

00

(u

k

; q

k

)(u� u

k

; q � q

k

)

2

i ! min

(u;q)2U�Q

; (5.14)
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with h�; �i denoting the usual duality produ
t on Y

�

�Y . By e

0

(u; q)(v; s) and e

00

(u; q)(v; s)

2

we

denote the �rst and se
ond dire
tional derivatives of e in dire
tion (v; s) evaluated at (u; q).

The minimization is subje
t to the linear 
onstraint

e(u

k

; q

k

) + e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) = f; (5.15)

where �

k

is the 
orresponding Lagrange-multiplier.

Be
ause of the ill-posedness of our model problem, a dire
t appli
ation of standard SQP-

type methods as presented in Method 1 is not possible, sin
e a minimizer of the quadrati


problems arising in ea
h of the iteration steps needs not exist and if one exists, it might not

depend on the data in a stable way. Therefore we will modify our SQP-type approa
h, whi
h

leads to stable quadrati
 subproblems due to an additional penalty term in the parameter

spa
e. In Burger and M

�

uhlhuber [33℄ the following iterative regularization s
heme was

proposed, whi
h is a modi�
ation of Method 1:

Method 2 (Iteratively Regularized Sequential Quadrati
 Programming Method).

Let (u

0

; q

0

; �

0

) 2 U � Q� Y

�

be a given initial value and let (�

k

)

k2N

be a bounded sequen
e

of positive real numbers. The method of iteratively regularized sequential quadrati
 program-

ming (IRSQP) 
onsists of the iteration pro
edure

(u

k+1

; q

k+1

; �

k+1

) = (u

k

; q

k

; �

k

); (5.16)

where (u

k

; q

k

) is the minimizer of the quadrati
 programming problem

1

2

kEu� z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

+

1

2

h�

k

; e

00

(u

k

; q

k

)(u� u

k

; q � q

k

)

2

i ! min

(u;q)2U�Q

: (5.17)

The minimization is subje
t to the linear 
onstraint

e(u

k

; q

k

) + e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) = f; (5.18)

where �

k

is the 
orresponding Lagrange-multiplier.

The IRSQP-method involves se
ond order derivatives of the operator e. As we are in-

terested in the 
ase of attainable data here, the Lagrangian variable must be small 
lose to

a solution. That is why, these se
ond order derivatives are usually ignored for least square

problems. Exploiting this fa
t, we introdu
e a variant of Method 2, whi
h takes into a

ount

the spe
ial stru
ture of the obje
tive fun
tional.

Method 3 (Levenberg-Marquardt Sequential Quadrati
 Programming Method).

Let (u

0

; q

0

) 2 U �Q be a given initial value and let (�

k

)

k2N

be a bounded sequen
e of positive

real numbers. The Levenberg-Marquardt sequential quadrati
 programming method (LM-

SQP) 
onsists of the iteration pro
edure

(u

k+1

; q

k+1

) = (u

k

; q

k

); (5.19)

where (u

k

; q

k

) 2 U �Q is the minimizer of the quadrati
 programming problem

1

2

kEu� z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

! min

(u;q)2U�Q

; (5.20)

subje
t to the linear 
onstraint

e(u

k

; q

k

) + e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) = f: (5.21)
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An important issue of applying the above stated methods is the question, whether the

iteration pro
edure is well-de�ned. Besides the existen
e and uniqueness of minimizers of

the quadrati
 programming problems, the stable dependen
e of the iterates on the previous

iterates and on the data is of high interest. We will investigate these questions in the following

subse
tion.

5.3.2 Well-posedness of the quadrati
 programming problems

In the following we will verify the well-posedness of the quadrati
 programming problem

(5.20), (5.21) under reasonable assumptions on the state equation e. Besides that, we will

also analyze the KKT-System of the problem in the frame of linear saddle point problems.

Later in this 
hapter this approa
h will also be used for solving the o

urring quadrati


programming problems.

In typi
al appli
ations, the equation (5.7), respe
tively its linearization, admits a unique

solution with respe
t to the state, i.e.,

e

u

(u; q)

�1

: Y ! U exists and is a 
ontinuous linear operator for all (u; q) 2 U �Q: (5.22)

Under this assumption we 
an prove the well-posedness of Method 3 whi
h is done in the

following proposition:

Proposition 5.1. Let e be 
ontinuously Fr�e
het-di�erentiable, let (5.22) hold and let �

k

> 0.

Then the quadrati
 programming problem (5.20), (5.21) has a unique solution (u

k

; q

k

) 2 U�Q,

whi
h is also the only lo
al minimum.

Proof. The basis of the proof is that the admissible set of the linearized state equation is


losed, 
onvex and non-empty. Furthermore the obje
tive is stri
tly 
onvex. Using the main

theorem of 
onvex optimization we may 
on
lude that there exists a unique global minimum

and no further lo
al minima. Details 
an be found in Burger and M

�

uhlhuber [33℄.

In a similar way we 
an show that under 
ertain restri
tions on the regularization param-

eter, the IRSQP method is well-de�ned and that the quadrati
 programming problem (5.17),

(5.18) has a unique solution whi
h is also the only lo
al minimum. For the details of the

proof, as well as the exa
t assumptions see Burger and M

�

uhlhuber [33℄.

As already explained in the previous se
tion, the well-posedness 
an usually not be shown

for Method 1. Due to the ill-posedness of our model problem, the quadrati
 programming

problem (5.14), (5.15) need not have a unique solution. Even if a unique minimizer exists, it

need not depend on the data or on the previous iterate in a stable way.

So far we have not dis
ussed the Lagrangian of the problem and the arising �rst-order

optimality 
onditions. These are not only ne
essary but also suÆ
ient under the assumptions

needed for showing the well-posedness of the quadrati
 programming problems, sin
e the

obje
tive fun
tionals are stri
tly 
onvex.

5.3.3 The Karush-Kuhn-Tu
ker system

Based on the standard theory of 
onvex optimization, we 
an formulate the Lagrangian of

the problems (5.17), (5.18) and (5.20), (5.21) as

L

k

(u; q;�) =

1

2

kEu� z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

+

�

2

h�

k

; e

00

(u

k

; q

k

)(u� u

k

; q � q

k

)

2

i

+ h�; e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) + e(u

k

; q

k

)� fi;

(5.23)



5.3. OPTIMIZATION PROCEDURES IN THE PRODUCT SPACE 75

where � = 1 in the 
ase of Method 2 (IRSQP method) and � = 0 for Method 3 (LMSQP

method). The solutions (u

k

; q

k

; �

k

) of the quadrati
 programming problems are saddle points

of the Lagrangian L

k

(
f. Zeidler [160, p. 392�℄), i.e.,

L

k

(u

k

; q

k

; �) � L

k

(u

k

; q

k

; �

k

) � L

k

(u; q; �

k

); 8 (u; q; �) 2 U �Q� Y

�

; (5.24)

and satisfy the optimality 
ondition

0 = L

0

k

(u

k

; q

k

; �

k

); (5.25)

where L

0

k

denotes the Fr�e
het-derivative of L

k

in U �Q� Y

�

.

In order to rewrite (5.25) as a linear system for (u; q; �), the so-
alled Karush-Kuhn-Tu
ker

system, we de�ne the following operators:

K

k

: U ! Y; K

k

u = e

u

(u

k

; q

k

)u; 8 u 2 U; (5.26)

L

k

: Q! Y; L

k

q = e

q

(u

k

; q

k

)q; 8 q 2 Q; (5.27)

M

k

: U ! U

�

; hM

k

u; vi = he

uu

(u

k

; q

k

)(u; v); �

k

i; 8 (u; v) 2 U � U; (5.28)

N

k

: Q! Q

�

; hN

k

q; si = he

qq

(u

k

; q

k

)(q; s); �

k

i; 8 (q; s) 2 Q�Q; (5.29)

P

k

: U ! Q

�

; hP

k

u; qi = he

qu

(u

k

; q

k

)(q; u); �

k

i; 8 (u; q) 2 U �Q (5.30)

Using these operators and the notation I

Q

for the identity on Q, we may 
on
lude that

(u

k+1

� u

k

; q

k+1

� q

k

; �

k+1

) solves the linear system

0

�

E

�

E + �M

k

�P

�

k

K

�

k

�P

k

�

k

I

Q

+ �N

k

L

�

k

K

k

L

k

0

1

A

0

�

u

q

�

1

A

=

0

�

E

�

(z

Æ

�Eu

k

)

0

f � e(u

k

; q

k

)

1

A

: (5.31)

Note that assumption (5.22) implies that K

k

is a regular operator, while L

k

is not ne
essarily

invertible.

In the last part of this se
tion we want to analyze the Karush-Kuhn-Tu
ker system (5.31).

As it forms a symmetri
, and inde�nite linear system of equations, the analysis 
an be done

in the framework of linear saddle-point problems.

The solution and numeri
al approximation of linear saddle-point problems arising from

Lagrangian multipliers have been well-studied over the last de
ades after the seminal paper

by Brezzi [30℄. In the following let X and � be two Hilbert spa
es, let g 2 X

�

, f 2 �

�

and

let a : X � X ! R and b : X � � ! R be 
ontinuous bilinear forms. Then a symmetri


linear saddle-point problem in variational formulation 
onsists of sear
hing for a solution

(x; �) 2 X � � of

a(x; v) + b(v; �) = hg; vi; 8 v 2 X; (5.32)

b(x; �) = hf; �i; 8 � 2 �; (5.33)

where a(�; �) is supposed to be symmetri
 on X �X. The well-posedness of (5.32), (5.33) 
an

be studied under additional assumptions on a and b, namely the so-
alled kernel-ellipti
ity of

a,

9 �

a

2 R

+

: a(v; v) � �

a

kvk

2

X

; 8 v 2 K

b

:= fv 2 X j b(v; �) = 0;8 � 2 �g ; (5.34)
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and the LBB-
ondition upon b,

9 �

b

2 R

+

: inf

�2�

sup

v2X

b(v; �)

kvk

X

k�k

�

� �

b

: (5.35)

Under these assumptions, the following 
lassi
al result 
an be shown (
f. Brezzi [30℄ or

Brezzi and Fortin [31℄):

Theorem 5.2. Let a, b as above, su
h that (5.34) and (5.35) are satis�ed. Then the linear

saddle-point problem (5.32), (5.33) has a unique solution (x; �) 2 X � �, whi
h depends


ontinuously on the data (f; g) 2 �

�

�X

�

.

