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Abstract

In this work, a stabilized Space-Time Finite Element (ST-FE) scheme is presented for
discretizing time dependent viscous shear-thinning fluid flow models, which exhibit a
usual power-law stress strain relation. The whole procedure consists in adding simple
streamline-upwind terms for stabilizing the discretization of the associated first order
terms in spatial and temporal direction. The original time interval is partitioned into
time subintervals, which result in a subdivision of the space-time cylinder into space-
time subdomains. Discontinuous Galerkin (DG) techniques are applied for the time
discretization between the space-time subdomain interfaces. A stability bound is given
for the derived ST-FE scheme. In the last part numerical examples on benchmark
problems are presented for testing the efficiency of the proposed method.

Keywords: non-Newtonian shear thinning flows, space-time unified formula-
tions, power law Navier-Stokes models, stabilized space-time finite element discretiza-
tions, time discontinuous Galerkin discretizations, numerical solutions for channel flow
problems.

MSC 2020: 76A05, 76D05, 76M10, 76M25, 35K65

1 Introduction
Incompressible non-Newtonian fluid flows can appear in many chemical engineering pro-

cesses involving productions of food, plastics, waxy crude oils, etc, but also in problems
coming from biology, physics, bioengineering, etc, [43], [14], [46], [47]. The mathematical
models, which have been proposed for describing these type of flows, are mainly Navier-
Stokes type systems, where the non-Newtonian flow behavior is usually described by means
of a variable viscosity in the constitutive relation, [58], [23]. The most common case is
this where the viscosity depends on the magnitude of the shear rate through a p-power law
relation, [14], [8], [46]. In the present work such a p-power law Navier-Stokes system (pNS)
is considered.

In the past four decades, a huge effort has been devoted for developing efficient numerical
methods for non-Newtonian flow models in order to produce accurate simulations. The main
difficulties when discretizing these problems are related to the treatment of the nonlinear
parts of the equations, i.e., the treatment of the nonlinear first order terms (inertia terms)
and the nonlinear relationship between the strain and the stress tensor. Fully discrete
schemes are usually derived by applying a finite element discretization coupled with an
implicit time integration method, see e.g., [23], [18], [56], [2], [16]. For a more flexible
treatment of the nonlinear nature of the problem, operator splitting algorithms have been
developed for the time discretization. These approaches allow a decoupling of the original
implicit problem, into simpler sub-problems, which are solved in a sequential way, see, [23],
[31], [22], [55]. In any case a suitable method must be applied for solving the resulting sub-
problems, where usually large time steps can not be used applied due to stability reasons,

1



[34], [19]. This can reduce the flexibility of the method when extra refined meshes must be
used for resolving complex flow features.

Last years ST-FE methods have been proposed for solving time evolution problems,
[39]. The key idea is to consider the time variable in the time dependent problem as another
spatial variable and the associated time derivative term, lets say ∂tu, as an advective term
in time direction. In view of this, a unified space-time variatioanl formulation is derived,
which in turn helps on devising unified finite element discretizations in time and in space.
The discretization of time derivative can be stabilized by introducing classical stabilization
techniques known from convection dominated problems, [54], [10], [20].

The idea of using finite element techniques for discretizing problems in space and in
time simultaneously is not new, and several variants have been analyzed in the past, see
e.g., [3], [30], [62], [4], [51], [69], [26], [63], [38], Lately, interesting space-time discretizations,
including discontinuous Galerkin (DG) techniques, have been proposed for solving more
realistic problems, cf. [59], [60], [57], [61], [33], [32], [27], [67], and the references contained
in those works. More recently unified ST discretizations in Isogeometric Analysis framework
with continuous in time, [37], [40], and discontinuous in time [29], [41], approaches have been
presented.

Although several ST methods have been applied for solving classical Navier Stokes prob-
lems, extensions to pINS problems have not been really investigated. The aim of this work
is to present a stable discontinuous in time and continuous in space FE discretization for
pINS systems, which allows the use of the same class of polynomial spaces for the pressure
and the velocity. This is enhanced in the whole discredization by adding appropriate terms
into the discrete form of the continuity equation. The background and the construction of
the proposed method follow mainly the ideas presented in [59], [27], but there are several
differences related to the stability of the scheme, the nonlinear viscosity, the divergence free
constraint, the implementation and imposition of the boundary conditions. An advantage
of the proposed scheme with respect to the classical approaches mentioned previously, is the
possibility to achieve high order discretizations in time avoiding restrictions between the
temporal and spatial grid size. The work is an extension of the ST-FE method for parabolic
p-Laplacian proposed in [64], to general pINS systems. The numerical shceme is stabilized
by adding appropriate Streamline-Upwind terms,[10], [10], [32], [33], consisting of products
between the first order derivatives of the unknowns and the test functions. Variations of
this approach which can lead to least-squares approaches can be found in [59]. During a
procedure of showing an energy stability bound, these products lead to coercive and convex
terms, which demonstrates their role in the stabilization of the scheme.

