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Abstract

This thesis deals with the simulation and control of time-dependent, but time-periodic eddy current
problems in unbounded domains in R

3. In order to discretize such problems in the full space-time
cylinder, we use a non-standard space-time discretization method, namely, the multiharmonic finite
element and boundary element method. This discretization technique yields large systems of lin-
ear algebraic equations, whereas the fast solution of these systems determines the efficiency of this
method. Here, suitable preconditioners are needed in order to ensure efficient and parameter-robust
convergence rates of the applied iterative method. Therefore, the main focus of this thesis lies on the
construction and analysis of robust and efficient preconditioning strategies for the resulting systems
of linear equations.

The basic idea of the multiharmonic approach is to use a Fourier series approximation as a dis-
cretization technique in time. This allows to switch from the time domain to the frequency domain,
and therefore, to replace the solution of a time-dependent problem by the solution of a system of
time-independent problems for the Fourier coefficients. Due to the infinite exterior domain on the
one hand, and inhomogeneities and the possible presence of sources in the interior domains on the
other hand, the symmetric finite element - boundary element coupling method is used to discretize
the Fourier coefficients in space.

The main challenge in the construction of efficient and parameter-robust preconditioners for the re-
sulting frequency domain equations is indicated by the full range of crucial model, regularization
and discretization parameters, that imping on the convergence rate of any iterative method. We
use matrix and operator interpolation techniques to construct parameter-robust, block-diagonal pre-
conditioners in a straightforward fashion. Furthermore, we prove rigorous bounds for the condition
numbers of the preconditioned frequency domain equations, that are independent of all involved
model, regularization, and discretization parameters. Numerical examples illustrate the robustness
of these block-diagonal preconditioners.

In order to obtain efficient preconditioners, the diagonal blocks have to be replaced by efficient (and
robust) preconditioners. The individual diagonal blocks rely on the solution of standard H1 or
H(curl) problems, for which efficient and robust preconditioners are already available.

First, we consider and analyze the eddy current problem. We start by investigating the pure multi-
harmonic finite element approach on a bounded domain, before we tackle the case of unbounded
domains in terms of the multiharmonic finite element - boundary element coupling method. For
both, we construct block-diagonal preconditioners for various types of variational formulations.

Second, we consider the eddy current optimal control problem with distributed control. Again we
apply the multiharmonic finite element - boundary element coupling method to discretize in time
and space. After deriving the optimality system, efficient and parameter-robust preconditioners are
constructed for the resulting system of linear equations.

A challenging topic in optimal control problems is the incorporation of various constraints imposed
on the state or control variables in the optimization procedure. These constraints render the resulting
system of equations nonlinear. There, the semi-smooth Newton linearization leads to problems, where
our constructed block-diagonal preconditioners can also be useful.
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Zusammenfassung

Diese Dissertation befasst sich mit der Simulation und Steuerung von zeitabhängigen, aber zeit-
periodischen Wirbelstromproblemen auf unbeschränkten Gebieten in R

3. Wir verwenden die multi-
harmonische Finite Elemente und Rand Elemente Methode, um eine volle Diskretisierung des Pro-
blems in Zeit und Raum durchzuführen. Dieses Diskretisierungsverfahren führt zu großdimensionier-
ten, linearen Gleichungssystemen, deren schnelle Lösung ganz wesentlich die Effizienz dieser nume-
rischen Methoden bestimmt. Hier werden Vorkonditionierer benötigt, um zu gewährleisten, dass die
Konvergenz eines iterativen Verfahrens, angewendet auf dieses Gleichungssystem, nicht von der Größe
des Problems, oder von anderen Parametern beeinflusst wird. Das Hauptaugenmerk liegt daher auf
der Konstruktion und Analyse von robusten und effizienten Vorkonditionierungsstrategien.

Der multiharmonische Ansatz basiert auf der grundlegenden Idee, die Zeitdiskretisierung durch eine
Fourierreihenapproximation durchzuführen. Dieser Ansatz ermöglicht eine Berechnung im Frequenz-
bereich, d.h., ein zeitabhängiges Problem wird durch ein System von zeitunabhängigen Problemen
in den Fourierkoeffizienten ersetzt. Aufgrund des unbeschränkten Außenraumes einerseits, und In-
homogenitäten und der möglichen Präsenz von Quelltermen im Innenraum andererseits, verwenden
wir eine symmetrische Finite Elemente - Rand Elemente Kopplungsstrategie um eine Diskretisierung
der Fourierkoeffizienten im Raum vorzunehmen.

Die Herausforderung in der Konstruktion von effizienten und parameter-robusten Vorkonditionierern
liegt in der richtigen Behandlung einer Serie von kritischen Modell-, Regularisierungs- und Diskre-
tisierungsparametern. Wir verwenden Operator- und Matrixinterpolationstechniken um parameter-
robuste, block-diagonale Vorkonditionierer zu konstruieren. Weiters zeigen wir explizite Schranken
für die Konditionszahlen der vorkonditionierten Gleichungssysteme, welche nicht von den Modell-,
Regularisierungs- oder Diskretisierungsparametern abhängen. Unsere theoretischen Ergebnisse be-
züglich der Robustheit der block-diagonalen Vorkonditionierer werden in numerischen Experimenten
bestätigt. Die Konstruktion von effizienten und robusten Vorkonditionierern wird durch den Aus-
tausch der diagonalen Blöcke durch weitere effiziente (und robuste) Standard-Vorkonditionierer kom-
plettiert.

Zunächst betrachten wir das Wirbelstromproblem. Wir analysieren zunächst den multiharmonischen
Ansatz für den Spezialfall einer Finite Elemente Diskretisierung im Falle eines beschränkten Gebietes,
bevor der allgemeine Fall eines unbeschränkten Gebietes mit Hilfe der symmetrischen Kopplung in
Angriff genommen wird. Für beide Fälle, den beschränkten und den unbeschränkten, konstruieren
und analysieren wir block-diagonale Vorkonditionierer für verschiedene Arten von Variationsformu-
lierungen.

Weiters betrachten wir das optimale Steuerungsproblem für das Wirbelstromproblem. Auch hier
wird die multiharmonische Finite Elemente - Rand Elemente Methode als Zeit- und Raumdiskreti-
sierungstechnik angewendet. Für das Optimalitätssystem wiederum konstruieren wir effiziente und
parameter-robuste, block-diagonale Vorkonditionierer.

Eine weitere Herausforderung in der Behandlung von optimalen Steuerungsproblemen stellen zusätz-
liche Nebenbedingungen an die Kontrolle oder die Steuerung dar. Die numerische Behandlung die-
ser Nebenbedingungen führt auf nichtlineare Gleichungssysteme. Hier führt die semiglatte Newton-
Linearisierung auf Problemstellungen, welche durch block-diagonale Vorkonditionierungsstrategien
effizient gelöst werden können.
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Introduction

State of the Art

Electromagnetic processes are present everywhere in our daily life. Classical applications include
generators, transformers and motors. Typically, electromagnetic phenomena are modeled by partial
differential equations, namely Maxwell’s equations, which are the basis for the mathematical analysis
and numerical treatment.

Eddy current problems

A special class of electromagnetic problems arises, when at least one of the electromagnetic fields varies
only slowly in time. Indeed, this simplified model has a high practical significance in low frequency
applications, such as in the numerical simulation of electric motors, relays and transformers. In this
case, the magnetic induction is the dominant factor, and the contribution of the displacement currents
is negligible in comparison to the currents. Therefore, the eddy current model is well-established in
the engineering literature.
Deriving the vector potential formulation, one ends up with a partial differential equation of the type

σ
∂y

∂t
+ curl (ν curl y) = u, in Ω× (0, T ), (1)

with the unknown function y, the given coefficients σ and ν, the source term u, the computational
domain Ω ⊂ R

3 and a prescribed time interval (0, T ). The coefficient ν refers to the reluctivity. In
general ν depends on the magnetic induction | curl y|, which renders (1) to be nonlinear, but in many
cases it is sufficient to model ν by a linear function. In particular, in non-conductors, ν is constant.
The coefficient σ refers to the electric conductivity. In typical applications (e.g. electrical machines),
the computational domain Ω consist of conductors, e.g. iron parts, and non-conductors, e.g. air
regions, wherein the conductivity is positive and is identical zero, respectively. Due to this specific
regime, (1) is sometimes referred as parabolic-elliptic eddy current equation. Therefore, the analysis
of these kinds of equations is a challenging issue, since we are dealing with two totally different
equations in the conducting and non-conducting domains, respectively. Beside many approaches,
we mention the works [3, 10, 17, 97], that provide a rigorous analysis for the elliptic-parabolic eddy
current problem, including existence and uniqueness results.

For a comprehensive mathematical theory on Maxwell’s equations and eddy current problems see,
e.g., the monographs [91, 153, 118] and [6], respectively.

Optimal control problems

During recent years, the importance of solving optimization problems with constraints in form of
partial differential equations has been growing. In typical optimal control problems, one wants
to determine the control u, and the corresponding state y, such that a given cost functional is
minimized. In the research area of optimal control of electromagnetic fields the basic interest is on

1



2 INTRODUCTION

the minimization of problems of the following type: Find (ŷ, û), such that

J (ŷ, û) = min
(y,u)

J (y,u), subject to the state equation (1), (2)

with the unknown functions y and u, and a prescribed cost functional J , which we want to minimize.
Usually, the partial differential equation (PDE), also called state equation, is treated as a constraint.
Using this approach, one can solve the optimization problem by solving the corresponding system of
optimality conditions, called the Karush-Kuhn-Tucker system (KKT system). In this setting, we are
dealing with a state equation of parabolic-elliptic type. Therefore, the optimality system of partial
differential equations is of parabolic-elliptic type as well.
Recently, the consideration of time-periodic optimal control problems, i.e, the minimization of a
functional with respect to a time-periodic parabolic partial differential equation, has also seen an
increasing interest, see e.g., [1, 65, 95, 133, 145].
Beside the PDE constraints, in some applications, inequality or box constraints imposed on the state
or control are also of importance. Indeed, in the case of Maxwell’s equations, box constraints imposed
on the state are important to filter out singularities in the solution. In the standard approach, these
constraints can be handled by a simple projection to the box [108] leading to a nonlinear optimality
system that can be solved by superlinearly convergent, semi-smooth Newton methods [76, 89].

For a comprehensive introduction in optimal control problems we refer to [151]. Furthermore, for
works on optimal control of electromagnetic fields, we mention [52, 64, 65, 158, 159].

FEM, BEM and FEM-BEM coupling

In general, it is not possible to solve the partial differential equations arising from electromagnetic
problems analytically. Therefore, one aims at finding approximate solutions, which solve a discrete
system stemming from the infinite-dimensional one. The most common approaches for the discretiza-
tion of PDEs are the finite element method (FEM) and the boundary element method (BEM). Each
of these methods has its own advantages accompanied by some weakness.

FEM The finite element method (FEM) is based on the weak formulation of partial differential
equations and has certainly been established as the most powerful tool in the discretization of linear
and nonlinear partial differential equations. Its main advantage is probably the fact that it is appli-
cable to a huge class of problems, be they linear or nonlinear, with varying coefficients, on complex
domains with different types of boundary conditions.
In Computational Electromagnetics the natural function space is H(curl), which has a lower smooth-
ness as H1, since only tangential continuities over material interfaces are required. The classical
H(curl)-conforming finite element spaces have been introduced by Nédélec in [120, 121].

A rather complete overview on finite element methods for Maxwell’s equations can be found in
[49, 79, 118, 160].

BEM In the past decades, the method of boundary integral equations has become a versatile
and powerful tool for numerical modeling of physical systems. Using the fundamental solution of
a differential operator, one can derive integral equations that completely describe the underlying
boundary value problem involving the unknown function only on the boundary of the computational
domain. The discretization of these boundary integral equations is called boundary element method
(BEM). An obvious advantage is, that only the boundary of the computational domain has to be
discretized. This allows, on the one hand, a reduction of dimension, and, on the other hand to
treat unbounded domains. Unfortunately, due to the requirement of the knowledge of a fundamental
solution, the application of BEM is restricted to specific settings.
Indeed, in eddy current computations the fundamental solution is known for the case of constant
coefficients (conductivity, reluctivity). Furthermore, the description of suitable boundary element
spaces for Maxwell’s equation is a very delicate part. Recently, the appropriate trace spaces for
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Maxwell’s equation have been introduced by Buffa and Ciarlet in [33, 34]. Based on these results,
the boundary element method has been made available also for Maxwell’s equations and especially
eddy current problems in Lipschitz domains, see e.g. [35, 81]. The boundary element method for
Maxwell’s equations is also addressed in [36, 37, 84].

FEM-BEM coupling In many situations, it is of interest to couple FEM and BEM to exploit
the advantages of both methods, also known as marriage a la mode - the best of both worlds [163].
For instance, the finite element method is suitable for heterogeneous coefficients, source terms, and
nonlinearities, whereas the boundary element method can be used to model subdomains with constant
coefficients (such as large air regions) and even unbounded regions. These properties are very typical
for eddy current problems: In the conducting parts, due to the presence of nonlinearities in the
reluctivity, highly varying conductivity and possible source terms, a finite element scheme based
on edge elements is the preferable choice. In the non-conducting parts (e.g. air), the unbounded
domains can be tackled by BEM, since there we are dealing with a homogeneous problem with
constant coefficients. Based on the remarkable work of Costabel [42] on the symmetric coupling
method, a symmetric FEM and BEM coupling for the time-harmonic eddy current problem in the
frequency domain has been performed and analyzed in [80]. Even more recent, FEM and BEM
coupling for the time-dependent eddy current problem posed in the whole space-time domain are
analyzed in [2, 134, 135]. The main advantage of the latter approaches is that they allow a great
flexibility for the choice of the discretization techniques in space and mainly in time.

Indeed, the coupling of FEM and BEM has been widely used for the numerical simulation of electro-
magnetic fields, see e.g. [83, 111, 137, 144].

Fourier series approximation techniques

Fourier series approximation methods are a well established tool in the discretization of partial dif-
ferential equations. One has to distinguish between two fundamentally different kinds of application.
In some regimes the spatial dimension is approximated in terms of a Fourier series, e.g., [22, 27, 71],
while in other application, the issue of interest is to discretize in time, e.g., [17, 95]. The latter
mentioned approach expands a time-dependent function u(t) in terms of a Fourier series, i.e.,

u(t) =
∞∑

k=0

[uck cos(kωt) + usk sin(kωt)] ,

where ω is the frequency, k is referred as the mode and uck, u
s
k are the amplitudes associated to the

mode k. For numerical approximation, the infinite series are truncated at a finite index N ∈ N. Due
to this expansion into several harmonics, the name multiharmonic approach is also very popular.
Indeed, for time-dependent problems, this means that we can switch from a time-dependent problem
in the full time domain, to a time-independent problem in the frequency domain.
One special regime is the time-harmonic one, meaning that only one frequency mode is taken into
account, e.g., time-harmonic full Maxwell’s equations, time-harmonic eddy current problems, time-
harmonic wave equations (Helmholtz problems) and others.

Time-harmonic problems In many practical applications, e.g. in Computational Electromagnet-
ics, the excitation is time-harmonic. For instance, if the source u in (1) is provided by an alternating
current in terms of sine and cosine terms, it has the structure

u(x, t) = uc(x) cos(ωt) + us(x) sin(ωt). (3)

Under the assumption, that (1) is linear, the solution y exhibits the same time-harmonic behavior as
well. This allows to switch from the time domain to the frequency domain, and, therefore, to replace
a time-dependent problem by a system of time-independent problems. Furthermore, the unknown
amplitudes yc and ys of the solution y can be approximated by spatial discretization techniques, like
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the finite element method. In general, it turns out, that when dealing with nonlinear problems, the
time-harmonic approximation is not enough, since due to the nonlinearity, the solution depends on
higher harmonics as well. This leads to the framework of harmonic balance method in time-periodic
settings.

Multiharmonic FEM It is quite common to combine the multiharmonic approach as a discretiza-
tion technique in time with the finite element method as a discretization technique in space, leading
to the well-known harmonic balanced finite element method (HB-FEM) also called multiharmonic
finite element method (MH-FEM). The idea is to discretize in time in terms of a truncated Fourier
series and perform a discretization of the Fourier coefficients in terms of the finite element method.
Indeed, in this case an approximation of the solution y in terms of

y(x, t) ≈ yN,h(x, t) =
N∑

k=0

[
yc
k,h(x) cos(kωt) + ys

k,h(x) sin(kωt)
]

(4)

is used. The harmonic balance finite element method (HB-FEM) was introduced in 1988 by Yamada
and Bessho in [155] for the first time by simply combining the harmonic balance method [43, Chapter
6] and the finite element method. They applied HB-FEM to the two-dimensional quasi-stationary
Maxwell’s equations in order to compute the time-periodic solution, when an alternating current is
applied. There followed a sequence of papers by this group, e.g. [113, 114, 115, 156, 157]. In these
works the main focus is on the application of HB-FEM, therefore no theoretical results or proofs are
given. Furthermore, the issue of solving the corresponding system of linear equations is not addressed
either.
The first rigorous analysis of MH-FEM applied to the time-periodic eddy current problem is provided
in [16, 17, 18]. Beside the numerical analysis, including existence and uniqueness results and error
estimates, also an efficient solver is stated without any theoretical analysis. Indeed, the development
of robust and efficient solvers is crucial for the competitiveness of the MH-FEM method.
The issue of developing fast solution procedures for the resulting huge systems of equations is ad-
dressed, e.g., in [40, 48, 51, 58].

For other pioneering works on HB-FEM, we refer to [11, 12, 13, 66, 67, 92].

Solving techniques

After an arbitrary discretization in space and time, systems of linear algebraic equations have to be
solved. Focusing on computational time, one heads for developing solvers of optimal complexity, i.e.,
the operations required to solve the problem is proportional to the number of unknowns. While in
small scale applications, direct solvers, e.g. PARDISO1 or UMFPACK2, are the methods of choice, in
large scale computations the application of those is illusive, and, therefore, iterative solution methods
have to be taken into account.

Saddle point problems and preconditioning The system of linear equations stemming from
harmonic balance approximations, optimal control problems or FEM-BEM coupling methods typically
obtain saddle point structures of the form

Find x:

(
A BT

B −C

)

︸ ︷︷ ︸
=:A

x = f , (5)

where, due to the properties of the underlying matrices, the system matrix A in (5) is symmetric and
indefinite. One of the most famous iterative method is the conjugate gradient (CG) method, cf. [74],

1http://www.pardiso-project.org/
2http://www.cise.ufl.edu/research/sparse/umfpack/



5

but due to the indefiniteness of the system matrix A it may fail if applied to (5). One way out is to
apply the Bramble Pasciak CG [30] or Zulehner CG [143], that require the construction of appropriate
inner products, such that A as given in (5) becomes positive definite and self-adjoint with respect
to the new inner product. Other very common choices for iterative methods are Krylov subspace
methods such as the minimal residual method (MinRes) [128], that is suitable for solving symmetric
systems of linear equations, or the generalized minimal residual method (GmRes) [139], that is suitable
for solving even general regular systems. Nevertheless the convergence of these iterative methods
applied to (5) suffers from the number of unknowns (mesh size) and possibly crucial parameters, like
discretization, regularization, model or cost parameters. Anyhow, in the situation, where only a few
isolated eigenvalues lie outside an otherwise nice spectrum, the MinRes method can deal with these
kind of problems efficiently, see e.g. [124, 126]. In general, there is a full range of isolated eigenvalues,
e.g. due to the presence of large jumps in material parameters, and therefore, preconditioning is an
important issue. Among the works that are concerned with this topic we mention the review article
[23]. Recently, it was discovered, that the choice of the preconditioners is equivalent to choosing the
right inner product in the underlying Hilbert space, see e.g., [117, 164]. This leads to the framework
of block-diagonal and operator preconditioning. For early works, see e.g., [8, 82, 112].

Interpolation technique Recently, the work of Zulehner [164] builds a bridge, that strongly relates
the subject of finding parameter-robust and block-diagonal preconditioners for saddle point problems
of the form (5) and the topic of Hilbert space and matrix interpolation. Indeed Zulehner’s theory
provides the fantastic breakthrough, that the appropriate scalar products for the underlying Hilbert
spaces can be derived by interpolating between the well-known Schur complement preconditioners
[109, 119] for (5), given by

P0 =

(
A 0
0 C +BA−1BT

)
, P1 =

(
A+BTC−1B 0

0 C

)
.

In order to perform this interpolation, the abstract space and matrix interpolation technique, devel-
oped e.g. in [4, 24], emerges as an important tool.

Standard preconditioners and solvers In practical applications, the blocks of the theoretical
block-diagonal preconditioners have to be replaced by robust and (almost) optimal preconditioners.
In many applications, the diagonal blocks correspond to standard H(curl) or H1 problems like

(α curl u, curl v)0 + (βu,v)0 and (α∇p,∇q)0 + (βp, q)0,

for the FEM part. The coefficient α and β are usually positive, piecewise constant functions, that
may have large jumps. For these kinds of problems, there is a full zoo of solvers and precondi-
tioners available. Depending on the properties of the coefficients α and β, these standard problems
can be handled by these well-known robust and (almost) optimal preconditioners and/or solvers like
multigrid preconditioners [9, 78], auxiliary space preconditioners [85, 154], and domain decomposi-
tion preconditioners [87, 147, 149] in the H(curl) setting and multigrid or multilevel preconditioners
[31, 55, 104, 105, 106, 125] and domain decomposition preconditioners [131, 149] in the H1 setting,
respectively. For the boundary integral equations, robust and optimal preconditioners for the vec-
torial single layer potential are required. Indeed, this problem can be reduced to scalar boundary
integral operators, where again efficient solvers and preconditioners are available. Here, we men-
tion domain decomposition or multilevel methods [75, 150], multipole methods [62, 63] and purely
algebraic approaches like H-matrices approximations [20, 69, 70] and adaptive cross approximation
methods [19].

Furthermore, we refer, e.g., to the software projects hypre3, NgSolve4, and Dune5, where some of
these solvers and preconditioners are available.

3https://computation.llnl.gov/casc/hypre/software.html
4http://www.hpfem.jku.at/ngsolve/
5http://www.dune-project.org/
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On this Work

The main aims of this work are to combine the multiharmonic approach and the FEM-BEM coupling
method in a unified framework as a discretization technique for time-dependent, but time-periodic
eddy current problems of parabolic-elliptic type and time-dependent, but time-periodic eddy current
optimal control problems in three dimensions. The main innovations in this context are the construc-
tion, analysis and verification of parameter-robust solvers for the resulting systems of linear algebraic
equations in all the considered settings.

Main achievements

The main emphasis of this thesis is not on computations but on the analysis and numerical analysis.
Nevertheless we have also confirmed our theoretical results by numerical experiments. Our main
achievements are the following ones.

Existence and uniqueness results We provide existence and uniqueness results for the eddy
current problem stated in R

3 for both, the initial value setting and the time-periodic setting. These
results are carried over to the eddy current optimal control problem, where again existence and
uniqueness results are provided for both the initial value setting and the time-periodic setting. These
existence and uniqueness results provide the mathematical basis of the following discretization and
solution schemes.

Multiharmonic approach We provide a uniform framework for the application of the multihar-
monic approach to time-dependent partial differential equations and optimal control problems.

Treatment of possibly unbounded domains The combination of the multiharmonic approach as
a time discretization technique with a FEM-BEM coupling method as a space discretization technique,
leads to a powerful method that we call MH-FEM-BEM.

Robust solvers and preconditioners In contrast to previous works, we provide a rigorous math-
ematical justification of the robustness and optimality of our proposed solvers for the MH-FEM-BEM
equations. One of our main focus is to provide theoretical convergence results and quantitative con-
vergence rates. Depending on the setting, our solvers obtain nice robustness qualities with respect to
the involved model, regularization or cost parameters not only in theory but also in practice. Further-
more, we use an interpolation technique to derive the block-diagonal preconditioners in a constructive
fashion. Although this interpolation can be carried out only in specific regimes, these intermediate
results teach us how to choose the preconditioners in the more involving settings. Therein the inf-sup
and the sup-sup condition

c ‖x‖ ≤ sup
y 6=0

yTAx

‖y‖ ≤ c ‖x‖,

that also appears in the Theorem of Babuška-Aziz, plays an important role in the analysis of the
block-diagonal preconditioners. In order to apply our constructed block-diagonal preconditioners,
only already available preconditioners for standard problems are required. Indeed, this makes our
techniques very flexible and easily useable in different environments.
Furthermore, due to the special choice of the discretization technique in combination with the design
of our solution algorithm, a parallelization of the proposed methods is straightforward.

Optimal control problem We establish the multiharmonic approach as a powerful discretization
technique for solving time-periodic optimal control problems in three dimensions. Indeed, we apply
the MH-FEM-BEM coupling method to the optimality system of the optimal control problem, that
allows us to consider the full computational domain R

3. Furthermore, a huge range of practical
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relevant constraints in optimal control computations are covered by our analysis concerning efficient
solution strategies, e.g., control and state constraints, different control and observation domains,
observation in certain energy spaces or end time control.

Outline

This dissertation is structured as follows.

• In Chapter 1 we introduce the eddy current problem. We pay special attention to the vector
potential formulation, and consider both, time-domain and frequency domain equations.

• Chapter 2 provides some preliminaries, like variational methods and existence and uniqueness
results for both, time-dependent and time-independent problems. Furthermore, we recall the
natural function spaces and their properties for eddy current problems. Based on those, we
introduce FEM, BEM and FEM-BEM couplings.

• Chapter 3 provides existence and uniqueness results for time-dependent eddy current problems
and time-dependent eddy current optimal control problems.

• In Chapter 4 we explain and analyze the application of the multiharmonic approach as a time
discretization technique for both, forward and optimal control problems.

• Chapter 5 briefly overviews the basic concepts of parameter-robust preconditioning for saddle
point problems.

• In Chapter 6 we apply the MH-FEM-BEM method to eddy current problems and construct
parameter-robust and block-diagonal preconditioners for the resulting systems of linear equa-
tions.

• In Chapter 7 we discuss the application of the MH-FEM-BEM method to eddy current optimal
control problems and construct parameter-robust and block-diagonal preconditioners for the
resulting systems of linear equations.

• Chapter 8 is devoted to the discussion of parameter-robust and efficient realization of the
standard H(curl) and H1 problems, appearing in the diagonal blocks of our preconditioners.

• In Chapter 9 we provide numerical experiments including some settings, that are relevant in
practice.

• In Chapter 10 we give some final comments and discuss open questions and possible continua-
tions of this work.

Parts of this work have already been published by the author (and co-authors) in peer-reviewed
international journals or proceedings of international conferences:

• Parts of Chapter 5 have been addressed in

[95] M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, and W. Zulehner. A robust finite
element solver for a multiharmonic parabolic optimal control problem. Computers and
Mathematics with Applications, 2012. DOI: 10.1016/j.camwa.2012.06.012.

• Parts of Chapter 6 have been addressed in

[100] M. Kolmbauer and U. Langer. A frequency-robust solver for the time-harmonic eddy
current problem. In Scientific Computing in Electrical Engineering SCEE 2010, volume 16
of Mathematics in Industry, pages 97–106. Springer, 2011.
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[102] M. Kolmbauer and U. Langer. A robust FEM-BEM solver for time-harmonic eddy current
problems. In Domain Decomposition Methods in Science and Engineering XX, Lecture
Notes in Computational Science and Engineering. Springer, 2012. (to appear).

[103] M. Kolmbauer and U. Langer. A robust preconditioned MinRes solver for time-periodic
eddy current problems. Comput. Methods Appl. Math., 2012. DOI: 10.2478/cmam-2012-
0023.

• Parts of Chapter 7 and Chapter 8 have been addressed in

[98] M. Kolmbauer. Efficient solvers for multiharmonic eddy current optimal control problems
with various constraints and their analysis. IMA J. Numer. Anal., 2012. (to appear).

[99] M. Kolmbauer. A robust FEM-BEM MinRes solver for distributed multiharmonic eddy
current optimal control problems in unbounded domains. Electronic Transactions on
Numerical Analysis, 39:231–252, 2012.

[101] M. Kolmbauer and U. Langer. A robust preconditioned MinRes solver for distributed
time-periodic eddy current optimal control problems. NuMa-Report 2011-04, Institute of
Computational Mathematics, Linz, May 2011. (submitted).



Chapter 1

Introduction to eddy current

computations

In the first part of this chapter, we briefly introduce the classical Maxwell’s equations, describing
the electromagnetic field equations. This system of equations is completed by constitutive laws.
Furthermore we introduce the eddy current model for magneto-quasi-static fields and derive the
vector potential formulation. Finally, we introduce the problem settings under consideration in this
work, namely the eddy current problem and the eddy current optimal control problem.

For a comprehensive study of the Maxwell equations, we refer to [153].

1.1 Maxwell’s equations

Maxwell’s equations describe the interaction of electric and magnetic fields in dependence of space
x ∈ R

3 and time t. The classical formulation in differential form is given as follows.

curlE+
∂B

∂t
= 0, (Faraday’s induction law) (1.1a)

− curlH+
∂D

∂t
= −j, (Ampere’s law) (1.1b)

divD = ρ, (Electric Gauss law) (1.1c)

divB = 0. (Magnetic Gauss law) (1.1d)

Here, the four time- and space-dependent vector fields are given by the electric field intensity denoted
by E, the magnetic field intensity H, the electric displacement field (electric flux) D, and the magnetic
induction field (magnetic flux) B. The sources of electromagnetic fields are electric charges and
currents, described by the scalar charge density ρ, and the vectorial current density function j.
An important physical property can be derived by taking the divergence in the Ampere’s law. Using
the Electric Gauss law yields the continuity equation

div j+
∂ρ

∂t
= 0 (1.2)

that reflects the conservation of charges.
The system (1.1) is completed by appropriate constitutive laws, taking care of the material properties.
The magnetic and electric field intensities are related with the corresponding fluxes by

D = ǫE, (1.3a)

B = µH. (1.3b)

9



10 CHAPTER 1. INTRODUCTION TO EDDY CURRENT COMPUTATIONS

Furthermore, in conducting materials the electric field induces a conduction current, which is given
by Ohm’s law

j = σE+ ji, (1.4)

where j and ji denote the total and the impressed current densities, respectively. Hence, the electric
and magnetic properties of a material are characterized by the electric permittivity ǫ, the magnetic
permeability µ, and the electric conductivity σ. Although in general, µ and σ are tensors, they are
scalars in the case of isotropic materials. In the main part of this work, we only consider homogeneous
and isotropic materials, where µ and σ are piecewise constant. The conductivity σ is positive in
conductors and zero in non-conductors. In general, these coefficients do not only depend on the
coordinates in space, but also on the magnetic and/or electric field. Indeed, the permeability µ
depends also on the magnetic field H in ferromagnetic materials (e.g. steel), i.e., µ = µ(|H|).
Furthermore, we also use the reluctivity, the inverse of the magnetic permeability, given by ν = µ−1.
Neglecting the effects of hysteresis, we have H = ν(|B|)B with some strictly monotone function
s 7→ ν(|s|)s in ferromagnetic materials. In practical application, this relation is given by a discrete
set of data points, cf. [132].

1.2 Magneto quasi-static fields: eddy current problems

For slowly varying electric fields, the displacement currents are very small in comparison with the
impressed currents and eddy currents, i.e.,

∣∣∣∣
∂D

∂t

∣∣∣∣ ≪ |j|.

This leads to the so-called quasi-static model, where the time derivative of the electric flux is neglected.
Therefore, we are dealing with the eddy current model, given by

curlE+
∂B

∂t
= 0, (Faraday’s induction law) (1.5a)

curlH = j, (reduced Ampere’s law) (1.5b)

divD = ρ, (Electric Gauss law) (1.5c)

divB = 0. (Magnetic Gauss law) (1.5d)

In this setting, due to (1.5b), the conservation of charges law reads as div j = 0. A rigorous justi-
fication of the eddy current model as an approximation of the full Maxwell’s equations is given in
[7, 141].
Typically, the equations (1.5) are considered in Ω = R

3. The behavior of the magnetic field H and
the electric E at infinity is described by radiation conditions, i.e.,

E = O
(
|x|−1

)
, H = O

(
|x|−1

)
, for x → ∞.

Additionally, the system (1.5) is completed by a prescribed initial condition

B|t=0 = B0, in Ω̄.

1.3 Vector potential formulation

There exists a full range of formulations for the eddy current problem (1.5). These different formu-
lations are basically the consequence of different potentials, introduced for the E field or the H field.
Throughout this work, we use the approach of a vector potential formulation, that has been derived,
e.g., in [160]. Let Ω be a bounded, simply connected domain in R

3. Then due to divB = 0, we know,
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that B can be expressed as a vector potential ỹ, i.e., B = curl ỹ. Substituting into Faraday’s law
(1.5a), we obtain

curl

(
E+

∂ỹ

∂t

)
= 0.