In order to apply the above theorem we de�ne the symmetri
 bilinear form a

k

on (U �

Q)� (U �Q) by

a

k

(u; q;'; �) := hEu;E'i

Z

+ �

k

hq; �i

Q

+ �

�

h';M

k

ui+ h�;N

k

q + P

k

ui+ hq; P

k

'i

�

(5.36)

and the bilinear form b

k

: (U �Q)� Y

�

! R by

b

k

(u; q;�) := hK

k

u; �i+ hL

k

q; �i: (5.37)

With the right-hand sides

f

k

= f � e(u

k

; q

k

) 2 Y;

g

k

= (E

�

(z

Æ

�Eu

k

); 0) 2 U

�

�Q

�

;

(5.38)

we 
an now rewrite the system (5.31) in the standard form

a

k

(u; q;'; �) + b

k

('; �;�) = hg

k

; ('; �)i; 8 ('; �) 2 U �Q; (5.39)

b

k

(u; q;�) = hf

k

; �i; 8 � 2 Y

�

: (5.40)

Using the abstra
t theory of linear saddle point problems presented above, we 
an derive a

statement on the well-posedness of the linear saddle-point problem (5.39), (5.40):

Theorem 5.3. Suppose that � = 0 in (5.36) and the assumptions of Proposition 5.1 are

satis�ed. Then the inde�nite system (5.39), (5.40), with the bilinear forms a

k

and b

k

de�ned

via (5.36), (5.37), has a unique solution (u; q; �) 2 U �Q� Y

�

, whi
h depends 
ontinuously

on the right-hand sides f

k

2 Y and g

k

2 U

�

�Q

�

.

Proof. We �rst show the kernel-ellipti
ity (5.34) of a

k

. Suppose (u; q) is an element of the

null-spa
e of b

k

, then u = �K

�1

k

L

k

q and thus, with � = 0, we may dedu
e that

a

k

(u; q;u; q) � �

k

kqk

2

Q

� �(kuk

2

+ kqk

2

)

for some � > 0. The LBB-
ondition (5.35) for b

k

follows from

inf

�2Y

�

sup

(u;q)2U�Q

b

k

(u; q;�)

k(u; q)kk�k

� inf

�2Y

�

b

k

(K

�1

k

�; 0;�)

kK

�1

k

�kk�k

= inf

�2Y

�

k�k

2

kK

�1

k

�kk�k

�

1

kK

�1

k

k

:

Sin
e the 
ontinuity of a

k

and b

k

follows from the 
ontinuity of the Fr�e
het-derivatives, The-

orem 5.2 implies the assertion.

The well-posedness of the linear saddle-point problem for � = 1 whi
h 
orresponds to

Method 2 
an be shown in a similar way. But similar to the well-posedness result of the


orresponding quadrati
-programming problem it requires additional assumptions on the reg-

ularization parameter �

k

. For details see Burger and M

�

uhlhuber [33℄.
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5.3.4 Comparison to the feasible path method

In the following we 
ompare the behavior of the LMSQP-iteration with the feasible path

approa
h presented in Chapter 4. This shall illustrate the di�eren
es in the iterates of the

iteration in the produ
t spa
e 
ompared to the ones generated using a solution operator for

the state equation and optimizing only in the design spa
e. The feasible path method looks

as follows:

Method 4 (Feasible-Path Levenberg-Marquardt Method). Let q

0

2 Q be a given

initial value and let (�

k

)

k2N

be a bounded sequen
e of positive real numbers. The Feasible-

Path Levenberg-Marquardt method 
onsists of the iteration pro
edure

q

k+1

= q

k

; (5.41)

where q

k

2 Q is the minimizer of the quadrati
 programming problem

1

2

kES(q

k

) +ES

lin

(q

k

)(q � q

k

)� z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

! min

q2Q

; (5.42)

with S denoting the solution operator of the state equation and S

lin

denoting the solution

operator of the linearized state equation.

For the sake of 
omparison we 
onsider the LMSQP method in the parameter spa
e, i.e.,

after elimination of the state u

k+1

and the Lagrange parameter �

k+1

, whi
h is possible be
ause

of the regularity of K

k

(see (5.22)). For a better distin
tion, we denote the updates of the

LMSQP-method by supers
ript SQP and those of the feasible path method by supers
ript

FP .

The updates u

SQP

and �

SQP

in the LMSQP-method 
an be 
omputed 
onse
utively from

q

SQP

via

u

SQP

= �K

�1

k

�

L

k

q

SQP

� f + e(u

k

; q

k

)

�

(5.43)

�

SQP

= �(K

�

k

)

�1

E

�

�

Eu

SQP

� z

Æ

+Eu

k

�

(5.44)

Thus, with the notation G

k

:= �EK

�1

k

L

k

, we may rewrite the optimality 
ondition for the

update q

SQP

as

(�

k

I

Q

+G

�

k

G

k

) q

SQP

= G

�

k

(z

Æ

�Eu

k

�EK

�1

k

(f � e(u

k

; q

k

)): (5.45)

For a �rst 
omparison with the feasible path method we assume that (u

0

; q

0

) 2 U �Q solves

(5.7), i.e. the initial iterate is feasible with respe
t to the state equation. Then the iteration

step q

FP

for the feasible-path method solves

(�

0

I

Q

+G

�

0

G

0

) q

FP

= G

�

0

(z

Æ

�Eu

0

); (5.46)

whi
h 
oin
ides with (5.45) in our parti
ular 
ase, i.e., the iterate q

1


omputed with the

LMSQP-method is the same as with the feasible path method. The di�eren
e of our SQP

approa
h to the 
lassi
al method following the feasible path o

urs in the se
ond step of the

iteration, sin
e u

1

is not on the feasible path anymore. If e

0

is Lips
hitz-
ontinuous, we only

have

ku

SQP

1

� u

FP

1

k

U

= O(ku

FP

1

� u

0

k

2

U

+ kq

SQP

1

� q

0

k

2

Q

): (5.47)
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From equation (5.45) one observes that the right-hand side di�ers from the one for a feasible

path approa
h, sin
e f � e(u

k

; q

k

) need not vanish, whi
h is the essential di�eren
e of the

LMSQP-method and the feasible path method.

Sin
e the linear systems (5.45) and (5.46) are of the same stru
ture, one 
ould also think

of �nding a produ
t-spa
e formulation of the feasible path method. Su
h an approa
h was

presented by Tautenhahn and S
hweigert [151℄ also in the 
ontext of inverse problems,

but in 
onne
tion with a di�erent regularization s
heme (Tikhonov regularization). In order to

derive su
h a formulation we introdu
e the state u

k

whi
h is the unique solution of e(u; q

k

) = f

(for given q

k

), and an auxiliary fun
tion w su
h that ES

lin

(q

k

)(q�q

k

) = E(w�u

k

). Then from

the de�nition of S

lin

as a solution operator of the linearized state problem we may 
on
lude

that e

0

(u

k

; q

k

)(w�u

k

; q� q

k

) = 0. Sin
e the pair (u

k

; q

k

) satis�es (5.7), we may add the term

e(u

k

; q

k

) and obtain that q

k+1

is determined as the minimizer of

1

2

kEw � z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

! min

(w;q)2U�Q

; (5.48)

subje
t to the linear 
onstraint

e(u

k

; q

k

) + e

0

(u

k

; q

k

)(w � u

k

; q � q

k

) = f: (5.49)

The new iterate u

k+1


an be 
omputed subsequently as the solution of e(u; q

k+1

) = f .

Sin
e the minimization step yielding q

k+1

is the same as a step in the LMSQP-method, we

may interpret the feasible path method as a predi
tor-
orre
tor variant of the LMSQPmethod,

where the LMSQP-step serves as a predi
tor and a 
orre
tor step ba
k to the feasible path is

performed for �xed parameter q

k+1

. In this formulation, the only di�eren
e of the LMSQP-

method with respe
t to the feasible path s
heme is to avoid the 
orre
tor step, whi
h might

be super
uous for many appli
ations. Thus, the LMSQP-method may save some numeri
al

advantage by avoiding the solution of possibly nonlinear state equations.

5.4 Dis
retization te
hniques

In the following we investigate the dis
retization of the LMSQP-method by a Galerkin ap-

proa
h. First of all, we assume that we have dis
retized data z

Æ;�

2 Z

�

� Z of the form

z

Æ;�

= R

�

z

Æ

; (5.50)

where R

�

: Z ! Z

�

is the orthogonal proje
tor onto the �nite-dimensional subspa
e Z

�

. Note

that we 
an give an error estimate for z

Æ;�

using (5.9) and kR

�

k = 1, whi
h yields

Æ

�

:= kR

�

z

Æ

� zk

Z

� kR

�

(z

Æ

� z)k

Z

+ kR

�

z � zk

Z

� Æ + inf

y2Z

�

ky � zk

Z

: (5.51)

Additionally we assume, that U is a Hilbert spa
e and that the image spa
e of e 
an be

identi�ed with the dual of U , for whi
h reason we write U

�

instead of Y in the following.

Finally, we assume that e is 
ontinuously Fr�e
het-di�erentiable on U �Q and that the partial

derivative e

u

is self-adjoint and satis�es the 
oer
ivity 
ondition

he

u

(u; q)v; vi � �

e

kvk

2

U

; 8(u; q; v) 2 U �Q� U; (5.52)

for some �

e

2 R

+

.
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The above setup is typi
al for a partial di�erential equation of ellipti
 type, whi
h is

also the main type of appli
ation we have in mind. We want to mention that the in�nite-

dimensional analysis 
arried out in the previous se
tion was not restri
ted to ellipti
 problems,

but only assumed well-posedness of the state equation for given parameter. However, sin
e

the numeri
al approximation te
hniques for ellipti
 problems di�er from the ones for paraboli


or hyperboli
 problems (
f. e.g. Quarteroni and Valli [123℄ for an overview), one 
annot

expe
t a su

essful uni�ed approa
h to 
orresponding parameter identi�
ation problems. For

this reason we restri
t ourselves to the investigation of the ellipti
 
ase.