Following DG ideas, the space-time computational domain QT is subdivided initially
into a group of space-time subdomains (slaps) Qn, i.e., Q̄T = ∪nQ̄n, where every Qn is
discretized into a mesh T n

h of tetrahedra (quadrilaterals or hexahedra) mesh elements. On
the T n

h meshes, we define the associated finite dimensional spaces V n
h which are used for

the discretization of the problem. The basis functions of each V n
h are continuous within

Qn, but discontinuous in time across the common interfaces of Qn with Qn−1 and Qn+1,
see Fig. 1(b). The final space-time discrete problem is solved in a sequential manner with
respect to Qn, i.e., one Qn at time. The communication of the numerical solution between
the subdomain interfaces is achieved by introducing a simple upwind numerical flux coming
form the DG methodology, [44]. The whole computational cost can be quite low, because
in any case the problem can be solved using large grid steps in time direction and/or using
linear polynomial spaces. Note that in case of using tensor product spaces, the proposed
approach gives the opportunity of choosing independently high order basis functions in time
and in space. This can increase the accuracy of the computations while keeping large grid
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steps in time direction. Also the accuracy can be increased by applying anisotropic mesh
refinement procedures. Such methods have been applied successfully in several realistic
problems, see [60], [61], and the references therein. The overall efficiency of the proposed
approach can be further improved when parallel computing environments are used for its
materialization, [29],[21], [42]. Anyway after the space-time discretization, we lead to a
nonlinear algebraic system which is solved by applying a semi-implicit (Picard) iterative
procedure. Due to the singular nature of the stress tensor around the critical points where
∇u = 0, the use of advanced Newton approaches does not really improve the efficiency, [65],
[28]. However, for the numerical examples presented here, the nonlinear solver convergences
after seven (maximum) iterative steps.

In the numerical examples, two flow problems in channels are discussed. It is known
that channel flows are of interest since they meet in many practical engineering applications,
[14]. Usually, during the numerical solution of problems in channels, the physical domain is
truncated and artificial inflow and outflow boundaries are introduced in order to define the
geometry of the associated computational domain and to focus on the region of interest. On
the inflow/outflow boundary parts physical relevant boundary conditions are not (in general)
known, and thus artificial boundaries conditions need to be derived. On inflow parts a fully
developed profile for the velocity is prescribed. Concerning outflow parts, the derivation of
the artificial boundary conditions involves usually a prescription of the normal component
of the stress vector, see e.g., [9], [35], [5]. In many applications the estimation of the normal
forces is not an easy task, since they depend on the flow features. Often normal force
estimations are derived through a well-posed problem analysis and energy estimates, [11],
[12], [13]. Nevertheless for unidirectional flows, as these which are studied in the numerical
tests, the physics of the flow can help on deriving artificial outflow conditions, [36]. Here, we
give an expression of the normal force in terms of the outflow velocity, following an approach
which is based on a simple application of the momentum balance equations. Note that a
simple imposition of the induced normal force to be zero, (i.e., do-nothing conditions), leads
to inappropriate setting for non-Newtonian flow problems, see discussion in [36].

The remaining parts of this work are organized as follows: In Section 2 the power-low
Navier-Stokes model for non-Newtonian flow motions is given and the main quantities are
described. Section 3 includes the space-time finite element discretization, a stability estimate
for the derived method, and the derivation of the artificial outflow boundary conditions. In
Section 4, numerical examples are presented, which concern investigations for the asymptotic
convergence of the discretization error and to some benchmark selected problems in channels.
The paper closes with the conclusions.

2 Problem statement

2.1 Notations

Let Ω be a bounded Lipschitz domain in Rd, d = 2, ..., 4, with boundary Γ = ∂Ω. Let
1 < p <∞ be fixed and ` be a non-negative integer. As usual, Lp(Ω) denotes the Lebesgue
space for which

∫
Ω
|φ(x)|p dx < ∞, endowed with the norm ‖φ‖Lp(Ω) =

( ∫
Ω
|φ(x)|p dx

) 1
p ,

and W `,p(Ω) is the Sobolev space, which consists of functions φ : Ω → R such that their
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weak derivatives up to order ` exist and belong to Lp(Ω). We further define the spaces

W `,p
0 (Ω) :={φ ∈ W `,p(Ω) such that φ|∂Ω = 0}, (2.1a)

W `,p
Γ (Ω) :={φ ∈ W `,p(Ω) such that φ|Γ⊂∂Ω = 0}, (2.1b)

Q(Ω) :={q ∈ Lp′(QT ), with p′ =
p

p− 1
, p > 1}. (2.1c)

The extension of (2.1) to vector functions is denoted by using bold symbols, i.e., W`,p(Ω) :=
{φ = (φ1, . . . , φd) ∈ [W 1,p(Ω)]d}. We refer the reader to [1] for more details about Sobolev
spaces.

