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Abstract

Shape optimization is a widely used approach for improving the shape of the boundary
of a structure in various disciplines. Classical applications originate from structural
mechanics, but this techniques have also been e�ectively applied to problems in elec-
trical engineering. The starting point for our consideration is an application in the
�eld of electrical engineering, which consists of �nding the optimal shape of electro-
magnets such that the generated magnetic �eld in a certain part is as homogeneous
as possible in a given direction. We model this physical application in form of a shape
optimization problem.

In this thesis we follow the concept ��rst discretize, then optimize�, meaning that
we �rst discretize the problem and perform the optimization on the discrete level. In
shape optimization the common approach is to use Bézier curves, B-splines or non-
uniform rational B-splines (NURBS) for the geometric description of the boundary.
The idea of isogeometric analysis (IGA) enables us to use NURBS (or B-splines) also
for the analysis, i.e., for computing the response of the structure for a given design.
Therefore, we investigate in this thesis the concept of isogeometric analysis, which
makes it possible to easily modify our design by adjusting the control points that
determine the geometry. This technique allows us to take advantage of the exact and
smooth geometry representation via NURBS (or B-splines) in the shape optimization
process. In the implementation we use for the geometry description the G+SMO
(Geometry + Simulation Modules) library, which is developed at the JKU in Linz.

For the optimization we employ for comparability reasons the Matlab routine
fminunc with a gradient-based quasi-Newton algorithm (BFGS method). For this
reason, we give an overview of approaches used to perform a sensitivity analysis and
derive in detail an analytical design sensitivity of the discrete problem in case of a
B-spline discretization. Finally, numerical results for di�erent settings, e.g., using an
analytically computed gradient or approximate the gradient with �nite di�erences,
various initial shapes and di�erent number of design variables, are presented and com-
pared with each other.
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Zusammenfassung

Formoptimierung ist ein in verschiedenen Disziplinen weit verbreiteter Zugang zur
Verbesserung der Form des Randes eines Gebiets. Klassische Anwendungen sind im
Bereich der Strukturmechanik zu �nden, aber diese Techniken wurden auch erfolg-
reich auf Probleme aus der Elektrotechnik angewandt. Der Ausgangspunkt für unsere
Überlegungen ist eine Anwendung aus der Elektrotechnik, welche darin besteht das
optimale Design der Elektromagneten zu �nden, sodass das erzeugte Magnetfeld in
einem bestimmten Bereich so homogen als möglich in eine vorgegebene Richtung ist.
Wir werden dieses praktische Problem mittels eines Formoptimierungsproblems mo-
dellieren.

In dieser Arbeit folgen wir dem Konzept �zuerst diskretisieren, dann optimieren�. Mit
anderen Worten wir diskretisieren zuerst das Problem und führen die Optimierung am
diskreten Level durch. In der Formoptimierung ist es gängig Bézier Kurven, B-splines
oder non-uniform rational B-splines (NURBS) zur geometrischen Beschreibung des
Randes zu verwenden. Die Idee der Isogeometrischen Analyse (IGA) ermöglicht es uns
NURBS (oder B-splines) auch für die Analyse, d.h. zur Berechnung der Antwort der
Struktur für ein vorgegebenes Design, zu verwenden. Aus diesem Grund werden wir in
dieser Arbeit das Konzept der Isogeometrischen Analyse einsetzten, welches uns eine
einfache Möglichkeit bietet das Design zu modi�zieren, indem wir die Kontrollpunkte
verschieben, welche die Geometrie festlegen. Weiters können wir damit die exakte
und glatte Geometrie Repräsentierung mittels NURBS in den Optimierungsprozess
integrieren. In der Implementierung verwenden wir für die Geometrie Beschreibung
die G+SMO (Geometry + Simulation Modules) Bibliothek, welche an der JKU in
Linz entwickelt wird.

Zur besseren Vergleichbarkeit verwenden wir für die Optimierung dieMatlab Rou-
tine fminunc mit einem Gradienten basierten quasi-Newton Algorithmus (BFGS Me-
thode). Aus diesem Grund geben wir einen Überblick zu verschiedenen Techniken,
welche zur Durchführung einer Sensitivitätsanalyse verwendet werden und leiten im
Detail die analytische Designsensitivität des diskreten Problems für den Fall einer B-
spline Diskretisierung her. Abschlieÿend präsentieren und vergleichen wir numerische
Resultate für verschiedene Einstellungen, z.B. Verwendung des analytisch berechne-
ten Gradienten oder Approximation des Gradienten mittels �niter Di�erenzen, unter-
schiedliche Ausgangsdesigns und verschiedene Anzahl von Design Variablen.
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Chapter 1

Introduction

In structural optimization we aim at �nding the structure that performs a certain task
in the best possible way. In mathematical terms, the performance measure is given by
a function, called cost or objective function. Classical examples for cost functions in
structural optimization are, e.g., weight, sti�ness, compliance and material cost of the
considered structure. Structural optimization has been originally applied to problems
in the �eld of structural mechanics. This means mechanical structures whose major
task is to sustain loads, like a bridge or a cantilever beam, have been considered.
However, this concept has been e�ectively used to treat problems from various other
disciplines, e.g., electrical engineering, as we will do in this thesis.
Structural optimization problems are divided into the following three main classes:

sizing optimization, shape optimization and topology optimization. Typically, sizing
optimization is used to optimize truss structures. In this case the design variable
that describes the design is the cross-section area of the bars in the truss. In shape
optimization the design variable is given by the whole or a part of the boundary.
Topology optimization is the most general class of structural optimization, where also
the topology of the structure can be modi�ed. In case of a truss structure this would
mean that bars can also be removed from the truss.

The starting point for our considerations is an application in the �eld of electrical
engineering. The goal is to design the form of the electromagnets such that the gener-
ated magnetic �eld in a certain part of the domain is as homogeneous as possible in a
given direction. We will model this physical application by means of a shape optimiza-
tion problem. In this thesis we apply the approach ��rst discretize, then optimize�.
In other words, we �rst discetize our problem and perform the optimization on the
discrete level, meaning our design variable and state variable (describing the reply of
the structure) are �nite dimensional vectors rather than some functions.

At the beginning of shape optimization the design variables were de�ned by bound-
ary nodes of the �nite element discretization. However, this approach leads to wiggly
unrealistic shapes as optimized designs, as you can see in Figure 1.1.
Instead, the common approach is to distinguish between a design model consisting

of a (coarse) geometry description and an analysis model with a di�erent geometric
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Initial design (left) and optimized shape (right) of a hole in a plate such
that the weight is minimized subject to a constraint on the stress at certain points.
Figures are taken from [2].

description to compute the solution of the state problem. Note that the solution of
the state problem represents the response of the structure for a given design, e.g.,
displacement, stress or force. For the geometric description Bézier curves, B-splines
and non-uniform rational B-splines (NURBS) are widely used (see e.g. [2] in combi-
nation with the design element technique). There are several reasons for this choice.
First, with a small number of control points as design variables a comprehensive set of
shapes can be represented. Moreover, by means of splines we gain a smooth and regu-
lar boundary representation. Note that in most industrial applications the description
of the geometry is given via a computed aided design (CAD) system that is based on
NURBS. If we employ classical �nite elements for the analysis, �nite element meshes
have to be generated from the CAD data. In this context, note that the necessary data
exchange between the systems during the design process is a considerable drawback.
The concept of isogeometric analysis (IGA), introduced in [9], enables us to use

NURBS (or B-splines) not only for the geometry description but also as basis for
the analysis, i.e., for solving the state problem. In other words, by means of this
approach we can merge design and analysis model. Keep in mind, this idea allows us
to take advantage of the exact and smooth geometry representation via NURBS (or
B-splines) in the shape optimization process. Finally, note that using IGA makes the
communication with a �nite element mesh generator unnecessary.

The remainder of this thesis is organized as follows:
In Chapter 2 we introduce in detail the physical application of this thesis, which

consists of �nding the optimal design of electromagnets. In order to apply mathe-
matical techniques, we have to formulate a mathematical model for our considered
application. For this purpose, we �rst take a closer look at the general framework of
a structural optimization problem and its elements and derive the 2D magnetostatic
formulation, which acts as the governing state problem in our application. Finally, we
are able to establish a mathematical model of our physical problem in form of a shape
optimization problem.
In Chapter 3 we present the discretization technique we are going to apply, the

concept of isogeometric analysis (IGA). For this end, we �rst introduce the needed
geometrical background, i.e., we de�ne B-spline basis functions and B-spline geome-
tries. The next step is to �nd a geometry description of our considered geometry of
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electromagnets and give a de�nition of the design variables. Moreover, we derive a dis-
crete variational formulation of the state equation, where we incorporate the Dirichlet
boundary conditions in a weak sense by means of Nitsche's method, and show existence
and uniqueness of the solution.
Chapter 4 focuses on the numerical method used for the optimization, the Matlab

routine fminunc with a quasi-Newton algorithm (BFGS method). Since quasi-Newton
methods need gradient information of the objective function, we give an overview
of approaches used to perform a sensitivity analysis and derive in more detail an
analytical sensitivity of the already discretized problem.
Chapter 5 presents and discusses the numerical results we received for the considered

physical problem.
Concluding, in Chapter 6 we give an overview of the work realized in this thesis and

suggest possible next steps.



Chapter 2

Problem Formulation

This chapter is dedicated to the mathematical formulation of the considered physical
problem. In the �rst section the physical problem is introduced. Section 2.2 provides
the mathematical framework of a general structural optimization problem. In Sec-
tion 2.3 the two-dimensional magnetostatic formulation is derived, which will act as
governing state problem in our application. Finally, in Section 2.4 we are able to for-
mulate a mathematical model in form of a shape optimization problem that describes
our physical application.

2.1 Physical Problem

The starting point for our considerations is a shape optimization problem in the �eld
of electrical engineering, which is taken from the PhD thesis �Optimal Shape Design in
Magnetostatics� by D. Luká�s [13]. Keep in mind, Luká�s uses classical �nite elements
(with Bézier curves as boundary representation), and in the present work we take
advantage of isogeometric analysis.
The considered geometry of electromagnets, called Maltese Cross geometry, is dis-

played in Figure 2.1. It is composed of a ferromagnetic yoke and four poles with coils,
which are pumped with direct electric current. This geometry is used for measure-
ments of the so-called magneto-optic Kerr e�ect. This e�ect describes the change in
polarization and intensity of light when re�ected from a magnetized surface. For the
measurements a magnetic material is positioned in the magnetization area Ωm in the
middle, see Figure 2.2. For a detailed description of the experiment we refer to [13].
Since the results depend considerably on the orientation of the sample, the tests have
to be carried out for di�erent directions of the magnetic �eld. With the above de-
scribed geometry, homogeneous, which means constant, magnetic �elds in eight (four
vertical and four diagonal) directions can be produced by switching on and o� the
current in particular coils or change its �ow direction. The important aspect for the
further considerations is that the measurements require the magnetic �eld in the mag-
netization area as homogeneous as possible in the respective direction. As a practical
application of the magneto-optic Kerr e�ect one should have in mind high capacity

4



CHAPTER 2. PROBLEM FORMULATION 5

Figure 2.1: The Maltese Cross geometry of electromagnets. Photo is taken from [13].

Figure 2.2: Cross section of the Maltese Cross geometry of electromagnets

data storage media like magnetic or compact discs.
Summing up, our goal is to design the shapes of the pole heads such that in the

magnetization area the inhomogeneity of the eight magnetic �elds in the inherent
direction is minimized. On the other hand, the magnitude of the magnetic �elds
should be high enough to make the magneto-optic Kerr e�ect possible.

2.2 Structural Optimization Problem

In this section �rst a general mathematical form of a continuum structural optimization
problem is introduced. Since in this thesis we apply the approach ��rst discretize, then
optimize�, the next step is to perform a discretization and obtain a discrete problem.
This section is mainly based on [5] and [4].



CHAPTER 2. PROBLEM FORMULATION 6

A general continuum structural optimization problem reads

min
p,u
I(p, u) (2.1a)

s.t. u solves PDE (2.1b)

g(p, u) ≤ 0, (2.1c)

where I is called cost function or objective function, p design variable and u state
variable.

• The cost function I is a measure of the quality of the design, and usually I is
de�ned such that we aim at minimizing it.

• The design variable p is a function that de�nes the design. During the optimiza-
tion this function will be modi�ed.

• The state variable u is a function that stands for the reply of the partial di�er-
ential equation for a given design p.

The partial di�erential equation (2.1b), called state problem, couples the design and
state variable. The inequality (2.1c) represents the design and state constraints. The
corresponding discrete problem is given by

min
p∈Rn,u∈Rm

Ih(p,u) (2.2a)

s.t. K(p)u = f(p) (2.2b)

gh(p,u) ≤ 0, (2.2c)

where p is the vector of design variables, u the vector of state variables and Ih, gh are
the discretized cost function and constraint function, respectively. The state equation
(2.2b) is given by the Galerkin approximation of the partial di�erential equation in
(2.1b). The way the problem is stated in (2.2) is called simultaneous formulation (see
[5]), since the state problem is solved simultaneously with the optimization.
In formulation (2.2) the design and state variables are considered as independent

quantities. However, quite often the state variable u is already uniquely determined
by the state problem for given design variables. As we see later, this is also the case
in our situation since the sti�ness matrix K is invertible, hence we obtain

u = u(p) = K−1(p)f(p).

If we plug in the function u(p) for the design variable, we end up with the nested
formulation (cf. [5]):

min
p∈Rn

Ih(p,u(p)) (2.3a)

s.t. gh(p,u(p)) ≤ 0. (2.3b)

Later, in Chapter 4 we discuss the numerical treatment of problems of this form.
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2.3 Mathematical Model for Magnetostatics

The aim of this section is to deduce the 2D linear magnetostatic formulation. The
starting point are Maxwell's equations, the next step is the magnetostatic vector po-
tential formulation and �nally we will perform a reduction to 2D. The derivation is
primarily based on [18], [17] and [6].
Maxwell's equations (2.4) describe the phenomena of electromagnetism, for a thor-

ough derivation see, e.g., [11]. Maxwell's equations in di�erential form are given by

curlE = −∂B
∂t

, (2.4a)

curlH = J +
∂D

∂t
, (2.4b)

divD = ρ, (2.4c)

divB = 0. (2.4d)

The appearing �eld quantities with corresponding SI units are

the electric �eld intensity E [V/m],

the electric �ux density (displacement current density) D [As/m2],

the magnetic �ux density (magnetic induction) B [V s/m2 = T ],

the magnetic �eld intensity H [A/m],

the electric current density J [A/m2],

the charge density ρ [As/m3].

