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Abstrat

In optimal design we try to improve an objet by modifying its shape. These optimization

problems are loated on the interfae to partial di�erential equations, numerial analysis and

sienti� omputing. This makes the solution of optimal design problems very hallenging.

During reent years, the importane of optimal design has been growing, espeially in the

ommerial market. But still nowadays, hanges in the design are most often based on long

lasting experiene, rather than optimization methods. The main speialty of optimal design

problems is that they are optimization problems governed by di�erential equations where we

onsider only the ase of partial di�erential equations. We present strategies for the numerial

solution of these optimization problems, and disuss the arising problems.

For optimal design problems with only a few design parameters we onsider an approah

reduing the number of parameters by eliminating the state parameters. For this redued

problem we use standard optimization methods based on sequential quadrati programming.

Here, the Hessian is usually approximated by quasi-Newton formulas, like the well-known

BFGS-formula. That is why, we need only funtion and gradient evaluations of the objetive

and the onstraints. In most ases it is very diÆult to implement gradient evaluation rou-

tines for real life optimal design problems as these involve the solution of the state problem.

As an alternative to hand-oded gradient routines we onsider various blak-box approahes,

like �nite di�erenes or automati di�erentiation, and analyze their pros and ons. Combin-

ing the strengths of di�erent approahes we realize a exible, but also eÆient method by

ombining automati di�erentiation with hand-oded gradient routines. We demonstrate the

good performane using an optimal sizing problem oming from industry.

For optimal design problems with many design parameters approahes eliminating the

state equation are not suitable. We introdue an all-at-one approah onsidering the opti-

mal design problem in the produt spae of state and design parameters. This approah treats

the state equation as an equality onstraint during the optimization. Besides a method based

on sequential quadrati programming we introdue methods based on sequential quadrati

programming and iterative regularization as we use an ill-posed problem as model problem.

We analyze the well-posedness of the ourring quadrati programming subproblems in a

ontinuous and a disrete setting. For the onsidered model problem, the numerial approxi-

mation of the Karush-Kuhn-Tuker systems of the quadrati subproblems leads to equation

systems with large, sparse, symmetri, but inde�nite matries. We onsider the numerial

solution of these problems using Uzawa-type methods, redued SQP methods or simultaneous

methods. A nested iteration approah additionally aelerates the proposed method. The

onsidered examples show the good numerial performane of the proposed method.
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Zusammenfassung

In vielen Bereihen des t

�

aglihen Lebens gewinnt die rationelle Nutzung von Ressouren ei-

ne immer gr

�

o�ere Bedeutung. Insbesondere im industriellen Umfeld ist es heute notwendig,

Produkte m

�

oglihst kosteneÆzient zu erzeugen, um konkurrenzf

�

ahig zu bleiben. Gleihzeitig

werden aber die Produktions- und Entwiklungszyklen immer k

�

urzer, da der Kunde nah im-

mer besseren Produkten verlangt. Um wettbewerbsf

�

ahig bleiben und seine Stellung am Markt

behaupten oder gar verbessern zu k

�

onnen, mu� verst

�

arkt auf rehnergest

�

utzte Produktopti-

mierung gesetzt werden, obwohl nahwievor viele

�

Anderungen ausshlie�lih aufgrund von

Erfahrungswerten durhgef

�

uhrt werden.

In der vorliegenden Arbeit betrahten wir mathematishe Methoden zur Produktoptimie-

rung. Diese versuhen durh Ver

�

anderung der Form gewisser Teile eine Verbesserung des Pro-

dukts zu erreihen, wobei beispielsweise die Lebensdauer (z.B. bei tragenden Teilen) erh

�

oht,

das Gewiht reduziert, die Produktionskosten verringert oder der Energieverbrauh reduziert

werden soll. Die L

�

osung solh komplexer Optimierungsaufgaben erfordert das Zusammenspiel

mehrerer mathematisher Disziplinen, insbesondere der Optimierung, Analysis und Numerik

von Di�erentialgleihungen, sowie des Wissenshaftlihen Rehnens.

Bei der Frage, welhe Form eines Teils f

�

ur den vorgesehenen Zwek am g

�

unstigsten ist,

handelt es sih um ein Optimierungsproblem, dessen Zul

�

assigkeitsbereih durh Di�erential-

gleihungen restringiert wird, wobei es sih hierbei meist um partielle Di�erentialgleihungen

handelt. In dieser Arbeit sollen vor allem die numerishe L

�

osung derartiger Optimierungspro-

bleme und die dabei auftretenden Shwierigkeiten diskutiert werden.

F

�

ur Probleme mit nur wenigen Designparametern ist es zwekm

�

a�ig, jene Variablen, die

den Zustand in der Di�erentialgleihung repr

�

asentieren, aus dem Optimierungsproblem zu eli-

minieren. Das dadurh entstehende Optimierungsproblem hat bei weitem weniger Parameter,

wodurh Standardoptimierungsmethoden auf der Basis von SQP-Methoden verwendet wer-

den k

�

onnen. Diese Verfahren approximieren die Hessematrix mittels Quasi-Newton-Formeln,

wie der bekannten BFGS-Formel, soda� nur Routinen zur Auswertung und zur Gradienten-

berehnung von Zielfunktional und Restriktionen notwendig sind.

F

�

ur industriell relevante Probleme ist die Implementierung von Gradientenroutinen meist

sehr arbeitsaufwendig, da eine Funktionsauswertung auh die L

�

osung der Zustandsgleihung,

im hier betrahteten Fall einer partiellen Di�erentialgleihung, inkludiert. Als Alternativen

bieten sih die Verwendung von �niten Di�erenzen oder auh automatishes Di�erenzieren an.

Nah einer Analyse der St

�

arken und Shw

�

ahen dieser Verfahren wird gezeigt, wie man durh

Kombination von automatishem Di�erenzieren und handkodierten Gradientenroutinen auf

exible aber auh eÆziente Art und Weise Sensitivit

�

atsinformation berehnen kann, wobei

die Vorteile dieses Zugangs anhand einer industrierelevanten Dikenoptimierung illustriert

werden.

F

�

ur Probleme mit einer gro�en Anzahl an Designparametern ist ein Zugang, der die Zu-
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viii ZUSAMMENFASSUNG

standsvariablen eliminiert, niht geeignet. Stattdessen wird die Zustandsgleihung als Re-

striktion eines Optimierungsproblems im Produktraum von Zustands- und Designvariablen

betrahtet. Da als Modellbeispiel ein shlehtgestelltes Problem betrahtet wird, werden niht

nur L

�

osungsverfahren auf Basis von SQP-Methoden, sondern auh solhe, die SQP-Methoden

mit Regularisierungsverfahren kombinieren, eingef

�

uhrt. Es wird sowohl die Wohlde�niertheit

der pr

�

asentierten Verfahren als auh deren numerishe Approximation betrahtet. Letztere

f

�

uhrt auf grossdimensionierte Gleihungssysteme mit symmetrishen, inde�niten Matrizen,

welhe mit Uzawa-artigen Verfahren, reduzierten SQP-Verfahren, aber auh simultan gel

�

ost

werden k

�

onnen. Zus

�

atzlih wird durh Verwendung geshahtelter Ansatzr

�

aume das vorge-

stellte Verfahren beshleunigt.
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Notations and Abbriviations

R, R

d

{ Set of real numbers and set of vetors x = (x

i

)

T

i=1;::;d

, x

i

2 R,

i = 1; ::; d.

d { Spae dimension.

u { Salar or vetor valued funtion.

u

h

, u { Finite element funtion and its vetor representation.

K { System matrix K 2 R

m�m

.

h�; �i { Duality produt or salar produt in an Hilbert spae.

k � k

Z

{ Norm in Z.


, � = �
 { Bounded domain (open and onneted subset of R

d

, d = 1; 2; 3)

with suÆiently smooth boundary � = �
.

n { Normal unit (outward) diretion with respet to the boundary

� = �
 of some domain 
.

grad { Gradient, gradu(x) =

�

�u(x)

�x

i

�

T

i=1;::;d

for x 2 R

d

.

grad

�

, r

�

{ Gradient with respet to �.

r

2

J { Hessian of J.

� { Laplae operator, �u(x) =

P

d

i=1

�

2

u(x)

�x

2

i

for x 2 R

d

.

I { Identity matrix.

E { Observation operator.

A

T

{ Transpose of A.

dim(u) { Dimension of the vetor u.

meas � { Measure of the set �.
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xii NOTATIONS AND ABBRIVIATIONS

Æ

ij

{ Kroneker's delta, Æ

ij

= 1 for i = j, Æ

ij

= 0 for i 6= j:

L

2

(
) { Spae of salar square{integrable funtions on 
.

(L

2

(
))

d

{ Spae of vetor valued square{integrable funtions on 
.

L

p

(
) { L

p

(
) = ff : 
! R j u is Lebesque measureable, kuk

p

<1g

with kuk

p

=

�R




juj

p

dx

�

1

p

.

H

1

(
) { H

1

(
) =

�

v 2 L

2

(
) j grad v 2 (L

2

(
))

d

	

:

H

1=2

(�
) { Trae spae of H

1

(
).

H

1

0

(
) { H

1

0

(
) =

�

v 2 H

1

(
) j v = 0 on �


	

:

(H

1

(
))

d

{ (H

1

(
))

d

=

n

v 2 (L

2

(
))

d

j

�v

i

�x

j

2 L

2

(
) 8i; j = 1; : : : ; d

o

:

U { State spae.

U

h

{ Disretized state spae.

Q { Design spae.

Q

h

{ Disretized design spae.

Z { Spae for the data z.

Y { Image spae of the state equation e.

U

�

{ Dual spae of U .

u { State variable.

q { Design variable.

� { Lagrangian multiplier.

u

h

; q

h

{ Disretized state and design variable.

u;q { Vetor representation of disretized state and design variable.

z; z

Æ

{ Exat and noisy data.

J { Objetive.

e(u; q) { State equation.

L { Lagrangian.

m { Number of state parameters.

n { Number of design parameters.

u = (u

1

; : : : ; u

m

) { Components of a vetor.

AD { Automati di�erentiation.

AMG { Algebrai multigrid.

CAD { Computer aided design.
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CG { Conjugate gradient.

FE { Finite element.

FEM { Finite element method.

GMRES { Generalized minimal residual.

IRSQP-method { Iteratively regularized SQP method.

KKT-system { Karush-Kuhn-Tuker system.

LM method { Feasible path Levenberg-Marquardt method.

LMSQP method { Levenberg Marquardt SQP method.

MINRES { Minimal residual.

MG { Multigrid.

MMA { Method of moving asymptotes.

PDE { Partial di�erential equation.

PSSQP method { Produt spae SQP method.

QMR { Quasi minimal residual.

QP { Quadrati programming.

SQP { Sequential quadrati programming.
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Chapter 1

An Overview to Optimal Design

Problems

1.1 Introdution

Optimization plays a role of inreasing importane in today's every day life. Its basi priniple

is very simple: Usually one has a set of parameters whih desribe e.g. a form, a path,

quantities to buy or sell or a apaity to store ertain goods. Eah element of this set of

parameters is rated by a so-alled ost funtional or objetive. The goal of an optimization is

to �nd a parameter vetor to minimize the ost. Typial osts are as the name implies pries

or osts in the �nanial sense, but may also be the drag of an airplane, the loss of energy,

the time to follow a path, the length of a journey or the weight of a struture, to name only

a few, or a (non) linear ombination of (some of) them. Usually, one has to ful�ll additional

onstraints during the optimization whih restrit the hoie of the parameter.

Optimal design problems are no typial optimization problems, although they ful�ll the

requirements above. These problems are loated on the interfae of di�erent �elds, and only

one of them is optimization. The others are

� partial di�erential equations,

� numerial analysis,

� sienti� omputing, and last but not least, for the numerial realization,

� information tehnology.

This peuliarity makes the solution of optimal design problems rather ompliated but on the

other hand very interesting.

In optimal design one tries to improve an objet by modifying its shape. The quality

is measured by a riterion whih an be interpreted as a ost-funtional in the optimization

sense. During reent years, the importane of optimal design has been growing, espeially

in the ommerial market. But still nowadays, hanges in the design are most often based

on long lasting experiene, rather than optimization methods. The main speialty of optimal

design problems is that they are governed by di�erential equations, in many ases partial

di�erential equations (PDEs) or even systems of oupled PDEs.

PDEs desribe many physial models, e.g.

1



2 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

� the Maxwell equations eletromagneti �elds (see e.g. Ida and Bastos [91℄ and refer-

enes therein, or Kost [100℄),

� the Cauhy-Navier equations model ontinuum mehanis (see e.g. Ciarlet [40℄ or

Hughes [90℄), or

� the Navier-Stokes equations desribe the dynamis of uids (see e.g. Girault and

Raviart [64℄).

Usually, analytial solutions for PDEs are not known. That is why, numerial approximation

shemes are used for the alulation of approximate solutions. Nowadays, the most popular

disretization tehnique is ertainly the �nite element method, whih is based on a variational

formulation of the PDE. For linear PDEs the �nite element method leads to a large, sparse

linear equation system whih has to be solved. For time dependent problems appropriate

time-integration shemes have to be used, for non-linear problems Newton's method or a

�x-point approah.

One key-task in the approximate solution of a PDE is the solution of a large sparse linear

equation system. For non-linear or time-dependent problems suh a kind of system has to be

solved repeatedly, e.g. one per time step or non-linear iteration step.

As long as the number of unknowns in this linear equation system is not too large, diret

solution methods, e.g. variants of Gaussian elimination method (see e.g. George and

Liu [57℄ or Duff, Erisman, and Reid [47℄) an be used. Software pakages implementing

these tehniques are e.g. Sparsekit [131℄ of SuperLU [45℄. These methods try to redue

the osts by reordering rows and olumns in suh a way that the �ll-in is minimized, i.e. they

try to minimize the number of nonzero elements introdued by the fatorization proess at

positions where the original matrix was zero. For large systems of equations, these diret

elimination methods beome ineÆient and iterative methods have to be used.

Iterative methods exploit sparsity to a muh higher extent than diret elimination meth-

ods. They mainly need matrix-vetor multipliations and other operations whose alula-

tion time is proportional to the number of unknowns. The best-known iterative methods

are Krylov subspae orretion methods (see e.g. Hakbush [77℄, Axelsson [3℄, Meu-

rant [112℄ or Saad [132℄). Examples for well-known Krylov subspae orretion methods

are

� the Conjugate Gradient Method by Hestenes and Stiefel [85℄,

� the Minimal Residual Method by Paige and Saunders [117℄,

� the Quasi-minimal Residual Method by Freund and Nahtigal [56℄, or

� the Generalized Minimal Residual Method by Saad and Shultz [133℄.

Appropriate preonditioners are neessary for fast onvergene of these methods. There-

with it is possible to onstrut solvers of optimal order, i.e. the CPU-time and the memory

requirements are proportional to the number of unknowns. Multigrid methods, respetively

multigrid preonditioners ful�ll these requirements (Jung and Langer [92℄). They are based

on a well-balaned interplay between a smoothing operator and a oarse grid orretion. One

possibility to alulate the oarse grid orretion is by using nested �nite element spaes.

This is alled geometri multigrid method. If no nested �nite element spaes are available,
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algebrai multigrid methods an be used whih onstrut a matrix hierarhy only by using

�ne-grid information.

Coming bak to optimal design problems in general, we want to emphasize that these are

PDE-onstrained optimization problems, although this term ontains by far more. In the

following setions we want to introdue three lasses of optimal design problems, namely

� optimal sizing problems,

� boundary shape optimization problems, and

� topology optimization problems.

These problems have in ommon, that the design parameters inuene the domain in whih

the PDE has to be ful�lled in some sense. Two other problems lasses whih are not treated

here, are of similar struture, namely

� inverse problems, and

� optimal ontrol problems.

We will make a few general remarks on inverse problem, as one of our model examples is an

inverse problem. Optimal ontrol problems are not treated here, for these we want to refer

to the literature. At the end of this hapter, we introdue an abstrat problem lass whih

will be treated in the following hapters.

1.2 Optimal sizing problems

Optimal sizing problems are PDE onstrained optimization problems where the design pa-

rameters inuene the domain in whih the PDE has to be ful�lled. This is also valid for

boundary shape optimization and topology optimization. The main speialty of optimal sizing

problems is the easy dependene of the geometry on the design parameters.

Optimal sizing is a 2

1

2

-dimensional optimization, where the design parameter is the thik-

ness over a onstant ross setion, i.e. the parameter dependent domain is of the form


(q) =

�

(x

1

; x

2

; x

3

) 2 R

3

j (x

1

; x

2

) 2 !; x

3

2 (�q(x

1

; x

2

); q(x

1

; x

2

))

	

(1.1)

where ! denotes the ross setion and 0 < q � q(x; y) � q, q; q 2 R

+

. In the design domain


(q) the Lame-equations have to be ful�lled, i.e.

â(q;u; v) =

^

F (q; v); 8 v 2

^

U(q) (1.2)

with

â(q;u; v) =

Z


(q)

�u

i

�x

j

E

ijkl

�v

k

�x

l

dx;

^

F (q; v) =

Z


(q)

hf; vi dx+

Z

�

N

(q)

hg; vi ds

where E

ijkl

denotes the elastiity tensor, f the volume fore density and g the surfae fore

density on a part �

N

of the boundary. We use Einstein's summation onvention where

neessary.

^

U denotes the set of admissible displaements, i.e.

^

U(q) =

�

v 2 [H

1

(
(q))℄

3

j v = 0 on �

D

;meas �

D

> 0

	

(1.3)

where �
 = �

D

[ �

N

, �

D

= �

D

and �

D

\ �

N

= ;.

Typial problem settings are e.g.
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� minimize the mass

Z


(q)

�(x) dx

where � denotes the density of the material, under onstraints on the displaements or

on the maximal stress, or

� minimize the variane of the stress under onstraints on the maximal stress; this shall

result in an equal-distribution of the stresses.

Up to now, this is a very general optimal design problem. For optimal sizing we additionally

assume:

� We onsider a plane stress problem, i.e. 
(q) is thin in x

3

diretion.

� 
 is onsidered as a plate that an arry only stresses parallel to the x

1

� x

2

plane.

� The applied surfae trations g and the body fores f are independent of x

3

. Addition-

ally �

N

does not depend on q.

� Last but not least, we want to assume that no displaements in x

3

-diretion exist and

that the displaements in x

1

and x

2

-diretion are both independent of x

3

.

Under these assumptions we an simplify the problem (1.2), whih leads to

a(q;u; v) = F (q; v); 8 v 2 U;

with

a(q;u; v) =

Z

!

q

�u

i

�x

j

E

ijkl

�v

k

�x

l

dx

and

U =

�

v 2 [H

1

(!)℄

2

j v = 0 on 

D

;meas 

D

> 0

	

(1.4)

In the integral de�ning the bilinearform the summation runs only from one to two, as the

domain ! is twodimensional. The main advantage of this formulation is that the parameter

does no more inuene the omputational domain, but is a salar multiplier in the state

equation. E

ijkl

denotes the material elastiity tensor, whereas q � E

ijkl

an be interpreted as

the e�etive elastiity tensor. Due to the assumptions on the external fores,

^

F (q; v) an also

be rewritten in a form that ontains only integrals over onstant domains, i.e.

F (q; v) =

Z

!

q hf; vi dx+

Z



N

hg; vi ds

where 

D

and 

N

denote the boundary part of ! orresponding to �

D

and �

N

, respetively.

As an be seen, the design parameter q appears only as a salar multiplier in the variational

formulation. In most ases, q is disretized by a pieewise onstant funtion when using

the �nite element method. Then, the thikness plays the role of a multiplier of the element

sti�ness matrix whih simpli�es the alulation of derivatives of the state equation a lot.

This problem lass was treated by several people. The �rst to solve this problem numeri-

ally were Rossow and Taylor [128℄ in 1973 using the �nite element method.
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Mahmoud [111℄ used this approah for minimizing the weight of a unit injetor roker

arm. For a faster evaluation of the gradients he used approximation models to approximate

the objetive and the onstraints in a trust region of the urrent iterate. For a lass of

nonlinear materials Stangl [142℄ showed existene of a solution for suh a problem using

�xed-point arguments.

In Chapter 4 we will use an optimal sizing problem as a model example for an optimal

design problem with a small number of design parameters. We will fous our interest mainly

on the numerial solution and the realization of suh a method in an industrial environment.

Most attention will be paid to a fast and exible gradient evaluation and to the possibility to

handle very ompliated objetives and onstraints.

This problem was also onsidered from a ompletely di�erent point of view. By allowing

the design variable to take values lose to zero, this problem hanges its nature to a topol-

ogy optimization problem. Then, the maximization of the sti�ness whih is equivalent to

the minimization of the ompliane is onsidered as objetive. For this problem C

�

ea and

Malanowski [35℄ showed existene of a solution for stritly positive lower thikness bound.

Petersson [118℄ generalized the results to a problem with zero lower thikness bound and

unilateral displaement onstraints. Convergene of a �nite element analysis in L

p

was shown

again by Petersson [119℄ under ertain assumptions on the optimal stress �eld. For publi-

ations dealing with the problem of hekerboard patterns see Setion 1.4.

1.3 Boundary shape optimization problems

Boundary shape optimization problems are in some sense a generalization of optimal sizing

problems. Optimal sizing problems are a 2

1

2

-dimensional optimization with a very simple

parameterization of the domain. Additionally, various assumptions were made to reformulate

the state problem on a �xed domain. In many problems these assumptions an not be ful�lled.

Furthermore, the domain an not be represented in the form needed for an optimal sizing

problem.

In boundary shape optimization the design parameter is the boundary of the omputa-

tional domain. In this sense it is a generalization of an optimal sizing problem. As the

dependeny of the omputational domain on the orresponding parameter an be very gen-

eral we an not assume to be able to transform the state problem into a state problem on a

�xed domain. On the other hand, this enables us to handle a muh larger problem lass.

One of the most diÆult parts in the numerial treatment of boundary shape optimization

problems is the parameterization of the boundary. The main problem is that the results of

the subsequent design optimization depend on the used parameterization in a ritial way, as

the parameterization determines the set of admissible designs. That is why, the hoie of the

parameterization also restrits the possible gain in the objetive.

For illustration, let us onsider the following example: Assume you have a boundary shape

optimization in 2D. The whole boundary is kept �xed, exept one part between two points.

If one uses a straight line for parameterizing this boundary, the set of admissible domains

has only one point, as the two endpoints determine all parameters of the line. When using a

irular ar, one design parameter is left (desribing e.g. the radius of the irular ar). Using

a b-spline urve of a �xed order gives us more degrees of freedom, but still the admissible

set of designs is limited by the hoie of the parameters of the b-spline (e.g. the number of

ontrol nodes or the degree).



6 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

In pratie, two di�erent approahes are used:

� Either the domain is parameterized using geometri parameters, or

� for the alulation, a disretization of the boundary is used as parameterization.

The use of geometri parameters is of ourse oupled to using geometri primitives to desribe

the boundary. Geometri primitives have a natural parameterization, e.g. a irle its enter

and radius. Additionally, onstraints have to ensure the onsisteny of the geometry, i.e. the

end of one edge is the starting point of another, that the boundary shall not self-interset, or

that the onnetion of two edges should be smooth. All these onstraints have to be inor-

porated into a geometry handler mapping the vetor of design parameters to an admissible

geometry, whih makes the implementation rather hallenging. In 2D this an still be done,

as the boundary onsists only of urves, but in 3D this an be very ompliated. Commerial

omputer aided design (CAD) tools often have the funtionality to maintain a parametri

model of a geometry. But usually it is very ompliated to integrate these tools into an

optimal design ode, as the geometry handler has to provide derivative information, at least

if gradient based optimization routines are used. Additionally, onstraints on the geometry

may exist, whih an not be easily represented in the parameter domain, e.g. the minimal

distane between two opposite edges is limited from below.

Often, one tries to esape some of the problems desribed above by using spline-urves

and spline-surfaes to represent the design boundary. Then, some of the parameters of the

spline are the design parameters. Usually, the loation of the ontrol knots and their weight

(if rational b-splines are used) is taken as design parameter and the degree remains �xed.

For details on the representation of splines see e.g. Hoshek and Lasser [89℄. Egartner

and Shulz [48℄ use this approah in the design of turbine blades. Also in aerodynami

optimization, e.g. airfoil design, it is often applied (e.g. Bartelheimer [6℄).

The main advantage of this desription is that the number of design parameters is usually

rather low, espeially in 2D. Nevertheless, problems with several hundred design parameters

are often found in 3D. But in most ases, it is still possible to apply optimization routines

based on dense linear algebra, like NLPQL by Shittkowski [137℄ or NPSOL by Gill,

Murray, Saunders, and Wright [62℄.

When using a disretization of the boundary also for parameterizing the boundary, eah

boundary node of the FE mesh is one design parameter. This approah does not need a

ompliated geometry handler based on a CAD system. That is why, this approah is often

named CAD-free parameterization (see e.g. Mohammadi and Pironneau [113℄). This

approah is very exible, but usually results in problems with very many design parameters.

Additionally, one has to restrit the set of shapes whih an be desribed by this approah to a

set of desired shapes. This an be done e.g. by introduing bounds on the maximal urvature

of the boundary (see e.g. Luk

�

a

�

s [108℄) or by using smoothing operators as proposed by

Mohammadi and Prionneau [113℄.

When doing boundary shape optimization it is neessary to avoid re-meshing of the om-

putational domain during one optimization step, as re-meshing usually introdues jumps in

the objetive. That is why not only a parameterized geometry but also a parameterized mesh

is needed. An often used alternative are mesh-moving strategies. These try to deform the

mesh of a referene geometry to get a mesh of the urrent one. In order to get good results,

tests on the quality of the omputational mesh whih are also used in mesh generation have

to be inluded in these mesh-moving strategies.
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The use of mesh-moving algorithms has usually also impliations on the optimizer. As

these algorithms are not very stable with respet to very large deformations it is better to

use trust region methods. By the trust region parameter it is rather easy to restrit the

maximal hange of the design parameters and therefore of the geometry. When using line

searh methods more robust mesh-moving algorithms are needed.

Most of the aspets presented above deal with the realization of a boundary shape opti-

mization by disretizing the problem and then optimizing this disretized optimization prob-

lem. Nevertheless, derivatives of the objetive with respet to the boundary an also be

alulated by a ompletely di�erent approah, so-alled shape-derivatives. Sokolowski and

Zol

�

esio [141℄ and Delfour and Zol

�

esio [44℄ fous on this approah. A shape-derivative

is a derivative of the ontinuous objetive with respet to the boundary. Usually this results

in a partial di�erential equation for the gradient. For numerial purposes this PDE has to be

disretized, but the solution of this disrete problem is then not a gradient of the disretized

objetive any more. That is why, for numerial purposes the previously desribed onept is

often preferred. In ontrast, shape derivatives are often used to show existene or uniqueness

of solutions (see e.g. Dambrine and Pierre [43℄).

Besides these approahes, also other ones exist, e.g. using �tiious domains (Kunish

and Peihl [103℄) or using level set methods (Hinterm

�

uller and Ring [86℄). But up to

now these methods were not used for real life problems.

1.4 Topology optimization problems

As explained in Setion 1.3 boundary shape optimization problems depend strongly on the

way the design boundary is parameterized. Additionally, the results depend strongly on the

topology of the design domain, as boundary shape optimization an not hange the topology

e.g. by adding or removing holes.

Topology optimization problems are material distribution problems. For these problems

the density of the material is the design parameter. In eah point of the omputational

domain, the density should be either one or zero, indiating material or void respetively. In

some sense, the struture of these problems is quite similar to optimal sizing problems, where

the thikness played a similar role.

The best analyzed topology optimization problem is the maximum-sti�ness problem, often

alled also minimal-ompliane problem whih looks as follows: Find a density q 2 Q and a

state u 2 U , suh that

F (u)! min

(u;q)2U�Q

subjet to a(q;u; v) = F (v); 8 v 2 U;

Z




q dx = V

0

;

0 < q � q � 1

(1.5)

with

a(q;u; v) =

Z




�(q)

�u

i

�x

j

E

ijkl

�v

k

�x

l

dx



8 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

and

F (v) =

Z




hf; vi dx+

Z



N

g v ds:

V

0

denotes a presribed volume, f the volume fore density, g presribed surfae trations on

�

N

. For de�ning the bilinearform Einstein's summation onvention is used. We introdued

the parameter q to be in [q; 1℄ with q > 0. In order to prevent q to attain intermediate values,

speial funtions �(q) are used, e.g.

�(q) = q

m

(1.6)

for a given m whih is known as SIMP (Solid Isotropi Material with Penalization, see e.g.