5.4.1 The dis
retized LMSQP method and its well-posedness

Now let U

h

� U , Q

h

� Q be �nite-dimensional subspa
es of U and Q, with the 
orresponding

orthogonal proje
tors P

h

: U ! U

h

and

~

P

h

: Q ! Q

h

. Then we 
an dis
retize the LMSQP-

Method as follows:

Method 5 (Galerkin LMSQP-Method). Let U

h

, Q

h

and Z

�

be as above and let (u

0

; q

0

) 2

U

h

�Q

h

be a given initial value. Moreover, let (�

k

)

k2N

be a bounded sequen
e of positive real

numbers. The Galerkin Levenberg-Marquardt sequential quadrati
 programming (GLMSQP)

method 
onsists of the iteration pro
edure

(u

k+1

; q

k+1

) = (u

k

; q

k

); (5.53)

where (u

k

; q

k

) 2 U

h

�Q

h

is the minimizer of the quadrati
 programming problem

1

2

kR

�

(Eu� z

Æ

)k

2

Z

+

�

k

2

kq � q

k

k

2

Q

! min

(u;q)2U

h

�Q

h

; (5.54)

subje
t to the linear 
onstraint

he(u

k

; q

k

) + e

0

(u

k

; q

k

)(u� u

k

; q � q

k

); 'i = hf; 'i; 8 ' 2 U

h

: (5.55)

Note that the 
onstraint (5.55) 
an be rewritten in operator form as

P

�

h

K

k

P

h

(u� u

k

) + P

�

h

L

k

~

P

h

(q � q

k

) = P

�

h

(f � e(u

k

; q

k

)); (5.56)

to be solved for (u; q) 2 U

h

�Q

h

, with the notation

K

k

: U ! U

�

; K

k

u = e

u

(u

k

; q

k

)u; 8 u 2 U; (5.57)

L

k

: Q! U

�

; L

k

q = e

q

(u

k

; q

k

)q; 8 q 2 Q; (5.58)

and P

�

h

: U

�

h

! U

�

is the adjoint of P

h

. Under the assumption (5.52), we obtain that

hP

�

h

K

k

P

h

v; vi = hK

k

P

h

v; P

h

vi = hK

k

v; vi � �

e

kvk

2

U

(5.59)

for all v 2 U

h

, i.e., the dis
rete bilinear form asso
iated with the operator P

�

h

K

k

P

h

is 
oer
ive

on U

h

. This implies by the Lax-Milgram theorem, that (5.56) is uniquely solvable with respe
t

to u for given q 2 Q

h

. Consequently, in an analogous way to the proof of Proposition 5.1 we

may show the following result on the well-posedness of the quadrati
 programming problem

that has to be solved in ea
h step of Method 5 (GLMSQP method).

Proposition 5.4. Let e be 
ontinuously Fr�e
het-di�erentiable, let (5.52) hold and let �

k

> 0.

Then the quadrati
 programming problem (5.54), (5.55) has a unique solution (u

k

; q

k

) 2 U

h

�

Q

h

, whi
h is also the only lo
al minimum.
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5.4.2 The dis
retized Karush-Kuhn-Tu
ker system

In Subse
tion 5.3.3, the Karush-Kuhn-Tu
ker system for the in�nite-dimensional version of

the LMSQP-method has been derived and analyzed in the framework of linear saddle point

problems. Now we will dis
uss the dis
retized analogue of this system, namely the �rst-order

optimality 
onditions for the quadrati
 programming problem (5.54), (5.55).

The Lagrangian of (5.54), (5.55) is given by

L

k

(u; q;�) =

1

2

kR

�

(Eu� z

Æ

)k

2

Z

+

�

k

2

kq � q

k

k

2

Q

+

+ h�; e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) + e(u

k

; q

k

)� fi;

(5.60)

for (u; q; �) 2 U

h

� Q

h

� U

h

. Sin
e P

h

and

~

P

h

are equal to the identity on U

h

and Q

h

,

respe
tively, we 
an rewrite the Lagrangian as

L

k

(u; q;�) =

1

2

kR

�

(EP

h

u� z

Æ

)k

2

Z

+

�

k

2

k

~

P

h

(q � q

k

)k

2

Q

+

+ hP

h

�;K

k

P

h

(u� u

k

) + L

k

~

P

h

(q � q

k

) + e(u

k

; q

k

)� fi;

(5.61)

with the operators K

k

and L

k

de�ned by (5.57), (5.58). The KKT-system 
an now be

dedu
ed by 
omputing the partial derivatives of the Lagrangian with respe
t to u, q and �,

i.e., (u

k+1

� u

k

; q

k+1

� q

k

; �

k+1

) solves the linear saddle-point problem

0

�

P

�

h

E

�

R

�

�

R

�

EP

h

0 P

�

h

K

�

k

P

h

0 �

k

~

P

�

h

~

P

h

~

P

�

h

L

�

k

P

h

P

�

h

K

k

P

h

P

�

h

L

k

~

P

h

0

1

A

0

�

u

q

�

1

A

=

0

�

P

�

h

E

�

R

�

�

R

�

(z

Æ

�Eu

k

)

0

P

�

h

(f � e(u

k

; q

k

))

1

A

:

(5.62)

As in Subse
tion 5.3.2, we de�ne the symmetri
 bilinear form a

k

: (U �Q)� (U �Q)! R by

a

�

k

(u; q;'; �) := hR

�

Eu;R

�

E'i

Z

+ �

k

hq; �i

Q

(5.63)

and the bilinear form b

k

: (U �Q)� U ! R by

b

k

(u; q;�) := hK

k

u; �i+ hL

k

u; �i: (5.64)

Moreover, we use the right-hand sides

f

k

:= f � e(u

k

; q

k

) 2 U

�

; (5.65)

g

�

k

:= (E

�

R

�

�

R

�

(z

Æ

�Eu

k

); 0) 2 U

�

�Q: (5.66)

Then the KKT-system (5.62) 
an be interpreted as the Galerkin approximation of an inde�nite

variational problem, i.e., (u; q; �) 2 U

h

�Q

h

� U

h

is the solution of

a

�

k

(u; q;'; �) + b

k

('; �;�) = hg

�

k

; ('; �)i; 8 ('; �) 2 U

h

�Q

h

; (5.67)

b

k

(u; q;�) = hf

k

; �i; 8 � 2 U

h

: (5.68)

In an analogous way to the proof of Theorem 5.2 we 
an show that the bilinear form a

�

k

satis�es

the dis
rete kernel-ellipti
ity 
ondition on U

h

�Q

h

, i.e., there exists a 
onstant �

a

> 0 su
h

that

a

�

k

(u; q;u; q) � �

a

k(u; q)k

2

; 8 (u; q) 2 K

h

b
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with

K

h

b

:= f(v; s) 2 U

h

�Q

h

j b(v; s;�) = 0; 8 � 2 U

h

g ;

and that b satis�es the dis
rete LBB-
ondition

inf

�2U

h

sup

(u;q)2U

h

�Q

h

b

k

(u; q;�)

k(u; q)k k�k

� �

b

;

for some �

b

> 0. Using the Theorem 5.2 this implies the following well-posedness result for

the dis
retized problem (5.67), (5.68):

Theorem 5.5. Let e be 
ontinuously Fr�e
het-di�erentiable, let (5.52) hold and let �

k

> 0.

Then the inde�nite system (5.67), (5.68) has a unique solution (u; q; �) 2 U

h

�Q

h

�U

h

, whi
h

depends 
ontinuously on the right-hand sides f

k

and g

�

k

.

Sin
e the 
onstants �

a

and �

b

are the same as in the 
orresponding in�nite-dimensional


onditions in U �Q, they are in parti
ular independent of the dis
rete subspa
es U

h

and Q

h

.

This allows us to dedu
e an approximation result for the solutions of (5.67), (5.68) to the

solution (u; q; �) 2 U � Q � U of the in�nite-dimensional KKT-System, given in variational

form in (5.39), (5.40), i.e.

a

k

(u; q;'; �) + b

k

('; �;�) = hg

k

; ('; �)i; 8 ('; �) 2 U �Q; (5.69)

b

k

(u; q;�) = hf

k

; �i; 8 � 2 U; (5.70)

with a

k

given by

a

k

(u; q;'; �) := hEu;E'i

Z

+ �

k

hq; �i

Q

; (5.71)

b

k

, f

k

as above and g

k

de�ned by

g

k

:= (E

�

(z

Æ

�Eu

k

); 0) 2 U

�

�Q: (5.72)

Theorem 5.6. Suppose that the assumptions of Theorem 5.5 are satis�ed and let

(u

h

; q

h

; �

h

) 2 U

h

�Q

h

� U

h

denote the unique solution of (5.67), (5.68). Then there exists a 
onstant 
 > 0 independent

of U

h

and Q

h

su
h that

k(u� u

h

; q � q

h

; �� �

h

)k � 


�

r

Æ

�;h

+ inf

(v;s;�)2U

h

�Q

h

�U

h

k(u� v; q � s; �� �)k

�

; (5.73)

where (u; q; �) denotes the unique solution of (5.39), (5.40) and

r

Æ

�;h

:= k(R

�

� I)z

Æ

k

Z

+ sup

v2U

h

;kvk=1

k(R

�

� I)Evk

Z

: (5.74)

Proof. First, let (~u

h

; ~q

h

;

~

�

h

) denote the solution of (5.67), (5.68) with a

�

k

, g

�

k

repla
ed by a

k

,

g

k

. Then Theorem 2.1 in Brezzi and Fortin [31℄ implies the existen
e of a 
onstant 


1

> 0

(independent of U

h

and Q

h

) su
h that

k(u� ~u

h

; q � ~q

h

; ��

~

�

h

)k � 


1

inf

(v;s;�)2U

h

�Q

h

�U

h

k(u� v; q � s; �� �)k:
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Moreover, the 
ontinuous dependen
e of the solutions of (5.67), (5.68) on the right-hand side

implies the existen
e of 


2

> 0 with

k(u

h

� ~u

h

; q

h

� ~q

h

; �

h

�

~

�

h

)k

� 


2

 

sup

v2U

h

;kvk=1

hg

�

k

� g

k

; (v; 0)i + sup

'2U

h

;k'k=1

ja

�

k

(~u

h

; ~q

h

; ')� a

k

(~u

h

; ~q

h

; ')j

!

� 


2

 

sup

v2U

h

;kvk=1

hEv; (R

�

�

R

�

� I)(z

Æ

�Eu

k

)i+ sup

'2U

h

;k'k=1

hE'; (R

�

�

R

�

� I)E~u

h

i

!

� 


2

kEk k(R

�

� I)z

Æ

k

Z

+ 


3

sup

v2U

h

;kvk=1

k(R

�

� I)Evk

Z

;

and with the triangle inequality we may 
on
lude (5.73).

Theorem 5.6 provides an error estimate for the solutions of the dis
retized saddle-point

problem (5.67), (5.68), 
onsisting of two parts 
orresponding to the numeri
al approximation

in the image spa
e Z and in the pre-image spa
es U and Q. An obvious estimate for the �rst

term is

r

Æ

�;h

� inf

y2Z

�

ky � z

Æ

k

Z

+ sup

v2U

h

;kvk

U

=1

inf

~y2Z

�

k~y �Evk

Z

;

whi
h possibly does not lead to a quantitative estimate, sin
e there is no additional informa-

tion on the smoothness of the noisy data. An alternative estimate is

r

Æ

�;h

� Æ + inf

y2Z

�

ky � zk

Z

+ sup

v2U

h

;kvk

U

=1

inf

~y2Z

�

k~y �Evk

Z

:

The in�mum of ky � zk

Z


an usually be estimated more easily, sin
e the exa
t data z are

smoother due to the fa
t that û is the solution of the state equation for some parameter q̂.