Note, the de�ned quantities depend on the spatial variable x = (x1, x2, x3)T and the
time variable t. The letters set in boldface represent three-dimensional vector �elds.
According to Maxwell's equations (2.4) we obtain 6 equations for 15 unknowns, since by
applying the curl operator information gets lost because it has a null space consisting
of the gradient �elds. Hence, in order to receive a closed system we have to pose 9
additional material laws. The following material laws provide relations between the
electromagnetic �elds:

B = µH +M , (2.5a)

D = εE + P , (2.5b)

J = σ(E + v ×B) + J i, (2.5c)
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containing

the magnetization (remanent �ux density) M [V s/m2 = T ],

the polarization P [As/m2],

the magnetic permeability µ [V s/Am = H/m],

the electric permittivity ε [As/V m],

the electric conductivity σ [A/V m],

the velocity v [m/s],

the impressed current density J i [A/m2].

For simplicity, we do not take the magnetization and the polarization into account
and, therefore, setM = P = 0. Moreover, we assume v = 0 and µ, ε and σ are scalar
quantities that only depend on x. This means we neglect the e�ects of hysteresis and
consider only static (µ, ε and σ do not depend on t) isotropic linear materials. In
case of a linear material the permeability µ does not depend on the magnetic �eld H .
In this context we should mention that ferromagnetic materials, like iron, are non-
linear materials. However, for simplicity, we will apply this model to ferromagnetic
materials in our later considerations. Therefore, we should keep in mind that by
assuming linearity we induce a modelling error. Often, the electric current density
is known in parts of the domain, which will be the case in our application. Then we
additionally add the impressed current density in Ohm's law, as in (2.5c), and formally
assume σ = 0 in this parts.
From now on we assume the appearing �elds are time independent, i.e., we are in

the static case where ∂
∂t

= 0. Then we receive J = J i; therefore, the electric current
density is in the following considered as known quantity. Under this assumption, we
end up with the following equations, the magnetostatic formulation:

curlH = J , (2.6a)

divB = 0, (2.6b)

B = µH . (2.6c)

First, applying the operator div to equation (2.6a) implies a necessary condition for
the electric current density

divJ = 0. (2.7)

Here we use that for a vector �eld v that is two times continuously di�erentiable
div curlv = 0 holds.
In the following let the computational domain Ω ⊂ R3 be a bounded domain with

a su�ciently smooth boundary Γ = ∂Ω composed of two disjoint parts ΓB,ΓH with
ΓB ∪ ΓH = Γ, and let n denote the outer unit normal on Γ. If we assume that the
domain Ω is simply connected, equation (2.6b) guarantees the existence of a vector
potential A with

B = curlA.
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This allows us to rewrite the magnetostatic system (2.6) to the so-called vector poten-
tial formulation, given by

curl
( 1

µ
curlA

)
= J in Ω, (2.8a)

with possible boundary conditions

A× n = 0 on ΓB, (2.8b)
1

µ
curlA× n = 0 on ΓH . (2.8c)

The physical interpretation of these boundary conditions is as follows: (2.8b) implies
B ·n = 0, which is called induction boundary condition. The second condition (2.8c)
and H × n = 0, which is called perfect magnetic conductor (PMC) condition, are
equivalent. Bear in mind, the solution A of (2.8a) is only unique up to adding a
gradient �eld ∇ϕ. One possibility to �x the arbitrary gradient �eld is to impose the
additional condition divA = 0, called Coulomb gauge.

2.3.1 2D Reduction

The �nal step in this section is a two-dimensional reduction of the magnetostatic
system stated in (2.8). Let us assume our domain Ω = Ω2D × (−l, l) with l �
diam (Ω2D) is homogeneous in x3-direction and

J =

 0
0

J(x1, x2)

 , H =

H1(x1, x2)
H2(x1, x2)

0

 .

First, note the current density J as given above ful�ls the necessary condition (2.7).
Furthermore, we obtain by means of (2.6c)

B =

B1(x1, x2)
B2(x1, x2)

0

 ,

which implies

B3 = [curlA]3 =
∂A2

∂x1

− ∂A1

∂x2

= 0.

This motivates the following ansatz for the vector potential:

A =

 0
0

u(x1, x2)

 , (2.9)
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which provides

B = curlA =

 ∂u
∂x2

(x1, x2)

− ∂u
∂x1

(x1, x2)

0

 . (2.10)

Note, for the considered ansatz (2.9) the Coulomb gauge, as de�ned previously, is
ful�lled. With this ansatz the vector potential formulation (2.8) reduces to

curl
( 1

µ
curlA

)
= curl

 1
µ
∂u
∂x2

(x1, x2)

− 1
µ
∂u
∂x1

(x1, x2)

0

 =

 0
0

− ∂
∂x1

(
1
µ
∂u
∂x1

)
− ∂

∂x2

(
1
µ
∂u
∂x2

)
 = J ,

and for the boundary conditions we receive

0 = A× n =

−u(x1, x2)n2

u(x1, x2)n1

0

⇔ u(x1, x2) = 0

and

0 =
1

µ
curlA× n =

1

µ

 0
0

∂u
∂x2
n2 + ∂u

∂x1
n1

 ,

where we use that n3 = 0 on ∂Ω2D × (−l, l). Hence, we end up with the following 2D
linear magnetostatic formulation:

− div
( 1

µ
∇u
)

= J in Ω ⊂ R2, (2.11a)

u = 0 on ΓB = ΓD, (2.11b)
1

µ

∂u

∂n
= 0 on ΓH = ΓN , (2.11c)

where Ω = Ω2D, ΓB = ΓB ∩ Ω2D, ΓH = ΓH ∩ Ω2D, ∇ = ( ∂
∂x1
, ∂
∂x2

)T denotes the
two-dimensional gradient operator and ∂u

∂n
the normal derivative ∇u ·n.

2.4 Mathematical Model as Structural Shape Opti-

mization Problem

In this section the elements of the general continuum structural optimization problem
(2.1), stated in Section 2.2, are de�ned for our considered application, which has been
introduced in Section 2.1.
In this thesis we restrict our considerations to a two-dimensional model of the cross-

section of the Maltese Cross geometry. The computational domain Ω = (−0.2, 0.2)×
(−0.2, 0.2) completely contains the considered geometry of electromagnets, as dis-
played in Figure 2.3. The exact physical dimensions of the geometrical model can be
found in [13, Ch. 7, p. 109].
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2.4.1 Design Variable

In contrast to common practise in shape optimization, in our application the design
variable does not describe the shape of a boundary part. Hence, the computational
domain Ω does not change during the optimization. The design variable represents
the forms of the pole heads or more precisely only the interior part, i.e., the boundary
points on the left and right of the pole head are �xed.
In order to reduce the number of degrees of freedom of our model we make the

following assumptions: First, we assume that the shapes of the four pole heads are the
same; therefore, we will only optimize the shape of the south pole head and describe
the shape of any other pole head by this form. Moreover, we assume the shape of the
south pole head is symmetric with respect to the x2-axis; hence, we only treat its half.
Summing up, the design variable represents the shape of the half south pole head,
which is emphasized in green in Figure 2.3.

Figure 2.3: Cross section of the Maltese Cross geometry of electromagnets with com-
putational domain Ω and design variable (emphasized in green)

2.4.2 State Problem

As mentioned above, we consider a two-dimensional setting of our problem, and the
current does not change in time, i.e., we are in the static case. Therefore, the gov-
erning state equation is the 2D linear magnetostatic formulation (2.11) derived in
Section 2.3.1. As already indicated, our geometry of electromagnets is completely
contained in the computational domain Ω. Hence, we impose induction boundary con-
ditions B ·n = 0 on the whole boundary or in terms of the vector potentialA×n = 0.
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So we end up with the following state problem:

− div
( 1

µ(x)
∇u(x)

)
= J(x) for x = (x1, x2)T ∈ Ω ⊂ R2, (2.12a)

u(x) = 0 for x ∈ Γ, (2.12b)

where the magnetic �ux density B is given by B(x) = ( ∂u
∂x2

(x),− ∂u
∂x1

(x), 0)T .
Pay attention to the fact that the shape of the pole head, the design variable, controls

the material partition of the domain. The pole head form divides the whole domain
into

• Ω0, the domain composed of coils and air, with permeability µ0 = 4π10−7 and

• Ω1, the ferromagnetic parts (yoke and poles), with permeability µ1 = 5100µ0.

According to our goal stated in Section 2.1, we have to consider di�erent directions
of the magnetic �eld, which are generated by changing the current excitation of the
coils. Since we assume equality of all pole head shapes, it is su�cient to consider one
vertical and one diagonal magnetic �eld. Clearly, the current density J , which reduces
to a scalar in the two-dimensional case, is only non-zero in the domains occupied by
the coils. For both current excitation scenarios the modulus of the current density is
given by

|J(x)| = nII

Sc
,

where the electric current I = 5 [A], the winding number nI = 500 and the cross-
section area of the coils Sc = 3 · 10−4 [m2]. We still have to prescribe the sense of
J . For the vertical magnetic �eld we apply the following current excitation depicted
in Figure 2.4a, later denoted by vertical current excitation. In case of the diagonal
magnetic �eld the used current excitation, called diagonal current excitation, is as
depicted in Figure 2.4c.

(a) Vertical current excita-
tion

(b) Re�ected vertical cur-
rent excitation

(c) Diagonal current excita-
tion

Figure 2.4: Current excitations
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Note, in case of the vertical current excitation the right hand side J is symmetric
w.r.t. the x1-axis and antisymmetric w.r.t. the x2-axis. By exploiting the just es-
tablished symmetry of the right hand side and the symmetry of our geometry, it is
su�cient to solve the equation on one quarter of the domain Ω, e.g., on the lower
right (fourth quarter). Bear in mind, we have to impose symmetry boundary condi-
tions (u = 0) and antisymmetry boundary conditions ( ∂u

∂n
= 0) on the corresponding

interior boundary parts, see Figure 2.5. If we denote by u the solution on the fourth
quarter, symmetry considerations for our boundary value problem (2.12) yield the
following:

• The solution in the �rst quarter u1(x1, x2) = u(x1,−x2).

• The solution in the second quarter u2(x1, x2) = −u(−x1,−x2).

• The solution in the third quarter u3(x1, x2) = −u(−x1, x2).

Figure 2.5: Reduced computational domain with respective symmetry and antisym-
metry boundary conditions

Regarding the diagonal current excitation case, the �rst idea would be to consider
a so-called multi-state problem and solve the corresponding state problem for both
cases. However, there is a possibility to avoid solving two state problems by using a
superposition argument. In order to do this, one has to realize that the diagonal current
excitation can be represented as summation of the already considered vertical one
(Figure 2.4a) and a second one depicted in Figure 2.4b. Observe, the second scenario
is the re�ection of the vertical current excitation w.r.t. to the diagonal x1 = −x2. Since
we consider a linear di�erential equation with homogeneous boundary conditions, we
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obtain by using superposition for the solution of the diagonal case

udiag = uvert + uvert,ref ,

where uvert is the solution of the vertical case and uvert,ref is the corresponding so-
lution for the re�ected right hand side. Note, uvert,ref can be obtained by re�ecting
the vertical solution along the diagonal x1 = −x2. Moreover, the same symmetry
considerations as above can be applied to obtain the re�ected solution on the whole
domain from the solution on the fourth quarter with the di�erence that symmetry and
antisymmetry axis are interchanged.
In summation, we only solve one state problem, namely, for the vertical excitation

scenario, on the fourth quarter of the domain, as illustrated in �gure Figure 2.5. By
means of symmetry we obtain the solution on the whole domain; moreover, by using
re�ection and superposition we receive a solution for both current excitation cases.

2.4.3 Cost Function

Finally, we have to de�ne the cost function. Recall that the �rst part of our goal,
as stated in Section 2.1, is to minimize the inhomogeneity of the magnetic �eld in
the respective direction in the magnetization area Ωm. In order to achieve this, we
de�ne a function ϕ that measures the deviation of the magnetic �ux density B from
its average value in the L2-norm. Hence, we set

ϕ(B) =
1

meas(Ωm)(Bavg
min)2

∫
Ωm

|B(x)−Bavg(B)nm|2 dx, (2.13)

with

Bavg(B) =
1

meas(Ωm)

∫
Ωm

B(x) ·nm dx, (2.14)

where B(x) = ( ∂u
∂x2

(x),− ∂u
∂x1

(x)) and nm is the respective direction. The second
part of our goal is to guarantee a given minimal magnitude, denoted by Bavg

min, of the
magnetic �eld. We will impose this condition by adding a penalty term of the form

θ(B) =
[
max(0, Bavg

min −Bavg(B))
]2

, (2.15)

and end up with the following cost function:

I(B) = ϕ(B) + ρθ(B), (2.16)

with a penalty parameter ρ = 106.
However, we aim at minimizing the inhomogeneity for both current excitation cases.

Therefore, we have to minimize two objective functions. A problem of this form is
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called multiple criteria optimization problem. In this context, it is important to note
that the two cost functions are in general not minimized for the same design and state
variable (p, u). The common approach is to look for a so-called Pareto optimal design,
see [5] and [8].

De�nition 2.1. A design is called Pareto optimal if for any other design, either at
least one of the objective function values becomes worse or all objective function values
stay the same (cf. [8]).

A widely used procedure to receive a Pareto optimal design is to build a scalar objec-
tive function by summing up the individual objective functions with some weighting
coe�cients. By applying this technique, we de�ne

I(B1,B2) =
1

2

2∑
v=1

[
ϕv(Bv) + ρθv(Bv)

]
, (2.17a)

with

ϕv(Bv) =
1

meas(Ωm)(Bavg,v
min )2

∫
Ωm

|Bv(x)−Bavg,v(Bv)nvm|2 dx, (2.17b)

Bavg,v(Bv) =
1

meas(Ωm)

∫
Ωm

Bv(x) ·nvm dx, (2.17c)

θv(Bv) =
[
max(0, Bavg,v

min −Bavg,v(Bv))
]2

. (2.17d)

Here, v = 1 corresponds to the vertical current excitation and v = 2 to the diagonal
current excitation. For completeness of the de�nition, the considered directions are
given by

nvm =

{
(0, 1) v = 1,

(1/
√

2, 1/
√

2) v = 2,

and for the minimal average magnetic �ux densities we choose

Bavg,v
min =

{
0.085 [T ] v = 1,

0.12 [T ] v = 2.

Remark 2.2. Note, one can easily restrict the admissible shapes by means of design
constraints of the form g(p, u) ≤ 0. In this thesis, for simplicity, we do not incorporate
design and state constraints in our model.