Bends�e [12℄) or

�(q) =

q

1 + (m� 1)(1 � q)

whih was introdued and analyzed by Stolpe and Svanberg [144℄. m is usually hosen

larger than 1. Borrvall and Petersson [24℄ presented an alternative to prevent q to attain

intermediate values. They allow m to be 1 in (1.6), but introdued an additional onstraint.

An overview on many aspets of topology optimization is presented by the monograph of

Bends�e [13℄ and the review artiles by Eshauer and Olhoff [53℄ or Rozvany [129℄.

The main diÆulty is that the problem (1.5) is ill-posed, i.e. there are generally no so-

lutions. Borrvall and Petersson [24℄ motivated that the set of feasible designs is not

suÆiently losed, i.e. it is not losed with respet to the relevant topology. This introdues

several e�ets whih are quite typial for problem (1.5). On the one hand, mesh dependent

solutions an appear. These are a onsequene of the fat that a solution of the ontinu-

ous problem need not exist. On the other hand, hekerboard patterns and other numerial

anomalies our (see e.g. Bends�e [13℄), whih are a onsequene of non-onvergene when

the mesh is re�ned. All solution methods now try to enlarge or restrit the set of admissible

designs in suh a way that the new set is losed (with respet to a suitable topology) and

solutions exist.

One possibility is to restrit the gradient of the design parameter, i.e.

k grad qk �  (1.7)

where the norm is taken in some L

p

spae. Depending on the hoie of p, we distinguish

several problems:

For p = 1, (1.7) an be interpreted as a bound on the total variation of q. This restrition

is usually alled perimeter onstraint and was �rst numerially treated by Haber, Jog, and

Bends�e [75℄. Petersson [120℄ provides results on the existene of solutions, as well as on

onvergene aspets. Unfortunately, the advantage of perimeter onstraints seems mainly of

theoretial nature. From the numerial point of view, it seems that a solution algorithm is in

general unstable and sensitive to loal optima (Haber, Jog, and Bends�e [75℄).

A di�erent approah are slope onstraints whih orrespond to (1.7) for p =1. These were

introdued in the optimal design of elasti plates byNiordson [114℄. In topology optimization

they were �rst used by Petersson and Sigmund [121℄ where bounds on the diretional

derivatives were used. Again, existene of a solution an be shown. From the numerial point

of view, this approah results in many onstraints. Petersson and Sigmund [121℄ reported

this as a signi�ant drawbak of the method. Zhou, Shyy, and Thomas [161℄ presented

an algorithm whih exploits the harateristis of the onstraints. They reported that the

inorporation of the onstraints required hardly any extra omputational ost.
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The use of L

p

norms for 1 < p <1 was never treated numerially in literature.

A ompletely di�erent approah are restritions using �lters. By introduing a low-pass

�lter, the unwanted high frequeny omponents in the design variable an be redued. Several

approahes were proposed in literature:

Sigmund [140℄ used a �lter for the sensitivities of the objetive in order to prevent too

thin strutures. Although there is no theoretial justi�ation at the moment, this approah

proved to be quite e�etive. Moreover, the solutions seem to be mesh independent.

Bruns and Tortorelli [32℄ apply a molli�er between every optimization iterate to

stabilize the numerial proedure and to �lter high frequeny omponents of q. Bourdin [25℄

showed the existene of solutions for this approah and also the inuene of the �lter radius

on the solution.

Usually, in (1.6) m is taken larger than 1. In Borrvall and Petersson [24℄ a �lter

method is presented whih works also for m = 1. In order to eliminate intermediate densities,

they penalize them. To get also existene of solutions, they use a molli�er to smooth the

density. In Borrvall and Petersson [23℄ results for large sale optimization problems in

3D are presented using this approah.

The main advantage of �lter methods to methods bounding the gradient is that it is pos-

sible to prove mesh independene of the numerial solution (see Bourdin [25℄ and Borrvall

and Petersson [24℄ for �nite element onvergene of the latter two methods). For a good

and detailed overview of these methods see Borrvall [22℄.

For the numerial solution most papers exploit the speial struture of problem (1.5)

to derive an eÆient solver. Svanberg [145℄ developed the Method of moving asymptotes

(MMA) whih is still nowadays used by most topology optimization odes. It is based on a

onvex and separable expansion of the objetive, whih aelerates the alulation of a searh

diretion in the optimization.

An exeption is the paper of Maar and Shulz [110℄. They use an interior point

method for optimizing the problem. Eah quadrati programming problem is solved by a

multigrid method using transforming smoothers. As they used no regularization, they got

mesh-dependent results whih ould also be seen at the presented pitures. Nevertheless the

approah itself seems interesting, although the ode is not faster than odes based on MMA

up to now.

As mentioned above, most topology optimization papers fous on a solution of (1.5).

Reently, Hoppe, Petrova, and Shulz [87, 88℄ presented a solution proedure for a

topology optimization in eletro-magnetis. Up to now, no analysis is available, nevertheless

the numerial results look very promising.

1.5 Inverse problems

Inverse problems are onerned with determining auses for desired or observed e�ets. There-

fore, they appear quite frequently. A very important sublass are parameter identi�ation

problems (see e.g. Banks and Kunish [5℄ or Omatu and Seinfeld [116℄). There, dis-

tributed parameters in an underlying model (usually a partial di�erential equation) are de-

termined from indiret measurements. We will use a member of this lass as model example

in Chapter 5.

The majority of inverse problems is ill-posed, i.e. either the solution does not exist in a

strit sense, or solutions might not be unique and / or might not depend ontinuously on



10 CHAPTER 1. AN OVERVIEW TO OPTIMAL DESIGN PROBLEMS

the data. Therefore, regularization methods have to be used in order to obtain a stable

approximation of the solution in the presene of data noise (introdued e.g. by a measuring

devie). We refer to Engl, Hanke, and Neubauer [50℄ and to Kirsh [99℄ for an overview

of regularization methods for inverse ill-posed problems.

The most well-known lassial approah to regularize an inverse problem is Tikhonov reg-

ularization (see e.g. Chavent and Kunish [37℄ or Engl, Kunish, and Neubauer [51℄).

There we replae the least-squares problem by a lose stable problem. Reently, also the ap-

pliation of iterative regularization methods beame more and more popular (see e.g. Hanke,

Neubauer, and Sherzer [80℄, Hanke [79℄, or Kaltenbaher [94, 95℄). The regularizing

e�et of an iterative regularization method omes form the early termination of the iteration

proedure, where the stopping index is hosen in dependene of the noise level. We refer to

the survey paper by Engl and Sherzer [52℄ for an overview.

1.6 Abstrat problem lass

All previously presented problems have in ommon that eah of these problems an be de-

sribed as a PDE onstrained optimization problem. Of oarse, the objetive has ertain

speialties depending on the spei� type of problem whih an be exploited in numerial

algorithms. Additionally, due to the similar nature, ideas from one problem type an be

transferred to another.

In general, in eah of these problems we try to solve an optimization problem

J(u; q)! min

(u;q)2U�Q

(1.8)

under a onstraining state equation

e(u; q) = F: (1.9)

Additionally, other onstraints on the parameter q 2 Q, the state u 2 U or on both variables

may be present.

The objetive J an be of di�erent type: For the presented topology optimization problem

it is a linear funtion in u and does not depend on q expliitly. For inverse problems it is

usually a funtion of least-squares type omparing the observation whih depends on the state

solution with the given data. Additionally, it ontains usually a regularization term. For sizing

and boundary shape optimization often very general objetives an be found, in many ases

depending on the state solution u alone. Then, the parameter appears only in the onstraints.

Espeially for these rather general funtions it is often diÆult and very time onsuming

to alulate gradient information whih is needed by the optimizer. In these situations,

automati di�erentiation (AD) an help a lot. The main referenes of this tehnique are the

proeedings of the AD onferenes in Brekenridge [68℄, Santa Fe [15℄ and Nie [42℄,

and the monograph by Griewank [67℄. We will show how this tehnique an be used to

aelerate the development of routines for the alulation of derivatives.

The state equation an also be of very di�erent type. We will treat only problems of

ellipti type here, nevertheless optimization problems onstrained by time-dependent or non-

linear state equations are of high pratial importane. We want to mention also the �eld

of multidisiplinary design optimization whih is gaining more and more attention during

the last years. Here, the state parameter onsists of several state variables desribing dif-

ferent physial quantities (e.g. mehanial displaements of an airfoil and the surrounding
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ow �eld). The onstraining state equation is in most ases a oupled �eld problem (e.g. a

uid-solid interation). For this problem lass already the solution of the diret problem is

very hallenging (for examples oupling eletri and mehanial �elds see e.g. Aluru and

White [2℄, Kaltenbaher, Landes, Lerh, and Lindinger [96℄, Kaltenbaher, Lan-

des, Niederer, and Lerh [97℄ Lerh, Kaltenbaher, Landes, and Lindinger [106℄,

or Wahutka [155℄).

The remaining part of this work is organized as follows: In Chapter 2 we introdue the

basi ingredients whih will be neessary in the remaining hapters. We give a short overview

on onstrained optimization and the numerial solution of ellipti partial di�erential equations

using the �nite element method. Additionally, we give an introdution into the numerial

solution of large sparse linear equations using diret elimination methods or iterative methods

with appropriate preonditioning.

Chapter 3 ontains a short introdution into automati di�erentiation. After motivating

its basi ideas, we present the two basi alulation strategies for derivatives { diretional

derivatives and gradients { in the onept of automati di�erentiation. Although the basi

priniple is the hain rule whih is known from basi alulus, this presentation is neessary

to understand the properties of the forward and the reverse mode, as well as their drawbaks.

This setion is ompleted by a short presentation of two lasses of AD tools, tools based on

soure to soure transformation and tools based on operator overloading.

In Chapter 4 we present a new method for solving optimal design problems with few

design parameters. At the beginning we introdue a model problem whih originates from an

industrial design proess. This problem will be used in the following onsiderations. The main

part is the investigation of di�erent gradient alulation strategies and an analysis of their

pros and ons. We end up with a new method for the eÆient alulation of derivatives whih

ombines automati di�erentiation with hand-oded gradient routines. Numerial results

show the eÆieny of this method.

Chapter 5 starts with an analysis of the properties of the optimization strategies presented

in Chapter 4. We work out, why this strategy an only be used for optimal design problems

with few design parameters. After introduing a model problem oming from parameter

identi�ation, we will introdue and analyze an optimization method working in the produt

spae of design and state spae. Unlike the approah in Chapter 4 this approah treats

the state equation as a onstraint during the optimization and does not formally eliminate

it. This introdues additional diÆulties but enables us to solve also design problems with

large design spaes. The numerial solution is based on a sequential quadrati programming

method, where we use iterative methods for solving the underlying QP problem. Hierarhial

strategies an be used for gaining additional speedup. Numerial results showing the eÆieny

onlude this setion.

In Chapter 6 we present a software design for the implementation of optimal design prob-

lems. It is based on the strit splitting of the optimizer and the optimization problem. The

optimization problem itself is subdivided into three parts: One establishing the ommunia-

tion between optimizer and state problem solver, into the state problem itself and into the

objetive. The latter is treated as a funtion mapping the produt spae U � Q into the

real numbers where U denotes the state spae and Q the design spae. These three parts

are desribed in more detail, as well as the funtionality they have to provide to realize the

solution strategies for optimal design problems presented here.
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Chapter 2

Basi Ingredients

2.1 Introdution

For the numerial treatment of optimal design problems as well as inverse problems various

basi ingredients are neessary whih originate from di�erent �elds. On the one hand it is quite

natural that the area of optimization is of major importane. But due to the speial struture

of the problem (1.8), (1.9) it is neessary to have also a good overview on the numerial

solution of partial di�erential equations. This is a very wide �eld, where many di�erent aspets

need to be treated. That is why we want to limit ourselves here to ellipti problems and their

disretization using the �nite element method. Optimal design problems for paraboli and

hyperboli problems are also of high pratial importane, but the numerial treatment of

the forward problem is already ompletely di�erent and they are therefore exluded (f. e.g.

Quarteroni and Valli [123℄ or Grossmann and Roos [72℄). The usual solution method

for ellipti problems using the �nite element method is as follows:

� Subdivide the omputational domain into geometri elements on whih �nite elements

are de�ned. These form a �nite dimensional test and solution spae for the variational

form of the partial di�erential equation.

� By replaing the ontinuous test and solution spaes by their �nite dimensional approx-

imations the variational form of the partial di�erential equation is equivalent to a set

of equations, possibly non-linear.

� The entral part of most numerial solution shemes for this set of equations is a solver

for a set of linear equations. As the oeÆient matrix is large and sparse, nowadays more

and more iterative solvers using appropriate preonditioners are applied. These replae

the up to now used diret solvers, espeially for systems with a very large number of

unknowns.

This hapter shall give an overview on the various tools needed in the later hapters. We

give a short introdution into onstrained optimization, as well as into the �nite element

method. Last but not least we present an overview on some iterative solution methods for

linear systems of equations and to remember some basi fats on preonditioning, espeially

to multi-grid preonditioners.

13
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2.2 Constrained optimization

This setion deals with the optimization of a given objetive where several onstraints on

the variables have to be enfored. For simpliity, we want to restrit ourselves to a �nite

dimensional setting. A general formulation of this problem is

J(x)! min

x2R

n

subjet to 

i

(x) = 0; i 2 I

1

;



i

(x) � 0; i 2 I

2

:

(2.1)

All the funtions J and 

i

; i 2 I

1

[ I

2

, are assumed to be suÆiently smooth and real-valued,

I

1

and I

2

are �nite index sets. J denotes the objetive, 

i

; i 2 I

1

, the equality onstraints,



i

; i 2 I

2

, the inequality onstraints. In unonstrained optimization one an speify onditions

on J whih are neessary or even suÆient for the existene of a loal minimum. In onstrained

optimization these onditions do not operate on the objetive alone but on the Lagrangian

L(x;�) = J(x) +

X

i2I

1

[I

2

�

i



i

(x) (2.2)

whih also inludes the inuene of the onstraints. In (2.2) �

i

; i 2 I

1

[ I

2

denote the ompo-

nents of the Lagrangian multiplier �. These onditions are known as the Karush-Kuhn-Tuker

onditions (KKT onditions) and may be stated as follows:

Theorem 2.1 (First order neessary onditions). Suppose that x

�

is a loal solution of

(2.1). Additionally assume that the gradients of the ative onstraints

fgrad 

i

(x

�

) j i 2 I

1

_ (i 2 I

2

^ 

i

(x

�

) = 0)g (2.3)

are linearly independent. Then there exists a Lagrangian multiplier �

�

with omponents �

�

i

; i 2

I

1

[ I

2

suh that the following onditions are satis�ed:

grad

x

L(x

�

;�

�

) = 0;



i

(x

�

) = 0; i 2 I

1

;



i

(x

�

) � 0; i 2 I

2

;

�

�

i

� 0; i 2 I

2

;

�

�

i



i

(x

�

) = 0; i 2 I

1

[ I

2

:

(2.4)

Proof. Can be found in Noedal and Wright [115℄.

Similar to unonstrained optimization these onditions are only neessary and do not

provide any information whether x

�

is a loal minimum or not. In unonstrained optimization

a neessary ondition for x

�

to be a loal minimum is that the Hessian of the objetive is

positive semide�nite. If it is even positive de�nite, this ondition is suÆient for a loal

minimum. The orresponding onditions for a onstrained optimization problem are:

Theorem 2.2 (Seond order neessary onditions). Suppose that the assumptions of

Theorem 2.1 are valid, that (x

�

;�

�

) satisfy the KKT onditions and that w ful�lls

grad 

i

(x

�

)

T

w = 0; i 2 I

1

;

grad 

i

(x

�

)

T

w = 0; i 2 I

2

^ 

i

(x

�

) = 0 ^ �

�

i

> 0;

grad 

i

(x

�

)

T

w � 0; i 2 I

2

^ 

i

(x

�

) = 0 ^ �

�

i

= 0:

(2.5)
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Then

w

T

r

2

xx

L(x

�

;�

�

)w � 0: (2.6)

Proof. Can be found in Noedal and Wright [115℄.

Theorem 2.3 (Seond order suÆient onditions). Suppose, the assumptions of Theo-

rem 2.2 are ful�lled. If for all w satisfying (2.5)

w

T

r

2

xx

L(x

�

;�

�

)w > 0; (2.7)

then x

�

is a strit loal minimum of (2.1).

Proof. Can be found in Noedal and Wright [115℄.

In the following we will give an overview on Sequential Quadrati Programming (SQP), a

method for e�etively solving nonlinear optimization problems. The SQP method generates

a sequene of iterates minimizing approximations of (2.1). The key idea is to model (2.1) at

the iterate x

k

by a suitable quadrati approximation (the so-alled Quadrati Programming

subproblem) and use the minimizer of this subproblem to de�ne the new iterate x

k+1

.

In order to motivate the hoie of the quadrati subproblem let us forget for a moment the

inequality onstraints in (2.1). The KKT onditions for this equality onstrained optimization

problem form a system of nonlinear equations for (x;�) of the form

F(x;�) =

�

gradJ(x) +A

T

(x)�

(x)

�

= 0 (2.8)

with

A

T

(x) =

�

grad 

1

(x) � � � grad 

l

(x)

�

(2.9)

and l denoting the number of equality onstraints. Under the assumption that A has full

rank, any minimum of the equality onstrained optimization problem satis�es (2.8).

One approah to solve (2.8) is Newton's method. Then, the Newton-step at (x

k

;�

k

) ful�lls

�

x

k+1

�

k+1

�

=

�

x

k

�

k

�

+

�

p

x

p

�

�

(2.10)

where p

x

and p

�

satisfy

�

W(x

k

;�

k

) A

T

(x

k

)

A(x

k

) 0

� �

p

x

p

�

�

=

�

� gradJ(x

k

)�A

T

(x

k

)�

k

�(x

k

)

�

(2.11)

and W denotes the Hessian of the Lagrangian with respet to x, i.e.

W = r

2

xx

L(x;�): (2.12)

The linear equation system (2.11) together with the update formula (2.10) an be reformulated

as

�

W(x

k

;�

k

) A

T

(x

k

)

A(x

k

) 0

� �

p

x

�

k+1

�

=

�

� gradJ(x

k

)

�(x

k

)

�

(2.13)

whih an be reinterpreted as KKT-system in the following sense:
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p

x

and �

k+1

solve the �rst order neessary onditions of the optimization problem

1

2

p

T

W(x

k

;�

k

)p+ gradJ(x

k

)

T

p! min

p2R

n

subjet to A

T

(x

k

)p = �(x

k

)

(2.14)

This quadrati programming (QP) subproblem has a unique solution whih an be alulated

by solving (2.13) if the seond order suÆient onditions are satis�ed.

This equivalene between SQP and Newton's method applied to the optimality ondition

(2.8) is quite useful: For analysis one uses often the Newton point of view, whereas the SQP

framework is of advantage for extending the tehnique also to inequality onstraints and for

deriving pratial algorithms.

The QP framework in (2.14) an be extended straightforward to inlude also inequality

onstraints. Then, for problem (2.1) this read as follows:

1

2

p

T

W(x

k

;�

k

)p+ gradJ(x

k

)

T

p! min

p2R

n

subjet to grad 

i

(x

k

)p = �

i

(x

k

); i 2 I

1

;

grad 

i

(x

k

)p � �

i

(x

k

); i 2 I

2

:

(2.15)

This QP subproblem an be solved e.g. by an ative set strategy (see e.g. Noedal and

Wright [115℄ or Gill, Murray, and Wright [63℄). If the linearized onstraints are

inonsistent, i.e. the feasible set of the optimization problem is empty, additional variables

are introdued and the objetive and the onstraints are modi�ed. E.g. in Flether [55℄

the following modi�ation is proposed (the big-M method):

1

2

p

T

W(x

k

;�

k

)p+ grad J(x

k

)

T

p+M(

1

2

�

2

+ �)! min

p2R

n

;�2R

subjet to grad 

i

(x

k

)p+ (1� �)

i

(x

k

) = 0; i 2 I

1

;

grad 

i

(x

k

)p+ (1� �)

i

(x

k

) � 0; i 2 I

+

2

grad 

i

(x

k

)p+ 

i

(x

k

) � 0; i 2 I

�

2

;

(2.16)

with I

+

2

= fi 2 I

2

j 

i

(x

k

) � 0g, I

�

2

= I

2

n I

+

2

. For this problem p = 0, � = 1 denotes a

feasible point.

As the SQP method is a variant of Newton's method it is only loally onvergent. For an

analysis of onditions whih guarantee loal onvergene see e.g. Boggs and Tolle [21℄. In

order to make it also globally onvergent to a loal optimum, so-alled globalization strategies

are needed. The two best known ones are line searh methods and trust region methods.

Line searh methods introdue a merit funtion � to measure the progress to a solution.

Similar to damped Newton's method the alulation of the orretion in (2.10) is split into

two parts:

� the alulation of a desent diretion and

� the alulation of an appropriate step length.

Unlike to unonstrained optimization we an not use the objetive itself as a riterion for

alulating the step length, but use a merit funtion whih balanes the minimization of the
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objetive with the feasibility with respet to the onstraints. Popular hoies are e.g. the

`

1

-merit funtion (f. Han [78℄ or Powell [122℄)

�(x) = J(x) +

1

�

X

i2I

1

j

i

(x)j +

1

�

X

i2I

2

[

i

(x)℄

+

(2.17)

and its variants where [x℄

+

= max fx; 0g. An alternative is the augmented Lagrangian (f.

Shittkowski [136℄)

�(x;�) = J(x) +

X

i2

�

I

(�

i



i

(x) +

1

2

� 

i

(x)

2

)�

1

2�

X

i2I

2

n

�

I

�

2

i

; (2.18)

where

�

I = I

1

[fi 2 I

2

j 

i

(x) � �

i

�g and � is an approximation to the Lagrangian multiplier.

In both examples � denotes a salar penalty parameter. Both merit funtions are exat

in the sense that for � suÆiently large minimizers of the original onstrained optimization

problem also minimize the merit funtion. For the searh diretion we solve (2.15) or (2.16),

respetively.

The step length has to be hosen in suh a way that it ensures a suÆient derease of

the merit funtion. One set of onditions whih guarantee that are the Armijo-Goldstein-

onditions

�(x

k

) + �

2

�

k

h�

0

k

(x

k

);p

k

i � �(x

k

+ �

k

p

k

) � �(x

k

) + �

1

�

k

h�

0

k

(x

k

);p

k

i (2.19)

with 0 < �

1

< 1=2 < �

2

< 1 (f. Gill, Murray, and Wright [63℄). When �

k

satis�es

(2.19) the step is neither too large nor too small. The easiest proedure for alulating

a suitable � are simple baktraking proedures starting with � = 1 and reduing � in

a geometri manner until (2.19) is satis�ed. For a more elaborated one using paraboli

interpolation see e.g. Luenberger [107℄.

A ruial property in the design of a merit funtion is that is should aept step length

one lose to a solution in order to preserve the quadrati onvergene of the SQP method.

The augmented Lagrangian works well, as long as the estimate of the Lagrangian multiplier is

aurate enough, whereas the `

1

-merit funtion sometimes su�ers from the so-alled Maratos-

e�et, i.e. it does not aept unit step length lose to a loal minimum and therefore auses

a slow-down of the onvergene. Strategies to overome this diÆulty using seond order

orretions an be found e.g. in Noedal and Wright [115℄ or Conn, Gould, and

Toint [41℄.

Trust region methods are motivated in a di�erent way. Unlike line searh methods whih

alulate the searh diretion and the step length in two autonomous steps, trust region meth-

ods try to inorporate both aspets into one alulation step. In unonstrained optimization

this means that an additional onstraint on the maximal inrement is added to the quadrati

sub-problem whih insures that the inrement to the iterate is not too large. A straight

forward generalization of that approah to onstrained optimization problems would lead to

1

2

p

T

W(x

k

;�

k

)p+ gradJ(x

k

)

T

p! min

p2R

m

subjet to grad 

i

(x

k

)p = �

i

(x

k

); i 2 I

1

;

grad 

i

(x

k

)p � �

i

(x

k

); i 2 I

2

;

kpk � �

k

:

(2.20)
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The trust region radius �

k

is updated in eah outer iteration based on omparing the atual

derease in a merit funtion with the predited derease in the QP model. If both are in good

agreement the radius is kept or even inreased, otherwise it is dereased. The main diÆulty

of this generalization is that (2.20) need not always have a solution as the admissible set may

be empty. That is why other generalizations were developed. One an use e.g. a quadrati

model of the augmented Lagrangian merit funtion instead of the Lagrangian in the QP

problem. This results then in

1

2

p

T

W(x

k

;�

k

)p+ grad J(x

k

)

T

p+

1

2

�kvk

2

! min

p2R

n

;v2R

subjet to grad 

i

(x

k

)p = �

i

(x

k

) + �v; i 2 I

1

;

grad 

i

(x

k

)p � �

i

(x

k

) + �v; i 2 I

2

;

kpk � �

k

;

(2.21)

whih always has a feasible point. Other alternatives an be found e.g. in Conn, Gould,

and Toint [41℄.

2.3 The �nite element method

Optimal design problems often inorporate partial di�erential equations (PDEs) desribing

the state. As analyti solutions of these PDEs are usually not available, methods for alu-

lating an approximation to the solution of the PDE are needed. Among the most well-known

there are

� the Finite Element Method (see e.g. Bathe [7℄, Babuska and Strouboulis [4℄,

Braess [26℄, Brenner and Sott [29℄, Ciarlet [39℄, Hughes [90℄, Jung and

Langer [93℄, or Zienkiewiz [163℄),

� the Finite Di�erene Method (see e.g. Grossmann and Roos [72℄, or Samarskij [135℄),

� the Finite Volume Method (see e.g. Grossmann and Roos [72℄, or Heinrih [83℄),

� the Finite Integration Tehnique (see e.g. van Rienen [153℄, or Weiland [156℄),

� or the Boundary Element Method (see e.g. Wendland [157℄, or Chen and Zhou [38℄).

Eah of these methods has its spei� area of appliation. In the following we want to fous

on the �nite element method (FEM) and want to explain the basi properties whih are

needed later on. Furthermore we want restrit ourselves to ellipti boundary value problems

for salar ellipti PDEs of seond order of the form

�div(A(x) grad u(x)) + hB(x); grad u(x)i+ C(x)u(x) = f(x); x 2 
;

u(x) = g(x); x 2 �

D

;

�u

�N

(x) = hA(x) grad u(x);n(x)i = h(x); x 2 �

N

;

(2.22)

where 
 is a bounded domain of R

d

(d is usually 2 or 3) with suÆiently smooth boundary,

�

D

= �

D

, �

D

[ �

N

= �
, �

D

\ �

N

= ;. n denotes the unit outside normal of 
,

�u

�N

the

o-normal derivative. Additionally, A(x) is assumed to be symmetri and uniformly positive
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de�nite with respet to x. g(x) and h(x) denote the Dirihlet and Neumann boundary data,

respetively. Although we restrit ourselves to linear ellipti problems, we want to mention

that optimal design problems where the state variable ful�lls a transient or nonlinear equation

or even a mixed system of equations are important for many pratial appliations but would

make the presentation by far more ompliated. We will remark on this where neessary.

In the following we will use the abbreviation

Lu = f in 
;

u = g on �

D

;

�u

�N

= h on �

N

(2.23)

instead of (2.22). The FEM takes the weak form of the PDE as its starting point. For the

problem stated in (2.22) this looks as

Z




h

hA(x) grad u(x); grad v(x)i+ hB(x); grad u(x)iv(x) +C(x)u(x)v(x)

i

dx =

Z




f(x)v(x) dx+

Z

�

N

h(s)v(s) ds

(2.24)

or in short

a(u; v) = F (v); 8 v 2 U (2.25)

with the bilinear form a(u; v) and the linear form F (v) de�ned by the left-hand side and the

right-hand side of (2.24), respetively. Up to now it was not spei�ed in whih spaes we look

for a solution, as well with whih funtions we test. We ould use the Banah spae C

k

(
),

but these turn out to be rather unsuitable for analyzing PDEs. The appropriate spaes are

Sobolev-spaes, whih are de�ned in a similar way to C

k

but with L

p

taking over the role of

ontinuous funtions. The appropriate spae for stating (2.24), respetively (2.25) is H

1

(
)

whih is de�ned as

H

1

(
) =

�

u 2 L

2

(
) j gradu 2 L

2

(
)

	

: (2.26)

The omplete weak form of (2.21) looks as follows: Find

u 2

�

v 2 H

1

(
) j v = g on �

D

	

: (2.27)

suh that

a(u; v) = F (v) 8 v 2 U =

�

v 2 H

1

(
) j v = 0 on �

D

	

: (2.28)

The appropriate spae for F is U

�

, the dual spae of U , g must be in the trae spae H

1=2

(�

D

)

of H

1

(
) on �

D

. For a omplete overview of Sobolev spaes see Adams [1℄.