2.2 The p-power law Navier-Stokes system

In this paragraph the system for describing the motion of an incompressible non-
Newtonian fluid with velocity flow u = (u, v) is given. We consider that the motion evolves
in the space-time cylinder QT = I × Ω, where I = (0, T ), T > 0, is a given time interval,
and Ω ⊂ R2, is a bounded domain with smooth boundary Γ := ∂Ω. Many constitutive laws
have been proposed for modelling non-Newtonian flow motions in different situations, [8],
[15], [23] [14]. The most commonly used is this where the extra stress tensor S has the form,
[36],[17], [28],

S(Du) := 2µ(Du)D := 2µ0(κ+ |Du|)p−2Du, (2.2)

where µ0 is the dynamic viscocity depending on the Reynolds number Re, κ > 0 is
a given material constant, p > 1 is the shear parameter: for p > 2 the fluid shows
shear-thickening behavior, for 1 < p < 2 the fluid exhibits shear-thinning properties,
and for p = 2 the fluid has Newtonian behavior. Also in (2.2), Du = 1

2
(∇u + ∇uT )(:=

D1≤i,j≤2(u)) is the tensor of the symmetric gradient of the velocity (strain tensor), and
|Du| =

(∑
1≤i,j≤2(D1≤i,j≤2(u))2

)1/2. Having defined S(Du), the p-Navier-Stokes type sys-
tem that governs the fluid motion is

ut − divS(Du) + [∇u]u +∇P = f , in QT , (2.3a)
∇ · u = 0, in QT , (2.3b)
u(0) = u0, in Ω, (2.3c)

(2.3d)

where the velocity u and the pressure P are the unknowns, f is a given external body force
vector, and u0 is a given divergence-free initial condition. The system (2.3) is completed
by imposing appropriate boundary conditions. Through this work, we assume that the
boundary Γ := ∂Ω consists of three disjoint parts Γ = ΓD ∪ Γ0 ∪ ΓN , which remain fixed in
time. We set Σ := Γ× I the lateral boundary of QT , which is subdivided into three parts,
ΣD := ΓD × I (inflow part), Σ0 := Γ0 × I (solid wall), ΣN := ΓN × I (outflow part), where
the following boundary conditions are imposed

u = uD 6= 0, on ΣD (2.4a)
u · nΣ0 = 0, on Σ0 (2.4b)(

S− PI2×2

)
· nΣN

= hN , on ΣN , (2.4c)

where uD, and hN are given data, and n(.) is the outer normal to the related boundary part,
and I2×2 is the identity matrix. An illustration is given in Fig. 1(a).
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We consider the case where the inflow data uD do not vary in time and it holds uD(x) ·
nΣD

(x) < 0, x ∈ ΣD. We further suppose that for all t ∈ I holds u(x) ·nΣN
(x) > 0, x ∈ ΣN

and −
∫

ΣD
uD · nΣD

|uD|2 dS ≥
∫

ΣN
u · nΣN

|u|2 dS. The data hN in (2.4c) are in general not
known. Below using the conservation of the momentum, we give an estimation of hN in
terms of the outflow velocity u. For later use we define

σ(u, P ) =− P I + 2µ(Du) Du,

F(Du) =(κ+ |Du|)
p−2
2 Du.

(2.5)

We recall the inequalities, [17], [48],

S(Du) : Du ≥ c1|F(Du)|2,
‖F(Du)‖2

L2 ≥ c2(κ+ ‖Du‖Lp)p−2‖Du‖2
Lp ,

(2.6)

with c1 > 0, c2 > 0 independent of u.
Furthermore, let the vector functions v = (v1, v2) and w = (w1, w2), such that divv = 0.

We recall the identities

[∇v]v ·w = div(vv>) ·w − (divv)v ·w, (2.7a)∫
Ω

div(vv>) · v dx− 1

2

∫
Ω

(divv) (v · v) dx =
1

2

∫
∂Ω

(v · n∂Ω) (v · v) dS, (2.7b)

where

div(vv>) =

(
∂x(v1v1) + ∂y(v1v2)
∂x(v2v1) + ∂y(v2v2)

)
.

Weak formulation Suppose that the fluid is filling the domain QT and assume that
hN = 0, u = 0 on Σ0, and uD, f , u0 are smooth functions. Using (2.4), the symmetry of S,
one can express a variational formulation for (2.3) as,∫

QT

ut(x, t) · φ(x, t) + S(Du(x, t)) : Dφ(x, t)− P (t)divφ(x, t) (2.8a)

+[∇u(x, t)]u(x, t) · φ(x, t) dx dt =

∫
QT

f(x, t) · φ(x, t) dx dt, (2.8b)∫
QT

divu(t) q(t) dx dt = 0, (2.8c)

u(0) = u0, with divu0 = 0, (2.8d)

for all φ ∈W1,p(QT )ΣD∪Σ0 , q ∈ Q(QT ) and x = (x1, x2). The problem given in (2.8) is not
complete, because conditions under which existence-uniqueness result can be guaranteed,
are not provided. Such an investigation is given in [17], [7].