Remark 2.3. This �nal remark is related to the symmetry consideration we applied to
reduce our computational domain to a quarter. According to the de�nition of ϕ (2.13)
and the de�nition of the average magnetic �ux density (2.14) we have to integrate
the magnetic �ux density B(x) = ( ∂u

∂x2
(x),− ∂u

∂x1
(x)) over all four quarters of the



CHAPTER 2. PROBLEM FORMULATION 16

magnetization area. Let us consider exemplarily the integral over the �rst quarter
and transform it to an integral over the fourth quarter, where we have computed the
solution u and its gradient. We know the solution in the �rst quarter is given by
u1(x1, x2) = u(x1,−x2) and by using chain rule and transformation theorem we obtain∫

Q1

∂

∂x2

u1(x1, x2) dx =

∫
Q1

∂

∂x2

(
u(x1,−x2)

)
dx =

∫
Q1

( ∂

∂x̃2

u
)

(x1,−x2︸︷︷︸
x̃2

)(−1) dx

=

∫
Q4

− ∂

∂x̃2

u(x̃1, x̃2) dx̃.

Here we use that the modulus of the Jacobian determinant
∣∣det ∂x

∂x̃

∣∣ = 1, since x(x̃) =
(x̃1,−x̃2)T . We observe that in case of the �rst quarter we receive an additional minus
for the derivative w.r.t. x2. Similar considerations have to be done for the second and
third quarter.



Chapter 3

Isogeometric Analysis

In this chapter we �rst introduce the B-spline basis and discuss B-spline geometries
like curves and surfaces and their properties (Section 3.1). The next step, treated
in Section 3.2, is to �nd a representation via a B-spline mapping of our geometry of
electromagnets, which we need in order to specify the discrete design variables. In
Section 3.3 we �rst derive a discretization scheme based on isogeometric analysis and
incorporate the Dirichlet boundary conditions in a weak sense by means of Nitsche's
method (Section 3.3.1). Moreover, we deduce the linear system of equations we have to
solve to compute the numerical solution (Section 3.3.2). Section 3.3.3 is devoted to the
question of existence and uniqueness of the solution of the discrete problem. Finally,
in Section 3.4 we present some numerical results for the considered state problem, the
equations of 2D magnetostatics. This chapter is mainly based on [10] and [9].

3.1 B-splines

A knot vector represents a sequence of coordinates in the parameter space

Ξ = {ξ1, ξ2, . . . , ξn+p+1},

where ξi ∈ R is called ith knot, p is the polynomial order and n is the number of basis
functions. The knots subdivide the parameter space into knot spans de�ned by the
domain between two adjacent knots. In the following the knots spans are referred to as
elements. Moreover, it is possible to place more than one knot at the same coordinate
position, which means a certain knot value is repeated. The number of repetitions is
referred to as multiplicity. A knot vector is called open if its �rst and last knot values
have multiplicity p+ 1.

De�nition 3.1. Given a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, the B-spline basis func-
tions are de�ned by the so-called Cox-de Boor recursion formula:

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ), (3.1)

17
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where the base case (p = 0) is a piecewise constant function

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise.

B-spline basis functions have many remarkable qualities, which are summarized be-
low.

Properties 3.2. For the B-spline basis functions de�ned as above the following prop-
erties hold:

1. First, they form a partition of unity, i.e.,

n∑
i=1

Np
i (ξ) = 1, ∀ξ.

2. They are pointwise non-negative, i.e., Np
i (ξ) ≥ 0,∀ξ.

3. Connection continuity and multiplicity of knot values: A B-spline basis func-
tion of order p is C p−mi-continuous across the knot ξi, where mi denotes the
multiplicity of the knot value ξi.

• Hence, if a knot value has multiplicity p we only receive C0-continuity and
the basis is interpolatory at the corresponding knot.

• Note, using an open knot vector causes the basis to be interpolatory at the
boundary knots.

However, in general B-spline basis functions are not interpolatory at interior
knots. Note that B-spline basis functions are polynomials on each interval [ξi, ξi+1]
and, hence, belong to C∞([ξi, ξi+1]).

4. Finally, B-spline basis functions have local support, namely, the support of the
basis function Ni,p is given by the interval [ξi, ξi+p+1], which consists of p + 1
elements. In other words, at a point ξ at most p+1 basis functions are non-zero.

Fortunately, there exist e�cient algorithms for the evaluation of the basis functions
and their derivatives, see, e.g., [19].

Remark 3.3. Note, in the implementation we count every element, also these with
zero measure, which appear between repeated knots. This approach guarantees that
the support of the basis functions is always the same number of elements. However,
during this thesis we take the more intuitive idea and only consider elements with
positive measure.
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3.1.1 B-spline Curves and Surfaces

The next step is to de�ne a B-spline curve in Rd, which is achieved by forming a linear
combination of B-spline basis functions with vector-valued coe�cients in Rd, called
control points. Let Np

i , i = 1, . . . , n, be basis functions with corresponding control
points P i ∈ Rd, i = 1, . . . , n. Then we de�ne a piecewise polynomial B-spline curve
by

C(ξ) =
n∑
i=1

Np
i (ξ)P i. (3.2)

In Properties 3.4 we summarize the qualities we need in our further considerations,
for a comprehensive discussion of B-spline curve properties we refer the reader to [10]
and [19]. The majority of the properties of B-spline curves stated below are direct
consequences of the qualities of the B-spline basis, cf. Properties 3.2.

Properties 3.4. 1. Geometric meaning of control points: The control polygon is
given by the linear interpolation of the control points. Note, the control polygon
is like a frame that controls the curve, which means if a control point is displaced
the curve follows.

2. Continuity: Let us de�ne the element boundaries of a curve in the physical space
by the image of the knots under the mapping (3.2). With this de�nition we obtain,
the number of continuous derivatives across an element boundary is greater or
equal to the respective number of the basis at the corresponding knot. In this
context observe, if the basis is interpolatory at a knot, the B-spline curve is
interpolatory at the corresponding control point.

3. Locality: Resulting from the local support of the B-spline basis functions, the
position of single control point only has an impact on p + 1 elements of the
curve.

In practise we also have to represent surfaces. The idea is to consider so-called
tensor product B-splines, which are constructed by taking the product of two univariate
B-spline basis functions. For this purpose, let us consider two knot vectors Ξ =
{ξ1, ξ2, . . . , ξn+p+1} and H = {η1, η2, . . . , ηm+q+1} with corresponding univariate B-
spline basis functions Ni,p and Mj,q. Then the tensor product B-splines are de�ned
by

Np,q
i,j (ξ, η) = Np

i (ξ)M q
j (η), i = 1, . . . , n, j = 1, . . . ,m. (3.3)

In analogy to the construction of a B-spline curve, let Np,q
i,j , i = 1, . . . , n, j = 1, . . . ,m,

be tensor product basis functions with corresponding control points P i,j ∈ Rd, i =
1, . . . , n, j = 1, . . . ,m. Then we de�ne a tensor product B-spline surface as follows:

S(ξ, η) =
n∑
i=1

m∑
j=1

Np,q
i,j (ξ, η)P i,j. (3.4)
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Figure 3.1: Illustration B-spline mapping. Figure is taken from [10].

Below we provide an overview of B-spline surface properties. Note, most of them
follow directly from the one-dimensional results by exploiting the tensor product struc-
ture.

Properties 3.5. 1. First, tensor product B-splines are again pointwise non-negative
and form a partition of unity.

2. Note, the linear interpolation of the control points is referred to as control mesh,
and its geometrical meaning as frame that controls the geometry stays valid, see
Figure 3.1.

3. In case of a two-dimensional parameter space let us de�ne the elements in the
physical space (physical mesh) analogously by the image of the knot lines under
the B-spline mapping, see Figure 3.1. Then the number of continuous partial
derivatives in a parametric direction can be determined from the multiplicity in
the respective one-dimensional knot vector and the polynomial order.

• In this context observe, a control point is interpolated by the surface, more
precisely by a vertex of the physical mesh, if the corresponding univariate
basis functions in both parametric directions are interpolatory at the respec-
tive knots.

• In more dimensions using an open knot vector causes the basis to be inter-
polatory at the corners.

4. Finally, tensor B-spline basis functions have local support, namely, the support
of the basis function Np,q

i,j (ξ, η) = Np
i (ξ)M q

j (η) is given by [ξi, ξi+p+1]×[ηj, ηj+q+1].

Remark 3.6. For the further considerations we introduce the following global num-
bering of the tensor product B-splines basis functions:

A = n(j − 1) + i,
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where i = 1, . . . , n, j = 1, . . . ,m and n,m are the number of basis functions in the ξ-
and η-directions, respectively .

Moreover, note that the same technique can be applied to construct B-spline vol-
umes.

3.1.2 Knot Insertion as Re�nement Strategy

By means of knot insertion we can add new knots without changing the geometry
and parametrization of the curve (or surface). Let us consider a coarse knot vector
Ξ = {ξ1, ξ2, . . . , ξn+p+1} and a re�ned knot vector Ξ = {ξ1, ξ2, . . . , ξn+m+p+1}, such
that Ξ ⊂ Ξ holds. The new n + m basis functions are constructed by applying the
recursive de�nition (3.1) to the re�ned knot vector Ξ. Moreover, the new n + m
control points P = {P 1,P 2, . . . ,P n+m}T are de�ned as linear combinations of the
coarse control points P = {P 1,P 2, . . . ,P n}T :

P = T pP , (3.5)

where the transfer matrix T p is de�ned recursively by

T q+1
ij =

ξi+q − ξj
ξj+q − ξj

T qij +
ξj+q+1 − ξi+q
ξj+q+1 − ξj+1

T qij+1

for q = 0, 1, 2 . . . , p− 1, with base case (q = 0):

T 0
ij(ξ) =

{
1 if ξj ≤ ξi < ξj+1,

0 otherwise.

Remark 3.7. So far we have only de�ned the transfer matrix for a one dimensional
parameter space, however, in our application we consider a two-dimensional geometry
model. Note, in case of a two-dimensional parameter space the transfer matrix can be
computed by combining the transfer matrices of each basis component.

Remark 3.8. For our application we only need simple uniform re�nement, where a
certain number of new knots is inserted in every knot span (with positive measure).
Therefore, we already complete our considerations of re�nement strategies with the
just discussed knot insertion, although there exists a huge number of other interesting
techniques in this �eld, e.g., local re�nement methods.

3.2 B-spline Geometry Model

As already indicated, the control mesh is like a frame that controls the surface; thus,
the �rst idea is to use control points as discrete design variables. In this context, keep
in mind that our design variable represents the shape of the half south pole head,
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which is not part of the domain boundary. One possibility would be to use multiple
patches and describe the pole head as part of the boundary of some of the patches.
However, in this thesis we choose a di�erent approach, namely, we only use one patch
and describe the pole head by a segment of the physical mesh. For this purpose we
have to �nd a geometry representation via a B-spline mapping of the form (3.4) that
allows us to distinguish between the ferromagnetic parts (yoke and poles), coils, air
and the magnetization area.
The idea is to map a knot line of the parameter space to a speci�c mesh line in the

physical space. In order to achieve this we make the basis interpolatory at particular
knots. The prescribed lines for our considered geometry are indicated in blue in
Figure 3.2. Note, we need ten lines (nine elements) in each direction.

Figure 3.2: Prescribed lines

As a �rst step, we set the polynomial order for both parametric directions p = q = 2.
The reason for this choice is that as result of our optimization we want to receive
a smooth pole head shape. For this purpose, we demand C1-continuity across the
element boundaries of the pole head, so we at least need quadratic B-splines, according
to Properties 3.5.
Moreover, we have to decide what knot vectors we use. For the de�nition of the knot

vectors we have to take the required number of elements and continuity across element
boundaries into account. As already stated we need nine elements and the basis should
be interpolatory, which can be achieved by increasing the multiplicity of the knot values
to 2. However, as indicated above, we require smooth pole head shapes. Hence, we
choose for both directions knot vectors consisting of nine elements with C1-continuity
between the elements that belong to the pole head and C0-continuity elsewhere:

Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9},
H = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 9, 9}.

The resulting tensor B-spline basis is given by product of the two one-dimensional
B-spline bases depicted in Figure 3.3a.
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(a) Parameter space

(b) Physical space

Figure 3.3: Illustration B-spline mapping for the considered geometry of electromag-
nets. Concerning the colouring, the ferromagnetic parts are grey, the coils red, the
magnetization area green and the air light grey. The control points are denoted by the
red points, and the blue lines (in the physical space) represent the physical mesh.

Finally, we are able to determine the positions of the control points. We start with
the control points which are interpolated by the physical mesh, i.e., those correspond-
ing to interpolatory basis functions in both parametric directions, cf. Properties 3.5.
Obviously, we set them such that the vertices of the physical mesh are as for the
prescribed lines in Figure 3.2. However, since we are using quadratic basis functions
we have an additional control point (corresponding to an interpolatory basis func-
tion in one parametric direction and a non-interpolatory in the other) between two
interpolated control points. In order to obtain straight lines between the vertices we
have to place them on the paraxial lines between the interpolated points. Moreover,
positioning the just discussed points and the further points (corresponding to non-
interpolatory basis functions in both parametric directions) centred, as depicted in
Figure 3.3b, results in a linear parametrization of the elements. Note, the mesh lines
that de�ne the magnetization area require special treatment, since the 1D bases are not
interpolatory at the corresponding knots. Here we exploit that the knots are equally
spaced in the parameter space, which provides that at ξ = 1 and η = 8 both non-zero
basis functions have value 0.5, see Figure 3.3a. Hence, the discussed knot lines are
placed in the middle of the two lines of control points to the left and to the right.
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3.2.1 De�nition of the Discrete Design Variables

The �nal task of this section is the de�nition of the discrete design variables. Accord-
ing to the coarse geometry description depicted in Figure 3.3b, the shape of the south
pole head is described by three control points, where we assume the right boundary
control point of the pole head to be �xed. In order to obtain a richer set of repre-
sentable shapes, we insert additional knot values, with single multiplicity, between the
values 1, 2 (in ξ-direction) and 7, 8 (in η-direction) in Figure 3.3a. In the practical
implementation we insert three or six further knots in each parametric direction and
position the corresponding additional lines of control points equally spaced. So we end
up with six or nine free control points as design variables; in Figure 3.4 the case with
six design variables is illustrated. For simplicity, we only consider their x2-component
as design variables and de�ne

p = {[P A]2 : A ∈ D}, (3.6)

where D denotes the set of global numbers of control points that de�ne the shape of
the half south pole head, so for our choice, D consists of six or nine elements. The
assumption that only the x2-components are free to move is not a big limitation, since
we are still able to represent a wide range of pole head shapes, see Figure 3.4b.

Remark 3.9. If the control points of the pole head are displaced, additionally, a certain
number of control points above and below should be adjusted in order to reduce the risk
of overlapping of the elements. In the concrete implementation one row of control
points above and four rows of control points below, emphasized in blue in Figure 3.4,
are displaced. The �rst two rows below are translated in the same way as the control
points of the pole head, since the x2-dimension of the elements is quite small there. In
case of the further points above and below, the displacement is decreased linearly.

