# Virtual Element Methods for plate bending problems

Ludwig Mitter

University of Linz

ludwig.mitter@numa.uni-linz.ac.at

January 28, 2019

Ludwig Mitter (NUMA)

VEM for plates

January 28, 2019 1 / 27

## Limitations

Limitations of this paper

- Limited to CONVEX and POLYGONAL domains (= Regularity assumption and <u>Babuska-Paradoxon</u>)
- NO numerical integration is used
- NO robustness is shown
- The issue of LOCKING phenomena is not considered

Advantages of this paper

• The VEM technique <u>admits</u> **NON-POLYNOMIAL function representation** without explicit knowledge

# The Continuous problem

• 
$$\Omega \subset \mathbb{R}^2$$
 convex polygonal domain

- ${\scriptstyle \bullet \ } \Gamma := \partial \Omega$
- $f \in L^2(\Omega)$  transversal load

The Kirchhoff-Love model for a clamped plate

For  $D := Et^3/12(1-\nu^2)$  consider

$$D\Delta^2 w = f$$
 in  $\Omega$  with  $w = \frac{\partial w}{\partial n} = 0$  on  $\Gamma$ 

Variational formulation

Find  $w \in V := H_0^2(\Omega)$  such that

$$egin{aligned} & a(w,v) = (f,v) & orall v \in H^2_0(\Omega) \ & a(w,v) = D(1-
u) \sum_{i,j} (w_{,ij},v_{,ij}) + D
u(\Delta w,\Delta v) \end{aligned}$$

Boundary conditions and Friedrich inequality imply

$$\begin{aligned} \mathsf{a}(u,v) &\leq M \|u\|_V \|v\|_V \qquad u,v \in V \\ \mathsf{a}(v,v) &= \|v\|_{\mathsf{a}}^2 \geq \alpha \|v\|_V^2 \qquad v \in V \end{aligned}$$

Hence well-posedness

 $\|w\|_V \leq C \|f\|_0$ 

### Notation

•  $\mathcal{D} \subset \mathbb{R}^2$  domain

- $\boldsymbol{n} = (n_1, n_2)$  outwart unit normal vector to  $\partial \mathcal{D}$
- $\boldsymbol{t} = (t_1, t_2)$  counterclockwise unit tangent vector to  $\partial \mathcal{D}$
- Moment tensor for  $v \in H^2(\Omega)$ ,  $\boldsymbol{M} = \left(M_{ij}(v)\right)_{i,j=1}^2$

$$\begin{bmatrix} M_{11} \\ M_{22} \\ M_{12} \end{bmatrix} = D \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1 - \nu \end{bmatrix} \begin{bmatrix} v_{,11} \\ v_{,22} \\ v_{,12} \end{bmatrix}$$

•  $M_n := \sum_j M_{ij} n_j$ •  $M_{nn}(v) := \sum_{i,j} M_{ij} n_i n_j$  normal bending moment •  $M_{nt}(v) := \sum_{i,j} M_{ij} n_i t_j$  normal twisting moment •  $Q_n(v) := \sum_{i,j} M_{ij,i} n_j$  normal shear force

### Notation

#### We have

$$a^{\mathcal{D}}(w, v) = D(1 - \nu) \sum_{i,j} (w_{,ij}, v_{,ij})_{\mathcal{D}} + D\nu(\Delta w, \Delta v)_{\mathcal{D}}$$
$$\stackrel{IP^{2}}{=} \int_{\mathcal{D}} D\Delta^{2} wvdx + \int_{\partial \mathcal{D}} M_{nn}(w) \frac{\partial v}{\partial n} dt$$
$$- \int_{\partial \mathcal{D}} \left( Q_{n}(w) + \frac{\partial M_{nt}(w)}{\partial t} \right) vdt$$

- $\{\mathcal{T}_h\}_h$  decomposition of  $\Omega$  into elements K
- $\mathcal{E}_h$  edges e of  $\mathcal{T}_h$
- Assumption H0
- $\exists N \in \mathbb{N}, \gamma > 0 \forall h > 0, K \in \mathcal{T}_h$ :
  - $\#\mathcal{E}(K) \leq N$

• 
$$\frac{\min_{e \in \mathcal{E}(K)} |e|}{h_K} \ge \gamma$$

• K is star-shaped wrt. a ball of radius  $\gamma h_K$ 

## The discrete problem

#### Assumption $\ensuremath{\text{H1}}$

 $\forall h > 0$  we are given:

• 
$$V_h \subset V (V_h^K := V_h|_K)$$

• Symmetric bilinear form  $a_h: V_h \times V_h \to \mathbb{R}$  with

$$a_h(u_h, v_h) = \sum_K a_h^K(u_h, v_h) \qquad \forall u_h, v_h \in V_h$$

where 
$$a_h^K$$
 is symmetric on  $V_h^K \times V_h^K$   
•  $f_h \in V_h'$ 

#### Assumption H2

 $\exists k \geq 2 \forall h > 0, K \in \mathcal{T}_h$ :

- <u>k-consistency</u>:  $\forall p \in \mathcal{P}_k, v_h \in V_h : a_h^K(p, v_h) = a^K(p, v_h)$
- stability:

 $\exists \alpha_*, \alpha^* > 0 : \alpha_* a^K(v_h, v_h) \le a^K_h(v_h, v_h) \le \alpha^* a^K(v_h, v_h) \qquad \forall v_h \in V_h$ 

### The discrete problem

$$\begin{aligned} \mathsf{a}(u,v) &= \sum_{K} \mathsf{a}^{K}(u,v) \quad \forall u,v \in V \\ \|v\|_{V} &= \left(\sum_{K} |v|_{V,K}^{2}\right)^{1/2} \quad \forall v \in V \\ |v|_{h,V} &:= \left(\sum_{K} |v|_{V,K}^{2}\right)^{1/2} \quad \forall v \in \prod_{K} H^{2}(K) \end{aligned}$$

• Symmetry of  $a_h$  and continuity of  $a^K$  imply continuity of  $a_h$ 

$$\begin{aligned} \mathbf{a}_{h}^{K}(u,v) \leq & \left(\mathbf{a}_{h}^{K}(u,u)\right)^{1/2} \left(\mathbf{a}_{h}^{K}(v,v)\right)^{1/2} \\ \leq & \alpha^{*} \left(\mathbf{a}^{K}(u,u)\right)^{1/2} \left(\mathbf{a}^{K}(v,v)\right)^{1/2} \\ \leq & \alpha^{*} M \|u\|_{V,K} \|v\|_{V,K} \quad \forall u,v \in V_{h} \end{aligned}$$

• Convergence result for the discrete problem

### An abstract convergence theorem

Theorem

H1, H2  $\implies$ 

Find 
$$w_h \in V_h$$
:  $a_h(w_h, v_h) = \langle f_h, v_h \rangle \quad \forall v_h \in V_h$ 

has a unique solution  $w_h$ . Moreover:  $\forall w_I \in V_h$ ,  $w_\pi \in$  piecewise  $\mathbb{P}_k$ :

$$\|w - w_h\|_V \le C \Big( \|w - w_I\|_V + \|w - w_\pi\|_{h,V} + \|f - f_h\|_{V_h} \Big)$$

with  $C = C(\alpha, \alpha_*, \alpha^*, M) > 0$ .

## Construction of $V_h$ , $a_h$ , $f_h$

- Want to satisfy H1, H2.
- Degree of accuracy  $k \ge 2$ : Introduce auxiliary quantities

$$r = \max\{3, k\}$$
  $s = k - 1$   $m = k - 4$ 

#### which will be related to

- the polynomial degree in  $V_h$
- the polynomial degree of their normal derivative on each edge
- the DOFs internal to each element.
- For each  $K \in \mathcal{T}_h$

$$V_h^{K} := \{ v \in H^2(K) : \Delta^2 v \in \mathbb{P}_m(K), \\ v|_e \in \mathbb{P}_r(e), (v, n)|_e \in \mathbb{P}_s(e), \\ \forall e \in \partial K \}$$

# Construction of $V_h$ , $a_h$ , $f_h$

• For  $t \in \mathbb{N}$  and edge  $e \in \mathcal{E}_h$  with midpoint  $\mathbf{x}_e$  intorduce normalized monomials

$$\mathcal{M}_t^e := \left\{ \left( \frac{\mathbf{x} - \mathbf{x}_e}{h_e} \right)^{\boldsymbol{\beta}}, |\boldsymbol{\beta}| \leq t \right\}$$