Therefore, there exists a scalar potential ϕ, such that

E = −∂ỹ
∂t

−∇ϕ.

Using this representation, Ampere’s law (1.5b) can be expressed as follows:

σ
∂ỹ

∂t
+ curl (ν(| curl ỹ|) curl ỹ) = ji − σ∇ϕ.

By choosing another vector potential y = ỹ +
∫ t

0
∇ϕ dt, we have curl y = curl ỹ and E = −∂y

∂t , and
consequently, we obtain the following vector potential formulation of the eddy current problem

σ
∂y

∂t
+ curl (ν(| curl y|) curl y) = ji, (1.6)

which is the type of equation whose numerical solution we will investigate in detail in this work.
Indeed in Chapter 3, we discuss the existence and uniqueness of solutions for (1.6).

1.4 Time-harmonic eddy current problems

When dealing with alternating currents, the imposed current density shows a harmonic dependence
on time, i.e., for a given alternating current I(t), with frequency ω, the time-dependence can be
expressed in terms of the time-harmonic ansatz I(t) = I0 sin(ωt). This motivates the usage of time-
harmonic excitations of the form ji(x, t) = ĵi(x)e

iωt, with the complex number i =
√
−1, some base

frequency ω > 0, and complex amplitude ĵ. For the special case of linear material laws in (1.3), one
obtains a time-harmonic representation of the vector potential y, i.e.,

y(x, t) = Re
[
ŷ(x)eiωt

]
, (1.7)

with the complex amplitude ŷ, and the same base frequency ω. Using this ansatz, the time-harmonic
eddy current problem can be transformed from the time domain to the frequency domain, and there-
fore, a time-dependent problem is transformed into a complex valued time-independent problem. The
corresponding vector potential formulation reads as follows:

iωσŷ + curl(ν curl ŷ) = ĵi.

In some applications, e.g. [17, 129], it is advantageous to use a real reformulation of (1.7), in terms
of

y(x, t) = yc(x) cos(ωt) + ys(x) sin(ωt),

with the real valued amplitudes yc = Re[ŷ] and ys = − Im[ŷ]. Using this real reformulation, the time-
harmonic eddy current problem obtains the following structure as a system of two partial differential
equations: {

ωσys + curl(ν curl yc) = jci ,

−ωσyc + curl(ν curl ys) = jsi .

In Chapter 4, we revisit the idea of time-harmonic approximation and provide a suitable extension
of this approach, that even fits in the case of nonlinear material laws, i.e., H = ν(|B|)B.

Time-harmonic eddy current problems have been analyzed, e.g., in [5, 17, 38, 110].
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1.5 Problem settings in eddy current computations

In typical applications of eddy current problems, there is a distinction between two main computa-
tional regimes:

1. Determine the vector potential y under some prescribed ji as the solution of (1.6).

2. Determine ji and the corresponding vector potential y as the solution of (1.6), such that the
vector potential y is driven to some prescribed target.

While the first problem setting is referred as the forward problem, the second is referred as the
inverse problem. Typically, the forward problem is a well-posed problem, and the inverse problem
is an ill-posed problem. Due to the ill-posedness of the inverse problem one needs the machinery
developed for inverse or optimal control problems in order to clarify the solvability. In the field of
optimal control problems, one deals with minimization problems of the following type: Find (ŷ, ĵi),
such that

J (ŷ, ĵi) = min
(y,ji)

J (y, ji), subject to (1.6). (1.8)

The minimization functional is chosen in such a way, that either y or the magnetic induction field
B = curl y are steered to a prescribed desired state in the whole time interval (0, T ), or a specific
time point t ∈ (0, T ), e.g., t = T . Typical choices for the minimization functional J are the following
ones:

J (y, ji) := J1(y) + J2(y) + J3(y) + J4(y) + G(ji), (1.9)

where the functionals Ji, i = 1, 2, 3, 4, and G are given by

J1(y) :=
τ1
2

∫

Ω1

|y(x, T )− yd,T(x)|2dx,

J2(y) :=
τ2
2

∫

Ω2

| curl y(x, T )− yc,T(x)|2dx,

J3(y) :=
τ3
2

∫

Ω3×(0,T )

|y(x, t)− yd(x, t)|2dx dt,

J4(y) :=
τ4
2

∫

Ω4×(0,T )

| curl y(x, t)− yc(x, t)|2dx dt,

G(ji) :=
λ

2

∫

Ω5×(0,T )

|ji(x, t)|2dx dt,

with some prescribed desired states yd,T,yc,T,yd,yc, cost parameters τ1, τ2, τ3, τ4 ≥ 0 and the
regularization parameter λ > 0. Here, the task of the functionals Ji, i = 1, . . . , 4, is to steer the state
y or the magnetic induction field B = curl y to some desired state in a required setting. Furthermore,
the functional G plays the role of a Tikhonov regularization term, that can also be interpreted as the
cost for the control ji.



Chapter 2

Mathematical basics

In the previous chapter we discussed the eddy current problem in both regimes, the time domain
and the frequency domain. The main purpose of this chapter is to provide the functional analytical
framework for the analysis and solution of the resulting partial differential equations. Beside ab-
stract existence and uniqueness results for both, time-dependent and time-independent problems, we
also introduce the natural function spaces for the variational formulation of the partial differential
equations under consideration.
In Section 2.1 we briefly discuss abstract variational methods, including existence and uniqueness
results and Galerkin discretizations. Section 2.2 deals with the functional analytical setting for
eddy current problems. In Section 2.3 we recall the framework of boundary integral operators and
Calderon’s projection for eddy current problems. Section 2.4 briefly covers two discretization tech-
niques, the finite element method (FEM) and the boundary element method (BEM). In Section 2.4
the abstract setting and existence and uniqueness results for time-dependent problems of parabolic
type are provided. Finally, Section 2.5 is devoted to the analysis of optimal control problems.

2.1 Abstract variational methods

Existence and uniqueness Let X be a Hilbert space with the inner product (·, ·)X , and the
associated norm ‖ · ‖X =

√
(·, ·)X . We consider the bilinear form A(·, ·) : X ×X → R, and the linear

form F ∈ X∗. In the following, we investigate the abstract variational problem: Find z ∈ X such
that

A(z, y) = 〈F , y〉, ∀ y ∈ X. (2.1)

Theorem 2.1 (Babuška-Aziz). Let X be a Hilbert space and let F ∈ X∗ be a bounded linear form.
Let A(·, ·) : X ×X → R fulfill the inf-sup and sup-sup conditions

c ‖z‖X ≤ sup
y∈X

A(z, y)

‖y‖X
≤ c ‖z‖X , ∀ z ∈ X, (2.2)

c ‖y‖X ≤ sup
z∈X

A(z, y)

‖z‖X
≤ c ‖y‖X , ∀ y ∈ X, (2.3)

with constants c > 0 and c > 0. Then the variational formulation (2.1) has a unique solution z ∈ X,
which fulfills the a priori estimate

1

c
‖F‖X∗ ≤ ‖z‖X ≤ 1

c
‖F‖X∗ .

Proof. See [14].

13
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If the bilinear form A is symmetric, i.e.,

A(z, y) = A(y, z), ∀ y, z ∈ X,

Theorem 2.1, simplifies to the following Corollary.

Corollary 2.2. Let X be a Hilbert space and let F ∈ X∗ be a bounded linear form. Let A(·, ·) :
X ×X → R by symmetric and fulfill the inf-sup and sup-sup condition

c ‖z‖X ≤ sup
y∈X

A(z, y)

‖y‖X
≤ c ‖z‖X , ∀ z ∈ X, (2.4)

with constants c > 0 and c > 0. Then the variational formulation (2.1) has a unique solution z ∈ X.

Proof. The result immediately follows from Theorem 2.1.

So far the results hold for general symmetric problems. Next we address the special case of symmetric
saddle point problems. Therefore, let V and Q be Hilbert spaces with the inner products (·, ·)V and
(·, ·)Q. The associated norms are given by ‖ · ‖V =

√
(·, ·)V and ‖ · ‖Q =

√
(·, ·)Q. Furthermore, let X

be the product space X = V ×Q, equipped with the inner product ((v, q), (w, r))X = (v, w)V +(q, r)Q
and the associated norm ‖(v, q)‖X =

√
((v, q), (v, q))X . Consider a mixed variational problem: Find

z = (w, r) ∈ X, such that
A(z, y) = 〈F , y〉, ∀ y = (v, q) ∈ X. (2.5)

Here the mixed bilinear form A(·, ·) is given by

A(z, y) = a(w, v) + b(v, r) + b(w, q), (2.6)

where a(·, ·) and b(·, ·) are bilinear forms, fulfilling the following properties: a(·, ·) : V × V → R

symmetric and b(·, ·) : V ×Q→ R. For mixed variational problems, existence and uniqueness follows
from the Theorem of Brezzi.

Theorem 2.3 (Brezzi). Assume that there exist constants α1, α2, β1 and β2 > 0, such that

1. a(w, v) ≤ α2‖w‖V ‖v‖V , ∀w, v ∈ V ,

2. b(v, r) ≤ β2‖v‖V ‖r‖Q, ∀ v ∈ V, ∀ r ∈ Q,

3. the inf-sup condition of a(·, ·) on kernel of b(·, ·) holds, i.e.,

inf
v∈V0

sup
w∈V0

a(w, v)

‖w‖V ‖v‖V
≥ α1 and inf

w∈V0

sup
v∈V0

a(w, v)

‖w‖V ‖v‖V
≥ α1,

with V0 := {v ∈ V : b(v, r) = 0, ∀ r ∈ Q}

4. and the inf-sup condition of b(·, ·) holds, i.e.,

inf
r∈Q

sup
v∈V

b(v, r)

‖v‖V ‖r‖Q
≥ β1.

Then (2.4) is satisfied with the constants

c =
α1

1 + (α2/β1)
2 and c =

α2 +
√
α2
2 + 4β2

2

2
,

and consequently (2.5) has a unique solution z ∈ X.

Proof. See [32].
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Next we subtract from A(·, ·) in (2.6) a symmetric and positive bilinear form c(·, ·) : Q × Q → R.
Consider a mixed variational problem in the product space X = V × Q: Find z = (w, r) ∈ X, such
that

A(z, y) = F(y), ∀ y = (v, q) ∈ X, (2.7)

with
A(z, y) = a(w, v) + b(v, r) + b(w, q)− c(r, q).

For these kinds of mixed variational problems, existence and uniqueness follows by a result of Zulehner,
that extends the Theorem of Brezzi.

Theorem 2.4 (Zulehner). Assume, that there are constants cw, cr, cw, cr > 0, such that

cw‖w‖2V ≤ a(w,w) + sup
q∈Q

b(w, q)2

‖q‖2Q
≤ cw‖w‖2V , ∀w ∈ V, (2.8)

cr‖r‖2Q ≤ c(r, r) + sup
v∈Q

b(v, r)2

‖v‖2V
≤ cr‖r‖2Q, ∀ r ∈ Q. (2.9)

Then (2.4) is satisfied with the constants,

c = −
(
−3 +

√
5
)
min

(
c2r min

(
1
2 , cr

)2
, c2w min

(
1
2 , cw

)2)

4max
(√

cr max(1, cr),
√
cw max(1, cw)

) ,

c =
√
2max

(√
cr max(1, cr),

√
cw max(1, cw)

)
,

(2.10)

that only depend on cw, cr, cw, cr, and consequently (2.7) has a unique solution z ∈ X.

Proof. See [164, Theorem 2.6].

Furthermore, the conditions (2.8) and (2.9) in Theorem 2.4 are necessary and sufficient, i.e., c and c
only depend on cw, cr, cw, cr and vice versa.

Galerkin’s method Let X be a Hilbert space with a closed subspace X0, and let g ∈ X. We
consider the abstract variational problem: Find z ∈ Xg = g +X0, such that

A(z, y) = 〈F , y〉, ∀ y ∈ X0, (2.11)

where the bilinear form A(·, ·) : X × X → R fulfills the inf-sup and sup-sup conditions (2.4), and
F ∈ X∗. Take a finite dimensional subspace Xh

0 ⊂ X0, and consider the discrete problem: Find
zh ∈ Xh

g = g +Xh
0 , such that

A(zh, yh) = 〈F , yh〉, ∀ yh ∈ Xh
0 . (2.12)

The following a priori estimate states, that the discretization error is controlled in terms of the
approximation error.

Lemma 2.5 (Cea type estimate). Let z ∈ Xg be the solution of (2.11) and let zh ∈ Xh
g be the solution

of (2.12). Then the discretization error estimate

‖z − zh‖X ≤ c

c
inf

yh∈Xh
g

‖z − yh‖X

holds, where c and c are the inf-sup and sup-sup constants of A(·, ·) in (2.4), respectively.

Proof. See [14].
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2.2 Abstract setting for eddy current computations

The main purpose of this section is to introduce the differential operators, function spaces, trace
operators, and trace spaces, that are necessary for investigating eddy current problems.
In the following, let Ω1 ⊂ R

3 be a Lipschitz domain, i.e., a bounded domain with a Lipschitz continu-
ous boundary Γ := ∂Ω1. The unbounded complement of Ω1 in R

3 is denoted by Ω2, i.e., Ω2 := R
3\Ω̄1.

Furthermore, we denote the outer unit normal vector on Γ by n, i.e., n points from Ω1 to Ω2. Through-
out this section, let Ω denote either Ω1 or Ω2.

2.2.1 Differential operators

We start with the definition of the basic operators involved in the formulation of Maxwell’s equations.
The gradient operator of a scalar function q is defined as

∇q :=
(
∂q

∂x1
,
∂q

∂x2
,
∂q

∂x3

)T

,

and the divergence operator of a vector field y = (y1, y2, y3)
T is defined as

divy := ∇ · y =
3∑

k=1

∂yk
∂xk

.

The curl operator of a vector field y = (y1, y2, y3)
T is defined as

curl y := ∇× y =

(
∂y3
∂x2

− ∂y2
∂x3

,
∂y1
∂x3

− ∂y3
∂x1

,
∂y2
∂x1

− ∂y1
∂x2

)T

.

All these operators can be defined by derivatives in a weak sense, cf. [54].

2.2.2 Function spaces

The following function spaces will turn out to provide the natural setting for the investigation of
the partial differential equations involved in the Maxwell’s equations. Beside the well-known Sobolev
spaces L2(Ω), H1(Ω) for scalar functions and L2(Ω) := [L2(Ω)]

3, H1(Ω) := [H1(Ω)]3 for vector fields,
we also need the fractional Sobolev space Hs(Ω) and Hs(Ω)) := [Hs(Ω)]3 of order s ∈ R, cf. [54].
The corresponding norms are denoted by ‖ · ‖0,Ω, ‖ · ‖1,Ω, ‖ · ‖0,Ω, ‖ · ‖1,Ω, ‖ · ‖s,Ω, and ‖ · ‖s,Ω.
Furthermore, we define

H(div,Ω) := {y ∈ L2(Ω) : div y ∈ L2(Ω)},
H(curl,Ω) := {y ∈ L2(Ω) : curl y ∈ L2(Ω)},
H(curl2,Ω) := {y ∈ H(curl,Ω) : curl curl y ∈ L2(Ω)},

and the corresponding scalar products by

(u,v)div,Ω = (divu, divv)0,Ω + (u,v)0,Ω,

(u,v)curl,Ω = (curl u, curl v)0,Ω + (u,v)0,Ω,

(u,v)curl2,Ω = (curl u, curl v)curl,Ω + (u,v)0,Ω.

The induced norms are denoted by ‖ · ‖div,Ω, ‖ · ‖curl,Ω and ‖ · ‖curl2,Ω. Furthermore, we also use the
linear manifolds

H1
0 (Ω) := {q ∈ H1(Ω) : q = 0 on Γ},

Ḣ1(Ω) := {q ∈ H1(Ω) :

∫

Ω

q dx = 0},

H0(curl,Ω) := {y ∈ H(curl,Ω) : y × n = 0 on Γ}.
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Helmholtz decompositions An important tool within the analysis of the Maxwell equations is
the Helmholtz decomposition: Every vector field in L2(Ω) can be decomposed into a divergence-free
function and a gradient function.

Lemma 2.6 (Helmholtz decompositions).

• Let u ∈ L2(Ω). There exists a decompositions u = ∇q + curl ũ with q ∈ Ḣ1(Ω) and ũ ∈
H(curl,Ω).

• Let y ∈ H(curl,Ω). There exists a decompositions y = ∇q + ỹ with q ∈ Ḣ1(Ω) and ỹ ∈
H(curl,Ω), satisfying (ỹ,∇p)0,Ω = 0, ∀ p ∈ Ḣ1(Ω).

Proof. See [118].

Lemma 2.6 is also valid, if homogeneous Dirichlet boundary conditions are added to the space
H(curl,Ω) and H1(Ω). Similar decompositions can also be derived in non-standard L2 inner pro-
ducts. Commonly, inner products of the type (σ·, ·)0,Ω are used, where σ > 0 is some weighting
function. Indeed, the Helmholtz decomposition is strongly linked to the De-Rham complex, cf. [118].
For more different kinds of Helmholtz decompositions in both the standard L2 inner product and
weighted L2 inner products, we refer to [118].

Friedrichs type inequalities Friedrichs type inequalities are powerful tools for the analysis of
variational problems and finite element approximations.

Lemma 2.7 (Friedrichs’ inequality for H1
0 (Ω)). Let Ω be a simply-connected and bounded Lipschitz

domain. There exists a constant CF
1 > 0 depending only on Ω, such that for all q ∈ H1

0 (Ω), we have

‖q‖0,Ω ≤ CF
1 ‖∇q‖0,Ω.

Proof. See [149, Lemma A.14].

Lemma 2.8 (Friedrichs’ inequality for H(curl,Ω)). Let Ω be a simply-connected and bounded Lip-
schitz domain. Suppose, that y ∈ H(curl,Ω) is orthogonal to gradient functions, i.e.,

(y,∇q)0,Ω = 0, ∀ q ∈ H1(Ω),

then there exists a constant CF
2 > 0 depending only on Ω, such that

‖y‖0,Ω ≤ CF
2 ‖ curl y‖0,Ω.

Proof. See [60, Lemma 3.4].

Lemma 2.9 (Weighted Friedrichs’ inequality for H(curl,Ω)). Let Ω be a simply-connected and
bounded Lipschitz domain and σ ∈ L∞(Ω) with σ ≥ σ > 0. Suppose, that y ∈ H(curl,Ω) is
orthogonal to gradient functions in the sense

(σy,∇q)0,Ω = 0, ∀ q ∈ H1(Ω),

then there exists a constant CF
2 > 0 depending only on Ω and independent of σ, such that

‖√σy‖0,Ω ≤ CF
2 ‖√σ curl y‖0,Ω.

Proof. See [118].

Both, Lemma 2.8 and Lemma 2.9, also hold for H(curl,Ω) and H1(Ω) replaced by H0(curl,Ω), and
H1

0 (Ω), respectively.
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2.2.3 Traces, trace spaces and trace theorems

In this subsection we introduce the appropriate trace spaces of H(curl,Ω) in the case of polyhedral
domains.
For a sufficiently smooth vector function y, we define the Dirichlet trace operator (tangential trace)
γD on Γ by γDy := n× (y×n), the twisted tangential trace operator γ× on Γ by γ×y := y×n, and
the normal trace operator γn by γny := y · n. In order to derive the trace spaces for vector fields in
H(curl,Ω), we consider a polyhedral domain Ω. The boundary Γ is assumed to be separated into m
faces Γi with Γ =

⋃m
i=1 Γi. For two faces with a common edge eij we define tij as the unit tangential

vector and ti(j) := tij × ni, where ni denotes the unit normal vector on eij w.r.t. Γi. Furthermore,
let Ij denote the set of those indices i, such that Γi shares an edge with Γj .

We begin by introducing the spaces H
1
2

⊥(Γ) and H
1
2

‖ (Γ) (cf. [33]), that consist of tangential sur-

face vector fields, which are piecewise in H
1
2 (Γ) and satisfy weak normal and tangential continuity

conditions over non smooth edges of Γ, respectively. In order to characterize these spaces, we first
introduce the space of tangential vector fields

L2
t (Γ) := {λ ∈ L2(Γ) : λ · n = 0 a.e. on Γ},

with the duality product

〈λ,µ〉t :=
∫

Γ

λ · µ dx, µ,λ ∈ L2
t (Γ).

Furthermore, we define

H
1
2
⋆ (Γ) := {λ ∈ L2

t (Γ) : λ|Γj
· tj(i) ∈ H

1
2 (Γj),λ|Γj

· tji ∈ H
1
2 (Γj), ∀ i ∈ Ij , j = 1, . . . ,m},

and

H
1
2

⊥(Γ) := {λ ∈ H
1
2
⋆ (Γ) : N⊥

ij (λ) <∞, ∀ i ∈ Ij , j = 1, . . . ,m},

H
1
2

‖ (Γ) := {λ ∈ H
1
2
⋆ (Γ) : N ‖

ij(λ) <∞, ∀ i ∈ Ij , j = 1, . . . ,m},

where we have used the functionals

N⊥
ij (λ) :=

∫

Γi

∫

Γj

|(λ · tij)(x)− (λ · tij)(y)|2
|x− y|3 dSxdSy,

N ‖
ij(λ) :=

∫

Γi

∫

Γj

|(λ · ti(j))(x)− (λ · tj(i))(y)|2
|x− y|3 dSxdSy.

The spaces H
− 1

2

⊥ (Γ) and H
− 1

2

‖ (Γ) are then defined as the dual spaces of H
1
2

⊥(Γ) and H
1
2

‖ (Γ) with

respect to the pivot space L2
t (Γ), respectively.

We continue by defining differential operators on surfaces. Let q ∈ H2(Ω) be a scalar function. The
surface gradient of q on Γ is defined as gradΓq := γD(∇q) and the vectorial surface rotation on Γ by
curlΓ q := gradΓq×n. Let y ∈ H2(Ω) be a vector function with y ·n = 0. The scalar surface rotation
on Γ is given by curlΓy := curl y · n. The surface divergence is defined by divΓ y := div(γDy) =
−curlΓ(y×n). The definitions of these operators hold for all regular points of Γ but can be extended
to Lipschitz domains. Furthermore, they can be extended to other Sobolev spaces with properties
given in the next lemma.

Lemma 2.10. Let Γ be a Lipschitz domain. Then the surface differential operators gradΓ and curlΓ
can be extended to linear and continuous mappings

gradΓ : H
1
2 (Γ) → H

− 1
2

⊥ (Γ), curlΓ : H
1
2 (Γ) → H

− 1
2

‖ (Γ).
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Their adjoints

divΓ : H
1
2

⊥(Γ) → H− 1
2 (Γ), curlΓ : H

1
2

‖ (Γ) → H− 1
2 (Γ),

are linear, continuous and surjective. The following duality pairings hold

〈gradΓϕ,λ〉t = −〈divΓ λ, ϕ〉, ∀ϕ ∈ H
1
2 (Γ),λ ∈ H

1
2

⊥(Γ),

〈curlΓϕ,λ〉t = 〈curlΓλ, ϕ〉, ∀ϕ ∈ H
1
2 (Γ),λ ∈ H

1
2

‖ (Γ).

Furthermore, there holds

ker(curlΓH
− 1

2

⊥ (Γ)) = im(gradΓ(H
1
2 )), ker(divΓ H

− 1
2

‖ (Γ)) = im(curlΓ(H
1
2 )).

Proof. See [33, 34].

We are now in position to define the following trace spaces

H
− 1

2

⊥ (curlΓ,Γ) := {λ ∈ H
− 1

2

⊥ (Γ), curlΓλ ∈ H− 1
2 (Γ)},

H
− 1

2

‖ (divΓ,Γ) := {λ ∈ H
− 1

2

‖ (Γ), divΓ λ ∈ H− 1
2 (Γ)}.

These spaces are equipped with the corresponding graph norms. Furthermore, H
− 1

2

⊥ (curlΓ,Γ) is the

dual of H
− 1

2

‖ (divΓ,Γ) and vice versa. The corresponding duality product is the extension of the L2
t (Γ)

duality product, and, in the following, it will be denoted with subscript τ , i.e.,

〈·, ·〉τ := 〈·, ·〉
H

− 1
2

‖
(divΓ,Γ)×H

− 1
2

⊥ (curlΓ,Γ)
.

For y ∈ H(curl2,Ω), the Neumann trace γNy ∈ H
− 1

2

‖ (divΓ,Γ) is defined through the integration by
parts formula (see [80])

〈γNy,γDv〉τ = ±(curl y, curl v)0,Ω ∓ (curl curl y,v)0,Ω, ∀v ∈ H(curl,Ω). (2.13)

Here, the upper signs are applied to the interior domain Ω = Ω1, and the lower signs are used for the
exterior domain Ω = Ω2. Furthermore there holds the representation γNy = curl y × n. Finally, we
collect the mapping properties of the trace operators.

Lemma 2.11. The trace operators

γ× : H(curl,Ω) → H
− 1

2

‖ (divΓ,Γ),

γD : H(curl,Ω) → H
− 1

2

⊥ (curlΓ,Γ),

γN : H(curl2,Ω) → H
− 1

2

‖ (divΓ,Γ),

γn : H(div,Ω) → H− 1
2 (Γ)

are linear, continuous and surjective.

Proof. See [80]

Furthermore, we need the space

H
− 1

2

‖ (divΓ 0,Γ) :=
{
µ ∈ H

− 1
2

‖ (divΓ,Γ), divΓ µ = 0
}
. (2.14)

For more details about the construction of the traces for Maxwell’s equation on a Lipschitz polyhedron,
we refer to the articles [33, 34].
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2.3 Boundary integral equations for eddy current computa-
tions

This section introduces potentials and boundary integral operators for the eddy current problem and
provides a brief review of the most important properties, as they are used in the numerical analysis of
boundary element methods. One of the key results of this section is a Calderon projection in a weak
form. Indeed, in the case of the eddy current problem, the Calderon projector in weak form provides
an indispensable tool for the coupling of the finite element and the boundary element method.
Therefore, again, Ω = R

3 is split into two subdomains Ω1 and Ω2. Ω1 is assumed to be a simply
connected Lipschitz domain, whereas Ω2 is the complement of Ω1 in R

3, i.e., R3\Ω1. Furthermore,
we denote by Γ the interface of the two subdomains, i.e., Γ = Ω1 ∩ Ω2. The exterior unit normal
vector of Ω1 on Γ is denoted by n, i.e., n points from Ω1 to Ω2. We consider the exterior eddy current
problem {

curl (curl y) = 0, in Ω2,

div(y) = 0, in Ω2,
(2.15)

with appropriate decay conditions

y = O(|x|−1), curl y = O(|x|−1), for |x| → ∞. (2.16)

The derivation of the boundary integral equations for the eddy current problem emerges from the
integration by parts formula (2.13) and the fundamental solution of the Laplace operator in three
dimensions, given by the expression

E(x, z) :=
1

4π

1

|x− z| , x, z ∈ R
3,x 6= z.

Therefore, for any vector field y, fulfilling the decay condition (2.16) the representation formula
(Stratton-Chu formula) can be derived as follows

y(x) =

∫

Γ

(n× curl y)(z)E(x, z) dSz − curlx

∫

Γ

(n× y)(z)E(x, z) dSz

+∇x

∫

Γ

(n · y)(z)E(x, z) dSz +

∫

Ω

curl curl y(z)E(x, z) dz

−
∫

Ω

div y(z)∇xE(x, z) dz, x ∈ Ω.

(2.17)

Due to the last two contributions from the volume integral over Ω in (2.17), it is crucial to take the
information on the divergence and the zero source condition in (2.15) into account. By introducing
the scalar single layer potential ψV , the vectorial single layer potential ψA and the vectorial double
layer potential ψM, i.e.,

ψV (n · y)(x) :=
∫

Γ

(n · y)(z)E(x, z) dSz, for x ∈ Ω\Γ,

ψA(y)(x) :=

∫

Γ

y(z)E(x, z) dSz, for x ∈ Ω\Γ,

ψM(n× y)(x) := curlx

∫

Γ

(n× y)(z)E(x, z) dSz, for x ∈ Ω\Γ,

the representation formula (2.17) can be expressed in terms of the potential operators, i.e.,

y = ψM [γDy]−ψA[γNy]−∇ψV [γny]. (2.18)
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In order to derive the boundary integral equations for the Cauchy data (γDy, γNy, γny), the trace
operators are applied to (2.18). Indeed, taking the Dirichlet trace γD and the Neumann trace γN in
the representation formula (2.18) motivates the definition of the scalar boundary integral operator

S(ϕ) := γD(∇ψV (ϕ)), (2.19)

and the vectorial boundary integral operators

A(λ) := γDψA(λ), B(λ) := γNψA(λ), C(µ) := γDψM(µ), N(µ) := γNψM(µ). (2.20)

The next lemma clarifies the mapping properties of the boundary integral operators.

Lemma 2.12. The mappings

A : H
− 1

2

‖ (divΓ,Γ) → H
− 1

2

⊥ (curlΓ,Γ), B : H
− 1

2

‖ (divΓ,Γ) → H
− 1

2

‖ (divΓ,Γ),

C : H
− 1

2

⊥ (curlΓ,Γ) → H
− 1

2

⊥ (curlΓ,Γ), N : H
− 1

2

⊥ (curlΓ,Γ) → H
− 1

2

‖ (divΓ,Γ),

S : H− 1
2 (Γ) → H

− 1
2

⊥ (Γ),

are linear and bounded.

Proof. See [80].

Consequently, the Calderon mapping can be obtained by a straightforward application of the Dirichlet
and Neumann traces to the representation formula (2.18), using the boundary integral operators (2.19)
and (2.20): {

γDy = C(γDy)−A(γNy)− S(γny),

γNy = N(γDy)−B(γNy).
(2.21)

Due to the additional term S(γny), including a contribution from the additional Neumann data γny,
the extraction of a Calderon projector is not straightforward. Heading for a Calderon projection in
a weak setting, we start by investigating the correct space for the Neumann trace γNy (see also [80,
Section 4]).

Lemma 2.13. Let y ∈ H(curl2,Ω2), such that curl curl y = 0 in Ω2, then there holds

〈γNy,gradΓϕ〉τ = 0, ∀ϕ ∈ H
1
2 (Γ).

Proof. By using the definition of the surface operators and Stokes formulas on surfaces, we obtain
∫

Γ

γNy · gradΓϕ dS =

∫

Γ

curl y · (gradΓϕ× n) dS =

∫

Γ

curl y · curlΓ ϕ dS

=

∫

Γ

curlΓ (curl y)ϕ dS =

∫

Γ

(curl curl y)|Γ · n ϕ dS = 0.

Consequently, the surface divergence of the Neumann trace vanishes, i.e., divΓ(γNy) = 0 in a weak

sense. Therefore, the Neumann trace γNy is even in the gauged subspace H
− 1

2

‖ (divΓ 0,Γ) as intro-
duced in (2.14). The advantage of this subspace is, that the following relation can be verified:

〈µ,gradΓϕ〉τ = 0, ∀µ ∈ H
− 1

2

‖ (divΓ 0,Γ) ∀ϕ ∈ H
1
2 (Γ).

Consequently, more information about the impact of the additional Neumann data γny can be ex-
tracted

〈µ,S(ϕ)〉τ = 〈µ,γD(∇ψV (ϕ))〉τ = 〈µ,gradΓγDψV (ϕ)〉τ = 0, ∀µ ∈ H
− 1

2

‖ (divΓ 0,Γ).
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Using this information, the test space H
− 1

2

‖ (divΓ 0,Γ) can be used to get rid of the additional Neumann
data γny. Testing (2.21) with appropriate test functions µ and λ yields the Calderon projection in
a weak setting





〈µ,γDy〉τ = 〈µ,C(γDy)〉τ − 〈µ,A(γNy)〉τ , ∀µ ∈ H
− 1

2

‖ (divΓ 0,Γ),

〈γNy,λ〉τ = 〈N(γDy),λ〉τ − 〈B(γNy),λ〉τ , ∀λ ∈ H
− 1

2

⊥ (curlΓ,Γ).
(2.22)

The following symmetry and ellipticity properties of the boundary integral operators A, B, C and
N are essential for the investigation of existence and uniqueness of boundary integral equations.

Lemma 2.14. The bilinear form on H
− 1

2

‖ (divΓ 0,Γ), induced by the operator A, is symmetric and

positive definite, i.e.,

〈λ,A(λ)〉τ ≥ c ‖λ‖2
H

− 1
2

‖
(divΓ,Γ)

, ∀λ ∈ H
− 1

2

‖ (divΓ 0,Γ),

for some constant c > 0.