3.3 Galerkin Method

3.3.1 Variational Formulation (Nitsche's Method)

The aim of this subsection is to derive a discrete variational formulation for our state
problem, the 2D linear magnetostatic formulation (2.12). For this purpose, let us
consider as model problem a slight generalization of problem (2.12), including both
inhomogeneous Dirichlet and Neumann boundary conditions. Note, for the reduction
to a quarter of the domain, illustrated in Section 2.4, homogeneous Dirichlet and Neu-
mann boundary conditions have to be taken into account. Throughout this chapter, let
Ω ⊂ R2 be a bounded domain with a su�ciently smooth boundary Γ = ∂Ω composed
of two disjoint parts ΓD,ΓN with ΓD ∪ ΓN = Γ. Moreover, we assume meas(ΓD) > 0
in order to exclude the case of pure Neumann boundary conditions, where the solution
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(a) Rectangular pole head shape (b) Modi�ed pole head shape

Figure 3.4: Control mesh and physical mesh. The control points representing design
variables are coloured green and the adjusted control points blue.

can only be unique up to an additive constant. The model problem reads

− div
( 1

µ
∇u
)

= J in Ω, (3.7a)

u = gD on ΓD, (3.7b)
1

µ

∂u

∂n
= gN on ΓN , (3.7c)

where ∂u
∂n

denotes the normal derivative ∇u ·n and n is the unit outer normal on Γ.
In the classical setting we look for a solution u ∈ C2(Ω) ∩ C1(Ω ∪ ΓN) ∩ C(Ω ∪ ΓD)
under classical assumptions on the data, i.e., J ∈ C(Ω), gD ∈ C(ΓD), gN ∈ C(ΓN).
Moreover, the coe�cient function µ, which represents in our practical application the
permeability, is assumed to be bounded from above and below by positive constants
µ0, µ1, i.e.,

µ0 ≤ µ(x) ≤ µ1, ∀x ∈ Ω. (3.8)

Let us assume the classical solution u of the model problem (3.7) and the data ful�l
additional integrability conditions, e.g., u ∈ C2(Ω), J ∈ C(Ω), gD ∈ C(ΓD), gN ∈
C(ΓN), and let the test function v ∈ H1(Ω). Now, we multiply the di�erential equation
(3.7a) with the test function, integrate over the domain Ω and perform integration by
parts. Then we end up with the following variational equation:∫

Ω

1

µ
∇u · ∇v dx−

∫
ΓD

1

µ

∂u

∂n
v ds =

∫
Ω

Jv dx+

∫
ΓN

1

µ

∂u

∂n︸ ︷︷ ︸
=gN

v ds, ∀v ∈ H1(Ω), (3.9)
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where we already split the boundary integral into a Dirichlet part and a Neumann
part. Moreover, we bring the Neumann part to the right-hand side and plug in the
Neumann boundary condition gN . Note, function values on the boundary of functions
in H1(Ω) have to be interpreted in the sense of the Trace Theorem (Theorem 3.10)
stated below.

Theorem 3.10 (Trace Theorem). Let Ω ⊂ Rn be a bounded domain with a Lipschitz-
continuous boundary. Then there exists a unique bounded linear operator

γ0 : H1(Ω)→ L2(Γ) (3.10)

with

‖γ0v‖L2(Γ) ≤ C‖v‖H1(Ω), ∀v ∈ H1(Ω), (3.11)

such that γ0v = v|Γ holds, for all v ∈ C1(Ω). Moreover, γ0(H1(Ω)) = H1/2(Γ), i.e.,
every function in H1/2(Γ) is trace of an H1(Ω) function.

Proof. A proof can be found in, e.g., [1].

One possibility would be to incorporate the Dirichlet boundary condition into the
solution space and use test functions that vanish on the Dirichlet boundary. However,
in this theses we have chosen a di�erent approach called Nitsche's Method. Before we
incorporate the Dirichlet boundary conditions in a weak sense by means of Nitsche's
method, we need the following de�nition of the discrete function space Vh.

De�nition 3.11. By taking all linear combinations of basis functions we obtain the
discrete space

Vh = {vh : vh(x) =

nbf∑
A=1

NA(x)vA}, (3.12)

where nbf denotes the total number of basis functions. The basis functions NA(x) are
de�ned by means of the so-called mapping principle, i.e.,

NA(x) = N̂A(ξ(x)), x ∈ Ω,

where N̂A is the basis function on the parameter space. The geometrical mapping
x : Ω̂→ Ω which maps the parameter space Ω̂ to the physical space Ω is de�ned by

x(ξ) =

nbf∑
A=1

N̂A(ξ)P A, ξ ∈ Ω̂,

and ξ = x−1 : Ω→ Ω̂.

In other words, we only have to give a de�nition of the basis functions on the
parameter space, and the basis functions in the physical space are de�ned via the
geometrical mapping x.
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Remark 3.12. In the previous de�nition the basis functions N̂A may represent any
kind of basis function (univariate, bivariate, trivariate, . . . ), where the dimension of
the parameter space Ω̂ has to be chosen accordingly. For our practical application we
consider Ω̂ ⊂ R2 and use bivariate B-splines, as de�ned in (3.3). Then the geometrical
mapping has the form of a tensor product B-spline surface, see (3.4), with control points
in R2, since Ω ⊂ R2.

Remark 3.13. Note, we use the same bases for the de�nition of the geometrical
mapping and the solution space. This approach called isoparametric concept is widely
used in classical �nite element analysis.

For the further analysis it is important to observe that functions in Vh are polyno-
mials on every element and so C∞ on the elements, and across element boundaries
they are at least continuous. Hence, Vh is a subspace of H1(Ω), which means we are
in the conforming case.

Notation. The physical mesh is given by the image of the knot lines under the geo-
metrical mapping, cf. Properties 3.5. In the following we will denote its elements by
Ωe and their preimage in the parameter space by Ω̂e, where e = 1, . . . , nel, with nel is
the total number of elements. Moreover, the physical mesh also induces a partition of
the boundary Γ, and by E we denote an edge on the boundary.

The next step is to derive a discrete variational formulation, based an the discrete
space Vh, that allows us to incorporate the Dirichlet boundary condition in a weak
sense, by means of Nitsche's method (cf. [12]). In order to do this, let u ∈ C2(Ω) be
again the classical solution of the model problem (3.7), and in contrast to above we
test with a discrete test function vh ∈ Vh. As before, by means of integration by parts
we obtain∫

Ω

1

µ
∇u · ∇vh dx−

∑
E∈ΓD

∫
E

1

µ

∂u

∂n
vh ds =

∫
Ω

Jvh dx+

∫
ΓN

gNvh ds, (3.13a)

where we have split the Dirichlet boundary integral into the summation over the edges
that belong to the Dirichlet boundary. We still have to incorporate the Dirichlet
boundary condition. To do so, we impose the following additional equations:

−
∑
E∈ΓD

∫
E

1

µ
u
∂vh
∂n

ds = −
∑
E∈ΓD

∫
E

1

µ
gD
∂vh
∂n

ds, (3.13b)

∑
E∈ΓD

σ

hE

∫
E

uvh ds =
∑
E∈ΓD

σ

hE

∫
E

gDvh ds, (3.13c)

where the stabilization parameter σ > 0 and hE denotes the length of the edge E.
First, the requested equations hold for the exact solution, since it ful�ls the Dirichlet
boundary condition u = gD on ΓD. Recall that on every element a function in Vh
belongs to C∞. Therefore, if we split the Dirichlet integral into the summation over
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the edges, the trace of the normal derivative ∂vh
∂n

= ∇u ·n is on every edge well de�ned,
although a function in Vh is on the whole domain only in H1. The Trace Theorem
(Theorem 3.10) guarantees for a function v ∈ H1(Ω) the existence of the trace on the
boundary of the functions itself but not for its derivative, which belongs only to L2(Ω).
By summing up the equations (3.13a), (3.13b) and (3.13c) we obtain that the clas-

sical solution u ∈ C2(Ω) solves the equation

ah(u, vh) = 〈Fh, vh〉, ∀vh ∈ Vh, (3.14)

with

ah(u, vh) =

∫
Ω

1

µ
∇u · ∇vh dx+

∑
E∈ΓD

[
−
∫
E

1

µ

∂u

∂n
vh ds−

∫
E

1

µ
u
∂vh
∂n

ds+
σ

hE

∫
E

uvh ds

]
,

(3.15)

〈Fh, vh〉 =

∫
Ω

Jvh dx+

∫
ΓN

gNvh ds+
∑
E∈ΓD

[
−
∫
E

1

µ
gD
∂vh
∂n

ds+
σ

hE

∫
E

gDvh ds

]
.

(3.16)

Note that the bilinear form ah(·, ·) is symmetric due to the minus sign in equation
(3.13b). This motivates to de�ne the discrete problem as follows:

De�nition 3.14 (Discrete Problem). Find uh ∈ Vh, such that

ah(uh, vh) = 〈Fh, vh〉, ∀vh ∈ Vh, (3.17)

where ah(·, ·) and 〈Fh, .〉 are de�ned as above.

The assumptions on the data of (3.17) can be weakened, e.g., J ∈ L2(Ω), gD ∈
H1/2(ΓD), gN ∈ L2(ΓN). Moreover, also the bounds of coe�cient function µ (3.8) only
have to hold almost everywhere in Ω.
Note, in the Interior Penalty Discontinuous Galerkin method the Dirichlet boundary

conditions are incorporated in the same way.

3.3.2 Linear System of Equations

Due to linearity of ah(·, ·) and 〈Fh, .〉, it is su�cient to test in the discrete variational
formulation (3.17) only with a basis of the space Vh. Therefore, we obtain that the
discrete problem (3.17)

⇔ Find uh ∈ Vh s.t.
ah(uh, NA) = 〈Fh, NA〉, ∀NA, A = 1, . . . , nbf .

The next step is to plug in for uh the representation

uh(x) =

nbf∑
B=1

NB(x)uB, (3.18)
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which yields that the discrete problem (3.17)

⇔ Find u = (u1, . . . , unbf
)T ∈ Rnbf s.t.

nbf∑
B=1

ah(NB, NA)uB = 〈Fh, NA〉, ∀NA, A = 1, . . . , nbf ,

⇔ Find u ∈ Rnbf s.t.

Ku = f ,
(3.19)

with

[K]AB = ah(NB, NA) = ah(NA, NB),

[f ]A = 〈Fh, NA〉,
[u]A = uA,

for all A,B = 1, . . . , nbf . Here, we use the symmetry of the bilinear form. In order to
compute the solution uh, we have to solve the linear system (3.19). In this context it
is important to observe that the sti�ness matrix K is sparse, due to the local support
of the basis functions, cf. Properties 3.2 and Properties 3.5. More precisely, the
number of basis functions with support on an element, referred to as nbf_el, is given
by (p + 1)(q + 1) in the case of bivariate B-spines. Note, the term number of local
basis functions is also common. Therefore, the assembling of the linear system is done
element wise, as in classical �nite element analysis. The procedure is to loop through
the elements:

• Build the element sti�ness matrix Ke ∈ Rnbf_el×nbf_el .

• Build the element load vector f e ∈ Rnbf_el .

• Add the entries of the element sti�ness matrix and load vector to the correspond-
ing entries of the global sti�ness matrix and load vector. In order to do this, we
need a connection between the local ordering of the basis functions on an ele-
ment and the global basis function numbers, which is provided by the so-called
connectivity array.

Remark 3.15. The task of the connectivity array is to link for each element e =
1, . . . , nel, every local basis function number a = 1, . . . , nbf_el, to the corresponding
global basis function number A ∈ {1, . . . , nbf}. Which means the connectivity array is
a mapping of the form CA(a, e) = A. In order to de�ne a connectivity array we need
a local numbering of the basis functions on every element and a global numbering of
the basis functions (cf. Remark 3.6) and of the elements. The numbering technique
used for the implementation and the algorithm for building the connectivity array is
taken from [10, Appendix A]

Notation. In the following we denote by A ∈ {1, . . . , nbf} the global number of a basis
function, and a ∈ {1, . . . , nbf_el} denotes the local number of the basis function on a
given element. When further indices are needed, the letters B and b respectively will
be used.
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What is still missing is the computation of the element sti�ness matrix Ke and
element load vector f e. Let us start with the �rst part of the bilinear form (3.15),
which means we consider

[Ke]ab =

∫
Ωe

1

µ(x)
∇Na(x) · ∇Nb(x) dx

over an element Ωe in the physical space, where Na, Nb are local basis functions. The
approach is to �rst transform the integral back to the parameter space and then to
the so-called parent element [−1, 1] × [−1, 1], as illustrated in Figure 3.5. On the

ξ

ξi ξi+1

η j+1

η j

1

1

−1
−1

x

y

ξ

η

∼η

∼

Ωe~Ω̂e

Ωe

Figure 3.5: Diagram of the mappings between physical space, parameter space and
parent element. Figure is taken from [10].

parent element we apply a quadrature rule, e.g., Gaussian quadrature, to compute
the integral. Remember, Ωe denotes the element in the physical space, Ω̂e denotes
the corresponding element in the parameter space and now let us refer to the parent
element as Ω̃. Analogous, we denote by x coordinates in the physical space, by ξ
coordinates in the parameter space and by ξ̃ coordinates in the parent element. The
mapping x : Ω̂e → Ωe which maps the element from the parameter space to the physical
space and its inverse ξ : Ωe → Ω̂e are de�ned as in De�nition 3.11. Furthermore, we
de�ned an a�ne mapping φ : Ω̃→ Ω̂e which maps the parent element to the element
in the parameter space.

Notation. For convenience, we introduce the following notation for the Jacobian de-
terminant of a mapping. Let us exemplarily consider the Jacobian of the mapping
x : Ω̂e → Ωe and de�ne ∣∣∣∂x

∂ξ
(ξ)
∣∣∣ =

∣∣∣det
∂x

∂ξ
(ξ)
∣∣∣. (3.20)

Note, if the mapping is de�ned such that the determinant of its Jacobian is always
positive, which is common practise, we can omit the absolute value of the determinant.

In so doing, we obtain

[Ke]ab =

∫
Ω̂e

1

µ(x(ξ))
∇xNa(x(ξ)) · ∇xNb(x(ξ))

∣∣∣∂x
∂ξ

(ξ)
∣∣∣ dξ.

