Virtual Element Methods for plate bending problems

Ludwig Mitter
University of Linz
ludwig.mitter@numa.uni-linz.ac.at
January 28, 2019

Limitations

Limitations of this paper

- Limited to CONVEX and POLYGONAL domains (= Regularity assumption and Babuska-Paradoxon)
- NO numerical integration is used
- NO robustness is shown
- The issue of LOCKING phenomena is not considered

Advantages of this paper

- The VEM technique admits NON-POLYNOMIAL function representation without explicit knowledge

The Continuous problem

- $\Omega \subset \mathbb{R}^{2}$ convex polygonal domain
- $\Gamma:=\partial \Omega$
- $f \in L^{2}(\Omega)$ transversal load

The Kirchhoff-Love model for a clamped plate
For $D:=E t^{3} / 12\left(1-\nu^{2}\right)$ consider

$$
D \Delta^{2} w=f \text { in } \Omega \text { with } w=\frac{\partial w}{\partial n}=0 \text { on } \Gamma
$$

Variational formulation
Find $w \in V:=H_{0}^{2}(\Omega)$ such that

$$
\begin{aligned}
& a(w, v)=(f, v) \quad \forall v \in H_{0}^{2}(\Omega) \\
& a(w, v)=D(1-\nu) \sum_{i, j}\left(w_{, i j}, v_{, i j}\right)+D \nu(\Delta w, \Delta v)
\end{aligned}
$$

Existence, uniqueness, continuous dependence

Boundary conditions and Friedrich inequality imply

$$
\begin{array}{lr}
a(u, v) \leq M\|u\|_{v}\|v\|_{V} \quad u, v \in V \\
a(v, v)=\|v\|_{a}^{2} \geq \alpha\|v\|_{V}^{2} \quad v \in V
\end{array}
$$

Hence well-posedness

$$
\|w\|_{V} \leq C\|f\|_{0}
$$

Notation

- $\mathcal{D} \subset \mathbb{R}^{2}$ domain
- $\boldsymbol{n}=\left(n_{1}, n_{2}\right)$ outwart unit normal vector to $\partial \mathcal{D}$
- $\boldsymbol{t}=\left(t_{1}, t_{2}\right)$ counterclockwise unit tangent vector to $\partial \mathcal{D}$
- Moment tensor for $v \in H^{2}(\Omega), \boldsymbol{M}=\left(M_{i j}(v)\right)_{i, j=1}^{2}$

$$
\left[\begin{array}{l}
M_{11} \\
M_{22} \\
M_{12}
\end{array}\right]=D\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 1-\nu
\end{array}\right]\left[\begin{array}{l}
v_{, 11} \\
v_{, 22} \\
v_{, 12}
\end{array}\right]
$$

- $\boldsymbol{M}_{n}:=\sum_{j} M_{i j} n_{j}$
- $M_{\boldsymbol{n n}}(v):=\sum_{i, j} M_{i j} n_{i} n_{j}$ normal bending moment
- $M_{\boldsymbol{n t}}(v):=\sum_{i, j} M_{i j} n_{i} t_{j}$ normal twisting moment
- $Q_{\boldsymbol{n}}(v):=\sum_{i, j} M_{i j, i} n_{j}$ normal shear force

Notation

We have

$$
\begin{aligned}
a^{\mathcal{D}}(w, v)= & D(1-\nu) \sum_{i, j}\left(w_{, i j}, v_{, i j}\right)_{\mathcal{D}}+D \nu(\Delta w, \Delta v)_{\mathcal{D}} \\
\stackrel{\mathbb{I P}^{2}}{=} & \int_{\mathcal{D}} D \Delta^{2} w v d x+\int_{\partial \mathcal{D}} M_{\boldsymbol{n} \boldsymbol{n}}(w) \frac{\partial v}{\partial n} d t \\
& -\int_{\partial \mathcal{D}}\left(Q_{\boldsymbol{n}}(w)+\frac{\partial M_{\boldsymbol{n t}}(w)}{\partial t}\right) v d t
\end{aligned}
$$

The discrete problem

- $\left\{\mathcal{T}_{h}\right\}_{h}$ decomposition of Ω into elements K
- \mathcal{E}_{h} edges e of \mathcal{T}_{h}

Assumption H0
$\exists N \in \mathbb{N}, \gamma>0 \forall h>0, K \in \mathcal{T}_{h}:$

- $\# \mathcal{E}(K) \leq N$
- $\frac{\min n_{e \mathcal{E}(K)}|e|}{h_{K}} \geq \gamma$
- K is star-shaped wrt. a ball of radius γh_{K}