For showing existene and uniqueness of a solution we transform the variational form

(2.25) into homogeneous form by introduing

~u = u� ~g

with ~g 2 H

1

(
) and ~g � g on �

D

. Then, ~u 2 U ful�lls

a(~u; v) = F (v)� a(~g; v); 8 v 2 U: (2.29)

The right-hand side of (2.29) is an element of the dual spae of U . The existene and

uniqueness of a solution an by shown by a rather simple abstrat priniple, the so-alled

Lax-Milgram lemma.
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Theorem 2.4 (Lax-Milgram lemma). Let U be a Hilbert spae and assume that

a : U � U ! R (2.30)

is a ontinuous and ellipti bilinear mapping, i.e. that there exist onstants �; � > 0 2 R suh

that

a(u; v) � � kuk kvk; 8u; v 2 U; (2.31)

and

a(v; v) � � kvk

2

; 8 v 2 U: (2.32)

Finally let F : U ! R be a bounded linear funtional on U , i.e. F 2 U

�

.

Then there exists a unique element u 2 U suh that

a(u; v) = F (v) 8 v 2 U: (2.33)

Proof. Can be found in Evans [54℄ or Renardy and Rogers [127℄.

The FEM onstruts an approximation to the solution u of the variational equality (2.28).

Therefore the solution spae as well as the test spae are approximated by a sequene of �nite

dimensional subspaes whih are onstruted as follows:

Let �

h

be a regular triangulation (.f. Ciarlet [39℄) of the domain 
 into geometri

elements, e.g. triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D. On these

geometri elements we de�ne so alled �nite elements using shape funtions with loal support,

e.g. linear, bilinear or quadrati shape funtions. Therewith we de�ne solution and test spaes

e.g. with pieewise linear, bilinear or quadrati funtions. The disretization parameter

h of the family of �nite dimensional subspaes is usually related to the mesh-size of the

triangulation. Additionally we impose that the FE-spaes are nested, i.e.

V

h

1

� V

h

2

if h

1

� h

2

(2.34)

and that this family of FE-spae is omplete in the limit, i.e.

[

h>0

V

h

= H

1

(
): (2.35)

In order to alulate an approximation to the solution of (2.28) we need �nite dimensional

approximations of the solution and the test spae in (2.28). The �nite dimensional approxi-

mation of the solution spae in (2.28) is

U

g

h

= fv

h

2 V

h

j v

h

= g

h

on �

D

g

where g

h

2 V

h

is an approximation of g on �

D

. The �nite dimensional approximation of the

test spae is

U

h

= fv

h

2 V

h

j v

h

= 0 on �

D

g :

By replaing the solution and the test spae in (2.28) by their �nite dimensional analogs we

get a �nite dimensional approximation of (2.28) whih results in

a(u

h

; v

h

) = F (v

h

); 8 v

h

2 U

h

; (2.36)
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with u 2 U

g

h

. For the solution of (2.36) we again homogenize the variational equality. Choos-

ing a basis

� = (�

1

; : : : ; �

m

)

T

2 V

h

(2.37)

of the �nite dimensional subspae U

h

, we may represent u

h

2 U

g

h

via

u

h

= u

T

�+ g

h

(2.38)

with a oeÆient vetor u 2 R

m

. In order to transform (2.36) into a linear system of equations,

we de�ne the sti�ness matrix

K =

�

a(�

j

; �

i

)

�

i;j=1;:::;m

(2.39)

and the load vetor

f =

�

F (�

j

)� a(g

h

; �

j

)

�

j=1;:::;m

: (2.40)

This allows us to write the disretized variational problem (2.36) as

Ku = f : (2.41)

In the following setion we want to analyze the properties of the sti�ness matrix K and show

eÆient algorithms for solving (2.41).

2.4 Iterative solvers and preonditioning

Before we begin the disussion on eÆient solution methods for linear systems of equations as

in (2.41) we repeat the basi properties of the system matrix K. Furthermore we introdue

the basi notation used below.

In many pratial appliations the bilinear form a(�; �) in (2.36) is symmetri, that is

why we restrit our presentations to this ase. Additionally we want to assume that the

propositions of the Lax-Milgram lemma are ful�lled, i.e. the ontinuous system is well-posed.

Due to the onstrution of the FE spaes in Setion 2.3 the number of base funtions in

(2.37) is large, typially the dimension of K is asymptotially

dim(K) = O(h

�d

) (2.42)

where the disretization parameter h denotes the typial average mesh size and d the spae

dimension of the omputational domain. Fortunately, the matrix is sparse. As the �nite

element base funtions have only loal support most entries in K vanish, i.e. the system

matrix is sparse. For a regular triangulation only a �xed number of entries are nonzero in eah

line, i.e. the total number of nonzero entries is proportional to the dimension of the matrix.

That is why, a matrix-vetor multipliation an be realized with O(h

�d

) multipliations.

Due to the assumptions on the bilinear form made above, the sti�ness matrix K is sym-

metri. Furthermore, the disrete system (2.41) is well-posed, i.e. K is regular. But, K

is even positive de�nite, as a(�; �) ful�lls the elliptiity ondition (2.32), i.e. the eigenvalues

�

i

(K); i = 1; : : : ;m of K are real and

0 < �

1

(K) � � � � � �

m

(K): (2.43)

This an be exploited by solution algorithms as we will see later. The orresponding eigen-

vetors '

i

(K); i = 1; : : : ;m form an ortho-normal system, i.e.

h'

i

(K); '

j

(K)i

2

= Æ

ij

(2.44)
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where h�; �i

2

denotes the Eulidian salar produt and Æ

ij

the Kroneker symbol.

The spetral ondition number of the sti�ness matrix, de�ned by

�(K) =

�

m

(K)

�

1

(K)

; (2.45)

is very large as h tends to zero, for the disretization of a PDE of seond order

�(K) = O(h

�2

): (2.46)

We want to solve a sparse linear system of equations with a symmetri, positive de�nite

matrix of very large dimension with a rather large ondition number.

There are two di�erent approahes for solving linear systems of equation: Either using

diret methods or using iterative ones.

Diret methods for solving sparse linear systems perform a Cholesky or Gauss fatorization

of the matrix, i.e. they look for a representation of the form

K = U

T

U

or

K = LU;

respetively. L is a lower triangular matrix where all diagonal elements are 1, and U denotes

an upper triangular matrix. For this fatorization, sparse diret solvers try to redue the

osts by reordering rows and olumns in suh a way that the �ll-in is minimized, i.e. they

try to minimize the number of nonzero elements introdued by the fatorization proess at

positions where the original matrix was zero. Typially, a sparse diret solver onsists of the

following phases:

� First, a olumn pre-ordering solely on the nonzero pattern of the matrix is performed.

This is done in suh a way that the fatorization of the reordered matrix is as sparse

as possible. Unfortunately, this problem is NP-hard (Yannakakis [159℄), so heuristis

are used. Two popular methods are minimum degree ordering and nested-dissetion

ordering.

� Then the matrix is fatorized. In the symmetri and positive de�nite ase, �rst a sym-

boli fatorization using only the matrix pattern is done to get the matrix pattern of

the fatorization and then the fators are alulated. In this ase, the olumn renum-

bering of the �rst phase is also used for renumbering the rows, sine any symmetri

permutation of the rows and olumns will be numerially aeptable. If the matrix is

not symmetri and positive de�nite, the alulation of the pattern of the fators an

not be separated from the fatorization itself. In this ase pivoting is neessary whih

is done without regard to sparsity.

� Finally forward and bakward triangular sweeps are exeuted.

Two referenes to this topi are the books by George and Liu [57℄ or Duff, Erisman,

and Reid [47℄. These tehniques have also been implemented e.g. in Sparskit [131℄ or

SuperLU [45℄.
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Algorithm 2.1 Preonditioned Rihardson iteration

De�ne a damping parameter � , 0 < � <

2



2

Initialize start value u

0

i = 0

while not onverged do

u

i+1

= u

i

+ �C

�1

(f �Ku

i

)

i = i+ 1

end while

Iterative methods for solving large sparse linear systems have been gaining popularity

during the last deade. Until reently diret methods were often preferred by engineers, es-

peially in real life appliations due to their robustness and preditable behavior. However,

diret solvers are ineÆient, not only the omputational e�ort but also the memory on-

sumption is very high, espeially for very large sparse matries. On the other hand, iterative

solvers exploit sparsity to a muh higher extent. They mainly need matrix-vetor multiplia-

tions and other operations whose alulation time is proportional to the number of unknowns.

Iterative solvers are usually eÆient only when ombined with appropriate preonditioners.

That is why we want to treat both aspets together. For the rest of this setion we want to

assume that the symmetri and positive de�nite preonditioner C is spetrally equivalent to

the matrix K, i.e.

9

1

; 

2

2 R

+



1

hCu;ui � hKu;ui � 

2

hCu;ui; 8u 2 R

m

; (2.47)

with positive spetral equivalene onstants 

1

; 

2

. A preonditioner is onstruted in suh a

way that the quotient



2



1

is as small as possible under the restrition that the preonditioning

operation C

�1

d is eÆiently evaluable. The optimal hoies for the spetral equivalene

onstants are



1

= �

min

(C

�1

K)



2

= �

max

(C

�1

K);

(2.48)

where �

min

(C

�1

K) and �

max

(C

�1

K) denote the minimal and maximal eigenvalue of C

�1

K

respetively, whih are both real. In the following we will abbreviate the spetral equivalene

(2.47) by



1

C � K � 

2

C: (2.49)

As K is assumed to be symmetri and positive de�nite, (2.41) is a neessary and suÆient

riterion for a minimizer of the energy funtional

1

2

u

T

Ku� f

T

u! min

u2R

m

: (2.50)

That is why, many iteration shemes an be motivated as minimization algorithms for (2.50).

The easiest method is a variant of the steepest desent method where the step length is

hosen a-priorily. This iteration is usually named Rihardson iteration. A preonditioned

version an be found in Algorithm 2.1. The error iteration sheme an be formulated as

u

i+1

� u = (I� �C

�1

K)(u

i

� u) (2.51)
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Algorithm 2.2 Preonditioned steepest desent iteration

Initialize start value u

0

i = 0

while not onverged do

/* Calulate desent diretion */

r

i

= f �Ku

i

s

i

= C

�1

r

i

/* Calulate step length */

�

i

=

hr

i

;s

i

i

hs

i

;Ks

i

i

/* Update iterate */

u

i+1

= u

i

+ �

i

s

i

i = i+ 1

end while

where I 2 R

m�m

denotes the identity matrix. It an be seen, that the step length does not

depend on the iteration. This implies that the iteration onverges if and only if

�(I� �C

�1

K) < 1: (2.52)

The spetral radius � of the iteration matrix an be bounded using the spetral equivalene

onstants 

1

; 

2

by

�(I� �C

�1

K) � max fj1� �

1

j; j1 � �

2

jg (2.53)

i.e. the iteration onverges for 0 < � < 2=

2

. The right hand side of the above inequality is

minimal for � =

1



1

+

2

whih leads to a onvergene rate of

�(I� �C

�1

K) �

�(C

�1

K)� 1

�(C

�1

K) + 1

�



2

� 

1



2

+ 

1

: (2.54)

An improved version is the steepest desent method. There, the step length parameter

is no more hosen a-priorily, but depends on the iteration. A preonditioned version an be

found in Algorithm 2.2.

A method whih is more elaborated is the onjugate gradient (CG) method, developed

by Hestenes and Stiefel [85℄. It is one of the best known iterative tehniques for solving

sparse symmetri positive de�nite linear systems. It is a representative of a larger lass of

methods, the Krylov-subspae-orretion methods. The basi idea of these methods is to

minimize the defet in the Krylov-subspae

K

k

(A;y) =

n

y;Ay; : : :A

k�1

y

o

(2.55)

generated by a matrix A and a vetor y in the k-th iteration step. The preonditioned

CG-method takes as generating matrix C

�1=2

KC

�1=2

, and as generating vetor the initial

residual. The algorithm is presented in Algorithm 2.3. Compared to the Rihardson itera-

tion it an be seen that the CG algorithm is no more a linear method but it is nonlinear.

Furthermore it is not neessary to provide a suitable damping fator for whih knowledge

or some bounds on the extreme eigenvalues of C

�1=2

KC

�1=2

is needed. The CG iteration
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Algorithm 2.3 Preonditioned onjugate gradient iteration

Initialize start value u

0

r

0

= f �Ku

0

d

0

= C

�1

r

0

s

0

= d

0

i = 0

while not onverged do



i

= hs

i

; r

i

i

�

i

=



i

hKd

i

;d

i

i

u

i+1

= u

i

+ �

i

d

i

r

i+1

= r

i

� �

i

Kd

i

s

i+1

= C

�1

r

i+1

�

i

=



i

hs

i+1

;d

i

i

d

i+1

= s

i+1

+ � d

i

i = i+ 1

end while

alulates an optimal damping fator by itself using the underlying minimization property.

The onvergene an be estimated in the K-energy norm

kyk

K

= hy;Kyi

1=2

: (2.56)

The error in the k-th iteration step of the preonditioned CG algorithm is bounded by

ku

k

� uk

K

� q

k

ku

0

� uk

K

(2.57)

with

q

k

=



k

1 + 

2k

with  =

p

�(C

�1

K)� 1

p

�(C

�1

K) + 1

�

q



2



1

� 1

q



2



1

+ 1

(2.58)

(see e.g. Hakbush [77℄, Meurant [112℄, Axelsson [3℄, or Jung and Langer [93℄ for

details). 

1

; 

2

denote the spetral equivalene onstants (see (2.49)). It an be seen that

this bound is similar to that of the Rihardson iteration, exept that the ondition number

of C

�1

K is replaed by its square root.

For both algorithms we get the unpreonditioned versions by taking C to be the identity

matrix. But it an be seen immediately that the unpreonditioned iterations onverge very

slowly beause the onvergene rate is very lose to 1 for large ondition numbers �(K). That

is why the hoie of e�etive preonditioners is very important. In the following we want to

motivate properties for good preonditioners.

From (2.58) it is immediately lear that one has to take C = K to minimize the on-

vergene rate, whih is of no help due to the e�ort for inverting K. In order to get good

onvergene properties the quotient 

2

=

1

shall be lose to one. In pratie, it should be

at least independent or almost independent of the mesh-size h. Nevertheless applying C

�1

should not be too muh e�ort. The following properties turned out to be very useful:

� The ondition number �(C

�1

K) shall be lose to 1. Additionally it should be bounded

from above independently of the mesh-size parameter h of the disretization.
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� The omputational e�ort of the preonditioning operation C

�1

should be not too high,

if possible proportional to a multipliation with K.

� The memory requirements for realizing the preonditioning step should be omparable

with the ones needed for a multipliation with K.

No preonditioning, i.e. C = I learly ful�lls the latter two requirements, but the ondition

number �(C

�1

K) behaves like O(h

�2

) whih implies that the iteration onverges extremely

slowly. Classial iteration proedures like the Jaobi- or the Gau�-Seidel method do not

improve this behavior. On the other hand, taking C = K results in a diret solver, for whih

the �rst property is learly ful�lled. Nevertheless it is in general impossible to ful�ll the other

two.

Multigrid preonditioners have shown to ful�ll all 3 properties (see e.g. Hakbush [76℄ or

Jung and Langer [92℄). They are based on a well-balaned interplay between a smoothing

operator and a oarse grid orretion and an be motivated in the following way:

Let's onsider the error after k iterations

z

k

= u

k

� u (2.59)

and develop it into a Fourier sequene taking the eigenfuntions of K as basis. From the

analysis of lassial iteration methods like Jaobi of Gau�-Seidel it it known, that they redue

the high-frequeny omponents of the error very fast (Hakbush [77℄) whereas they have

problems to redue the low frequeny omponents of the error. That is why, the smooth part

of the error (after smoothing the high-frequeny omponents on the �ne grid) is approximated

on a oarser grid. The orresponding equation system on the oarser grid an be solved easier,

as it ontains by far fewer unknowns. Furthermore the idea an be applied reursively whih

leads to the multigrid iteration presented in Algorithm 2.4. The key-point is the eÆient

interplay between the smoothing operator and the oarse grid orretion.

The idea presented above is based on nested �nite element spaes whih are needed for

the de�nition of the oarse grid system. These are often not available due to limitations of the

omputer program or the oarsest equation system is still too large for an eÆient appliation

of a sparse diret solver. Then, algebrai multigrid methods an be applied. These mimi

the oarse grid and de�ne smoothing and prolongation operators using only the sti�ness

matrix itself or using only information on the �nest grid. An overview of standard multigrid

methods as well as algebrai multigrid methods is presented in Trottenberg, Oosterlee,

and Sh

�

uller [152℄. For publiations fousing more on algebrai multigrid methods see

Reitzinger [126℄ or Ruge and St

�

uben [130℄ and referenes therein.
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Algorithm 2.4 Basi onept of a symmetri multigrid V-yle MgStep (`, K

`

, f

`

, u

`

)

/* ` denotes the level, ` = 1 is the oarsest level */

if ` == 1 then

solve the system on the oarsest grid, u

`

= K

�1

`

f

`

else

/* Pre-smoothing: */

/* S denotes the smoothing operator */

/* � denotes the number of smoothing steps */

u

`

= S

�

`

(u

`

; f

`

)

/* Defet alulation */

d

`

= f

`

�K

`

u

`

/* Restrition onto oarser grid */

/* P

`

denotes the prolongation operator between level `� 1 and ` */

d

`�1

= P

T

`

d

`

/* Solve oarse grid system */

/* K

`�1

denotes the sti�ness matrix on the oarser grid */

MgSTEP(`� 1, K

`�1

, d

`�1

, w

`�1

)

/* Prolongation from the oarser mesh to the urrent one */

w

`

= P

`

w

`�1

/* Add oarse grid orretion */

u

`

= u

`

+w

`

/* Post-smoothing */

u

`

= (S

�

`

)

T

(u

`

; f

`

)

end if
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Chapter 3

Automati Di�erentiation, an

Introdution

3.1 Motivation

During the last deades the simulation tools used in produt design beame faster and more

and more elaborated. Therefore, the interest on sensitivities of the output with respet to

hanges in the design or other input quantities (e.g. material parameters) inreased. The

main problem, whih arose, resulted from the fat that meanwhile good simulation tools

were available, but non of the program designers ever thought on derivatives during the

development of the simulation tool. Still nowadays people often use �nite di�erenes (see e.g.

Haase and Lindner [73℄) due to this fat.

One alternative to �nite di�erenes would be to use omputer algebra and symboli meth-

ods for generating ode to alulate derivatives. Symboli methods take a losed form repre-

sentation of a formula as their starting point. Usually this is of the form

y = f(x) with x 2 R

n

;y 2 R

m

. (3.1)

These methods do not use any information on how to evaluate f and whih intermediate

results to store. They apply the elementary rules of alulus to f , get a huge expression

representing the derivative and try to simplify this expression using algebrai manipulation.

Typial examples for software pakages of that kind areMaple [125℄ orMathematia [158℄.

This approah works �ne for small examples but reahes its bounds for more ompliated ones

or when higher order derivatives are needed. Table 3.1 ontains the omplexity of a C-ode

to evaluate the alulated derivatives (the numbers were taken from presentation notes of

A. Griewank). As an be seen, the omplexity of the ode for alulating the derivative

explodes exponentially whih makes a symboli approah ompletely unattrative if not even

impossible.

During the same time a ompletely di�erent and not so well known sienti� ommunity

grew up, whih mainly foused on doing derivatives. This area is now alled Automati di�er-

entiation or Algorithmi di�erentiation, short AD. Their approah was ompletely di�erent

to the one in omputer algebra and symboli omputation. In AD the starting point is a

omputer program to evaluate the funtion. This omputer program an also be seen as a

losed form representation, nevertheless it is ompletely di�erent to the input of omputer

29
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derivative order lines of C-Code

0 1

1 2

2 49

3 421

4 4164

5 57027

Table 3.1: C ode generated by Mathematia (CForm), ourtesy by A. Griewank

algebra pakages. In a omputer program the implementing person grouped several state-

ments together to alulate intermediate results. These intermediate results are then used to

alulate new intermediate results or the funtion value, respetively. When implementing

a derivative there is no need to propagate all the symboli derivative information of the ele-

mentary funtions into one �nal formula. It is by far better to exploit the struture using the

intermediate results generated in a omputer program also to alulate derivatives.

In AD two di�erent ways to alulate derivatives were developed: On the one hand the

forward mode whih is omparable to diretional derivatives, on the other hand the reverse

mode whih an be ompared to gradient evaluation. Both are explained in more detail in

Setion 3.3 and Setion 3.4, respetively. At the beginning there is a short introdution into

the framework and notation used in the following setions. We use the same notation as in

the monograph by Griewank [67℄ whih an be seen as the standard referene on this topi.

3.2 Framework and notation

On a very basi level every routine for evaluating a funtion an be subdivided into 3 om-

ponents:

� Copy the values of the independent variables to internal variables.

� Evaluate the body of the funtion using only internal variables for storing intermediate

results.

� Assign the internal variables ontaining the results to the dependent variables.

As the �rst and the last part ontain only assignments it is enough to analyze the middle-

setion with uses only internal variables. This variable vetor an be written as

[v

1�n

; : : : ; v

0

| {z }

x

; v

1

; : : : ; v

l�m

; v

l�m+1

; : : : ; v

l

| {z }

y

℄: (3.2)

Eah value v

i

is obtained by applying an elementary funtion �

i

to some set of arguments v

j

with j < i, so that we an write

v

i

= �

i

�

(v

j

)

j�i

�

: (3.3)

Some elementary funtions are listed in Table 3.2. For a more omplete list seeGriewank [67,

p. 25℄. For simpliity we restrit our attention to smooth funtions here. For real life situations

also Lipshitz ontinuous funtion like e.g. juj, min(u; v), k(u

1

; : : : ; u

n

)k

2

, max(u; v) or even
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Essential Optional

u+ v, u � v u� v

�u,   � u, � u

1=u u=v

exp(u), log(u) u



sin(u), os(u) tan(u), arsin(u)

u; v variables,  onstant

Table 3.2: Examples for elementary funtions

non-smooth funtions like e.g. the sign of a number sign(u) or the Heaviside-funtion heav(u)

are needed (e.g. to represent branhes in the ontrol ow). For a treatment of these funtions

see Griewank [67, Chapter 11℄.

The dependene relation j � i in (3.3) means that v

i

depends diretly only on some of

the v

j

; j < i, typially on one or two indies j < i. This dependene relation de�nes a partial

ordering of all indies i = 1 � n; : : : ; l. The relations of the variables v

i

; i = 1 � n; : : : ; l an

be visualized in a omputational graph. This is an ayli graph in whih the verties de�ne

variables and an ar runs from v

j

to v

i

if and only if j � i. The roots of the graph represent

the independent variables, the leafs the dependent ones.

To summarize the onsiderations the general evaluation proedure of a funtion an be

seen in Algorithm 3.1. We highlighted the three evaluation phases using omment statements

in a C-like syntax. In the following setions we will use this general evaluation proedure to

show how diretional derivatives and gradients an be implemented in priniple.

In order to make this notation learer let us onsider the following example taken from

Griewank [67℄. This example will also be used for the illustration of the forward and reverse

mode in the following setions.

Let f : R

2

! R be de�ned as

y =

�

sin

�

x

1

x

2

�

+

x

1

x

2

� exp(x

2

)

�

�

�

x

1

x

2

� exp(x

2

)

�

: (3.4)

The evaluation proedure for this simple formula an be seen in Algorithm 3.2. The three dis-

Algorithm 3.1 General evaluation proedure of a funtion

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

end for

/* Calulation phase */

for i = 1 to l do

v

i

= �

i

�

(v

j

)

j�i

�

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

end for
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Algorithm 3.2 Evaluation trae of a simple model example

/* Assignment phase */

v

�1

= x

1

= 1:5000

v

0

= x

2

= 0:5000

/* Calulation phase */

v

1

= v

�1

=v

0

= 1:5000=0:5000 = 3:0000

v

2

= sin(v

1

) = sin(3:0000) = 0:1411

v

3

= exp(v

0

) = exp(0:5000) = 1:6487

v

4

= v

1

� v

3

= 3:000 � 1:6487 = 1:3513

v

5

= v

2

+ v

4

= 0:1411 + 1:3513 = 1:4924

v

6

= v

5

� v

4

= 1:4924 � 1:3513 = 2:0167

/* Assignment phase */

y = v

6

= 2:0167

PSfrag replaements

v

�1

v

0

v

1

v

2

v

3

v

4

v

5

v

6

Figure 3.1: Computational graph of a simple model example

tint phases of the evaluation an be seen learly, the �rst phase ontaining only assignments,

the alulation phase and �nally the phase assigning the output variables. A omputational

graph of the alulation phase an be found in Figure 3.1. We see that the evaluation of

the formula is not done straightforward, but in a lever way by eliminating ommon sub-

expressions and using internal variables for them. As we will see, this is one of the serets

to redue the evaluation e�ort for derivatives ompared to the evaluation of a derivative gen-

erated by a symboli omputation pakage. We want to reuse this very simple example to

illustrate how the forward and the reverse mode alulate derivatives.

3.3 The forward mode { Propagation of tangents

In this setion we want to alulate diretional derivatives, also alled tangents of funtions.

It is assumed that the funtion an be deomposed into a sequene of elementary funtions

whih are ontinuously di�erentiable. In ontrast to approximating the derivative by �nite

di�erenes, we obtain trunation error free numerial values for the derivative by using the

method presented here.

For the forward mode let us onsider a funtion

f : R

n

! R

m

; x 7! f(x): (3.5)

As we want to alulate a diretional derivative, let us further introdue a urve

x : R ! R

n

; t 7! x(t) (3.6)



3.3. THE FORWARD MODE { PROPAGATION OF TANGENTS 33

and de�ne the resulting urve

y : R ! R

m

; t 7! f(x(t)): (3.7)

Aording to the hain rule the derivative of y is de�ned by

_
y(t) =

d

dt

f(x(t)) = f

0

(x(t)) �
_
x(t); (3.8)

where f

0

2 R

m�n

denotes the Jaobian of f .
_
x an be interpreted as diretion at the point x(t)

and
_
y denotes the diretional derivative of f into the diretion of

_
x then. From a geometrial

point of view
_
x and

_
y an be interpreted as tangents of x(t) respetively y(t). f

0

maps

tangents along urves in the de�nition spae of f onto tangents of urves in its image spae.

That is why this approah is also alled propagation of tangents.

Let us now assume that f an be deomposed into elementary funtions as desribed in

Setion 3.2, i.e.

f(x) = (�

l

Æ �

l�1

Æ � � � Æ �

2

Æ �

1

)(x): (3.9)

Then using the hain rule one obtains

f

0

(x) �
_
x = �

0

l

� �

0

l�1

� � � � � �

0

2

� �

0

1

�
_
x (3.10)

for its derivative, whih an be evaluated as

f

0

(x) �
_
x = �

0

l

�

�

�

0

l�1

�

�

� � �

�

�

0

2

�

�

�

0

1

�
_
x

��

� � �

��

(3.11)

due to assoiativity. In the framework of Setion 3.2 the evaluation proedure for (3.11) an

be desribed as in Algorithm 3.3. Assembling the omplete Jaobian is not needed and usually

Algorithm 3.3 General evaluation proedure of the diretional derivative of a funtion

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

_v

i�n

= _x

i

end for

/* Calulation phase */

for i = 1 to l do

v

i

= �

i

�

(v

j

)

j�i

�

_v

i

=

P

j�i

�

�v

j

�

i

�

(v

k

)

k�i

�

� _v

j

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

_y

m�i

= _v

l�i

end for

quite uneonomial exept when very many di�erent diretional derivatives at a �xed point

x are needed. In this diretional derivative proedure _v

i

an be interpreted as the diretional

derivative of v

i

into the diretion
_
x. The main di�erene of the AD approah ompared to
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� [�;

_

�℄

w =  w = 

_w = 0

w = u� v w = u� v

_w = _u� _v

w = u � v _w = _u � v + u � _v

w = u � v

w = 1=u w = 1=u

_w = �w � w � _u

w =

p

u w =

p

u

_w = 0:5 � _u=w

w = u



_w = _u=u

w = u



_w =  � w � _w

w = exp(u) w = exp(u)

_w = w � _u

w = log(u) _w = _u=u

w = log(u)

w = sin(u) _w = os(u) � _u

w = sin(u)

Table 3.3: Elementary funtions and their tangent statements

the symboli alulation of derivatives is the fat that numerial values of the derivatives are

propagated rather than their orresponding symboli expressions.