Moreover, we have to transform the derivatives with respect to physical coordinates
x to derivatives with respect to parametric coordinates ξ. Note, there exist e�cient
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algorithms to compute the derivatives on the parameter space. To do so, we represent
the basis function on the physical space by means of the basis function on the parameter
space and use chain rule. Then we receive

∂

∂x
N(x) =

∂

∂x

(
N̂(ξ(x))

)
=
( ∂
∂ξ
N̂
)

(ξ(x))
∂ξ

∂x
(x) =

( ∂
∂ξ
N̂
)

(ξ(x))
(∂x
∂ξ

(ξ(x))
)−1

,

where we use that

x(ξ(x)) = x⇒ ∂x

∂ξ
(ξ(x))

∂ξ

∂x
(x) = 1.

Summing up, we obtain for the gradient

∇xN(x) = ∇x

(
N̂(ξ(x))

)
=
(∂x
∂ξ

(ξ(x))
)−T(

∇ξN̂
)

(ξ(x)),

and the gradient at the considered point x(ξ) reads

∇xN(x(ξ)) =
(∂x
∂ξ

(ξ)
)−T
∇ξN̂(ξ).

If we plug in the transformed gradient and transform the integral back to the parent
element, we end up with∫
Ω̃

1

µ(x(φ(ξ̃)))

(∂x
∂ξ

(φ(ξ̃))
)−T
∇ξN̂a(φ(ξ̃)) ·

(∂x
∂ξ

(φ(ξ̃))
)−T
∇ξN̂b(φ(ξ̃))

∣∣∣∂x
∂ξ

(φ(ξ̃))
∂φ

∂ξ̃

∣∣∣ dξ̃,
(3.21)

where we multiply with the Jacobian determinant of the composition of x and φ.
Note, the Jacobian of the a�ne mapping φ is independent of ξ̃.
The contribution consisting of an integral over the domain Ω to the linear functional

(3.16) can be computed in the same way. The remaining parts are boundary integrals;
so let us consider exemplarily the Neumann boundary integral appearing in the lin-
ear functional (3.16). Since the assembling is done boundary edge wise, we have to
compute the following integral:∫

E

1

µ(x)
gN(x)Na(x) ds.

In order to compute the line integral we need a parametrization of the boundary edge.
A possible parametrization corresponding to the lower edge of the parent element is
given by

γ : [−1, 1]→ R2

t 7→ x(φ(t,−1)).
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If we plug in the parametrization, we end up with
1∫

−1

1

µ(γ(t))
gN(γ(t))Na(x(φ(t,−1)))︸ ︷︷ ︸

=N̂a(φ(t,−1))

‖γ′(t)‖ dt, (3.22)

where the derivative of the parametrization is given by γ′(t) = ∂x
∂ξ

(φ(t,−1))∂φ
∂ξ̃
. As next

step we use again a quadrature rule to compute the line integral. If there is a derivative
involved, we apply the same considerations as above (chain rule) to transform it to a
derivative with respect to the parameter space coordinates ξ.
Now, the question of existence and uniqueness of the solution of the discrete problem

(3.17) arises.

3.3.3 Numerical Analysis of the Bilinear Form: Existence and
Uniqueness

In this section we will show ellipticity and boundedness of the bilinear form ah(·, ·)
and conclude by means of the Theorem of Lax and Milgram existence and uniqueness
of the solution for a bounded linear functional as right hand side. The majority of this
section is based on [15] and [12].
As already indicated, we apply the Theorem of Lax and Milgram, which is stated

below.

Theorem 3.16 (Lax-Milgram). Let V be a Hilbert space and a : V ×V → R a bilinear
form that is elliptic (coercive), i.e.,

a(v, v) ≥ Ca
1‖v‖2

V , ∀v ∈ V,

with a constant Ca
1 > 0 and bounded, i.e.,

a(v, w) ≤ Ca
2‖v‖V ‖w‖V , ∀v, w ∈ V,

with a constant Ca
2 > 0. Further, let F ∈ V ∗. Then the variational problem:

Find u ∈ V s.t.
a(u, v) = 〈F, v〉, ∀v ∈ V

has a unique solution u ∈ V , which ful�ls

1

Ca
2

‖F‖V ∗ ≤ ‖u‖V ≤
1

Ca
1

‖F‖V ∗ .

Proof. For the proof we refer to a book about the �nite element method, e.g., [3].

In the analysis of the bilinear form ah(·, ·) we will use the following discrete mesh-
dependent norm:

‖vh‖2
h =

∫
Ω

1

µ
|∇vh|2 dx+

∑
E∈ΓD

σ

hE

∫
E

v2
h ds =

∥∥∥( 1

µ

) 1
2∇vh

∥∥∥2

L2(Ω)
+
∑
E∈ΓD

σ

hE
‖vh‖2

L2(E).

(3.23)
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The next Lemma provides an inverse inequality, which we need in order to prove
ellipticity and boundedness of our bilinear form ah(·, ·).

Lemma 3.17 (cf. [12]). For vh ∈ Vh the estimate∑
E∈ΓD

hE

∥∥∥∂vh
∂n

∥∥∥2

L2(E)
≤ CI‖∇vh‖2

L2(Ω)

holds, with a mesh independent constant CI > 0.

Proof. In order to show the estimate one uses a so-called scaling argument.

Remark 3.18. For the availability of the just stated inverse inequality we need as-
sumptions on the mapping F e = x ◦ φ : Ω̃ → Ωe from the parent element to the
element in the physical space, see Figure 3.5. More precisely, we need upper bounds
for the norm of the Jacobian matrix and the Jacobian determinant, given by∥∥∥∂F e

∂ξ̃

∥∥∥ ≤ C1he,
∥∥∥∂F−1

e

∂x

∥∥∥ ≤ C2h
−1
e ,∣∣∣∂F e

∂ξ̃

∣∣∣ ≤ C3h
2
e,

∣∣∣∂F−1
e

∂x

∣∣∣ ≤ C4h
−2
e ,

where he denotes the diameter of the element in the physical space Ωe and all involved
constants are independent of he (cf. [7]).

Now, we are able to prove ellipticity of the bilinear form.

Lemma 3.19. Let σ ≥ 4CIµ1
µ20

, where CI is the constant of the inverse inequality of

Lemma 3.17, and let µ0, µ1 be the lower and upper bound of the permeability µ (3.8).
Then there holds the ellipticity estimate

ah(vh, vh) ≥
1

2
‖vh‖2

h, ∀vh ∈ Vh.

Proof. For vh ∈ Vh we receive for the bilinear form

ah(vh, vh) =

∫
Ω

1

µ
|∇vh|2 dx+

∑
E∈ΓD

[
−2

∫
E

1

µ

∂vh
∂n

vh ds+
σ

hE

∫
E

v2
h ds

]

= ‖vh‖2
h − 2

∑
E∈ΓD

∫
E

1

µ

∂vh
∂n

vh ds, (3.24)

where we combine the �rst and last integral and obtain ‖vh‖2
h. Now, our goal is to

estimate the part with the negative sign from above by ‖vh‖2
h with constant 1

2
. To do

so, we �rst apply Cauchy-Schwarz inequality and receive∑
E∈ΓD

∫
E

1

µ

∂vh
∂n

vh ds ≤
∑
E∈ΓD

∥∥∥ 1

µ

∂vh
∂n

∥∥∥
L2(E)
‖vh‖L2(E).
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Before we apply Cauchy-Schwarz inequality in the Euclidean space we expand with
an arti�cial one of the form hE

σ
σ
he
:

=
∑
E∈ΓD

(hE
σ

) 1
2
∥∥∥ 1

µ

∂vh
∂n

∥∥∥
L2(E)

( σ
hE

) 1
2‖vh‖L2(E).

Now, we apply Cauchy-Schwarz inequality in the Euclidean space and end up with

≤

[∑
E∈ΓD

hE
µ2

0σ

∥∥∥∂vh
∂n

∥∥∥2

L2(E)

] 1
2
[∑
E∈ΓD

σ

hE
‖vh‖2

L2(E)

] 1
2

,

where we additionally estimate µ by its lower bound µ0. By means of the inverse
inequality of Lemma 3.17 we can estimate the �rst sum from above and obtain

≤
( CI
µ2

0σ

) 1
2‖∇vh‖L2(Ω)

[∑
E∈ΓD

σ

hE
‖vh‖2

L2(E)

] 1
2

.

In the next step we apply Young's inequality, xy ≤ 1
2ε
x2+ ε

2
y2, with x =

(
CI

µ20σ

) 1
2‖∇vh‖L2(Ω)

and y =
[∑

E∈ΓD

σ
hE
‖vh‖2

L2(E)

] 1
2
and get for some ε > 0

≤ 1

2ε

CI
µ2

0σ
‖∇vh‖2

L2(Ω) +
ε

2

∑
E∈ΓD

σ

hE
‖vh‖2

L2(E).

Finally, we can estimate the term with the negative sign in (3.24) from above and
receive as lower bound

ah(vh, vh) ≥ ‖vh‖2
h −

1

ε

CIµ1

µ2
0σ

∥∥∥( 1

µ

) 1
2∇vh

∥∥∥2

L2(Ω)
− ε

∑
E∈ΓD

σ

hE
‖vh‖2

L2(E),

where we additionally use the estimate

‖∇vh‖2
L2(Ω) ≤

∥∥∥(µ1

µ

) 1
2∇vh

∥∥∥2

L2(Ω)
.

For the choice ε = 1
2
and with the assumption σ ≥ 4CIµ1

µ20
, as stated in the Lemma, we

end up with the following lower bound:

ah(vh, vh) ≥ ‖vh‖2
h −

2CIµ1

µ2
0

µ2
0

4CIµ1︸ ︷︷ ︸
= 1

2

∥∥∥( 1

µ

) 1
2∇vh

∥∥∥2

L2(Ω)
− 1

2

∑
E∈ΓD

σ

hE
‖vh‖2

L2(E)

=
1

2
‖vh‖2

h.
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Lemma 3.20. The bilinear form ah(·, ·) is bounded, i.e.,

ah(uh, vh) ≤ Ca
2‖uh‖h‖vh‖h, ∀uh, vh ∈ Vh.

Proof. Let uh, vh be in Vh; then we obtain by means of Cauchy-Scharz inequality the
estimate

ah(uh, vh)

=

∫
Ω

( 1

µ

) 1
2∇uh ·

( 1

µ

) 1
2∇vh dx

−
∑
E∈ΓD

∫
E

1

µ

∂uh
∂n

vh ds−
∑
E∈ΓD

∫
E

1

µ
uh
∂vh
∂n

ds+
∑
E∈ΓD

σ

hE

∫
E

uhvh ds

≤
∥∥∥( 1

µ

) 1
2∇uh

∥∥∥
L2(Ω)

∥∥∥( 1

µ

) 1
2∇vh

∥∥∥
L2(Ω)

+
∑
E∈ΓD

(hE
σ

) 1
2
∥∥∥ 1

µ

∂uh
∂n

∥∥∥
L2(E)

( σ
hE

) 1
2‖vh‖L2(E)

+
∑
E∈ΓD

( σ
hE

) 1
2‖uh‖L2(E)

(hE
σ

) 1
2
∥∥∥ 1

µ

∂vh
∂n

∥∥∥
L2(E)

+
∑
E∈ΓD

( σ
hE

) 1
2‖uh‖L2(Ω)

( σ
hE

) 1
2‖vh‖L2(Ω),

where we expand the summands that contain a normal derivative with an arti�cial
one of the form hE

σ
σ
hE
. In the next step we apply Cauchy-Schwarz inequality in the

Euclidean space and receive

≤
∥∥∥( 1

µ

) 1
2∇uh

∥∥∥
L2(Ω)

∥∥∥( 1

µ

) 1
2∇vh

∥∥∥
L2(Ω)

+

[∑
E∈ΓD

hE
µ2

0σ

∥∥∥∂uh
∂n

∥∥∥2

L2(E)

] 1
2
[∑
E∈ΓD

σ

hE
‖vh‖2

L2(E)

] 1
2

+

[∑
E∈ΓD

σ

hE
‖uh‖2

L2(E)

] 1
2
[∑
E∈ΓD

hE
µ2

0σ

∥∥∥∂vh
∂n

∥∥∥2

L2(E)

] 1
2

+

[∑
E∈ΓD

σ

hE
‖uh‖2

L2(E)

] 1
2
[∑
E∈ΓD

σ

hE
‖vh‖2

L2(E)

] 1
2

,

where we additionally estimate µ by its lower bound µ0. By means of the inverse
inequality of Lemma 3.17 we can estimate the L2 norm on the edge of the normal
derivative with the L2 norm on Ω of the gradient. If we do so and use Cauchy-Schwarz
inequality for the four summands, we end up with the following upper bound for
ah(uh, vh):

ah(uh, vh) ≤

[∥∥∥( 1

µ

) 1
2∇uh

∥∥∥2

L2(Ω)
+
CIµ1

µ2
0σ

∥∥∥( 1

µ

) 1
2∇uh

∥∥∥2

L2(Ω)
+ 2

∑
E∈ΓD

σ

hE
‖uh‖2

L2(E)

] 1
2

·

[∥∥∥( 1

µ

) 1
2∇vh

∥∥∥2

L2(Ω)
+
CIµ1

µ2
0σ

∥∥∥( 1

µ

) 1
2∇vh

∥∥∥2

L2(Ω)
+ 2

∑
E∈ΓD

σ

hE
‖vh‖2

L2(E)

] 1
2

≤max{1 +
CIµ1

µ2
0σ

, 2}‖uh‖h‖vh‖h.
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Note, for the �rst estimate we additionally use that there holds

‖∇vh‖2
L2(Ω) ≤

∥∥∥(µ1

µ

) 1
2∇vh

∥∥∥2

L2(Ω)
.

Moreover, one can show by means of Cauchy-Schwarz inequality that the linear
functional (3.16) is also bounded.

Theorem 3.21. Let σ be as in Lemma 3.19, i.e., σ ≥ 4CIµ1
µ20

. Then the discrete varia-

tional problem (3.17) is uniquely solvable in Vh and the solution depends continuously
on the data.

Proof. According to Lemma 3.19 the bilinear form is elliptic, and Lemma 3.20 pro-
vides the boundedness of the bilinear form. Furthermore, the linear functional is also
bounded. Hence, the Theorem of Lax and Milgram (Theorem 3.16) provides the stated
result.