The discrete problem

Assumption H1

$\forall h>0$ we are given:

- $V_{h} \subset V\left(V_{h}^{K}:=\left.V_{h}\right|_{K}\right)$
- Symmetric bilinear form $a_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$ with

$$
a_{h}\left(u_{h}, v_{h}\right)=\sum_{K} a_{h}^{K}\left(u_{h}, v_{h}\right) \quad \forall u_{h}, v_{h} \in V_{h}
$$

where a_{h}^{K} is symmetric on $V_{h}^{K} \times V_{h}^{K}$

- $f_{h} \in V_{h}^{\prime}$

The discrete problem

Assumption H2

$\exists k \geq 2 \forall h>0, K \in \mathcal{T}_{h}:$

- k-consistency: $\forall p \in \mathcal{P}_{k}, v_{h} \in V_{h}: a_{h}^{K}\left(p, v_{h}\right)=a^{K}\left(p, v_{h}\right)$
- stability:

$$
\exists \alpha_{*}, \alpha^{*}>0: \alpha_{*} a^{K}\left(v_{h}, v_{h}\right) \leq a_{h}^{K}\left(v_{h}, v_{h}\right) \leq \alpha^{*} a^{K}\left(v_{h}, v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

The discrete problem

$$
\begin{aligned}
a(u, v) & =\sum_{K} a^{K}(u, v) \quad \forall u, v \in V \\
\|v\|_{v} & =\left(\sum_{K}|v|_{V, K}^{2}\right)^{1 / 2} \quad \forall v \in V \\
|v|_{h, V} & :=\left(\sum_{K}|v|_{V, K}^{2}\right)^{1 / 2} \quad \forall v \in \prod_{K} H^{2}(K)
\end{aligned}
$$

An abstract convergence theorem

- Symmetry of a_{h} and continuity of a^{K} imply continuity of a_{h}

$$
\begin{aligned}
a_{h}^{K}(u, v) & \leq\left(a_{h}^{K}(u, u)\right)^{1 / 2}\left(a_{h}^{K}(v, v)\right)^{1 / 2} \\
& \leq \alpha^{*}\left(a^{K}(u, u)\right)^{1 / 2}\left(a^{K}(v, v)\right)^{1 / 2} \\
& \leq \alpha^{*} M\|u\|_{V, K}\|v\|_{V, K} \quad \forall u, v \in V_{h}
\end{aligned}
$$

- Convergence result for the discrete problem

An abstract convergence theorem

Theorem
H1, H2
Find $w_{h} \in V_{h}: a_{h}\left(w_{h}, v_{h}\right)=\left\langle f_{h}, v_{h}\right\rangle \quad \forall v_{h} \in V_{h}$
has a unique solution w_{h}.
Moreover: $\forall w_{l} \in V_{h}, w_{\pi} \in$ piecewise \mathbb{P}_{k} :

$$
\left\|w-w_{h}\right\|_{V} \leq C\left(\left\|w-w_{l}\right\|_{V}+\left\|w-w_{\pi}\right\|_{h, V}+\left\|f-f_{h}\right\|_{V_{h}^{\prime}}\right)
$$

with $C=C\left(\alpha, \alpha_{*}, \alpha^{*}, M\right)>0$.

Construction of V_{h}, a_{h}, f_{h}

- Want to satisfy H1, H2
- Degree of accuracy $k \geq 2$: Introduce auxiliary quantities

$$
r=\max \{3, k\} \quad s=k-1 \quad m=k-4
$$

which will be related to

- the polynomial degree in V_{h}
- the polynomial degree of their normal derivative on each edge
- the DOFs internal to each element.
- For each $K \in \mathcal{T}_{h}$

$$
\begin{aligned}
V_{h}^{K}:=\left\{v \in H^{2}(K):\right. & \Delta^{2} v \in \mathbb{P}_{m}(K), \\
& \left.v\right|_{e} \in \mathbb{P}_{r}(e),\left.(v, \boldsymbol{n})\right|_{e} \in \mathbb{P}_{s}(e), \\
& \forall e \in \partial K\}
\end{aligned}
$$

Construction of V_{h}, a_{h}, f_{h}

- For $t \in \mathbb{N}$ and edge $e \in \mathcal{E}_{h}$ with midpoint \boldsymbol{x}_{e} intorduce normalized monomials

$$
\mathcal{M}_{t}^{e}:=\left\{\left(\frac{\boldsymbol{x}-\boldsymbol{x}_{e}}{h_{e}}\right)^{\boldsymbol{\beta}},|\boldsymbol{\beta}| \leq t\right\}
$$