In Algorithm 3.3 we plaed the tangent statement to alulate _v

i

after the original state-

ment as this order of alulation seems quite natural. As long as two variables do not overwrite

it is not neessary to think of a speial exeution order of the statements alulating the fun-

tion value and its derivative. However, in real programs several variables v

j

often share one

ommon storage loation. Espeially when v

i

shares the storage loation with one of the

arguments v

j

of �

i

it is neessary to update _v

i

before v

i

is updated. That is why, soure

to soure transformers (see also Setion 3.5) always put the derivative statement ahead of

the original one. On the other hand the value of the derivative _v

i

an often be alulated

easier when v

i

is already known. Therefore �

i

and

_

�

i

should be evaluated simultaneously

sharing intermediate results. The most elementary ases are listed in Table 3.3. It is easy

to observe that for the omputation of
_
y eah elementary funtion is proessed exatly one.

With respet to the omputational omplexity of evaluating
_
y this implies the following:

Theorem 3.1. Assume that for eah �

i

the e�ort for evaluating �

0

i

�
_
x is of the same order as

evaluating �

i

itself, i.e. there exists a onstant  > 0 suh that for eah elementary funtion

�

i

WORK(�

0

i

�
_
x) �  WORK(�

i

) (3.12)

is valid (whih is obviously true for the funtions listed in Table 3.3), then also the e�ort for

evaluating
_
y is of the same order as evaluating y, i.e.

WORK(
_
y) �  WORK(y): (3.13)
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For assembling the omplete Jaobian of f n forward propagations are needed, indepen-

dent of the dimension of the image spae. This makes the forward mode very attrative for

alulating Jaobians of funtions with low dimensional de�nition spae and high dimensional

image spae. We will see in the next setion, that for the reverse mode the omputational

omplexity of alulating a gradient is proportional to the dimension of the image spae and

not the de�nition spae, whih is advantageous for many optimization problems.

Let us now return to our example of Setion 3.2. In order to illustrate the presented

approah the evaluation proedure for the diretional derivative into the diretion ( _x

1

; _x

2

)

an be found in Algorithm 3.4.

Algorithm 3.4 Evaluation trae of the diretional derivative for a simple model example

/* Assignment phase */

v

�1

= x

1

= 1:5000

_v

�1

= _x

1

= 1:0000

v

0

= x

2

= 0:5000

_v

0

= _x

2

= 0:0000

/* Calulation phase */

v

1

= v

�1

=v

0

= 1:5000=0:5000 = 3:0000

_v

1

= ( _v

�1

� v

�1

� _v

0

)=v

0

= 1:0000=0:5000 = 2:0000

v

2

= sin(v

1

) = sin(3:0000) = 0:1411

_v

2

= os(v

1

) � _v

1

= �0:9900 � 2:0000 = �1:9800

v

3

= exp(v

0

) = exp(0:5000) = 1:6487

_v

3

= v

3

� _v

0

= 1:6487 � 0:0000 = 0:0000

v

4

= v

1

� v

3

= 3:000 � 1:6487 = 1:3513

_v

4

= _v

1

� _v

3

= 2:0000 � 0:0000 = 2:0000

v

5

= v

2

+ v

4

= 0:1411 + 1:3513 = 1:4924

_v

5

= _v

2

+ _v

4

= �1:9800 + 2:0000 = 0:0200

v

6

= v

5

� v

4

= 1:4924 � 1:3513 = 2:0167

_v

6

= _v

5

� v

4

+ v

5

� _v

4

= 0:0200 � 1:3513 + 1:4924 � 2:0000 = 3:0118

/* Assignment phase */

y = v

6

= 2:0167

_y = _v

6

= 3:0118

3.4 The reverse mode { Propagation of gradients

This setion deals with the alulation of gradients. As in Setion 3.3 it is assumed that the

funtion to be di�erentiated an be deomposed into a �nite sequene of elementary funtions

being ontinuously di�erentiable.

Let us onsider a funtion

f : R

n

! R

m

; x 7! f(x): (3.14)

and a weighting vetor
�
y 2 R

m

and de�ne a salar valued funtion z by

z : R

n

! R; x 7! h
�
y; f(x)i

R

m

=
�
y

T

f(x): (3.15)
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Aording to the hain rule the gradient of z is de�ned by

�
x = grad z = grad

�

�
y

T

f(x)

�

=
�
y

T

f

0

(x) (3.16)

where f

0

2 R

m�n

denotes the Jaobian of f . Geometrially
�
y and �z an be interpreted in the

following sense: The set

�

y j
�
y

T

y � 

	

de�nes a hyperplane in the image spae and due to the

impliit funtion theorem

�

x j
�
y

T

f(x) � 

	

de�nes a smooth hypersurfae in the de�nition

spae.
�
y denotes the normal of the hyperplane in the image spae,

�
x the orresponding normal

onto the hypersurfae in the de�nition spae.

In analogy to the previous setion let us assume that f an be deomposed into elementary

funtions, i.e.

f(x) = (�

l

Æ �

l�1

Æ � � � Æ �

2

Æ �

1

)(x): (3.17)

For the gradient of z we get

�
x =

�
y

T

� �

0

l

� �

0

l�1

� � � � � �

0

2

� �

0

1

; (3.18)

whih an be grouped as

�
x =

��

� � �

��

�
y

T

� �

0

l

�

� �

0

l�1

�

� � �

�

� �

0

2

�

� �

0

1

(3.19)

due to assoiativity. In the frame of Setion 3.2 the evaluation proedure for (3.19) an be

written as shown in Algorithm 3.5. In a omputer program the information to build

X

i�j

�v

j

�

�v

j

�

i

�

(v

k

)

k�i

�

(3.20)

is not available. For eah �

i

it is known whih arguments it depends on, but not whih

funtions �

i

depend on a given v

j

. That is why one usually avoids to form the sum over

i � j and uses an inremental setup instead. This an be found in Algorithm 3.6. It an be

seen that �rst all intermediate variables are alulated using a normal funtion evaluation.

Then all the adjoint quantities are alulated by exeuting the aording statements in reverse

order. The values of the intermediate variables are needed for the evaluation of the derivatives

of the elementary funtions and an usually not be alulated on the y as in the forward

mode. That is why they have to be saved during the forward run for the evaluation of the

derivative.

One interpretation of the adjoint variables whih also explains their name, is via La-

grangian multipliers. Let us view the evaluation of z in the following way: We de�ne a

onstrained optimization problem

�
y

T

y! min (3.21)

subjet to the following equality onstraints:

�

i

�

(v

k

)

k�i

�

� v

i

= 0 8i = 1; : : : ; l (3.22)

v

l�i

� y

l�i

= 0 8i = 1; : : : ; l: (3.23)

Then, the Lagrangian variables orresponding to the equality onstraints are exatly the

adjoint variables omputed by the reverse mode.

In Table 3.4 the adjoint operations for some elementary funtions an be found. We
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Algorithm 3.5 General evaluation proedure of the gradient of a funtion

/* Funtion evaluation to alulate values of intermediate variables */

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

end for

/* Calulation phase */

for i = 1 to l do

v

i

= �

i

�

(v

k

)

k�i

�

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

end for

/* Reverse sweep to alulate adjoint variables */

/* Assignment phase */

for i = 0 to m� 1 do

�v

l�i

= �y

m�i

end for

/* Calulation phase */

for j = l �m to 1� n step �1 do

�v

j

=

P

i�j

�v

i

�

�v

j

�

i

�

(v

k

)

k�i

�

end for

/* Assignment phase */

for i = n to 1 step �1 do

�x

i

= �v

i�n

end for

�

�

�

w =  �w = 0

w = u� v �u = �u+ �w

�v = �v + �w

w = u � v �u = �u+ �w � v

�v = �v + �w � u

w = 1=u �u = �u� �w � w � w

w =

p

u �u = �u+ 0:5 � �w=w

w = u



�u = �u+ ( � �w) � w=u

w = exp(u) �u = �u+ �w � w

w = log(u) �u = �u+ �w=u

w = sin(u) �u = �u+ �w � os(u)

Table 3.4: Elementary funtions and their reverse statements for an inremental setup
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Algorithm 3.6 General evaluation proedure of the gradient of a funtion, inremental setup

/* Funtion evaluation to alulate values of intermediate variables */

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

end for

/* Calulation phase */

for i = 1 to l do

v

i

= �

i

�

(v

k

)

k�i

�

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

end for

/* Reverse sweep to alulate adjoint variables */

/* Assignment phase */

for i = 0 to m� 1 do

�v

l�i

= �y

m�i

end for

for i = 1 to l �m do

�v

i

= 0

end for

/* Calulation phase */

for i = l to 1 step �1 do

for all j � i do

�v

j

= �v

j

+ �v

i

�

�v

j

�

i

�

(v

k

)

k�i

�

end for

end for

/* Assignment phase */

for i = n to 1 step �1 do

�x

i

= �v

i�n

end for
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presented an inremental setup in the table beause in pratie only inremental setups are

used.

Up to now we always assumed no overwriting of variables, i.e. two variables never share

the same storage loation. However, this an be justi�ed only for the theoretial motivation.

In real programs usually several variables v

j

share one ommon memory loation. As the

values of the intermediate variables are needed in the reverse sweep, one has to enhane the

evaluation proedure found in Algorithm 3.6 to ope with overwriting. One way is to add

load and store ommands whih store the values on an external �le (often alled tape) before

being overwritten and load them from the �le before being used in the reverse sweep. The

enhaned version of the evaluation proedure of Algorithm 3.6 an be found in Algorithm 3.7.

For a more details see Griewank [67℄.

Coming bak to Algorithm 3.6 wee see easily that for the omputation of �y eah elemen-

tary funtion is proessed exatly one. This implies the following for the omputational

omplexity of a gradient evaluation.

Theorem 3.2. Under the assumption that for eah �

i

the e�ort for the reverse operation

�

�

i

is of the same order as evaluating the elementary funtion itself, i.e. there exists a onstant

 > 0 suh that for eah elementary funtion �

i

WORK(

�

�

i

) �  WORK(�

i

) (3.24)

is valid (whih is obviously true for the funtions listed in Table 3.4), then the e�ort for

evaluating
�
x is of the same order as alulating z, i.e.

WORK(
�
x) �  WORK(z) (3.25)

where the onstant is small.

For assembling the whole Jaobian of f m reverse propagations are needed, independently

of the number of design parameters. This makes the reverse mode very attrative for many

real life problems in large sale optimization, where the image spae is usually of rather low

dimension whereas the de�nition spae is high dimensional.

Let us now return to our model example of Setion 3.2. In order to illustrate the presented

approah the evaluation proedure for the gradient an be found in Algorithm 3.8.

3.5 Tools

Up to now we onentrated mainly on the theoretial bakground of the forward and the

reverse mode and showed how diretional derivatives and gradient information an be obtained

by transforming the original omputer program into a new one. But if the transformed ode

would have to be implemented by hand, this would not only be time onsuming but also

pretty error-prone. Furthermore, there would be only few advantages to ompletely hand-

oded routines (the most important one is that it is lear whih part of the derivative ode

has to be hanged when the ode for the funtion evaluation hanges). That is why in the

AD-ommunity tools were developed to support this program transformation during the last

deade. Nevertheless it is neessary to understand the fundamentals of AD in order to apply

these tools eÆiently.
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Algorithm 3.7 General evaluation proedure of the gradient of a funtion, inremental setup

with overwriting of variables

/* Funtion evaluation to alulate values of intermediate variables */

/* Assignment phase */

for i = 1 to n do

v

i�n

= x

i

end for

/* Calulation phase */

for i = 1 to l do

STORE v

i

v

i

= �

i

�

(v

k

)

k�i

�

end for

/* Assignment phase */

for i = m� 1 to 0 step �1 do

y

m�i

= v

l�i

end for

/* Reverse sweep to alulate adjoint variables */

/* Assignment phase */

for i = 0 to m� 1 do

�v

l�i

= �y

m�i

end for

for i = 1 to l �m do

�v

i

= 0

end for

/* Calulation phase */

for i = l to 1 step �1 do

LOAD v

i

for all j � i do

�v

j

= �v

j

+ �v

i

�

�v

j

�

i

�

(v

k

)

k�i

�

end for

�v

i

= 0

end for

/* Assignment phase */

for i = n to 1 step �1 do

�x

i

= �v

i�n

end for
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Algorithm 3.8 Evaluation trae of the gradient for a simple model example

/* Funtion evaluation to alulate values of intermediate variables */

/* Assignment phase */

v

�1

= x

1

= 1:5000

v

0

= x

2

= 0:5000

/* Calulation phase */

v

1

= v

�1

=v

0

= 1:5000=0:5000 = 3:0000

v

2

= sin(v

1

) = sin(3:0000) = 0:1411

v

3

= exp(v

0

) = exp(0:5000) = 1:6487

v

4

= v

1

� v

3

= 3:000 � 1:6487 = 1:3513

v

5

= v

2

+ v

4

= 0:1411 + 1:3513 = 1:4924

v

6

= v

5

� v

4

= 1:4924 � 1:3513 = 2:0167

/* Assignment phase */

y = v

6

= 2:0167

/* Reverse sweep to alulate adjoint variables */

/* Assignment phase */

�v

6

= �y = 1:0000

�v

0

= �v

1

= �v

2

= �v

3

= �v

4

= �v

5

= 0:0000

/* Calulation phase */

�v

5

= �v

5

+ �y � v

4

= 0:0000 + 1:0000 � 1:3513 = 1:3513

�v

4

= �v

4

+ �y � v

5

= 0:0000 + 1:0000 � 1:4924 = 1:4924

�v

2

= �v

2

+ �v

5

= 1:3513

�v

4

= �v

4

+ �v

5

= 1:4924 + 1:3513 = 2:8437

�v

3

= �v

3

� �v

4

= �2:8437

�v

1

= �v

1

+ �v

4

= 2:8437

�v

0

= �v

0

+ �v

3

� v

3

= 0:0000 � 2:8437 � 1:6487 = �4:6884

�v

1

= �v

1

+ �v

2

� os(v

1

) = 2:8437 + 1:3514 � (�0:9900) = 1:5059

�v

0

= �v

0

� �v

1

� v

1

=v

0

= �4:6884 � 1:5059 � 3:0000=0:5000 = �13:7239

�v

�1

= �v

�1

+ �v

1

=v

0

= 0:0000 + 1:5059=0:5000 = 3:0118

/* Assignment phase */

�x

2

= �v

0

= �13:7239

�x

1

= �v

�1

= 3:0118
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PSfrag replaements

Soure-to-soure transformation

fun.sr fun&der.sr

Augmentation

Compilation

Compilation

fun++.sr

fun&der.obj

Figure 3.2: From funtion soures to objet �les ontaining derivative information

The two basi methodologies used by these tools are operator overloading and soure-to-

soure transformation. Even though these onepts look very di�erent, both an be brought

into a ommon frame whih an be found in Figure 3.2.

Both approahes start from an implementation of the funtion evaluation. When applying

tools based on operator overloading (e.g. ADOL-C [69℄, FADBAD [14℄) this soure has to

be augmented by hand in order to de�ne the independent and the dependent variables as

well as the intermediate ones. Then, this augmented funtion evaluation is ompiled using a

standard ompiler.

The situation is slightly di�erent, when using tools based on soure-to-soure transforma-

tion tools (e.g. ADIFOR [18℄, TAF [150℄, or ADIC [20℄). Here the soure of the funtion

evaluation is analyzed using a tool whih works similar to a ompiler. It analyzes the funtion

evaluation to set up a dependene graph. For this analysis the user has to speify the indepen-

dent and the dependent variables. Using the dependene graph these tools generate soure

ode of the derivatives as their output whih an be ompiled using a standard ompiler. In

both ases the objet �les together with libraries delivered by the tool implementers ontain

all the information needed for evaluating derivatives. In the following we want to disuss this

proess using two of the tools, TAF and ADOL-C as typial examples for soure-to-soure

translators and tools based on operator overloading, respetively.

3.5.1 The soure-to-soure translator TAF

TAF, whih stands short for Transformation of Algorithms in Fortran is a soure-to-soure

translator that generates Fortran routines out of Fortran routines. It is a ommerial prod-

ut developed by Giering and Kaminsky at FastOpt (http://www.fastopt.de) and is the

suessor of TAMC, the Tangent linear and Adjoint Model Compiler (Giering [58℄, Gier-

ing and Kaminski [61℄) whih is available under http://puddle.mit.edu/�ralf/tam/.

The routines to be di�erentiated have to be implemented in Fortran-77 or Fortran-90, only

operator overloading is not supported. Derivatives are omputed in forward mode using a

tangent-linear model or in reverse mode using an adjoint model. Additionally, a ode for

produts between the Jaobian and a vetor or matrix an be generated.
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double preision funtion f (x1, x2)

double preision x1, x2

double preision q, d, dummy, mysin, myexp

q = x1 / x2

d = q - myexp(x2)

dummy = q * x2

f = (mysin(q) + d) * d

return

end

double preision funtion mysin(x)

double preision x

mysin = dsin(x)

return

end

double preision funtion myexp(x)

double preision x

myexp = dexp(x)

return

end

Figure 3.3: Fortran-77 ode for a simple model problem

Given the independent and dependent variables of the top-level routine (all these quan-

tities are spei�ed using ommand line parameters) TAF applies an inter-proedural data

dependene analysis and an inter-proedural data ow analysis to determine all ode parts

whih have to be di�erentiated and all intermediate variables for whih derivatives have to

be alulated.

The priniples of soure-to-soure transformation an be found in Giering and Kamin-

sky [59, 60℄. They desribe rules for deriving the adjoint statements needed whih an also be

used for manual adjoint derivation. These rules form the basis for the algorithms implemented

in TAMC and TAF.

An implementation of our simple model problem in Fortran-77 as well as its derivatives

via forward and reverse mode an be found in Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6

respetively. The ode for the derivatives was generated using TAMC with the ommands

tam -toplevel f -input "x1,x2" -forward fun.f
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subroutine g_f( x1, x2, f, g_x1, g_x2, g_g )

C***************************************************************

C** This routine was generated by the **

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **

C***************************************************************

double preision f, x1, x2, g_g, g_x1, g_x2

double preision d, dh, fh, q, g_d, g_dh, g_fh, g_q, myexp, mysin

C----------------------------------------------

C TANGENT LINEAR AND FUNCTION STATEMENTS

C----------------------------------------------

g_q = g_x1/x2-g_x2*(x1/(x2*x2))

q = x1/x2

all g_hmyexp( x2,dh,g_x2,g_dh )

g_d = (-g_dh)+g_q

d = q-dh

all g_hmysin( q,fh,g_q,g_fh )

g_g = g_d*(fh+2*d)+g_fh*d

f = (fh+d)*d

end

subroutine g_hmyexp( x, myexp, g_x, g_myexp )

double preision g_myexp, g_x, myexp, x

C----------------------------------------------

C TANGENT LINEAR AND FUNCTION STATEMENTS

C----------------------------------------------

g_myexp = g_x*dexp(x)

myexp = dexp(x)

end

subroutine g_hmysin( x, mysin, g_x, g_mysin )

double preision g_mysin, g_x, mysin, x

C----------------------------------------------

C TANGENT LINEAR AND FUNCTION STATEMENTS

C----------------------------------------------

g_mysin = g_x*dos(x)

mysin = dsin(x)

end

Figure 3.4: Fortran-77 ode for the diretional derivative, generated by TAMC V 5.3.2



3.5. TOOLS 45

subroutine adf( x1, x2, f, adx1, adx2, adg )

C***************************************************************

C** This routine was generated by the **

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **

C***************************************************************

double preision adg, adx1, adx2, f, x1, x2

double preision add, addi, adfi, adq, d, q, myexp, mysin

C----------------------------------------------

C RESET LOCAL ADJOINT VARIABLES

C----------------------------------------------

add = 0.d0

adq = 0.d0

C----------------------------------------------

C ROUTINE BODY

C----------------------------------------------

C----------------------------------------------

C FUNCTION AND TAPE COMPUTATIONS

C----------------------------------------------

q = x1/x2

d = q-myexp(x2)

f = (mysin(q)+d)*d

C----------------------------------------------

C ADJOINT COMPUTATIONS

C----------------------------------------------

add = add+adg*(2*d+mysin(q))

adfi = adg*d

all adhmysin( q,adq,adfi )

adfi = 0.d0

adg = 0.d0

addi = -add

adq = adq+add

all adhmyexp( x2,adx2,addi )

addi = 0.d0

add = 0.d0

adx1 = adx1+adq/x2

adx2 = adx2-adq*(x1/(x2*x2))

adq = 0.d0

end

Figure 3.5: Fortran-77 ode for the gradient, generated by TAMC V 5.3.2, Part 1
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subroutine adhmyexp( x, adx, admyexp )

C***************************************************************

C** This routine was generated by the **

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **

C***************************************************************

double preision admyexp, adx, x

C----------------------------------------------

C ROUTINE BODY

C----------------------------------------------

adx = adx+admyexp*dexp(x)

admyexp = 0.d0

end

subroutine adhmysin( x, adx, admysin )

C***************************************************************

C** This routine was generated by the **

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **

C***************************************************************

double preision admysin, adx, x

C----------------------------------------------

C ROUTINE BODY

C----------------------------------------------

adx = adx+admysin*dos(x)

admysin = 0.d0

end

Figure 3.6: Fortran-77 ode for the gradient, generated by TAMC V 5.3.2, Part 2
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and

tam -toplevel f -input "x1,x2" -reverse fun.f,

respetively. In the implementation of the funtion evaluation we added a dummy variable,

whih depends on the input variables but does not inuene the output quantities. When

the funtion evaluation is ompiled, an optimizing ompiler detets this fat and does not

generate ode for this statement. TAMC applies similar data ow and data dependene

analysis and also deteted this fat. That is why it does not generate any derivative ode for

this unneessary statement.

3.5.2 The operator overloading pakage ADOL-C

ADOL-C (Griewank et al. [70, 69℄) whih stands short for Automati di�erentiation by

overloading in C++ is one example for AD-pakages based on operator overloading. It is

developed by the group of Griewank at the Tehnial University of Dresden and is available

free of harge under http://www.math.tu-dresden.de/wir/projet/adol/index.html.

The routines to be di�erentiated have to be implemented in C or C++, the augmented ode

is C++ ode. The pakage failitates the evaluation of �rst and higher order derivatives.

The resulting derivative evaluation routines may be alled from C/C++, Fortran, or any

other language that an be linked with C. For salar-valued funtions ADOL-C provides easy

to use drivers for funtion and gradient evaluation as well as Hessian times vetor produts

and Hessian evaluation. For vetor valued funtion besides funtion and Jaobian evaluation

routines also produts between a vetor and the Jaobian are available.

In order to get derivative information the ode must be augmented in the following sense:

First the ative region ontaining the funtion evaluation has to be spei�ed. The key ingre-

dient of all AD pakages using operator overloading is the onept of ative variables. Within

the ative region, all variables depending diretly or indiretly on the independent variables

have to be replaed by ative variables. In ADOL-C this is realized by replaing the orre-

sponding double variables by variables of the type adouble. For these variables derivative

information is generated. To omplete the augmentation of the ode, the dependent and the

independent variables have to be spei�ed. Speial are has to be taken on the taping of

onditional statements, but we do not want go into details here (see Griewank et al. [69℄).

During the evaluation of the ative region the overloaded operations for the type adouble

reord all the operations within the ative region where ative variables are involved on a so

alled tape. This tape is used by an interpreter to evaluate the funtion, gradients, et. These

evaluations only use the tape, no more the augmented funtion. That is why it is possible to

generate a tape using one program and to use the funtion de�ned by the tape for example

as objetive of an optimization within another.

In order to illustrate this let us look at our simple model example. An implementation in

C an be found in Figure 3.7. It is more or less a transript of the Fortran implementation in

Figure 3.3. For brevity we removed all neessary preproessor statements and pre-delarations

needed to get the ode fragment to ompile. Figure 3.8 ontains the augmented ode. We

assumed that f ontains the top-level funtion to be di�erentiated. It an be seen that the

two ode fragments di�er only sightly in the evaluation itself. The main di�erene is that all

intermediate variables were hanged from double to adouble. Additionally in the top-level

funtion the dependent and independent variables as well as the ative region have to be

spei�ed.
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double f (double x1, double x2)

{

double q, d, value;

q = x1 / x2;

d = q - myexp(x2);

value = (mysin(q) + d) * d;

return value;

}

double mysin(double x)

{

double value;

value = sin(x);

return value;

}

double myexp(double x)

{

double value;

value = exp(x);

return value;

}

Figure 3.7: C ode for a simple model problem
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double f (double dx1, double dx2)

{

trae_on(1234); // the ative region starts here

adouble x1, x2;

x1 <<= dx1; // define x1 and x2 as

x2 <<= dx2; // independent variables

// define all intermediate variables as ative

adouble q, d, value;

q = x1 / x2;

d = q - myexp(x2);

value = (mysin(q) + d) * d;

double dummy;

value >>= dummy; // define dependent variables

trae_off(1234); // the ative region ends here

return dummy;

}

adouble mysin(adouble x)

{

adouble value;

value = sin(x);

return value;

}

adouble myexp(adouble x)

{

adouble value;

value = exp(x);

return value;

}

Figure 3.8: Augmented C++ ode for a simple model problem
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void main ()

{

double x[2℄, f, grad[2℄;

x[0℄ = 1.5; // initialize the parameter

x[1℄ = 0.5;

// evaluate the funtion

funtion (1234, 2, x, &f);

// evaluate the gradient

gradient (1234, 2, x, grad);

}

Figure 3.9: Funtion and gradient evaluation for a simple model example in ADOL-C

When the tape is generated it an be used as a replaement for the funtion evaluation

itself as the evaluation drivers only take the information on the tape. A ode fragment in C

for evaluating the funtion and its gradient an be found in Figure 3.9.



Chapter 4

A Blak-Box Strategy Using an

Elimination Approah

4.1 Introdution

Optimal design problems are often divided, aordingly to their number of design param-

eters, into problems with few design parameters (maximal dimension of the design param-

eter vetor q is approximately 100) and into problems with very large design spaes (e.g.

dim(q) � dim(u)). In this hapter we want to present a strategy suitable for rather few

design parameters only. The objetive and onstraints an be more or less arbitrary, but

smooth. We restrit ourselves to ellipti state problems, but remark on the hanges for time-

dependent state problems where neessary. The next hapter will deal with the situation of

having many design parameters. The method presented there di�ers onsiderably, although

ommon aspets exist whih will be disussed there.

In order to illustrate the method we use a model example { the minimization of the mass

of the frame of an injetion moulding mahine under onstraints on the deformation and

stresses. This real life example shall also demonstrate the appliability of the method in an

industrial design proess. There, mainly two goals have to be ful�lled:

� On the one hand, tools are needed whih are exible enough to handle the various re-

quirements. Nevertheless, they have to be robust to produe reliable results. Espeially

it is desirable to spend only a little work on modifying the ode, when the requirements

hange.

� On the other hand, these tools have to be fast. Up to now, design hanges are often made

by engineers by hand following mainly their experiene and intuition. Unfortunately,

due to lak of time, this proess has to be stopped after a few iterations, in most

ases only two or three. Then, the best design obtained so far, is taken. Fast tools

automatizing some parts of the design proess strongly aelerate the design proess

itself, and by far more design drafts an be onsidered.

This hapter will begin with the introdution and modeling of our model problem, fol-

lowed by the orresponding optimal design problem. By using a solution operator for the

state problem this optimal design problem an be transformed into an equivalent optimiza-

tion problem whih is easier manageable by the optimizer. Additionally, extensions to the

51
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Figure 4.1: Cross setion of the original shape

general SQP-frame presented in Setion 2.2 are introdued whih remove the demand for

seond order derivatives of the Lagrangian. The main part of this hapter is devoted to

gradient and sensitivity alulation. Sine implementing analyti derivatives is rather error

prone and an improper approah for an industrial design proess, various alternatives are pre-

sented, analyzed, and ompared to eah other. Besides �nite di�erenes, the diret and the

adjoint sensitivity method, several approahes using automati di�erentiation are presented.

A numerial omparison of some of the presented approahes onludes this hapter.