3.4 Numerical Experiments: Application to the State

Problem

Finally, we use the derived discretization scheme to compute a solution of our state
problem, the 2D linear magnetostatic problem de�ned in Section 2.4.2. In this section
we present the obtained results.
In Section 3.2 we have de�ned a coarse mesh that represents the geometry. However,

in order to achieve good accuracy of the numerical solution, we have to compute the
solution of the state problem on a re�ned mesh. For this purpose, we take advantage
of the knot insertion technique described in Section 3.1.2. Recall that knot insertion
preserves the geometry and the parametrization. Keep in mind, the second property
is important, since as a result of no change in the parametrization we still have a
partition of our domain (into ferromagnetic parts, coils, air and magnetization area)
after re�nement.
In Figure 3.6a we see the coarse mesh that describes the geometry (in case of six

design variables), given by the B-spline mapping de�ned in Section 3.2. It consists of
12 elements (with positive measure) in each parametric direction. This leads to a total
number of basis functions of 441, which is equal to the number of degrees of freedom
(later referred to as DOF) of our discrete solution. Figure 3.6b shows the re�ned mesh,
where one new knot is inserted in each element in each parameter direction. A further
re�ned mesh, where two knots are inserted in each element is depicted in Figure 3.6c.
In case of one new inserted knot we end up with 1089 DOF and in case of two new
inserted knots with 2025 DOF. For the computation of the solution of the state problem
we used a re�ned mesh, where four new knots are inserted in every element, which
leads to 4761 DOF for the solution. The results are depicted in Figure 3.7. On the
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(a) Coarse mesh that de-
scribes the geometry

(b) Uniform re�ned mesh
(one knot inserted)

(c) Uniform re�ned mesh
(two knots inserted)

Figure 3.6: Meshes with di�erent re�nement level

left (Figure 3.7a) we see the solution for the vertical excitation case, where only one
coil is switched on, and Figure 3.7b on the right shows the solution for the diagonal
excitation scenario, where both coils are switched on.

(a) Vertical current excitation (b) Diagonal current excitation

Figure 3.7: Solution of the state problem on the lower right quarter of the computa-
tional domain

Remark 3.22. As already indicated in Section 2.4.2, we do not solve a second state
problem corresponding to the diagonal current excitation scenario. By using re�ection
and superposition, the solution for the vertical current excitation is given by

udiag = uvert + uvert,ref ,

where uvert is the solution of the vertical case and uvert,ref is the re�ection of the vertical
solution w.r.t. the diagonal x1 = −x2. Therefore, the discrete solution for the vertical
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case can be computed by

udiag,h(x) = uvert,h(x) + uvert,ref,h(x) =

nbf∑
A=1

NA(x)uA +

nbf∑
A=1

NA(x)uA,ref .

Here, uA is the coe�cient in the basis representation of the vertical solution and uA,ref
is the basis coe�cient that corresponds to the re�ected basis function.



Chapter 4

Numerical Methods for Optimization

In this chapter we focus on the numerical method used for the optimization. At the
beginning, we complete the de�nition of the considered discrete optimization problem
by discetizing the cost function. In Section 4.2 we give a brief overview of the BFGS
method, the most popular quasi-Newton algorithm, which we use for the optimization.
Section 4.3 is dedicated to the derivation of the gradient of the cost function (sensitivity
analysis). In this context we consider three groups of methods: approximate, discrete
and continuous approaches. In the remaining chapter we will discuss the �rst two in
more detail, since these �t in the concept of ��rst discretize, then optimize�, which we
apply in this thesis.

4.1 Discretization Cost Function

Before we can start with the discussion of numerical methods for solving the discrete
optimization problem in nested formulation (2.3), we have to discretize the cost func-
tion de�ned in (2.17). Let us de�ne the discretized cost function Ih by

Ih(B1
h,B

2
h) =

1

2

2∑
v=1

[
ϕvh(B

v
h) + ρθvh(B

v
h)
]
, (4.1)

where the integrals over the magnetization area Ωm are split into the summation over
the elements:

ϕvh(B
v
h) =

1

meas(Ωm)(Bavg,v
min )2

∑
Ωe∈Ωm

∫
Ωe

|Bv
h(x)−Bavg,v

h (Bv
h)n

v
m|2 dx, (4.2)

Bavg,v
h (Bv

h) =
1

meas(Ωm)

∑
Ωe∈Ωm

∫
Ωe

Bv
h(x) ·nvm dx, (4.3)

θvh(B
v
h) =

[
max(0, Bavg,v

min −B
avg,v
h (Bv

h))
]2

. (4.4)

39
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Keep in mind, the involved discrete magnetic �ux density Bh can be easily computed
from the discrete solution uh. Let x ∈ Ωe; then the discrete solution uh reads

uh(x) =

nbf_el∑
a=1

Na(x)ua,

where the basis coe�cients ua are de�ned by the discrete state problem (3.19). Note,
we only have to sum over the basis functions that have support on the given element.
According to Section 2.4.2, the magnetic �ux density is de�ned by

Bh(x) =
(∂uh
∂x2

(x),−∂uh
∂x1

(x)
)
, (4.5)

where the involved derivatives are given by

∂uh
∂xi

(x) =

nbf_el∑
a=1

∂Na

∂xi
(x)ua. (4.6)

Remark 4.1. In order to compute the integrals appearing in (4.2) and (4.3) we apply
the same technique as in Section 3.3.2, i.e., we �rst transform the integral back to the
parameter space and then to the parent element. On the parent element we apply Gaus-
sian quadrature to actually compute the integral. Note, we again have to transform the
derivatives of the basis functions to derivatives with respect to parametric coordinates
ξ. This can be done by means of chain rule, as shown in Section 3.3.2.

Remark 4.2. Remember, we only solve one state problem for the vertical current
excitation case. The discrete solution for the diagonal current excitation scenario can
be computed as illustrated in Remark 3.22. Then the discrete magnetic �ux density
can be computed analogous as above.
Keep in mind, in order to evaluate the cost function we have to compute an integral,

involving the magnetic �ux density Bh, over all four quarters of the magnetization
area. As indicated in Remark 2.3, we should take the respective sign of the derivative of
uh, arising from re�ection, into account when we use a quadrature rule to approximate
the integral.

4.2 Optimization Algorithm: BFGS Method

First of all, we recall that the discrete nested optimization problem (2.3) without
constraints reads

min
p∈Rn

Ih(p,u(p)). (4.7)

Note, no constraints have to be taken into account, since we do not impose design
and state constrains in our model, as indicated in Section 2.4. Moreover, our cost
function does not depend explicitly on the design variables. The reason is that the
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magnetization area is �xed and does not depend on the shape of the pole head. So we
end up with a problem of the following form:

min
p∈Rn

Îh(p) = Ih(u(p)). (4.8)

For the choice of the optimization algorithm it is important to observe that the cost
function depends nonlinearly on the control points of the pole head, i.e., on the design
variables p. This results from the implicit dependence of the state variable u(p) on
the design variables through the state equation K(p)u(p) = f(p). Therefore, we are
in the case of unconstrained nonlinear optimization. For comparability reasons we use
an external tool for the optimization, namely, the Matlab routine fminunc with the
quasi-Newton algorithm or more precisely the BFGS method.
In the following we give a brief introduction to the BFGS method. This introduction

is mainly based on [16]. As model problem let us consider the general unconstrained
nonlinear minimization problem

min
x∈Rn

f(x). (4.9)

Throughout this section we use the notation fk = f(xk). First of all, quasi-Newton
algorithms need only information of the gradient of the objective function in every
iteration. By means of the changes in the gradient they construct a quadratic model
of the objective function (at the iterate xk) of the form:

mk(p) = fk +∇fTk p+
1

2
pTBkp,

where Bk is a symmetric positive de�nite matrix that will be updated in every iteration.
The search direction pk is given by the minimizer of the just de�ned convex quadratic
problem, which can be solved explicitly, i.e.,

pk = −B−1
k ∇fk.

Keep in mind, in contrast to the Newton method, we use instead of the exact Hessian an
approximation Bk. Instead of computing a new approximation in every iteration, one
uses an updating technique based on curvature information of the previous iteration.
An e�cient and widely used one is the BFGS formula. Before we state the formula
let us introduce the following notations: sk = xk+1− xk and yk = ∇fk+1−∇fk. Now,
the BFGS update of the Hessian Bk reads

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
, (4.10)

and the corresponding update of the inverse Hessian approximation Hk is given by

Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k , (4.11)

with ρk = 1
yTk sk

.
The next step is to state the BFGS algorithm.
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Algorithm 1 (BFGS Method [16]).
Given: starting point x0, convergence tolerance ε > 0, initial inverse Hessian ap-
proximation H0

k = 0
while convergence criterion not ful�lled do
Compute search direction pk = −Hk∇fk.
Set xk+1 = xk + αkpk, where αk is computed by means of line search.
De�ne sk = xk+1 − xk and yk = ∇fk+1 −∇fk.
Compute Hk+1 by means of (4.11).
k=k+1

end while

Concerning the initial approximation H0, the simplest choice is a multiple of the
identity matrix.

Remark 4.3. The used step length α resulting from line search has to satisfy the Wolfe
conditions:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk,
∇f(xk + αkpk)

Tpk ≥ c2∇fTk pk,

with constants c2, c2, 0 < c1 < c2 < 1.

In order to apply the BFGS algorithm to the unconstrained optimization problem
(4.8), we need information about the gradient of the objective function Ih with re-
spect to the design variables p. The computation of this derivatives, or sensitivities,
therefore, called sensitivity analysis, is the task of the next section.

4.3 Sensitivity Analysis

The three main approaches how to compute the design sensitivity are the following:

1. Approximation approach (�nite di�erence method)

2. Discrete approach

3. Continuum approach

The basis for the majority of this section are [4] and [5]. In the continuum approach
the derivative is taken before discretization, i.e., of the still continuum problem. This
approach is related to the concept ��rst optimize, then discretize�. Note, this group
of methods provides often higher accuracy, since the derivatives are taken before we
approximate the continuum problem by a �nite dimensional discrete problem. How-
ever, in this thesis we apply, as already indicated in the beginning, the approach ��rst
discretize, then optimize�. Therefore, we restrict our considerations to the remaining
two other approaches, which we discuss in the following subsections.
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4.3.1 Approximation Approach (Finite Di�erence Method)

In case of the approximation approach the derivatives are computed approximately
by means of �nite di�erences, for example, forward di�erence quotients or central
di�erence quotients are used. Let us denote by pj, j = 1, . . . , ndesign, a single design
variable, where ndesign is the total number of design variables. Then the forward �nite
di�erence approximation at a design p is given by

dÎh
dpj
≈ Îh(p+ hej)− Îh(p)

h
, (4.12)

where ej is the unit vector that has a one in the j-th row. It can be shown that the
truncation error is of order O(h). The more accurate central di�erence approximation
(truncation error is O(h2)) at p reads

dÎh
dpj
≈ Îh(p+ hej)− Îh(p− hej)

2h
. (4.13)

The big advantage of �nite di�erence methods is that they are very easy to implement.
However, they have considerable drawbacks in terms of computation cost and accu-
racy. The di�cult task for �nite di�erence methods is the determination of the right
perturbation size h. Clearly, too large perturbations h leads to bad approximation,
but for too small parameters h numerical noise becomes dominant and the results are
again not accurate.
A di�erentiation technique by means of �nite di�erences is directly implemented in

the used Matlab routine fminunc. It is applied if the option GradObj is disabled.
In section Chapter 5 we compare the results of the just described method with the
results obtained by the so-called discrete method, which we will describe in the next
section.

4.3.2 Discrete Method

Let us denote by p a single design variable. Then we obtain by means of chain rule

dIh
dp

(
u(p)

)
=

dIh
du

(
u(p)

)du

dp
(p), (4.14)

where the derivatives are interpreted as Fréchet derivatives, i.e., dIh
du

is a row vector
and du

dp
is a column vector. In the following we omit the function arguments for better

readability. In order to obtain the derivative du
dp
, we di�erentiate the discrete state

equation K(p)u(p) = f(p). In so doing, we end up with

dK

dp
u+K

du

dp
=

df

dp
, (4.15)
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which can be rewritten as the following linear system of equations:

K
du

dp
=

df

dp
− dK

dp
u. (4.16)

For the further proceeding there exist two di�erent approaches: the direct method and
the adjoint method.

Direct Method

In the direct method we solve the linear system (4.16) for du
dp

and insert the result into
(4.14). In other words, for every design variable we have to solve the linear system
of equation (4.16), which is numerically quite expensive. Therefore, we use a more
e�cient approach, called adjoint method, which we describe in the sequel.

Adjoint Method

The idea in the adjoint method is to plug in (4.14) the from (4.16) obtained represen-
tation

du

dp
= K−1r,

where the residual r is given by df
dp
− dK

dp
u. Then we obtain

dIh
dp

=
dIh
du
K−1r. (4.17)

In the previous expression we de�ne the part in front of the residual, which does not
include a design derivative, by λT , i.e.,

λT =
dIh
du
K−1 ⇔ Kλ =

(dIh
du

)T
, (4.18)

where we use that the sti�ness matrixK is symmetric. In the adjoint method the �rst
step is to solve the just stated linear system for λ. Then the derivative with respect
to a single design variable p is obtained by multiplying λ with the respective residual:

dIh
dp

= λT
(df

dp
− dK

dp
u
)
. (4.19)

Summing up, we only have to solve one linear system (4.18) and for every design
variable we only have to compute the residual and multiply with λ.

Remark 4.4. Note, in the adjoint method we have to solve the linear system (4.18)
for the objective function and if present for every constraint function. In case of the
direct method we have seen that we have to solve the linear system (4.16) for every
design variable. Hence, we can conclude that when we have fewer constraints than
design variables, as in our situation, the adjoint method is bene�cial. However, in the
other case the direct method is advantageous.
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Finally, in order to determine the design sensitivity of our cost function dIh
dp
, via

the direct or adjoint method, we have to compute the design derivative of the sti�ness
matrix dK

dp
(p) and of the load vector df

dp
(p). Moreover, we need the state dependence of

the cost function dIh
du

(
u(p)

)
. If this derivatives are obtained analytically, as illustrated

in the next two subsections, we speak of an analytical method. However, if �nite
di�erences are used to determine this derivatives the method is called semianalytical.

4.3.3 Design Derivative of the Sti�ness Matrix and Load Vec-
tor

This subsection deals with the computation of the design derivative of sti�ness matrix
and load vector. The presented approach is based on the techniques for the derivation
of analytical sensitivities for isogeometric discretizations presented in [20] and [21].
First, we recall that the entries of the sti�ness matrix K are de�ned by

[K]AB = ah(NA, NB)

=

∫
Ω

1

µ
∇NA · ∇NB dx

+
∑
E∈ΓD

[
−
∫
E

1

µ

∂NA

∂n
NB ds−

∫
E

1

µ
NA

∂NB

∂n
ds+

σ

hE

∫
E

NANB ds

]
.