- For $t \in \mathbb{N}$ and element $K \in \mathbb{T}_{h}$ with barycenter \boldsymbol{x}_{k} introduce normalized monomials

$$
\mathcal{M}_{t}^{K}:=\left\{\left(\frac{\boldsymbol{x}-\boldsymbol{x}_{K}}{h_{K}}\right)^{\boldsymbol{\beta}},|\boldsymbol{\beta}| \leq t\right\}
$$

LOCAL Degrees of Freedom

DOFs for element K
(1) $\forall \xi \in \mathcal{N}(K): v(\xi)$
(2) $\forall \xi \in \mathcal{N}(K): h_{\xi} \nabla v(\xi)$
(3) If $r>3: \forall e \in \mathcal{E}(K): \frac{1}{h_{e}} \int_{e} q(\xi) v(\xi) d \xi, \forall q \in \mathcal{M}_{r-4}^{e}$
(4) If $s>1: \forall e \in \mathcal{E}(K): \int_{e} q(\xi) \frac{\partial v}{\partial \boldsymbol{n}} d \xi, \forall q \in \mathcal{M}_{s-2}^{e}$
(5) If $m \geq 0: \frac{1}{h_{K}^{2}} \int_{K} q(x) v(x) d x, \forall q \in \mathcal{M}_{m}^{K}$

Fig. 1. Local d.o.f. for the lowest-order element: $k=2$ (left), and next to the lowest $k=3$ (right).

LOCAL Degrees of Freedom

Let $P_{m}^{K} v: L^{2}(K) \rightarrow \mathbb{P}_{m}(K), m \geq 0$ be the $L^{2}(K)$-projector onto $\mathbb{P}_{m}(K)$
Proposition
(1) In each element K the DOFs 1-3 uniquely determine a polynomial of degree $\leq r$ on each edge of K.
(2) The DOFs 2-4 uniquely determine a polynomial of degree $\leq s$ on each edge of K.
(3) DOF 5 is equivalent to prescribing $P_{m}^{K} v$ in K.

Proposition

The above DOFs are UNISOLVENT in V_{h}^{K}.

Proof.

In the same spirit as the $2 n d$ order elliptic case.

GLOBAL Degrees of Freedom

Global construction of V_{h}

$$
V_{h}=\left\{v \in V:\left.v\right|_{e} \in \mathbb{P}_{r}(e), \frac{\partial v}{\left.\partial \boldsymbol{n}\right|_{e}},\left.\Delta^{2} v\right|_{K} \in \mathbb{P}_{m}(K), \forall e \in \mathcal{E}_{h}, K \in \mathcal{T}_{h}\right\}
$$ with DOFs over INTERNAL vertices/edges.

GLOBAL Degrees of Freedom

Theorem
Let the DOFs of V_{h} be given by $g_{1}, g_{2}, \ldots, g_{\mathcal{G}}$. Then for every smooth enough w there exists a unique $w_{l} \in V_{h}$ such that

$$
g_{i}\left(w-w_{l}\right)=0 \quad \forall i=1,2, \ldots, \mathcal{G}
$$

Furthermore, for $\alpha, \beta \in \mathbb{N}$ one has

$$
\left\|w-w_{i}\right\|_{\alpha, \Omega} \leq C h^{\beta-\alpha}|w|_{\beta, \Omega} \quad \alpha=0,1,2 \quad \alpha \leq \beta \leq k+1
$$

with C independent of h.

Fig. 2. Local d.o.f. for the $(5,4,1)$ element with $k=5$ (left), and for the ($5,3,0$) element with $k=4$ (right).

Fig. 3. Alternative d.o.f. for the elements of Fig. 2. We have an "Argyris-like" element on the left and a "Bell-like" element on the right.

Construction of a_{h}

AS IN THE PREVIOUS SEMINARS: Want to construct a_{h} according to assumptions (stability and consistency).

- Per construction: $a^{K}(p, v), p \in \mathbb{P}_{k}(K), v \in V_{h}^{K}$ can be computed \checkmark
- We have

$$
\begin{aligned}
a^{K}(p, v)= & D \int_{K} \underbrace{\Delta^{2} p}_{\in \mathbb{P}_{k-4}(K)} v d x+\int_{\partial K} \underbrace{M_{\boldsymbol{n}}(p)}_{\in \mathbb{P}_{k-2}(e)} \frac{\partial v}{\partial \boldsymbol{n}} d t \\
& +\int_{\partial K}(\underbrace{Q_{\boldsymbol{n}}(p)+\frac{\partial M_{\boldsymbol{n t}(p)}}{\partial t}}_{\in \mathbb{P}_{k-3}(e)}) v d t
\end{aligned}
$$

Can be computed WITHOUT KNOWING polynomial v INSIDE!