4.2 Model example: Optimal sizing of a mahine frame

The frame of an injetion moulding mahine is briey skethed by its 2D-ut 
 given in

Figure 4.1. For a frame of homogeneous thikness, typial dimensions are:

� thikness of one plate: 180 mm

� mass of one plate: 3.8 tons

� lumping fore (surfae fore): 300 tons

b

� 16 N/mm

2

� length: 2.8 m

� height: 1.7 m

� 2 supporting areas

The primary goal of the design phase is to minimize the mass of the frame of the injetion

moulding mahine. Several other requirements have to be ful�lled in addition, e.g.

� maximal v. Mises stress: �

vM

� �

vM

max

,

� maximal tensile stress: �

ten

� �

ten

max

,
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� shrinking angle of the lumping unit (vertial edges on top, alled wings): � � �

max

,

� handling of the mahine or the feeding mehanism,

� easy and ost eÆient manufaturing.

For the de�nition of the v. Mises stress and the tensile stress see e.g. Ziegler [162℄.

Some of these onstraints an be integrated into the optimization proedure diretly (e.g.

restritions on the stresses), whereas others like the easy manufaturing have to be onsidered

in a post-proessing step.

In order to evaluate the stresses �, the displaement �eld u of the frame under some load

F has to be known.

For a �xed thikness q(x) 2 Q, the displaement �eld u(x); x = (x

1

; x

2

) 2 
, ful�lls

a(q;u; v) = F (v); 8 v 2 U; (4.1)

with

a(q;u; v) =

Z




q

�u

i

�x

j

E

ijkl

�v

k

�x

l

dx; F (v) =

Z

�

N

g v ds

where E

ijkl

denotes the elastiity tensor and g the surfae fore density on a part �

N

of the

boundary. Volume fores are negleted. u and v are assumed to be in

U =

�

v 2 [H

1

(
)℄

2

j v = 0 on �

D

;meas �

D

> 0

	

(4.2)

(set of admissible displaements) where �
 = �

D

[ �

N

, �

D

= �

D

and �

D

\ �

N

= ;.

E

ijkl

is given by

E

ijkl

= �Æ

ij

Æ

kl

+ �(Æ

ik

Æ

jl

+ Æ

il

Æ

jk

); (4.3)

where Æ

ij

denotes the Kroneker-Delta and �, � denote Lame's onstants. These an be

alulated from Young's modulus E and Poisson's ratio � by

� =

E �

(1 + �)(1� �)

; � =

E

2(1 + �)

: (4.4)

In (4.1) we have assumed that

� a generalized plane stress problem is onsidered, i.e. we onsider a body 
 as a plate

that is thin in x

3

-diretion (ompared to the other oordinate diretions) and that an

arry stresses only parallel to the x

1

-x

2

-plane, and

� the applied surfae trations are independent of x

3

, i.e.

g(x) = (g

1

(x); g

2

(x));

and therefore, there is no displaement in x

3

-diretion and the other two displaement

omponents are also independent of x

3

.
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The design problem an be stated as follows:

Z




q(x) dx! min

(u;q)2U�Q

subjet to a(q;u; v) = F (v); 8 v 2 U;

�

vM

(u) � �

vM

max

a.e. in 
;

�

ten

(u) � �

ten

max

a.e. in 
;

�(u) � �

max

;

0 < q � q � q; a.e. in 
:

(4.5)

�

vM

(u) denotes the v. Mises stress, �

ten

(u) the tensile stress in the frame, q; q 2 R

+

. The

hange in the shrinking angle of the lumping unit (vertial edges on top, alled wings) is

denoted by �(u).

For disretizing the problem, we use triangular �nite elements with piee-wise onstant

shape funtions for approximating q and piee-wise quadrati ones for approximating u. In

many situations it is additionally assumed that q is onstant in ertain non-overlapping sub-

regions 


i

. We denote the disrete approximation of q and u by q

h

and u

h

where q

h

2 Q

h

and u

h

2 U

h

.

Summarizing all those onsiderations, the disretized optimization problem an be formu-

lated as follows:

Z




h

q

h

(x) dx! min

(u

h

;q

h

)2U

h

�Q

h

a(q

h

;u

h

; v

h

) = F (v

h

); 8 v

h

2 U

h

;

�

vM

(u

h

) � �

vM

max

;

�

ten

(u

h

) � �

ten

max

;

�(u

h

) � �

max

;

0 < q � q

h

� q;

(4.6)

where 


h

denotes the disretized domain.

Choosing bases

� = (�

1

; : : : ; �

m

)

T

2 U

h

and � = (�

1

; : : : ; �

n

)

T

2 Q

h

(4.7)

of the �nite dimensional spaes U

h

and Q

h

we may represent (u

h

; q

h

) 2 U

h

�Q

h

via

u

h

= u

T

�; q

h

= q

T

� (4.8)

with oordinate vetors u 2 R

m

and q 2 R

n

. This allows us to rewrite (4.6) in matrix-vetor

form as

m

T

q! min

(u;q)2R

m

�R

n

K(q)u = F

�

vM

(u) � �

vM

max

�

ten

(u) � �

ten

max

�(u) � �

max

0 < q � q � q;

(4.9)



4.3. A BLACK-BOX STRATEGY FOR OPTIMAL DESIGN 55

with the symmetri positive de�nite, large, sparse sti�ness matrix K and the vetors m and

F. The onstraints on �

vM

, �

ten

and q have to be understood omponent-wise.

In our appliation, the upper limits on the angle and the stresses are either treated as

onstraints or as soft limits, whih an be violated to some extent, if the mass would be

severely smaller then. Furthermore, the pointwise onstraints on �

vM

and �

ten

are replaed

by using a higher order `

p

norm

kvk

p

=

p

q

X

jv

i

j

p

:

Treating the upper limits as soft onstraints leads to the following reformulation:

m

T

q+ !

1

�

max (k�

vM

(u)k

p

� �

vM

max

; 0)

�

2

+ !

2

�

max (k�

ten

(u)k

p

� �

ten

max

; 0)

�

2

+ !

3

�

max (�(u) � �

max

; 0)

�

2

! min

(u;q)2R

m

�R

n

K(q)u = F

0 < q � q � q

(4.10)

where !

i

; i = 1; : : : ; 3 denote user-hosen fators of inuene. Note that this modi�ation

leads to an objetive in C

1

. It looks similar to a penalty formulation of the onstraints, but

the weights !

i

; i = 1; : : : ; 3 are kept �xed during the iteration and do not tend to in�nity like

in penalty methods. Therefore, the problem of ill-onditioning of the Hessian is avoided.

Usually, the state equation in (4.10) is not ful�lled exatly as iterative solvers are used.

Then, it is neessary to adopt the onvergene riterion of the iterative solver to the dis-

retization parameter h. As long as the di�erene between the exat disrete solution and

the approximate solution alulated by the iterative solver is of the same order as the ap-

proximation of the ontinuous solution by the used disretization sheme, we do not have to

pay speial attention to the iterative solver. The exat disrete solution and the approximate

solution are both approximations of the solution of the ontinuous problem of the same order.

From now on, we will always assume this, and therefore, we will not distinguish between the

exat disrete solution and the one alulated by an iterative solver.

4.3 A blak-box strategy for optimal design

From the optimization's point of view the problem (4.10) is a speial ase of

J(u;q)! min

(u;q)2R

m

�R

n

subjet to K(q)u = F

q � q � q;

(4.11)

where q denotes the vetor of design parameters and u the solution of the governing �nite

element (FE) state equation. The splitting of the parameter vetor into design parameters

q and the solution of the state equation u is typial for problems for optimal design. From

the optimization's point of view the disretized state equation an be interpreted as equality

onstraints. For our model example it is linear with respet to u and K(q) is symmetri
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and positive de�nite for all admissible parameters q. We introdue a solution operator S(q)

ful�lling

S : q 7! u(q) with K(q)u(q) = F(q): (4.12)

For a general nonlinear state equation e(u;q) = F the solution operator an be de�ned

in an analogous way. Also for time dependent state problems a solution operator an be

introdued. We want to remark, that suh an operator does not always exist (e.g. for our

model problems, if q

h

vanishes on several neighboring elements). But from now on, we always

assume the existene of S(q) for all admissible q.

Using this solution operator, we an eliminate u formally whih leads to

~

J(q) = J(S(q);q)! min

q2R

n

subjet to q � q � q:

(4.13)

Sine we want to use a standard SQP method for optimizing the problem, the formulation

(4.13) is advantageous ompared to (4.11) as it has muh fewer parameters. This relies on

the fat, that standard implementations of the SQP method are based on linear algebra with

dense matries.

On the ontrary to the presentation in Setion 2.2 standard SQP methods do not use the

Hessian of the Lagrangian. They replae it by approximate Hessian information, e.g. using

a Quasi-Newton approximation formula. Our ode uses a modi�ed BFGS update formula

following Powell [122℄ in order to avoid the need for seond derivatives of the objetive.

The quadrati subproblem is solved by a range spae based QP method (.f. Gill, Murray,

and Wright [63℄) ombined with an ative index set strategy. Other alternatives would be

e.g. null-spae based QP methods or the dual method of Goldfarb and Idnani [65℄ whih

is used for instane in the ode of Shittkowski [137℄. The main advantage of the latter

ompared to the other two is that it does not need a feasible start point.

We use a line searh proedure for globalizing our SQP method, whih uses an exat

penalty funtion

�

k

(q) =

~

J(q) +

n

X

j=1

�

k

j

max(q

j

� q; 0) + �

k

j

max(q � q

j

; 0) (4.14)

with suitable hosen penalty parameters �

k

j

, �

k

j

as merit funtion (.f. Han [78℄). As usual,

q

i

denotes the i-th omponent of q in (4.14), k denotes the iteration index.

A short sketh onto a model SQP algorithm for solving

~

J(q)! min

q2R

n

subjet to (q) � 0

(4.15)

is given in Algorithm 4.1.

4.4 Calulating gradients

Using a Quasi-Newton strategy and update formulas within the SQP method as proposed in

the setion before, the remaining main problem is the alulation of gradients for the objetive

and the onstraints. As the problem was transformed into a problem with box onstraints
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Algorithm 4.1 SQP model algorithm

Require: A suitable starting point q

0

B

0

= I

g

0

= grad

~

J(q

0

)

/* linearize onstraints, _= denotes a �rst order approximation */

(q

0

+ Æ) _=A

0

Æ + b

0

k = 0

while not onverged do

/* Calulate searh diretion s

k

*/

Solve

1

2

s

T

B

k

s+ g

T

k

s! min

s

under the onstraints A

k

s � �b

k

�A

k

q

k

/* Line searh proedure */

Calulate �

k

2 (0; 1℄ as large as possible suh that

�

k

(q

k

) + �

1

�

k

�

0

k

(q

k

) � �

k

(q

k

+ �

k

s

k

) � �

k

(q

k

) + �

2

�

k

�

0

k

(q

k

)

with 0 < �

1

<

1

2

< �

2

< 1 with a suitable merit funtion �

k

/* Update several quantities */

q

k+1

= q

k

+ �

k

s

k

g

k+1

= grad

~

J(q

k+1

)

(q

k+1

+ Æ) _=A

k+1

Æ + b

k+1

Update Hessian approximation ! B

k+1

k = k + 1

end while
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only, routines providing analyti gradients for these onstraints an be implemented easily.

But for the objetive, the implementation of an analyti derivative is by far too ompliated

and time onsuming. Furthermore, it would not be well suited for the use in a design proess,

as we would loose the exibility of the ode ompletely. That is the reason why we have to

think of alternative methods for alulating the gradients.

Several methods are presented and ompared to eah other in this setion. On the one

hand we have blak box methods like �nite di�erenes or automati di�erentiation (.f.

Griewank [67℄), on the other hand, methods exploiting the speial struture of the state

equation are available, e.g. the diret method or the adjoint method (.f. Haslinger and

Neittaanm

�

aki [81℄).

As none of these methods is well suited for an industrial design proess, a hybrid method

ombining automati di�erentiation and the adjoint method is developed.

4.4.1 Finite di�erenes

If no analyti derivatives of a funtion an be implemented due to the high omplexity then

an approximation by �nite di�erenes is often the �rst idea. One approximation is the entral

di�erene quotient

D

h

f(x) =

f(x+ h)� f(x� h)

2h

: (4.16)

The hoie of the inrement h is rather ritial for getting aurate results and depends on

estimates of the third derivative of f .

In order to improve the auray of �nite di�erenes, extrapolation methods an be used.

For an initial inrement H the sequene

D

H

f; D

H

2

f; D

H

4

f; : : : ;D

H

2

i

f; : : : (4.17)

is alulated and extrapolated for i ! 1. These methods return not only a value for the

derivative, but also an estimate of the auray of that value whih an be used for ontrolling

the order of the extrapolation sheme (.f. Stoer [143℄ or Deuflhard and Hohmann [46℄).

The main properties are summarized as follows:

� Two funtion evaluations are needed per di�erene quotient and in most ases several

di�erene quotients are needed in order to reah the desired auray of the derivative.

Furthermore, the number of funtion evaluations is proportional to the number of design

parameters. Due to the high e�ort �nite di�erenes are only well suited for problems

with few design parameters.

� Finite di�erenes an easily be used for very omplex funtions, as they do not rely on

any speial properties. On the other hand they an not exploit any speial properties of

the funtion whih makes the use of �nite di�erenes rather ineÆient in ertain ases.

� From the user's point of view �nite di�erenes are very exible. Changes in the desired

objetive imply only a re-implementation of the funtion alulating the objetive. Time

onsuming hanges of the gradient routine do not appear, whih is espeially important

for the aeptane of suh a method in an industrial design proess.

� The possible use of iterative methods for solving the state equation is very important

for our problem as the number of parameters in the state equation may be rather large.
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As �nite di�erenes do not rely on any speial properties of the funtion the oupling

with iterative solvers an be done without any problems.

4.4.2 Automati di�erentiation

Compared to �nite di�erenes, AD follows a ompletely di�erent approah. Finite di�erenes

try to approximate the derivative and therefore do not provide aurate results, whereas AD

methods inur no trunation error at all and usually yield derivatives with working auray.

Starting point is a omputer program that alulates numerial values for a funtion. First,

a symboli evaluation graph mapping the design parameters to the funtion values is built.

Like symboli di�erentiation, AD operates by systemati appliation of the hain rule, familiar

from elementary di�erential alulus. However, in the ase of AD, the hain rule is applied

not to symboli expressions, but to numerial values. By using all the intermediate results

generated by the funtion evaluation, the exponential growth of the evaluation omplexity

of symboli di�erentiation an be avoided, as many ommon subexpressions an be used

repeatedly when the gradient is evaluated at any partiular point. Furthermore, optimizations

made for the funtion evaluation also pay o� for its derivative. Details on how the AD

tehnique works, as well as many related issues on alulating higher order derivatives an be

found in Griewank [67℄. A short introdution into the methodology of AD is presented in

Chapter 3.

Two di�erent kinds of tools are known in the AD ommunity: The �rst group is based

on soure-to-soure transformation, e.g. ADIFOR (.f. Bishof, Carle, Khademi, and

Mauer [19℄) written for FORTRAN odes , of TAF (http://www.fastopt.de) written also

for FORTRAN odes. The other group is based on evaluation graphs generated at runtime,

e.g. ADOL-C written for C and C++ odes (.f. Griewank, Juedes, and Utke [70℄). As

our �nite element ode is ompletely written in C++ and uses heavily virtual inheritane,

soure ode transformation tools an not be used. It has to be mentioned, that some of the

properties of AD listed in the following rely on the use of runtime tools.

� ADOL-C needs a �le ontaining the evaluation graph in a symboli form for evaluating

the funtion and its gradient. This �le is generated at runtime. For optimal design

problems, huge memory and disk apabilities are required for that purpose. Due to the

need of an evaluation graph, ADOL-C an only be applied to funtions of moderate

omplexity. The limiting fator is not the inherent omplexity of the funtion itself, but

the size of the generated �les and the time needed for reading and writing the data. To

give an example, the �les storing the evaluation graph for our model problem disretized

with about 450 design parameters and about 7500 DOFs in the FE state equation needs

about 1 GB of disk spae.

� The exibility of AD with respet to hanges in the objetive is similar to �nite di�er-

enes. Changes in the objetive need only a re-implementation of the objetive funtion,

but no hanges in the gradient routine when runtime tools are used. Sometimes, speial

are has to be taken for a orret generation of the evaluation graph, espeially in the

ontext of onditional statements.

� AD using ADOL-C is a blak box method. The use of the evaluation graph is a drawbak

of the method, espeially when debugging is needed. This is ompensated to some extent

by the good runtime behavior of the method. For the reverse mode (.f. Setion 3.4),
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the alulation time of the gradient is independent of the number of design parameters

and takes the time of about 15 { 20 native C++ funtion evaluations as long as the

evaluation graph an be stored in the main memory of the omputer. Compared to the

use of �nite di�erenes, this is a tremendous speedup, even for problems with only 10 {

20 design parameters.

� The oupling of AD with iterative solvers is a problem of urrent researh (see e.g.

Griewank [67℄ and referenes therein). Sine the use of iterative methods (e.g. mul-

tilevel methods) is important for solving �ne disretizations of the state equation eÆ-

iently, the appliability is limited to problems, where diret solvers an be used.

4.4.3 Diret and adjoint method

The diret and the adjoint method are both well-known in the shape optimization ommunity

(see e.g. Haslinger and Neittaanm

�

aki [81℄) and take into aount the speial struture of

the state equation. They di�erentiate the state equation with respet to a design parameter

q

i

. For our model example, this leads to

K

�u

�q

i

=

�F

�q

i

�

�K

�q

i

u: (4.18)

For the diret method, (4.18) is solved numerially using the same methods as for the state

problem itself. Then the gradient of the objetive an be alulated by

d

~

J

dq

i

=

�J

�q

i

+ h

�J

�u

;

�u

�q

i

i: (4.19)

On the ontrary to the diret method, the adjoint method solves (4.18) formally and

inserts the result in (4.19) whih leads to

d

~

J

dq

i

=

�J

�q

i

+ hK

�T

�J

�u

;

�F

�q

i

�

�K

�q

i

ui (4.20)

For a general state equation

e(u;q) = F

the situation is slightly more diÆult. Here, we introdue a solution operator for the linearized

state problem (linearized with respet to u) of the form

S

lin

(q) =

�

�e

�u

�

�1

: (4.21)

For the diret method we get the representation

�u

�q

i

= S

lin

�

�

�F

�q

i

�

�e

�q

i

�

(4.22)

and alulate the gradient of the objetive using (4.19). For the adjoint method, we insert

the formal representation of

�u

�q

i

into (4.19) whih leads to

d

~

J

dq

i

=

�J

�q

i

+ hS

T

lin

�J

�u

;

�F

�q

i

�

�e

�q

i

i (4.23)
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instead of (4.20).

We want to mention that for time dependent state problems S

lin

represents a forward inte-

gration of the linearized state equation in time with given initial values, whereas S

T

lin

represents

a bakward integration of the linearized state problem with given �nal values. If the state

equation is non-linear with respet to u the adjoint method needs the omplete evaluation

trae of the forward integration to evaluate S

T

lin

. This usually results in huge memory require-

ments for storing the values of the forward run. For an alternative using a hek-pointing

strategy, i.e. storing only a view intermediate values and realulating the remaining ones,

see e.g. Griewank [66℄, Griewank and Walther [71℄, or Charpentier [36℄.

In the following the main properties are summarized:

� The diret method needs one solution of the state equation per design parameter,

whereas the adjoint method needs the solution of one adjoint problem for the objetive

and in priniple for eah onstraint. As K is symmetri in our ase, the e�ort for solv-

ing the adjoint problem is the same as for solving the state equation itself. Depending

on the number of design parameter and onstraints, the better suited method an be

hosen.

� As analyti partial derivatives of J with respet to q and u are needed (

�J

�q

,

�J

�u

,

�K

�q

,

�F

�q

), both methods an only be applied to simple objetives, where this an easily be

done. Furthermore, the exibility of the method su�ers from the need of hand-oded

gradient routines.

� Compared to �nite di�erenes or the use of AD for the whole funtion, this approah

is muh faster. Finite di�erenes need muh more solutions of the design problem,

ompared to AD the huge evaluation graph whih originates mainly from the solution

of the state equation is avoided.

� Any solver an be used for solving the state problem, espeially the use of iterative

solvers like onjugated gradient methods with multilevel preonditioning is appropriate.

4.4.4 Hybrid method

Comparing the methods presented in the last two setions, it an be seen that the strengths of

these methods lie in ompletely di�erent areas. AD provides very high exibility with respet

to the used objetive, but has severe drawbaks with respet to memory requirements of the

used omputer, the use of iterative solvers for the state equation and with respet to longer

runtime. In ontrast, the diret and the adjoint method an be ombined easily with iterative

solvers and provide a fast way for alulating the needed gradients, but they lak from the

needed exibility. Hene, we ombine both approahes into a new hybrid method.

The main drawbak of the diret or the adjoint method is the need of analyti partial

derivatives of the objetive and the onstraints with respet to q and u. But these derivatives

an easily be provided by using AD. Then, only

�K

�q

and

�F

�q

remain, for whih hand-oded

routines have to be implemented or AD an be used. For optimal sizing problems, these

routines an be hand-oded easily. Furthermore, they do not depend on the spei� problem

whih justi�es the additional e�ort for oding even for omplex state problems.
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Figure 4.2: Frame with 24 sub-domains

Finite Di�. Pure AD Hybrid M.

Problem Nr. of design params 24 24 24

dim. Nr. of elements (quad.) 3 981 3 981 3 981

DOFs of state equ. 16 690 16 690 16 690

Optimizer Iterations 83 100 100

statistis Funtion evaluations 19 752 315 236

Gradient evaluations 84 101 101

Runtime Total CPU time 12.4 h 4.88 h 0.39 h

Total elapsed time 12.6 h 8.42 h 0.40 h

Elapsed time Optimizer 0.01 h 0.03 h 0.01 h

Funtion evaluation 0.23 h 2.36 h 0.20 h

Gradient evaluation 12.40 h 6.00 h 0.18 h

Table 4.1: Comparison of the runtime for various di�erentiation strategies

4.5 Numerial results

In the following, some numerial results for the problem stated in Setion 4.2 are presented.

They were alulated on an SGI Origin 2000 with 300 MHz.

At the beginning, we tried to use only a few design parameters. Therefore, we divided our

domain into a number of sub-domains (see Figure 4.2) and approximated the thikness with

a onstant funtion in eah sub-domain. The state equation was disretized using triangular

�nite elements with quadrati FE funtions.

For evaluating the gradient, either �nite di�erenes, a pure AD approah or the hybrid

method were used. For a better omparison, the alulation was terminated after a �xed

number of steps (the run using �nite di�erenes terminated earlier beause the searh diretion

was no desent diretion anymore). Detailed results an be found in Table 4.1. All three

methods lead to a similar design with about 5 % redution of the mass ompared to the
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Figure 4.3: Optimized thikness distribution for 24 sub-domains

starting on�guration (whih is the urrent design of the frame). The optimized thikness

distribution an be seen in Figure 4.3 (the darker the olor, the thiker the frame), Figure 4.4

shows the distribution of the van Mises stresses in the optimized frame (the lighter the olor,

the higher the stresses).

It an be seen in Table 4.1 that for a few design parameters the main e�ort onsists in solv-

ing the FE state equation, respetively alulating the gradient of the objetive. Compared to

�nite di�erenes and the pure AD approah, the hybrid method is muh faster, as it ombines

a fast funtion evaluation and a fast gradient evaluation. The gradient evaluation is the main

drawbak of �nite di�erenes. For the pure AD approah we had to implement additional

safeguards. In order to detet when a regeneration of the evaluation graph was neessary, we

ompared the value of the objetive using the evaluation graph with the value using a native

C++ implementation whih explains the longer runtime of the funtion evaluation.

In order to �nd a better suited splitting of the domain in few sub-domains we inreased

the number of sub-domains to about 450. We used the oarsest grid of our FE triangula-

tion also for disretizing the thikness distribution (.f. Figure 4.5). For solving the design

problem, eah oarse grid �nite element was subdivided into 16 elements using 2 levels of

uniform re�nement. On this re�ned triangulation the state equation was disretized using

�nite elements with quadrati FE funtions. As �nite di�erenes are no more suitable for this

number of design parameters, Table 4.2 ontains only results for the pure AD approah and

the hybrid method.

The values reported for the evaluation graph have the following meaning: Independents is

the number of independent variables of the funtion di�erentiated automatially, dependents

the number of dependent ones (there is only one dependent variable, as only the objetive

is di�erentiated using ADOL-C). Operations gives us the number of arithmeti operations in

the evaluation graph, maxlive the maximal number of ative variables (maximal number of

variables alloated at one point of time during the evaluation of the objetive), valstaksize

the number of intermediate results whih have to be stored in AD's reverse mode.
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Figure 4.4: Van Mises stresses for 24 sub-domains

Figure 4.5: Frame with 449 sub-domains
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Pure AD Hybrid M.

Problem Nr. of design params 449 449

dim. Nr. of elements (quad.) 1 796 1 796

DOFs of state equ. 7 518 7 518

Evaluation Independents 449 9 314

graph Dependents 1 1

Operations 45 521 797 1 399 910

Maxlive 540 302 28 140

Valstaksize 51 995 116 1 644 461

Total �le size 953 MB 32.4 MB

Optimizer Iterations 800 800

Statistis Funtion evaluations 5 811 3 744

Gradient evaluations 801 801

Runtime Total CPU time 32.3 h 3.73 h

Total runtime 38.5 h 3.76 h

Elapsed time Optimizer 4.0 h 1.93 h

Funtion evaluation 16.5 h 1.29 h

Gradient evaluation 18.0 h 0.54 h

Table 4.2: Comparison of the runtime for many design parameters

The optimized thikness distribution an be seen in Figure 4.6, the orresponding stress

distribution in Figure 4.7. Analyzing the runtime behavior of the two methods in Table 4.2, it

an be seen that the pure AD approah is no more ompetitive due to the large �le ontaining

the evaluation graph. Furthermore, it an be seen that for the hybrid approah the optimizer

needs already a onsiderable amount of the total runtime.

In Table 4.3 we ompared the runtime of the hybrid method for di�erent disretizations

of the state and design spae. It an be seen that the relative amount of the runtime needed

by the optimizer even grows when using more design parameters as the omplexity of one

optimization step is proportional to (dimq)

3

(due to the use of dense matrix linear algebra),

whereas the omplexity of solving one FE state equation is proportional to dimu (if solvers

with optimal omplexity e.g. the onjugate gradient method with appropriate multigrid or

multilevel preonditioning are used).

For omparison to the results in Figure 4.6 and Figure 4.7, the thikness distribution was

disretized using about 1100 design parameters (see Table 4.3). The optimized thikness dis-

tribution and the orresponding distribution of the v. Mises stresses an be found in Figure 4.8

and Figure 4.9 respetively. The main problem using this large number of design parameters

is the runtime needed by our optimization module, whih dominates the time needed by all

funtion and gradient evaluations ompletely (about 90 % of the runtime, about 18000 DOFs

of the FE state equation). In the next hapter we will develop a method whih an also ope

with even larger numbers of design parameters.
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Figure 4.6: Optimized thikness distribution for 449 sub-domains

Figure 4.7: Van Mises stresses for 449 sub-domains
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Hybrid M. Hybrid M. Hybrid M.

General Nr. of design params 449 449 1 078

Nr. of elements 1 796 7 184 4 312

DOFs of state equ. 7 518 29 402 9 028

Evaluation Independents 9 314 36 586 22 368

graph Operations 1 399 910 5 578 270 3 361 017

Total �le size 32.4 MB 129.2 MB 77.9 MB

Runtime Iterations 800 800 2 200

Total CPU time 3.73 h 14.01 h 104.0 h

Total runtime 3.76 h 14.12 h 105.1 h

Elapsed time Optimizer 1.93 h 2.64 h 90.3 h

Funtion evaluation 1.29 h 8.13 h 9.8 h

Gradient evaluation 0.54 h 3.35 h 3.9 h

Table 4.3: Sale up of the hybrid method in design and state spae

Figure 4.8: Optimized thikness distribution for 1078 sub-domains
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Figure 4.9: Van Mises stresses for 1078 sub-domains



Chapter 5

An All-At-One Approah for Large

Design Spaes

5.1 Introdution

In the previous hapter we introdued a method whih is very exible due to the use of AD.

On the other hand problems with respet to the runtime appear if the number of design pa-

rameters inreases. As early as about 1000 design parameters the method reahes pratially

its limits as one optimization run takes about 4 days omputing time (.f. Table 4.3). In

the urrent realization, inreasing the number of design parameters to 2000 would let the

omputing time inrease about by a fator of 16 resulting in 2 months omputing time.