(4.20)

In the following we use the same approach as for the assembling of the �nite element
linear system (see Section 3.3.2), namely, we compute the derivatives element wise.
Let us start with the �rst part, i.e.,

∫
Ω

1
µ
∇NA · ∇NB dx. As indicated, the assembling

is carried out element wise, so let us consider the integral

[Ke]ab =

∫
Ωe

1

µ
∇Na · ∇Nb dx

over an element Ωe in the physical space, where Na, Nb are local basis functions. First
of all, we transform the integral back to the parameter space. Let us denote in the
following the Jacobian ∂x

∂ξ
by J . Then we end up with

[Ke]ab =

∫
Ω̂e

1

µ
∇xNa · ∇xNb|J | dξ,

where the gradient w.r.t. x can be transformed by chain rule to a gradient w.r.t.
parametric coordinates ξ (as in Section 3.3.2):

∇xN = J−T∇ξN̂ .

For the further considerations it is important to note that the element in the parameter
space Ω̂e does not depend on the control points and, thus, does not depend on the
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design variables. By means of product rule we obtain for the derivative with respect
to a single design variable p

d[Ke]ab
dp

=

∫
Ω̂e

1

µ

( d

dp
∇xNa · ∇xNb|J |+∇xNa ·

d

dp
∇xNb|J |+∇xNa · ∇xNb

d

dp
|J |
)

dξ,

(4.21)
where we use that the permeability µ is in our application constant on every element.
The next step is to take a closer look at the involved derivatives. In the �rst and
second summand in (4.21) a derivative of ∇xN appears, which reduces to

d

dp
∇xN =

( d

dp
J−T

)
∇ξN̂ , (4.22)

since the basis function on the parameter space N̂ is independent of the control points
and, hence, independent of the design variable p. Moreover, the derivative of the
inverse of the Jacobian can be computed as follows, cf. [20]:

d

dp
J−1 = −J−1

( d

dp
J
)
J−1.

In the third summand in (4.21) a derivative of the Jacobian determinant appears,
which is according to Jacobi's formula (see [21]) given by

d

dp
|J | = |J | tr

(
J−1 d

dp
J
)
.

Here, we assume the Jacobian determinant to be positive and omit the absolute value;
otherwise, we can only compute the derivative of the Jacobian determinant piecewise.
Summing up, in order to evaluate the integral (4.21), we only need to compute the
derivative of the Jacobian d

dp
J . To do so, let p be the x2-component of some control

point P Ā, i.e., p = [P Ā]2. Then we have

d

dp
[J ]ij =

d

dp

[
∂x

∂ξ

]
ij

=
d

dp

(nbf_el∑
a=1

∂N̂a

∂ξj
[P a]i

)
=

{
∂N̂a

∂ξj
∃a↔ A = Ā, i = 2,

0 otherwise,
(4.23)

where A is the global number of the local basis function with index a. Note, if the
derivative of the Jacobian d

dp
J is zero, then all three summands in (4.21) vanish. This

means we only receive a non-zero contribution d
dp

[Ke]ab from these elements where the
basis function that corresponds to the control point P Ā has support.
Moreover, we have to di�erentiate the boundary integrals involved in (4.20). To do

so, let us consider the following integral:[
KE

]
ab

=

∫
E

1

µ
∇Na(x) ·nNb(x) ds.
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As discussed in Section 3.3.2, we need a parametrization of the boundary edge, so let
us exemplarily consider an edge with parametrization

γ : [−1, 1]→ R2

t 7→ x(φ(t,−1)).
(4.24)

Hence, we have to di�erentiate

[
KE

]
ab

=

1∫
−1

1

µ
∇xNa(x(φ(t,−1))) ·n Nb(x(φ(t,−1)))︸ ︷︷ ︸

=N̂b(φ(t,−1))

‖γ ′(t)‖ dt,

where γ′(t) = ∂x
∂ξ

(φ(t,−1))∂φ
∂ξ̃

= J(φ(t,−1))∂φ
∂ξ̃
, with respect to a single design variable

p. By means of product rule we receive

d
[
KE

]
ab

dp
=

1∫
−1

1

µ

( d

dp
∇xNa ·n N̂b‖γ ′(t)‖+∇xNa ·n N̂b

d

dp
‖γ ′(t)‖

)
dt. (4.25)

Here, we use that the basis function on the parameter space N̂ is independent of
the control points, i.e., independent of the design variable. Moreover, note that the
normal vector is for our de�nition of the design variables, as x2-component of the
control points of the south pole head, independent of them.
The derivative of the gradient w.r.t. x, which appears in the �rst summand, can be

computed as in (4.22). Additionally, we have to consider d
dp
‖γ ′‖, which is given by

d

dp
‖γ ′‖ =

d

dp

(
γ′1

2
+ γ′2

2
) 1

2
=
(
γ′1

2
+ γ′2

2
)− 1

2
(
γ′1

dγ′1
dp

+ γ′2
dγ′2
dp

)
, (4.26)

where
dγ ′

dp
=

dJ

dp

∂φ

∂ξ̃
.

Here, we use that the mapping φ from the parent element to the element in the
parameter space is independent of the design variable p. Note, the derivative of the
Jacobian d

dp
J has already been computed in (4.23). Since the derivative of the Jacobian

d
dp
J is involved in both summands, we only receive a non-zero contribution d

dp
[KE]ab

from these elements where the corresponding basis function has support.
The second type of boundary integral involved in (4.20) is of the form[

KE
]
ab

=
σ

hE

∫
E

Na(x)Nb(x) ds.

By means of the parametrization γ (4.24), the boundary integral can be written as

[
KE

]
ab

=
σ

hE

1∫
−1

Na(x(φ(t,−1)))︸ ︷︷ ︸
=N̂a(φ(t,−1))

N̂b(φ(t,−1))‖γ ′(t)‖ dt.
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Then we obtain for the derivative with respect to a single design variable p by applying
product rule

d
[
KE

]
ab

dp
= σ

( d

dp

1

hE

) 1∫
−1

N̂aN̂b‖γ ′(t)‖ dt+
σ

hE

1∫
−1

N̂aN̂b
d

dp
‖γ ′(t)‖ dt, (4.27)

since the basis functions N̂ on the parameter space are independent of the design
variable. An often applied simpli�cation is to treat the length of the edge hE as a
constant. This means in the previous expression only the second summand has to be
considered. However, experiments have shown a measurable di�erence in the derivative
if the �rst summand has not been taken into account.
Keep in mind, the derivative arising in the second integral can be computed as in

(4.26). Additionally, we have to di�erentiate 1
hE
, where hE represent the length of the

edge. Since the boundary edges are in case of our geometry straight lines, their length
is given by

hE = ‖e‖ = ‖x(ξ1)− x(ξ2)‖,
with ξ1 = φ(−1,−1) and ξ2 = φ(1,−1). Then we receive for the derivative

d

dp

1

hE
=

d

dp

(
e2

1 + e2
2

)− 1
2 = −

(
e2

1 + e2
2

)− 3
2

(
e1

de1

dp
+ e2

de2

dp

)
.

In order to compute the derivative of e, we have to di�erentiate the mapping x(ξ)
with respect to p. To do so, let p be the x2-component of some control point, i.e.,
p = [P Ā]2. Then, analogous as for the Jacobian in (4.23), we have

d

dp

[
x(ξ)

]
i

=
d

dp

(nbf_el∑
a=1

N̂a(ξ) [P a]i

)
=

{
N̂a(ξ) ∃a↔ A = Ā, i = 2,

0 otherwise.
(4.28)

As above, we only receive a non-zero contribution d
dp

[KE]ab from these elements where
the basis function corresponding to the control point P Ā has support.

Remark 4.5. Summing up, we only receive a non-zero contribution for the design
derivative of the sti�ness matrix dK

dp
w.r.t. a single design variable from those elements

where the corresponding basis function has support. Therefore, in the implementation
we only loop through those elements.

The second task of this subsection is the computation of the design sensitivity of the
load vector. To do so, let us recall the de�nition of the entries of the load vector:

[f ]A = 〈Fh, NA〉 =

∫
Ω

JNA dx+

∫
ΓN

gNNA ds+
∑
E∈ΓD

[
−
∫
E

1

µ
gD
∂NA

∂n
ds+

σ

hE

∫
E

gDNA ds

]
.

(4.29)
First of all, note that in our application we only consider homogeneous boundary con-
ditions (Dirichlet and Neumann), since they represent symmetry and antisymmetry,
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as indicated in Section 2.4.2. Hence, the boundary integrals in (4.29) vanish. In terms
of the remaining �rst integral, keep in mind that the form of the coils, where the direct
electric current is located, is independent of the shape of the pole heads. This implies
that the impressed current is independent of the design variable. Summing up, we end
up with

df

dp
= 0. (4.30)

4.3.4 State Derivative of the Cost Function

In order to apply the direct or adjoint method, we have to di�erentiate the cost function
Ih(u(p)) with respect to the vector of state variables u for a given design p. First, let
us recall the de�nition of the discrete cost function (4.1):

Ih(B1
h,B

2
h) =

1

2

2∑
v=1

[
ϕvh(B

v
h) + ρθvh(B

v
h)
]
,

with

ϕvh(B
v
h) =

1

meas(Ωm)(Bavg,v
min )2

∑
Ωe∈Ωm

∫
Ωe

|Bv
h(x)−Bavg,v

h (Bv
h)n

v
m|2 dx,

θvh(B
v
h) =

[
max(0, Bavg,v

min −B
avg,v
h (Bv

h))
]2

.

In the cost function we sum up the contribution of each of the two current excitation
scenarios and, therefore, we can consider their derivative separately. In the subsequent
derivation we focus on the vertical current excitation, whose solution is directly given
by the state problem. In case of the diagonal excitation case the approach is analogous,
except that the solution is built by superposition from the vertical solution and the
re�ected vertical solution, which both depend on the state variables u. Therefore,
in the computation of the state sensitivity contributions from both parts have to be
taken into account.
If we restrict ourself to the vertical excitation scenario v = 1, we still have a sum of

two terms, which are di�erentiated separately. Let us start with the di�erentiation of
ϕvh, where it is su�cient to consider one of the integrals that we sum up. To do so, let
u be a single state variable; then we obtain by means of product rule

d

du

∫
Ωe

|Bh(x)−Bavg
h (Bh)nm|2 dx

=
d

du

∫
Ωe

(
Bh(x)−Bavg

h (Bh)nm
)
·
(
Bh(x)−Bavg

h (Bh)nm
)

dx
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=

∫
Ωe

2
d

du

(
Bh(x)−Bavg

h (Bh)nm
)
·
(
Bh(x)−Bavg

h (Bh)nm
)

dx

=

∫
Ωe

2
( d

du
Bh(x)− d

du
Bavg
h (Bh)nm

)
·
(
Bh(x)−Bavg

h (Bh)nm
)

dx.

In the next step we take a closer look at the involved derivatives. As we know, the
state variables u = (u1, . . . , unbf

)T are the coe�cients in the basis representation of
the discrete solution uh, see (3.18). In the following let us consider the state variable
corresponding to a particular basis function NĀ, i.e., u = uĀ. By using the de�nition
of the discrete magnetic �ux density (4.5), we obtain for its derivative

d

duĀ
Bh(x) =

d

duĀ

(∂uh
∂x2

(x),−∂uh
∂x1

(x)
)T
, (4.31)

with

d

duĀ

(
∂uh
∂xi

(x)

)
=

d

duĀ

(nbf_el∑
a=1

∂Na

∂xi
(x)ua

)
=

{
∂Na

∂xi
(x) ∃a↔ A = Ā,

0 otherwise.

Moreover, the derivative of the average value Bavg
h of the magnetic �ux density, de�ned

as in (4.3), appears. The respective derivative is easy to compute:

d

du
Bavg
h (Bh) =

1

meas(Ωm)

∑
Ωe∈Ωm

∫
Ωe

d

du
Bh(x).nm dx, (4.32)

where the involved derivative of the magnetic �ux density is given by (4.31). The
penalty term in (4.1) consisting of a maximum is due to the square still di�erentiable,
and the derivative is given by{

2(Bavg
min −B

avg
h (Bh))(− d

du
Bavg
h (Bh)) 0 ≤ Bavg

min −B
avg
h (Bh),

0 otherwise.
(4.33)

In the just stated expression we can compute the arising derivative of the average
magnetic �ux density as above.

Remark 4.6. Note, the cost function consists of integrals, involving the magnetic �ux
density Bh, over all four quarters of the magnetization area. Analogous as for the
computation of the cost function, we have to take the respective sign of the derivative
of uh, arising from re�ection, also for the derivative of the cost function into account.

By means of the following remark we conclude the sensitivity analysis.

Remark 4.7. As indicated in Section 3.4, we solve the state problem on a re�ned
mesh in order to receive a high accuracy of the solution. However, we have de�ned the
design variables as x2-component of control points of the coarse mesh that describes the
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geometry, see Section 3.2.1. Therefore, in order to apply the just developed techniques
for sensitivity analysis, we need a connection between control points of the coarse and
the re�ned mesh, after knot insertion. The transfer matrix T de�ned in Section 3.1.2
provides the required relation

P = T P ,

where P are the control points of the coarse mesh and P are the control points of the
re�ned mesh. Let us denote by p the x2-components of all control points corresponding
to the �ne mesh and by p our actual design variables, i.e., the x2-components of
particular control points of the coarse mesh. Then we obtain by means of chain rule

dIh
dp

=
dIh
dp

dp

dp
=

dIh
dp
T̃ , (4.34)

where the �rst term can by computed by means of the derived sensitivity analysis, and
T̃ consists of the columns of T corresponding to our design variables.

Concerning the validity of df
dp

= 0 for a �ne control point, one should keep the

following in mind. We only need the derivative dIh
dp

for those control points of the �ne
mesh which depend on our actual design variables, since otherwise the corresponding
entry of the transfer matrix is zero. For those control points the assumption that the
form of the coils is independent of the considered design variable (x2-component of the
control point) which provides df

dp
= 0 is also ful�lled. This results from the fact that

knot insertion preserves the parametrization of the geometry, i.e., also after re�nement
moving a �ne control point that depends on a coarse control point of the pole head has
no in�uence on the shape of the coils.
In this context it is important to note that we did not use for the derivation of the

design sensitivity of the sti�ness matrix any special properties of the design variables,
beside that they are x2-components of some given control points. Similar considerations
as above, for the load vector, yield that the normal vector is still independent of the
�ne design variables, which we use in (4.25).

In the previous subsections we derived an analytical method to calculate the gradient
of the cost function. The Matlab routine fminunc used for the optimization can by
supplied with this analytically computed gradient. In the next section we present
optimization results received by means of the Matlab routine fminunc with the
analytically computed gradient of the cost function derived in Section 4.3.2. Moreover,
we compare the results obtained by using the analytically computed gradient of the
cost function with results for the �nite di�erence method, introduced in Section 4.3.1.



Chapter 5

Numerical Results

In this �nal chapter we present and discuss the obtained numerical results. We apply
the optimization method described in Chapter 4 to our considered physical application,
the shape optimization problem of electromagnets de�ned in Section 2.4.
Before we show the achieved results, let us give an overview of the considered settings.