E.g., if the state equation is of ellipti
 type with solution û 2 H

1

(
), E : H

1

(
) ! L

2

(
)

is the embedding operator, and R

�

results from a standard �nite element dis
retization on a

grid with �neness �, then we have at least

inf

y2Z

�

ky � zk = O(�):

Another important observation is that the last term vanishes if the dis
rete spa
es Z

�

and U

h

are equal, whi
h 
an be a
hieved in some appli
ations.

The se
ond term in (5.73) shows that the Galerkin approximation of the KKT-system is

of optimal order in U

h

�Q

h

�U

h

; it 
an be estimated by standard methods for �nite element

dis
retizations; quantitative estimates 
an be obtained using the regularity of the iterates.

This part depends of 
ourse strongly on the spe
i�
 appli
ation.

5.5 Numeri
al realization of the SQP-iteration

In the following we want to dis
uss some numeri
al methods and variants for the 'outer

iteration', i.e., the Galerkin LMSQP algorithm under the assumption that we are able to

solve the dis
retized KKT-system numeri
ally. The 'inner iteration', namely the numeri
al

solution of the inde�nite system (5.62) will be investigated in Se
tion 5.6.
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5.5.1 S
aling of state variable, parameter and Lagrangian multiplier

The performan
e of an iteration algorithm often depends 
ru
ially on the way the problem

is formulated. S
aling is a well-known te
hnique for reformulating an optimization problem

whose main obje
tive is twofold: On the one hand all the variables should be of similar

magnitude, on the other hand also the value of the derivatives should all be of similar size. In

un
onstrained optimization, a problem should be res
aled in su
h a way, that 
hanges of the

iterate in one dire
tion do not result in by far larger 
hanges of the value of the obje
tive than


hanges in another dire
tion. In 
onstrained optimization the above statements are also true

for ea
h 
onstraint. Additionally the set of 
onstraints should be well balan
ed with respe
t

to ea
h other su
h that ea
h 
onstraint has equal weight. Furthermore, the set of 
onstraints

should be balan
ed with respe
t to the obje
tive. As s
aling is of high pra
ti
al importan
e

for any optimization problem, many aspe
ts 
an be found in monographs on optimization (
f.

e.g. Gill, Murray, and Wright [63℄ or No
edal and Wright [115℄).

We want to 
onsider only the last aspe
t in this 
ontext, i.e., the s
aling of the state


onstraint with respe
t to the obje
tive whi
h is also of high importan
e for a
hieving fast


onvergen
e of the outer iteration. For the inner iteration, the aspe
t of s
aling 
an be

in
luded in the 
onstru
tion of a good pre
onditioner. The outer iteration of an SQP method

tries to attain two goals at the same time: Feasibility of the iterate with respe
t to the state


onstraint and optimality of the iterate with respe
t to the obje
tive. One aspe
t dominating

the other results usually in bad 
onvergen
e properties: If the feasibility aspe
t dominates,

only very small 
hanges of the iterate are possible in order to ensure 'almost' feasibility. If

the optimality aspe
t dominates, any violation of the state 
onstraint is redu
ed too slowly.

For the LMSQP method in the form of (5.54), (5.55) it turned out that in many situations

the feasibility aspe
t is strongly dominating. Using line sear
h methods for globalization (see

also Se
tion 2.2) this results usually in step lengths mu
h smaller than one. Repla
ing the

state 
onstraint by a pre
onditioned state 
onstraint leads to a better balan
ed formulation

and to mu
h faster 
onvergen
e. Furthermore a step length parameter equal to one is a

epted

in almost all steps.

5.5.2 Globalization strategies

The LMSQP method is a variant of Newton's method and therefore only lo
ally 
onvergent.

For this reason, globalization strategies, su
h as trust region methods or line sear
h strategies

(whi
h are the two most popular 
lasses of globalization te
hniques in optimization), are

needed. Both 
lasses were introdu
ed in Se
tion 2.2. That is why we want to refer to this

se
tion and the referen
es 
ited therein for details.

5.5.3 Nested multi-level optimization te
hniques

Important tools for the eÆ
ient numeri
al approximation of in�nite-dimensional optimization

problems are multi-level optimization methods. In the nested multi-level setup, one starts the

optimization pro
edure at a 
oarse level U

h

1

� Q

h

1

, where the iteration pro
edure 
an be


arried out eÆ
iently. If an appropriate stopping 
riterion is satis�ed, one interpolates the

state and parameter obtained in this way to a �ner level U

h

2

�Q

h

2

(for h

2

< h

1

), serving now

as a starting value on this level. This pro
edure is repeated until the �nest level is rea
hed.

Usually, nested spa
es are used in this approa
h, i.e., U

h

1

� U

h

2

, Q

h

1

� Q

h

2

(for h

2

< h

1

),

whi
h leads to simple interpolation operators. Sin
e one 
annot 
hoose the dis
retization of
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the data arbitrarily in general , we 
onsider only the 
ase of �xed � here, but a multi-level

approa
h in � 
an be realized in an analogous way, if ne
essary.

Nested multi-level methods outperform standard dis
retization te
hniques in many 
ases

(
f. e.g. Heinkens
hloss [82℄, Heise [84℄, Luk

�

a

�

s [108, 109℄); usually a 
onsiderable number

of iterations is needed on the 
oarse level only, where the numeri
al e�ort per iteration is very

low. On the �nest levels, the stopping 
riterion is often satis�ed already after one iteration

step and so the overall e�ort is less than for a dire
t dis
retization on the �nest level. For the

Galerkin LMSQP method, this leads to Algorithm 5.5.3.

Algorithm 5.1 Nested Multi-Level Galerkin LMSQP

Require: a de
reasing sequen
e fh

`

g

`=1;:::;L

with nested spa
es U

h

`

� U

h

`+1

, Q

h

`

� Q

h

`+1

(e.g. h

`

= 2

�`

h

0

)

Require: (u

1

0

; q

1

0

) 2 U

h

1

�Q

h

1

for ` = 1 to L do

h = h

`

Perform the Galerkin LMSQP method until the stopping 
riterion is satis�ed.

if ` == L then

return

end if

Prolongate the iteration (u

`

k

�

; q

`

k

�

) to the �ner level U

h

`+1

�Q

h

`+1

, whi
h results in a new

starting value (u

`+1

0

; q

`+1

0

).

end for

Up to now we did not talk about the 
hoi
e of the nested spa
es. Of 
ourse, they 
an be


hosen in advan
e. In the �nite element 
ommunity it is well known, that the a

ura
y of the

solution 
an be improved by using a-posteriori error estimators. They provide information

whi
h elements shall be re�ned to obtain a more pre
ise solution. This information 
an be used

to 
onstru
t appropriate �ne grid spa
es. For an overview of a-posteriori error estimation see

e.g. Verf

�

urth [154℄. In the 
ontext of optimization the 
on
ept of adaptivity and a-posteriori

error estimation is not as well-known as in the �nite element 
ommunity. An example in the


ontext of optimization is presented in Be
ker, Kapp, and Ranna
her [11℄, in the 
ontext

of optimal 
ontrol problems see e.g. Be
ker, Kapp, and Ranna
her [10℄.

5.6 Numeri
al solution of the KKT-system

In the following we will dis
uss the numeri
al solution of the dis
retized KKT-system (5.62)

for �xed iteration number k. We have seen above that the Galerkin-type approximation (5.62)

of the original KKT-system is well-posed, now we dis
uss some of its stru
tural properties,

whi
h are important for the appli
ation of iterative solution methods and for the 
onstru
tion

of pre
onditioners.

Choosing bases

� = (�

1

; : : : ; �

m

)

T

2 U

h

; � = (�

1

; : : : ; �

n

)

T

2 Q

h

; (5.75)

of the �nite-dimensional subspa
es U

h

and Q

h

, we may represent (u

h

; q

h

; �

h

) 2 U

h

�Q

h

�U

h

via

u

h

= u

T

�; q

h

= q

T

�; �

h

= �

T

�; (5.76)
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with 
oordinate ve
tors u;� 2 R

m

and q 2 R

n

. In order to transform (5.62) into a linear

system for u, q and �, we de�ne the matri
es

G := (hE�

j

; E�

i

i

Z

)

i;j=1;:::;m

H := (h�

j

; �

i

i

Q

)

i;j=1;:::;n

(5.77)

K := (hK

k

�

j

; �

i

i)

i;j=1;:::;m

L := (hL

k

�

j

; �

i

i)

i=1;:::;m;j=1;:::;n

(5.78)

and the ve
tors

f

1

:= (hz

Æ;�

�Eu

k

; E'

i

i

Z

)

i=1;:::;m

; f

3

:= (hf � e(u

k

; q

k

); '

i

i)

i=1;:::;m

: (5.79)

This allows us to rewrite the dis
retized KKT-system (with penalty parameter � = �

k

) as

0

�

G 0 K

T

0 �H L

T

K L 0

1

A

0

�

u

q

�

1

A

=

0

�

f

1

0

f

3

1

A

; (5.80)

respe
tively as

MX = F; (5.81)

with

M =

0

�

G 0 K

T

0 �H L

T

K L 0

1

A

; X =

0

�

u

q

�

1

A

; F =

0

�

f

1

0

f

3

1

A

:

The stru
tural properties ofM and its sub-matri
es will be examined in the following se
tion.

5.6.1 The system matrix M

Due to the well-posedness result on the dis
retized KKT-system (5.62) (
f. Theorem 5.5), we

may 
on
lude that the system matrix M is regular. In order to obtain further insight into

the stru
ture of M, we investigate the properties of the sub-matri
es G, H, K and L.

Proposition 5.7. The matri
es K 2 R

m�m

and H 2 R

n�n

are symmetri
 positive de�nite,

and the matrix G 2 R

m�m

is symmetri
 positive semi-de�nite. If in addition the operator E

is inje
tive on U

h

, then G is regular, too.