Analyzing the runtime behavior of the blak-box strategy presented in Setion 4.3 in more

detail one observes the following:

� The solution of the state problem an not be signi�antly improved any more. When

using a multilevel preonditioned CG method for solving our state problem the order of

omplexity of our solver would be optimal. We urrently use a sparse diret solver as

preonditioner in our CG method. Additionally, we update the preonditioner, i.e. fa-

torize the urrent sti�ness matrix, only when the number of CG steps exeeds a ertain

limit, otherwise we use the fatorization of a previous sti�ness matrix as preonditioner.

This explains the non-optimal inrease in the runtime for funtion and gradient eval-

uation in Table 4.3 as both need the solution of the state problem, respetively of the

adjoint linearized state problem.

� The optimizer itself an only slightly be improved. The most time onsuming part {

solving the QP problem { already uses update formulas for a faster alulation of the

basis of the range spae when onstraints are added or removed.

The main reason for the strong inrease in the runtime when inreasing the number of design

parameters is inherent in the used optimization strategy and is twofold:

� On the one hand, by introduing a solution operator it is neessary to solve the state

problem in eah funtion evaluation, i.e. the state variable is always admissible with

respet to the state equation. This alulation is rather easy for state problems linear

in the state variable u, but an be highly time onsuming for nonlinear state problems.

69
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Additionally eah gradient evaluation of the objetive needs one solution of a problem

adjoined to the linearized state equation.

� On the other hand, the introdution of a solution operator S and formal elimination

of the state variable as presented in Setion 4.3 destroy the sparsity struture of the

underlying optimal design problem in most ases. This an be explained as follows: Let

us onsider the optimization problem

J(u;q)! min

(u;q)2R

m

�R

n

subjet to e(u;q) = F

(5.1)

where e(u;q) = F denotes the state equation. Additionally, assume that the Hessian

of the Lagrangian

L(u;q) = J(u;q) + �

T

(e(u;q) � F) (5.2)

and the Jaobian of the state equation e(u;q) are sparse. These are assumptions whih

are ful�lled very often for optimal design problems. When applying the strategy pre-

sented in the previous hapter, we introdue a solution operator S for the state equation,

whih is usually not sparse anymore. For the model problem treated in the previous

hapter S = K

�1

(q)F(q) holds. Then the Hessian of the redued problem

~

J(q) = J(S(q);q)! min

q2R

n

(5.3)

with

e(S(q);q) = F (5.4)

is given by

r

2

qq

~

J = r

2

qq

L�r

2

qu

L S

lin

r

q

e�

(r

q

e)

T

S

T

lin

r

2

uq

L+ (r

q

e)

T

S

T

lin

r

2

uu

L S

lin

r

q

e

(5.5)

where S

lin

denotes the solution operator of the linearized state problem with respet to

u, and S

T

lin

denotes the solution operator of its adjoint problem. As S

lin

is usually not

sparse (.f. Setion 4.3), the Hessian of

~

J , the objetive used in the approah of the

previous setion, is usually dense. This does not matter, as long as the design spae is

small, but is a severe problem when the design spae beomes large.

As a onsequene a di�erent approah without introduing a solution operator is used. This

all-at-one approah onsiders the optimal design problem in the produt spae U�Q of state

spae U and design spae Q. The state equation is no more eliminated formally but treated

as an equality onstraint during the optimization.

We will begin this hapter by introduing a simple model problem in Setion 5.2. This

parameter identi�ation problem has the same struture as an optimal design problem, but

usually simpler objetives are used. We will ontinue with the presentation of the optimiza-

tion proedures in Setion 5.3. An analysis of the well-posedness of the ourring quadrati

programming subproblems as well as an overview over the neessary preliminaries is also

presented. Setion 5.4 deals with the disretization, Setion 5.5 and Setion 5.6 with the

numerial realization of the presented algorithm. As we use an iterative sheme, we desribe
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also several ways of preonditioning the ourring equation systems. Setion 5.7 presents nu-

merial results showing the potential of this approah for problems with large design spaes.

At the end of this hapter we will disuss how this method an be applied for optimal de-

sign problems, whih hanges are neessary and whih problems our there, as well as some

approahes how to handle these problems.

5.2 Model problem: Parameter identi�ation

Sine distributed parameters have to be determined from indiret measurements in many

appliations that are modeled by PDEs, parameter identi�ation has beome an important

part of mathematial modeling. One of the main harateristis of the majority of these

problems is that they are ill-posed, i.e. the parameter does not depend on the data in a stable

way. As the data an not be measured exatly in pratie, regularization methods have to

be used in order to obtain a stable solution in the presene of data noise. We do not want to

fous here on the various aspets of regularization but refer to the literature (see e.g. Engl,

Hanke, and Neubauer [50℄ or Kirsh [99℄). Furthermore, the analysis with respet to

onvergene to the exat solution when the data noise tends to 0 is exluded, we refer to

Burger and M

�

uhlhuber [33℄ for details on this topi. Also the onvergene of the disrete

approximation to the solution of the parameter identi�ation will not be presented in this

frame, for details see Burger and M

�

uhlhuber [34℄.

In this ontext we only want to present the lass of parameter identi�ation problems.

We will see that from an abstrat point of view these are very similar to optimal design

problems. The main di�erene between these two lasses is that the latter has typially by

far more ompliated objetives. In the last setion we ome bak to this aspet with a short

disussion.

The basi setup of the identi�ation problems treated as model examples is as follows:

Given an observation

z = Eû; (5.6)

where E : U ! Z is a bounded linear operator and û denotes the exat state. We want to

identify the parameter q 2 Q

ad

� Q in an underlying equation

e(u; q) = f; (5.7)

where e : U �Q! Y is a ontinuous nonlinear operator. In this setup we assume that Q and

Z are Hilbert spaes, that Q

ad

is a losed subset of Q with nonempty interior and that U and

Y are appropriate Banah spaes. In addition, we assume that the operator e is homogeneous,

i.e,

e(0; 0) = 0; (5.8)

whih is no restrition of generality, sine for an arbitrary operator e we an transform (5.7)

into an equivalent equation with homogeneous operator via

~e(u; q) := e(u; q)� e(0; 0);

~

f = f � e(0; 0):

In pratie one has to deal with data z

Æ

that are orrupted by noise instead of the exat

data z. We assume that the observation error is bounded by

kz � z

Æ

k

Z

� Æ; (5.9)
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where z = Eû suh that there exists a q̂ 2 Q

ad

with

e(û; q̂) = f: (5.10)

The pair (û; q̂) denotes an exat solution of the parameter identi�ation problem (as intro-

dued above).

Note that under typial onditions, parameter identi�ation problems in equations of

the form (5.6), (5.7) are ill-posed, i.e., an arbitrarily small error in the data z an lead

to an arbitrarily large deviation in the reonstruted parameter q. In presene of noise, a

solution of the equation Eu = z

Æ

does not always exist, and therefore one has to onsider the

orresponding normal equation respetively the least-squares problem

1

2

kEu� z

Æ

k

2

! min

(u;q)2U�Q

(5.11)

subjet to the equality onstraint (5.7) and to q 2 Q

ad

. Sine our main fous is the treatment

of the state equation as equality onstraint, we will omit the additional onstraint q 2 Q

ad

in

the following. This results in the problem

1

2

kEu� z

Æ

k

2

! min

(u;q)2U�Q

subjet to e(u; q) = f

(5.12)

whih will be used as model problem.

5.3 Optimization proedures in the produt spae

One possibility to solve our model problem is to apply an SQP method as presented in

Setion 2.2 or Algorithm 4.1 to (5.12). As explained in the introdution of this hapter, an

SQP method in the produt spae U �Q has advantages ompared to the introdution of a

solution operator of the state problem, when the dimension of the disretized design spae is

large. We will introdue the SQP method here in a funtion spae frame and will onsider

the inuene of the disretization later.

5.3.1 SQP methods in the produt spae

Applying a standard SQP sheme to our model example (5.12) leads to the following method:

Method 1 (Sequential Quadrati Programming Method in Produt Spae). Let

(u

0

; q

0

; �

0

) 2 U � Q � Y

�

be a given initial value. The method of produt spae sequential

quadrati programming (PSSQP) onsists of the iteration proedure

(u

k+1

; q

k+1

; �

k+1

) = (u

k

; q

k

; �

k

); (5.13)

where (u

k

; q

k

) is the minimizer of the quadrati programming problem

1

2

kEu� z

Æ

k

2

Z

+

1

2

h�

k

; e

00

(u

k

; q

k

)(u� u

k

; q � q

k

)

2

i ! min

(u;q)2U�Q

; (5.14)
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with h�; �i denoting the usual duality produt on Y

�

�Y . By e

0

(u; q)(v; s) and e

00

(u; q)(v; s)

2

we

denote the �rst and seond diretional derivatives of e in diretion (v; s) evaluated at (u; q).

The minimization is subjet to the linear onstraint

e(u

k

; q

k

) + e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) = f; (5.15)

where �

k

is the orresponding Lagrange-multiplier.

Beause of the ill-posedness of our model problem, a diret appliation of standard SQP-

type methods as presented in Method 1 is not possible, sine a minimizer of the quadrati

problems arising in eah of the iteration steps needs not exist and if one exists, it might not

depend on the data in a stable way. Therefore we will modify our SQP-type approah, whih

leads to stable quadrati subproblems due to an additional penalty term in the parameter

spae. In Burger and M

�

uhlhuber [33℄ the following iterative regularization sheme was

proposed, whih is a modi�ation of Method 1:

Method 2 (Iteratively Regularized Sequential Quadrati Programming Method).

Let (u

0

; q

0

; �

0

) 2 U � Q� Y

�

be a given initial value and let (�

k

)

k2N

be a bounded sequene

of positive real numbers. The method of iteratively regularized sequential quadrati program-

ming (IRSQP) onsists of the iteration proedure

(u

k+1

; q

k+1

; �

k+1

) = (u

k

; q

k

; �

k

); (5.16)

where (u

k

; q

k

) is the minimizer of the quadrati programming problem

1

2

kEu� z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

+

1

2

h�

k

; e

00

(u

k

; q

k

)(u� u

k

; q � q

k

)

2

i ! min

(u;q)2U�Q

: (5.17)

The minimization is subjet to the linear onstraint

e(u

k

; q

k

) + e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) = f; (5.18)

where �

k

is the orresponding Lagrange-multiplier.

The IRSQP-method involves seond order derivatives of the operator e. As we are in-

terested in the ase of attainable data here, the Lagrangian variable must be small lose to

a solution. That is why, these seond order derivatives are usually ignored for least square

problems. Exploiting this fat, we introdue a variant of Method 2, whih takes into aount

the speial struture of the objetive funtional.

Method 3 (Levenberg-Marquardt Sequential Quadrati Programming Method).

Let (u

0

; q

0

) 2 U �Q be a given initial value and let (�

k

)

k2N

be a bounded sequene of positive

real numbers. The Levenberg-Marquardt sequential quadrati programming method (LM-

SQP) onsists of the iteration proedure

(u

k+1

; q

k+1

) = (u

k

; q

k

); (5.19)

where (u

k

; q

k

) 2 U �Q is the minimizer of the quadrati programming problem

1

2

kEu� z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

! min

(u;q)2U�Q

; (5.20)

subjet to the linear onstraint

e(u

k

; q

k

) + e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) = f: (5.21)
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An important issue of applying the above stated methods is the question, whether the

iteration proedure is well-de�ned. Besides the existene and uniqueness of minimizers of

the quadrati programming problems, the stable dependene of the iterates on the previous

iterates and on the data is of high interest. We will investigate these questions in the following

subsetion.

5.3.2 Well-posedness of the quadrati programming problems

In the following we will verify the well-posedness of the quadrati programming problem

(5.20), (5.21) under reasonable assumptions on the state equation e. Besides that, we will

also analyze the KKT-System of the problem in the frame of linear saddle point problems.

Later in this hapter this approah will also be used for solving the ourring quadrati

programming problems.

In typial appliations, the equation (5.7), respetively its linearization, admits a unique

solution with respet to the state, i.e.,

e

u

(u; q)

�1

: Y ! U exists and is a ontinuous linear operator for all (u; q) 2 U �Q: (5.22)

Under this assumption we an prove the well-posedness of Method 3 whih is done in the

following proposition:

Proposition 5.1. Let e be ontinuously Fr�ehet-di�erentiable, let (5.22) hold and let �

k

> 0.

Then the quadrati programming problem (5.20), (5.21) has a unique solution (u

k

; q

k

) 2 U�Q,

whih is also the only loal minimum.

Proof. The basis of the proof is that the admissible set of the linearized state equation is

losed, onvex and non-empty. Furthermore the objetive is stritly onvex. Using the main

theorem of onvex optimization we may onlude that there exists a unique global minimum

and no further loal minima. Details an be found in Burger and M

�

uhlhuber [33℄.

In a similar way we an show that under ertain restritions on the regularization param-

eter, the IRSQP method is well-de�ned and that the quadrati programming problem (5.17),

(5.18) has a unique solution whih is also the only loal minimum. For the details of the

proof, as well as the exat assumptions see Burger and M

�

uhlhuber [33℄.

As already explained in the previous setion, the well-posedness an usually not be shown

for Method 1. Due to the ill-posedness of our model problem, the quadrati programming

problem (5.14), (5.15) need not have a unique solution. Even if a unique minimizer exists, it

need not depend on the data or on the previous iterate in a stable way.

So far we have not disussed the Lagrangian of the problem and the arising �rst-order

optimality onditions. These are not only neessary but also suÆient under the assumptions

needed for showing the well-posedness of the quadrati programming problems, sine the

objetive funtionals are stritly onvex.

5.3.3 The Karush-Kuhn-Tuker system

Based on the standard theory of onvex optimization, we an formulate the Lagrangian of

the problems (5.17), (5.18) and (5.20), (5.21) as

L

k

(u; q;�) =

1

2

kEu� z

Æ

k

2
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+

�

k

2

kq � q

k

k
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k

; e

00
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k

; q

k

)(u� u

k

; q � q

k

)

2

i

+ h�; e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) + e(u

k

; q

k

)� fi;

(5.23)



5.3. OPTIMIZATION PROCEDURES IN THE PRODUCT SPACE 75

where � = 1 in the ase of Method 2 (IRSQP method) and � = 0 for Method 3 (LMSQP

method). The solutions (u

k

; q

k

; �

k

) of the quadrati programming problems are saddle points

of the Lagrangian L

k

(f. Zeidler [160, p. 392�℄), i.e.,

L

k

(u

k

; q

k

; �) � L

k

(u

k

; q

k

; �

k

) � L

k

(u; q; �

k

); 8 (u; q; �) 2 U �Q� Y

�

; (5.24)

and satisfy the optimality ondition

0 = L

0

k

(u

k

; q

k

; �

k

); (5.25)

where L

0

k

denotes the Fr�ehet-derivative of L

k

in U �Q� Y

�

.

In order to rewrite (5.25) as a linear system for (u; q; �), the so-alled Karush-Kuhn-Tuker

system, we de�ne the following operators:

K

k

: U ! Y; K

k

u = e

u

(u

k

; q

k

)u; 8 u 2 U; (5.26)

L

k

: Q! Y; L

k

q = e

q

(u

k

; q

k

)q; 8 q 2 Q; (5.27)

M

k

: U ! U

�

; hM

k

u; vi = he

uu

(u

k

; q

k

)(u; v); �

k

i; 8 (u; v) 2 U � U; (5.28)

N

k

: Q! Q

�

; hN

k

q; si = he

qq

(u

k

; q

k

)(q; s); �

k

i; 8 (q; s) 2 Q�Q; (5.29)

P

k

: U ! Q

�

; hP

k

u; qi = he

qu

(u

k

; q

k

)(q; u); �

k

i; 8 (u; q) 2 U �Q (5.30)

Using these operators and the notation I

Q

for the identity on Q, we may onlude that

(u

k+1

� u

k

; q

k+1

� q

k

; �

k+1

) solves the linear system
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1

A

=
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�
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Æ

�Eu

k

)

0

f � e(u

k

; q

k

)

1

A

: (5.31)

Note that assumption (5.22) implies that K

k

is a regular operator, while L

k

is not neessarily

invertible.

In the last part of this setion we want to analyze the Karush-Kuhn-Tuker system (5.31).

As it forms a symmetri, and inde�nite linear system of equations, the analysis an be done

in the framework of linear saddle-point problems.

The solution and numerial approximation of linear saddle-point problems arising from

Lagrangian multipliers have been well-studied over the last deades after the seminal paper

by Brezzi [30℄. In the following let X and � be two Hilbert spaes, let g 2 X

�

, f 2 �

�

and

let a : X � X ! R and b : X � � ! R be ontinuous bilinear forms. Then a symmetri

linear saddle-point problem in variational formulation onsists of searhing for a solution

(x; �) 2 X � � of

a(x; v) + b(v; �) = hg; vi; 8 v 2 X; (5.32)

b(x; �) = hf; �i; 8 � 2 �; (5.33)

where a(�; �) is supposed to be symmetri on X �X. The well-posedness of (5.32), (5.33) an

be studied under additional assumptions on a and b, namely the so-alled kernel-elliptiity of

a,

9 �

a

2 R

+

: a(v; v) � �

a

kvk

2

X

; 8 v 2 K

b

:= fv 2 X j b(v; �) = 0;8 � 2 �g ; (5.34)
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and the LBB-ondition upon b,

9 �

b

2 R

+

: inf

�2�

sup

v2X

b(v; �)

kvk

X

k�k

�

� �

b

: (5.35)

Under these assumptions, the following lassial result an be shown (f. Brezzi [30℄ or

Brezzi and Fortin [31℄):

Theorem 5.2. Let a, b as above, suh that (5.34) and (5.35) are satis�ed. Then the linear

saddle-point problem (5.32), (5.33) has a unique solution (x; �) 2 X � �, whih depends

ontinuously on the data (f; g) 2 �

�

�X

�

.

In order to apply the above theorem we de�ne the symmetri bilinear form a

k

on (U �

Q)� (U �Q) by

a

k

(u; q;'; �) := hEu;E'i

Z

+ �

k

hq; �i

Q

+ �

�

h';M

k

ui+ h�;N

k

q + P

k

ui+ hq; P

k

'i

�

(5.36)

and the bilinear form b

k

: (U �Q)� Y

�

! R by

b

k

(u; q;�) := hK

k

u; �i+ hL

k

q; �i: (5.37)

With the right-hand sides

f

k

= f � e(u

k

; q

k

) 2 Y;

g

k

= (E

�

(z

Æ

�Eu

k

); 0) 2 U

�

�Q

�

;

(5.38)

we an now rewrite the system (5.31) in the standard form

a

k

(u; q;'; �) + b

k

('; �;�) = hg

k

; ('; �)i; 8 ('; �) 2 U �Q; (5.39)

b

k

(u; q;�) = hf

k

; �i; 8 � 2 Y

�

: (5.40)

Using the abstrat theory of linear saddle point problems presented above, we an derive a

statement on the well-posedness of the linear saddle-point problem (5.39), (5.40):

Theorem 5.3. Suppose that � = 0 in (5.36) and the assumptions of Proposition 5.1 are

satis�ed. Then the inde�nite system (5.39), (5.40), with the bilinear forms a

k

and b

k

de�ned

via (5.36), (5.37), has a unique solution (u; q; �) 2 U �Q� Y

�

, whih depends ontinuously

on the right-hand sides f

k

2 Y and g

k

2 U

�

�Q

�

.

Proof. We �rst show the kernel-elliptiity (5.34) of a

k

. Suppose (u; q) is an element of the

null-spae of b

k

, then u = �K

�1

k

L

k

q and thus, with � = 0, we may dedue that

a

k

(u; q;u; q) � �

k

kqk

2

Q

� �(kuk

2

+ kqk

2

)

for some � > 0. The LBB-ondition (5.35) for b

k

follows from

inf

�2Y

�

sup

(u;q)2U�Q

b

k

(u; q;�)

k(u; q)kk�k

� inf

�2Y

�

b

k

(K

�1

k

�; 0;�)

kK

�1

k

�kk�k

= inf

�2Y

�

k�k

2

kK

�1

k

�kk�k

�

1

kK

�1

k

k

:

Sine the ontinuity of a

k

and b

k

follows from the ontinuity of the Fr�ehet-derivatives, The-

orem 5.2 implies the assertion.

The well-posedness of the linear saddle-point problem for � = 1 whih orresponds to

Method 2 an be shown in a similar way. But similar to the well-posedness result of the

orresponding quadrati-programming problem it requires additional assumptions on the reg-

ularization parameter �

k

. For details see Burger and M

�

uhlhuber [33℄.
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5.3.4 Comparison to the feasible path method

In the following we ompare the behavior of the LMSQP-iteration with the feasible path

approah presented in Chapter 4. This shall illustrate the di�erenes in the iterates of the

iteration in the produt spae ompared to the ones generated using a solution operator for

the state equation and optimizing only in the design spae. The feasible path method looks

as follows:

Method 4 (Feasible-Path Levenberg-Marquardt Method). Let q

0

2 Q be a given

initial value and let (�

k

)

k2N

be a bounded sequene of positive real numbers. The Feasible-

Path Levenberg-Marquardt method onsists of the iteration proedure

q

k+1

= q

k

; (5.41)

where q

k

2 Q is the minimizer of the quadrati programming problem

1

2

kES(q

k

) +ES

lin

(q

k

)(q � q

k

)� z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

! min

q2Q

; (5.42)

with S denoting the solution operator of the state equation and S

lin

denoting the solution

operator of the linearized state equation.

For the sake of omparison we onsider the LMSQP method in the parameter spae, i.e.,

after elimination of the state u

k+1

and the Lagrange parameter �

k+1

, whih is possible beause

of the regularity of K

k

(see (5.22)). For a better distintion, we denote the updates of the

LMSQP-method by supersript SQP and those of the feasible path method by supersript

FP .

The updates u

SQP

and �

SQP

in the LMSQP-method an be omputed onseutively from

q

SQP

via

u

SQP

= �K

�1

k

�

L

k

q

SQP

� f + e(u

k

; q

k

)

�

(5.43)

�

SQP

= �(K

�

k

)

�1

E

�

�

Eu

SQP

� z

Æ

+Eu

k

�

(5.44)

Thus, with the notation G

k

:= �EK

�1

k

L

k

, we may rewrite the optimality ondition for the

update q

SQP

as

(�

k

I

Q

+G

�

k

G

k

) q

SQP

= G

�

k

(z

Æ

�Eu

k

�EK

�1

k

(f � e(u

k

; q

k

)): (5.45)

For a �rst omparison with the feasible path method we assume that (u

0

; q

0

) 2 U �Q solves

(5.7), i.e. the initial iterate is feasible with respet to the state equation. Then the iteration

step q

FP

for the feasible-path method solves

(�

0

I

Q

+G

�

0

G

0

) q

FP

= G

�

0

(z

Æ

�Eu

0

); (5.46)

whih oinides with (5.45) in our partiular ase, i.e., the iterate q

1

omputed with the

LMSQP-method is the same as with the feasible path method. The di�erene of our SQP

approah to the lassial method following the feasible path ours in the seond step of the

iteration, sine u

1

is not on the feasible path anymore. If e

0

is Lipshitz-ontinuous, we only

have

ku

SQP

1

� u

FP

1

k

U

= O(ku

FP

1

� u

0

k

2

U

+ kq

SQP

1

� q

0

k

2

Q

): (5.47)
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From equation (5.45) one observes that the right-hand side di�ers from the one for a feasible

path approah, sine f � e(u

k

; q

k

) need not vanish, whih is the essential di�erene of the

LMSQP-method and the feasible path method.

Sine the linear systems (5.45) and (5.46) are of the same struture, one ould also think

of �nding a produt-spae formulation of the feasible path method. Suh an approah was

presented by Tautenhahn and Shweigert [151℄ also in the ontext of inverse problems,

but in onnetion with a di�erent regularization sheme (Tikhonov regularization). In order to

derive suh a formulation we introdue the state u

k

whih is the unique solution of e(u; q

k

) = f

(for given q

k

), and an auxiliary funtion w suh that ES

lin

(q

k

)(q�q

k

) = E(w�u

k

). Then from

the de�nition of S

lin

as a solution operator of the linearized state problem we may onlude

that e

0

(u

k

; q

k

)(w�u

k

; q� q

k

) = 0. Sine the pair (u

k

; q

k

) satis�es (5.7), we may add the term

e(u

k

; q

k

) and obtain that q

k+1

is determined as the minimizer of

1

2

kEw � z

Æ

k

2

Z

+

�

k

2

kq � q

k

k

2

Q

! min

(w;q)2U�Q

; (5.48)

subjet to the linear onstraint

e(u

k

; q

k

) + e

0

(u

k

; q

k

)(w � u

k

; q � q

k

) = f: (5.49)

The new iterate u

k+1

an be omputed subsequently as the solution of e(u; q

k+1

) = f .

Sine the minimization step yielding q

k+1

is the same as a step in the LMSQP-method, we

may interpret the feasible path method as a preditor-orretor variant of the LMSQPmethod,

where the LMSQP-step serves as a preditor and a orretor step bak to the feasible path is

performed for �xed parameter q

k+1

. In this formulation, the only di�erene of the LMSQP-

method with respet to the feasible path sheme is to avoid the orretor step, whih might

be superuous for many appliations. Thus, the LMSQP-method may save some numerial

advantage by avoiding the solution of possibly nonlinear state equations.

5.4 Disretization tehniques

In the following we investigate the disretization of the LMSQP-method by a Galerkin ap-

proah. First of all, we assume that we have disretized data z

Æ;�

2 Z

�

� Z of the form

z

Æ;�

= R

�

z

Æ

; (5.50)

where R

�

: Z ! Z

�

is the orthogonal projetor onto the �nite-dimensional subspae Z

�

. Note

that we an give an error estimate for z

Æ;�

using (5.9) and kR

�

k = 1, whih yields

Æ

�

:= kR

�

z

Æ

� zk

Z

� kR

�

(z

Æ

� z)k

Z

+ kR

�

z � zk

Z

� Æ + inf

y2Z

�

ky � zk

Z

: (5.51)

Additionally we assume, that U is a Hilbert spae and that the image spae of e an be

identi�ed with the dual of U , for whih reason we write U

�

instead of Y in the following.

Finally, we assume that e is ontinuously Fr�ehet-di�erentiable on U �Q and that the partial

derivative e

u

is self-adjoint and satis�es the oerivity ondition

he

u

(u; q)v; vi � �

e

kvk

2

U

; 8(u; q; v) 2 U �Q� U; (5.52)

for some �

e

2 R

+

.
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The above setup is typial for a partial di�erential equation of ellipti type, whih is

also the main type of appliation we have in mind. We want to mention that the in�nite-

dimensional analysis arried out in the previous setion was not restrited to ellipti problems,

but only assumed well-posedness of the state equation for given parameter. However, sine

the numerial approximation tehniques for ellipti problems di�er from the ones for paraboli

or hyperboli problems (f. e.g. Quarteroni and Valli [123℄ for an overview), one annot

expet a suessful uni�ed approah to orresponding parameter identi�ation problems. For

this reason we restrit ourselves to the investigation of the ellipti ase.

5.4.1 The disretized LMSQP method and its well-posedness

Now let U

h

� U , Q

h

� Q be �nite-dimensional subspaes of U and Q, with the orresponding

orthogonal projetors P

h

: U ! U

h

and

~

P

h

: Q ! Q

h

. Then we an disretize the LMSQP-

Method as follows:

Method 5 (Galerkin LMSQP-Method). Let U

h

, Q

h

and Z

�

be as above and let (u

0

; q

0

) 2

U

h

�Q

h

be a given initial value. Moreover, let (�

k

)

k2N

be a bounded sequene of positive real

numbers. The Galerkin Levenberg-Marquardt sequential quadrati programming (GLMSQP)

method onsists of the iteration proedure

(u

k+1

; q

k+1

) = (u

k

; q

k

); (5.53)

where (u

k

; q

k

) 2 U

h

�Q

h

is the minimizer of the quadrati programming problem

1

2

kR

�

(Eu� z

Æ

)k

2

Z

+

�

k

2

kq � q

k

k

2

Q

! min

(u;q)2U

h

�Q

h

; (5.54)

subjet to the linear onstraint

he(u

k

; q

k

) + e

0

(u

k

; q

k

)(u� u

k

; q � q

k

); 'i = hf; 'i; 8 ' 2 U

h

: (5.55)

Note that the onstraint (5.55) an be rewritten in operator form as

P

�

h

K

k

P

h

(u� u

k

) + P

�

h

L

k

~

P

h

(q � q

k

) = P

�

h

(f � e(u

k

; q

k

)); (5.56)

to be solved for (u; q) 2 U

h

�Q

h

, with the notation

K

k

: U ! U

�

; K

k

u = e

u

(u

k

; q

k

)u; 8 u 2 U; (5.57)

L

k

: Q! U

�

; L

k

q = e

q

(u

k

; q

k

)q; 8 q 2 Q; (5.58)

and P

�

h

: U

�

h

! U

�

is the adjoint of P

h

. Under the assumption (5.52), we obtain that

hP

�

h

K

k

P

h

v; vi = hK

k

P

h

v; P

h

vi = hK

k

v; vi � �

e

kvk

2

U

(5.59)

for all v 2 U

h

, i.e., the disrete bilinear form assoiated with the operator P

�

h

K

k

P

h

is oerive

on U

h

. This implies by the Lax-Milgram theorem, that (5.56) is uniquely solvable with respet

to u for given q 2 Q

h

. Consequently, in an analogous way to the proof of Proposition 5.1 we

may show the following result on the well-posedness of the quadrati programming problem

that has to be solved in eah step of Method 5 (GLMSQP method).