• For the optimization we employ the Matlab routine fminunc with the BFGS
method, which has been discussed in Section 4.2. There exist two modes:

� If GradObj is enabled, a user-de�ned gradient of the cost function is applied.
In this case we supply the algorithm with the by means of the discrete
method analytically computed gradient, see Section 4.3.2.

� If GradObj is disabled, the Matlab routine uses �nite di�erences to ap-
proximate the gradient, see Section 4.3.1.

• As initial shape we consider the intuitive choice of a straight line, depicted in
Figure 5.1a, and a lowered line, shown in Figure 5.1b.

• We consider the following two approaches for the choice of the design variables:

� The design variables are de�ned by the x2-component of the control points
that describe the shape of the half south pole head in the coarse geometry
representation (cf. Section 3.2). In our implementation we restrict ourself
to two cases:

∗ Six coarse design variables

∗ Nine coarse design variables

This �rst approach is the common one; additionally, we consider the fol-
lowing alternative choice.

� The design variables are de�ned by the x2-component of the control points
that describe the shape of the half south pole head in the �ne mesh, which
we obtain from the coarse mesh (geometry description) by knot insertion.
In other words we consider as many design variables as possible.

52
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• The computations were performed on a Linux PC with the processor Intel Core
i5-4200U (2 × 1,6 GHz) and 8 GB main storage.

• In the implementation we use for the geometry representation the G+SMO (Ge-
ometry + Simulation Modules) library, which is developed at the JKU in Linz.
It provides necessary functionality, e.g., e�cient evaluation of the B-spline basis
functions and their derivatives in the parameter space and uniform re�nement
by means of knot insertion.

(a) Straight line (b) Lowered line

Figure 5.1: Considered initial pole head shapes for the case of six coarse design vari-
ables

Let us consider as �rst test scenario the following settings:

Settings 1

• We supply the Matlab function with the analytically computed gradient.

• We set the lowered line as initial shape.

• We use six coarse design variables.

The �rst test con�rms the decrease of the cost function during the optimization. For
solving the state problem we use a re�ned mesh with 4761 DOF, which is obtained
by inserting four new knots in each element. First of all, the optimization stops after
three quasi-Newton iterations with the output that it cannot decrease the objective
function along the current search direction. The value of the cost function in each step
of the iteration is shown in Table 5.1. Keep in mind, we end up with a cost function
value of 1.5947 · 10−4. This represents an absolute decrease of the cost function of
= 0.7881 · 10−4, which are ≈ 33% of the initial value.
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iteration cost function value

0 2.3828 · 10−4

1 1.6099 · 10−4

2 1.5947 · 10−4

3 1.5947 · 10−4

Table 5.1: Decrease of the cost function.

The obtained optimized design is depicted in Figure 5.2a. Note, in case of this opti-
mized design the lower bounds of the average magnetic �ux density (see Section 2.4.3)
are reached for both (vertical and diagonal) current excitation cases. From a practi-
cal point of view this seems quite realistic for an optimal design. For comparison, in
Figure 5.2b the optimized 2D and 3D designs for a similar number of design variables
computed by D. Luká�s in [13] are depicted. Note that especially the form of the ob-
tained 3D design bears analogy to our received optimized pole head shape. In this
context, one should keep in mind that we have not been able to exactly reproduce
the problem settings considered in [13], since there have been some minor ambigui-
ties. Therefore, we cannot consider the received cost function values for meaningful
comparison.

(a) Optimized design for six
design variables

(b) Optimized 2D and 3D designs
computed by D. Luká�s in [13]

Figure 5.2: Obtained optimized pole head shapes

Figure 5.3 and Figure 5.4 show the magnetic �eld in case of the optimized design for
the vertical and the diagonal current excitation respectively. In the right pictures in
Figure 5.3 and Figure 5.4 we zoom in on the magnetization area and obtain a graphical
con�rmation that the magnetic �eld seems quite constant in the respective direction.
The next test treats the question, how the optimized design depends on the �neness

of the discretization of the state problem. In the �rst row of Table 5.2 we see the
obtained optimized design if we compute the solution of the state problem on the
coarse mesh (cf. Section 3.2) that represents geometry with only 441 DOF. The
received cost function value is 1.7577 · 10−4. In the next step we solve the state
problem of the optimization on a re�ned mesh, where two new knots are inserted in
every element, which corresponds to 2025 DOF. Then we receive a considerable change
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Figure 5.3: Magnetic �eld for the vertical current excitation in case of the optimized
design

of the optimized design, and the change also becomes apparent in a reduction of the
cost function value to 1.5979 · 10−4. If we solve the state problem on a further re�ned
mesh, where four or eight new knots are inserted, we no longer observe an appreciable
change in the optimized design or the value of the cost function. Summing up, we can
conclude a convergence behaviour of the optimized designs.
Table 5.3 provides further information about the optimization. Note that in all four

cases the optimization takes only three quasi-Newton iterations. Moreover, also the
total number of evaluations of cost function and gradient, stated in the fourth column,
stays approximately constant. In the �fth column the number of conjugate gradient
method (CG) iterations per evaluation of cost function and gradient is shown. In this
context recall that we have to solve a linear system for the state problem and for the
adjoint method. Here, we consider the number of iterations for both systems. Note, as
solver we apply the conjugate gradient method with a simple Jacobi preconditioner.
Figure 5.5 displays the number of CG iterations for di�erent discretizations of the
state problem; more precisely, the number of inserted knots runs from 0 (coarsest) to
8 (�nest). In blue we see the needed CG iterations and in red the theoretical result as
a function of the number of DOF, given by

O
(1

h

)
= O

(
(#DOF)

1
2

)
, (5.1)

since the mesh size h is of order O
(
(#DOF)−

1
2

)
in the 2D case. For the validity of

this theoretical result the considered mesh has to be quasi uniform. Hence, we observe
that the increase of the needed CG iterations is as expected. The last row of Table 5.3
shows the total computation time. We see that also for the �nest discretization with
13689 DOF the optimization only took less then a minute.
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Figure 5.4: Magnetic �eld for the diagonal current excitation in case of the optimized
design

optimized design
number of

inserted knots
DOF

cost function
value

0 441 1.7577 · 10−4

2 2025 1.5979 · 10−4

4 4761 1.5947 · 10−4

8 13689 1.5937 · 10−4

Table 5.2: Optimized design for di�erent �ne discretizations of the state problem
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number of DOF optimization number of eval. CG iter. total time
inserted knots iter. cost funct., gradient

0 441 3 27 251 2.38s
2 2025 3 29 299 4.54s
4 4761 3 31 446 12.59s
8 13689 3 28 760 56.59s

Table 5.3: Further information about the optimization. The number of CG iterations
in the �fth column is the averaged number of iterations per one evaluation of cost
function and gradient.
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Figure 5.5: CG iterations for di�erent �ne discretizations of the state problem. The
number of inserted knots runs from 0 (coarsest) to 8 (�nest).

Remark 5.1. In the current model we do not incorporate constraints to maintain
physical meaningful domains, e.g., avoid overlapping of the elements in the mesh (we
only reduce the risk by adjusting adjacent control points, see Remark 3.9) and guar-
antee that the pole head stays in the computational domain. For ideas how to avoid
overlapping of the elements we refer the reader to [20] and [14]. The testing has shown
that even without additional constraints we obtain meaningful results.

Now, the question arises, if we also receive similar results if we do not provide the
analytically computed gradient. Note that using �nite di�erences would simplify the
sensitivity analysis signi�cantly. Let us consider the following settings:

Settings 2 (�nite di�erences)

• We let the algorithm approximate the gradient by means of �nite di�erences.

• We set the lowered line as initial shape (as in settings 1).
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• We use six coarse design variables (as in settings 1).

The experiments show that often no improvement of the cost function can be achieved,
i.e., the optimization stops with a cost function value that is approximately equal to
the initial one. In cases where a change occurs, we end up with wiggly unrealistic
shapes. Note that we receive similar behaviour for the straight line as initial shape.
So we can conclude that in case of the used gradient-based quasi-Newton algorithm
(BFGS method) the analytical computation of the gradient is necessary in order to
receive meaningful results.
Moreover, we also tried to use the intuitive choice of a straight line as initial shape.

To do so, we apply the following settings:

Settings 3 (straight line as initial shape)

• We supply the Matlab function with the analytically computed gradient (as in
settings 1).

• We set the straight line as initial shape.

• We use six coarse design variables (as in settings 1).

As before, we compute the solution of the state problem on a re�ned mesh with
4761 DOF, where four new knots are inserted in every element. With this settings
the optimization already stops after two iterations, again, with the output that the
cost function value cannot be decreased in the current search direction. As stated in
Table 5.4, we end up with a cost function value of 3.8499 · 10−4, which is considerably
larger than the received cost function value for the lowered line as initial shape, given
by 1.5947 · 10−4.

iteration cost function value

0 5.3791 · 10−4

1 3.8499 · 10−4

2 3.8499 · 10−4

Table 5.4: Decrease of the cost function

Moreover, also the form of the received optimized design is observably di�erent, as
one can see by comparing the optimized designs for the lowered line (Figure 5.6a)
and for the straight line (Figure 5.6b). This �ndings indicate that the considered cost
function has many local minima, and in case of the straight line we end up with a
di�erent one as for the lowered line. In this context, we should mention that in case
of the optimized design for the straight line (Figure 5.6b) the lower bounds for the
average magnetic �ux density (see Section 2.4.3) are not reached, in contrast to the
optimized design for the lowered line. This observation gives rise to consider the design
achieved for the lowered line is a reasonable result. Summing up, we have to argue
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(a) Lowered line as initial
shape

(b) Straight line as initial
shape

Figure 5.6: Obtained optimized pole head shapes

from this results a quite strong dependence of the optimized design on the initial pole
head shape.
In order to enable higher �exibility of the designs, we considered as a next step more

design variables and carried out experiments with the following settings:

Settings 4 (nine coarse design variables)

• We supply the Matlab function with the analytically computed gradient (as in
settings 1).

• We set the lowered line as initial shape (settings 4a).

• We set the straight line as initial shape (settings 4b).

• We use nine coarse design variables.

Generally speaking, the results are comparable to the results for six design variables.
In the following we take a closer look at the test case, where we compute the solution
of the state problem on a re�ned mesh with 7056 DOF, which corresponds to four new
inserted knots in every element.
Let us �rst consider the lowered line as initial shape (settings 4a). By comparing

the received optimized design for six design variables (Figure 5.7a) with the optimized
design in case of nine design variables (Figure 5.7b), we observe that the basic form
of the pole head is the same. The similarity is re�ected in the received cost function
value, which is 1.5968 · 10−4 in the case of nine design variables and, as stated before,
1.5947 · 10−4 for six design variables. Note, as in the case of six design variables,
the lower bounds for the average magnetic �ux density are reached for the optimized
design.
If we use the straight line (settings 4b) as initial shape of the pole head, we observe

the same behaviour as in the case of six design variables. The basic form of the
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(a) Six design variables (b) Nine design variables

Figure 5.7: Obtained optimized pole head shapes

received design changes in a similar way as before and also the received cost function
value increases again considerably.
From the just described test case with nine control points one could conclude that

the number of design variables has no signi�cant in�uence on the basic form of the
obtained design. However, this is not completely valid as the next test scenario shows.

Settings 5 (�ne design variables)

• We supply the Matlab function with the analytically computed gradient (as in
settings 1).

• We set the lowered line as initial shape (as in settings 1).

• We use all �ne control points of the pole head as design variables.

Let us consider the following situation: We compute the solution of the state problem
on a re�ned mesh with 13689 DOF, which corresponds to eight new inserted knots in
every element. If we consider the x2-component of all �ne control points of the pole
head as design variables, we end up with 46 design variables. Figure 5.8 shows the
received optimal design, with a cost function value of 1.5500 · 10−4. If we compare the

Figure 5.8: Optimized pole head shape for 46 design variables
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cost function value with the one we obtain for the same discretization (eight inserted
knots) with only six coarse design variables, given by 1.5937 · 10−4, we observe a slight
improvement. However, on the other hand the obtained design seems wiggly and
unrealistic. One explanation for the improved cost function value is that we reach a
di�erent local minimum of the cost function. Another one is that we already observe
the indication of ill-posedness, since it is known that shape optimization problems with
a huge number of design variables are ill-posed.
Tests show that even with all �ne control points as design variables we still observe a

quite strong dependence of the optimized design on the initial shape of the pole head.



Chapter 6

Conclusion and Possible Further Work

In this thesis we considered shape optimization based on isogeometric analysis. We
followed the concept ��rst discretize, then optimize� and used for the optimization a
gradient-based quasi-Newton method. We performed an analytical sensitivity analysis
of the discrete problem for a B-spline discretization. All the techniques were applied to
a physical application consisting of a shape optimization problem of electromagnets.
In Chapter 5 we presented and discussed the obtained results for di�erent settings. It

became apparent that it is not su�cient to simply use �nite di�erences to approximate
the gradient needed for the BFGS method. Moreover, we observed a quite strong
dependence of the received optimized design on the initial shape of the pole head.
Even for high number of design variables this dependence occurred.

This work can be continued in the following directions:

• Design constraints:
In order to maintain physical meaningful domains, we have to prevent overlap-
ping of the elements in the mesh and guarantee that the pole head stays inside
the computational domain. In this thesis, for simplicity, we did not incorporate
any design constraints in our model. For more reliable results proper constraints
should be included.

• Weights of control points as design variables:
In Section 3.2 we described the geometry by means of a B-Spline mapping. If we
use instead of B-splines NURBS that are de�ned by control points and control
weights, then we could use the weights as additional design variables. One the
one hand this enriches our design space of representable shapes, but on the other
hand the derivation of analytical design sensitivities becomes more di�cult.

• Di�erent optimization methods:
It would be interesting to see how gradient-free methods work for the considered
problem. We saw in Chapter 5 that simply using �nite di�erences to approximate
the gradient needed for the BFGS method does not work. If we want to avoid
an analytical sensitivity analysis, e.g., if we also use control weights as design
variables, gradient-free methods could be a reasonable alternative.
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• Fine control points as design variables:
In Chapter 5 we observed a strong dependence of the optimized design on the
initial shape. A possible way to overcome this problem is to compute in a �rst
step the optimized design for a small number of design variables. Then step-
by-step the number of design variables for the optimization is increased, where
the obtained optimized design of the previous step is used as initial shape. Note
that the state problem is always solved on a su�ciently �ne mesh. It would be
interesting to take a closer look at this approach. When considering really high
numbers of design variables it is probably bene�cial to apply in a post-processing
step smoothing �lters to obtain physical meaningful designs.
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