Proof. See [80, Theorem 6.2].

Lemma 2.15. The operators B and C fulfill the symmetry property

〈B(µ),λ〉τ = 〈µ, (C− Id)(λ)〉τ , ∀µ ∈ H
− 1

2

‖ (divΓ 0,Γ), ∀λ ∈ H
− 1

2

⊥ (curlΓ,Γ),

where Id : H
− 1

2

⊥ (curlΓ,Γ) → H
− 1

2

⊥ (curlΓ,Γ) denotes the identity operator.

Proof. See [80, Equation (6.5)].

Lemma 2.16. The bilinear form on H
− 1

2

⊥ (curlΓ,Γ), induced by the operator N, is symmetric and
negative semi-definite, i.e.,

−〈N(µ),µ〉τ ≥ c ‖curlΓµ‖2
H− 1

2 (Γ)
, ∀µ ∈ H

− 1
2

⊥ (curlΓ,Γ),

for some constant c > 0.

Proof. See [80, Theorem 6.4].

The following Lemma reflects an important property of the integration by parts formula (2.13).

Lemma 2.17. For γNy ∈ H
− 1

2

‖ (divΓ 0,Γ) and γDy ∈ H
− 1

2

⊥ (curlΓ,Γ) fulfilling (2.22), the following

estimate is valid:
−〈γNy,γDy〉τ ≥ 0.

Proof. Using the weak Calderon mapping (2.22) and choosing special test functions µ = γNy and
λ = γDy we obtain from the first equation and the symmetry property (Lemma 2.15)

〈γNy,A(γNy)〉τ = 〈γNy, (C− Id)(γDy)〉τ = 〈B(γNy),γDy〉τ .

Consequently from the second equation we obtain

−〈γNy,γDy〉τ =− 〈N(γDy),γDy〉τ + 〈B(γNy),γDy〉τ
=− 〈N(γDy),γDy〉τ + 〈γNy,A(γNy)〉τ ≥ 0.

Now the result follows from the negative semi-definiteness of N and the positive definiteness of A.

For a comprehensive study of the boundary integral equations and the underlying boundary integral
operators for the eddy current problem, we refer to [80, 81] and the references therein.
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2.4 Discretization techniques

2.4.1 Triangulation

Without loss of generality, let Ω1 ⊂ R
3 be a bounded polyhedral domain with Lipschitz boundary

Γ := ∂Ω1. On the domain Ω1 we define a triangulation Th with tetrahedral elements. Since Ω1

is a polyhedron, it can always be resolved by the discretization exactly. Furthermore, we assume
that Th is quasi-uniform with mesh size h > 0 and shape regular. The triangulation Th induces a
shape-regular and quasi-uniform triangulation Kh of Γ into triangles.

2.4.2 Finite element method

As a discretization technique we use the finite element method, a Galerkin method with local basis
functions. We use the space of continuous piecewise, linear functions S1(Th) as the conforming
finite element subspace of H1(Ω1). Furthermore, for H(curl,Ω1), we use Nédélec basis functions of
lowest order ND0(Th), see [120, 121]. We also need S1

0 (Th) = S1(Th) ∩ H1
0 (Ω1) and ND0

0(Th) =
ND0(Th) ∩H0(curl,Ω1).
The Friedrichs’ inequality, cf. Lemma 2.8, is also valid in the finite element subspace.

Lemma 2.18 (Weighted Friedrichs’ inequality for ND0(Th)). Let Ω1 be a simply-connected and
bounded Lipschitz domain, Th a quasi-uniform and shape regular triangulation with mesh size h, and
σ ∈ L∞(Ω1) with σ ≥ σ > 0. Suppose, that yh ∈ ND0(Th) is orthogonal to gradient functions in the
sense

(σyh,∇qh)0,Ω1
= 0, ∀ qh ∈ S1(Th),

then there exists a constant CF
2 > 0 depending only on Ω and independent of h and σ, such that

‖√σyh‖0,Ω1 ≤ CF
2 ‖√σ curl yh‖0,Ω1 .

Proof. See [87, Lemma 4.2].

Lemma 2.18 also holds for ND0(Th) and S1(Th) replaced by ND0
0(Th) and S1

0 (Th), respectively.
Furthermore, we collect the approximation properties of the finite element spaces ND0(Th). Let Π

be the canonical interpolation operator for the finite element space ND0(Th). Then the following
interpolation error estimate is valid:

Lemma 2.19. For y ∈ Hs(curl,Ω1), s >
1
2 , the interpolation error can be estimated by

‖y −Πy‖curl,Ω1
≤ Chmin(1,s) (‖y‖s,Ω1

+ ‖ curl y‖s,Ω1
) ,

where the constant C is independent of the mesh size h.

Proof. See [39].

2.4.3 Boundary element method

The Galerkin boundary element method is a special Galerkin finite element method applied to bound-
ary integral equations. We use the Raviart-Thomas basis functions of lowest order RT 0(Kh), cf. [77],

a conforming finite element subspace of H
− 1

2

‖ (divΓ,Γ). Furthermore, we use the finite element space

RT 0
0(Kh) = RT 0(Kh) ∩H

− 1
2

‖ (divΓ 0,Γ). In order to construct a basis for RT 0
0(Kh), the identity

RT 0
0(Kh) = curlΓ S1(Kh),

where S1(Kh) is the space of continuous, piecewise linear functions on Kh, can be used, cf. [80].
In order to give a bound for the approximation error on the boundary, we use the fact, that we are
estimating Neumann traces of the interior functions.
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Lemma 2.20. Let y ∈ H(curl2,Ω1) and λ = γNy ∈ H
− 1

2

‖ (divΓ 0,Γ), the approximation error can

be estimated by

inf
λh∈RT 0

0(Kh)
‖λ− λh‖

H
− 1

2
‖

(divΓ,Γ)
≤ C‖ curl y −Πcurl y‖curl,Ω1 ,

where the constant C is independent of the mesh size h.

Proof. See [80, Theorem 8.1].

2.5 Abstract results for time-dependent problems

In the following we want to analyze (possible nonlinear) initial value problems and (possible nonlinear)
time-periodic problems. Therefore we introduce appropriate spaces that allow to state existence and
uniqueness results. Let X be a Banach space, then we define the space

L2((0, T ), X) := {v : (0, T ) → X : ‖v‖L2((0,T ),X) <∞}

with the norm

‖v‖2L2((0,T ),X) :=

∫ T

0

‖v(·, t)‖2Xdt.

Next we introduce the concept of generalized weak derivatives. For v ∈ L2((0, T ), X), we denote by
∂
∂tv ∈ L2((0, T ), V

∗) the generalized weak derivative, if there holds

∫ T

0

v(t)
∂

∂t
ϕ(t) dt = −

∫ T

0

∂

∂t
v(t)ϕ(t) dt, ∀ϕ ∈ C∞

0 (0, T ).

Furthermore, we need the concept of evolution triples.

Definition 2.21. An evolution triple V ⊂ H ⊂ V ∗ is characterized by:

1. V is a real, separable and reflexive Banach space.

2. H is a real, separable Hilbert space.

3. The embedding V ⊂ H is continuous and V is dense in H.

In the following let V ⊂ H ⊂ V ∗ be an evolution triple. Using the generalized weak derivative, we
can define the Sobolev space

W 1
2 ((0, T ), V,H) :=

{
v ∈ L2((0, T ), V ) :

∂

∂t
v ∈ L2((0, T ), V

∗)

}
,

with the associated norm

‖v‖2W 1
2 ((0,T ),V,H) := ‖v‖2L2((0,T ),V ) +

∥∥∥∥
∂

∂t
v

∥∥∥∥
2

L2((0,T ),V ∗)

.

We mention, that the definition of ∂
∂tv, the generalized derivative of v, is made so, that

〈 ∂
∂t
v, u〉V ∗×V =

d

dt
(v(t), u)H , ∀ v ∈ V.

Furthermore, we need the concepts of monotone, coercive, bounded, and hemicontinuous operators.
An operator A : V ∗ → V is called monotone, if and only if

〈A(y)−A(v), y − v〉V ∗×V ≥ 0, ∀ y, v ∈ V,
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coercive, if and only if

lim
‖y‖V →∞

〈A(y), y〉V ∗×V

‖y‖2V
= ∞, ∀ y ∈ V,

bounded, if and only if
〈A(y), v〉V ∗×V ≤ c‖y‖V ‖v‖V , ∀ y, v ∈ V,

for some constant c, and hemicontinuous, if and only if the real function

s 7→ 〈A(u+ s v), w〉V ∗×V

is continuous on [0, s] for all u, v, w ∈ V . The main theorem on existence and uniqueness of nonlinear
initial value problems is stated in the next theorem.

Theorem 2.22. Let V ⊂ H ⊂ V ∗ be an evolution triple. Let A : V → V ∗ be a hemicontinuous,
monotone, coercive and bounded operator. Suppose furthermore that U ∈ L2((0, T ), V

∗) and y0 ∈ H
are given. Then the initial value problem





∂

∂t
y(t) +A(y(t)) = U(t), in L2((0, T ), V

∗),

y(0) = y0, in H,

has a unique solution y ∈W 1
2 ((0, T ), V,H), that fulfills the a priori estimate

‖y‖W 1
2 ((0,T ),V,H) ≤ c

(
‖U‖L2((0,T ),V ∗) + ‖y0‖H

)
,

with some constant c > 0.

Proof. See [162, Theorem 32.D].

A variant of Theorem 2.22 for time-periodic problems is also available.

Theorem 2.23. Let V ⊂ H ⊂ V ∗ be an evolution triple. Let A : V → V ∗ be a hemicontinuous,
monotone, coercive and bounded operator. Suppose furthermore that U ∈ L2((0, T ), V

∗) is given.
Then the time-periodic problem





∂

∂t
y(t) +A(y(t)) = U(t), in L2((0, T ), V

∗),

y(0) = y(T ), in H,

has a unique solution y ∈W 1
2 ((0, T ), V,H).

Proof. See [162, Theorem 32.D].

For a comprehensive study of the appropriate spaces for time-dependent problems, we refer to [161,
162].

2.6 Optimal control problems

The following theorem provides existence and uniqueness results for reduced optimal control problems.

Theorem 2.24. Let U and H denote real Hilbert spaces, and let a nonempty, closed and convex
Uad ⊂ U , as well as some yd ∈ H and constant λ > 0 be given. Moreover, let S : U → H be a
continuous linear operator. Then the quadratic Hilbert space optimization problem

min
u∈Uad

[
1

2
‖S u− yd‖2H +

λ

2
‖u‖2U

]
(2.23)

admits an optimal solution ū ∈ Uad.
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Proof. See [151, Theorem 2.14, Theorem 2.16].

The following result provides the first-order optimality conditions.

Theorem 2.25. Let U and H denote real Hilbert spaces, and let a nonempty, closed and convex
Uad ⊂ U , as well as some yd ∈ H and constant λ > 0 be given. Moreover, let S : U → H be a
continuous linear operator. Then ū ∈ Uad is a solution to the minimization problem (2.23), if and
only if ū solves the variational inequality

(λū, u− ū)U − (yd − Sū,S(u− ū))H ≥ 0, ∀u ∈ Uad. (2.24)

Proof. See [151, Theorem 2.22].

For the special case U = Uad, (2.24) simplifies to

(λū, u)U − (yd − Sū,Su)H = 0, ∀u ∈ U.

For more details about the analysis of optimal control problems, we refer to the monograph [151].



Chapter 3

Modelling and analysis

Eddy current problems are fundamental different for conducting and non-conducting regions. While
in conducting regions the problems are of parabolic type, in non-conducting regions the problems
reduce to elliptic ones. Due to these fundamental different behaviors, the analysis is a delicate issue.
In this chapter we investigate both, the eddy current problem and the eddy current optimal control
problem, concerning existence and uniqueness of solutions for the parabolic-elliptic type of equations.
Since the reluctivity appears as a diffusion coefficient in the vector potential formulation, the formu-
lation fits into the framework of monotone operators. Therefore, the analysis for the eddy current
problem is done for general nonlinear settings. In order to provide existence and uniqueness results
for a general eddy current problem, consisting of both, conducting and (possible unbounded) non-
conducting domains, the main tool is the reduction of the full (unbounded) computational domain
to the (bounded) conducting domain only. This can be achieved by either using the framework of
PDE-harmonic extensions, or by the framework of boundary integral operators.
Eddy current problems in bounded domains have already been analyzed in [17]. Therein PDE-
harmonic extensions are used to reduce the full computational domain to the conducting domains
only and existence and uniqueness results are provided in special gauged spaces. For other works we
mention [3, 10, 97].
In order to extend the existence and uniqueness theory also to the case of unbounded domains, in
principle the same approach of PDE-harmonic extensions can be used. The drawback of the latter
mentioned approach is the need for introducing weighted Sobolev spaces [10], since we are dealing
with an unbounded domain. In order to avoid this, we prefer to use the theoretical framework of
boundary integral operators. Additionally this approach directly offers a starting point for a domain
decomposition method in the terms of a FEM-BEM coupling.
Furthermore, we consider both, initial value and time-periodic problems. While for simple parabolic
problems, existence and uniqueness results for the time-periodic problems can be deduced by existence
and uniqueness results for initial value problems in a straightforward manner, in the case of eddy
current problems, the deduction is a delicate issue due to the large kernel of H(curl,Ω1), and therefore
calls for a careful study.
In the optimal control case, we restrict our analysis to the case of distributed control, where the
minimization is done with respect to the linear eddy current problem. Again, we provide existence
and uniqueness results, where special attention is drawn to fulfilling the charge conservation law in
the state equation. Also for the optimal control problem, the analysis is done for initial value and
time-periodic eddy current problems.
For simplicity, we provide our analysis for the simple model problem consisting of one conductor Ω1,
surrounded by an unbounded air region Ω2, see Figure 3.1. Indeed, Ω1 is assumed to be a simply
connected Lipschitz polyhedron, whereas Ω2 is the complement of Ω1 in R

3, i.e., R3\Ω1. Furthermore,
we denote by Γ the interface of the two subdomains; i.e., Γ = Ω1 ∩ Ω2. The exterior unit normal
vector of Ω1 on Γ is denoted by n, i.e., n points from Ω1 to Ω2.
We assume, that the compact support of the current density j is located in the conductor Ω1 and

27



28 CHAPTER 3. MODELLING AND ANALYSIS
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Figure 3.1: Simple model domain.

fulfills the conservation of charges law (cf. (1.2)), i.e.,

div j = 0, in Ω1, j · n = 0, on Γ.

In the following, the contribution of the current density to the given right hand side is denoted by u.
Furthermore, the initial condition y(0) is only meaningful to be described in the conductor Ω1.

Remark 3.1. We mention, that the analysis can be generalized to the case of a domain consisting
of multiple conductors or even to the case of multiply connected domains, cf. [5].

3.1 Existence and uniqueness for the eddy current (EC) prob-
lem

This section provides existence and uniqueness results for the eddy current problem in the full com-
putational domain Ω = R

3. In this section, we consider the general case of nonlinear reluctivity.





σ
∂y

∂t
+ curl(ν curl y) = u, in Ω1 × (0, T ),

curl(curl y) = 0, in Ω2 × (0, T ),

div y = 0, in Ω2 × (0, T ),

y = O(|x|−1), for |x| → ∞,

curl y = O(|x|−1), for |x| → ∞,

y(0) = y0, in Ω1,

y|Ω1
× n = y|Ω2

× n, on Γ× (0, T ),

ν curl y|Ω1 × n = curl y|Ω2 × n, on Γ× (0, T ).

(3.1)

In this section, the reluctivity ν is assumed to depend on B = curl y, i.e., ν = ν(|B|) = ν(| curl y|).
Indeed, this setting renders the eddy current problem (3.1) nonlinear. Since ν is constant in the
non-conducting region Ω2, due to scaling arguments, it can always be achieved that ν = 1 in Ω2.
The conductivity σ is zero in the non-conducting domain Ω2 and piecewise constant and uniformly
positive in the conductor Ω1, i.e.,

σ ≥ σ ≥ σ > 0 a.e. in Ω1 and σ = 0 a.e. in Ω2,

ν ≥ ν ≥ ν > 0 a.e. in Ω1 and ν = 1 a.e. in Ω2.
(3.2)
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Furthermore, the mapping s 7→ ν(s) is assumed to be continuous and the mapping s 7→ ν(s)s is
assumed to be strictly monotone and Lipschitz continuous, which is an immediate consequence of the
physical background.

Space-time variational formulation We start by deriving an appropriate space-time varia-
tional formulation. Therefore, we denote the underlying Hilbert space by V = H(curl,Ω1) with
the corresponding duality product 〈·, ·〉. Furthermore, we recall the definitions of the abstract
spaces L2((0, T ), V ) and W 1

2 ((0, T ), V,L2(Ω1)) for functions in the space time cylinder Ω1 × (0, T ),
cf. Section 2.5. By multiplying the sum of the first two equations in (3.1) with a test function
v ∈ L2((0, T ),H(curl,Ω)), integrating over the space-time cylinder and incorporating the interface
conditions, we obtain

∫ T

0

∫

Ω1

[
σ
∂y

∂t
· v + ν curl y · curl v

]
dx dt +

∫ T

0

∫

Ω2

curl y · curl v dx dt =

∫ T

0

∫

Ω1

u · v dx dt.

We mention, that the reluctivity ν is nonlinear and depends on the spatial variable x as well as the
time variable t, i.e., ν(x, t) = ν(x, | curl y(x, t)|). Applying the integration by parts formula in the
exterior domain Ω2, cf. (2.13), and using the fact, that there is no prescribed source in Ω2, i.e.,
curl curl y = 0, allows to reduce the variational problem to one just living in Ω1, i.e.,

∫ T

0

∫

Ω1

[
σ
∂y

∂t
· v + ν curl y · curl v

]
dx dt−

∫ T

0

〈γNy,γDv〉τ dt =
∫ T

0

∫

Ω1

u · v dx dt. (3.3)

For t ∈ (0, T ), we define the operator A1 : V → V ∗ by

〈A1(y(·, t)),v(·, t)〉 :=
∫

Ω1

ν(·, | curl y(·, t)|) curl y(·, t) · curl v(·, t) dx,

and the operator A2 : V → V ∗ by

〈A2(y(·, t)),v(·, t)〉 := −〈γNy(·, t),γDv(·, t)〉τ ,

for all y(·, t),v(·, t) ∈ V . Furthermore, the right hand side can be regarded as a linear functional, i.e.,

〈U(t),v(·, t)〉 :=
∫

Ω1

u(x, t) · v(x, t) dx,

with U(t) ∈ V ∗. Consequently, we can rewrite (3.3) in the equivalent form

∫ T

0

〈σ ∂
∂t

y(·, t),v(·, t)〉+ 〈A1(y(·, t)),v(·, t)〉dt +
∫ T

0

〈A2(y(·, t)),v(·, t)〉dt =
∫ T

0

〈U(t),v(·, t)〉dt,

where the derivative σ ∂
∂ty(t) is considered as an abstract functional in V ∗. By defining the operator

A : V → V ∗ by A(y) := A1(y) +A2(y), we can state (3.3) on the level of operator equations. Find
y ∈W 1

2 ((0, T ), V,L2(Ω1)), such that



σ
∂y

∂t
+A(y) = U, in L2((0, T ), V

∗),

y(0) = y0, in L2(Ω1).
(3.4)

Now we provide the necessary tools for showing existence and uniqueness for the variational problem.
We introduce the space of gradient functions

W := {v ∈ V : ∃ q ∈ H1(Ω1) : v = ∇q,
∫

Ω1

q = 0, q|Γ = c, c ∈ R},
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and the factor space of divergence-free functions V̂ := V |W by

V̂ := {y ∈ V : (σy,v)0,Ω1 = 0, ∀v ∈W}.

Furthermore, we also use

Ĥ1 := {y ∈ L2(Ω1) : (y,v)0,Ω1
= 0, ∀v ∈W}.

The main properties of A1 are summarized in the following lemma.

Lemma 3.2. Let s 7→ ν(s)s be strictly monotone and Lipschitz continuous and s 7→ ν(s) uniformly
positive and bounded, then the operator A1 is

1. monotone, i.e.,
〈A1(y)−A1(v),y − v〉 ≥ 0, ∀v,y ∈ V,

2. semi-coercive on V , i.e.,

〈A1(y),y〉 ≥ c ‖ curl y‖20,Ω1
, ∀y ∈ V,

3. bounded on V , i.e.,

〈A1(y),v〉 ≤ ν ‖y‖curl,Ω1‖v‖curl,Ω1 , ∀y,v ∈ V,

4. hemicontinuous,

5. coercive on V̂ , i.e.,
〈A1(y),y〉 ≥ c ‖y‖2curl,Ω1

, ∀y ∈ V̂,

6. and identically zero on W , i.e.,

〈A1(y),w〉 = 0, ∀y ∈ V, ∀w ∈W,

with some constant c > 0.

Proof. Monotonicity, semi-coercivity and boundedness of A1 directly follow from (3.2) and s 7→ ν(s)s
being monotone. Hemicontinuity follows from the continuity of ν. Coercivity on V̂ is an immediate
consequence of the semi-coercivity and Friedrichs’ inequality, cf. Lemma 2.8. Indeed, we have

〈A1(y),y〉 ≥ c ‖ curl y‖20,Ω1
≥ c

(
‖ curl y‖20,Ω1

+ (CF
2 )−2‖y‖20,Ω1

)
≥ c‖y‖2curl,Ω1

.

Finally, the last property is due to the non-trivial kernel of the curl operator,

A1(y,w) =

∫

Ω1

ν curl y · curl∇q dx = 0, ∀w = ∇q ∈W.

The main properties of A2 are summarized in the following lemma.

Lemma 3.3. The operator A2 is

1. linear, i.e.,
A2(αy) = αA2(y), ∀y ∈ V, α ∈ R,

A2(y + v) = A2(y) +A2(v), ∀y,v ∈ V,

2. semi-coercive on V , i.e.,
〈A2(y),y〉 ≥ 0, ∀y ∈ V,
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3. bounded, i.e.,
〈A2(y),v〉 ≤ c ‖y‖curl,Ω1‖v‖curl,Ω1 , ∀y,v ∈ V,

4. and identically zero on W , i.e.,

〈A2(y),w〉 = 0, ∀y ∈ V, ∀w ∈W,

with some constant c > 0.

Proof. It is easy to see, that A2 is linear. The semi-coercivity is a direct consequence of Lemma 2.17.
Boundedness follows from Lemma 2.11, and the fact that curl curl y = 0 in Ω2. Indeed, we have

A2(y,v) = −〈γNy,γDv〉τ ≤ ‖γNy‖
H

− 1
2

‖
(divΓ,Γ)

‖γDv‖
H

− 1
2

⊥ (curlΓ,Γ)
≤ c‖y‖curl2,Ω2

‖v‖curl,Ω2

= c‖y‖curl,Ω2‖v‖curl,Ω2 ≤ c‖γ×y‖
H

− 1
2

⊥ (curlΓ,Γ)
‖γ×v‖

H
− 1

2
⊥ (curlΓ,Γ)

≤ c‖y‖curl,Ω1‖v‖curl,Ω1 ,

for some constant c > 0. The last property follows from Lemma 2.13, since

A2(y,w) = −〈γNy,γD(∇q)〉τ = −〈γNy,gradΓq〉τ = 0, ∀w = ∇q ∈W.

Now, we are in the position to state and proof the main theorem concerning existence and uniqueness
of a solution.

Theorem 3.4. Let the source u ∈ L2((0, T ),L2(Ω1)) be weakly divergence-free for all t ∈ (0, T ), i.e.,

(u(t),w)0,Ω1 = 0, ∀w ∈W,

and the initial condition y0 be weakly divergence-free, i.e.,

(σy0,w)0,Ω1 = 0, ∀w ∈W.

There exists a unique solution y ∈W 1
2 ((0, T ), V,L2(Ω1)), such that




σ
∂y

∂t
+A(y) = U, in L2((0, T ), V

∗),

y(0) = y0, in L2(Ω1).

Furthermore, the following a priori estimate is valid

‖y‖W 1
2 ((0,T ),V,L2(Ω1)) ≤ c

(
‖u‖L2((0,T ),L2(Ω1)) + ‖y0‖0,Ω1

)
,

for some constant c > 0.

Proof. We start by showing existence and uniqueness of (3.4) in the factor space of divergence-free
functions V̂ . Due to Lemma 3.2 and Lemma 3.3, the operator A is hemicontinuous, monotone, coer-
cive and bounded on V̂ . Therefore, existence and uniqueness of the solution y ∈W 1

2 ((0, T ), V̂,L2(Ω1))
follows from Theorem 2.22.
Let us consider a solution y ∈W 1

2 ((0, T ), V,L2(Ω1)) of (3.4). By taking into account, that the source
u(t) is weakly divergence-free, we can conclude from Lemma 3.2 and Lemma 3.3, that for all t ∈ (0, T )
the following identity is valid:

〈σ ∂
∂t

y(t),w〉 = 〈U(t),w〉 − 〈A(y(t)),w〉 = 0, ∀w ∈W. (3.5)

Since the initial condition y0 is assumed to be divergence-free, we can conclude, that for all t ∈ (0, T )

(σy(t),w)0,Ω1
= (σy(0),w)0,Ω1

+

∫ t

0

〈σ ∂

∂τ
y(t),w〉dτ = 0, ∀w ∈W.

Therefore we conclude y(t) ∈ V̂ . Consequently y ∈ W 1
2 ((0, T ), V̂,L2(Ω1)) ⊂ W 1

2 ((0, T ), V,L2(Ω1)),
where we have already shown existence and uniqueness of the solution.
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3.1.1 Existence and uniqueness for time-periodic eddy current problems

We analyze the time-periodic eddy current problem, i.e., (3.1) with the initial condition y(0) = y0

replaced by the periodicity condition y(0) = y(T ). The analysis of the periodic setting is more
involving. Due to the absence of an initial condition, we can only show uniqueness of the solution in
the gauged subspace V̂ . The main result concerning existence and uniqueness of a periodic solution
is summarized in the following theorem.

Theorem 3.5. Let the source u ∈ L2((0, T ),L2(Ω1)) be weakly divergence-free for all t ∈ (0, T ), i.e.,

(u(t),w)0,Ω1 = 0, ∀w ∈W.

There exists a unique solution y ∈W 1
2 ((0, T ), V̂,L2(Ω1)), such that




σ
∂y

∂t
+A(y) = U, in L2((0, T ), V̂

∗),

y(0) = y(T ), in L2(Ω1).

Proof. The proof immediately follows from Theorem 3.4 and Theorem 2.23.

Indeed, this result cannot be generalized to the full space W 1
2 ((0, T ), V,L2(Ω1)). This can be seen in

the following way. Again, the identity (3.5) is still valid. Anyhow, we have

(σy(t),w)0,Ω1
= (σy(0),w)0,Ω1

+

∫ t

0

〈σ ∂

∂τ
y(t),w〉dτ = (σy(0),w)0,Ω1

, ∀w ∈W.

Consequently, the solution y is only unique up to gradient functions w ∈ W , that are constant in
time. Hence, in the time-periodic setting it is essential to keep the divergence constraint imposed on
y.

3.1.2 Symmetric coupling in the time domain

Introducing the Neumann data γNy as an additional unknown, i.e., λ = γNy, and using the Calderon
projection (2.22), allow to state the eddy current problem in a symmetric coupled framework: Find

(y,λ) ∈W 1
2 ((0, T ), V,L2(Ω1))×L2((0, T ),H

− 1
2

‖ (divΓ 0,Γ)) with y(·, 0) = y0(·) and λ(·, 0) = γN(y0),
such that





∫ T

0

〈σ∂y
∂t
,v〉+ 〈A1(y),v〉 − 〈N(γDy),γDv〉τ + 〈B(λ),γDv〉τ dt =

∫ T

0

〈U,v〉dt,
∫ T

0

〈ζ, (Id−C)(γDy)〉τ − 〈ζ,A(λ)〉τ dt = 0,

(3.6)

for all (v, ζ) ∈ L2((0, T ), V )×L2((0, T ),H
− 1

2

‖ (divΓ 0,Γ)). In the case of the time-periodic eddy current
problem, the initial conditions have to be replaced by the periodicity conditions y(·, 0) = y(·, T ) and
λ(·, 0) = λ(·, T ). In Chapter 6, (3.6) is the starting point of a discretization in space and time.

3.2 Existence and uniqueness for the EC optimal control prob-
lem

This section provides existence and uniqueness results for eddy current optimal control problems in
the case of distributed control and a linear state equation. Therefore, we assume, that the reluctivity
ν is independent of the magnetic flux B = curl y, which makes the state equation (3.1) linear.
Typically, existence and uniqueness results for optimal control problems are deduced from existence
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and uniqueness results for the state equation and assumptions imposed on the minimization functional
by using standard arguments. Indeed, this approach can also be used in the setting of eddy current
optimal control problem. Anyhow, in this special case, due to the conservation of charges law in the
state equation, the control-to-solution map is only defined for weakly divergence-free sources u, cf.
Theorem 3.4. Therefore, the set of admissible controls u has to be restricted to the set of weakly
divergence-free functions Ĥ1. Indeed, this restriction makes the resulting optimality very inconvenient
to deal with. Therefore, we propose an alternative approach of dealing with the conservation of charges
law in Subsection 3.2.2.
In this section we consider the functional

J (y,u) :=
1

2
‖y − yd‖2L2((0,T ),L2(Ω1))

+
λ

2
‖u‖2L2((0,T ),L2(Ω1))

,

with given desired state yd ∈ L2((0, T ),L2(Ω1)) and given regularization parameter λ > 0. The cor-
responding minimization problem reads as: Find (ŷ, û) ∈W 1

2 ((0, T ), V,L2(Ω1))×L2((0, T ),L2(Ω1)),
such that

J (ŷ, û) = min
(y,u)∈W 1

2 ((0,T ),V,L2(Ω1))×L2((0,T ),Ĥ1)
J (y,u), (3.7)

where (y,u) fulfills the eddy current problem (3.1) in a weak sense. Due to the unique solvability of
(3.1), cf. Theorem 3.4, we can define a (linear) solution operator

S : L2((0, T ), Ĥ1)× L2(Ω1) →W 1
2 ((0, T ), V,L2(Ω1)) : (u,y0) → y. (3.8)

Indeed, the operator S is well-defined and bounded, i.e.,

‖S(u,y0)‖W 1
2 ((0,T ),V,L2(Ω1)) ≤ c

(
‖u‖L2((0,T ),L2(Ω1)) + ‖y0‖0,Ω1

)
.

Since the state equation (3.1) is linear, we have the following splitting (superpositions principle)

S(u,y0) = S1(u) + S2(y0),

with the linear and bounded operators

S1 : L2((0, T ), V̂ ) →W 1
2 ((0, T ), V,L2(Ω1)),

S2 : L2(Ω1) →W 1
2 ((0, T ), V,L2(Ω1)).

By defining ỹd := yd −S2(y0) ∈ L2((0, T ),L2(Ω1)), we can state the reduced minimization problem
as follows. Find û ∈ L2((0, T ),L2(Ω1)), such that

J̃ (û) = min
u∈L2((0,T ),Ĥ1)

J̃ (u)

= min
u∈L2((0,T ),Ĥ1)

[
1

2
‖S1(u)− ỹd‖2L2((0,T ),L2(Ω1))

+
λ

2
‖u‖2L2((0,T ),L2(Ω1))

]
.

(3.9)

The main result of this section is summarized in the next theorem, that states, that the reduced
minimization problem (3.9) has a unique solution.

Theorem 3.6. The minimization problem (3.9), and therefore (3.7), has a unique solution.

Proof. Since S1 is a linear and bounded operator, and L2((0, T ), Ĥ1) is a nonempty, closed and convex
subset of L2((0, T ),L2(Ω1)), existence and uniqueness follows with Theorem 2.24.
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3.2.1 Necessary and sufficient optimality conditions

A solution of the minimization problem (3.7) is characterized by the solution of the optimality system.
Due to Theorem 2.25, the optimality system is given by the state equation




σ
∂y

∂t
+A(y) = U, in L2((0, T ), V

∗),

y(0) = y0, in L2(Ω1),
(3.10a)

the co-state equation





−σ∂p
∂t

+A(p) + I(y) = Yd, in L2((0, T ), V
∗),

p(T ) = 0, in L2(Ω1),
(3.10b)

and the variational inequality

∫ T

0

(λu− p,v − u)0,Ω1
dt ≥ 0, ∀v ∈ L2((0, T ), Ĥ1). (3.10c)

Here I : V → V ∗ : y 7→ I(y) is the identity operator defined by

〈I(y),v〉 := (y,v)H , ∀v ∈ V.