Proof. Let u

h

and q

h

be as in (5.76), then there exist 
onstants 


1

(h) and 


2

(h) su
h that

ku

h

k

U

� 


1

(h)kuk; kq

h

k

Q

� 


2

(h)kqk;

where k:k denotes the Eu
lidian norm in R

n

and R

m

, respe
tively. Thus, we have

u

T

Ku = hK

k

u

h

; u

h

i � �

e

ku

h

k

2

U

� �

e




1

(h)

2

kuk

2

;

and

q

T

Hq = kq

h

k

2

Q

� 


2

(h)

2

kqk

2

:

Moreover, the identity

u

T

Gu = kEu

h

k

2

Z

� 0

implies that G is positive semi-de�nite and regular under the assumption that E is inje
tive

on U

h

. The symmetry of the matri
es G, H and K 
an be veri�ed in a similar way, using the

symmetry of s
alar produ
ts and the self-adjointness of the operator K

k

.
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The matrix L 2 R

m�n

is diÆ
ult to analyze, it is neither symmetri
 nor regular in general

(in parti
ular if n 6= m). However, some fundamental properties of M (su
h as its regularity)

rely rather on G, H and K than on L. Moreover, the 
lassi
al splitting of a symmetri


saddle-point problem as

0

�

G 0 K

T

0 H

�

L

T

K L 0

1

A

=

0

�

I 0 0

0 I 0

KG

�1

LH

�1

�

I

1

A

0

�

G 0 0

0 H

�

0

0 0 �C

1

A

0

�

I 0 G

�1

K

T

0 I H

�1

�

L

T

0 0 I

1

A

;

where H

�

:= �H and C is the S
hur-
omplement

C := KG

�1

K

T

+ �

�1

LH

�1

�

L

T

; (5.82)

is only possible if both G and H

�

are regular. In parti
ular, we may 
on
lude that M has

n+m positive and m negative eigenvalues.

5.6.2 Redu
ed SQP approa
hes

The basi
 idea of redu
ed SQP-methods is the a-priori elimination of the equality 
onstraint,

whi
h 
an be written in matrix form as

Ku+ Lq = f

3

; (5.83)

whi
h is equivalent to an elimination of u and � in (5.80).

Due to Proposition 5.7, K is a regular, symmetri
 matrix and thus, we may 
ompute

u = K

�1

(f

3

� Lq); (5.84)

� = K

�T

(f

1

�Gu); (5.85)

whi
h yields after some 
al
ulations the n� n-system

M

r

q = g (5.86)

with

M

r

:= H

�

+ L

T

K

�T

GK

�1

L (5.87)

g := L

T

K

�T

(GK

�1

f

3

� f

1

): (5.88)

The redu
ed SQP-approa
h seems of parti
ular interest if n � m, whi
h is a frequently

used dis
retization strategy for parameter identi�
ation and optimal 
ontrol problems (
f.

e.g. Sa
hs [134℄, S
hulz and Bo
k [139℄, or S
hulz [138℄). The original matrix M is an

inde�nite matrix of size (2m+n)� (2m+n), while the redu
ed system matrixM

r

in (5.86) is

of size n�n. However, M

r

is not a sparse matrix even if all the sub-matri
es ofM are sparse,

sin
e it involves the inverse of K. Moreover, the evaluation of a matrix-ve
tor produ
t using

M

r

is more expensive than a matrix-ve
tor produ
t usingM, sin
e it involves the solution of

two systems of the form

Kw = g; (5.89)

with di�erent right-hand sides g, while for the evaluation of matrix-ve
tor produ
t with

M only dire
t evaluations of K are needed, whi
h are very 
heap for typi
al �nite element

dis
retization of the state 
onstraint. In pra
ti
e, one usually tries to 
ompensate this dis-

advantage of redu
ed SQP-methods by using a Broyden-type update for the redu
ed system

matrix instead of the exa
t matrix M

r

, whi
h leads to eÆ
ient optimization algorithms for

small numbers of design parameters n.
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5.6.3 Simultaneous solution of the KKT-system

Re
ently, the simultaneous solution of KKT-systems by iterative methods has been inves-

tigated, in parti
ular in 
onne
tion with optimal 
ontrol problems (
f. Battermann and

Heinkens
hloss [8℄, Biros and Ghattas [16, 17℄ or Haber and As
her [74℄). Compared

to the redu
ed SQP-approa
h, a simultaneous solution strategy has the obvious advantage

that the allo
ation and evaluation of the system matrixM is mu
h 
heaper than of M

r

. The

pay-o� is that M is inde�nite and larger thanM

r

, whi
h might 
ause additional e�ort. How-

ever, the main e�ort in the redu
ed SQP-approa
h is related to the evaluation or assembly of

the system matrixM

r

, respe
tively, and therefore a simultaneous solution of the KKT-system


an result in a tremendous speed-up of the SQP-method, in parti
ular for �ne dis
retizations.

At a �rst glan
e, it seems rather straight-forward to solve (5.81) by a standard iterative

method for inde�nite systems su
h as inexa
t Uzawa methods (
f. Bramble, Pas
iak, and

Vassilev [27℄, Elman and Golub [49℄, Langer and Que
k [104, 105℄, or Que
k [124℄)

or Krylov-subspa
e methods su
h as GMRES (
f. Saad and S
hultz [133℄), MINRES (
f.

Paige and Saunders [117℄) and QMR (
f. Freund and Na
htigal [56℄). However, in

the 
ase of large-s
ale problems, we have to expe
t a large 
ondition number (note that �

is usually small and that M is singular for � = 0) and a 
ompli
ated eigenvalue pattern of

the matrix M, whi
h might 
ause iterative methods to diverge or to need a high number of

iterations. Therefore, an appropriate pre
onditioning te
hnique seems ne
essary for any of

the methods.

In the following we distinguish two types of solvers that seem appropriate for the solution

of the inde�nite system (5.81) and dis
uss their basi
 properties with respe
t to the spe
ial

stru
ture of M.

Inexa
t Uzawa iterations

Inexa
t Uzawa methods and similar iteration pro
edures have been developed for the solu-

tion of the 
lassi
al Stokes system and similar problems (
f. Quarteroni and Valli [123℄

for an overview). The 
lassi
al Uzawa method is just a gradient method for the dual of

the 
orresponding Lagrange fun
tional, the inexa
t Uzawa method 
an be interpreted as a

pre
onditioned version (
f. Quarteroni and Valli [123℄). Following the exposition by

Zulehner [164℄, we 
an write an inexa
t Uzawa method for a system of the form (5.80) as

^

A

�

u

k+1

� u

k

q

k+1

� q

k

�

=

�

f

1

�Gu

k

�K�

k

��Hq

k

� L�

k

�

; (5.90)

followed by

^

C(�

k+1

� �

k

) = f

3

�Ku

k+1

� Lq

k+1

; (5.91)

where

^

A is a pre
onditioner for the diagonal matrix

A :=

�

G 0

0 �H

�

; (5.92)

^

C is a pre
onditioner for the S
hur-
omplementC de�ned by (5.82) and k denotes the iteration

index. In terms of (5.81) we 
an write the inexa
t Uzawa iteration as

X

k+1

= (I�

^

M

�1

M)X

k

+

^

M

�1

F; s (5.93)
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where

^

M is a pre
onditioner for the system matrix, given by

^

M =

�

^

A 0

B

^

C

�

; (5.94)

with B =

�

K L

�

.

A 
onvergen
e analysis of this method is available only in the 
ase when A is a regular

matrix (
f. Bramble, Pas
iak, and Vassilev [27℄ or Zulehner [164℄), whi
h means

that we have to assume that G is regular. The latter is true e.g. if the data z represent

distributed data for the state, i.e., E is an embedding operator. In this 
ase, the stru
ture

of A is rather simple and it is not a diÆ
ult task to 
onstru
t a pre
onditioner, even exa
t

pre
onditioning seems possible (note that G is just a mass matrix for a typi
al �nite element

dis
retization). Sin
e the matri
es G and H do not 
hange during the SQP-iteration we may

even 
ompute de
ompositions in a prepro
essing step. The 
onstru
tion of a pre
onditioner

for the S
hur-
omplement C is more diÆ
ult and must take into a

ount the spe
i�
 nature

of the underlying state equation.

Krylov-subspa
e methods

The Krylov-subspa
e methods GMRES and QMR are variants of the CG-algorithm that are

appli
able to inde�nite problems, too. The basi
 idea of su
h methods is a defe
t minimization

in the Krylov-subspa
e

K

k

(M;X

1

) = fX

1

;MX

1

; : : : ;M

k�1

X

1

g; (5.95)

generated by X

1

, in the k-th iteration step. Sin
e pre
onditioned CG-methods are probably

the most su

essful 
lass of iteration methods for positive de�nite systems, su
h methods

seem very attra
tive also in the inde�nite 
ase, although additional diÆ
ulties may arise (
f.

e.g. Saad and S
hultz [133℄).

The 
onvergen
e analysis in Saad and S
hultz [133℄ and Freund and Na
htigal [56℄

shows that the error bounds obtained for both methods are essentially the same, and mainly

dependent on the eigenvalue distribution and the 
ondition number of the system matrix M.

Therefore, appropriate pre
onditioning is again of high importan
e, in this 
ase also with the

possibility that G is singular.

Pre
onditioning

For the eÆ
ient solution of the KKT-system (5.80) it is ne
essary to use iterative solution

pro
edures due to the size of the equation system. For these methods appropriate pre
ondi-

tioning strategies are needed to get fast 
onvergen
e. Unfortunately, for symmetri
 inde�nite

equation systems by far fewer methods 
ompared to the positive de�nite 
ase are available.

The most popular 
lass of methods are Uzawa type methods. Many publi
ations 
an be

found, espe
ially in the �eld of 
uid dynami
s. Re
ently, Zulehner [164℄ presented a uni�ed

approa
h to many of these methods. The methodology presented in the previous subse
tion

on inexa
t Uzawa methods 
an also be used as pre
onditioner.

A di�erent 
lass of pre
onditioners originates form redu
ed SQP methods and 
an be

explained as follows: The KKT-matrix M 
an be fa
torized into

M =

0

�

GK

�1

0 I

0 I L

T

K

�T

I 0 0

1

A

0

�

K L 0

0 S




0

0 �GK

�1

L K

T

1

A

(5.96)
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where S




denotes the S
hur-
omplement

S




= �H+ L

T

K

�T

GK

�1

L: (5.97)

Repla
ing the matrix K

�1

by a pre
onditioner

^

K

�1

(e.g. a multigrid pre
onditioner) and

the S
hur 
omplement S




by an appropriate pre
onditioner

^

S




leads to a pre
onditioner for

M of the form

^

M =

0

�

G

^

K

�1

0 I

0 I L

T

^

K

�T

I 0 0

1

A

0

�

^

K L 0

0

^

S




0

0 �G

^

K

�1

L

^

K

T

1

A

: (5.98)

It must be noted that for the pre
onditioning operation

^

M

�1

only appli
ations of

^

K

�1

and

^

S

�1




are ne
essary and no appli
ations of

^

K of

^

S




. This pre
onditioner was used in our


omputations (see Se
tion 5.7) , but also by Haber and As
her [74℄ or Biros and Ghat-

tas [16, 17℄.