Remark 2.1. Let the term −2divDu. Multiplying this term with φ, performing a component-
wise integration by parts in space, and then using the symmetry of Du, we obtain

(−2divDu,φ)L2(QT ) =2(Du,∇φ)L2(QT ) − (2Du · nΣ,φ)L2(Σ)

=(Du,∇φ)L2(QT ) + (Du,∇φ)L2(QT ) − (2Du · nΣ,φ)L2(Σ)

=(Du,∇φ)L2(QT ) + (Du)>, (∇φ)>)L2(QT ) − (2Du · nΣ,φ)L2(Σ)

=(Du,∇φ)L2(QT ) + (Du, (∇φ)>)L2(QT ) − (2Du · nΣ,φ)L2(Σ)

=2(Du,Dφ)L2(QT ) − (2Du · nΣ,φ)L2(Σ).

(2.9)

Relation (2.9) has been used in the derivation of (2.8a).
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3 The space-time finite element approximation
The space-time discretization of (2.8) is based on defining a finite element space over

all space-time cylinder QT . For this we see the time derivative as an advection term and
we derive a unified finite element formulation for discretizing simultaneously in space and
time direction. For efficient reasons, DG techniques are used in the time direction. Thus
the domain QT is described as a union of space-time subdomains Qn. Hence, the time
interval Ī = [0, T ] is partitioned into a collection of uniform subintervals Īn = [tn, tn+1],
with 0 = t0 < t1 < . . . < tNQ

= T . The space-time subdomains are defined as Qn = In ×Ω,
and Q̄T = ∪nQ̄n. The later surface of Qn is denoted by ΣQn := Γ× In, and analogously, we
denote Σ0,Qn := Γ0 × In, ΣD,Qn := ΓD × In, and ΣN,Qn := ΓN × In, where the associated
BC’s (2.4) are imposed, see Fig. 1(b).

For every Qn, we consider a conforming mesh partition into closed simplices (e.g., tetra-
hedra) T n

h := {Ei}i=1,...,Mn . The diameter of every E ∈ T n
h is denoted by hE and we set

hn := maxE hE. For the computations presented here, the partitions T n
h are qusi-unifom,

and furthermore hn ≈ hn+1. On each T n
h we define the finite dimensional spaces,

V n
h :={φh ∈ C0(Q̄n) : φh|E ∈ Pk(E), for allE ∈ T n

h }, (3.1)

Vn
uD,h :={φh = (φ1,h, φ2,h) ∈

[
V n
h

]2
: φh = uD on ΣD,Qn}, (3.2)

Vn
0,h :={φh = (φ1,h, φ2,h) ∈

[
V n
h

]2
: φh = 0 on Σ0,Qn}, (3.3)

where Pk(E) denotes the space of polynomials with degree less than or equal to k ≥ 1.
Note that there are no continuity requirements for the spaces V n

h across the common inter-
faces Sn

n−1 = ∂Qn ∩ ∂Qn−1 of the space time subdomains.
The space time finite element approximation of (2.8) on every Qn is expressed: given

un−1
h , find un

h = (unh, v
n
h) ∈ Vn

uD,h and Ph ∈ V n
h such that∫

Qn

(
un
h,t + [∇un

h]un
h

)
· φn

h dx dt+

∫
Qn

σ(un
h, P

n
h ) : Dφn

h dx dt −
∫

ΣN,Qn

hN · φn
h dS

+
∑
E∈T n

h

∫
E

τh

(
un
h,t + [∇un

h]un
h +∇Ph

)(
φn

h,t + [∇φn
h]un

h +∇qh
)
dx dt (3.4a)

+

∫
Sn
n−1

(
un
h − un−1

h

)
· φn

h dS =

∫
Qn

f ·
(
φn

h + τh(φn
h,t + [∇φn

h]un
h +∇qh)

)
dx dt,∫

Qn

(qh + δhdivφn
h) divun

h dx dt = 0, ∀φn
h ∈ Vn

0,h, qh ∈ V n
h (3.4b)

where σ has been defined in (2.5), the parameters are τh = C1h
(1+|un

h |2)0.5
and δh = C2h. In the

space-time formulation given in (3.4) the approximation spaces are discontinuous in time
across the interfaces and the communication of the discrete solution is achieved weakly by
introducing the first integral in third line. This discontinuous nature gives some flexibility
in memory management and data storage but also helps on a faster performance of the
nonlinear solver, compared to the case of using fully continuous polynomial spaces in QT .
The term δhdivφn

h in (3.4b) allows equal order polynomial approximation spaces for un
h and

P n
h . For the case of k = 1 we have divσ = −∇P n

h I.
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Figure 1: (a) the space-time computational domain QT with the boundary parts, (b) the
space-time subdomains Qn.