Furthermore, Yd(t) ∈ V ∗ is given by

〈Yd(t),v(·, t)〉 :=
∫

Ω1

yd(x, t) · v(x, t) dx, ∀v(·, t) ∈ V.

Therefore, the solution of the optimal control problem can be determined by the solution of the fol-
lowing problem: Find (y,p,u) ∈W 1

2 ((0, T ), V,L2(Ω1))×W 1
2 ((0, T ), V,L2(Ω1))×L2((0, T ),L2(Ω1)),

that fulfills (3.10). In this context the Lagrange multiplier p is referred as co-state.

3.2.2 Enforcing the charge conservation law in EC optimal control prob-

lems

In the last subsections, we have seen, that the charge conservation law

divu = 0, in Ω1, u · n = 0, on Γ,

is essential for providing existence and uniqueness results for the state equation (cf. Theorem 3.4) and
therefore for the optimal control problem (3.7). Indeed, the variational inequality (3.10c) is difficult
to deal with.
In order to overcome this drawback, we employ a different approach and consider the minimization
problem. Find (ŷ, û) ∈W 1

2 ((0, T ), V,L2(Ω1))× L2((0, T ),L2(Ω1)), such that

J (ŷ, û) = min
(y,u)∈W 1

2 ((0,T ),V,L2(Ω1))×L2((0,T ),L2(Ω1))
J (y,u), (3.11)

where (y,u) fulfills the eddy current problem (3.1) in a weak sense.
We show, that under mild assumptions, the minimum of the minimization problem indeed is attained
by a divergence-free function u, and therefore y is divergence-free as well. Therefore, the optimal
control problem (3.11) obtains automatically the same solution as (3.7).
We start, by providing existence and uniqueness result for the eddy current problem without the
divergence-free constraint imposed on the source u.
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Theorem 3.7. Let the source u ∈ L2((0, T ),L2(Ω1)) be given. Furthermore, let the initial condition
y0 be weakly divergence-free, i.e.,

(σy0,w)0,Ω1 = 0, ∀w ∈W.

Then there exists a unique solution y ∈W 1
2 ((0, T ), V,L2(Ω1)), such that




σ
∂y

∂t
+A(y) = U, in L2((0, T ), V

∗),

y(0) = y0, in L2(Ω1).

Proof. In order to find the solution y, we use the orthogonal splitting of W 1
2 ((0, T ), V,L2(Ω1)) with

respect to
∫ 1

0
(σ·, ·)0,Ω1

dt, given as follows

W 1
2 ((0, T ), V,L2(Ω1)) =W 1

2 ((0, T ), V̂,L2(Ω1))⊕W 1
2 ((0, T ),W,L2(Ω1)).

Due to Lemma 2.6, we have the Helmholtz decomposition of y ∈W 1
2 ((0, T ), V,L2(Ω1)) in terms of

y = ỹ +∇p, ỹ ∈W 1
2 ((0, T ), V̂,L2(Ω1)), ∇p ∈W 1

2 ((0, T ),W,L2(Ω1)),

that is orthogonal with respect to
∫ T

0
(σ·, ·)0,Ω1dt, and of u ∈ L2((0, T ),L2(Ω1)) in terms of

u = ũ+∇q, ũ ∈ L2((0, T ), Ĥ1), ∇q ∈ L2((0, T ),W ),

that is orthogonal with respect to
∫ T

0
(·, ·)0,Ω1dt. Therefore, we take advantage of the orthogonality of

the gradient and divergence-free functions and compute the two components ỹ and p individually. We
start by investigating the divergence-free part. Find ỹ ∈ W 1

2 ((0, T ), V̂,L2(Ω1)) with y(·, 0) = y0(·),
such that ∫ T

0

[
〈σ∂ỹ
∂t
,v〉+ 〈A(ỹ),v〉

]
dt =

∫ T

0

(ũ,v)0,Ω1
dt,

for all v ∈ L2((0, T ), V̂ ). The existence and uniqueness of ỹ ∈ W 1
2 ((0, T ), V̂,L2(Ω1)) follows from

Theorem 3.4. Furthermore, the gradient part is characterized as follows:
Find ∇p ∈W 1

2 ((0, T ),W,L2(Ω1)) with ∇p(·, 0) = 0, such that
∫ T

0

〈σ∂∇p
∂t

,∇g〉 dt =
∫ T

0

(∇q,∇g)0,Ω1 dt,

for all ∇g ∈ L2((0, T ),W ). The unique solution ∇p(t) ∈ W is given by σ∇p(t) =
∫ t

0
∇q(τ) dτ .

Therefore, we obtain the unique solution y = ỹ +∇p.

Due to Theorem 3.7, there exists a unique solution y, and therefore we can define a (linear) solution
operator

S̃ : L2((0, T ),L2(Ω1))× L2(Ω1) →W 1
2 ((0, T ), V,L2(Ω1)). (3.12)

Indeed, the operator S is well-defined and bounded.

Theorem 3.8. (3.11) has a unique solution (y,u) ∈ W 1
2 ((0, T ), V,L2(Ω1)) × L2((0, T ),L2(Ω1)).

Furthermore, under the assumption that yd is divergence-free, i.e.,

(σyd(t),w)0,Ω1 = 0, ∀w ∈W,

for all t ∈ (0, T ), and σ ∈ R
+, u and y are divergence-free as well, i.e.,

(u(t),w)0,Ω1 = 0, ∀w ∈W,

and
(σy(t),w)0,Ω1

= 0, ∀w ∈W,

for all t ∈ (0, T ).
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Proof. Since the solution operator S̃ is linear and bounded, existence and uniqueness of a solution
pair (y,u) follows with Theorem 2.24, cf. proof of Theorem 3.6.
By definition S̃(u,y0) = y. Furthermore, due to Lemma 2.6, we have the Helmholtz decomposition
of y ∈W 1

2 ((0, T ), V,L2(Ω1)) in terms of

y = ỹ +∇p, ỹ ∈W 1
2 ((0, T ), V̂,L2(Ω1)), ∇p ∈W 1

2 ((0, T ),W,L2(Ω1)),

that is orthogonal with respect to
∫ T

0
(σ·, ·)0,Ω1dt, and of u ∈ L2((0, T ),L2(Ω1)) in terms of

u = ũ+∇q, ũ ∈ L2((0, T ), Ĥ1), ∇q ∈ L2((0, T ),W ),

that is orthogonal with respect to
∫ T

0
(·, ·)0,Ω1

dt. Since the initial condition y0 is divergence-free,
we have S̃(ũ,y0) = ỹ and S̃(∇q,0) = ∇p. Therefore, the pair (ỹ, ũ) also satisfies the eddy current
problem. Let us assume, that y and u are not divergence-free, i.e., p 6= 0 and q 6= 0. We have

J̃ (u) =
1

2
‖S̃(u,y0)− yd‖2L2((0,T ),L2(Ω1))

+
λ

2
‖u‖2L2((0,T ),L2(Ω1))

=
1

2

[
‖S̃(ũ,y0)− yd‖2L2((0,T ),L2(Ω1))

+ ‖∇p‖2L2((0,T ),L2(Ω1))

]

+
λ

2

[
‖ũ‖2L2((0,T ),L2(Ω1))

+ ‖∇q‖2L2((0,T ),L2(Ω1))

]

≥ 1

2
‖S̃(ũ,y0)− yd‖2L2((0,T ),L2(Ω1))

+
λ

2
‖ũ‖2L2((0,T ),L2(Ω1))

,

and therefore the pair (y,u) does not minimize the cost functional, which is a contradiction to the
fact, that the pair (y,u) is the unique solution. Consequently, we conclude that p = 0 and q = 0,
which means, that y and u are divergence-free, i.e., y = ỹ and u = ũ.

Due to Theorem 2.25 , the optimality system of (3.11) is given by the state equation



σ
∂y

∂t
+A(y) = U, in L2((0, T ), V

∗),

y(0) = y0, in L2(Ω1),
(3.13a)

the co-state equation




−σ∂p
∂t

+A(p) + I(y) = Yd, in L2((0, T ), V
∗),

p(T ) = 0, in L2(Ω1),
(3.13b)

and the variational equality

∫ T

0

(λu− p,v)0,Ω1
dt = 0, ∀v ∈ L2((0, T ),L2(Ω1)). (3.13c)

From (3.13c) we learn that u = λ−1p, and therefore the control u can be eliminated from the system
(3.13). The resulting reduced optimality system is given by the state equation




σ
∂y

∂t
+A(y)− 1

λ
I(p) = 0, in L2((0, T ), V

∗),

y(0) = y0, in L2(Ω1),
(3.14a)

and the co-state equation




−σ∂p
∂t

+A(p) + I(y) = Yd, in L2((0, T ), V
∗),

p(T ) = 0, in L2(Ω1).
(3.14b)
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Remark 3.9. For the case of a general σ ∈ L∞(Ω1), σ > 0, the same result as in Theorem 3.8 can
be shown for the modified cost functional

Jσ(y,u) :=
1

2
‖σ 1

2 (y − yd)‖2L2((0,T ),L2(Ω1))
+
λ

2
‖u‖2L2((0,T ),L2(Ω1))

.

Remark 3.10. Theorem 3.8 is also valid in the case of general cost functionals of the form (1.9).

Remark 3.11. Another possibility to cope with the divergence-free constraint is to consider a vector
potential ansatz u = curlw, that automatically fulfills divu = 0, u · n = 0, and to use the vector
potential w ∈ H0(curl,Ω1) as the control, cf. [159]. The corresponding minimization problem is
given by

min
y,w

Jw(y,w) :=
1

2
‖y − yd‖2L2((0,T ),L2(Ω1))

+
λ

2
‖w‖2L2((0,T ),V ).

subject to 


σ
∂y

∂t
+A(y) = Ww, in L2((0, T ), V

∗),

y(0) = y0, in L2(Ω1),

where W(t) : V → V ∗ is given by

〈W(t)w(·, t),v(·, t)〉 :=
∫

Ω1

curlw(x, t) · v(x, t) dx, ∀v(·, t) ∈ V.

Again, existence and uniqueness of a minimizer (y,w) ∈ W 1
2 ((0, T ), V,L2(Ω1)) × L2((0, T ), V ) can

be shown. The corresponding optimality system is given by the state equation



σ
∂y

∂t
+A(y) = Ww, in L2((0, T ), V

∗),

y(0) = y0, in L2(Ω1),
(3.15a)

the co-state equation




−σ∂p
∂t

+A(p) + I(y) = Yd, in L2((0, T ), V
∗),

p(T ) = 0, in L2(Ω1),
(3.15b)

and the variational equality

λJ (w) = W∗p, in L2((0, T ), V
∗). (3.15c)

Here J : V → V ∗ denotes the Riesz isomorphism, and W∗ : V → V ∗ is the adjoint operator of W,
i.e.,

〈Ww,v〉 = 〈W∗v,w〉, ∀w,v ∈ V.

3.2.3 Existence and uniqueness for time-periodic EC optimal control prob-

lems

In this subsection, we consider the time-periodic eddy current optimal control problem. As we have
seen for the time-periodic eddy current problem in Subsection 3.1.1, we lose the unique solvability due
to the periodicity conditions. Anyhow, in the time-periodic optimal control setting, the minimum of
the minimization problem is automatically attained by the divergence-free pair (y,u) and therefore,
the time-periodic optimal control problem is uniquely solvable.
Find (ŷ, û) ∈W 1

2 ((0, T ), V,L2(Ω1))× L2((0, T ),L2(Ω1)), such that

J (ŷ, û) = min
(y,u)∈W 1

2 ((0,T ),V,L2(Ω1))×L2((0,T ),L2(Ω1))
J (y,u), (3.16)

where (y,u) fulfills the eddy current problem (3.1) with the initial condition replaced by a periodicity
condition in a weak sense.
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Theorem 3.12. (3.16) has a unique solution (y,u) ∈ W 1
2 ((0, T ), V,L2(Ω1)) × L2((0, T ),L2(Ω1)).

Furthermore, under the assumption that yd is divergence-free, i.e.,

(σyd(t),w)0,Ω1 = 0, ∀w ∈W,

for all t ∈ (0, T ), and σ ∈ R
+, u and y are divergence-free as well, i.e.,

(u(t),w)0,Ω1 = 0, ∀w ∈W,

and
(σy(t),w)0,Ω1

= 0, ∀w ∈W,

for all t ∈ (0, T ).

Proof. The result can be deduced by using similar arguments as in the proof of Theorem 3.8 in order
to show, that the minimum is automatically attained by in the space of divergence-free functions,
where the control-to-state map is well defined and unique.

The optimality system of (3.16) is given by the state equation




σ
∂y

∂t
+A(y) = U, in L2((0, T ), V

∗),

y(0) = y(T ), in L2(Ω1),
(3.17a)

the co-state equation





−σ∂p
∂t

+A(p) + I(y) = Yd, in L2((0, T ), V
∗),

p(0) = p(T ), in L2(Ω1),
(3.17b)

and the variational equality

∫ T

0

(λu− p,v)0,Ω1dt = 0, ∀v ∈ L2((0, T ),L2(Ω1)). (3.17c)

From (3.17c) we learn that u = λ−1p, and therefore the control u can be eliminated from the system
(3.17). The resulting reduced optimality system is given by the state equation




σ
∂y

∂t
+A(y)− 1

λ
I(p) = 0, in L2((0, T ), V

∗),

y(0) = y(T ), in L2(Ω1),
(3.18a)

and the co-state equation





−σ∂p
∂t

+A(p) + I(y) = Yd, in L2((0, T ), V
∗),

p(0) = p(T ), in L2(Ω1).
(3.18b)

In Chapter 7, we investigate the efficient numerical solution of (3.18).

Remark 3.13. As we have seen in (3.10), when dealing with initial value problems, the adjoint state
has to vanish at the end time. This makes these kind of problems difficult to deal with, since at the
same time an initial value problem and an end time problem have to be solved. In the periodic case,
the optimality system (3.18) consists of two periodic problems. This simplifies the situation, because
here both, the state and the co-state, are in the same space, and consequently, the problem obtains a
symmetric structure.



Chapter 4

Multiharmonic discretization

techniques

This chapter is devoted to the discretization of time-periodic evolution equations in terms of a mul-
tiharmonic approach. Therefore, we introduce the concept of periodic steady state solutions. Indeed,
this concept is used by engineers in different applications, where the main interest is not on the par-
ticular behavior of the solution in the initial phase, but the asymptotic and periodic behavior after
some start-up period. Due to the periodic structure of the solution, an approximation in terms of a
Fourier series or multiharmonic approach in time pops up naturally, e.g. [18, 66, 155]. We demon-
strate, that the multiharmonic approach applied to linear evolution equations leads to a decoupling
of the frequency domain equations with respect to the involved modes. For numerical treatment, only
a finite number of modes is considered. It is shown, that this truncation of the Fourier series leads
to a convergent discretization scheme in time and additionally an error estimate is provided.
Finally, we demonstrate the application of the multiharmonic approach to time-periodic optimal
control problems. We derive the optimality system, where again a time-periodic structure is observed.
The discretization in terms of the multiharmonic approach leads to a decoupling of the optimality
system in the frequency domain with respect to the involved modes.

4.1 Periodic steady state solutions

Let us assume, that we have a variational triple V ⊂ H ⊂ V ∗. The duality product in V ∗ × V is
denoted by 〈·, ·〉. Let us consider the abstract problem: For given u ∈ L2((0, T ), V

∗) and y0 ∈ H,
find y ∈W 1

2 ((0, T ), V,H), such that

∂

∂t
y +Ay = u, in L2((0, T ), V

∗), (4.1a)

y(0) = y0, in H. (4.1b)

Here A : V → V ∗ is assumed to be a hemicontinuous, monotone, coercive and bounded operator.
Therefore, (4.1) has a unique solution, cf. Theorem 2.22. Problem (4.1) can be stated in a variational
framework as follows: Find y ∈W 1

2 ((0, T ), V,H) with y(0) = y0 in H, such that

∫ T

0

〈
∂

∂t
y(·, t) +Ay(·, t), v(·, t)

〉
dt =

∫ T

0

〈u(·, t), v(·, t)〉 dt,

for all test functions v ∈ L2((0, T ), V ).
We start by introducing the concept of steady state solutions, that is a commonly used concept in
the context of periodic computations.

39
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Definition 4.1 (Steady state solution). The function y(t) is called a periodic steady state solution
of equation (4.1a)-(4.1b), if

1. y satisfies (4.1a), but not necessarily the initial condition (4.1b),

2. y is periodic, i.e., y(0) = y(T ).

Using this alternative classification of a solution, problem (4.1) can be stated as follows: Find y ∈
W 1

2 ((0, T ), V,H), such that





∂

∂t
y +Ay = u, in L2((0, T ), V

∗),

y(0) = y(T ), in H.
(4.2)

Due to the assumptions imposed on A, the periodic problem (4.2) is uniquely solvable, cf. Theo-
rem 2.23. Furthermore, we introduce the following spaces, that incorporate the periodicity conditions

W 1
2,per((0, T ), V,H) := {y ∈W 1

2 ((0, T ), V,H) : y(0) = y(T ) in H},
L2,per((0, T ), V ) := {y ∈ L2((0, T ), V ) : y(0) = y(T ) in H}.

Using these spaces of abstract periodic functions, the variational formulation of (4.2) reads as: Find
y ∈W 1

2,per((0, T ), V,H), such that

∫ T

0

〈
∂

∂t
y(·, t) +Ay(·, t), v(·, t)

〉
dt =

∫ T

0

〈u(·, t), v(·, t)〉 dt, ∀v ∈ L2,per((0, T ), V ).

This variational formulation is the starting point of some discretization in time. We start by having
a closer look at L2,per((0, T ), V ). Since with ω = 2π/T , the set {sin(kωt), cos(kωt)}k∈N is a basis for
L2(0, T ) and every function v ∈ L2,per((0, T ), V ) can be expanded into a Fourier series, i.e.,

v(t) = vc0 +
∞∑

k=1

vck cos(kωt) + vsk sin(kωt),

with the Fourier coefficients vck, v
s
k ∈ V , given by

vc0 = T

∫ T

0

v dt, vck =
T

2

∫ T

0

v cos(kωt) dt, vsk =
T

2

∫ T

0

v sin(kωt) dt.

Indeed, this motivates to use Fourier series expansions as a discretization technique in time. Be-
fore we analyze the full time-periodic setting, i.e., infinite Fourier series, we consider the case of a
multiharmonic approach, i.e., finite Fourier series.

4.2 Multiharmonic discretization

Before we consider the general time-periodic setting, we concentrate on those time-periodic functions,
that have a representation in terms of a finite Fourier series. Therefore, we start by investigating
multiharmonic excitations u(t). Let us mention, that this approach is very reasonable in many
practical applications. Indeed, for the multiharmonic setting, the essential tools of the harmonic
balance method can already be derived. Let us consider u ∈ L2,per((0, T ), V

∗), of the form

u(t) =
N∑

k=0

uck cos(kωt) + usk sin(kωt), (4.3)
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with the Fourier coefficients uck, u
s
k ∈ V ∗, the base frequency ω = 2π/T > 0 and some finite number

N ∈ N. Due to the linearity of (4.2), the solution y ∈W 1
2,per((0, T ), V,H), has the same structure

y(t) =
N∑

k=0

yck cos(kωt) + ysk sin(kωt), (4.4)

with the Fourier coefficients yck, y
s
k ∈ V and the same base frequency ω, cf. Remark 4.3. Furthermore,

we can compute the generalized derivative

∂

∂t
y(t) =

N∑

k=1

kω (−I(yck) sin(kωt) + I(ysk) cos(kωt)) ,

where I : V → V ∗ is the identity operator, i.e., for y ∈ V : I(y) = y, defined by

〈I(y), v〉 := (y, v)H , ∀ v ∈ V.

Clearly, the operator I is symmetric, positive and bounded, i.e., ‖I(y)‖V ∗ ≤ c‖y‖V . Indeed, using
the continuous embedding of V into H, we have

‖I(y)‖V ∗ = sup
v∈V

〈I(y), v〉
‖v‖V

= sup
v∈V

(y, v)H
‖v‖V

≤ sup
v∈V

‖y‖H‖v‖H
‖v‖V

≤ c sup
v∈V

‖y‖V ‖v‖V
‖v‖V

≤ c‖y‖V .

Using these representations as a multiharmonic function in time, and exploiting the orthogonality
of the sine and cosine functions in (·, ·)L2(0,T ), we can state (4.2) as a problem for determining the
Fourier coefficients in the frequency domain as follows. Find (yc0, y

c
1, y

s
1, . . . , y

c
N , y

s
N ) ∈ V 2N+1, such

that

〈Ayc0, vc0〉+
N∑

k=1


kω (−〈Iyck, vsk〉+ 〈Iysk, vck〉) +

∑

j∈{c,s}
〈Ayjk, v

j
k〉


 = 〈uc0, vc0〉+

∑

j∈{c,s}

N∑

k=1

〈ujk, v
j
k〉,

for all test functions (vc0, v
c
1, v

s
1, . . . , v

c
N , v

s
N ) ∈ V 2N+1. Due to the linearity of A, the problem decouples

with respect to the modes k. Consequently, switching back to operator notation, we are dealing with
the following problem: Find yc0 ∈ V , such that

Ayc0 = uc0, in V ∗, (4.5a)

and, for k = 1, . . . , N , find (yck, y
s
k) ∈ V 2, such that

{
Ayck + kω I(ysk) = uck, in V ∗,

−kω I(yck) +Aysk = usk, in V ∗.
(4.5b)

Theorem 4.2. Problem (4.5) has a unique solution.

Proof. Since A is a coercive and bounded operator, existence and uniqueness of a solution yc0 of (4.5a),
follows with Theorem 2.1. Similarly, since A is a coercive and bounded operator, and I is a positive
and bounded operator, existence and uniqueness of a solution (yck, y

s
k) of (4.5b) for a fixed mode k,

follows with Theorem 2.1.

Remark 4.3. The fact, that multiharmonicity of u implies multiharmonicity of y with the same
number of modes N can be seen as follows. Problem (4.2) has a unique time-periodic solution. For
a given multiharmonic right hand side u, it is shown in Theorem 4.2, that there exists a uniquely
determined solution of the form (4.4), that obviously is time-periodic. Therefore, the unique time-
periodic solution has to obtain the multiharmonic structure.
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4.3 Time-periodic discretization

In this section we extend the analysis of the previous one to the case of infinite Fourier series. Let us
assume, that the right hand side is given by ũ in terms of a Fourier series, i.e.,

ũ(t) =
∞∑

k=0

uck cos(kωt) + usk sin(kωt), (4.6)

with uck, u
s
k ∈ V ∗, and suppose, that we have a periodic solution ỹ with the same period T = 2π/ω.

Then ỹ has a representation as Fourier series, i.e.,

ỹ(t) =
∞∑

k=0

yck cos(kωt) + ysk sin(kωt), (4.7)

with yck, y
s
k ∈ V . We start by investigating the right spaces for the Fourier expansions ỹ and ũ with

respect to the Fourier coefficients y = (yc0, y
c
1, y

s
1, . . .) and u = (uc0, u

c
1, u

s
1, . . .), respectively.

Clearly, ỹ ∈ L2,per((0, T ), V ) and therefore, ‖ỹ‖L2((0,T ),V ) < ∞. Furthermore, for functions of the
form (4.7), we introduce a norm based on the Fourier coefficients, given by

∥∥y
∥∥2

lr2(V )
= ‖yc0‖2V +

∞∑

k=1

∑

j∈{c,s}

[
k2r〈I(yjk), y

j
k〉+ k2r−1‖yjk‖2V

]
,

for r ∈ {1/2, 1}. Using this norm, we can define the space of Fourier coefficients, abbreviated by
y = (yc0, y

c
1, y

s
1, . . .), in terms of

lr2(V ) :=
{
y ∈ V N :

∥∥y
∥∥
lr2(V )

<∞
}
.

Indeed, the space lr2(V ) is a Hilbert space. We continue by defining the operators A : l
1
2
2 (V ) → l

1
2
2 (V )∗,

by

〈A y, v〉
l
1
2
2 (V )∗×l

1
2
2 (V )

:=

∫ T

0

〈
∂

∂t
ỹ(·, t) +A ỹ(·, t), ṽ(·, t)

〉
dt,

and U ∈ l
1
2
2 (V )∗, by

〈U , v〉
l
1
2
2 (V )∗×l

1
2
2 (V )

:=

∫ T

0

〈ũ(·, t), ṽ(·, t)〉 .

Now we are in the position to state the variational problem in the Fourier space. Find y ∈ l
1
2
2 (V ),

such that
〈A y, v〉

l
1
2
2 (V )∗×l

1
2
2 (V )

= 〈U , v〉
l
1
2
2 (V )∗×l

1
2
2 (V )

, (4.8)

for all v ∈ l
1
2
2 (V ). The unique solvability of the variational problem (4.8) is addressed in the following

theorem.

Theorem 4.4. Suppose, that the source u is given by a Fourier series

u(t) =
∞∑

k=0

uck cos(kωt) + usk sin(kωt),

with Fourier coefficients ujk ∈ V ∗, for all k ∈ N and j ∈ {c, s}. Then the variational problem (4.8) has
a unique periodic steady state solution. If moreover

∑∞
k=0 y

c
k = y0, the periodic steady state solution

also satisfies the initial condition and hence solves the initial value problem (4.1).
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Proof. We want to apply Theorem 2.1 and therefore we have to verify the inf-sup and sup-sup
conditions. Firstly, the upper bound follows by reapplication of Cauchy’s inequality and boundedness
of the operator A. Indeed, we have

〈A y, v〉
l
1
2
2 (V )∗×l

1
2
2 (V )

=

∫ T

0

〈
∂

∂t
ỹ(·, t) +A ỹ(·, t), ṽ(·, t)

〉
dt

≤ c

∞∑

k=1

k [〈I(ysk), vck〉 − 〈I(yck), vsk〉] + 〈Ayc0, vc0〉+
∑

j∈{c,s}

∞∑

k=1

〈Ayjk, v
j
k〉

≤ c ‖y‖
l
1
2
2 (V )

‖v‖
l
1
2
2 (V )

,

with a constant c, that only depends on the boundedness constant of the operator A and the frequency

ω. In order to prove the inf-sup condition, we first use the special test function y† ∈ l
1
2
2 (V ) defined

via

ỹ†(t) := yc0 +

∞∑

k=1

ysk cos(kωt)− yck sin(kωt).

Using this special test function, we obtain

〈A y, y†〉
l
1
2
2 (V )∗×l

1
2
2 (V )

=

∫ T

0

〈
∂

∂t
ỹ(·, t) +A ỹ(·, t), ỹ†(·, t)

〉
dt ≥ c

∞∑

k=1

∑

j∈{c,s}
k〈I(yjk), y

j
k〉,

with some constant c, only depending on the frequency ω. Secondly, due to the coercivity of A, we
have

〈A y, y〉
l
1
2
2 (V )∗×l

1
2
2 (V )

=

∫ T

0

〈
∂

∂t
ỹ(·, t) +A ỹ(·, t), ỹ(·, t)

〉
dt ≥ c


‖yc0‖2V +

∞∑

k=1

∑

j∈{c,s}
‖yjk‖2V


 ,

with some constant c, only depending on the coercivity constant of A. Combining the last two
equations, we obtain

〈A y, y† + y〉
l
1
2
2 (V )∗×l

1
2
2 (V )

≥ c ‖y‖2
l
1
2
2 (V )

.

Using the fact, that ‖y† + y‖2
l
1
2
2 (V )

=
√
2‖y‖2

l
1
2
2 (V )

, the inf-sup constant follows.

4.4 Galerkin approximation

In this section we use the multiharmonic approach of Section 4.2 as a Galerkin approximation for
time-periodic problems, and provide a discretization error analysis.

Let us introduce the family of subspaces l
1
2

2,N (V ) ⊂ l
1
2
2 (V ) by

l
1
2

2,N (V ) :=
{
y ∈ l

1
2
2 (V ) : yjk = 0, j ∈ {c, s}, ∀ k > N

}
.

Using l
1
2

2,N (V ), we can state the Galerkin system: Find y
N

∈ l
1
2

2,N (V ), such that

〈A y
N
, vN 〉

l
1
2
2 (V )∗×l

1
2
2 (V )

= 〈U , vN 〉
l
1
2
2 (V )∗×l

1
2
2 (V )

, (4.9)

for all vN ∈ l
1
2

2,N (V ). The variational problem (4.9) has a unique solution y
N

∈ l
1
2

2,N (V ), since the
proof of Theorem 4.4 can be repeated step by step.
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Due to Lemma 2.5, we can estimate the discretization error in terms of the best approximation error,
i.e.,

‖y − y
N
‖
l
1
2
2 (V )

≤ c inf
vN∈l

1
2
2,N (V )

‖y − vN‖
l
1
2
2 (V )

.

Obviously, the approximation error to some function ỹ, cf. (4.7), can be estimated by SN ỹ, given by

SN ỹ :=

N∑

k=0

yck cos(kωt) + ysk sin(kωt),

associated with the vector of the Fourier coefficients ỹ
N

∈ l
1
2
2 (V ). Therefore, we obtain

inf
vN∈l

1
2
2,N (V )

‖y − vN‖2
l
1
2
2 (V )

≤ ‖y − ỹ
N
‖2
l
1
2
2 (V )

=
∞∑

k=N+1

∑

j∈{c,s}

[
k〈I(yjk), y

j
k〉+ ‖yjk‖2V

]

≤ cN−1
∞∑

k=N+1

∑

j∈{c,s}

[
k2〈I(yjk), y

j
k〉+ k‖yjk‖2V

]
≤ cN−1‖y‖2l12(V ),

with some constant c independent of N . Therefore the discretization error is fully determined by
the approximation properties of Fourier series approximations. The main result is summarized in the
following theorem.

Theorem 4.5. Suppose, that the source u is given by a Fourier series

u(t) =
∞∑

k=0

uck cos(kωt) + usk sin(kωt), (4.10)

with Fourier coefficients ujk ∈ V ∗, for all k ∈ N and j ∈ {c, s}. Let y be the solution of (4.8), and y
N

be the solution of (4.9). Suppose, that y ∈ l12(V ), then the following a priori error estimate is valid

‖y − y
N
‖
l
1
2
2 (V )

≤ cN− 1
2 ‖y‖l12(V ), (4.11)

where the constant c is independent of N .

Remark 4.6. The assumption (4.10) is not very restrictive, since every function v ∈ L2(0, T ) pos-
sesses a convergent Fourier series representation.

Remark 4.7. For the solution ỹ ∈ W 1
2 ((0, T ), V,H) of (4.2), the error estimate (4.11) immediately

implies the weaker estimate

‖ỹ − SN ỹ‖L2((0,T ),V ) ≤ cN− 1
2 ‖ỹ‖W 1

2 ((0,T ),V,H),

with some constant c independent of N .

Remark 4.8. By introducing a Galerkin discretization of the full time-periodic case, we end up with
the same kind of systems as in (4.5). Therefore, for numerical treatment, it is sufficient to investigate
the properties of the system (4.5).

4.5 Optimal control problems

In time-periodic optimization, the goal of optimization is to find the optimal control, which minimizes
the objective functional J over a set of admissible controls, and in addition induces a prescribed
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cyclic state with a fixed period, e.g. [1, 65, 86]. Therefore, let us consider the abstract minimization
functional

J (y, u) :=
1

2
‖y − yd‖2L2((0,T ),H) +

λ

2
‖u‖2L2((0,T ),H),

with given desired state yd ∈ L2((0, T ), H) and given regularization parameter λ > 0. The corre-
sponding minimization problem reads as: Find (ŷ, û) ∈ V ×H, such that

J (ŷ, û) = min
(y,u)∈V×H

J (y, u), (4.12)

where (y, u) fulfills (4.2). The minimization problem (4.12) obtains a unique solution. The solution
can be determined via the optimality system, that is given as follows: Find (y, u, p) ∈ V × H × V ,
such that 




− ∂

∂t
p+Ap+ I(y) = I(yd), in L2((0, T ), V

∗),

λu− p = 0, in L2((0, T ), H),

∂

∂t
y +Ay = u, in L2((0, T ), V

∗),

y(0) = y(T ), p(0) = p(T ), in H.

(4.13)

One important property of the system (4.13) is, that a periodicity condition is obtained for both, the
state y and the co-state p. This is in stark contrast to the case of optimal control problems for initial
value problems, where a forward and a backward problem have to be solved for the state and the
co-state, respectively. Therefore, we obtain a symmetry of the state and the co-state concerning the
initial condition.
In the usual manner, the control u can be eliminated. This gives rise to the reduced optimality
system: Find (y, p) ∈ V 2, such that





− ∂

∂t
p+Ap+ I(y) = I(yd), in L2((0, T ), V

∗),

∂

∂t
y +Ay − 1

λ
I(p) = 0, in L2((0, T ), V

∗),

y(0) = y(T ), p(0) = p(T ), in H.