A similar pre
onditioner was presented by Battermann and Sa
hs [9℄. They used

^

M =

0

�

0 0

^

K

T

0

^

S




L

T

^

K L 0

1

A

(5.99)

as a pre
onditioner for an all-at-on
e approa
h for an optimal 
ontrol problem. Their paper


ontains also some analysis of the eigenvalue stru
ture of the pre
onditioned system, whi
h

in
uen
es the 
onvergen
e of the used iterative method to a large extent.

At least for ellipti
 state problems leading to positive de�nite matri
es K it is 
lear how

to 
hoose appropriate pre
onditioners

^

K for the state equation for the previous two pre
on-

ditioners. On the other hand, it is by far more diÆ
ult how to 
hoose pre
onditioners for the

S
hur-
omplement. One approa
h is to exploit mapping properties of the underlying pseudo-

di�erential operator. This approa
h was used e.g. by Ta'asan [147, 149, 146, 148℄ in the


ontext of shape design for 
uid dynami
s. He used Fourier transformation to get the symbol

of the S
hur-
omplement and exploited this for pre
onditioning. A 
ompletely di�erent ap-

proa
h was presented by Bramble, Pas
iak, and Vassilevski [28℄. They developed a way

for the 
onstru
tion of eÆ
ient pre
onditioners of pseudo-di�erential operators of positive and

negative order, based on multi-level te
hniques.

5.7 Examples and numeri
al results

In order to illustrate the previously des
ribed methods, we 
arry out some numeri
al exper-

iments with our model problem des
ribed in Se
tion 5.2. As the des
ription there does not


ontain details on the observation as well as on the state equation, we will further restri
t

ourselves to two problem 
lasses, namely the identi�
ation of a rea
tion 
oeÆ
ient and the

identi�
ation of a 
ondu
tivity.

5.7.1 The identi�
ation of a rea
tion 
oeÆ
ient

In our �rst example we want to identify the rea
tion 
oeÆ
ient q 2 H

1

0

(
) in the 1D potential

equation

�u

00

+ qu = f in 
 = (0; 1); (5.100)

u(0) = u(1) = 0 (5.101)
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The data z are an observation of u 2 L

2

(
), i.e. the observation operator E is the 
anoni
al

embedding from H

1

(
) into L

2

(
). The right-hand side f 2 H

�1

(
) is given by

f(x) =

1

2

+ sinx; x 2 
;

the exa
t rea
tion 
oeÆ
ient q̂ 2 H

1

0

(
) by

q̂(x) = x(1� x):

In other words, we 
onsider the parameter identi�
ation problem

1

2

ku� z

Æ

k

2

L

2

(
)

! min

(u;q)2H

1

0

(
)�H

1

0

(
)

(5.102)

subje
t to

1

Z

0

u

0

(x)v

0

(x) + q(x)u(x)v(x) dx =

Z

1

0

f(x)v(x) dx 8 v 2 H

1

0

(
) (5.103)

where z

Æ

denotes a noisy approximation of the data z.

We use the LMSQP method, for whi
h the KKT-system of the quadrati
 subproblem

(5.31) looks as follows:

0

�

I

L

2

(
)

0 K

�

k

0 �

k

I

H

1

0

(
)

L

�

k

K

k

L

k

0

1

A

0

�

u

q

�

1

A

=

0

�

(z

Æ

� u

k

)

0

�r

k

1

A

; (5.104)

with

K

k

: H

1

0

(
)! H

�1

(
); hK

k

u; vi =

Z

1

0

u

0

(x)v

0

(x) + q

k

(x)u(x)v(x) dx 8 v 2 H

1

0

(
)

L

k

: L

2

(
)! H

�1

(
); hL

k

q; vi =

Z

1

0

q(x)u

k

(x)v(x) dx 8 v 2 H

1

0

(
)

and r

k

denoting the residual of the state equation, i.e.

hr

k

; vi =

Z

1

0

u

0

k

(x)v

0

(x) + q

k

(x)u

k

(x)v(x) dx�

Z

1

0

f(x)v(x) dx 8 v 2 H

1

0

(
):

As the state equation is linear in u and q in our 
ase, the de�nition of K

k

and L

k

is straight-

forward.

For the numeri
al realization, 
 is dis
retized uniformly using linear �nite elements. The

approximations of the state variable u and the Lagrangian multiplier � has m degrees of

freedom, for approximating the parameter q we use n degrees of freedom. The noisy data z

Æ

are generated by solving the state equation on a �ne grid using the exa
t rea
tion 
oeÆ
ient,

restri
ting the �ne grid solution to a 
oarser grid and �nally adding some high-frequen
y

perturbation as noise.

The simple stru
ture of our example implies a rather simple stru
ture of the KKT-sub-

matri
es of the Galerkin-LMSQP method, in parti
ular in (5.80) G is an L

2

-mass matrix,

i.e.

G = (h�

j

; �

i

i

L

2

(
)

)

i;j=1;:::;m

;
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Figure 5.1: Re
onstru
tion (solid) and exa
t solution (dashed) for noise level Æ = 5% (left)

and Æ = 20% (right)

and H is an H

1

-sti�ness matrix, i.e.

H = (h�

j

; �

i

i

H

1

(
)

)

i;j=1;:::;n

:

In the linearization of the state equation, K is de�ned via

K = (hK

k

�

j

; �

i

i)

i;j=1;:::;m

and L via

L = (hL

k

�

j

; �

i

i)

i=1;:::;m;j=1;:::;n

;

where �

i

; i = 1; : : : ;m and �

j

; j = 1; : : : ;m denote the a

ording basis fun
tions. Hardly any

properties of the matrix L are known, ex
ept that L approximates a di�erential operator of

order 0. We refer to (5.77), (5.78) for the de�nition of these matri
es.

This problem is implemented in the software-system MATLAB. The KKT-system (5.80)

is solved using a dire
t solver in this 
ase, whi
h is probably not the best 
hoi
e with respe
t

to the numeri
al e�ort for �ne dis
retizations, but still yields reasonable results in our 
ase.

Figure 5.1 shows the results obtained with the LMSQP method for noise level Æ = 5% and

Æ = 20%. Surprisingly, the approximation is still reasonable even for a large noise level like

Æ = 20%, but the re
onstru
tion is not as smooth as for Æ = 5% The 
orresponding evolutions

of the error kq

k

� q̂k

H

1

(
)

and the residual ku

k

� z

Æ

k

L

2

(
)

are plotted in Figure 5.2. One

observes that in both 
ases the error de
reases up to some iteration index and then starts to

in
rease again whi
h is a typi
al phenomenon for inverse problems. That is why the iteration

is not terminated a

ording to the 
onvergen
e 
riteria usually used in optimization, but due

to an appropriate stopping rule (see e.g. Engl, Hanke, and Neubauer [50℄ for a general

introdu
tion). We used the so-
alled dis
repan
y prin
iple as stopping 
riterion (the details


an be found in Burger and M

�

uhlhuber [33, 34℄). We want to mention that the stopping

index obtained from the dis
repan
y prin
iple was always 
lose to the iteration index, where

the error is minimal.

The 
onvergen
e of the LMSQP-method was 
ompared to the Feasible-Path Levenberg-

Marquardt method, introdu
ed in Subse
tion 5.3.4. It turned out, that both methods lead to
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Figure 5.2: Development of the error kq

k

� q̂k

H

1

(
)

(solid) and the residual ku

k

� z

Æ

k

L

2

(
)

during the iteration for noise Æ = 5% (left) and Æ = 20% (right)

almost the same iteration sequen
e q

k

. In parti
ular, the number of iterations needed until

the stopping rule is satis�ed, is the same for both methods.

Finally, we 
ompare the numeri
al eÆ
ien
y of the LMSQP-method with feasible path

approa
hes, namely the Feasible-Path Levenberg-Marquardt method (LM) (with the same

Galerkin dis
retization as for LMSQP) and a Broyden-type variant of the LM-method (
f.

Kaltenba
her [95℄ for further details).

For this sake we 
hoose di�erent dis
retization levels (�xed during the iteration) and

measure the CPU-time needed for the LMSQP-method, until the stopping rule is satis�ed

(for �xed noise level Æ). From the results shown in Table 5.1 and Figure 5.3 one observes that

the LMSQP-method with simultaneous solution of the KKT-system outperforms the feasible-

path approa
hes for all di�erent dis
retizations. Sin
e the LMSQP and the LM-method need

the same number of outer iterations, the di�eren
e in the numeri
al e�ort is 
aused by the

fa
t that the e�ort for the evaluation of the system matrix in the LM-method is signi�
antly

higher than evaluation and pre
onditioning of the system matrix in the simultaneous LMSQP-

method. Obviously, the gain in the numeri
al e�ort for the evaluation of the system matrix

in
reases with the number of dis
retization points, whi
h explains the extremely large CPU-

time for the LM-method at the �nest dis
retization level (m = 1601). For small m and n, the

Broyden-variant is mu
h faster than the LM-method, whi
h is again 
aused by the fa
t that

the evaluation of the system matrix 
an be 
arried out eÆ
iently. However, the number of

iterations needed for the Broyden-type variant is mu
h larger than for the other two methods,

whi
h use the full information about the derivatives.

These results also agree with the results presented in the previous 
hapter. There, we also

used a Broyden update formula (stri
tly speaking, the BFGS update formula) for approxi-

mating the Hessian of the obje
tive. But the behavior of the iteration was very similar: For

a few design parameters we got a reasonable approximation of the Hessian, whereas for large

design spa
es the number of iterations dramati
ally in
reased. This led to the extremely large

CPU-time reported in Table 4.3.
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m n LMSQP LM Broyden

201 41 0.07 1.37 0.51

201 101 0.18 3.44 1.34

201 201 0.36 6.94 2.88

401 201 0.51 24.83 9.09

401 401 1.39 50.39 20.48

801 401 2.61 193.21 70.69

801 801 5.66 392.54 158.69

1601 801 7.91 1564.50 600.66

1601 1601 22.86 3144.40 1356.60

Table 5.1: CPU-time (in se
onds) needed for the LMSQP-method, the LM-method and a

Broyden-type variant of the LM-method
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Figure 5.3: Comparison of the CPU-times for the LMSQP-method, the LM-Method and a

Broyden-type variant of the LM-method
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5.7.2 The identi�
ation of a 
ondu
tivity

Our se
ond numeri
al example is the identi�
ation of the 
ondu
tivity q 2 L

1

(
) � L

2

(
)

in

�div(q gradu) = f in 
; (5.105)

u = 0 on �
: (5.106)

The data z are an observation of u 2 L

2

(
), i.e. the observation operator E is the 
anoni
al

embedding of H

1

0

(
) into L

2

(
). The domain 
 is a ball in R

2

with missing �rst quadrant

(see also Figure 5.4), i.e., in radial 
oordinates


 = f(r 
os �; r sin �) j r 2 [0; 1); � 2 (�=2; 2�)g : (5.107)

The exa
t parameter to be re
onstru
ted is q̂ � 1, the right-hand side f 2 H

�1

(
) in (5.105)

is given by

f =

3�

4

�

3� 
os(

3�

2

r) +

2

r

sin(

3�

2

r)

�

with r =

p

x

2

+ y

2

.