A stability estimate for f = 0 and ΓN = ∅. We consider the terms
∫
Qn

un
h,tφ

n
h dx dt +∫

Sn
n−1

(
un
h − un−1

h

)
· φn

h dS of (3.4a). Setting φn
h = un

h we have∫
Qn

un
h,tu

n
h dx dt+

∫
Sn
n−1

(
un
h − un−1

h

)
· un

h dS

=

∫
Qn

1

2
∂t(u

n
h,t)

2 dx dt+

∫
Sn
n−1

(
un
h

)2 − un−1
h un

h dS

=

∫
Sn
n−1

(
un
h

)2 − un−1
h un

h −
1

2
(un

h

)2
dS +

∫
Sn+1
n

1

2

(
un
h

)2
dS

=

∫
Sn
n−1

1

2

(
un
h

)2 − un−1
h un

h dS +

∫
Sn+1
n

1

2

(
un
h

)2
dS.

(3.5)

Taking the sum over all space-time subdomains Qn, we get∑
Qn

∫
Qn

un
h,tu

n
h dx dt+

∫
Sn
n−1

(
un
h − un−1

h

)
· un

h dS

=
N∑

n=1

∥∥[[un
h,t]]
∥∥2

L2(Sn
n−1)

+
∥∥[[un

h,t]]
∥∥2

L2(SN )
−
∥∥[[un

h,t]]
∥∥2

L2(S0)
.

(3.6)

Now returning to (3.4a) and using un
h, P

n
h as test functions, we have

∫
Qn

(
un
h,t + [∇un

h]un
h

)
· un

h dx dt+

∫
Qn

S(Dun
h) : Dun

h − P n
h divun

h dx dt

+
∑
E∈T n

h

∫
E

τh

(
un
h,t + [∇un

h]un
h +∇Ph

)2

dx dt+

∫
Sn
n−1

(
un
h − un−1

h

)
· un

h dS

+

∫
Qn

(Ph divun
h) + δh(divun

h)2 = 0.

(3.7)

Summing over Qn and using (3.6), (2.6) and the identities (2.7), we find
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0 <
∑
n

{∫
Qn

c|F(Du)|2 dx dt+

∫
Qn

δh(divun
h)2 dx dt (3.8)

+
∑
E∈T n

h

∫
E

τh

(
un
h,t + [∇un

h]un
h +∇Ph

)2

dx dt
}
≤
∥∥[[un

h,t]]
∥∥2

L2(S0)

−1

2

∫
ΣD

(uD · nΣD
) |uD|2 dS +

∫
ΣN

(u · nΣN
) |u|2 dS,

by the assumptions on the problem data and on the boundary conditions.

Prescription of BCs As it has been mentioned above, for flow problems in channels,
artificial inflow and outflow boundaries are used for performing the computations. In (2.4)
are denoted by ΣD and ΣN . The artificial boundary conditions imposed on ΣN usually
include a description of the normal stress, i.e., a suitable form for hN . Next we will try
to give a form of hN depending on u, by assuming that there is no backward flow. The
derivation is quite straightforward and based on the balance equations of momentum, the
same equations which have been used for deriving the Navier-Stokes system (2.3). Note
that in this work the density assumed to be fixed ρ = 1. We derive the analysis for a small
time interval wherein ∂tu ≈ 0 and also suppose f = 0. We consider a reference element V
with one face parallel to Γout, see Fig. 1(a). The momentum flux ρu leaving or entering the
element V must be fixed.
From the momentum balance for V , the variation of the momentum must be equal to surface
forces acting on ∂V , i.e.,

∫
V

[∇u]∇u dx =
∫
∂V

(σ ·n∂V ) dS. Using that divu = 0 and utilizing
the identity div(uu>) = [∇u]u + div(u)u, we can derive

σ · n∂V = div(uu>) · n∂V = (u · n∂V )u. (3.9)

Since V can be arbitrary small we can consider that (3.9) holds separately for every face of
V , or in a different way, the momentum variations in each direction are caused by the surface
forces acting in the same direction, and by this we can extract that σ · nout = (u · nout)u.
Thus, returning to (2.4c), we set for the outflow data

hN = (u · nout)u. (3.10)

This boundary condition is used in Section Numerical Examples for performing the compu-
tations.

4 Numerical Examples
Next the ST-FE scheme (3.4) is used for solving two benchmark problems concerning

motions in channels. Also some numerical computations for an academic problem with
exact solution are performed, for investigating the asymptotic behavior of a discretization
error. In each of the examples linear polynomial spaces are used for every V n

h space. The
parameters are set to be C1 = 1.5 and C2 = 0.5.