The reduced optimality system is the starting point of a discretization in time. Due to the periodic
structure of the optimality system, a discretization in terms of a Fourier series approximation pops
up naturally.
Let us assume, that the desired state yd(t) is given by a multiharmonic excitation, i.e.,

yd(t) =

N∑

k=0

ycd,k cos(kωt) + ysd,k sin(kωt),

with the Fourier coefficients ycd,k, y
s
d,k ∈ H, the base frequency ω = 2π/T > 0 and some finite number

N ∈ N. Due to the linearity of the minimization problem, the state y and the control u can be
represented in the same form as the desired state yd, cf. (4.4), (4.3) and Remark 4.3.
Again, the minimization problem decouples with respect to the modes k. Consequently, we are dealing
with the following reduced optimality system in the frequency domain: Find (yc0, p

c
0) ∈ V 2, such that





I(yc0) +Apc0 = I(ycd,0), in V ∗,

A yc0 −
1

λ
I(pc0) = 0, in V ∗,

(4.14a)
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and, for k = 1, . . . , N , find (yck, y
s
k, p

c
k, p

s
k) ∈ V 4, such that





I(yck) +Apck − kω I(psk) = I(ycd,k), in V ∗,

I(ysk) + kω I(pck) +Apsk = I(ysd,k), in V ∗,

A yck + kω I(ysk)−
1

λ
I(pck) = 0, in V ∗,

−kω I(yck) +Aysk − 1

λ
I(psk) = 0, in V ∗.

(4.14b)

Theorem 4.9. The variational problem (4.14) has a unique solution.

Proof. Since A is a coercive and bounded operator, and I is a positive and bounded operator, existence
and uniqueness of a solution of (4.14a) and (4.14b) for a fixed mode k follows with Theorem 2.1.



Chapter 5

Iterative solvers and preconditioning

As we have seen in Chapter 3 and Chapter 4, the system of linear equations stemming from harmonic
balance approximations, FEM-BEM coupling methods or optimal control problems typically obtain
saddle point structures. This chapter deals with the iterative solution of saddle point problems: For
given f ∈ R

n, find x ∈ R
n, such that

Ax = f , (5.1)

with the regular system matrix A ∈ R
n×n of the form

A =

(
A BT

B −C

)
. (5.2)

Here A and C are symmetric and positive semi-definite matrices, by which A becomes symmetric
and indefinite, i.e., it has both positive and negative eigenvalues. One of the most famous iterative
methods is the conjugate gradient (CG) method, but due to the indefiniteness of the system matrix
A it may fail if applied to (5.1). One way out is to apply the Bramble Pasciak CG, cf. [30], or
Zulehner CG, cf. [143], that require the construction of appropriate inner products, such that (5.2)
becomes positive definite and self-adjoint with respect to this inner product. Alternative methods
are the minimal residual method, that is designed as a Krylov subspace method for symmetric and
indefinite problems, or the generalized minimal residual method, that is designed to deal with general
non-symmetric problems. Due to the symmetry of (5.2) the minimal residual method is the method
of choice in our framework.

5.1 The preconditioned MinRes method

The minimal residual (MinRes) method was introduced in [128] as a robust iterative method if applied
to symmetric – but not necessary positive definite – linear systems of equations. MinRes belongs to
the large class of Krylov subspace methods, that are known to be among the most effective methods
for linear systems arising from the discretization of partial differential equations. Krylov subspace
methods are composed of simple iterations that produce a sequence of approximations x(k), that
converges to the exact solution, as k increases.
Indeed, in the preconditioned MinRes method, the iterates x(k) are determined by seeking to minimize
the P−1-norm of the residual r(k) = f −Ax(k) over the Krylov subspace Kk(P−1A;P−1r(0)). Here,
the symmetric and positive definite matrix P of the same size as A is called preconditioner (cf.
Section 5.2) and the Krylov subspace is given by

Kk(P−1A;P−1r(0)) := span{P−1r(0), (P−1A)P−1r(0), . . . , (P−1A)kP−1r(0)}.
Hence, the approximation at the step k is given as the solution of the minimization problem

x(k) = argmin
x∈x(0)+Kk(P−1A;P−1r(0))

‖r(k)‖P−1 .

47



48 CHAPTER 5. ITERATIVE SOLVERS AND PRECONDITIONING

This minimization problem is solved by building an orthonormal basis of the Krylov subspace, using
the Lanczos algorithm. The solution of the minimization problem is based on a three-term recurrence
in the Krylov subspace. For more details, we refer to [53]. Finally, this procedure gives rise to the
preconditioned MinRes method as stated in Algorithm 1, see e.g., [53, Algorithm 6.1].

Input: A ∈ R
n×n symmetric and regular, P ∈ R

n×n symmetric and positive definite, right
hand-side f ∈ R

n, initial guess x(0) ∈ R
n.

Output: approximate solution x(k).
Set v(0) := 0, w(0) := 0, w(1) := 0;
Set v(1) := f −Ax(0);
Solve P z(1) = v(1);

Set γ1 :=
√

〈z(1),v(1)〉;
Set z(1) := z(1)/γ1 and v(1) := v(1)/γ1;
Set η0 := γ1, s0 := s1 := 0, c0 := c1 := 1;
Set k := 1;
while not converged do

Set δk := 〈z(k), z(k)〉;
Set v(k+1) := A z(k) − δkv

(k) − γkv
(k−1);

Solve P z(k+1) = v(k+1);

Set γk+1 :=
√

〈z(k+1),v(k+1)〉;
Set z(k+1) := z(k+1)/γk+1 and v(k+1) := v(k+1)/γk+1;

Set α0 := ckδk − ck−1skγk and α1 :=
√
α2
0 + γ2k+1;

Set α2 := skδk + ck−1ckγk and α3 := sk−1γk;
Set ck+1 := α0/α1 and sk+1 := γk+1/α1;
Set w(k+1) := (z(k) − α3w

(k−1) − α2w
(k))/α1;

Set x(k) := x(k−1) + ck+1ηk−1w
(k+1);

Set ηk := −sk+1ηk−1;
Set k := k + 1;

end
Algorithm 1: The preconditioned MinRes method.

As a convergence criteria, e.g. the exceed of the relative norm of the unpreconditioned residual r(k)

in the P−1 norm below a certain tolerance can be used. This quantity can be accessed via the
parameter ηk/η0, since ηk = ‖r(k)‖P−1 . Using this criteria, the convergence result of the MinRes
method is summarized in the following theorem.

Theorem 5.1. Let A be a regular and symmetric matrix. The preconditioned MinRes method applied
to the system Ax = f with some symmetric and positive definite preconditioner P converges to
the solution of this system for an arbitrary initial guess x(0). More precisely, the residual r(2m) =
f −Ax(2m) after 2m iterations can be estimated in terms of the initial residual r(0) as follows:

‖r(2m)‖P−1 ≤ 2qm

1 + q2m
‖r(0)‖P−1 with q =

κP(P−1A)− 1

κP(P−1A) + 1
, (5.3)

where κP(P−1A) := ‖P−1A‖P ‖A−1P‖P is the condition number of the preconditioned system matrix
and, depending on the context, ‖ · ‖P is the P-energy norm or the corresponding matrix norm, i.e.,

‖x‖P = (P x,x)1/2 or ‖A‖P = sup
x∈Rn

‖Ax‖P
‖x‖P

.

Proof. See Greenbaum [61].

Theorem 5.1 states, that the convergence of the MinRes method is fully determined by the condition
number κP(P−1A) of the preconditioned system matrix. Therefore, one of the key goals is to construct
preconditioners, so that the condition number is small, i.e., as close as possible to one.
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Remark 5.2. We mention, that the convergence analysis of the GmRes method [139] applied to
(5.4) is different. Especially, the rate of convergence of the GmRes method cannot be determined just
from the knowledge of the condition number. Therefore, designing and analyzing preconditioners in
a GmRes setting is a much harder topic, cf. [112].

For more details about the preconditioned MinRes method as well as other iterative methods, we
refer to the monographs [53, 61].

5.2 Preconditioners for saddle point problems

Beside the choice of a suitable Krylov subspace method, preconditioning is an important issue. By
multiplying (5.1) by the inverse of a symmetric and positive definite matrix P, called preconditioner,
one tries to improve the convergence rate of any iterative method applied to the resulting system

P−1Ax = P−1f . (5.4)

Here the application of the preconditioner P does not destroy the symmetry property of (5.4), since
P−1A is still symmetric in the P inner product, i.e.,

(P−1Au, v)P = (u,P−1A v)P .

Furthermore, a preconditioner P should

• provide good condition numbers for the preconditioned system matrix and

• be realizable in an optimal way, i.e., the application of the inverse of the preconditioner should
require not more than O(n) operations.

Indeed, these two properties are in stark contrast to each other. While on the one hand the choice
P = A yields the best condition number 1, but the realization of P−1 is as costly as A−1, on the
other hand the choice P = Id does not improve the condition number, but the realization is very
easy. Hence the Holy Grail of preconditioning is to find the right balance between these two issues.
In the survey article [23] a wide range of preconditioners for saddle point problems of the form
(5.1) are discussed. One of the key ideas of constructing preconditioners is, that once a proper
preconditioner for the continuous problem is identified and a stable discretization of the problem
is used, then one obtains the basic structure for the preconditioner of the corresponding discrete
problem, see e.g. [117]. This motivates to study preconditioners in the continuous setting and leads
to the problem setting of well-posedness in non-standard norms. Consequently, the choice of block-
diagonal preconditioners is equivalent to choosing the right scalar product in the underlying Hilbert
space. Based on this observation, for a wide range of problems, block-diagonal preconditioners have
been developed already, see the survey article [117].
One key issue in this thesis is the construction of preconditioners for parameter-dependent problems,
i.e., problems of the form

A(Q)x = f , (5.5)

where the system matrix A(Q) depends on a set of discretization, model or regularization parameters
Q1. In typical applications, the condition number κ(A(Q)) is very large for a huge range of practical
relevant parameter settings Q. Indeed, the ultimate goal is to construct preconditioners P(Q), such
that a condition number bound, uniformly in all feasible parameter sets Q, can be obtained, i.e.,
κ(P−1(Q)A(Q)) ≤ c with c independent of Q and possibly small. Indeed, this property is referred
as robust preconditioning and can be achieved by using appropriate block-diagonal preconditioners.
The approach of this work follows the article [164], that provides a more systematic search for the
appropriate inner products and therefore for robust block-diagonal preconditioners. Indeed, the

1In this thesis, the set Q is typically a subset of {h, ω,N, σ, ν, λ, ε}, cf. Chapter 6 and Chapter 7.
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latter mentioned approach extends the classical saddle point analysis of Brezzi, and a road map of
this approach is given in Subsection 5.2.1. Even more striking, this systematic approach also leads
to the theory of constructing the appropriate inner products by a matrix interpolation technique
and is discussed in Subsection 5.2.2. Moreover, we discuss the relevance and practical realization of
block-diagonal preconditioners in Subsection 5.2.4.

This subsection is heavily based on the work in [117, 164].

5.2.1 Well-posedness in non-standard norms and preconditioning

In this subsection we briefly outline the importance of the choice of the appropriate inner product
and the corresponding norm in the underlying Hilbert space in the context of block-diagonal and
parameter-robust preconditioning. First of all we regard the following relation:

c ‖z‖X ≤ ‖A z‖X∗ ≤ c ‖z‖X , ∀ z ∈ X. (5.6)

Starting from (5.6), an immediate consequence is an estimate of the condition number κ(A) in terms
of c and c, i.e.,

κ(A) := ‖A‖L(X,X∗)‖A−1‖L(X∗,X) ≤
c

c
.

Indeed, the estimate follows from

‖A‖L(X,X∗) = sup
z∈X

‖A z‖X∗

‖z‖X
≤ sup

z∈X

c‖z‖X
‖z‖X

= c,

and by the substitution A−1z = y ∈ X in

‖A−1‖L(X∗,X) = sup
z∈X∗

‖A−1z‖X
‖z‖X∗

= sup
y∈X∗

‖y‖X
‖A y‖X∗

≤ 1

c
.

Furthermore, the relation (5.6) provides the link between the proper choice of the block-diagonal
preconditioner and the classical variational theory of Babuška-Aziz, since (5.6) is nothing else than the
inf-sup and the sup-sup condition that appear in the Theorem of Babuška-Aziz [14], cf. Theorem 2.1.
Consequently, robust estimates of the form (5.6) imply robust estimates for the condition number.
More precisely, in the latter case (5.6) means, that solving the discrete variational problem connected
with the inner product in X supplies a robust preconditioner for A. This can be seen as follows:
By introducing the Riesz map P : X → X∗, the inner product (·, ·)X can be expressed as a duality
product

(·, ·)X = 〈P·, ·〉X∗×X .

Using the Riesz map P, a closed expression of the dual norm can be given in terms of

‖y‖X∗ = sup
x∈X

〈y, x〉
‖x‖X

= sup
x∈X

〈y, x〉√
〈P x, x〉

=
√
〈y,P−1y〉.

Consequently, (5.6) obtains the form

c
√

〈P z, z〉 ≤
√

〈A z,P−1A z〉 ≤ c
√

〈P z, z〉, (5.7)

meaning, that the inverse of the Riesz map in the Hilbert space X is the right preconditioner to be
used in a MinRes setting.
The main question is, how to find the right inner product in X, and therefore the appropriate
preconditioner P. Beside many intuitive approaches (see, e.g., [117]), a constructive way based on
matrix interpolation is presented in the next subsection. Therefore, we revisit the equivalence relation
(5.7) in the simpler case of finite dimensional vector spaces.
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5.2.2 The interpolation method

This subsection follows [164], that provides the theory of constructing robust block-diagonal pre-
conditioners for parameter-dependent saddle point problems. Although the theoretical framework is
quite involving, the idea of constructing parameter-robust preconditioners is very intuitively:

1. Start from at least two parameter-robust preconditioners, that may have no easy realization.

2. Interpolate between these two preconditioners and obtain a family of new preconditioners, where
one of those might come up with an easier realization.

For simplicity, in this subsection we work on the finite dimensional vector space R
n, i.e., all operators

have a representation as matrices and therefore the inner products are well defined via this matrix
representation.
As a starting point, we recall the well-known parameter-robust Schur complement preconditioners for
saddle point problems of the form (5.2).

Theorem 5.3. Let A and C according to (5.2) be symmetric and positive definite matrices and let

S = C +BA−1BT and R = A+BTC−1B

be the negative Schur complements of (5.2). If A is preconditioned by

P0 =

(
A 0
0 S

)
or P1 =

(
R 0
0 C

)
, (5.8)

then the eigenvalues of the preconditioned matrices P−1
0 A and P−1

1 A are located in the set (−1, 1−
√
5

2 ]∪
{1} ∪ (1, 1+

√
5

2 ].

Proof. See [109] and [119].

Theorem 5.3 immediately yields the following norm estimates.

Corollary 5.4. The inequalities

c ‖x‖P0
≤ ‖Ax‖P−1

0
≤ c ‖x‖P0

and c ‖x‖P1
≤ ‖Ax‖P−1

1
≤ c ‖x‖P1

(5.9)

are valid for all x ∈ R
n, with c = (

√
5− 1)/2 and c = (

√
5 + 1)/2.

Although, both block-diagonal preconditioners P0 and P1 provide a good condition number, they are
only of theoretical importance, since the application of the inverse of the Schur complements R and S
is hard to realize in general. The idea is to apply the following operator interpolation theorem, which
is based on the construction of intermediate spaces via the so called real method, which includes the
J- and the K-method. The idea of these methods is due to Lions and Peetre and the theory of the
real method is developed e.g. in [24], see also [4].

Theorem 5.5. Let A : Rn −→ R
n be regular with

‖Ax‖Y0
≤ c0‖x‖X0

and ‖Ax‖Y1
≤ c1‖x‖X1

,

‖A−1y‖X0 ≤ c2‖y‖Y0 and ‖A−1y‖X1 ≤ c3‖y‖Y1 ,

where the norms ‖ · ‖Xi
and ‖ · ‖Yi

are the interpolation norms associated to the inner products

(x,y)Xi
= 〈Mi x,y〉 and (x,y)Yi

= 〈Ni x,y〉,

with symmetric positive definite matrices M0,M1, N0, N1 ∈ R
n×n. Then, for Xθ = [X0, X1]θ and

Yθ = [Y0, Y1]θ with θ ∈ [0, 1], we have

cθ−1
2 c−θ

3 ‖x‖Xθ
≤ ‖Ax‖Yθ

≤ c1−θ
0 cθ1‖x‖Xθ

. (5.10)
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The norms ‖ · ‖Xθ
and ‖ · ‖Yθ

are the norms associated to the inner products

(x,y)Xθ
= 〈Mθ x,y〉 with Mθ = [M0,M1]θ :=M

1/2
0

(
M

−1/2
0 M1M

−1/2
0

)θ

M
1/2
0 ,

(x,y)Yθ
= 〈Nθ x,y〉 with Nθ = [N0, N1]θ := N

1/2
0

(
N

−1/2
0 N1N

−1/2
0

)θ

N
1/2
0 .

Here, the square root of a symmetric and positive definite matrix M is defined by M =M
1
2M

1
2 .

Proof. See Adams and Fournier [4].

Hence, from interpolating between the block-diagonal preconditioners P0 and P1, we can obtain again
parameter-independent condition number estimates for all θ ∈ [0, 1]. Indeed, choosing M0 = P0,
M1 = P1, N0 = P−1

0 and N1 = P−1
1 in Theorem 5.5, one obtains the family of preconditioners

Pθ = [P0,P1]θ =

(
[A,R]θ 0

0 [S,C]θ

)
. (5.11)

Due to Theorems 5.3 and 5.5, we obtain the estimates

c ‖x‖Pθ
≤ ‖Ax‖P−1

θ
≤ c ‖x‖Pθ

,

which yield a robust estimate of the condition number

κPθ
(P−1

θ A) = ‖P−1
θ A‖Pθ

‖(P−1
θ A)−1‖Pθ

≤ c

c
, (5.12)

with positive constants c = (
√
5− 1)/2 and c = (

√
5 + 1)/2. Indeed, the estimates follow from

‖P−1
θ A‖Pθ

= sup
x∈Rn

‖P−1
θ Ax‖Pθ

‖x‖Pθ

= sup
x∈Rn

‖Ax‖P−1
θ

‖x‖Pθ

≤ c,

and by the substitution (P−1
θ A)−1y = x ∈ R

n

‖(P−1
θ A)−1‖Pθ

= sup
x∈Rn

‖P−1
θ Ax‖Pθ

‖x‖Pθ

= sup
y∈Rn

‖y‖Pθ

‖P−1
θ Ay‖Pθ

= sup
y∈Rn

‖y‖Pθ

‖Ay‖P−1
θ

≤ 1

c
.

Up to now, the condition number bound (5.12) is only a result of theoretical importance, since neither
it is clear if Pθ can be computed in an explicit way, nor if the application of Pθ can be realized in
a robust and optimal way. It turns out, that in specific regimes, including our applications, the
interpolation in (5.11) leads to nice expressions for certain choices of θ. Especially, the choice θ = 1/2
plays an important role in many applications, cf. Subsection 6.1.4 and Subsection 7.1.4. In these
cases, Pθ can be replaced again by spectral equivalent preconditioners, cf. Subsection 5.2.4.

We mention, that the same approach can also be realized in a general Hilbert space setting. For more
details about the construction of preconditioners by interpolation, we refer to the article [164].

5.2.3 Inexact Schur complement preconditioners

Let us consider the saddle point equation

A =

(
A BT

B −C

)
.

Furthermore, let us assume that we have a preconditioner P for A, i.e., there exist constants c and
c, such that

c ‖x‖P ≤ ‖Ax‖P−1 ≤ c ‖x‖P , ∀x ∈ R
m. (5.13)
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Then candidates for robust preconditioners are the Schur complement preconditioners

P1 =

(
P 0
0 C +BP−1BT

)
and P2 =

(
P +BTA−1B 0

0 C

)
.

The preconditioners P1 and P2 are referred as inexact Schur complement preconditioners. In general,
the spectral equivalence (5.13) does not imply a spectral equivalence of the form

cIS ‖x‖Pi
≤ ‖Ax‖P−1

i
≤ cIS ‖x‖Pi

, ∀x ∈ R
n, i = 1, 2, (5.14)

for the preconditioned saddle point matrix P−1
i A. Anyhow, in many cases the spectral equivalence

(5.14) can be deduced separately. Therefore, beside of the interpolation method presented in the
previous subsection, the method of inexact Schur complement preconditioning also offers another
possibility to derive candidates for parameter-robust preconditioners.

5.2.4 Robust and optimal preconditioners

For the construction of preconditioners, it is important, that we are allowed to replace one precondi-
tioner by another spectral equivalent preconditioner. This is precisely the case, that allows to replace
computationally costly preconditioners by more effective ones. Of course, changing the preconditioner
also effects the bound of the condition number of the new preconditioned systems. Hence the effect
of changing preconditioners is topic of this subsection.

Spectral equivalent preconditioners Let us consider, that we have a preconditioner P ∈ R
n×n

for the system matrix A ∈ R
n×n, that fulfills the following condition number estimate:

κP(P−1A) = ‖P−1A‖P‖A−1P‖P ≤ c

c
. (5.15)

Let us take another preconditioner P̃ ∈ R
n×n, that is spectral equivalent to the preconditioner P,

i.e.,

c
˜
xT P̃ x ≤ xTP x ≤ c̃xT P̃ x, ∀x ∈ R

n, (5.16)

with the spectral equivalence constants c
˜

and c̃. The spectral equivalence inequalities (5.16) together
with the condition number estimate (5.15) yield the estimate

κP̃(P̃−1A) = ‖P̃−1A‖P̃‖A−1P̃‖P̃ ≤ c c̃

c c
˜
= κP(P−1A)κP̃(P̃−1P) (5.17)

for the condition number of P̃−1A with respect to the P̃ energy norm. Indeed, on the one hand we
have

‖P̃−1A‖2P̃ = sup
x∈Rn

(P̃−1Ax,Ax)

(P̃ x,x)
≤ c̃2 sup

x∈Rn

(P−1Ax,Ax)

(P x,x)
= c̃2‖P−1A‖2P .

On the other hand, using the substitution x = P̃−1y, we get the estimate

‖A−1P̃‖2P̃ = sup
x∈Rn

(P̃A−1P̃ x,A−1P̃ x)

(P̃ x,x)
= sup

y∈Rn

(P̃A−1y,A−1y)

(P̃−1y,y)
≤ c

˜
−2‖A−1P‖2P .

Hence (5.17) follows.
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Spectral equivalent preconditioners in the case of block-diagonal preconditioners Let us
consider a preconditioner P of a block-diagonal form, i.e.,

P =



P(1)

. . .
P(d)


 , (5.18)

with P(i) ∈ R
n(i)×n(i)

, n(1) + . . .+ n(d) = n. Suppose, that for the individual blocks P(i), i = 1, . . . , n
spectral equivalent matrices P̃(i) are available, i.e.,

c
˜
(i) xT P̃(i)x ≤ xTP(i)x ≤ c̃(i) xT P̃(i)x, ∀x ∈ R

n(i)

.

Then for another block-diagonal preconditioner P̃, given by

P̃ =



P̃(1)

. . .
P̃(d)


 , (5.19)

the following spectral equivalence is valid

(
min

i=1,...,d
c
˜
(i)

)
xT P̃x ≤ xTPx ≤

(
max

i=1,...,d
c̃(i)

)
xT P̃x, ∀x ∈ R

n. (5.20)

A direct consequence of (5.19) and (5.20) is the condition number estimate

κP̃(P̃−1A) = ‖P̃−1A‖P̃‖A−1P̃‖P̃ ≤ c maxi=1,...,d c̃
(i)

c mini=1,...,d c˜
(i)
.

This result teaches us, that the individual blocks P(i) of the block-diagonal preconditioner P can be
replaced by spectral equivalent preconditioners P̃(i) again. Hence, in order to construct a fully robust
preconditioner for A, the following step-by-step strategy can be pursued:

1. Design a robust block-diagonal preconditioner, e.g., by using the interpolation method presented
in Subsection 5.2.2 or the method of inexact Schur complement preconditioning presented in
Subsection 5.2.3.

2. Construct or use already existing robust preconditioners for the individual diagonal blocks.

We mention, that this approach is strongly linked to the method of operator preconditioning, see e.g.,
[82], where the common ingredients are the use of mapping properties of the underlying continuous
operators and numerical stability to derive the basic structure of the preconditioners for the finite-
dimensional systems derived from the discretization procedure.

The approach of block-diagonal preconditioning combined with the MinRes method as the Krylov
subspace method of our choice results in Algorithm 2.
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Input: A ∈ R
n×n, P ∈ R

n×n as given in (5.18), right hand-side f ∈ R
n, initial guess

x(0) = (x1
(0), . . . ,xd

(0)) ∈ R
n.

Output: approximate solution x(k) = (x1
(k), . . . ,xd

(k)) ∈ R
n.

Set v(0) := 0, w(0) := 0, w(1) := 0;
Set v(1) := f −Ax(0);
for i = 1 to d do

Solve P(i)zi
(1) = vi

(1);
end

Set γ1 :=
√

〈z(1),v(1)〉;
Set z(1) := z(1)/γ1 and v(1) := v(1)/γ1;
Set η0 := γ1, s0 := s1 := 0, c0 := c1 := 1;
Set k := 1;
while not converged do

Set δk := 〈z(k), z(k)〉;
Set v(k+1) := A z(k) − δkv

(k) − γkv
(k−1);

for i = 1 to d do
Solve P(i)zi

(k+1) = vi
(k+1);

end

Set γk+1 :=
√

〈z(k+1),v(k+1)〉;
Set z(k+1) := z(k+1)/γk+1 and v(k+1) := v(k+1)/γk+1;

Set α0 := ckδk − ck−1skγk and α1 :=
√
α2
0 + γ2k+1;

Set α2 := skδk + ck−1ckγk and α3 := sk−1γk;
Set ck+1 := α0/α1 and sk+1 := γk+1/α1;
Set w(k+1) := (z(k) − α3w

(k−1) − α2w
(k))/α1;

Set x(k) := x(k−1) + ck+1ηk−1w
(k+1);

Set ηk := −sk+1ηk−1;
Set k := k + 1;

end
Algorithm 2: The block-diagonal preconditioned MinRes method.
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Chapter 6

Time-periodic eddy current problems

In eddy current computations with some time-periodic excitation of the right hand side, the steady
state solution is often sufficient to describe the asymptotic electromagnetic processes after some
initial or warm-up phase. One of the most challenging problems in computational electromagnetics
is the efficient computation of solutions of time-periodic problems. Due to the periodic structure, an
approximation in time in terms of Fourier series pops up naturally.
Therefore, this chapter is devoted to the simulation of linear and time-periodic eddy current problems
by the MH-FEM-BEM method. Using the results of Chapter 4, we switch from the time domain to
the frequency domain. The resulting frequency domain equations are discretized in terms of a finite
element method or in terms of a finite element - boundary element coupling method, i.e., each
Fourier coefficient is approximated by a FEM or FEM-BEM coupling method, respectively. Due
to the linearity of our model problem, we observe a decoupling with respect to the Fourier modes
k = 0, . . . , N . For each mode k, we derive appropriate variational formulations for the frequency
domain equations and show well-posedness in some non-standard norms. In order to obtain these
non-standard norms, we heavily stress the theory developed in Chapter 5. Therefore, in this chapter,
the main emphasize is on deriving candidates for these non-standard norms in a constructive fashion.
Based on these well-posedness results, we propose block-diagonal preconditioners for the resulting
systems of linear equations and provide rigorous condition number estimates for the preconditioned
systems, that are uniform in all involved discretization and model parameters.
This chapter is divided into two main parts:

• We start by analyzing the eddy current problem on the bounded domain Ω1, discretized in
terms of the MH-FEM method. For the frequency domain equations, various commonly used
variational formulations in primal and mixed forms are derived and discretized in terms of the
finite element method. These different variational formulations are important for the analysis
of different settings in the subsequent chapters, e.g. Chapter 7.

• In the second part, we extend the results obtained in the first one, by treating the exterior
domain with a FEM-BEM coupling method leading to the full MH-FEM-BEM method. Again,
we state appropriate variational formulations and analyze them.

The different primal and mixed variational formulations, that are derived for the frequency domain
equations of the periodic eddy current problem, rely on already existing primal and mixed variational
formulations for magnetostatic problems, see, e.g., [107]. Indeed, parameter-robust block-diagonal
preconditioners have already been developed for a full range of variational formulations, see, e.g., the
review article [117]. In our setting, the construction of block-diagonal preconditioners is even more
involving, since we are dealing with a full range of model (ν, σ) and discretization parameters (h, ω,
N), and additionally our systems obtain two-, three-, or four-fold saddle point structures.
Another important issue is, that in view of the charge conservation law, the applied current u needs
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58 CHAPTER 6. TIME-PERIODIC EDDY CURRENT PROBLEMS

to satisfy the following consistency conditions

divu = 0 in Ω1, u · n = 0 on Γ, (6.1)

cf. Section 1.1. Throughout this work, this condition is claimed in a weak sense, i.e., we assume that
the given right hand side u(t) is weakly divergence-free, i.e., for all t,

(u(t),∇p)0,Ω1
= 0, ∀ p ∈ H1(Ω1). (6.2)

The chapter is completed by a full space- and time-discretization error analysis and the discussion of
the application of the developed preconditioned solvers to nonlinear eddy current problems.

6.1 Symmetric FEM formulations

In this section, we restrict ourselves to the case of the conducting domain Ω1, i.e., a bounded domain.
Therefore, we are dealing with the following system of partial differential equations





σ
∂y

∂t
+ curl(ν curl y) = u, in Ω1 × (0, T ),

div(σy) = 0, in Ω1 × (0, T ),

y(0) = y(T ), in Ω1,

y × n = 0, on Γ× (0, T ),

(6.3)

where we have added homogeneous Dirichlet boundary conditions on Γ.
The theory presented in this section is restricted to the case of strictly positive conductivity σ.
However, the finite element analysis can also be extended to the case of a bounded domain consisting
of both, conducting and non-conducting domains. In these cases, we have σ ≥ 0, and therefore the
non-conducting domains have to be treated by a parabolic or an elliptic regularization. In the case
of parabolic regularization the conductivity σ is replaced by σε := max(σ, ε) with some ε > 0. In
the case of elliptic regularization, an additional lower order term εy is added to the first equation in
(6.3). For both regularization methods, an additional error of order O(ε) is introduced, cf. [136, 160].

6.1.1 Multiharmonic discretization

Following Chapter 4, we assume that the time-periodic right hand side u is given by a multiharmonic
excitation in terms of a truncated Fourier series, i.e.,

u(x, t) =
N∑

k=0

uc
k(x) cos(kωt) + us

k(x) sin(kωt). (6.4)

The divergence constraint imposed on u, cf. (6.2), is also valid in the frequency domain, i.e., for all
modes k = 0, . . . , N and for j ∈ {c, s}. Indeed, we have

0 = (u(t),∇p)0,Ω1 =

N∑

k=0

(uc
k,∇p)0,Ω1 cos(kωt) + (us

k,∇p)0,Ω1 sin(kωt), ∀ t ∈ (0, T ).

Due to the linear independence of the sine and cosine functions, we immediately obtain, that the
amplitudes u

j
k are weakly divergence-free as well, i.e.,

(uj
k,∇p)0,Ω1 = 0, ∀ p ∈ H1

0 (Ω1), k = 0, . . . , N, j ∈ {c, s}. (6.5)

Consequently, we have, that the time-periodic solution y, can also be expressed in terms of the same
frequency ω and the amplitudes yc

k and ys
k, i.e.,

y(x, t) =
N∑

k=0

yc
k(x) cos(kωt) + ys

k(x) sin(kωt). (6.6)
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Furthermore, analogous to (6.5), div(σy) = 0 is also imposed in the frequency domain. Using the
multiharmonic representation of the solution (6.6), we can rewrite the eddy current problem (6.3) in
the frequency domain as follows:

For k = 1, . . . , N , find (yc
k,y

s
k):





kωσ ys
k + curl(ν curl yc

k) = uc
k, in Ω1,

−kωσ yc
k + curl(ν curl ys

k) = us
k, in Ω1,

kω div(σyc
k) = 0, in Ω1,

kω div(σys
k) = 0, in Ω1,

yc
k × n = 0, on ∂Ω1,

ys
k × n = 0, on ∂Ω1,

(6.7)

where we have multiplied the gauging equations div(σyj
k) = 0, j ∈ {c, s}, by the base frequency kω.