Proposition 5.4. Let e be ontinuously Fr�ehet-di�erentiable, let (5.52) hold and let �

k

> 0.

Then the quadrati programming problem (5.54), (5.55) has a unique solution (u

k

; q

k

) 2 U

h

�

Q

h

, whih is also the only loal minimum.
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5.4.2 The disretized Karush-Kuhn-Tuker system

In Subsetion 5.3.3, the Karush-Kuhn-Tuker system for the in�nite-dimensional version of

the LMSQP-method has been derived and analyzed in the framework of linear saddle point

problems. Now we will disuss the disretized analogue of this system, namely the �rst-order

optimality onditions for the quadrati programming problem (5.54), (5.55).

The Lagrangian of (5.54), (5.55) is given by

L

k

(u; q;�) =

1

2

kR

�

(Eu� z

Æ

)k

2

Z

+

�

k

2

kq � q

k

k

2

Q

+

+ h�; e

0

(u

k

; q

k

)(u� u

k

; q � q

k

) + e(u

k

; q

k

)� fi;

(5.60)

for (u; q; �) 2 U

h

� Q

h

� U

h

. Sine P

h

and

~

P

h

are equal to the identity on U

h

and Q

h

,

respetively, we an rewrite the Lagrangian as

L

k

(u; q;�) =

1

2

kR

�

(EP

h

u� z

Æ

)k

2

Z

+

�

k

2

k

~

P

h

(q � q

k

)k

2

Q

+

+ hP

h

�;K

k

P

h

(u� u

k

) + L

k

~

P

h

(q � q

k

) + e(u

k

; q

k

)� fi;

(5.61)

with the operators K

k

and L

k

de�ned by (5.57), (5.58). The KKT-system an now be

dedued by omputing the partial derivatives of the Lagrangian with respet to u, q and �,

i.e., (u

k+1

� u

k

; q

k+1

� q

k

; �

k+1

) solves the linear saddle-point problem

0

�

P

�

h

E

�

R

�

�

R

�

EP

h

0 P

�

h

K

�

k

P

h

0 �

k

~

P

�

h

~

P

h

~

P

�

h

L

�

k

P

h

P

�

h

K

k

P

h

P

�

h

L

k

~

P

h

0

1

A

0

�

u

q

�

1

A

=

0

�

P

�

h

E

�

R

�

�

R

�

(z

Æ

�Eu

k

)

0

P

�

h

(f � e(u

k

; q

k

))

1

A

:

(5.62)

As in Subsetion 5.3.2, we de�ne the symmetri bilinear form a

k

: (U �Q)� (U �Q)! R by

a

�

k

(u; q;'; �) := hR

�

Eu;R

�

E'i

Z

+ �

k

hq; �i

Q

(5.63)

and the bilinear form b

k

: (U �Q)� U ! R by

b

k

(u; q;�) := hK

k

u; �i+ hL

k

u; �i: (5.64)

Moreover, we use the right-hand sides

f

k

:= f � e(u

k

; q

k

) 2 U

�

; (5.65)

g

�

k

:= (E

�

R

�

�

R

�

(z

Æ

�Eu

k

); 0) 2 U

�

�Q: (5.66)

Then the KKT-system (5.62) an be interpreted as the Galerkin approximation of an inde�nite

variational problem, i.e., (u; q; �) 2 U

h

�Q

h

� U

h

is the solution of

a

�

k

(u; q;'; �) + b

k

('; �;�) = hg

�

k

; ('; �)i; 8 ('; �) 2 U

h

�Q

h

; (5.67)

b

k

(u; q;�) = hf

k

; �i; 8 � 2 U

h

: (5.68)

In an analogous way to the proof of Theorem 5.2 we an show that the bilinear form a

�

k

satis�es

the disrete kernel-elliptiity ondition on U

h

�Q

h

, i.e., there exists a onstant �

a

> 0 suh

that

a

�

k

(u; q;u; q) � �

a

k(u; q)k

2

; 8 (u; q) 2 K

h

b
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with

K

h

b

:= f(v; s) 2 U

h

�Q

h

j b(v; s;�) = 0; 8 � 2 U

h

g ;

and that b satis�es the disrete LBB-ondition

inf

�2U

h

sup

(u;q)2U

h

�Q

h

b

k

(u; q;�)

k(u; q)k k�k

� �

b

;

for some �

b

> 0. Using the Theorem 5.2 this implies the following well-posedness result for

the disretized problem (5.67), (5.68):

Theorem 5.5. Let e be ontinuously Fr�ehet-di�erentiable, let (5.52) hold and let �

k

> 0.

Then the inde�nite system (5.67), (5.68) has a unique solution (u; q; �) 2 U

h

�Q

h

�U

h

, whih

depends ontinuously on the right-hand sides f

k

and g

�

k

.

Sine the onstants �

a

and �

b

are the same as in the orresponding in�nite-dimensional

onditions in U �Q, they are in partiular independent of the disrete subspaes U

h

and Q

h

.

This allows us to dedue an approximation result for the solutions of (5.67), (5.68) to the

solution (u; q; �) 2 U � Q � U of the in�nite-dimensional KKT-System, given in variational

form in (5.39), (5.40), i.e.

a

k

(u; q;'; �) + b

k

('; �;�) = hg

k

; ('; �)i; 8 ('; �) 2 U �Q; (5.69)

b

k

(u; q;�) = hf

k

; �i; 8 � 2 U; (5.70)

with a

k

given by

a

k

(u; q;'; �) := hEu;E'i

Z

+ �

k

hq; �i

Q

; (5.71)

b

k

, f

k

as above and g

k

de�ned by

g

k

:= (E

�

(z

Æ

�Eu

k

); 0) 2 U

�

�Q: (5.72)

Theorem 5.6. Suppose that the assumptions of Theorem 5.5 are satis�ed and let

(u

h

; q

h

; �

h

) 2 U

h

�Q

h

� U

h

denote the unique solution of (5.67), (5.68). Then there exists a onstant  > 0 independent

of U

h

and Q

h

suh that

k(u� u

h

; q � q

h

; �� �

h

)k � 

�

r

Æ

�;h

+ inf

(v;s;�)2U

h

�Q

h

�U

h

k(u� v; q � s; �� �)k

�

; (5.73)

where (u; q; �) denotes the unique solution of (5.39), (5.40) and

r

Æ

�;h

:= k(R

�

� I)z

Æ

k

Z

+ sup

v2U

h

;kvk=1

k(R

�

� I)Evk

Z

: (5.74)

Proof. First, let (~u

h

; ~q

h

;

~

�

h

) denote the solution of (5.67), (5.68) with a

�

k

, g

�

k

replaed by a

k

,

g

k

. Then Theorem 2.1 in Brezzi and Fortin [31℄ implies the existene of a onstant 

1

> 0

(independent of U

h

and Q

h

) suh that

k(u� ~u

h

; q � ~q

h

; ��

~

�

h

)k � 

1

inf

(v;s;�)2U

h

�Q

h

�U

h

k(u� v; q � s; �� �)k:
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Moreover, the ontinuous dependene of the solutions of (5.67), (5.68) on the right-hand side

implies the existene of 

2

> 0 with

k(u

h

� ~u

h

; q

h

� ~q

h

; �

h

�

~

�

h

)k

� 

2

 

sup

v2U

h

;kvk=1

hg

�

k

� g

k

; (v; 0)i + sup

'2U

h

;k'k=1

ja

�

k

(~u

h

; ~q

h

; ')� a

k

(~u

h

; ~q

h

; ')j

!

� 

2

 

sup

v2U

h

;kvk=1

hEv; (R

�

�

R

�

� I)(z

Æ

�Eu

k

)i+ sup

'2U

h

;k'k=1

hE'; (R

�

�

R

�

� I)E~u

h

i

!

� 

2

kEk k(R

�

� I)z

Æ

k

Z

+ 

3

sup

v2U

h

;kvk=1

k(R

�

� I)Evk

Z

;

and with the triangle inequality we may onlude (5.73).

Theorem 5.6 provides an error estimate for the solutions of the disretized saddle-point

problem (5.67), (5.68), onsisting of two parts orresponding to the numerial approximation

in the image spae Z and in the pre-image spaes U and Q. An obvious estimate for the �rst

term is

r

Æ

�;h

� inf

y2Z

�

ky � z

Æ

k

Z

+ sup

v2U

h

;kvk

U

=1

inf

~y2Z

�

k~y �Evk

Z

;

whih possibly does not lead to a quantitative estimate, sine there is no additional informa-

tion on the smoothness of the noisy data. An alternative estimate is

r

Æ

�;h

� Æ + inf

y2Z

�

ky � zk

Z

+ sup

v2U

h

;kvk

U

=1

inf

~y2Z

�

k~y �Evk

Z

:

The in�mum of ky � zk

Z

an usually be estimated more easily, sine the exat data z are

smoother due to the fat that û is the solution of the state equation for some parameter q̂.

E.g., if the state equation is of ellipti type with solution û 2 H

1

(
), E : H

1

(
) ! L

2

(
)

is the embedding operator, and R

�

results from a standard �nite element disretization on a

grid with �neness �, then we have at least

inf

y2Z

�

ky � zk = O(�):

Another important observation is that the last term vanishes if the disrete spaes Z

�

and U

h

are equal, whih an be ahieved in some appliations.

The seond term in (5.73) shows that the Galerkin approximation of the KKT-system is

of optimal order in U

h

�Q

h

�U

h

; it an be estimated by standard methods for �nite element

disretizations; quantitative estimates an be obtained using the regularity of the iterates.

This part depends of ourse strongly on the spei� appliation.

5.5 Numerial realization of the SQP-iteration

In the following we want to disuss some numerial methods and variants for the 'outer

iteration', i.e., the Galerkin LMSQP algorithm under the assumption that we are able to

solve the disretized KKT-system numerially. The 'inner iteration', namely the numerial

solution of the inde�nite system (5.62) will be investigated in Setion 5.6.
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5.5.1 Saling of state variable, parameter and Lagrangian multiplier

The performane of an iteration algorithm often depends ruially on the way the problem

is formulated. Saling is a well-known tehnique for reformulating an optimization problem

whose main objetive is twofold: On the one hand all the variables should be of similar

magnitude, on the other hand also the value of the derivatives should all be of similar size. In

unonstrained optimization, a problem should be resaled in suh a way, that hanges of the

iterate in one diretion do not result in by far larger hanges of the value of the objetive than

hanges in another diretion. In onstrained optimization the above statements are also true

for eah onstraint. Additionally the set of onstraints should be well balaned with respet

to eah other suh that eah onstraint has equal weight. Furthermore, the set of onstraints

should be balaned with respet to the objetive. As saling is of high pratial importane

for any optimization problem, many aspets an be found in monographs on optimization (f.

e.g. Gill, Murray, and Wright [63℄ or Noedal and Wright [115℄).

We want to onsider only the last aspet in this ontext, i.e., the saling of the state

onstraint with respet to the objetive whih is also of high importane for ahieving fast

onvergene of the outer iteration. For the inner iteration, the aspet of saling an be

inluded in the onstrution of a good preonditioner. The outer iteration of an SQP method

tries to attain two goals at the same time: Feasibility of the iterate with respet to the state

onstraint and optimality of the iterate with respet to the objetive. One aspet dominating

the other results usually in bad onvergene properties: If the feasibility aspet dominates,

only very small hanges of the iterate are possible in order to ensure 'almost' feasibility. If

the optimality aspet dominates, any violation of the state onstraint is redued too slowly.

For the LMSQP method in the form of (5.54), (5.55) it turned out that in many situations

the feasibility aspet is strongly dominating. Using line searh methods for globalization (see

also Setion 2.2) this results usually in step lengths muh smaller than one. Replaing the

state onstraint by a preonditioned state onstraint leads to a better balaned formulation

and to muh faster onvergene. Furthermore a step length parameter equal to one is aepted

in almost all steps.

5.5.2 Globalization strategies

The LMSQP method is a variant of Newton's method and therefore only loally onvergent.

For this reason, globalization strategies, suh as trust region methods or line searh strategies

(whih are the two most popular lasses of globalization tehniques in optimization), are

needed. Both lasses were introdued in Setion 2.2. That is why we want to refer to this

setion and the referenes ited therein for details.

5.5.3 Nested multi-level optimization tehniques

Important tools for the eÆient numerial approximation of in�nite-dimensional optimization

problems are multi-level optimization methods. In the nested multi-level setup, one starts the

optimization proedure at a oarse level U

h

1

� Q

h

1

, where the iteration proedure an be

arried out eÆiently. If an appropriate stopping riterion is satis�ed, one interpolates the

state and parameter obtained in this way to a �ner level U

h

2

�Q

h

2

(for h

2

< h

1

), serving now

as a starting value on this level. This proedure is repeated until the �nest level is reahed.

Usually, nested spaes are used in this approah, i.e., U

h

1

� U

h

2

, Q

h

1

� Q

h

2

(for h

2

< h

1

),

whih leads to simple interpolation operators. Sine one annot hoose the disretization of
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the data arbitrarily in general , we onsider only the ase of �xed � here, but a multi-level

approah in � an be realized in an analogous way, if neessary.

Nested multi-level methods outperform standard disretization tehniques in many ases

(f. e.g. Heinkenshloss [82℄, Heise [84℄, Luk

�

a

�

s [108, 109℄); usually a onsiderable number

of iterations is needed on the oarse level only, where the numerial e�ort per iteration is very

low. On the �nest levels, the stopping riterion is often satis�ed already after one iteration

step and so the overall e�ort is less than for a diret disretization on the �nest level. For the

Galerkin LMSQP method, this leads to Algorithm 5.5.3.

Algorithm 5.1 Nested Multi-Level Galerkin LMSQP

Require: a dereasing sequene fh

`

g

`=1;:::;L

with nested spaes U

h

`

� U

h

`+1

, Q

h

`

� Q

h

`+1

(e.g. h

`

= 2

�`

h

0

)

Require: (u

1

0

; q

1

0

) 2 U

h

1

�Q

h

1

for ` = 1 to L do

h = h

`

Perform the Galerkin LMSQP method until the stopping riterion is satis�ed.

if ` == L then

return

end if

Prolongate the iteration (u

`

k

�

; q

`

k

�

) to the �ner level U

h

`+1

�Q

h

`+1

, whih results in a new

starting value (u

`+1

0

; q

`+1

0

).

end for

Up to now we did not talk about the hoie of the nested spaes. Of ourse, they an be

hosen in advane. In the �nite element ommunity it is well known, that the auray of the

solution an be improved by using a-posteriori error estimators. They provide information

whih elements shall be re�ned to obtain a more preise solution. This information an be used

to onstrut appropriate �ne grid spaes. For an overview of a-posteriori error estimation see

e.g. Verf

�

urth [154℄. In the ontext of optimization the onept of adaptivity and a-posteriori

error estimation is not as well-known as in the �nite element ommunity. An example in the

ontext of optimization is presented in Beker, Kapp, and Rannaher [11℄, in the ontext

of optimal ontrol problems see e.g. Beker, Kapp, and Rannaher [10℄.

5.6 Numerial solution of the KKT-system

In the following we will disuss the numerial solution of the disretized KKT-system (5.62)

for �xed iteration number k. We have seen above that the Galerkin-type approximation (5.62)

of the original KKT-system is well-posed, now we disuss some of its strutural properties,

whih are important for the appliation of iterative solution methods and for the onstrution

of preonditioners.

Choosing bases

� = (�

1

; : : : ; �

m

)

T

2 U

h

; � = (�

1

; : : : ; �

n

)

T

2 Q

h

; (5.75)

of the �nite-dimensional subspaes U

h

and Q

h

, we may represent (u

h

; q

h

; �

h

) 2 U

h

�Q

h

�U

h

via

u

h

= u

T

�; q

h

= q

T

�; �

h

= �

T

�; (5.76)
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with oordinate vetors u;� 2 R

m

and q 2 R

n

. In order to transform (5.62) into a linear

system for u, q and �, we de�ne the matries

G := (hE�

j

; E�

i

i

Z

)

i;j=1;:::;m

H := (h�

j

; �

i

i

Q

)

i;j=1;:::;n

(5.77)

K := (hK

k

�

j

; �

i

i)

i;j=1;:::;m

L := (hL

k

�

j

; �

i

i)

i=1;:::;m;j=1;:::;n

(5.78)

and the vetors

f

1

:= (hz

Æ;�

�Eu

k

; E'

i

i

Z

)

i=1;:::;m

; f

3

:= (hf � e(u

k

; q

k

); '

i

i)

i=1;:::;m

: (5.79)

This allows us to rewrite the disretized KKT-system (with penalty parameter � = �

k

) as

0

�

G 0 K

T

0 �H L

T

K L 0

1

A

0

�

u

q

�

1

A

=

0

�

f

1

0

f

3

1

A

; (5.80)

respetively as

MX = F; (5.81)

with

M =

0

�

G 0 K

T

0 �H L

T

K L 0

1

A

; X =

0

�

u

q

�

1

A

; F =

0

�

f

1

0

f

3

1

A

:

The strutural properties ofM and its sub-matries will be examined in the following setion.

5.6.1 The system matrix M

Due to the well-posedness result on the disretized KKT-system (5.62) (f. Theorem 5.5), we

may onlude that the system matrix M is regular. In order to obtain further insight into

the struture of M, we investigate the properties of the sub-matries G, H, K and L.

Proposition 5.7. The matries K 2 R

m�m

and H 2 R

n�n

are symmetri positive de�nite,

and the matrix G 2 R

m�m

is symmetri positive semi-de�nite. If in addition the operator E

is injetive on U

h

, then G is regular, too.

Proof. Let u

h

and q

h

be as in (5.76), then there exist onstants 

1

(h) and 

2

(h) suh that

ku

h

k

U

� 

1

(h)kuk; kq

h

k

Q

� 

2

(h)kqk;

where k:k denotes the Eulidian norm in R

n

and R

m

, respetively. Thus, we have

u

T

Ku = hK

k

u

h

; u

h

i � �

e

ku

h

k

2

U

� �

e



1

(h)

2

kuk

2

;

and

q

T

Hq = kq

h

k

2

Q

� 

2

(h)

2

kqk

2

:

Moreover, the identity

u

T

Gu = kEu

h

k

2

Z

� 0

implies that G is positive semi-de�nite and regular under the assumption that E is injetive

on U

h

. The symmetry of the matries G, H and K an be veri�ed in a similar way, using the

symmetry of salar produts and the self-adjointness of the operator K

k

.
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The matrix L 2 R

m�n

is diÆult to analyze, it is neither symmetri nor regular in general

(in partiular if n 6= m). However, some fundamental properties of M (suh as its regularity)

rely rather on G, H and K than on L. Moreover, the lassial splitting of a symmetri

saddle-point problem as

0

�

G 0 K

T

0 H

�

L

T

K L 0

1

A

=

0

�

I 0 0

0 I 0

KG

�1

LH

�1

�

I

1

A

0

�

G 0 0

0 H

�

0

0 0 �C

1

A

0

�

I 0 G

�1

K

T

0 I H

�1

�

L

T

0 0 I

1

A

;

where H

�

:= �H and C is the Shur-omplement

C := KG

�1

K

T

+ �

�1

LH

�1

�

L

T

; (5.82)

is only possible if both G and H

�

are regular. In partiular, we may onlude that M has

n+m positive and m negative eigenvalues.

5.6.2 Redued SQP approahes

The basi idea of redued SQP-methods is the a-priori elimination of the equality onstraint,

whih an be written in matrix form as

Ku+ Lq = f

3

; (5.83)

whih is equivalent to an elimination of u and � in (5.80).

Due to Proposition 5.7, K is a regular, symmetri matrix and thus, we may ompute

u = K

�1

(f

3

� Lq); (5.84)

� = K

�T

(f

1

�Gu); (5.85)

whih yields after some alulations the n� n-system

M

r

q = g (5.86)

with

M

r

:= H

�

+ L

T

K

�T

GK

�1

L (5.87)

g := L

T

K

�T

(GK

�1

f

3

� f

1

): (5.88)

The redued SQP-approah seems of partiular interest if n � m, whih is a frequently

used disretization strategy for parameter identi�ation and optimal ontrol problems (f.

e.g. Sahs [134℄, Shulz and Bok [139℄, or Shulz [138℄). The original matrix M is an

inde�nite matrix of size (2m+n)� (2m+n), while the redued system matrixM

r

in (5.86) is

of size n�n. However, M

r

is not a sparse matrix even if all the sub-matries ofM are sparse,

sine it involves the inverse of K. Moreover, the evaluation of a matrix-vetor produt using

M

r

is more expensive than a matrix-vetor produt usingM, sine it involves the solution of

two systems of the form

Kw = g; (5.89)

with di�erent right-hand sides g, while for the evaluation of matrix-vetor produt with

M only diret evaluations of K are needed, whih are very heap for typial �nite element

disretization of the state onstraint. In pratie, one usually tries to ompensate this dis-

advantage of redued SQP-methods by using a Broyden-type update for the redued system

matrix instead of the exat matrix M

r

, whih leads to eÆient optimization algorithms for

small numbers of design parameters n.
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5.6.3 Simultaneous solution of the KKT-system

Reently, the simultaneous solution of KKT-systems by iterative methods has been inves-

tigated, in partiular in onnetion with optimal ontrol problems (f. Battermann and

Heinkenshloss [8℄, Biros and Ghattas [16, 17℄ or Haber and Asher [74℄). Compared

to the redued SQP-approah, a simultaneous solution strategy has the obvious advantage

that the alloation and evaluation of the system matrixM is muh heaper than of M

r

. The

pay-o� is that M is inde�nite and larger thanM

r

, whih might ause additional e�ort. How-

ever, the main e�ort in the redued SQP-approah is related to the evaluation or assembly of

the system matrixM

r

, respetively, and therefore a simultaneous solution of the KKT-system

an result in a tremendous speed-up of the SQP-method, in partiular for �ne disretizations.

At a �rst glane, it seems rather straight-forward to solve (5.81) by a standard iterative

method for inde�nite systems suh as inexat Uzawa methods (f. Bramble, Pasiak, and

Vassilev [27℄, Elman and Golub [49℄, Langer and Quek [104, 105℄, or Quek [124℄)

or Krylov-subspae methods suh as GMRES (f. Saad and Shultz [133℄), MINRES (f.

Paige and Saunders [117℄) and QMR (f. Freund and Nahtigal [56℄). However, in

the ase of large-sale problems, we have to expet a large ondition number (note that �

is usually small and that M is singular for � = 0) and a ompliated eigenvalue pattern of

the matrix M, whih might ause iterative methods to diverge or to need a high number of

iterations. Therefore, an appropriate preonditioning tehnique seems neessary for any of

the methods.

In the following we distinguish two types of solvers that seem appropriate for the solution

of the inde�nite system (5.81) and disuss their basi properties with respet to the speial

struture of M.

Inexat Uzawa iterations

Inexat Uzawa methods and similar iteration proedures have been developed for the solu-

tion of the lassial Stokes system and similar problems (f. Quarteroni and Valli [123℄

for an overview). The lassial Uzawa method is just a gradient method for the dual of

the orresponding Lagrange funtional, the inexat Uzawa method an be interpreted as a

preonditioned version (f. Quarteroni and Valli [123℄). Following the exposition by

Zulehner [164℄, we an write an inexat Uzawa method for a system of the form (5.80) as

^

A

�

u

k+1

� u

k

q

k+1

� q

k

�

=

�

f

1

�Gu

k

�K�

k

��Hq

k

� L�

k

�

; (5.90)

followed by

^

C(�

k+1

� �

k

) = f

3

�Ku

k+1

� Lq

k+1

; (5.91)

where

^

A is a preonditioner for the diagonal matrix

A :=

�

G 0

0 �H

�

; (5.92)

^

C is a preonditioner for the Shur-omplementC de�ned by (5.82) and k denotes the iteration

index. In terms of (5.81) we an write the inexat Uzawa iteration as

X

k+1

= (I�

^

M

�1

M)X

k

+

^

M

�1

F; s (5.93)
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where

^

M is a preonditioner for the system matrix, given by

^

M =

�

^

A 0

B

^

C

�

; (5.94)

with B =

�

K L

�

.

A onvergene analysis of this method is available only in the ase when A is a regular

matrix (f. Bramble, Pasiak, and Vassilev [27℄ or Zulehner [164℄), whih means

that we have to assume that G is regular. The latter is true e.g. if the data z represent

distributed data for the state, i.e., E is an embedding operator. In this ase, the struture

of A is rather simple and it is not a diÆult task to onstrut a preonditioner, even exat

preonditioning seems possible (note that G is just a mass matrix for a typial �nite element

disretization). Sine the matries G and H do not hange during the SQP-iteration we may

even ompute deompositions in a preproessing step. The onstrution of a preonditioner

for the Shur-omplement C is more diÆult and must take into aount the spei� nature

of the underlying state equation.

Krylov-subspae methods

The Krylov-subspae methods GMRES and QMR are variants of the CG-algorithm that are

appliable to inde�nite problems, too. The basi idea of suh methods is a defet minimization

in the Krylov-subspae

K

k

(M;X

1

) = fX

1

;MX

1

; : : : ;M

k�1

X

1

g; (5.95)

generated by X

1

, in the k-th iteration step. Sine preonditioned CG-methods are probably

the most suessful lass of iteration methods for positive de�nite systems, suh methods

seem very attrative also in the inde�nite ase, although additional diÆulties may arise (f.

e.g. Saad and Shultz [133℄).

The onvergene analysis in Saad and Shultz [133℄ and Freund and Nahtigal [56℄

shows that the error bounds obtained for both methods are essentially the same, and mainly

dependent on the eigenvalue distribution and the ondition number of the system matrix M.

Therefore, appropriate preonditioning is again of high importane, in this ase also with the

possibility that G is singular.

Preonditioning

For the eÆient solution of the KKT-system (5.80) it is neessary to use iterative solution

proedures due to the size of the equation system. For these methods appropriate preondi-

tioning strategies are needed to get fast onvergene. Unfortunately, for symmetri inde�nite

equation systems by far fewer methods ompared to the positive de�nite ase are available.

The most popular lass of methods are Uzawa type methods. Many publiations an be

found, espeially in the �eld of uid dynamis. Reently, Zulehner [164℄ presented a uni�ed

approah to many of these methods. The methodology presented in the previous subsetion

on inexat Uzawa methods an also be used as preonditioner.

A di�erent lass of preonditioners originates form redued SQP methods and an be

explained as follows: The KKT-matrix M an be fatorized into

M =

0

�

GK

�1

0 I

0 I L

T

K

�T

I 0 0

1

A

0

�

K L 0

0 S



0

0 �GK

�1

L K

T

1

A

(5.96)
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where S



denotes the Shur-omplement

S



= �H+ L

T

K

�T

GK

�1

L: (5.97)

Replaing the matrix K

�1

by a preonditioner

^

K

�1

(e.g. a multigrid preonditioner) and

the Shur omplement S



by an appropriate preonditioner

^

S



leads to a preonditioner for

M of the form

^

M =

0

�

G

^

K

�1

0 I

0 I L

T

^

K

�T

I 0 0

1

A

0

�

^

K L 0

0

^

S



0

0 �G

^

K

�1

L

^

K

T

1

A

: (5.98)

It must be noted that for the preonditioning operation

^

M

�1

only appliations of

^

K

�1

and

^

S

�1



are neessary and no appliations of

^

K of

^

S



. This preonditioner was used in our

omputations (see Setion 5.7) , but also by Haber and Asher [74℄ or Biros and Ghat-

tas [16, 17℄.