Smooth test case- convergence rates The purpose of this example is to investigate the
convergence properties of an error related to the discretization in space and the convergence
of the L2 error in time. First a simple steady problem is considered. The flow problem
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is defined in Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with the space time cylinder QT =
I × Ω, I = (0, T = 50). The exact solutions are (u, v) = ((1− y)y, 0) and P = 1− x. The
problem may be viewed as the solution of a fully developed parabolic flow profile between
two plates. Based on [17], [7], the error is expressed using the function F(D) defined in
(2.5). Since ∂xu = ∂xv = ∂yv = 0, we investigate the asymptotic behavior of the error

eF = ‖F(Duy)− ‖F(Duh,y
)‖L2(QNQ

), where F(Duy) =

[
0 0.5∂yu

0.5∂yu 0

]
, and QNQ

is the

final space-time subdomain. The problem is solved on a series of successively refined spatial
meshes up to T = 50 where the steady solution has been reached. For all spatial meshes the
time step mesh is fixed ∆t = 0.05. The first three columns in Table 1 show the convergence
rates reF of the error eF for p ∈ {1.2, 1.5 1.8}. We observe that for all p-test cases the error
rates are close to one, and are optimal with respect the polynomial space.

In the next numerical test, the exact solutions are (u, v) = (et(1− y)y, 0) and P = 1−x.
The problem has been solved up to T = 50 by applying a mesh refinement only to the
time interval by decreasing appropriately the height of the time subdomains. For every
refinement step the spatial mesh size is fixed ∆h = 0.1, and each of the time-subdomains
include two layers of elements. In the first computation the height of the subdomains is
equal to 0.5. The asymptotic convergence behavior of the error eL2 = ‖∂tu − ∂tuh‖L2 is
shown in the last three columns in Table 1. It can be observed that for every p-test case
the associated rates rL2 are close to the value 0.5. Note that there is no discretization error
analysis of the proposed method (3.4).

errors eF ‖∂tu− ∂tuh‖L2

p:= p=1.2 p=1.5 p=1.8 p=1.2 p=1.5 p=1.8
h0 = 0.5 Computed rates
hs =

h0
2s reF reF reF rL2 rL2 rL2

s = 0 - - - - -
s = 1 1.00 1.01 1.02 0.35 0.46 0.27
s = 2 1.01 1.00 1.00 0.45 0.49 0.41
s = 3 0.99 0.998 1.00 0.50 0.54 0.48
s = 4 0.93 0.946 0.966 0.54 0.54 0.53
s = 5 1.06 1.04 1.068 0.56 0.56 0.56
s = 6 1.02 1.02 0.95 0.58 0.57 0.57
s = 7 1.02 1.01 1.01 0.58 0.58 0.58

Table 1: Example 1: The convergence rates reF and rL2 for all p-test cases.

Flow around a cylinder in an unsteady current The flow of incompressible fluid past
over a cylinder, which is located between two plates, is classical benchmark problem and
has been studied extensively in the literature, [66], [6], [70], [73, 72]. The geometry is quite
simple without singular points. Considering a cylinder with diameter D, the height of the
channel is H = 4D and the actual length of the channel is L = 22D. The cylinder is placed
centrally between the two plates in a distance 1.5D from the inflow boundary part ΣD. An
illustration of the geometric set up of the problem is given in Fig. 2(a). The flow presents
some complexity. Between the cylinder and the walls is a shear flow, but behind the cylinder
and near the upstream axis of symmetry a wake region is formed over a distance depending
upon problem characteristics, e.g., blockage ratio (:= H

D
), Reynolds number Re, etc, [73].

For instance, for 50 < Re ≤ 200, vortex shedding phenomena occur and the wake
becomes unstable. More precisely the boundary layer separates due to the adverse pressure
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gradient imposed by the divergent geometry, and vortices are created on both rear sides of
the cylinder in an alternate manner and then are convected downstream by the flow motion,
cf., [71]. Note that a further increase in Re number leads to the question of turbulence
and appropriate computational methods are required to solve the problem. The accurate
approximation of the stress field and the rest physical quantities near the cylinder and in
the wake region are some of the computational tasks for this problem.

For the computations here, the center line of the channel is the X − axis, the diameter
is D = 1, and the center of the cylinder is the point (x = −4, y = 0). The inflow velocity
is uD = (uD, vD) = (4− y2)/4, 0). On the outflow boundary part ΣN the conditions (3.10)
are used. In the numerical procedure the wake becomes unstable when a disturbance is
introduced. Here during the computations for the the second space-time subdomain we set
the velocity on the upper half of the cylinder to be equal to one. The dynamic viscosity
µ0 is defined based on the cylinder diameter D and the maxim inflow velocity umax,D, and

the Re number, µ0 =
u3−p
max,DDp−1

Re
, where we set Re = 200. The problem is solved up to final

time T = 100, using NQ = 400 space-time subdomains with two layers of mesh elements
for each Qn. The cylinder surface is discretized using 320 mesh elements for capturing the
boundary layer phenomena, see Fig. 2(b).