A first observation clarifies, that the divergence constraint on y
j
k is redundant in certain settings.

Applying the divergence operator to the first two equations in (6.7) yields

kω div(σys
k) = divuc

k and − kω div(σyc
k) = divus

k.

Therefore, the demand on the right hand side u to be divergence-free is sufficient to guarantee that
the solution y is divergence-free as well. Of course, the application of the div operator has to be
thought in the weak sense. This property is exploited in certain variational formulations to drop the
divergence constraints on the amplitudes of y. Indeed this approach leads to a reduction of degrees
of freedom. Nevertheless in many applications it is essential to keep the divergence constraint.
Furthermore, for the mode k = 0, we are dealing with the following problem.

Find yc
0:





curl(ν curl yc
0) = uc

0, in Ω1,

div(σyc
0) = 0, in Ω1,

yc
0 × n = 0, on ∂Ω1.

(6.8)

In Subsection 3.1.1 we have seen, that the solution of the time-periodic eddy current problem is only
unique up to gradient functions, that are constant in time. Indeed, this property is recovered by
the multiharmonic discretization technique. While for the modes k = 1, . . . , N , that represent the
non-constant parts of the solution, the divergence constraint is not needed, for the mode k = 0, the
divergence constraint is essential to recover the non-unique contribution yc

0 to the solution y.
These systems of partial differential equations are the starting point for the derivation of variational
formulations and the discretization in space by means of the finite element method.
Since the part corresponding to the time derivative vanishes for the case k = 0, this one is funda-
mentally different to the cases k = 1, . . . N . Therefore, the analysis of this case has to be done in a
separate fashion.

6.1.2 Symmetric variational formulation for FEM

In this subsection, we present different variational formulations for the frequency domain equations
(6.7). We investigate both, primal and mixed variational formulations, wherein the Coulomb gauging
condition is incorporated implicitly or explicitly, respectively. All the presented formulations are
equivalent in the sense, that they obtain the same unique solution for the amplitudes yc

k and ys
k.

Since, for all modes k = 1, . . . , N the systems (6.7) have the same structure, we concentrate on the
time-harmonic case, i.e., k = 1. The analysis for the remaining modes can be deduced by formally
setting ω = kω.
Furthermore, we also derive variational formulations for (6.8). The main important difference is, that
in this case the Coulomb gauging condition has to be incorporated explicitly in all settings.

6.1.2.1 Symmetric formulations (k = 1)

We start by deriving the variational formulations for (6.7).
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Formulation FEM 1 If we assume, that the source u is weakly divergence-free, cf. (6.5), we observe
that the gauging condition div(σyj) = 0, for j ∈ {c, s} in (6.7) is fulfilled naturally. Therefore, it is
not necessary to incorporated the gauging condition into the system (6.7) explicitly. Consequently,
the corresponding variational problem can be stated as follows.

Problem 6.1 (Primal formulation). Find (ys,yc) ∈ H0(curl,Ω1)
2, such that

AF1 ((y
s,yc), (vc,vs)) =

∫

Ω1

[uc · vc + us · vs] dx, (6.9)

for all test functions (vc,vs) ∈ H0(curl,Ω1)
2. Here the symmetric and indefinite bilinear form AF1

is given by

AF1 ((y
s,yc), (vc,vs)) : = (ν curl yc, curl vc)0,Ω1 + ω(σys,vc)0,Ω1

− ω(σyc,vs)0,Ω1 + (ν curl ys, curl vs)0,Ω1 .
(6.10)

Problem 6.1 has a unique solution (ys,yc) ∈ H0(curl,Ω1)
2, cf. Lemma 6.10. Additionally, for a

weakly divergence-free source u, cf. (6.5), the solution (ys,yc) ∈ H0(curl,Ω1)
2 is weakly divergence-

free as well, i.e., for j ∈ {c, s} we have

(σyj,∇p)0,Ω1 = 0, ∀ p ∈ H1
0 (Ω1). (6.11)

Formulation FEM 2 Problem 6.2 is nothing than a rescaled version of Problem 6.1.

Problem 6.2 (Primal formulation). Find (yc,ys) ∈ H0(curl,Ω1)
2, such that

AF2 ((y
c,ys), (vc,vs)) =

∫

Ω1

[uc · vc − us · vs] dx, (6.12)

for all test functions (vc,vs) ∈ H0(curl,Ω1)
2. Here the symmetric and indefinite bilinear form AF2

is given by

AF2 ((y
c,ys), (vc,vs)) : = (ν curl yc, curl vc)0,Ω1

+ ω(σys,vc)0,Ω1

+ ω(σyc,vs)0,Ω1
− (ν curl ys, curl vs)0,Ω1

.
(6.13)

Problem 6.2 has a unique solution (yc,ys) ∈ H0(curl,Ω1)
2, cf. Lemma 6.11. Additionally, for a

weakly divergence-free source u, cf. (6.5), the solution (yc,ys) ∈ H0(curl,Ω1)
2 is weakly divergence-

free as well, cf. (6.11).

Formulation FEM 3 In many cases it is very convenient to incorporate the gauging conditions
div(σyj) = 0 (j ∈ {c, s}) in a mixed variational framework. Consequently, the corresponding varia-
tional problem can be stated as follows.

Problem 6.3 (Mixed formulation). Find (yc,ys, pc, ps) ∈ H0(curl,Ω1)
2 ×H1

0 (Ω1)
2, such that

AM1 ((y
c,ys, pc, ps), (vc,vs, qc, qs)) =

∫

Ω1

[uc · vc − us · vs] dx, (6.14)

for all test functions (vc,vs, qc, qs) ∈ H0(curl,Ω1)
2 ×H1

0 (Ω1)
2. Here the symmetric and indefinite

bilinear form AM1 is given by

AM1 ((y
c,ys, pc, ps), (vc,vs, qc, qs)) :=

(ν curl yc, curl vc)0,Ω1
+ ω(σys,vc)0,Ω1

+ ω(σvc,∇pc)0,Ω1
− ω(σvs,∇ps)0,Ω1

−(ν curl ys, curl vs)0,Ω1
+ ω(σyc,vs)0,Ω1

+ ω(σyc,∇qc)0,Ω1
− ω(σys,∇qs)0,Ω1

.

(6.15)
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Problem 6.3 has a unique solution (yc,ys, pc, ps), cf. Lemma 6.12. Additionally, for a weakly
divergence-free source u, cf. (6.5), the solution (ys,yc) ∈ H0(curl,Ω1)

2 is weakly divergence-free as
well, cf. (6.11), and the Lagrange parameters pc and ps vanish at the solution, i.e., pc = 0 and ps = 0.
Indeed, for the choice of the test functions (vc,vs, qc, qs) = (∇g,0, 0, g), with g ∈ H1

0 (Ω1), equation
(6.14) obtains the form: Find pc ∈ H1

0 (Ω1), such that

ω(σ∇g,∇pc)0 =

∫

Ω1

fc · ∇g dx = 0, ∀ g ∈ H1
0 (Ω1).

Therefore, we can conclude, that pc = 0. In the same manner, using the special choice (vc,vs, qc, qs) =
(0,−∇g, g, 0), the same result can be deduced for ps.

Formulation FEM 4 Since at the solution (yc,ys, pc, ps) of Problem 6.3 the Lagrange parameters
vanish, i.e., pc = 0 and ps = 0, we can add a suitable symmetric bilinear form to AM1(·, ·). Indeed,
we choose

c((pc, ps), (qc, qs)) := −ω(σ∇pc,∇qc)0,Ω1 + ω(σ∇ps,∇qs)0,Ω1 . (6.16)

Later on, we will see, that this choice is justified by the properties of the underlying Hilbert spaces.

Problem 6.4 (Mixed formulation with exact modification). Find (yc,ys, pc, ps) ∈ H0(curl,Ω1)
2 ×

H1
0 (Ω1)

2, such that

AM2 ((y
c,ys, pc, ps), (vc,vs, qc, qs)) =

∫

Ω1

[uc · vc − us · vs] dx, (6.17)

for all test functions (vc,vs, qc, qs) ∈ H0(curl,Ω1)
2 ×H1

0 (Ω1)
2. Here the symmetric and indefinite

bilinear form AM2 is given by

AM2((y
c,ys, pc, ps), (vc,vs, qc, qs)) := AM1((y

c,ys, pc, ps), (vc,vs, qc, qs))

− ω(σ∇pc,∇qc)0,Ω1
+ ω(σ∇ps,∇qs)0,Ω1

.
(6.18)

Problem 6.4 has a unique solution (yc,ys, pc, ps), cf. Lemma 6.13. Additionally, the solution of
Problem 6.4 also solves Problem 6.3, and vice versa.

Formulation FEM 5 Finally, we give a primal version of Problem 6.4, which is heavily based on
the Helmholtz decomposition..

Problem 6.5 (Primal formulation with exact modification). Find (yc,ys) ∈ H0(curl,Ω1)
2, such

that

AF3 ((y
c,ys), (vc,vs)) =

∫

Ω1

[uc · vc − us · vs] dx, (6.19)

for all test functions (vc,vs) ∈ H0(curl,Ω1)
2. Here the symmetric and indefinite bilinear form AF3

is given by

AF3 ((y
c,ys), (vc,vs)) :=

(ν curl yc, curl vc)0,Ω1 + ω(σ∇Pσ(y
c),∇Pσ(v

c))0,Ω1 + ω(σys,vc)0,Ω1

−(ν curl ys, curl vs)0,Ω1 − ω(σ∇Pσ(y
s),∇Pσ(v

s))0,Ω1 + ω(σyc,vs)0,Ω1 .

(6.20)

Therein we use the weighted Helmholtz projection Pσ : H0(curl,Ω1) → H1
0 (Ω1), where for given

y ∈ H0(curl,Ω1), p := Pσ(y) ∈ H1
0 (Ω1) is the unique solution of the variational problem. Find

p ∈ H1
0 (Ω1), such that

∫

Ω1

σ∇p · ∇q dx =

∫

Ω1

σy · ∇q dx, ∀ q ∈ H1
0 (Ω1). (6.21)
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Indeed, Pσ projects on the divergence-free part of the Helmholtz decomposition, cf. Lemma 2.6.
Furthermore, the operator Pσ is linear and bounded, i.e.,

‖√σ∇Pσ(y)‖0,Ω1
≤ ‖√σy‖0,Ω1

. (6.22)

The additional expression is chosen in such a way, that it does not vanish on the kernel of the
curl operator, and on the other hand Pσ(y

c) and Pσ(y
s) vanish at the solution, i.e., Pσ(y

c) = 0 and
Pσ(y

s) = 0. Problem 6.5 has a unique solution (yc,ys), cf. Lemma 6.14.
Furthermore, Problem 6.5 is nothing else than an equivalent primal formulation of Problem 6.4.
Indeed, from Problem 6.5, we obtain for j ∈ {c, s} by setting the test functions equal to zero, i.e.,
vj = 0:

ω(σ∇pj ,∇qj)0,Ω1
= ω(σyj,∇qj)0,Ω1

, ∀ qj ∈ H1
0 (Ω1),

and therefore by (6.21) pj = P (yj). Furthermore, for qj = 0, we obtain

BM2((y
c,ys, pc, ps), (vc,vs, 0, 0)) = AF2 ((y

c,ys), (vc,vs)) + ω(σvc,∇pc)0,Ω1 − ω(σvs,∇ps)0,Ω1

= AF2 ((y
c,ys), (vc,vs)) + ω(σ∇Pσ(v

c),∇pc)0,Ω1 − ω(σ∇Pσ(v
s),∇ps)0,Ω1

= AF2 ((y
c,ys), (vc,vs)) + ω(σ∇Pσ(v

c),∇Pσ(y
c))0,Ω1 − ω(σ∇Pσ(v

s),∇Pσ(y
s))0,Ω1

= AF3 ((y
c,ys), (vc,vs)) .

The first part (yc,ys) of the solution (yc,ys, pc, ps) of Problem 6.4 solves Problem 6.5, and vice
versa. The relation pj = Pσ(y

j) = 0 is nothing else than the weakly divergence-free property of the
solution (yc,ys), cf. (6.11).

Formulation FEM 6 In some applications (cf. [100]), it is convenient to work with a scaled version
of Problem 6.1. Hence, we introduce the scaled functions ỹc := (ωσ)−1yc and ṽc := ωσyc.

Problem 6.6 (Scaled primal formulation). Find (ys, ỹc) ∈ H0(curl,Ω1)
2, such that

AF4 ((y
s, ỹc), (ṽc,vs)) =

∫

Ω1

[
(ωσ)−1uc · ṽc + us · vs

]
dx, (6.23)

for all test functions (ṽc,vs) ∈ H0(curl,Ω1)
2. Here the symmetric and indefinite bilinear form AF4

is given by

AF4 ((y
s, ỹc), (ṽc,vs)) : = (ν curl ỹc, curl ṽc)0,Ω1 + σ−1(σys, ṽc)0,Ω1

− (ω2σ)2σ−1(σỹc,vs)0,Ω1
+ (ν curl ys, curl vs)0,Ω1

.
(6.24)

Problem 6.6 has a unique solution (ys, ỹc) ∈ H0(curl,Ω1)
2, cf. Lemma 6.15. Additionally, for a

weakly divergence-free source u, cf. (6.5), the solution (ys, ỹc) ∈ H0(curl,Ω1)
2 is weakly divergence-

free as well.

All the six presented variational formulations are equivalent in the sense, that they obtain the same
unique solution for the amplitudes yc and ys.

6.1.2.2 Symmetric formulations (k = 0)

We continue by deriving variational formulations for (6.8). As we have seen at the beginning of this
chapter, it is essential, to incorporate the gauging conditions div(σyc

0) = 0 in order to recover the
uniqueness of the solution corresponding to the mode k = 0. Due to the absence of a lower order term,
the variational formulations for the mode k = 0 are heavily related to the variational formulations
for the magneto static case, cf. [107].
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Formulation FEM 3 (k = 0) In this setting, the gauging condition is incorporated in a mixed
variational framework.

Problem 6.7 (Mixed formulation). Find (yc
0, p

c
0) ∈ H0(curl,Ω1)×H1

0 (Ω1), such that

AM1,0

(
(yc

0, p
c
0), (v

c, qc)
)
=

∫

Ω1

uc
0 · vcdx, (6.25)

for all test functions (vc, qc) ∈ H0(curl,Ω1) ×H1
0 (Ω1). Here the symmetric and indefinite bilinear

form AM1,0 is given by

AM1,0

(
(yc

0, p
c
0), (v

c, qc)
)
:= (ν curl yc

0, curl v
c)0,Ω1 + (σvc,∇pc0)0,Ω1 + (σyc

0,∇qc)0,Ω1 . (6.26)

Problem 6.7 has a unique solution (yc
0, p

c
0), cf. Lemma 6.17. Additionally, for a weakly divergence-free

source u, cf. (6.5), the solution yc
0 ∈ H0(curl,Ω1) is weakly divergence-free as well, cf. (6.11), and

the Lagrange parameter pc0 vanishes at the solution, i.e., pc0 = 0.

Formulation FEM 4 (k = 0) Since at the solution (yc
0, p

c
0) of Problem 6.7 the Lagrange parameter

vanishes, i.e., pc0 = 0, we can add a suitable symmetric bilinear form to AM1,0(·, ·). Indeed, we choose

c(pc0, q
c) := −(σ∇pc0,∇qc)0,Ω1

. (6.27)

Problem 6.8 (Mixed formulation with exact modification). Find (yc
0, p

c
0) ∈ H0(curl,Ω1)

2×H1
0 (Ω1)

2,
such that

AM2,0

(
(yc

0, p
c
0), (v

c, qc)
)
=

∫

Ω1

uc
0 · vcdx, (6.28)

for all test functions (vc, qc) ∈ H0(curl,Ω1) ×H1
0 (Ω1). Here the symmetric and indefinite bilinear

form AM2,0 is given by

AM2((y
c
0, p

c
0), (v

c, qc)) : = (ν curl yc
0, curl v

c
0)0,Ω1 + (σvc,∇pc0)0,Ω1

+ (σyc
0,∇qc)0,Ω1 − (σ∇pc0,∇qc)0,Ω1 .

(6.29)

Problem 6.8 has a unique solution (yc
0, p

c
0), cf. Lemma 6.16. Additionally, the solution of Problem 6.8

also solves Problem 6.7, and vice versa.

Formulation FEM 5 (k = 0) Finally, we give a primal version of Problem 6.8.

Problem 6.9 (Primal formulation with exact modification). Find yc
0 ∈ H0(curl,Ω1), such that

AF3,0

(
yc
0,v

c
)
=

∫

Ω1

uc
0 · vcdx, (6.30)

for all test functions vc
0 ∈ H0(curl,Ω1). Here the symmetric and positive definite bilinear form AF3,0

is given by

AF3,0

(
yc
0,v

c
)
:= (ν curl yc

0, curl v
c)0,Ω1 + (σ∇Pσ(y

c
0),∇Pσ(v

c))0,Ω1 . (6.31)

Problem 6.9 has a unique solution yc
0. Furthermore, Problem 6.9 is nothing else than an equivalent

primal formulation of Problem 6.8.

All the three presented variational formulations are equivalent in the sense, that they obtain the same
unique solution for the amplitude yc

0.
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6.1.3 Discretization

The variational forms AF1, AF2, AM1, AM2, AF3, AF4, AM1,0, AM2,0 and AF3,0 are the starting
points of a discretization in space. Therefore, we use a regular triangulation Th, with mesh size h > 0,
of the computational domain Ω1 with tetrahedral elements.
On this mesh we consider Nédélec basis functions of lowest order ND0

0(Th), a conforming finite
element subspace of H0(curl,Ω1), and S1

0 (Th), a conforming finite element subspace of H1
0 (Ω1), cf.

Section 2.4. Indeed, the pair (ND0
0(Th),S1

0 (Th)) yields a stable discretization of the mixed variational
problems. Let {ϕi}i=1,Nh

denote the usual edge basis of ND0
0(Th), and let {ψi}i=1,Mh

denote the
usual nodal basis of S1

0 (Th), respectively. We define the following FEM matrices:

(Kν)ij = (ν curlϕi, curlϕj)0,Ω1
,

(Kr,ν)ij = (ν curlϕi, curlϕj)0,Ω1
+ ω(σ∇Pσ,h(ϕi),∇Pσ,h(ϕj))0,Ω1

,

(Mσ,ω)ij = ω(σϕi,ϕj)0,Ω1
,

(M̃σ)ij = σ−1(σϕi,ϕj)0,Ω1
,

(Dσ,ω)ij = ω(σϕi,∇ψj)0,Ω1
,

(Lσ,ω)ij = ω(σ∇ψi,∇ψj)0,Ω1
.

Here, for given yh ∈ ND0
0(Th), ph := Pσ,h(yh) ∈ S1

0(Th) is the unique solution of the variational
form: ∫

Ω1

σ∇ph · ∇qh dx =

∫

Ω1

σyh · ∇qh dx, ∀ qh ∈ S1
0 (Th).

Due to the properties of the underlying operators, the matrix Kν is symmetric and positive semi-
definite, the matrices Kr,ν , Mσ,ω, M̃σ, Lσ,ω are symmetric and positive definite, and the matrix
Dσ,ω has full rank.
The entries of the right hand side vectors are given by the formulas (uc

h)i = (uc,ϕi)0,Ω1 and (us
h)i =

(us,ϕi)0,Ω1 . The resulting systems of the finite element equations have the following structure:

6.1.3.1 Symmetric formulations (k = 1)

Formulation FEM 1:

Find (ys
h,y

c
h)

T ∈ R
2Nh :

(
Mσ,ω Kν

Kν −Mσ,ω

)

︸ ︷︷ ︸
=:AF1

(
ys
h

yc
h

)
=

(
uc
h

us
h

)
.

Formulation FEM 2:

Find (yc
h,y

s
h)

T ∈ R
2Nh :

(
Kν Mσ,ω

Mσ,ω −Kν

)

︸ ︷︷ ︸
=:AF2

(
yc
h

ys
h

)
=

(
uc
h

−us
h

)
.

Formulation FEM 3:

Find (yc
h,y

s
h,p

c
h,p

s
h)

T ∈ R
2(Nh+Mh) :




Kν Mσ,ω Dσ,ω
T 0

Mσ,ω −Kν 0 −Dσ,ω
T

Dσ,ω 0 0 0

0 −Dσ,ω 0 0




︸ ︷︷ ︸
=:AM1




yc
h

ys
h

pc
h

ps
h


 =




uc
h

−us
h

0

0


 .
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Formulation FEM 4:

Find (yc
h,y

s
h,p

c
h,p

s
h)

T ∈ R
2(Nh+Mh) :




Kν Mσ,ω Dσ,ω
T 0

Mσ,ω −Kν 0 −Dσ,ω
T

Dσ,ω 0 −Lσ,ω 0

0 −Dσ,ω 0 Lσ,ω




︸ ︷︷ ︸
=:AM2




yc
h

ys
h

pc
h

ps
h


 =




uc
h

−us
h

0

0


 .

Formulation FEM 5:

Find (yc
h,y

s
h)

T ∈ R
2Nh :

(
Kr,ν Mσ,ω

Mσ,ω −Kr,ν

)

︸ ︷︷ ︸
=:AF3

(
yc
h

ys
h

)
=

(
uc
h

−us
h

)
.

Formulation FEM 6:

Find (ys
h, ỹ

c
h)

T ∈ R
2Nh :

(
M̃σ Kν

Kν −(ωσ)2M̃σ

)

︸ ︷︷ ︸
=:AF4

(
ys
h

ỹc
h

)
=

( 1
σωu

c
h

us
h

)
.

Here we use the scaled variable ỹc
h := (ωσ)−1yc

h.

In fact, the system matrices AF1, AF2, AM1, AM2, AF3 and AF4 are symmetric and indefinite, and
have a saddle point or double saddle point structure. Typically small mesh sizes h, large or small ω
and large jumps in the material coefficients ν and σ across interfaces lead to a dramatic growth in the
condition number of these matrices. Therefore, we expect a very bad convergence rate if any Krylov
subspace method, like the MinRes method, is applied to the unpreconditioned systems of equations.
Hence appropriate preconditioning is an important issue.

6.1.3.2 Symmetric formulations (k = 0)

With the new matrices Dσ = Dσ,1, Lσ = Lσ,1, and Kr,0,ν = Kr,ν |ω=1, the resulting linear systems
for the mode k = 0 have the following forms:

Formulation FEM 3 (k = 0):

Find (yc
h,p

c
h)

T ∈ R
Nh+Mh :

(
Kν Dσ

T

Dσ 0

)

︸ ︷︷ ︸
=:AM1,0

(
yc
h

pc
h

)
=

(
uc
h

0

)
.

Formulation FEM 4 (k = 0):

Find (yc
h,p

c
h)

T ∈ R
Nh+Mh :

(
Kν Dσ

T

Dσ −Lσ

)

︸ ︷︷ ︸
=:AM2,0

(
yc
h

pc
h

)
=

(
uc
h

0

)
.

Formulation FEM 5 (k = 0):

Find yc
h ∈ R

Nh : Kr,0,ν︸ ︷︷ ︸
=:AF3,0

yc
h = uc

h.

In fact, the system matrices AM1,0 and AM2,0 are symmetric and indefinite, and have a saddle point
structure. The system matrix AF3,0 is symmetric and positive definite. Also in these cases, the
condition numbers of the system matrices suffer from small mesh sizes h and large jumps in the
material coefficients ν and σ across interfaces.
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6.1.4 Block-diagonal preconditioners

This subsection is devoted to the construction of parameter-robust preconditioners for the systems
of linear equations of the last subsection. For each proposed formulation, we investigate its structure
to construct a preconditioner either by the matrix interpolation technique, cf. Subsection 5.2.2, or
the technique of inexact Schur complement preconditioning, cf. Subsection 5.2.3. Furthermore, we
provide condition number bounds for the resulting preconditioned systems of linear equations, by
showing well-posedness of the underlying systems of partial differential equations in non-standard
norms.

6.1.4.1 Symmetric formulations (k = 1)

Formulation FEM 1 We explore the 2× 2 block-structure of our system matrix AF1. In order to
construct parameter-robust and block-diagonal preconditioners, we use the matrix interpolation the-
ory presented in Subsection 5.2.2. Since Mσ,ω is symmetric and positive definite, we can build both
Schur complements R and S, given by S = R = Mσ,ω+KνM

−1
σ,ωKν , and therefore the Schur comple-

ment preconditioners (cf. Theorem 5.3). Due to Theorem 5.5 a candidate for a parameter-robust and
block-diagonal preconditioner is an interpolant of the standard Schur complement preconditioners.
Therefore we choose θ = 1/2 and interpolate to obtain a new preconditioner

P̃ =

(
[Mσ,ω,S] 1

2
0

0 [S,Mσ,ω] 1
2

)
.

The following computations are straightforward, using the simple spectral inequality

1√
2
xT (I+A

1
2 )x ≤ xT (I+A)

1
2x ≤ xT (I+A

1
2 )x, ∀x ∈ R

Nh , (6.32)

where I ∈ R
n×n denotes the identity matrix and A ∈ R

n×n is an arbitrary symmetric and positive
definite matrix. Consequently, we can derive another new preconditioner P, that is spectral equivalent
to the interpolated preconditioner P̃:

xT [Mσ,ω,S] 1
2
x = xT [S,Mσ,ω] 1

2
x = xTM

1
2
σ,ω

(
M− 1

2
σ,ω(Mσ,ω +KνM

−1
σ,ωKν)M

− 1
2

σ,ω

) 1
2

M
1
2
σ,ωx

≤ xT

(
Mσ,ω +M

1
2
σ,ω

(
M− 1

2
σ,ωKνM

−1
σ,ωKνM

− 1
2

σ,ω

) 1
2

M
1
2
σ,ω

)
x

= xT
(
Mσ,ω +M

1
2
σ,ω

(
M− 1

2
σ,ωKνM

− 1
2

σ,ω

)
M

1
2
σ,ω

)
x

= xT (Mσ,ω +Kν)x, ∀x ∈ (kerKν)
⊥,

and

xT [Mσ,ω,S] 1
2
x = xT [S,Mσ,ω] 1

2
x = xTM

1
2
σ,ω

(
M− 1

2
σ,ω(Mσ,ω +KνM

−1
σ,ωKν)M

− 1
2

σ,ω

) 1
2

M
1
2
σ,ωx

≥ 1√
2
xT

(
Mσ,ω +M

1
2
σ,ω

(
M− 1

2
σ,ωKνM

−1
σ,ωKνM

− 1
2

σ,ω

) 1
2

M
1
2
σ,ω

)
x

=
1√
2
xT

(
Mσ,ω +M

1
2
σ,ω

(
M− 1

2
σ,ωKνM

− 1
2

σ,ω

)
M

1
2
σ,ω

)
x

=
1√
2
xT (Mσ,ω +Kν)x, ∀x ∈ (kerKν)

⊥.

Hence, from Subsection 5.2.2 and Subsection 5.2.4, we have, that the preconditioner P, given by the
block-diagonal matrix

P =

(
Mσ,ω +Kν 0

0 Mσ,ω +Kν

)
, (6.33)
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is a candidate for a parameter-robust preconditioner. In the subspace
[
(kerKν)

⊥]2 ⊂ R
2Nh , we

immediately obtain the condition number estimate

κP(P−1AF1) := ‖P−1AF1‖P‖A−1
F1P‖P ≤

√
2(
√
5 + 1)√

5− 1
≈ 3.702.

In the next step, we extend the estimate of the condition number to the full vector space R2Nh and even
improve the quantitative condition number bound. Inspired by the structure of the preconditioner
(6.33), we introduce the non-standard norm ‖ · ‖P in H0(curl,Ω1)

2 by

‖(ys,yc)‖2P =
∑

j∈{c,s}
(ν curl yj, curl yj)0,Ω1 + ω(σyj,yj)0,Ω1 .

The main result is summarized in the following lemma, that claims that an inf-sup and a sup-sup
condition are fulfilled with parameter-independent constants, namely 1/

√
2 and 1.

Lemma 6.10. We have

1√
2
‖(ys,yc)‖P ≤ sup

(vc,vs)∈H0(curl,Ω1)2

AF1((y
s,yc), (vc,vs))

‖(vc,vs)‖P
≤ ‖(ys,yc)‖P , (6.34)

for all (ys,yc) ∈ H0(curl,Ω1).

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower estimate can be
attained by choosing vc = yc + ys and vs = ys − yc. Note that, for this special choice of the test
functions, we have ‖(vc,vs)‖P =

√
2‖(ys,yc)‖P .

In general, an inf-sup bound for H0(curl,Ω1)
2 does not imply such a lower bound on the finite

element subspace ND0
0(Th)2. However, in this case the inequalities (6.34) remain also valid for the

Nédélec finite element subspace ND0
0(Th)2, since the proof can be repeated for the finite element

functions step by step. Therefore, we obtain the improved condition number estimate

κP(P−1AF1) := ‖P−1AF1‖P‖A−1
F1P‖P ≤

√
2 ≈ 1.414.

A similar block-diagonal preconditioner, yielding a condition number of
√
2 has also been derived in

[38, 82].

Formulation FEM 2 Due to the non-trivial kernel of the curl operator the matrix Kν is only
positive semi-definite. Therefore, we cannot form the Schur complements and, consequently, the
interpolation theory presented in Subsection 5.2.2 is not applicable. Nevertheless, using the non-
standard P-norm, we can verify an inf-sup and sup-sup condition with parameter-independent con-
stants, namely 1/

√
2 and 1.

Lemma 6.11. We have

1√
2
‖(yc,ys)‖P ≤ sup

(vc,vs)∈H0(curl,Ω1)2

AF2((y
c,ys), (vc,vs))

‖(vc,vs)‖P
≤ ‖(ys,yc)‖P , (6.35)

for all (yc,ys) ∈ H0(curl,Ω1).

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower estimate can be
attained by choosing vc = ys + yc and vs = yc − ys. Note that, for this special choice of the test
functions, we have ‖(vc,vs)‖P =

√
2‖(yc,ys)‖P .

Furthermore, the inequalities (6.35) remain valid for the finite element subspace ND0
0(Th)2, since the

proof can be repeated for the finite element functions step by step. Therefore, we obtain the condition
number estimate

κP(P−1AF2) := ‖P−1AF2‖P‖A−1
F2P‖P ≤

√
2 ≈ 1.414.
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Formulation FEM 3 Since we already have a robust preconditioner for AF2, we pursue the
strategy of inexact Schur complement preconditioning, cf. Subsection 5.2.3. Therefore, we propose
the following block-diagonal inexact Schur complement preconditioner

PM = diag (Mσ,ω +Kν ,Mσ,ω +Kν ,SI ,SI), (6.36)

where SI = Dσ,ω(Mσ,ω+Kν)
−1Dσ,ω

T . Since the matrix Dσ,ω has full rank, the block SI is positive
definite and therefore the whole preconditioner PM is positive definite. According to the choice of
the block-diagonal preconditioner (6.36), we introduce the non-standard norm ‖ · ‖PM

in the product
space H0(curl,Ω1)

2 ×H1
0 (Ω1)

2:

‖(yc,ys, pc, ps)‖2PM
:=

∑

j∈{c,s}
(ν curl yj, curl yj)0,Ω1

+ ω(σyj,yj)0,Ω1

+ sup
vj∈H0(curl,Ω1)

ω2(σvj,∇pj)20,Ω1

(ν curl vj, curl vj)0,Ω1
+ ω(σvj,vj)0,Ω1

.

Therein, the sup-expression is nothing else than the continuous representation of the Schur comple-
ment in (6.36). Before we consider an inf-sup and a sup-sup condition for AM1(·, ·), we have a closer
look at the H1

0 (Ω1) contribution to ‖ · ‖PM
. Indeed, we can verify the following norm equivalence

ω(σ∇pj ,∇pj)0,Ω1
≤ sup

vj∈H0(curl,Ω1)

ω(σvj,∇pj)20,Ω1

(ν curl vj, curl vj)0,Ω1 + ω(σvj,vj)0,Ω1

≤ ω(σ∇pj ,∇pj)0,Ω1 .

The lower bound follows with the choice vj = ∇pj ∈ H0(curl,Ω1), and the upper bound by Cauchy’s
inequality. Therefore, we obtain the identity

sup
vj∈H0(curl,Ω1)

ω(σvj,∇pj)20,Ω1

(ν curl vj, curl vj)0,Ω1
+ ω(σvj,vj)0,Ω1

= ω(σ∇pj ,∇pj)0,Ω1
, ∀ pj ∈ H1

0 (Ω). (6.37)

Consequently, we have the simpler representation of the PM -norm in terms of

‖(yc,ys, pc, ps)‖2PM
=

∑

j∈{c,s}
(ν curl yj, curl yj)0,Ω1

+ ω(σyj,yj)0,Ω1
+ ω(σ∇pj ,∇pj)0,Ω1

.