• For  $t \in \mathbb{N}$  and element  $K \in \mathbb{T}_h$  with barycenter  $\mathbf{x}_k$  introduce <u>normalized monomials</u>

$$\mathcal{M}_t^{\mathcal{K}} := \left\{ \left( \frac{\mathbf{x} - \mathbf{x}_{\mathcal{K}}}{h_{\mathcal{K}}} \right)^{\boldsymbol{\beta}}, |\boldsymbol{\beta}| \leq t \right\}$$

DOFs for element K

1)  $\forall \xi \in \mathcal{N}(K) : v(\xi)$ 2)  $\forall \xi \in \mathcal{N}(K) : h_{\xi} \nabla v(\xi)$ 3) If r > 3:  $\forall e \in \mathcal{E}(K) : \frac{1}{h_e} \int_e q(\xi) v(\xi) d\xi, \forall q \in \mathcal{M}_{r-4}^e$ 4) If s > 1:  $\forall e \in \mathcal{E}(K) : \int_e q(\xi) \frac{\partial v}{\partial n} d\xi, \forall q \in \mathcal{M}_{s-2}^e$ 5) If  $m \ge 0$ :  $\frac{1}{h_{r-1}^2} \int_K q(x) v(x) dx, \forall q \in \mathcal{M}_m^K$ 



**Fig. 1.** Local d.o.f. for the lowest-order element: k = 2 (left), and next to the lowest k = 3 (right).

# LOCAL Degrees of Freedom

Let  $\mathcal{P}_m^K v : L^2(K) \to \mathbb{P}_m(K), m \ge 0$  be the  $L^2(K)$ -projector onto  $\mathbb{P}_m(K)$ 

Proposition

- In each element K the DOFs 1−3 uniquely determine a polynomial of degree ≤ r on each edge of K.
- ② The DOFs 2–4 uniquely determine a polynomial of degree ≤ s on each edge of K.
- 3 DOF 5 is equivalent to prescribing  $P_m^K v$  in K.

Proposition

The above DOFs are **UNISOLVENT** in  $V_h^K$ .

Proof.

In the same spirit as the 2nd order elliptic case.

Global construction of  $V_h$ 

$$V_h = \{ v \in V : v|_e \in \mathbb{P}_r(e), \frac{\partial v}{\partial \boldsymbol{n}|_e}, \Delta^2 v|_K \in \mathbb{P}_m(K), \forall e \in \mathcal{E}_h, K \in \mathcal{T}_h \}$$

with DOFs over INTERNAL vertices/edges.

## **GLOBAL** Degrees of Freedom

Theorem

Let the DOFs of  $V_h$  be given by  $g_1, g_2, \ldots, g_G$ . Then for every smooth enough w there exists a unique  $w_l \in V_h$  such that

$$g_i(w-w_I)=0 \qquad \forall i=1,2,\ldots,\mathcal{G}$$

Furthermore, for  $\alpha, \beta \in \mathbb{N}$  one has

 $\|\mathbf{w} - \mathbf{w}_i\|_{\alpha,\Omega} \le Ch^{\beta-\alpha} |\mathbf{w}|_{\beta,\Omega} \qquad \alpha = 0, 1, 2 \qquad \alpha \le \beta \le k+1$ 

with C independent of h.



**Fig. 2.** Local d.o.f. for the (5,4,1) element with k = 5 (left), and for the (5,3,0) element with k = 4 (right).



**Fig. 3.** Alternative d.o.f. for the elements of Fig. 2. We have an "Argyris-like" element on the left and a "Bell-like" element on the right.

Ludwig Mitter (NUMA)

VEM for plates

### Construction of $a_h$

**AS IN THE PREVIOUS SEMINARS:** Want to construct  $a_h$  according to assumptions (stability and consistency).

• Per construction:  $a^{K}(p, v), p \in \mathbb{P}_{k}(K), v \in V_{h}^{K}$  can be computed  $\checkmark$ 

We have

$$a^{K}(p,v) = D \int_{K} \underbrace{\Delta^{2} p}_{\in \mathbb{P}_{k-4}(K)} v dx + \int_{\partial K} \underbrace{M_{nn}(p)}_{\in \mathbb{P}_{k-2}(e)} \frac{\partial v}{\partial n} dt$$
$$+ \int_{\partial K} \left( \underbrace{Q_{n}(p) + \frac{\partial M_{nt}(p)}{\partial t}}_{\in \mathbb{P}_{k-3}(e)} \right) v dt$$