The influence of the power-law index p on the flow pattern has been investigated. Fig
3 shows the streamlines profiles with the contours of the u component for the three values
of p ∈ {1.2, 1.5, 1.8} at the final time T = 100. It can be clearly seen that the flow
is unsteady and the vortices formed alternatively on the sides of the cylinder. The wake
length appears to increase as p increases from 1.2 to 1.8. Next the time evolutions of the
values of vh component on the point (x = −2.5, y = 0) are computed. The results are
plotted in Fig 3(a). It can be observed that the values have a periodic behavior which
indicates a stable frequency for the vortex shedding. The amplitude is higher for the case
p = 1.2 and decreases for p = 1.5 and p = 1.8. Another quantity of interest is the pressure
difference between the first stagnation point on the back point on the cylinder surface, i.e.,
∆Ph = Ph(−4.5, 0, t) − Ph(−3.5, 0, t). In Fig. 4(b) the variation of ∆Ph is plotted with
respect to time t. For all p-test cases the plots have a periodic behavior. The associated
amplitudes and the maximum values of ∆Ph are higher for p = 1.2 case and decrease as
we increase p. The next computations are related to the time evolution of the force that is
exerted by the flow on the cylinder surface in the unit direction ex = (1, 0), i.e., the drag
coefficient CD, which is defined as CD = −2

Du2
max,D

∫
Γcyl

(
σ(u, P )nΓcyl

)
· ex ds. The variation

of CD with respect to time is given in Fig. 4(c). For the final time steps, e.g., t > 80,
the curves of all p-test cases seems to have the same time period without any oscillations.
This shows that the ST-FE scheme remains stable during the last space-time subdomains
Qn. The maximum values of CD decreases with the increasing value of power law index
p. This can be attributed to the reduction of the viscosity as p becomes smaller. Next we
compute the values of the viscosity on the barycenter points of the mesh elements which
touch the upper surface of the cylinder. The computations concern the final time step. In
Fig. 4(d) we plot the associated data. As it is expected the values of the viscosity increase
with the increase of p. There exist an oscillatory behavior in the vicinity of the back point
of the cylinder. This may be due to the steep changes of the gradient of the velocity at
the rear of the cylinder. Lastly it is mentioned that a detailed numerical investigation of
this flow problem has been presented in [45], including tests for shear-thickening cases, i.e.,
p > 2. The results which have been described above are consistent and in agreement with
the results presented in [45].

10



 

outflow
            4D

D

22D

2D

(u,v)=(0,0)

(u,v)=(0,0)

(u,v)=(0,0)inflow

(a)

x

y

4.5 4 3.5 3

0.6

0.4

0.2

0

0.2

0.4

(b)

Figure 2: Example 2: (a) Illustration of the computational domain, (b) mesh around the
cylinder surface, (c) illustration of the successive space-time subdomains.
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of ∆Ph, (c) The periodic behavior of CD coefficient, (d) the viscosity around the upper part
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Flow in a constricted channel. In this example the flow in a rigid infinite two dimen-
sional constricted channel is computed. The channel geometry is given in Fig. 5(a), where
the flow is from the left to the right. The total channel length is 32 units. The inflow
boundary part is located 5 units on the left of the constriction and its half hight is H = 1.
The maximum height HC of the constriction is 0.57 and the width LC is 4.66. The bottom
and top walls are placed at y = −1 and y = 1, respectively. The constriction surface and
the channel walls constitute the Σ0 boundary, where no-slip conditions (u = 0, v = 0) are
imposed. At the inflow boundary, a parabolic profile is prescribed, (u = (1 − y2), v = 0).
At the outflow boundary ΣN the boundary conditions given in (3.10) are used.

In the literature different geometric shapes for the constriction have been proposed de-
pending on particular applications, see [68], [25], [52], [24]. It is known that the height
and the width of the constriction affect the flow field structure. The geometry here is simi-
lar to this proposed in [49] associated with an arterial stenosis and in [14] associated with
rheometer devices for studying blockage effects on non-Newtonian flows.

We note that for sufficiently large numbers, e.g., Re > 200, the flow becomes unsteady
and vortex shedding and shear layer fluctuations are created. It is not in the purposes of
this numerical example to present an investigation in this direction, for details see [25], [53].
However, in the computations below, the viscosity µ0 is defined by means of the constriction
height µ0 =

u3−p
max,D(2HC)p−1

Re
, where we set umax,D = 1 and Re = 200. The problem reaches

a steady state where a fully developed Poiseuille profile in the downstream region close to
ΣN boundary is formed.

In order to sufficiently resolve the complex flow features, the mesh density is higher
around the constriction region and is decreased in to the rest downstream regions, where
the flow is uniform. The spatial mesh size ∆h in the constriction region and in the followed
area is ∆h ≈ 0.02. The problem has been solved up to final time T = 10 reaching the steady
state. The space time cylinder QT is subdivided into NQ = 100 space-time subdomains,
where each of them includes two layers of mesh elements. The problem is solved for three
power law indices p ∈ {1.2, 1.5, 1.8}.