Furthermore, the identity (6.37) can also be verified for the finite element subspaces S1
0 (Th), where

the supremum is taken over N 0
0 (Th), yielding the new block-diagonal preconditioner

PM = diag (Mσ,ω +Kν ,Mσ,ω +Kν ,Lσ,ω,Lσ,ω).

The main result is summarized in the following lemma, that claims that an inf-sup condition and a
sup-sup condition are fulfilled with parameter-independent constants, namely 1

3
√
2

and 1+
√
5

2 .

Lemma 6.12. We have

1

3
√
2
‖(yc,ys, pc, ps)‖PM

≤ sup
0 6=(vc,vs,qc,qs)

AM1((y
c,ys, pc, ps), (vc,vs, qc, qs))

‖(vc,vs, qc, qs)‖PM

,

1 +
√
5

2
‖(yc,ys, pc, ps)‖PM

≥ sup
0 6=(vc,vs,qc,qs)

AM1((y
c,ys, pc, ps), (vc,vs, qc, qs))

‖(vc,vs, qc, qs)‖PM

,

(6.38)

for all (yc,ys, pc, ps) ∈ H0(curl,Ω1)
2 ×H1

0 (Ω1)
2.

Proof. For the proof, we split the bilinear form AM1 as follows:

AM1((y
c,ys, pc, ps), (vc,vs, qc, qs)) = a((yc,ys), (vc,vs)) + b((vc,vs), (pc, ps)) + b((yc,ys), (qc, qs)),
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with

a((yc,ys), (vc,vs)) := AF2((y
c,ys), (vc,vs)),

b((vc,vs), (pc, ps)) := ω(σvc,∇pc)0,Ω1 − ω(σvs,∇ps)0,Ω1 ,

and verify the conditions in the theorem of Brezzi, cf. Theorem 2.3. The bilinear form a(·, ·) is
bounded with constant 1 and fulfills an inf-sup condition with constant 1/

√
2, cf. Lemma 6.11.

Boundedness of b(·, ·) follows by Cauchy’s inequality, i.e.,

ω(σyj,∇pj)0,Ω1 ≤ ‖√ωσyj‖0,Ω1
‖√ωσ∇pj‖0,Ω1

.

Therefore, boundedness of b(·, ·) follows with constant 1. Finally, the bilinear form b(·, ·), satisfies
an inf-sup condition with constant 1/2. Indeed, for the choices (vc,vs) = (∇pc,0) and (vc,vs) =
(0,∇ps), we obtain

sup
(vc,vs)

b((vc,vs), (pc, ps))√∑
j∈{c,s}(ν curl v

j, curl vj)0,Ω1
+ ω(σvj,vj)0,Ω1

≥ 1

2

∑

j∈{c,s}
ω(σ∇pj ,∇pj)0,Ω1 .

Consequently, the inf-sup and sup-sup condition for AM1(·, ·) can be derived by combining the esti-
mates according to Theorem 2.3.

Furthermore, the inequalities (6.38) remain valid for the finite element subspace ND0
0(Th)2×S1

0 (Th)2,
since the proof can be repeated for the finite element functions step by step. Therefore, we obtain
the condition number estimate

κPM
(P−1

M AM1) := ‖P−1
M AM1‖PM

‖A−1
M1PM‖PM

≤ 3
√
2(1 +

√
5)

2
≈ 6.865.

Formulation FEM 4 Due to the special choice of c(·, ·) in (6.16), again the PM -norm can be used
in this setting. The main result is summarized in the following lemma, that claims that an inf-sup
and a sup-sup condition are fulfilled with parameter-independent constants, namely 1√

2
and 2.

Lemma 6.13. We have

1√
2
‖(yc,ys, pc, ps)‖PM

≤ sup
0 6=(vc,vs,qc,qs)

AM2((y
c,ys, pc, ps), (vc,vs, qc, qs))

‖(vc,vs, qc, qs)‖PM

,

2‖(yc,ys, pc, ps)‖PM
≥ sup

0 6=(vc,vs,qc,qs)

AM2((y
c,ys, pc, ps), (vc,vs, qc, qs))

‖(vc,vs, qc, qs)‖PM

,

(6.39)

for all (yc,ys, pc, ps) ∈ H0(curl,Ω1)
2 ×H1

0 (Ω1)
2.

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower estimate can be
attained by choosing vc = yc − ys, vs = ys + yc, qc = ps − pc and qs = ps + pc. Note that, for this
special choice of the test functions, we have ‖(vc,vs, qc, qs)‖PM

=
√
2‖(yc,ys, pc, ps)‖PM

.

Furthermore, the inequalities (6.39) remain valid for the finite element subspace ND0
0(Th)2×S1

0 (Th)2,
since the proof can be repeated for the finite element functions step by step. Therefore, we obtain
the condition number estimate

κPM
(P−1

M AM2) := ‖P−1
M AM2‖PM

‖A−1
M2PM‖PM

≤ 2
√
2 ≈ 2.865.
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Formulation FEM 5 Due to the exact modification, Kr,ν is positive definite, and therefore, again
the technique of operator interpolation can be used to derive a candidate for a parameter-robust
preconditioner. Anyhow, we verify, that also in this case the P-norm can be used. The main result
is summarized in the following lemma, that claims that an inf-sup condition and a sup-sup condition
are fulfilled with parameter-independent constants, namely 1√

2
and 2.

Lemma 6.14. We have

1√
2
‖(yc,ys)‖P ≤ sup

0 6=(vc,vs)∈H0(curl,Ω1)2

AF3((y
c,ys), (vc,vs))

‖(vc,vs)‖P
≤ 2‖(yc,ys)‖P , (6.40)

for all (yc,ys) ∈ H0(curl,Ω1)
2.

Proof. Boundedness follows from reapplication of Cauchy’s inequality and the estimate (6.22). The
lower estimate can be attained by choosing vc = ys+yc and vs = yc−ys. Note that, for this special
choice of the test functions, we have ‖(vc,vs)‖P =

√
2‖(yc,ys)‖P .

Furthermore, the inequalities (6.40) remain valid for the finite element subspace ND0
0(Th)2, since the

proof can be repeated for the finite element functions step by step. Therefore, we obtain the condition
number estimate

κP(P−1AF3) := ‖P−1AF3‖P‖A−1
F3P‖P ≤ 2

√
2 ≈ 2.865.

Formulation FEM 6 We explore the 2 × 2 block-structure of our system matrix AF4. In order
to construct parameter-robust and block-diagonal preconditioners, we use the matrix interpolation
theory presented in Subsection 5.2.2. Since M̃σ and (ωσ)2M̃σ are both symmetric and positive
definite, we can build both Schur complements R = M̃σ + (ωσ)−2KνM̃

−1
σ Kν and S = (ωσ)2R, and

therefore the Schur complement preconditioners (cf. Theorem 5.3). Due to Theorem 5.5 a candidate
for a parameter-robust and block-diagonal preconditioner is an interpolant of the previous standard
Schur complement preconditioners. Therefore we choose θ = 1/2 and interpolate to obtain a new
preconditioner

P̃S1 =

(
[M̃σ,R] 1

2
0

0 [S, (ωσ)2M̃σ] 1
2

)
=

(
[M̃σ,R] 1

2
0

0 (ωσ)2[M̃σ,R] 1
2

)
.

The following computations are straightforward, using the simple spectral inequality (6.32). Conse-
quently, we can derive another new preconditioner PS1, that is spectral equivalent to the interpolation
preconditioner P̃S1:

xT [M̃σ,R] 1
2
x = xT [R, M̃σ] 1

2
x = xTM

1
2
σ,ω

(
M− 1

2
σ,ω(M̃σ + (ωσ)−2KνM

−1
σ,ωKν)M

− 1
2

σ,ω

) 1
2

M
1
2
σ,ωx

≤ xT

(
M̃σ + (ωσ)−1M

1
2
σ,ω

(
M− 1

2
σ,ωKνM

−1
σ,ωKνM

− 1
2

σ,ω

) 1
2

M
1
2
σ,ω

)
x

= xT
(
M̃σ + (ωσ)−1M

1
2
σ,ω

(
M− 1

2
σ,ωKνM

− 1
2

σ,ω

)
M

1
2
σ,ω

)
x

= xT
(
M̃σ + (ωσ)−1Kν

)
x, ∀x ∈ (kerKν)

⊥,

and

xT [M̃σ,R] 1
2
x = xT [R, M̃σ] 1

2
x = xTM

1
2
σ,ω

(
M− 1

2
σ,ω(M̃σ + (ωσ)−2KνM

−1
σ,ωKν)M

− 1
2

σ,ω

) 1
2

M
1
2
σ,ωx

≥ 1√
2
xT

(
M̃σ + (ωσ)−1M

1
2
σ,ω

(
M− 1

2
σ,ωKνM

−1
σ,ωKνM

− 1
2

σ,ω

) 1
2

M
1
2
σ,ω

)
x

=
1√
2
xT

(
M̃σ + (ωσ)−1M

1
2
σ,ω

(
M− 1

2
σ,ωKνM

− 1
2

σ,ω

)
M

1
2
σ,ω

)
x

=
1√
2
xT

(
M̃σ + (ωσ)−1Kν

)
x, ∀x ∈ (kerKν)

⊥.
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Hence, from Subsection 5.2.4, we have, that the preconditioner PS1, given by the block-diagonal
matrix

PS1 =

(
M̃σ + (ωσ)−1Kν 0

0 (ωσ)2
(
M̃σ + (ωσ)−1Kν

)
)
, (6.41)

is a candidate for a parameter-robust preconditioner. Inspired by the structure of the preconditioner
(6.41), we introduce the non-standard norm ‖ · ‖PS1

in H0(curl,Ω1)
2 by

‖(ys, ỹc)‖2PS1
= (ωσ)−1(ν curl ỹs, curl ỹs)0,Ω1 + σ−1(σys,ys)0,Ω1

+ (ωσ)(ν curl ỹc, curl ỹc)0,Ω1
+ (ωσ)2σ−1(σyc,yc)0,Ω1

.

The main result is summarized in the following lemma, that claims that an inf-sup and a sup-sup
condition are fulfilled with parameter-independent constants, namely 1/

√
2 and 1.

Lemma 6.15. We have

1√
2
‖(ys, ỹc)‖PS1

≤ sup
0 6=(ṽc,vs)∈H0(curl,Ω1)2

AF4((y
s, ỹc), (ṽc,vs))

‖(ṽc,vs)‖PS1

≤ ‖(yc,ys)‖PS1
, (6.42)

for all (ys, ỹc) ∈ H0(curl,Ω1)
2.

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower estimate can be
attained by choosing ṽc = ωσỹc + ys and vs = (ωσ)−1ys − ỹc. Note that, for this special choice of
the test functions, we have ‖(ṽc,vs)‖PS1

=
√
2‖(ys, ỹc)‖PS1

.

Furthermore, the inequalities (6.42) remain valid for the finite element subspace ND0
0(Th)2, since the

proof can be repeated for the finite element functions step by step. Therefore, we obtain the improved
condition number estimate

κPS1
(P−1

S1 AF4) := ‖P−1
S1 AF4‖PS1

‖A−1
F4PS1‖PS1

≤
√
2 ≈ 1.414.

This result has also been derived in [100].

6.1.4.2 Symmetric formulations (k = 0)

In this setting, it is convenient to start the analysis for Formulation FEM 4 (k = 0).

Formulation FEM 4 (k = 0) We explore the 2×2 block structure of our system matrix AM2,0. In
order to construct a parameter-robust and block-diagonal preconditioner, we use a Schur complement
preconditioner, cf. Theorem 5.3. Since Lσ is symmetric and positive definite, we can build the Schur
complement

P0 =

(
Kν +Dσ

TLσ
−1Dσ 0

0 Lσ

)
.

Immediately, we obtain the condition number estimate

κP0
(P−1

0 AM2,0) := ‖P−1
0 AM2,0‖P0

‖A−1
M2,0P0‖P0

≤
√
5 + 1√
5− 1

≈ 2.618. (6.43)

Inspired by the structure of the preconditioner (6.43), we introduce the non-standard norm ‖ · ‖P0
in

H0(curl,Ω1)×H1
0 (Ω1) by

‖(y, p)‖2P0
= (ν curl y, curl y)0,Ω1

+ sup
q∈H1

0 (Ω1)

(σy,∇q)0,Ω1

(σ∇q,∇q)0,Ω1

+ (σ∇p,∇p)0,Ω1 .

The main result is summarized in the following lemma, that claims that an inf-sup and a sup-sup
condition are fulfilled with parameter-independent constants, namely (

√
5− 1)/2 and (

√
5 + 1)/2.



72 CHAPTER 6. TIME-PERIODIC EDDY CURRENT PROBLEMS

Lemma 6.16. We have
√
5− 1

2
‖(yc

0, p
c
0)‖P0 ≤ sup

(vc,qc)∈H0(curl,Ω1)×H1
0 (Ω1)

AM2,0((y
c
0, p

c
0), (v

c, qc))

‖(vc, qc)‖P0

≤
√
5 + 1

2
‖(yc

0, p
c
0)‖P0 ,

(6.44)
for all (yc

0, p
c
0) ∈ H0(curl,Ω1)×H1

0 (Ω1).

Proof. Follows from Theorem 5.3.

Formulation FEM 3 (k = 0) In this setting, again we can use the P0-norm to show well-posedness.
The main result is summarized in the following lemma, that claims that an inf-sup and a sup-sup
condition are fulfilled with parameter-independent constants, namely 1/

√
2 and (1 +

√
5)/2.

Lemma 6.17. We have

1√
2
‖(yc

0, p
c
0)‖P0 ≤ sup

(vc,qc)∈H0(curl,Ω1)×H1
0 (Ω1)

AM1,0((y
c
0, p

c
0), (v

c, qc))

‖(vc, qc)‖P0

≤ 1 +
√
5

2
‖(yc

0, p
c
0)‖P0 , (6.45)

for all (yc
0, p

c
0) ∈ H0(curl,Ω1)×H1

0 (Ω1).

Proof. For the proof, we split the bilinear form AM1,0 as follows:

AM1,0((y
c
0, p

c
0), (v

c, qc)) = a(yc
0,v

c) + b(vc, pc0) + b(yc
0, q

c),

with

a(yc
0,v

c) := (ν curl yc
0, curl v

c)0,Ω1
, b(vc, pc0) := (σvc,∇pc0)0,Ω1

,

and verify the conditions in the theorem of Brezzi, cf. Theorem 2.3. The bilinear forms a(·, ·) and
b(·, ·) are bounded with constant 1. Furthermore, a(·, ·) is coercive on the kernel of b(·, ·), with
constant 1. Indeed,

a(yc
0,y

c
0) = (ν curl yc

0, curl y
c
0)0,Ω1 = (ν curl yc

0, curl y
c
0)0,Ω1 + sup

q∈H1
0 (Ω1)

(σyc
0,∇q)0,Ω1

(σ∇q,∇q)0,Ω1

,

since b(yc
0,∇p) = 0 for all p ∈ H1

0 (Ω1). Finally, the bilinear form b(·, ·) satisfies an inf-sup condition
with constant 1. By using the special test function vc = ∇pc0 and applying Cauchy’s inequality in
the denominator, we obtain

sup
vc∈H0(curl,Ω1)

b(vc, pc0)

(ν curl vc, curl vc)0,Ω1
+ supq∈H1

0 (Ω1)
(σvc,∇q)0,Ω1

(σ∇q,∇q)0,Ω1

≥ (σ∇pc0,∇pc0)0,Ω1

supq∈H1
0 (Ω1)

(σ∇pc,∇q)0,Ω1

(σ∇q,∇q)0,Ω1

≥ (σ∇pc0,∇pc0)0,Ω1 .

Consequently, the inf-sup and sup-sup condition for AM1,0(·, ·) can be derived by combining the
estimates according to Theorem 2.3.

Furthermore, the inequalities (6.45) remain valid for the finite element subspace ND0
0(Th)× S1

0 (Th),
since the proof can be repeated for the finite element functions step by step. Therefore, we obtain
the condition number estimate

κP0
(P−1

0 AM1,0) := ‖P−1
0 AM1,0‖P0

‖A−1
M1,0P0‖P0

≤ 1 +
√
5√

2
≈ 2.288.
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Formulation FEM 5 (k = 0) Due to the primal reformulation, we are already dealing with a
symmetric and positive definite problem consisting of only one block. Anyhow, in this setting, the
area of investigation is the practical realization of the regularized matrix Kr,0,ν .

Lemma 6.18. We have

(σ∇Pσ(y),∇Pσ(y))0,Ω1
= sup

p∈H1
0 (Ω1)

(σy,∇p)20,Ω1

(σ∇p,∇p)0,Ω1

,

for all y ∈ H0(curl,Ω1).

Proof. Using the definition of the Helmholtz projection Pσ, we have

(σ∇Pσ(y),∇Pσ(y))0,Ω1 =
(σy,∇Pσ(y))

2
0,Ω1

(σ∇Pσ(y),∇Pσ(y))0,Ω1

≤ sup
p∈H1

0 (Ω1)

(σy,∇p)20,Ω1

(σ∇p,∇p)0,Ω1

.

On the other hand, exploiting again the definition of Pσ and using Cauchy’s inequality, we have

sup
p∈H1

0 (Ω1)

(σy,∇p)20,Ω1

(σ∇p,∇p)0,Ω1

= sup
p∈H1

0 (Ω1)

(σ∇Pσ(y),∇p)20,Ω1

(σ∇p,∇p)0,Ω1

≤ (σ∇Pσ(y),∇Pσ(y))0,Ω1
.

Furthermore, the identity can also be verified in the finite element subspaces ND0
0(Th), where the

supremum is taken over S1
0 (Th). Consequently, the matrix identity Kr,0,ν = Kν + Dσ

TLσ
−1Dσ

follows.

6.1.5 Summary

We table the condition number κ and the theoretical number of MinRes iterations maxiter needed, for
reducing the initial error by a factor of 10−8, if the proposed block-diagonal preconditioners are used.
Furthermore, we collect the diagonal blocks, that are needed for the application of the block-diagonal
preconditioner. For the modes k = 1, and therefore also for all modes k = 1, . . . , N , we obtain:

κ maxiter diagonal blocks
Formulation FEM 1 1.414 22 Kν +Mσ,ω

Formulation FEM 2 1.414 22 Kν +Mσ,ω

Formulation FEM 3 6.864 132 Kν +Mσ,ω, Lσ,ω

Formulation FEM 4 2.828 52 Kν +Mσ,ω, Lσ,ω

Formulation FEM 5 2.828 52 Kν +Mσ,ω

Formulation FEM 6 1.414 22 M̃σ + (ωσ)−1Kν

For the modes k = 0, we obtain:

κ maxiter diagonal blocks
Formulation FEM 3 (k = 0) 2.288 42 Kν +Dσ

TLσ
−1Dσ, Lσ

Formulation FEM 4 (k = 0) 2.618 48 Kν +Dσ
TLσ

−1Dσ, Lσ

Formulation FEM 5 (k = 0) - - Kν +Dσ
TLσ

−1Dσ

It is obvious, that all these estimates are uniform in the discretization parameters h, ω, N and the
model parameters ν and σ. The realization of the diagonal blocks Kν +Mσ,ω, Kν +Dσ

TLσ
−1Dσ

and Lσ,ω is discussed in Chapter 8.
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6.1.6 Numerics

In order to confirm our theoretical results numerically, we report on our first numerical tests for an
academic example. Therefore, we consider the solution of the system corresponding to the block of
the mode k = 1. The numerical results presented in this section were attained using ParMax1. First,
we demonstrate the robustness of the block-diagonal preconditioners with respect to the frequency ω
and the conductivity σ. Therefore, for the solution of the preconditioning equations arising from the
diagonal blocks, we use the sparse direct solver UMFPACK2 that is very efficient for several thousand
unknowns in the case of three dimensional problems [45, 46, 47].
In the following numerical experiments, we provide the number of MinRes iterations needed for
reducing the initial residual by a factor of 10−8 for different ω, σ and h for Problem 6.1–6.6. These
numerical experiments were performed for a three-dimensional linear problem on the unit cube Ω1 =
(0, 1)3, discretized by tetrahedra. Furthermore the piecewise constant conductivity σ is given by

σ =

{
σ1 in Ωa = {(x, y, z)T ∈ [0, 1]3 : z > 0.5}
σ2 in Ωb = {(x, y, z)T ∈ [0, 1]3 : z ≤ 0.5} . (6.46)

Formulation FEM 2 Table 6.1 and Table 6.2 provide the number of MinRes iterations needed for
reducing the initial residual by a factor 10−8. These experiments demonstrate the independence of
the MinRes convergence rate on the parameters ω and σ, and the mesh size h since the number of
iterations is bounded by 22 for all computed constellations.

Formulation FEM 3 Table 6.3 and Table 6.4 provide the number of MinRes iterations needed for
reducing the initial residual by a factor 10−8. These experiments demonstrate the independence of
the MinRes convergence rate on the parameters ω and σ, and the mesh size h since the number of
iterations is bounded by 22 for all computed constellations.

Formulation FEM 4 Table 6.5 and Table 6.6 provide the same experiments for Formulation FEM
4. Again, the numerical results show robustness of our preconditioner, since the number of iterations
is bounded by 23 for all computed constellations.

Formulation FEM 5 Table 6.7 and Table 6.8 provide the same experiments for Formulation
FEM 6. The application of the Helmholtz projector Ph is realized via the Schur complement
Dσ,ω

TLσ,ω
−1Dσ,ω. Again, the numerical results show robustness of our preconditioner, since the

number of iterations is bounded by 27 for all computed constellations.

The numerical experiments presented in this section clearly demonstrate the theoretical robustness
of the proposed block-diagonal preconditioners. Especially, we want to point out, that not only the
robustness with respect to the space discretization parameter h and the time discretization parameters
ω and N , but also the robustness with respect to the model parameters σ and ν, are well confirmed
by our numerical tests. In large-scale applications, the realization of the diagonal preconditioner by
using a sparse direct solver like UMFPACK is illusive. The practical realization of our preconditioners
is addressed in Chapter 8.

6.1.7 Error analysis

For an analysis of the full space and time discretization error of the MH-FEM method applied to the
eddy current problem in the case of a bounded domain, we refer to [17], where, under certain regularity
assumptions on the right hand side u, an error estimate of the kind ‖y−yNh‖ = O(N−1+h) is shown.
Furthermore, we refer to Subsection 6.2.6, where a discretization error analysis for the MH-FEM-BEM
method applied to the eddy current problem in an unbounded domain is given in detail.

1 http://www.numa.uni-linz.ac.at/P19255/software.shtml
2 http://www.cise.ufl.edu/research/sparse/umfpack/
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DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

38 4 4 2 3 3 9 16 8 4 4 2
196 6 4 2 3 3 9 16 10 6 4 4
1208 6 4 4 2 3 9 19 14 6 4 4
16736 6 4 4 2 3 9 20 20 8 4 4
62048 8 4 4 2 3 7 19 22 8 4 4

Table 6.1: Formulation FEM 2. Number of MinRes iterations for different values of ω and various
DOF using the EXACT version of the preconditioner with UMFPACK for Kν +Mσ,ω (ν = σ = 1).

DOF σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

38 7 7 7 7 7 9 18 14 6 4 4
196 4 5 5 7 7 9 17 9 9 9 9
1208 6 5 5 7 7 9 19 12 9 9 9
16736 6 5 5 5 7 9 18 17 9 9 9
62048 8 4 5 5 7 7 17 18 8 7 7

Table 6.2: Formulation FEM 2. Number of MinRes iterations for different values of σ2 and various
DOF using the EXACT version of the preconditioner with UMFPACK for Kν + Mσ,ω (ν = ω =
σ1 = 1).

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

54 2 2 2 2 2 2 2 2 2 2 1
250 6 6 4 6 6 12 17 9 5 5 4
1458 10 8 6 4 6 12 20 13 7 5 5
9826 14 8 6 4 6 12 22 19 7 5 5
71874 15 9 8 4 6 12 22 23 9 5 5

Table 6.3: Formulation FEM 3. Number of MinRes iterations for different values of ω and various
DOF using the EXACT version of the preconditioner with UMFPACK for Kν + Mσ,ω and Lσ,ω

(ν = σ = 1).

DOF σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

54 2 2 2 2 2 2 2 2 2 2 1
250 12 12 12 12 12 12 21 12 12 12 12
1458 12 10 10 8 10 12 22 14 12 12 12
9826 14 10 10 8 10 12 21 19 10 10 10
71874 15 12 10 10 10 12 20 19 10 10 10

Table 6.4: Formulation FEM 3. Number of MinRes iterations for different values of σ2 and various
DOF using the EXACT version of the preconditioner with UMFPACK for Kν + Mσ,ω and Lσ,ω

(ν = ω = σ1 = 1).

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

54 2 2 2 2 2 2 2 2 2 2 1
250 10 8 6 8 8 14 18 11 7 7 5
1458 12 10 8 6 8 14 20 15 9 7 7
9826 15 10 10 6 8 14 22 19 9 7 7
71874 16 11 10 7 8 12 22 23 11 7 7

Table 6.5: Formulation FEM 4. Number of MinRes iterations for different values of ω and various
DOF using the EXACT version of the preconditioner with UMFPACK for Kν + Mσ,ω and Lσ,ω

(ν = σ = 1).
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DOF σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

54 2 2 2 2 2 2 2 2 2 2 1
250 14 14 14 14 14 14 22 13 13 12 12
1458 12 12 12 10 12 14 22 15 14 14 14
9826 15 12 12 11 12 14 22 19 12 12 12
71874 16 14 12 12 10 12 21 19 12 12 12

Table 6.6: Formulation FEM 4. Number of MinRes iterations for different values of σ2 and various
DOF using the EXACT version of the preconditioner with UMFPACK for Kν + Mσ,ω and Lσ,ω

(ν = ω = σ1 = 1).

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

38 5 5 5 5 6 10 17 8 6 6 6
196 9 8 8 8 8 12 22 13 10 10 10
1208 11 9 9 9 10 14 24 17 11 11 11
16736 12 10 10 10 10 14 27 25 13 13 13
62048 13 9 8 8 8 12 24 25 13 9 9

Table 6.7: Formulation FEM 5. Number of MinRes iterations for different values of ω and various
DOF using the EXACT version of the preconditioner with UMFPACK for Kν +Mσ,ω (ν = σ = 1).

DOF σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

38 22 20 16 14 10 10 20 14 9 8 8
196 6 7 8 10 10 12 21 14 13 12 12
1208 9 8 10 10 12 14 24 16 12 12 12
16736 11 8 10 12 12 14 24 22 12 12 12
62048 13 8 9 10 10 12 22 22 12 12 12

Table 6.8: Formulation FEM 5. Number of MinRes iterations for different values of σ2 and various
DOF using the EXACT version of the preconditioner with UMFPACK for Kν + Mσ,ω (ν = ω =
σ1 = 1).
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6.2 Symmetric FEM-BEM couplings

In the previous section, we have presented several variational formulations which aim a FEM dis-
cretization. In all the cases, we restricted the analysis to the bounded domain Ω1. Now we want the
domain to be unbounded. Therefore, in this section, we consider the eddy current problem in the
full computational domain R

3. Hence, we are dealing with the following system of partial differential
equations





σ
∂y

∂t
+ curl(ν curl y) = u, in Ω1 × (0, T ),

div(σy) = 0, in Ω1 × (0, T ),

curl(curl y) = 0, in Ω2 × (0, T ),

div y = 0, in Ω2 × (0, T ),

y = O(|x|−1), for |x| → ∞,

curl y = O(|x|−1), for |x| → ∞,

y(0) = y(T ), in Ω1,

y|Ω1 × n = y|Ω2 × n, on Γ× (0, T ),

ν curl y|Ω1 × n = curl y|Ω2 × n, on Γ× (0, T ).

(6.47)

As already exposed in Chapter 3, the application of the BEM is restricted to the exterior domain
Ω2, with homogeneous properties of the underlying partial differential equations, i.e., ν|Ω2

= const,
σ|Ω2 = 0, and u|Ω2 = 0.

6.2.1 Multiharmonic discretization

Following Chapter 4, we assume that the periodic right hand side u is given by a multiharmonic
excitation in terms of a truncated Fourier series, cf. (6.4). Consequently, we have, that the time-
periodic solution y, also can be expressed in terms of the same frequency ω and the amplitudes yc

k

and ys
k, i.e.,

y(x, t) =

N∑

k=0

yc
k(x) cos(kωt) + ys

k(x) sin(kωt). (6.48)

Using multiharmonic representation of the solution, we can rewrite the eddy current problem (6.47)
in the frequency domain as follows: For k = 1, . . . , N , find (yc

k,y
s
k), such that





kωσ ys
k + curl(ν curl yc

k) = uc
k, in Ω1,

−kωσ yc
k + curl(ν curl ys

k) = us
k, in Ω1,

curl(curl yj
k) = 0, in Ω2, j ∈ {c, s},

div y
j
k = 0, in Ω2, j ∈ {c, s},

y
j
k = O(|x|−1), for |x| → ∞, j ∈ {c, s},

curl y
j
k = O(|x|−1), for |x| → ∞, j ∈ {c, s},

y
j
k|Ω1 × n = y

j
k|Ω2 × n, on Γ, j ∈ {c, s},

ν curl y
j
k|Ω1 × n = curl y

j
k|Ω2 × n, on Γ, j ∈ {c, s}.

(6.49)

As already discussed in the previous section, we drop the divergence condition imposed on the solution
in the interior domain Ω1. Furthermore, for the mode k = 0, we are dealing with the following
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problem: 



curl(ν curl yc
0) = uc

0, in Ω1,

div(σyc) = 0, in Ω1,

curl(curl yc
0) = 0, in Ω2,

div yc
0 = 0, in Ω2,

yc
0 = O(|x|−1), for |x| → ∞,

curl yc
0 = O(|x|−1), for |x| → ∞,

yc
0|Ω1 × n = yc

0|Ω2 × n, on Γ,

ν curl yc
0|Ω1 × n = curl yc

0|Ω2 × n, on Γ.

(6.50)

These systems of partial differential equations are the starting point for the derivation of a variational
formulation and the discretization in space by means of the finite element - boundary element coupling
method, i.e., each Fourier coefficient y

j
k is approximated in terms of a FEM-BEM coupling method.

Since the part corresponding to the time derivative vanishes for the case k = 0, this one is funda-
mentally different to the cases k = 1, . . . N . Therefore, the analysis of this case has to be done in a
separate fashion.

6.2.2 Symmetric variational formulations for FEM-BEM

In this subsection, we present different variational formulations for the frequency domain equations
(6.49). We perform a symmetric coupling method to reduce the unbounded exterior domain Ω2 to
the boundary Γ. Since, for all modes k = 1, . . . , N the systems (6.49) have the same structure, we
concentrate on the time-harmonic case, i.e., k = 1. The analysis for the remaining modes can be
deduced by formally setting ω = kω.
Furthermore, we also derive a variational formulation for (6.50).

6.2.2.1 Symmetric formulations (k = 1)

We start by deriving the variational formulations for (6.49).

Formulation FEM-BEM 1 In Ω1, we use the approach of Formulation FEM 1, and therefore,
we do not have to incorporate the gauging condition explicitly. Deriving the variational formulation
and integrating by parts once more in the exterior domain yields: Find (yc,ys) ∈ H(curl,Ω1)

2 such
that {

ω(σys,vc)0,Ω1 + (ν curl yc, curl vc)0,Ω1 − 〈γNyc,γDvc〉τ = 〈uc,vc〉,
−ω(σyc,vs)0,Ω1 + (ν curl ys, curl vs)0,Ω1 − 〈γNys,γDvs〉τ = 〈us,vs〉,

for all (vc,vs) ∈ H(curl,Ω1)
2. We are now in the position to state the symmetric coupled variational

problem. Introducing the Neumann data of yc and ys as additional unknowns, i.e.,

λc := γNyc and λs := γNys,

and using the Calderon projection (2.22) for both, the cosine and the sine component, allow us to
state the eddy current problem in a framework, that is suited for a FEM-BEM discretization. For
simplicity, we introduce the abbreviation

Υ := (ys,λs,yc,λc) and Θ := (vc,µc,vs,µs),

and the corresponding product space

W := H(curl,Ω1)×H
− 1

2

‖ (divΓ 0,Γ)×H(curl,Ω1)×H
− 1

2

‖ (divΓ 0,Γ).
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Therefore, we end up with the weak formulation of the coupled system: Find Υ ∈ W, such that





ω(σys,vc)0,Ω1 + (ν curl yc, curl vc)0,Ω1 − 〈N(γDyc),γDvc〉τ + 〈B(λc),γDvc〉τ = 〈uc,vc〉,
〈µc, (C− Id)(γDyc)〉τ − 〈µc,A(λc)〉τ = 0,

−ω(σyc,vs)0,Ω1 + (ν curl ys, curl vs)0,Ω1 − 〈N(γDys),γDvs〉τ + 〈B(λs),γDvs〉τ = 〈us,vs〉,
〈µs, (C− Id)(γDys)〉τ − 〈µs,A(λs)〉τ = 0,

(6.51)
for all Θ ∈ W. Consequently, the corresponding variational problem can be stated as follows.