#### Can be computed WITHOUT KNOWING polynomial v INSIDE!

### Construction of $a_h$

• Introduce quasi-average  $\widehat{\varphi}$  of  $\varphi \in C^0(\overline{K})$ 

$$\widehat{\varphi} := \frac{1}{I} \sum_{i=1}^{I} \varphi(\mathbf{x}^{i})$$

with vertices  $\mathbf{x}^{i}$ , i = 1, 2, ..., l of K. • Introduce  $\Pi_{k}^{K} : V_{h}^{K} \to \mathbb{P}_{k}(K) \subset V_{h}^{K}$  via

$$\begin{aligned} \mathsf{a}^{K}(\mathsf{\Pi}_{k}^{K}\psi,q) = \mathsf{a}^{K}(\psi,q) & \forall \psi \in V_{h}^{K}, q \in \mathbb{P}_{k}(K) \\ \widehat{\mathsf{\Pi}_{k}^{K}\psi} = \widehat{\psi} & \widehat{\nabla\mathsf{\Pi}_{k}^{K}\psi} = \widehat{\nabla\psi} \end{aligned}$$

1st line  $\implies$  For  $v \in \mathbb{P}_k(K)$   $(\prod_k^K v)_{,ij} = v_{,ij}$  for i, j = 1, 2+2nd line  $\implies \prod_k^K v = v$  for  $\forall v \in \mathbb{P}_k(K)$ 

### Construction of $a_h$

• AS IN THE PREVIOUS SEMINARS: Choice  $a_h^K(u,v) = a^K(\prod_k^K u, \prod_k^K v)$  would be consistent, but NOT stable  $\implies$  need to add stabilizing term

•  $S^{\kappa}(u, v)$  needs to be symmetric, positive definite with

$$c_0 a^K(v,v) \leq S^K(v,v) \leq c_1 a^K(v,v), \qquad \forall v \in V_h^K, \Pi_k^K v = 0$$

for  $c_0, c_1 > 0$  independent of  $K, h_K$ .

Local contributions for  $a_h$ 

$$a_h^K(u,v) := a^K(\prod_k^K u, \prod_k^K v) + S^K(u - \prod_k^K u, v - \prod_k^K v)$$

Proposition

The above bilinear form satisfiecs the assumptions of STABILITY and CONSISTENCY.

Proof.

Previous seminars.

# Choice of $S^{\kappa}$

Choice of S<sup>K</sup> has to depend on a(.,.) and on g<sub>1</sub>, g<sub>2</sub>,..., g<sub>G</sub>
Choose

$$S^{\mathcal{K}}(v,w) = D\sum_{i=1}^{\mathcal{G}} g_i(v)g_i(w)h_i^{-2}$$

### Construction of $f_h$ : The EASY way

Assume  $k \ge 4$  (ie. every element has at least ONE INTERNAL DOF)

• Define  $f_h$  on each element K as the  $L^2(K)$ -projection of f on piecewise polynomials of degree m = k - 4

$$f_h = P_{k-4}^K f \qquad \forall K \in \mathcal{T}_h$$

Hence

$$\langle f_h, v_h \rangle = \sum_{K \in \mathcal{T}_h} \int_K f_h v_h dx = \sum_{K \in \mathcal{T}_h} \int_K (P_{k-4}^K f) v_h dx$$
$$= \int_{K \in \mathcal{T}_h} \int_K f(P_{k-4}^K v_h) dx$$

which can be exactly computed by using internal DOFs.

• One has 
$$\|f-f_h\|_{V_h'} \leq Ch^{k-1} \Big(\sum_{K\in\mathcal{T}_h} |f|_{k-3,K}^2\Big)^{1/2}$$

Ludwig Mitter (NUMA)

VEM for plates

## Construction of $f_h$ : The NOTSOEASY way

Case studies for k = 2, 3, 4

$$\|f - f_h\|_{V'_h} \le Ch^{k-1} \Big(\sum_{K \in \mathcal{T}_h} \|f\|_{0,K}^2\Big)^{1/2}$$
$$\|f - f_h\|_{V'_h} \le Ch^{k-1} \Big(\sum_{K \in \mathcal{T}_h} |f|_{1,K}^2\Big)^{1/2}$$