The 
orresponding solution û 2 H

1

0

(
) of the state equation is û = 
os(

3�

2

r). The noisy z

Æ

data are generated using the exa
t solution û perturbed by uniformly distributed random

noise.

Summarizing, we 
onsider the parameter identi�
ation problem

1

2

ku� z

Æ

k

2

L

2




! min

(u;q)2H

1

0

(
)�L

1

(
)

(5.108)

subje
t to a weak formulation of the state problem (5.106).

We use the LMSQP-method for whi
h the KKT-system of the quadrati
 subproblems

looks as follows:

0

�

I

L

2

(
)

0 K

�

k

0 �

k

I

L

2

(
)

L

�

k

K

k

L

k

0

1

A

0

�

u

q

�

1

A

=

0

�

(z

Æ

� u

k

)

0

�r

k

1

A

; (5.109)

with

K

k

: H

1

0

(
)! H

�1

(
); hK

k

u; vi =

Z




hq

k

gradu; grad vidx 8 v 2 H

1

0

(
)

L

k

: L

2

(
)! H

�1

(
); hL

k

q; vi =

Z




hq gradu

k

; grad vidx 8 v 2 H

1

0

(
)

and r

k

denoting the residual of the state equation, i.e.

hr

k

; vi =

Z




hq

k

gradu

k

; grad vidx�

Z




f(x)v(x) dx 8 v 2 H

1

0

(
):

It is 
lear, that L

k

q does not exist for any q 2 L

2

(
), but only for q 2 L

1

(
). Thus, in the

pra
ti
al realization we have to introdu
e 
onstraints on the parameter q. Usually, this 
an

be done easily using a-priori information on the parameter, e.g. bounds on q.

For the dis
retization we used triangular �nite elements with pie
ewise quadrati
 shape

fun
tions for the state u and the Lagrange parameter � and pie
ewise 
onstant shape fun
tions
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Level dim q dim u avg QMR it SQP it time

2 92 215 200 9 8 se


3 368 797 200 4 15 se


4 1472 3065 180 5 77 se


5 5888 12017 142 6 450 se


Table 5.2: CPU-time and number of inner (QMR) and outer (SQP) iterations for exa
t data

Level dim q dim u avg QMR it SQP it time a

. time

2 92 215 200 9 8 se
 8 se


3 368 797 200 4 15 se
 23 se


4 1472 3065 175 2 24 se
 47 se


5 5888 12017 80 1 47 se
 94 se


6 23552 47585 121 1 425 se
 520 se


Table 5.3: CPU-time per level, a

umulated time and number of inner (QMR) and outer

(SQP) iterations for exa
t data using a nested multi-level approa
h

for the parameter q. This implies a rather simple stru
ture of KKT-sub-matri
es in (5.80), in

parti
ular G and H are mass matri
es with H being diagonal due to the 
hoi
e of pie
ewise


onstant shape fun
tions. For the detailed de�nition of G, H, K, and L, see (5.77), (5.78).

In order to ensure q 2 L

1

(
) we added box-
onstraints for q to the dis
retized optimiza-

tion problem whi
h are in
luded using a barrier method (No
edal and Wright [115℄). As

they never be
ome a
tive, we will not go into detail here.

The results were 
al
ulated using the �nite element 
ode FEPP (see Kuhn, Langer, and

S
h

�

oberl [101℄), developed at the Institute of Computational Mathemati
s of the University

of Linz.

We want to mention that this identi�
ation problem is quite 
hallenging not only due to

the 
ompli
ated geometry, but also due to the fa
t that q is not identi�able along a level

line in the interior, where u attains an extremum. This does not destroy the theoreti
al

identi�ability results, be
ause it is a set of Lebesgue-measure zero, but it 
an be expe
ted to


reate numeri
al diÆ
ulties.

The KKT-system (5.80) was solved using a pre
onditioned QMR method with the blo
k-

fa
torization type pre
onditioner (5.98) with a multi-grid pre
onditioner

^

K and no pre
on-

ditioning of the S
hur-
omplement S




. Results for exa
t data 
an be found in Table 5.2.

The good performan
e of the method with respe
t to both, CPU time and number of outer

iterations 
an be observed 
learly. Espe
ially for problems with �ne dis
retizations of the pa-

rameter q, this method 
an still be realized eÆ
iently, while 
lassi
al approa
hes do not yield

results in reasonable time. A plot of the �nite dimensional approximation of the parameter

q 
an be found in Figure 5.4, from whi
h one observes that the parameter is re
onstru
ted

very well ex
ept in a neighborhood of the level 
urve fgradu = 0g.

Additional speed-up 
an be gained using a multi-level approa
h as des
ribed in Subse
-

tion 5.5.3. We used nested spa
es for approximating q and u by subdividing ea
h triangular

element into four smaller elements, when re�ning the mesh. Table 5.3 presents results for

this approa
h. It 
an be seen that on �ne dis
retization levels one SQP step is suÆ
ient for
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Figure 5.4: Parameter distribution for exa
t data at level 4, q

min

= 0:59, q

max

= 1:4

ful�lling the stopping 
riterion, whi
h 
orresponds very well to the theoreti
al predi
tions (for

details see Burger and M

�

uhlhuber [34℄. A 
omparison of the results to the ones in Table

5.2 shows that for �xed dis
retization level, the solution of the identi�
ation problem on level

5 is only slightly faster than the identi�
ation of q on level 6 (with about the fourfold number

of parameters) using a multi-level approa
h (see also Figure 5.5).

A plot of the parameter 
an be found in Figure 5.6. Here the approximation of the

parameter in the area where it 
an not identi�ed is by far better than in the 
lassi
al approa
h

using only one dis
retization level (
ompare Figure 5.4). A possible explanation for this e�e
t

is the following: The in
uen
e of the level line fgradu = 0g where q 
an not be identi�ed on

the solution is smaller the 
oarser the dis
retization is. The prolongation from 
oarse levels

to �ner ones adds information to the region where the parameter is not identi�able from its

surrounding region. As long as the parameter is smooth this helps to improve the quality of

the numeri
al results where the parameter 
an not be identi�ed.

5.8 Ne
essary 
hanges for optimal design

In the following we want to dis
uss the ne
essary 
hanges when 
hanging from our model

problem whi
h is a parameter identi�
ation model to an optimal design problem.

First one has to adapt the optimization strategy. As one 
an not expe
t the Lagrangian

multiplier to vanish (remember, our model problem was a least-squares problem, where we


onsidered the spe
ial 
ase for attainable data), the se
ond order derivatives of the state equa-

tion 
an not be negle
ted. This implies that in the QP problem not a quadrati
 approximation

of the obje
tive, but of the Lagrangian (5.2) has to be used.

On the other hand, optimal design problems are usually not ill-posed. That is why,

regularization pro
edures need not be used. Nevertheless, using the Levenberg-Marquardt

modi�
ation of the obje
tive 
an improve the 
onvergen
e speed as it 
an also be interpreted

as a trust region for the parameter. Summarizing, for optimal design problems either Method 1

or Method 2 has to be used.

Showing well-posedness of the QP problems for optimal design problems is usually by
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far more 
ompli
ated 
ompared to our model problem. In our 
ase, we had an expli
it

representation of the Hessian, as well as of the linearized state equation. Additionally, the

situation was even more simpli�ed by repla
ing the Hessian of the Lagrangian by the Hessian

of the obje
tive. Taking the Hessian of the Lagrangian, i.e. 
onsidering the IRSQP Method,

makes the situation already slightly more 
ompli
ated. In this situation we 
an still get well-

posedness, but have to a

ept further restri
tions on the regularization parameter (for details

see Burger and M

�

uhlhuber [33, 34℄. Generalizing the obje
tive 
an lead to situations,

where it is hardly possible to show well-posedness be
ause depending on the obje
tive and the

state equation only very little knowledge on the Hessian of the Lagrangian 
an be available.

Also the numeri
al realization of the algorithm is by far more diÆ
ult. For the evaluation

of the obje
tive on the QP problem �rst and se
ond order derivatives are ne
essary. The

�rst order derivatives 
an be 
al
ulated eÆ
iently using automati
 di�erentiation. Also the

appli
ation of the Hessian, i.e. the evaluation of a Hessian times ve
tor produ
t 
an be done

eÆ
iently, i.e. the 
al
ulation time is proportional to the evaluation of the fun
tion itself. The


al
ulation of the Hessian itself is usually by far more expensive (see e.g. Griewank [67℄.

For an arti
le on the use of AD in optimal design see e.g. Keyes, Hovland, M
Innes, and

Sonyamo [98℄.

Even more 
ompli
ated than the evaluation of the KKT-matrix is its appropriate pre
on-

ditioning. Although the pre
onditioning for our model is already quite diÆ
ult, here it is

even worse. As usually the Hessian is not available (be
ause of the 
omputational e�ort) all

pre
onditioning strategies needing matrix elements 
an not be applied. Also using mapping

properties of the redu
ed Hessian is usually very diÆ
ult, if not even impossible. One possibil-

ity for pre
onditioning are strategies usually used for smaller optimization problems. E.g. the

BFGS-update formula 
an provide you with an approximation of the redu
ed Hessian whi
h


an be used in 
ombination with the pre
onditioners of type (5.98) or (5.99). Usually not

the standard BFGS formula, but limited memory variants are used for maintaining sparsity

(No
edal and Wright [115℄) whi
h makes the eÆ
ient appli
ation of the pre
onditioners

possible. For an example using this approa
h see Biros and Ghattas [16, 17℄.