A similar preonditioner was presented by Battermann and Sahs [9℄. They used

^

M =

0

�

0 0

^

K

T

0

^

S



L

T

^

K L 0

1

A

(5.99)

as a preonditioner for an all-at-one approah for an optimal ontrol problem. Their paper

ontains also some analysis of the eigenvalue struture of the preonditioned system, whih

inuenes the onvergene of the used iterative method to a large extent.

At least for ellipti state problems leading to positive de�nite matries K it is lear how

to hoose appropriate preonditioners

^

K for the state equation for the previous two preon-

ditioners. On the other hand, it is by far more diÆult how to hoose preonditioners for the

Shur-omplement. One approah is to exploit mapping properties of the underlying pseudo-

di�erential operator. This approah was used e.g. by Ta'asan [147, 149, 146, 148℄ in the

ontext of shape design for uid dynamis. He used Fourier transformation to get the symbol

of the Shur-omplement and exploited this for preonditioning. A ompletely di�erent ap-

proah was presented by Bramble, Pasiak, and Vassilevski [28℄. They developed a way

for the onstrution of eÆient preonditioners of pseudo-di�erential operators of positive and

negative order, based on multi-level tehniques.

5.7 Examples and numerial results

In order to illustrate the previously desribed methods, we arry out some numerial exper-

iments with our model problem desribed in Setion 5.2. As the desription there does not

ontain details on the observation as well as on the state equation, we will further restrit

ourselves to two problem lasses, namely the identi�ation of a reation oeÆient and the

identi�ation of a ondutivity.

5.7.1 The identi�ation of a reation oeÆient

In our �rst example we want to identify the reation oeÆient q 2 H

1

0

(
) in the 1D potential

equation

�u

00

+ qu = f in 
 = (0; 1); (5.100)

u(0) = u(1) = 0 (5.101)
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The data z are an observation of u 2 L

2

(
), i.e. the observation operator E is the anonial

embedding from H

1

(
) into L

2

(
). The right-hand side f 2 H

�1

(
) is given by

f(x) =

1

2

+ sinx; x 2 
;

the exat reation oeÆient q̂ 2 H

1

0

(
) by

q̂(x) = x(1� x):

In other words, we onsider the parameter identi�ation problem

1

2

ku� z

Æ

k

2

L

2

(
)

! min

(u;q)2H

1

0

(
)�H

1

0

(
)

(5.102)

subjet to

1

Z

0

u

0

(x)v

0

(x) + q(x)u(x)v(x) dx =

Z

1

0

f(x)v(x) dx 8 v 2 H

1

0

(
) (5.103)

where z

Æ

denotes a noisy approximation of the data z.

We use the LMSQP method, for whih the KKT-system of the quadrati subproblem

(5.31) looks as follows:

0

�

I

L

2

(
)

0 K

�

k

0 �

k

I

H

1

0

(
)

L

�

k

K

k

L

k

0

1

A

0

�

u

q

�

1

A

=

0

�

(z

Æ

� u

k

)

0

�r

k

1

A

; (5.104)

with

K

k

: H

1

0

(
)! H

�1

(
); hK

k

u; vi =

Z

1

0

u

0

(x)v

0

(x) + q

k

(x)u(x)v(x) dx 8 v 2 H

1

0

(
)

L

k

: L

2

(
)! H

�1

(
); hL

k

q; vi =

Z

1

0

q(x)u

k

(x)v(x) dx 8 v 2 H

1

0

(
)

and r

k

denoting the residual of the state equation, i.e.

hr

k

; vi =

Z

1

0

u

0

k

(x)v

0

(x) + q

k

(x)u

k

(x)v(x) dx�

Z

1

0

f(x)v(x) dx 8 v 2 H

1

0

(
):

As the state equation is linear in u and q in our ase, the de�nition of K

k

and L

k

is straight-

forward.

For the numerial realization, 
 is disretized uniformly using linear �nite elements. The

approximations of the state variable u and the Lagrangian multiplier � has m degrees of

freedom, for approximating the parameter q we use n degrees of freedom. The noisy data z

Æ

are generated by solving the state equation on a �ne grid using the exat reation oeÆient,

restriting the �ne grid solution to a oarser grid and �nally adding some high-frequeny

perturbation as noise.

The simple struture of our example implies a rather simple struture of the KKT-sub-

matries of the Galerkin-LMSQP method, in partiular in (5.80) G is an L

2

-mass matrix,

i.e.

G = (h�

j

; �

i

i

L

2

(
)

)

i;j=1;:::;m

;
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Figure 5.1: Reonstrution (solid) and exat solution (dashed) for noise level Æ = 5% (left)

and Æ = 20% (right)

and H is an H

1

-sti�ness matrix, i.e.

H = (h�

j

; �

i

i

H

1

(
)

)

i;j=1;:::;n

:

In the linearization of the state equation, K is de�ned via

K = (hK

k

�

j

; �

i

i)

i;j=1;:::;m

and L via

L = (hL

k

�

j

; �

i

i)

i=1;:::;m;j=1;:::;n

;

where �

i

; i = 1; : : : ;m and �

j

; j = 1; : : : ;m denote the aording basis funtions. Hardly any

properties of the matrix L are known, exept that L approximates a di�erential operator of

order 0. We refer to (5.77), (5.78) for the de�nition of these matries.

This problem is implemented in the software-system MATLAB. The KKT-system (5.80)

is solved using a diret solver in this ase, whih is probably not the best hoie with respet

to the numerial e�ort for �ne disretizations, but still yields reasonable results in our ase.

Figure 5.1 shows the results obtained with the LMSQP method for noise level Æ = 5% and

Æ = 20%. Surprisingly, the approximation is still reasonable even for a large noise level like

Æ = 20%, but the reonstrution is not as smooth as for Æ = 5% The orresponding evolutions

of the error kq

k

� q̂k

H

1

(
)

and the residual ku

k

� z

Æ

k

L

2

(
)

are plotted in Figure 5.2. One

observes that in both ases the error dereases up to some iteration index and then starts to

inrease again whih is a typial phenomenon for inverse problems. That is why the iteration

is not terminated aording to the onvergene riteria usually used in optimization, but due

to an appropriate stopping rule (see e.g. Engl, Hanke, and Neubauer [50℄ for a general

introdution). We used the so-alled disrepany priniple as stopping riterion (the details

an be found in Burger and M

�

uhlhuber [33, 34℄). We want to mention that the stopping

index obtained from the disrepany priniple was always lose to the iteration index, where

the error is minimal.

The onvergene of the LMSQP-method was ompared to the Feasible-Path Levenberg-

Marquardt method, introdued in Subsetion 5.3.4. It turned out, that both methods lead to
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Figure 5.2: Development of the error kq

k

� q̂k

H

1

(
)

(solid) and the residual ku

k

� z

Æ

k

L

2

(
)

during the iteration for noise Æ = 5% (left) and Æ = 20% (right)

almost the same iteration sequene q

k

. In partiular, the number of iterations needed until

the stopping rule is satis�ed, is the same for both methods.

Finally, we ompare the numerial eÆieny of the LMSQP-method with feasible path

approahes, namely the Feasible-Path Levenberg-Marquardt method (LM) (with the same

Galerkin disretization as for LMSQP) and a Broyden-type variant of the LM-method (f.

Kaltenbaher [95℄ for further details).

For this sake we hoose di�erent disretization levels (�xed during the iteration) and

measure the CPU-time needed for the LMSQP-method, until the stopping rule is satis�ed

(for �xed noise level Æ). From the results shown in Table 5.1 and Figure 5.3 one observes that

the LMSQP-method with simultaneous solution of the KKT-system outperforms the feasible-

path approahes for all di�erent disretizations. Sine the LMSQP and the LM-method need

the same number of outer iterations, the di�erene in the numerial e�ort is aused by the

fat that the e�ort for the evaluation of the system matrix in the LM-method is signi�antly

higher than evaluation and preonditioning of the system matrix in the simultaneous LMSQP-

method. Obviously, the gain in the numerial e�ort for the evaluation of the system matrix

inreases with the number of disretization points, whih explains the extremely large CPU-

time for the LM-method at the �nest disretization level (m = 1601). For small m and n, the

Broyden-variant is muh faster than the LM-method, whih is again aused by the fat that

the evaluation of the system matrix an be arried out eÆiently. However, the number of

iterations needed for the Broyden-type variant is muh larger than for the other two methods,

whih use the full information about the derivatives.

These results also agree with the results presented in the previous hapter. There, we also

used a Broyden update formula (stritly speaking, the BFGS update formula) for approxi-

mating the Hessian of the objetive. But the behavior of the iteration was very similar: For

a few design parameters we got a reasonable approximation of the Hessian, whereas for large

design spaes the number of iterations dramatially inreased. This led to the extremely large

CPU-time reported in Table 4.3.
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m n LMSQP LM Broyden

201 41 0.07 1.37 0.51

201 101 0.18 3.44 1.34

201 201 0.36 6.94 2.88

401 201 0.51 24.83 9.09

401 401 1.39 50.39 20.48

801 401 2.61 193.21 70.69

801 801 5.66 392.54 158.69

1601 801 7.91 1564.50 600.66

1601 1601 22.86 3144.40 1356.60

Table 5.1: CPU-time (in seonds) needed for the LMSQP-method, the LM-method and a

Broyden-type variant of the LM-method
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Figure 5.3: Comparison of the CPU-times for the LMSQP-method, the LM-Method and a

Broyden-type variant of the LM-method
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5.7.2 The identi�ation of a ondutivity

Our seond numerial example is the identi�ation of the ondutivity q 2 L

1

(
) � L

2

(
)

in

�div(q gradu) = f in 
; (5.105)

u = 0 on �
: (5.106)

The data z are an observation of u 2 L

2

(
), i.e. the observation operator E is the anonial

embedding of H

1

0

(
) into L

2

(
). The domain 
 is a ball in R

2

with missing �rst quadrant

(see also Figure 5.4), i.e., in radial oordinates


 = f(r os �; r sin �) j r 2 [0; 1); � 2 (�=2; 2�)g : (5.107)

The exat parameter to be reonstruted is q̂ � 1, the right-hand side f 2 H

�1

(
) in (5.105)

is given by

f =

3�

4

�

3� os(

3�

2

r) +

2

r

sin(

3�

2

r)

�

with r =

p

x

2

+ y

2

.

The orresponding solution û 2 H

1

0

(
) of the state equation is û = os(

3�

2

r). The noisy z

Æ

data are generated using the exat solution û perturbed by uniformly distributed random

noise.

Summarizing, we onsider the parameter identi�ation problem

1

2

ku� z

Æ

k

2

L

2




! min

(u;q)2H

1

0

(
)�L

1

(
)

(5.108)

subjet to a weak formulation of the state problem (5.106).

We use the LMSQP-method for whih the KKT-system of the quadrati subproblems

looks as follows:

0
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I

L

2

(
)

0 K

�

k

0 �

k

I
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(
)

L

�

k

K

k

L

k

0

1

A
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�

1

A

=

0
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Æ

� u

k

)

0

�r

k

1

A

; (5.109)

with

K

k

: H

1

0

(
)! H

�1

(
); hK

k

u; vi =

Z




hq

k

gradu; grad vidx 8 v 2 H

1

0

(
)

L

k

: L

2

(
)! H

�1

(
); hL

k

q; vi =

Z




hq gradu

k

; grad vidx 8 v 2 H

1

0

(
)

and r

k

denoting the residual of the state equation, i.e.

hr

k

; vi =

Z




hq

k

gradu

k

; grad vidx�

Z




f(x)v(x) dx 8 v 2 H

1

0

(
):

It is lear, that L

k

q does not exist for any q 2 L

2

(
), but only for q 2 L

1

(
). Thus, in the

pratial realization we have to introdue onstraints on the parameter q. Usually, this an

be done easily using a-priori information on the parameter, e.g. bounds on q.

For the disretization we used triangular �nite elements with pieewise quadrati shape

funtions for the state u and the Lagrange parameter � and pieewise onstant shape funtions
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Level dim q dim u avg QMR it SQP it time

2 92 215 200 9 8 se

3 368 797 200 4 15 se

4 1472 3065 180 5 77 se

5 5888 12017 142 6 450 se

Table 5.2: CPU-time and number of inner (QMR) and outer (SQP) iterations for exat data

Level dim q dim u avg QMR it SQP it time a. time

2 92 215 200 9 8 se 8 se

3 368 797 200 4 15 se 23 se

4 1472 3065 175 2 24 se 47 se

5 5888 12017 80 1 47 se 94 se

6 23552 47585 121 1 425 se 520 se

Table 5.3: CPU-time per level, aumulated time and number of inner (QMR) and outer

(SQP) iterations for exat data using a nested multi-level approah

for the parameter q. This implies a rather simple struture of KKT-sub-matries in (5.80), in

partiular G and H are mass matries with H being diagonal due to the hoie of pieewise

onstant shape funtions. For the detailed de�nition of G, H, K, and L, see (5.77), (5.78).

In order to ensure q 2 L

1

(
) we added box-onstraints for q to the disretized optimiza-

tion problem whih are inluded using a barrier method (Noedal and Wright [115℄). As

they never beome ative, we will not go into detail here.

The results were alulated using the �nite element ode FEPP (see Kuhn, Langer, and

Sh

�

oberl [101℄), developed at the Institute of Computational Mathematis of the University

of Linz.

We want to mention that this identi�ation problem is quite hallenging not only due to

the ompliated geometry, but also due to the fat that q is not identi�able along a level

line in the interior, where u attains an extremum. This does not destroy the theoretial

identi�ability results, beause it is a set of Lebesgue-measure zero, but it an be expeted to

reate numerial diÆulties.

The KKT-system (5.80) was solved using a preonditioned QMR method with the blok-

fatorization type preonditioner (5.98) with a multi-grid preonditioner

^

K and no preon-

ditioning of the Shur-omplement S



. Results for exat data an be found in Table 5.2.

The good performane of the method with respet to both, CPU time and number of outer

iterations an be observed learly. Espeially for problems with �ne disretizations of the pa-

rameter q, this method an still be realized eÆiently, while lassial approahes do not yield

results in reasonable time. A plot of the �nite dimensional approximation of the parameter

q an be found in Figure 5.4, from whih one observes that the parameter is reonstruted

very well exept in a neighborhood of the level urve fgradu = 0g.

Additional speed-up an be gained using a multi-level approah as desribed in Subse-

tion 5.5.3. We used nested spaes for approximating q and u by subdividing eah triangular

element into four smaller elements, when re�ning the mesh. Table 5.3 presents results for

this approah. It an be seen that on �ne disretization levels one SQP step is suÆient for
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Figure 5.4: Parameter distribution for exat data at level 4, q

min

= 0:59, q

max

= 1:4

ful�lling the stopping riterion, whih orresponds very well to the theoretial preditions (for

details see Burger and M

�

uhlhuber [34℄. A omparison of the results to the ones in Table

5.2 shows that for �xed disretization level, the solution of the identi�ation problem on level

5 is only slightly faster than the identi�ation of q on level 6 (with about the fourfold number

of parameters) using a multi-level approah (see also Figure 5.5).

A plot of the parameter an be found in Figure 5.6. Here the approximation of the

parameter in the area where it an not identi�ed is by far better than in the lassial approah

using only one disretization level (ompare Figure 5.4). A possible explanation for this e�et

is the following: The inuene of the level line fgradu = 0g where q an not be identi�ed on

the solution is smaller the oarser the disretization is. The prolongation from oarse levels

to �ner ones adds information to the region where the parameter is not identi�able from its

surrounding region. As long as the parameter is smooth this helps to improve the quality of

the numerial results where the parameter an not be identi�ed.

5.8 Neessary hanges for optimal design

In the following we want to disuss the neessary hanges when hanging from our model

problem whih is a parameter identi�ation model to an optimal design problem.

First one has to adapt the optimization strategy. As one an not expet the Lagrangian

multiplier to vanish (remember, our model problem was a least-squares problem, where we

onsidered the speial ase for attainable data), the seond order derivatives of the state equa-

tion an not be negleted. This implies that in the QP problem not a quadrati approximation

of the objetive, but of the Lagrangian (5.2) has to be used.

On the other hand, optimal design problems are usually not ill-posed. That is why,

regularization proedures need not be used. Nevertheless, using the Levenberg-Marquardt

modi�ation of the objetive an improve the onvergene speed as it an also be interpreted

as a trust region for the parameter. Summarizing, for optimal design problems either Method 1

or Method 2 has to be used.

Showing well-posedness of the QP problems for optimal design problems is usually by
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Figure 5.5: Comparison of the CPU-times for the LMSQP-method and its multi-level version
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Figure 5.6: Parameter distribution for exat data at level 4 using a nested multi-level ap-

proah, q

min

= 0:66, q

max

= 1:13
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far more ompliated ompared to our model problem. In our ase, we had an expliit

representation of the Hessian, as well as of the linearized state equation. Additionally, the

situation was even more simpli�ed by replaing the Hessian of the Lagrangian by the Hessian

of the objetive. Taking the Hessian of the Lagrangian, i.e. onsidering the IRSQP Method,

makes the situation already slightly more ompliated. In this situation we an still get well-

posedness, but have to aept further restritions on the regularization parameter (for details

see Burger and M

�

uhlhuber [33, 34℄. Generalizing the objetive an lead to situations,

where it is hardly possible to show well-posedness beause depending on the objetive and the

state equation only very little knowledge on the Hessian of the Lagrangian an be available.

Also the numerial realization of the algorithm is by far more diÆult. For the evaluation

of the objetive on the QP problem �rst and seond order derivatives are neessary. The

�rst order derivatives an be alulated eÆiently using automati di�erentiation. Also the

appliation of the Hessian, i.e. the evaluation of a Hessian times vetor produt an be done

eÆiently, i.e. the alulation time is proportional to the evaluation of the funtion itself. The

alulation of the Hessian itself is usually by far more expensive (see e.g. Griewank [67℄.

For an artile on the use of AD in optimal design see e.g. Keyes, Hovland, MInnes, and

Sonyamo [98℄.

Even more ompliated than the evaluation of the KKT-matrix is its appropriate preon-

ditioning. Although the preonditioning for our model is already quite diÆult, here it is

even worse. As usually the Hessian is not available (beause of the omputational e�ort) all

preonditioning strategies needing matrix elements an not be applied. Also using mapping

properties of the redued Hessian is usually very diÆult, if not even impossible. One possibil-

ity for preonditioning are strategies usually used for smaller optimization problems. E.g. the

BFGS-update formula an provide you with an approximation of the redued Hessian whih

an be used in ombination with the preonditioners of type (5.98) or (5.99). Usually not

the standard BFGS formula, but limited memory variants are used for maintaining sparsity

(Noedal and Wright [115℄) whih makes the eÆient appliation of the preonditioners

possible. For an example using this approah see Biros and Ghattas [16, 17℄.



Chapter 6

Some Remarks on the Software

Design

6.1 Introdution

The goal of our optimal design library is to provide a exible frame for optimal design prob-

lems. During the development of the here presented design, we put strong emphasis on a

exible and easy administrable tool and not on the highest possible eÆieny. Nevertheless,

the design is also eÆient, as ould be seen in the results presented in Chapter 4 and Chap-

ter 5. Additionally, we tried to develop a frame whih is more or less independent of the

used optimizer and the �nite element pakage used. That is why, one of the main priniples

during the development was a strit splitting of the optimizer on the one hand and the real-

ization of the optimization problem on the other. Exhanging the optimizer by a di�erent one

(e.g. an optimizer written in Fortran) indues hardly any hanges on the implementation of

the optimal design problem (objetive, onstraints, state equation). Also di�erent pakages

for solving the state problem an be easily integrated. Although we restrit ourselves to an

FE solver for the state equation in the following onsiderations, using �nite di�erenes, the

�nite volume method or any other method for alulating an approximate solution of our

state equation would be appropriate. A predeessor of the here presented software design was

presented by Kuhn, Luk

�

a

�

s, and M

�

uhlhuber [102℄.

6.2 The optimization modules

In our ode, the optimizer is only based on a linear algebra pakage, whih provides ve-

tors, matries, et. On top of these basi linear algebra data types, we have built di�erent

optimization strategies:

� An optimizer for unonstrained optimization problems, whih is based on a quasi-

Newton method using a BFGS update formula for approximating the Hessian of the

objetive. To ahieve global onvergene we inluded a line searh method. As the

optimizer is based on dense matries, it is only suitable for small optimization problems

with rather few design parameters.

� A QP optimizer for linearly onstrained optimization problems with quadrati objetive.

For this optimizer we additionally assumed that the Hessian of the objetive is positive
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de�nite. The optimizer is based on dense matries and therefore only suitable for small

optimization problems with rather few design parameters. The QP module is available

in two di�erent implementations: one based on null-spae methods and one based on

a range-spae approah. Both implementations use formulas for updating a basis of

the null-spae of the ative onstraints whih redue the e�ort in eah iteration when

adding or deleting a onstraint from the ative index set. The main appliation of this

optimizer is the alulation of the searh diretion in an SQP method.

� An SQP optimizer for small nonlinearly onstrained optimization problems. This mod-

ule is based on dense matries and therefore only suitable for optimization problems

with rather few design parameters (.f. Chapter 4). To get a searh diretion we solve

a QP problems by one of the optimization modules desribed in the previous item. For

globalization we use a line searh method. The Hessian of the Lagrangian is approx-

imated by a quasi-Newton method using a modi�ed BFGS update formula following

Powell [122℄.

� For the approah presented in Chapter 5 we implemented an optimizer whih works in

the produt spae (u;q). Only q is represented by a vetor, u uses an abstrat base

lass vetor type to be exible with respet to the representation of the state solution.

At the moment the state-equation is the only supported onstraint but a generalization

to support also onstraints on q or u or on both variables would be easily possible. The

Hessian of the Lagrangian as well as the partial derivatives of the state equation need

not be assembled, only orresponding matrix-vetor operations need to be provided.

The QP subproblem is solved by an iterative solver (at the moment a QMR module, .f.

Freund and Nahtigal [56℄) where appropriate preonditioners have to be provided

by the user. This enables us to solve also large sale optimal design problems with many

design and state parameters as long as suitable preonditioners for the QP subproblem

are available.

Eah of these optimization modules was implemented in C++ and uses heavily the onepts

of operator overloading and virtual inheritane. In order to obtain good performane we use

a sophistiated memory management to eliminate temporary objet reation.

In the following setion we desribe the general frame for implementing the optimal design

problem.

6.3 The optimal design problem

The frame for the eÆient implementation of an optimal design problem presented here en-

apsulates the ommuniation between the optimizer and the �nite element ode. Both, the

state equation and the objetive are treated as abstrat objets whih enables us to be inde-

pendent of the spei� type of problem. Thus, di�erent types of optimal design problems an

be realized in this frame (e.g. shape or topology optimization), but also di�erent lasses of

state equations an be easily integrated. Espeially, it is not neessary to have state problems

of ellipti type or linear state problems. In this setion we will also show how to realize all

methods whih are needed to implement the algorithms proposed in Chapter 4 and Chapter 5.

The evaluation of an objetive like the one used in Chapter 4 an be split into several

subtasks. A ow graph of the funtion evaluation for this lass of objetive an be found in

Figure 6.1. Motivated by this �gure, we introdue the following three objets to realize a
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q

?

Map q to an FE representation � of the parameter

?

Use � to reassemble the state equation

?

Solve the state equation to get u

?

Use q (in most ases it is more natural to use �)

and u to evaluate the objetive

Figure 6.1: Flow graph of a typial funtion evaluation
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funtion evaluation:

� a ParameterMap,

� a StateConstraint and

� a ProdutSpaeFuntion.

In the following, we will disuss these objets in more detail and show whih funtionality is

neessary for eah of these objets. Additionally, we will disuss how a diret or an adjoint

method an be realized, as well how to integrate AD into this framework.

6.3.1 ParameterMap

This objet is the most important ommuniation layer between the optimizer and the �nite

element ode. As ould be seen in Figure 6.1 it maps the parameter q handled by the optimizer

to a representation � of the parameter in the FE ode. This representation an be of very

di�erent nature for di�erent problems:

� When onsidering a sizing problem, � will be a representation of the thikness. In topol-

ogy optimization � represents the density of the material. In the parameter identi�ation

problem onsidered in Chapter 5 it was the unknown ondutivity to be identi�ed. In

all these ases, the mapping is more or less straight-forward.

� In an optimal ontrol problem � is the representation of the ontrol in the FE ode (e.g.

as a pieewise onstant or linear funtion).

� For shape optimization q represents a parameterization of the omputational domain.

In this situation, � ould be a representation of the nodes of the FE mesh, respetively

their oordinates of the domain orresponding to the parameter q. Thus for getting � it

is neessary to generate a geometry model orresponding to q by using e.g. a parametri

CAD modeler, and then to deform the mesh of the referene geometry to get a mesh of

the urrent geometry (see also the remarks in Setion 1.3).

The StateConstraint and the ProdutSpaeObjetive use both the ParameterMap for their

ommuniation with the optimizer. As they alulate derivatives only with respet to � the

ParameterMap also has to provide funtionality to map gradients and other derivatives with

respet to � to the orresponding derivatives with respet to q.

6.3.2 StateConstraint

The StateConstraint manages all aesses to the state equation and is therefore an enapsu-

lation of funtionality of the FE ode, i.e. it represents

e(u;q) = 0:

Usually a StateConstraint uses a ParameterMap for the ommuniation to the optimizer i.e.

it aesses only the output � of the ParameterMap and not the parameter q diretly.

For a produt spae approah as in Chapter 5 the following funtionality is neessary:

� Evaluate e for given state u

0

and parameter q

0

.
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� Evaluate the gradient with respet to u and q of

v

T

e(u

0

;q

0

)

for given v, u

0

, q

0

.

� Evaluate the linearization of e, i.e. espeially evaluate

�e

�u

(u

0

;q

0

)�u+

�e

�q

(u

0

;q

0

)�q:

for given u

0

, q

0

, �u, �q.

� Assemble the Jaobian of e if possible with suitable e�ort, i.e.

�e

�u

and

�e

�q

:

For redued SQP approahes (as in Chapter 4) we need additional funtionality. Espeially,

we have to linearize the state equation and to solve the linearized equation and its adjoint.

Usually, the linearized problem is represented as

�u = �

�

�e

�u

(u

0

;q

0

)

�

�1

e(u

0

:q

0

)�

�

�e

�u

(u

0

;q

0

)

�

�1

�e

�q

(u

0

;q

0

)�q;

where (u

0

;q

0

) denotes the linearization point. Summarizing we need:

� Linearize the state equation and de�ne the operators

R = �

�

�e

�u

(u

0

;q

0

)

�

�1

and S =

�e

�q

(u

0

;q

0

):

� Evaluate

�u = RS�q

for given �q whih involves the solution of the linearized state problem with a given

right-hand side.

� Evaluate

�q = S

T

R

T

�u

for given �u whih involves the solution of the adjoint of the linearized state problem

for a given right-hand side.

� Evaluate

�� = R

T

�u

for given �u whih again involves the solution of the adjoint linearized state problem

for a given right-hand side.

The diret and the adjoint method an also be realized with this funtionality (.f. (4.21),

(4.22), (4.23)) as long as partial derivatives of the objetive with respet to state and design

parameter are available.

The design of the StateConstraint presented here is not only appliable to PDEs of ellipti

type but an be easily used also for time-dependent PDEs.
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6.3.3 ProdutSpaeFuntion

The ProdutSpaeFuntion enapsulates the evaluation of the objetive and its derivatives.

Additionally it an be used to realize onstraints depending on state and design parameters.

As the name implies, a ProdutSpaeFuntion realizes a funtion depending on design and

state parameters. Similar to the StateConstraint it uses a ParameterMap for the ommuni-

ation to the optimizer and aesses only the FE representation � of the parameter.

For applying the optimization proedures presented in Chapter 4 and Chapter 5 it suÆes

to make the following funtionality available:

� Evaluate the funtion for given state and design parameter.

� Evaluate the �rst derivative of the funtion for given state and design parameter.

� Apply the seond order derivative to a given vetor.

� Assemble the Hessian matrix if possible with suitable e�ort.

The presented frame makes it also easy to inorporate AD. As explained in Chapter 4 it

does not make sense to apply AD in a blak-box manner to an optimal design problem.

It is better to use hand-oded parts for solving the linearized state problems (in diret or

adjoint fashion) and apply AD only to get partial derivative of the objetive itself (in the

terminology of this setion to use hand-oded derivatives for the StateConstraint and AD for

the ProdutSpaeFuntion). This was also suggested as hybrid method in Subsetion 4.4.4.

The here presented design supports the implementation of suh a splitting to a large extent.

We tried to keep the information loal whih makes it easy to realize suh a ombination of

di�erent di�erentiation strategies.
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