Construction of a_{h}

- Introduce quasi-average $\widehat{\varphi}$ of $\varphi \in C^{0}(\bar{K})$

$$
\widehat{\varphi}:=\frac{1}{l} \sum_{i=1}^{l} \varphi\left(x^{i}\right)
$$

with vertices $\boldsymbol{x}^{i}, i=1,2, \ldots, l$ of K.

- Introduce $\Pi_{k}^{K}: V_{h}^{K} \rightarrow \mathbb{P}_{k}(K) \subset V_{h}^{K}$ via

$$
\begin{aligned}
a^{K}\left(\Pi_{k}^{K} \psi, q\right) & =a^{K}(\psi, q) \quad \forall \psi \in V_{h}^{K}, q \in \mathbb{P}_{k}(K) \\
\widehat{\Pi_{k}^{K} \psi} & =\widehat{\psi} \quad \widehat{\nabla \Pi_{k}^{K} \psi}=\widehat{\nabla \psi}
\end{aligned}
$$

1st line \Longrightarrow For $v \in \mathbb{P}_{k}(K)\left(\Pi_{k}^{K} v\right)_{, i j}=v_{, i j}$ for $i, j=1,2$ +2 nd line $\Longrightarrow \Pi_{k}^{K} v=v$ for $\forall v \in \mathbb{P}_{k}(K)$

Construction of a_{h}

- AS IN THE PREVIOUS SEMINARS: Choice $a_{h}^{K}(u, v)=a^{K}\left(\Pi_{k}^{K} u, \Pi_{k}^{K} v\right)$ would be consistent, but NOT stable \Longrightarrow need to add stabilizing term
- $S^{K}(u, v)$ needs to be symmetric, positive definite with

$$
c_{0} a^{K}(v, v) \leq S^{K}(v, v) \leq c_{1} a^{K}(v, v), \quad \forall v \in V_{h}^{K}, \Pi_{k}^{K} v=0
$$

for $c_{0}, c_{1}>0$ independent of K, h_{K}.
Local contributions for a_{h}
$a_{h}^{K}(u, v):=a^{K}\left(\Pi_{k}^{K} u, \Pi_{k}^{K} v\right)+S^{K}\left(u-\Pi_{k}^{K} u, v-\Pi_{k}^{K} v\right)$

Proposition

The above bilinear form satisfiecs the assumptions of STABILITY and CONSISTENCY.

Proof.
Previous seminars.

Choice of S^{K}

- Choice of S^{K} has to depend on $a(.,$.$) and on g_{1}, g_{2}, \ldots, g_{\mathcal{G}}$
- Choose

$$
S^{K}(v, w)=D \sum_{i=1}^{\mathcal{G}} g_{i}(v) g_{i}(w) h_{i}^{-2}
$$

Construction of f_{h} : The EASY way

Assume $k \geq 4$ (ie. every element has at least ONE INTERNAL DOF)

- Define f_{h} on each element K as the $L^{2}(K)$-projection of f on piecewise polynomials of degree $m=k-4$

$$
f_{h}=P_{k-4}^{K} f \quad \forall K \in \mathcal{T}_{h}
$$

Hence

$$
\begin{aligned}
\left\langle f_{h}, v_{h}\right\rangle & =\sum_{K \in \mathcal{T}_{h}} \int_{K} f_{h} v_{h} d x=\sum_{K \in \mathcal{T}_{h}} \int_{K}\left(P_{k-4}^{K} f\right) v_{h} d x \\
& =\int_{K \in \mathcal{T}_{h}} \int_{K} f\left(P_{k-4}^{K} v_{h}\right) d x
\end{aligned}
$$

which can be exactly computed by using internal DOFs.

- One has $\left\|f-f_{h}\right\|_{v_{h}^{\prime}} \leq C h^{k-1}\left(\sum_{K \in \mathcal{T}_{h}}|f|_{k-3, K}^{2}\right)^{1 / 2}$

Construction of f_{h} : The NOTSOEASY way

Case studies for $k=2,3,4$

$$
\begin{aligned}
& \left\|f-f_{h}\right\|_{V_{h}^{\prime}} \leq C h^{k-1}\left(\sum_{K \in \mathcal{T}_{h}}\|f\|_{0, K}^{2}\right)^{1 / 2} \\
& \left\|f-f_{h}\right\|_{V_{h}^{\prime}} \leq C h^{k-1}\left(\sum_{K \in \mathcal{T}_{h}}|f|_{1, K}^{2}\right)^{1 / 2}
\end{aligned}
$$