Chapter 6

Some Remarks on the Software

Design

6.1 Introdu
tion

The goal of our optimal design library is to provide a 
exible frame for optimal design prob-

lems. During the development of the here presented design, we put strong emphasis on a


exible and easy administrable tool and not on the highest possible eÆ
ien
y. Nevertheless,

the design is also eÆ
ient, as 
ould be seen in the results presented in Chapter 4 and Chap-

ter 5. Additionally, we tried to develop a frame whi
h is more or less independent of the

used optimizer and the �nite element pa
kage used. That is why, one of the main prin
iples

during the development was a stri
t splitting of the optimizer on the one hand and the real-

ization of the optimization problem on the other. Ex
hanging the optimizer by a di�erent one

(e.g. an optimizer written in Fortran) indu
es hardly any 
hanges on the implementation of

the optimal design problem (obje
tive, 
onstraints, state equation). Also di�erent pa
kages

for solving the state problem 
an be easily integrated. Although we restri
t ourselves to an

FE solver for the state equation in the following 
onsiderations, using �nite di�eren
es, the

�nite volume method or any other method for 
al
ulating an approximate solution of our

state equation would be appropriate. A prede
essor of the here presented software design was

presented by Kuhn, Luk

�

a

�

s, and M

�

uhlhuber [102℄.

6.2 The optimization modules

In our 
ode, the optimizer is only based on a linear algebra pa
kage, whi
h provides ve
-

tors, matri
es, et
. On top of these basi
 linear algebra data types, we have built di�erent

optimization strategies:

� An optimizer for un
onstrained optimization problems, whi
h is based on a quasi-

Newton method using a BFGS update formula for approximating the Hessian of the

obje
tive. To a
hieve global 
onvergen
e we in
luded a line sear
h method. As the

optimizer is based on dense matri
es, it is only suitable for small optimization problems

with rather few design parameters.

� A QP optimizer for linearly 
onstrained optimization problems with quadrati
 obje
tive.

For this optimizer we additionally assumed that the Hessian of the obje
tive is positive

99
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de�nite. The optimizer is based on dense matri
es and therefore only suitable for small

optimization problems with rather few design parameters. The QP module is available

in two di�erent implementations: one based on null-spa
e methods and one based on

a range-spa
e approa
h. Both implementations use formulas for updating a basis of

the null-spa
e of the a
tive 
onstraints whi
h redu
e the e�ort in ea
h iteration when

adding or deleting a 
onstraint from the a
tive index set. The main appli
ation of this

optimizer is the 
al
ulation of the sear
h dire
tion in an SQP method.

� An SQP optimizer for small nonlinearly 
onstrained optimization problems. This mod-

ule is based on dense matri
es and therefore only suitable for optimization problems

with rather few design parameters (
.f. Chapter 4). To get a sear
h dire
tion we solve

a QP problems by one of the optimization modules des
ribed in the previous item. For

globalization we use a line sear
h method. The Hessian of the Lagrangian is approx-

imated by a quasi-Newton method using a modi�ed BFGS update formula following

Powell [122℄.

� For the approa
h presented in Chapter 5 we implemented an optimizer whi
h works in

the produ
t spa
e (u;q). Only q is represented by a ve
tor, u uses an abstra
t base


lass ve
tor type to be 
exible with respe
t to the representation of the state solution.

At the moment the state-equation is the only supported 
onstraint but a generalization

to support also 
onstraints on q or u or on both variables would be easily possible. The

Hessian of the Lagrangian as well as the partial derivatives of the state equation need

not be assembled, only 
orresponding matrix-ve
tor operations need to be provided.

The QP subproblem is solved by an iterative solver (at the moment a QMR module, 
.f.

Freund and Na
htigal [56℄) where appropriate pre
onditioners have to be provided

by the user. This enables us to solve also large s
ale optimal design problems with many

design and state parameters as long as suitable pre
onditioners for the QP subproblem

are available.

Ea
h of these optimization modules was implemented in C++ and uses heavily the 
on
epts

of operator overloading and virtual inheritan
e. In order to obtain good performan
e we use

a sophisti
ated memory management to eliminate temporary obje
t 
reation.

In the following se
tion we des
ribe the general frame for implementing the optimal design

problem.

6.3 The optimal design problem

The frame for the eÆ
ient implementation of an optimal design problem presented here en-


apsulates the 
ommuni
ation between the optimizer and the �nite element 
ode. Both, the

state equation and the obje
tive are treated as abstra
t obje
ts whi
h enables us to be inde-

pendent of the spe
i�
 type of problem. Thus, di�erent types of optimal design problems 
an

be realized in this frame (e.g. shape or topology optimization), but also di�erent 
lasses of

state equations 
an be easily integrated. Espe
ially, it is not ne
essary to have state problems

of ellipti
 type or linear state problems. In this se
tion we will also show how to realize all

methods whi
h are needed to implement the algorithms proposed in Chapter 4 and Chapter 5.

The evaluation of an obje
tive like the one used in Chapter 4 
an be split into several

subtasks. A 
ow graph of the fun
tion evaluation for this 
lass of obje
tive 
an be found in

Figure 6.1. Motivated by this �gure, we introdu
e the following three obje
ts to realize a
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q

?

Map q to an FE representation � of the parameter

?

Use � to reassemble the state equation

?

Solve the state equation to get u

?

Use q (in most 
ases it is more natural to use �)

and u to evaluate the obje
tive

Figure 6.1: Flow graph of a typi
al fun
tion evaluation
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fun
tion evaluation:

� a ParameterMap,

� a StateConstraint and

� a Produ
tSpa
eFun
tion.

In the following, we will dis
uss these obje
ts in more detail and show whi
h fun
tionality is

ne
essary for ea
h of these obje
ts. Additionally, we will dis
uss how a dire
t or an adjoint

method 
an be realized, as well how to integrate AD into this framework.

6.3.1 ParameterMap

This obje
t is the most important 
ommuni
ation layer between the optimizer and the �nite

element 
ode. As 
ould be seen in Figure 6.1 it maps the parameter q handled by the optimizer

to a representation � of the parameter in the FE 
ode. This representation 
an be of very

di�erent nature for di�erent problems:

� When 
onsidering a sizing problem, � will be a representation of the thi
kness. In topol-

ogy optimization � represents the density of the material. In the parameter identi�
ation

problem 
onsidered in Chapter 5 it was the unknown 
ondu
tivity to be identi�ed. In

all these 
ases, the mapping is more or less straight-forward.

� In an optimal 
ontrol problem � is the representation of the 
ontrol in the FE 
ode (e.g.

as a pie
ewise 
onstant or linear fun
tion).

� For shape optimization q represents a parameterization of the 
omputational domain.

In this situation, � 
ould be a representation of the nodes of the FE mesh, respe
tively

their 
oordinates of the domain 
orresponding to the parameter q. Thus for getting � it

is ne
essary to generate a geometry model 
orresponding to q by using e.g. a parametri


CAD modeler, and then to deform the mesh of the referen
e geometry to get a mesh of

the 
urrent geometry (see also the remarks in Se
tion 1.3).

The StateConstraint and the Produ
tSpa
eObje
tive use both the ParameterMap for their


ommuni
ation with the optimizer. As they 
al
ulate derivatives only with respe
t to � the

ParameterMap also has to provide fun
tionality to map gradients and other derivatives with

respe
t to � to the 
orresponding derivatives with respe
t to q.

6.3.2 StateConstraint

The StateConstraint manages all a

esses to the state equation and is therefore an en
apsu-

lation of fun
tionality of the FE 
ode, i.e. it represents

e(u;q) = 0:

Usually a StateConstraint uses a ParameterMap for the 
ommuni
ation to the optimizer i.e.

it a

esses only the output � of the ParameterMap and not the parameter q dire
tly.

For a produ
t spa
e approa
h as in Chapter 5 the following fun
tionality is ne
essary:

� Evaluate e for given state u

0

and parameter q

0

.
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� Evaluate the gradient with respe
t to u and q of

v

T

e(u

0

;q

0

)

for given v, u

0

, q

0

.

� Evaluate the linearization of e, i.e. espe
ially evaluate

�e

�u

(u

0

;q

0

)�u+

�e

�q

(u

0

;q

0

)�q:

for given u

0

, q

0

, �u, �q.

� Assemble the Ja
obian of e if possible with suitable e�ort, i.e.

�e

�u

and

�e

�q

:

For redu
ed SQP approa
hes (as in Chapter 4) we need additional fun
tionality. Espe
ially,

we have to linearize the state equation and to solve the linearized equation and its adjoint.

Usually, the linearized problem is represented as

�u = �

�

�e

�u

(u

0

;q

0

)

�

�1

e(u

0

:q

0

)�

�

�e

�u

(u

0

;q

0

)

�

�1

�e

�q

(u

0

;q

0

)�q;

where (u

0

;q

0

) denotes the linearization point. Summarizing we need:

� Linearize the state equation and de�ne the operators

R = �

�

�e

�u

(u

0

;q

0

)

�

�1

and S =

�e

�q

(u

0

;q

0

):

� Evaluate

�u = RS�q

for given �q whi
h involves the solution of the linearized state problem with a given

right-hand side.

� Evaluate

�q = S

T

R

T

�u

for given �u whi
h involves the solution of the adjoint of the linearized state problem

for a given right-hand side.

� Evaluate

�� = R

T

�u

for given �u whi
h again involves the solution of the adjoint linearized state problem

for a given right-hand side.

The dire
t and the adjoint method 
an also be realized with this fun
tionality (
.f. (4.21),

(4.22), (4.23)) as long as partial derivatives of the obje
tive with respe
t to state and design

parameter are available.

The design of the StateConstraint presented here is not only appli
able to PDEs of ellipti


type but 
an be easily used also for time-dependent PDEs.
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6.3.3 Produ
tSpa
eFun
tion

The Produ
tSpa
eFun
tion en
apsulates the evaluation of the obje
tive and its derivatives.

Additionally it 
an be used to realize 
onstraints depending on state and design parameters.

As the name implies, a Produ
tSpa
eFun
tion realizes a fun
tion depending on design and

state parameters. Similar to the StateConstraint it uses a ParameterMap for the 
ommuni-


ation to the optimizer and a

esses only the FE representation � of the parameter.

For applying the optimization pro
edures presented in Chapter 4 and Chapter 5 it suÆ
es

to make the following fun
tionality available:

� Evaluate the fun
tion for given state and design parameter.

� Evaluate the �rst derivative of the fun
tion for given state and design parameter.

� Apply the se
ond order derivative to a given ve
tor.

� Assemble the Hessian matrix if possible with suitable e�ort.

The presented frame makes it also easy to in
orporate AD. As explained in Chapter 4 it

does not make sense to apply AD in a bla
k-box manner to an optimal design problem.

It is better to use hand-
oded parts for solving the linearized state problems (in dire
t or

adjoint fashion) and apply AD only to get partial derivative of the obje
tive itself (in the

terminology of this se
tion to use hand-
oded derivatives for the StateConstraint and AD for

the Produ
tSpa
eFun
tion). This was also suggested as hybrid method in Subse
tion 4.4.4.

The here presented design supports the implementation of su
h a splitting to a large extent.

We tried to keep the information lo
al whi
h makes it easy to realize su
h a 
ombination of

di�erent di�erentiation strategies.
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