We compute the velocity fields at T = 10 and in Figs. 5(b),(c),(d), the contours of the
uh component together with the stream lines are plotted. We observe that for all p-cases
the flow field is symmetric with equally sized vortices on either side of the centerline X-
axis. The length of the vortices grow with the index p, as well the center of the circulations
is found to move downstream with increasing p. Note that this is similar to the planar
sudden expansion flow problem, cf. [36]. Anyway, for a better examination in Fig. 5(e),
we present the variations of uh across the X-axis for all p-test cases. Looking carefully the
Figs. 5(b),(c),(d), and (e), we observe that the fluid velocity increases in the constriction,
with a peak to be present on the centre of the constriction, where the maximum value of uh
increases as the index p increases. Now, moving to the exit of the constriction an adverse
pressure gradient happens due to the change of the geometry, which results in flow separation
with the two symmetric (with respect to X-axis) recirculation regions close to the walls,
as well after the constriction region. After the first recirculation an adverse streamwise
pressure gradient occurs, i.e., ∂P/∂x < 0, and a second recirculation region is formed. As
it has already pointed out, in the downstream channel area after the wake region, a fully
developed Poiseuille flow is formed with a parabolic profile for the u component. Fig. 7
shows the velocity profiles for the points {(x, y, t) : x = 28,−1 ≤ y ≤ 1, t = 100}. The
velocity profiles for p = 1.2 is flatter than those of p = 1.5 and p = 1.8, as it was expected,
because the shear stress near the wall is higher for p = 1.2 and this affects the kinematics,
see discussion in [36].

Next the pressure Ph fields around the constriction area for the three p cases are shown
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in Fig. 6(a),(b),(c). In order to have a better view about the influence of p index to the
pressure field, in Fig. 6(d) the associated profiles across the X-axis are compared. Looking
the graphs in Fig. 6, we can see that for all p-cases the pressure fields are symmetric with
respect to X-axis and show a sharp decreasing in the entrance of the constriction region.
The values become minimal at the center of constriction, i.e., at the point (x− 2.33, y = 0).
Then moving towards to the downstream points, the values increase having a pick close to
the point (x = 8, y = 0) for p = 1.2, close to the point (x = 9, y = 0) for p = 1.5, and close
to (x = 10, y = 0) for p = 1.8. The values on these picks are higher for p = 1.8 and lower
for p = 1.2. For the rest points the values exhibit a linear drop which is expected since the
flow has a fully developed Poiseuille flow behavior.

For a further validation of the numerical results, a calculation of the forces on the
boundary of a fluid element E is performed. The element E has length ∆x and its hight
extended from −∆y to ∆y on the X-axis, see Fig. 5(a). Considering fully developed flow
(steady-state), then by the momentum equations in x-direction, we can write

∫
∂E

(u2, uv) ·
n ds =

∫
∂E

(S11 − P, S12) · n ds. Exploiting the flow characteristics, we can assume that, (i)
v ≈ 0, (ii) u has the same value along the two perpenticular sides of E, (i.e. ∂xu ≈ 0), and
(iii) ∂yP ≈ 0. Now using these simplifications, after few computations, we can find that
2∆xS12 = 2y(P |x=x0 − P |x=x0+∆x), see also [36]. Taking the limit as ∆x → 0, we obtain
S12 + y∂xP = 0, for all t > 0. Thus, we computed the values of σ :=

∫
[tn,tn+1]

∫
[−1,1]

(S12 +

y∂xP ) dydt at x = 28. In Fig. 7(d), the variations of σ for the last time subdomains are
presented. Based on the previous analysis we expect that the values of σ will be close to
zero. Indeed, as we can see in Fig. 7(d), the values are less than 4.E− 03 for all p cases and
do not increase as the computations approach the final time T . This indicates somehow that
the computations reach the steady state and that there are no strong numerical disturbances
from the application of the artificial boundary conditions (3.10).

Conclusions
Space-time FE methods have been presented for discretizing p-power law Navier-Stokes

type models for incompressible non-Newtonian flows. Continuous FE spaces in spatial
direction but discontinuous in time, i.e., across the sub-domain interfaces, have been used. In
the numerical scheme an upwind streamline methodology has been introduced for stabilizing
the discretization in time, and simple upwind numerical fluxes have been introduced for
establishing the communication of the solution between the space-time subdomains. The
whole approach has been implemented using linear polynomial basis functions in space and
in time, and has been tested in two benchmark problems.

The results look promising to continue with implementations using high-order spaces,
possibly discontinuous also in space. The introduction of other type upwind stabilization
terms which will be compatible with high-order spaces but without increasing the com-
putational effort it deserves to be investigated. Also new research direction can include
combinations of the proposed approach with Domain Decomposition iterative solvers in a
parallel environment. A method constructed in this prospective will present increased effi-
ciency and high flexibility in mesh refinement procedures. A work in this direction using an
Isogeometric Analysis methodology is in progress.
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Figure 5: Example 3: (a) Illustration of the computational domain, (b) uh and streamlines
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Figure 6: Example 3: (a) Pressure contours p = 1.2, (b) Pressure contours p = 1.5, (c)
Pressure contours p = 1.8, (d) Pressure variations along X-axis
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