Problem 6.19 (FEM-BEM formulation). Find Υ ∈ W, such that

AB1 ((Υ,Θ)) =

∫

Ω1

[uc · vc + us · vs] dx, (6.52)

for all test functions Θ ∈ W. Here the symmetric and indefinite bilinear form AB1 is given by

AB1(Υ,Θ) := AF1((y
c,ys), (vc,vs)) +

∑

j∈{c,s}

[
− 〈N(γDyj),γDvj〉τ + 〈B(λj),γDvj〉τ

+
〈
µj, (C− Id)(γDyj)

〉
τ
−

〈
µj,A(λj)

〉
τ

]
.

(6.53)

Problem 6.19 has a unique solution Υ ∈ W, cf. Lemma 6.24.

Remark 6.20. It is clear, that, in order to incorporate the divergence constraint on y in an ex-
plicit way, the corresponding FEM-BEM formulations to the FEM formulations Formulation FEM 3,
Formulation FEM 4, and Formulation FEM 5 can be derived and analyzed in an analogous way.

6.2.2.2 Symmetric formulations (k = 0)

We continue by deriving variational formulations for (6.50).

Formulation FEM-BEM 3 (k = 0) As already mentioned, due to the lack of a lower order term,
it is essential, to incorporate the gauging conditions div(σyc

0) = 0 in a mixed variational framework.

Problem 6.21 (Mixed formulation FEM-BEM). Find (yc
0,λ

c
0, p

c
0) ∈ H0(curl,Ω1)×H

− 1
2

‖ (divΓ 0,Γ)×
Ḣ1(Ω1), such that

AB3,0

(
(yc

0,λ
c
0, p

c
0), (v

c,µc, qc)
)
=

∫

Ω1

uc
0 · vcdx, (6.54)

for all test functions (vc,µc, qc) ∈ H0(curl,Ω1) × H
− 1

2

‖ (divΓ 0,Γ) × Ḣ1(Ω1). Here the symmetric

and indefinite bilinear form AB3,0 is given by

AB3,0

(
(yc

0,λ
c
0, p

c
0), (v

c,µc, qc)
)
:= AM1,0((y

c
0, p

c
0), (v

c, qc))

− 〈N(γDyc
0),γDvc〉τ + 〈B(λc

0),γDvc〉τ
+

〈
µc, (C− Id)(γDyc

0)
〉
τ
−

〈
µc,A(λc

0)
〉
τ
.

(6.55)

Problem 6.21 has a unique solution (yc
0,λ

c
0, p

c
0), cf. Lemma 6.27. Additionally, for a weakly divergence-

free source u, cf. (6.5), the solution yc
0 ∈ H0(curl,Ω1) is weakly divergence-free as well, cf. (6.11),

and the Lagrange parameter pc0 vanishes at the solution, i.e., pc0 = 0.
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Formulation FEM-BEM 4 (k = 0) Since at the solution (yc
0, p

c
0) of Problem 6.21, the Lagrange

parameter vanishes, i.e., pc0 = 0, we can add a suitable symmetric bilinear form to AB3,0(·, ·). Indeed,
we choose c(·, ·) as given in (6.27).

Problem 6.22 (Mixed formulation FEM-BEM with exact modification). Find (yc
0,λ

c
0, p

c
0) ∈

H0(curl,Ω1)×H
− 1

2

‖ (divΓ 0,Γ)× Ḣ1(Ω1), such that

AB4,0

(
(yc

0,λ
c
0, p

c
0), (v

c,µc, qc)
)
=

∫

Ω1

uc
0 · vcdx, (6.56)

for all test functions (vc,µc, qc) ∈ H0(curl,Ω1) × H
− 1

2

‖ (divΓ 0,Γ) × Ḣ1(Ω1). Here the symmetric

and indefinite bilinear form AB4,0 is given by

AB4,0

(
(yc

0,λ
c
0, p

c
0), (v

c,µc, qc)
)
: = AB3,0

(
(yc

0,λ
c
0, p

c
0), (v

c,µc, qc)
)
− (σ∇pc0,∇qc)0,Ω1

. (6.57)

Problem 6.22 has a unique solution (yc
0, p

c
0), cf. Lemma 6.26. Additionally, the solution of Prob-

lem 6.22 also solves Problem 6.21, and vice versa.

Formulation FEM-BEM 5 (k = 0) Finally, we give a primal version of Problem 6.22.

Problem 6.23 (Primal formulation FEM-BEM with exact modification). Find (yc
0,λ

c
0) ∈

H0(curl,Ω1)×H
− 1

2

‖ (divΓ 0,Γ), such that

AB3,0

(
(yc

0,λ
c
0), (v

c,µc)
)
=

∫

Ω1

uc
0 · vcdx, (6.58)

for all test functions vc
0 ∈ H0(curl,Ω1). Here the symmetric and positive definite bilinear form

ABF3,0 is given by

AB3,0

(
(yc

0,λ
c
0), (v

c,µc)
)
:= (ν curl yc

0, curl v
c)0,Ω1

+ (σ∇Ṗσ(y
c
0),∇Ṗσ(v

c))0,Ω1

− 〈N(γDyc
0),γDvc〉τ + 〈B(λc

0),γDvc〉τ +
〈
µc, (C− Id)(γDyc

0)
〉
τ
−

〈
µc,A(λc

0)
〉
τ
.

(6.59)

Therein we use the weighted Helmholtz projection Ṗσ : H(curl,Ω1) → Ḣ1(Ω1), where for given
y ∈ H(curl,Ω1), p := Ṗσ(y) ∈ Ḣ1(Ω1) is the unique solution of the variational problem. Find
p ∈ Ḣ1(Ω1), such that

∫

Ω1

σ∇p · ∇q dx =

∫

Ω1

σy · ∇q dx, ∀q ∈ Ḣ1(Ω1). (6.60)

The operator Ṗσ is linear and bounded, i.e.,

‖√σ∇Ṗσ(y)‖0,Ω1
≤ ‖√σy‖0,Ω1

. (6.61)

The additional expression is chosen in such a way, that it does not vanish on the kernel of the
curl operator, and on the other hand Ṗσ(y

c
0) vanishes at the solution, i.e., Ṗσ(y

c
0) = 0. Problem 6.23

has a unique solution yc
0. Furthermore, Problem 6.23 is nothing else, than an equivalent primal

formulation of Problem 6.22.

6.2.3 Discretization

In order to discretize the problems, we use ND0(Th), a conforming finite element subspace of

H(curl,Ω1), and RT 0
0(Kh), a conforming finite element subspace of H

− 1
2

‖ (divΓ 0,Γ), cf. Section 2.4.
Furthermore, we define the product space Wh, given by

Wh := ND0(Th)×RT 0
0(Kh)×ND0(Th)×RT 0

0(Kh).
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Let {ϕi}i=1,Nh
denote the usual edge basis of ND0(Th), and let {ξi}i=1,Lh

denote the usual cell basis
of RT 0

0(Kh). We define the following FEM and BEM matrices:

(K̃ν)ij := (ν curlϕi, curlϕj)0,Ω1
− 〈N(γDϕi),γDϕj〉τ ,

(Mσ,ω)ij := ω(σϕi,ϕj)0,Ω1 ,

(A)ij := 〈ξi,A(ξj)〉τ ,
(B)ij := 〈ξi, (C− Id)(γDϕj)〉τ .

(6.62)

The resulting systems of the finite and boundary element equations have the following structure.

6.2.3.1 Symmetric formulations (k = 1)

Formulation FEM-BEM 1

Find (ys
h,λ

s
h,y

c
h,λ

c
h)

T ∈ R
2(Nh+Lh) :




Mσ,ω 0 K̃ν BT

0 0 B −A

K̃ν BT −Mσ,ω 0

B −A 0 0




︸ ︷︷ ︸
=:AB1




ys
h

λs
h

yc
h

λc
h


 =




uc
h

0

us
h

0


 .

In fact, the system matrix AB1 is symmetric and indefinite, and has a double saddle point structure.
Typically small mesh sizes h, large or small ω and large jumps in the material coefficients ν and σ
across interfaces lead to a dramatic growth in the condition number of these matrices. Therefore,
we expect a very bad convergence rate if any Krylov subspace method, like the MinRes method,
is applied to the unpreconditioned systems of equations. Hence appropriate preconditioning is an
important issue.

6.2.3.2 Symmetric formulations (k = 0)

With the new matrices Dσ = Dσ,1, Lσ = Lσ,1, and K̃r,0,ν = K̃r,ν |ω=1, the resulting linear systems
for the mode k = 0 have the following forms:

Formulation FEM-BEM 3 (k = 0)

Find (yc
h,λ

c
h,p

c
h)

T ∈ R
Nh+Lh+Mh :



K̃ν BT Dσ

T

B −A 0

Dσ 0 0




︸ ︷︷ ︸
=:AB3,0



yc
h

λc
h

pc
h


 =



uc
h

0

0


 .

Formulation FEM-BEM 4 (k = 0)

Find (yc
h,λ

c
h,p

c
h)

T ∈ R
Nh+Lh+Mh :



K̃ν BT Dσ

T

B −A 0

Dσ 0 −Lσ




︸ ︷︷ ︸
=:AB4,0



yc
h

λc
h

pc
h


 =



uc
h

0

0


 .

Formulation FEM-BEM 5 (k = 0)

Find (yc
h,λ

c
h)

T ∈ R
Nh+Lh :

(
K̃r,0,ν BT

B −A

)

︸ ︷︷ ︸
=:AB5,0

(
yc
h

λc
h

)
=

(
uc
h

0

)
.

In fact, the system matrices AB3,0, AB4,0 and AB5,0 are symmetric and indefinite, and have a saddle
point structure. Also in these cases, the condition numbers of the system matrices suffer from small
mesh sizes h and large jumps in the material coefficients ν and σ across interfaces.
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6.2.4 Block-diagonal preconditioners

This subsection is devoted to the construction of parameter-robust preconditioners for the systems
of linear equations of the last subsection. For each proposed formulation, we investigate its structure
to construct a preconditioner by the technique of inexact Schur complement preconditioning, cf.
Subsection 5.2.3. Furthermore, we provide condition number bounds for the resulting preconditioned
systems of linear equations, by showing well-posedness of the underlying systems of partial differential
equations in non-standard norms.

6.2.4.1 Symmetric formulations (k = 1)

Formulation FEM-BEM 1 We explore the structure of the system matrix AB1. Since we already
have a robust preconditioner for the part of AB1, corresponding to the interior, i.e., AF1, we pursue
the strategy of inexact Schur complement preconditioning, cf. Subsection 5.2.3. The contribution
from the boundary is taken into account by forming the Schur complements. Therefore, we propose
the following two block-diagonal inexact Schur complement preconditioners

PB1 = diag (K̃ν +Mσ,ω +BTA−1B,A, K̃ν +Mσ,ω +BTA−1B,A) (6.63)

and

PB2 = diag (K̃ν +Mσ,ω,A+B(K̃ν +Mσ,ω)
−1BT , K̃ν +Mσ,ω,A+B(K̃ν +Mσ,ω)

−1BT ).

According to the choice of the block-diagonal preconditioners PB1 and PB2, we introduce the non-
standard norms ‖ · ‖PB1

and ‖ · ‖PB2
in the product space W:

‖Υ‖2PB1
: = ‖(yc,ys)‖2P +

∑

j∈{c,s}


−〈N(γDyj),γDyj〉τ + sup

λ∈H
− 1

2
‖

(divΓ 0,Γ)

〈B(λ),γDyj〉2τ
〈A(λ),λ〉τ




+
∑

j∈{c,s}
〈λj,A(λj)〉τ .

and

‖Υ‖2PB2
: = ‖(yc,ys)‖2P −

∑

j∈{c,s}
〈N(γDyj),γDyj〉τ

+
∑

j∈{c,s}

[
〈λj,A(λj)〉τ + sup

v∈H(curl,Ω1)

〈B(λj),γDv〉2τ
(ν curl v, curl v)0,Ω1

+ ω(σv,v)0,Ω1

]
.

The first main result is summarized in the following lemma, that claims that an inf-sup condition
and a sup-sup condition in the PB1-norm are fulfilled with parameter-independent constants, namely
1

2
√
3

and 3.

Lemma 6.24. We have

1

2
√
3
‖Υ‖PB1

≤ sup
Θ∈W

AB1(Υ,Θ)

‖Θ‖PB1

≤ 2‖Υ‖PB1
, (6.64)

for all Υ ∈ W.

Proof. Boundedness follows from reapplication of Cauchy’s inequality with constant 2. For the special
choices of the test function Θ1 = (ys,λs,−yc,−λc) and Θ2 = (yc,−λc,ys,−λs) we have

AB1(Υ,Θ1) =
∑

j∈{c,s}
ω(σyj ,yj)0,Ω1 ,

AB1(Υ,Θ2) =
∑

j∈{c,s}
(ν curl yj, curl yj)0,Ω1 − 〈N(γDyj),γDyj〉τ + 〈λj,A(λj)〉τ ,
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and therefore

sup
Θ∈W

AB1(Υ,Θ)

‖Θ‖PB1

≥ AB1(Υ,Θ1 + 2Θ2)

‖Θ1 + 2Θ2‖PB1

=
AB1(Υ,Θ1 + 2Θ2)√

3‖Υ‖PB1

≥
‖(ys,yc)‖2P2 +

∑
j∈{c,s}

[
−〈N(γDyj),γDyj〉τ + 2〈λj,A(λj)〉τ

]
√
3‖Υ‖PB1

.

Furthermore, for the choice Θ3 = (0,µc,0,µs), we have

sup
Θ∈W

AB1(Υ,Θ)

‖Θ‖PB1

≥ sup
(µc,µs)

AB1(Υ,Θ3)

‖Θ3‖PB1

= sup
(µc,µs)

∑
j∈{c,s}

[
〈B(µj),γDyj〉τ − 〈µj,A(λj)〉τ

]
√∑

j∈{c,s}〈µj,A(µj)〉τ

≥
∑

j∈{c,s}
sup
µj

〈B(µj),γDyj〉τ −
√

〈µj,A(µj)〉τ
√

〈λj,A(λj)〉τ√
〈µj,A(µj)〉τ

=
∑

j∈{c,s}
sup
µj

〈B(µj),γDyj〉τ√
〈µj,A(µj)〉τ

−
√

〈λj,A(λj)〉τ

≥
∑

j∈{c,s}

supµj
〈B(µj),γDyj〉2τ
〈µj,A(µj)〉τ

− 〈λj,A(λj)〉τ
√
2

√
supµj

〈B(µj),γDyj〉2τ
〈µj,A(µj)〉τ

+ 〈λj,A(λj)〉τ

≥
∑

j∈{c,s} supµj
〈B(µj),γDyj〉2τ
〈µj,A(µj)〉τ

− 〈λj,A(λj)〉τ
√
2

√∑
j∈{c,s} supµj

〈B(µj),γDyj〉2τ
〈µj,A(µj)〉τ

+ 〈λj,A(λj)〉τ

≥
∑

j∈{c,s} supµj
〈B(µj),γDyj〉2τ
〈µj,A(µj)〉τ

− 〈λj,A(λj)〉τ
√
2‖Υ‖PB1

.

(6.65)

Combining these two estimates, we obtain

sup
Θ∈W

AB1(Υ,Θ)

‖Θ‖PB1

≥ 1

2max(
√
3,
√
2)

‖Υ‖PB1
=

1

2
√
3
‖Υ‖PB1

,

and therefore the inf-sup condition follows.

The second main result is summarized in the following lemma, that claims that an inf-sup condition
and a sup-sup condition in the PB2-norm are fulfilled with parameter-independent constants, namely
1√
7

and 2.

Lemma 6.25. We have

1√
7
‖Υ‖PB2

≤ sup
Θ∈W

AB1(Υ,Θ)

‖Θ‖PB2

≤ 2‖Υ‖PB2
, (6.66)

for all Υ ∈ W.

Proof. The proof basically follows the same line as the proof of Theorem 6.24. For details, see [102,
Lemma 1].

Furthermore, the inequalities (6.64) and (6.66) remain valid for the finite element subspace Wh, since
the proofs can be repeated for the finite element functions step by step. Therefore, we obtain the
condition number estimates

κPB1
(P−1

B1AB1) := ‖P−1
B1AB1‖PB1

‖A−1
B1PB1‖PB1

≤ 4
√
3 ≈ 6.928,

κPB2
(P−1

B2AB1) := ‖P−1
B2AB1‖PB2

‖A−1
B1PB2‖PB2

≤ 2
√
7 ≈ 5.291.
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6.2.4.2 Symmetric formulations (k = 0)

Formulation FEM-BEM 4 (k = 0) We explore the 2×2 structure of our system matrix AB4,0. In
order to construct a parameter-robust and block-diagonal preconditioner, we use a Schur complement
preconditioner, cf. Theorem 5.3. Since diag (A,Lσ) is positive definite, we can build the Schur
complement

PB4,0 =



K̃ν +DσLσ

−1Dσ +BTA−1B 0 0

0 A 0

0 0 Lσ


 . (6.67)

Immediately, we obtain the condition number estimate

κPB4,0
(P−1

B4,0AB4,0) := ‖P−1
B4,0AB4,0‖PB4,0

‖A−1
B4,0PB4,0‖PB4,0

≤
√
5 + 1√
5− 1

≈ 2.618. (6.68)

Inspired by the structure of the preconditioner (6.68), we introduce the non-standard norm ‖ · ‖PB4,0

in H0(curl,Ω1)×H
− 1

2

‖ (divΓ 0,Γ)× Ḣ1(Ω1) by

‖(y,λ, p)‖2PP5,0
= (ν curl y, curl y)0,Ω1 + sup

q∈Ḣ1(Ω1)

(σy∇q)20,Ω1

(σ∇q,∇q)0,Ω1

− 〈N(γDy),γDy〉τ + sup

λ∈H
− 1

2
‖

(divΓ 0,Γ)

〈B(λ),γDy〉2τ
〈A(λ),λ〉τ

+ 〈A(λ),λ〉τ

+ (σ∇p,∇p)0,Ω1 .

The main result is summarized in the following lemma, that claims that an inf-sup and a sup-sup
condition are fulfilled with parameter-independent constants, namely (

√
5− 1)/2 and (

√
5 + 1)/2.

Lemma 6.26. We have
√
5− 1

2
‖(yc

0,λ
c
0, p

c
0)‖PB4,0

≤ sup
(vc,λc,qc)

AB4,0((y
c
0,λ

c
0, p

c
0), (v

c,µc, qc))

‖(vc,µc, qc)‖PB4,0√
5 + 1

2
‖(yc

0,λ
c
0, p

c
0)‖PB4,0

≥ sup
(vc,λc,qc)

AB4,0((y
c
0,λ

c
0, p

c
0), (v

c,µc, qc))

‖(vc,µc, qc)‖PB4,0

,

(6.69)

for all (yc
0,λ

c
0, p

c
0) ∈ H0(curl,Ω1)×H

− 1
2

‖ (divΓ 0,Γ)× Ḣ1(Ω1).

Proof. Follows from Theorem 5.3.

Formulation FEM-BEM 3 (k = 0) In this setting, again we can use the PB4,0-norm to show
well-posedness. The main result is summarized in the following lemma, that claims, that an inf-sup
and sup-sup condition are fulfilled with parameter-independent constants, namely 1

2
√
3

and 2.

Lemma 6.27. We have

1

2
√
3
‖(yc

0,λ
c
0, p

c
0)‖PB4,0

≤ sup
(vc,λc,qc)

AB3,0((y
c
0,λ

c
0, p

c
0), (v

c,µc, qc))

‖(vc,µc, qc)‖PB4,0

2‖(yc
0,λ

c
0, p

c
0)‖PB4,0

≥ sup
(vc,λc,qc)

AB3,0((y
c
0,λ

c
0, p

c
0), (v

c,µc, qc))

‖(vc,µc, qc)‖PB4,0

,

(6.70)

for all (yc
0,λ

c
0, p

c
0) ∈ H0(curl,Ω1)×H

− 1
2

‖ (divΓ 0,Γ)× Ḣ1(Ω1).

Proof. The proof can be done in the same fashion as the proof of Lemma 6.17 in combination with
Lemma 6.24.
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Formulation FEM-BEM 5 (k = 0) We explore the 2 × 2 block structure of our system matrix
AB5,0. In order to construct a parameter-robust and block-diagonal preconditioner, we use a Schur
complement preconditioner, cf. Theorem 5.3. Since A is symmetric and positive definite, we can
build the Schur complement

PB5,0 =

(
Kr,0,ν −N+BTA−1B 0

0 A

)
. (6.71)

Immediately, we obtain the condition number estimate

κPB5,0
(P−1

B5,0AB5,0) := ‖P−1
B5,0AB5,0‖PB5,0

‖A−1
B5,0PB5,0‖PB5,0

≤
√
5 + 1√
5− 1

≈ 2.618. (6.72)

Inspired by the structure of the preconditioner (6.71), we introduce the non-standard norm ‖ · ‖PB5,0

in H0(curl,Ω1)×H
− 1

2

‖ (divΓ 0,Γ) by

‖(y,λ)‖2PP5,0
= (ν curl y, curl y)0,Ω1 + (σ∇Ṗy,∇Ṗy)0,Ω1

− 〈N(γDy),γDy〉τ + sup

λ∈H
− 1

2
‖

(divΓ 0,Γ)

〈B(λ),γDy〉2τ
〈A(λ),λ〉τ

+ 〈A(λ),λ〉τ .

The main result is summarized in the following lemma, that claims that an inf-sup and sup-sup
condition are fulfilled with parameter-independent constants, namely (

√
5− 1)/2 and (

√
5 + 1)/2.

Lemma 6.28. We have
√
5− 1

2
‖(yc

0,λ
c
0)‖PB5,0

≤ sup
(vc,λc)

AB5,0((y
c
0,λ

c
0), (v

c,µc))

‖(vc,µc)‖PB5,0

≤
√
5 + 1

2
‖(yc

0,λ
c
0)‖PB5,0

, (6.73)

for all (yc
0,λ

c
0) ∈ H0(curl,Ω1)×H

− 1
2

‖ (divΓ 0,Γ).

Proof. Follows from Theorem 5.3.

6.2.5 Summary

We table the condition number κ and the theoretical number of MinRes iterations maxiter needed, for
reducing the initial error by a factor of 10−8, if the proposed block-diagonal preconditioners are used.
Furthermore, we collect the diagonal blocks, that are needed for the application of the block-diagonal
preconditioner.

κ maxiter diagonal blocks
Formulation FEM-BEM 1 6.928 132 K̃ν +Mσ,ω +BTA−1B, A
Formulation FEM-BEM 1 5.291 100 K̃ν +Mσ,ω, A+B(K̃ν +Mσ,ω)

−1BT

κ maxiter diagonal blocks
Formulation FEM-BEM 3 (k = 0) 6.928 132 K̃ν +Dσ

TLσ
−1Dσ +BTA−1B , A, Lσ

Formulation FEM-BEM 4 (k = 0) 2.618 48 K̃ν +Dσ
TLσ

−1Dσ +BTA−1B , A, Lσ

Formulation FEM-BEM 5 (k = 0) 2.618 48 K̃ν +Dσ
TLσ

−1Dσ +BTA−1B , A

Remark 6.29. In order to realize the preconditioner PB1, the diagonal block K̃ν +Mσ,ω+BTA−1B

has to be realized. It would be convenient, to replace this Schur complement by the easier block
Kν + Mσ,ω, see e.g., [80]. This replacement yields a dependence of the condition number on the
parameters ν, ω and σ. Therefore, heading for a parameter-robust preconditioning technique, it is
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essential to consider the contribution from the Schur complement, since this reflects the different
parameter settings in the exterior and interior domain.
Anyhow, using the simpler diagonal block Kν + Mσ,ω, mesh independent bounds for the condition

number can immediately be obtained, cf. [57]. The same statement holds, if K̃ν + Dσ
TLσ

−1Dσ +
BTA−1B is replaced by Kν +Mσ.

It is obvious, that all these estimates are uniform in the discretization parameters h, ω, N and the
model parameters ν and σ. The efficient realization of the diagonal blocks is discussed in Chapter 8.

6.2.6 Error analysis

In this subsection, we perform an error analysis for the MH-FEM-BEM method applied to the eddy
current problem in unbounded domains. We provide error estimates in terms of the space discretiza-
tion parameter h and the time discretization parameter N . Therefore, throughout this section, we
use a generic constant c, that is independent of h and N .

Let us denote the underlying Hilbert spaces by V = H(curl,Ω1) and R = H
− 1

2

‖ (divΓ,Γ), and the
corresponding graph norms by ‖ · ‖V and ‖ · ‖R, respectively. For the product space W we also use
the standard graph norm ‖ · ‖W , given by

‖Υ‖2W :=
∑

j∈{c,s}
‖yj‖2curl,Ω1

+ ‖λj‖2R.

The full discretization error estimate is provided in the following norm

‖(ỹ, λ̃)‖2L2((0,T ),V×R) = ‖ỹ‖2L2((0,T ),V ) + ‖λ̃‖2L2((0,T ),R).

In order to estimate the discretization error, we need three levels of discretizations.

1. By (ỹ, λ̃), we denote the exact steady state solution of the time-periodic eddy current problem
(3.6) written as an infinite Fourier series, i.e.,

ỹ = yc
0 +

∞∑

k=1

yc
k cos(kωt) + ys

k sin(kωt), λ̃ = λc
0 +

∞∑

k=1

λc
k cos(kωt) + λ

s
k sin(kωt),

with the associated vectors of Fourier coefficients denoted by y = (yc
0,y

c
1,y

s
1, . . .) and λ =

(λc
0,λ

c
1,λ

s
1, . . .).

2. By, (yN,λN) we denote the steady state solution of the time-periodic eddy current problem
(3.6) in terms of a truncated Fourier series with exact Fourier coefficients, i.e.,

yN = yc
0 +

N∑

k=1

yc
k cos(kωt) + ys

k sin(kωt), λN = λc
0 +

N∑

k=1

λc
k cos(kωt) + λ

s
k sin(kωt),

with the associated vector of Fourier coefficients denoted by y
N

= (yc
0, . . . ,y

c
N,y

s
N,0,0, . . .),

and λN = (λc
0, . . . ,λ

c
N,λ

s
N,0,0, . . .).

3. By (yN,h,λN,h), we denote the truncated solution (yN,λN) with FEM-BEM approximated
Fourier coefficients of the eddy current problem (3.6), i.e.,

yN,h = yc
0,h +

N∑

k=1

yc
k,h cos(kωt) + ys

k,h sin(kωt),

λN,h = λc
0,h +

N∑

k=1

λc
k,h cos(kωt) + λs

k,h sin(kωt),

with the FEM approximations of the amplitudes yj
k,h, j ∈ {c, s}, and the BEM approximations

of the amplitudes λj
k,h, j ∈ {c, s}.
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Clearly, we can split the full discretization error into the parts corresponding to the time and space
discretization error, i.e.,

‖(ỹ, λ̃)− (yNh,λNh)‖L2((0,T ),V×R) ≤
‖(ỹ, λ̃)− (yN,λN)‖L2((0,T ),V×R) + ‖(yN,λN)− (yNh,λNh)‖L2((0,T ),V×R).

(6.74)

Therefore, it remains to estimate the time and space discretization errors individually.

Error due to the time discretization We start by estimating the error due to the time dis-
cretization, i.e., the truncation of the Fourier series. The main result is summarized in the following
Lemma.

Lemma 6.30. Let the steady state solution ỹ of the eddy current problem (3.6) be as regular as

ỹ ∈W 1
2 ((0, T ),H(curl2,Ω1),L2(Ω1)).

Then the following estimate holds:

‖(ỹ, λ̃)− (yN,λN)‖L2((0,T ),V×R) ≤ cN− 1
2 ‖ỹ‖W 1

2 ((0,T ),H(curl2,Ω1),L2(Ω1)),

where the constant c is independent of the mesh size h and the number of modes N .

Proof. We start by exploring the theory developed in Chapter 4 to estimate the L2((0, T ), V × R)
norm by the corresponding norm in the space of the Fourier coefficients, i.e.,

‖(ỹ, λ̃)− (yN,λN)‖L2((0,T ),V×R) ≤ c ‖(y,λ)− (y
N
,λN)‖

l
1
2
2 (V×R)

.

Using λ̃ = γNỹ, one obtains

‖(y,λ)‖l12(V×R) ≤ c
(
‖ỹ‖W 1

2 ((0,T ),V,L2(Ω1)) + ‖λ̃‖W 1
2 ((0,T ),R,L2(Ω1))

)

≤ c ‖ỹ‖W 1
2 ((0,T ),H(curl2,Ω1),L2(Ω1)),

and therefore (y,λ) ∈ l12(V ×R). Consequently, due to Theorem 4.5, we obtain the error estimate

‖(y,λ)− (y
N
,λN)‖

l
1
2
2 (V×R)

≤ cN− 1
2 ‖(y,λ)‖l12(V×R).

Furthermore, using λc
k = γNy

j
k and the trace theorem, we obtain

‖(y,λ)‖2l12(V×R) ≤ c


‖yc

0‖2V + ‖λc
0‖2R +

∞∑

j=1

∑

j{c,s}
k2

[
‖yj

k‖2V + ‖λj
k‖2R

]



≤ c


‖yc

0‖2curl2,Ω1
+

∞∑

j=1

∑

j{c,s}
k2‖yj

k‖2curl2,Ω1




≤ c ‖ỹ‖2W 1
2 ((0,T ),H(curl2,Ω1),L2(Ω1))

.

This finishes the proof.

Error due to the space discretization Next we estimate the error due to the discretization in
space in terms of a FEM-BEM coupling method. Again, we estimate the L2((0, T ), V ×R) norm by
the corresponding norm in the space of the Fourier coefficients, i.e.,

‖(yN,λN)− (yNh,λNh)‖2L2((0,T ),V×R) ≤

c

[
‖yc

0 − yc
0,h‖2curl,Ω1

+ ‖λc
0 − λc

0,h‖2R +

N∑

k=1

‖Υk −Υk,h‖W
]
.
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Due to the decoupling of the Fourier coefficients with respect to the modes k, the discretization error
in space is analyzed for a fixed mode k. The full discretization error in space then follows by summing
over all modes k = 1, . . . , N .

Lemma 6.31. Let the solution (yc,ys) of Problem 6.19 be as regular as

yj ∈ Hs(curl2,Ω1) := {y ∈ Hs(Ω1) : curl y ∈ Hs(Ω1), curl curl y ∈ Hs(Ω1)}, j ∈ {c, s},

for some s > 1
2 . Then the following estimate holds:

‖Υ−Υh‖W ≤ cN
1
2 hmin(1,s)

( ∑

j∈{c,s}
‖yj‖s,Ω1

+ ‖ curl yj‖s,Ω1
+ ‖ curl curl yj‖s,Ω1

)
,

where the constant c is independent of the mesh size h and the number of modes N .

Proof. The key tools of this proof are the Cea-type estimate

‖Υ−Υh‖PB1
≤ c inf

θh∈Wh

‖Υ−Θh‖PB1
,

in combination with the approximation properties in Lemma 2.19 and Lemma 2.20. Indeed, switching
back to standard norms, we have

‖Υ−Υh‖W ≤ c‖Υ−Υh‖PB1
≤ c inf

Θh∈Wh

‖Υ−Θh‖PB1
≤ cN

1
2 inf

Θh

‖Υ−Θh‖W .

Furthermore, we use the approximation properties of the sine and cosine components of the product
space W:

inf
λh∈RT 0

0(Kh)
‖λ− λh‖R ≤ c‖ curl y −Πcurl y‖curl,Ω1

≤ c hmin(1,s) (‖ curl y‖s,Ω1
+ ‖ curl curl y‖s,Ω1

)

and

inf
yh∈ND0(Th)

‖y − yh‖curl,Ω1 ≤ ‖y −Πy‖curl,Ω1 ≤ c hmin(1,s) (‖y‖s,Ω1 + ‖ curl y‖s,Ω1) .

By applying the previous two estimates to the sine and cosine components of the product space W,
the desired result follows.

Full error estimate Now we are in the position to give a full error estimate in terms of the space
discretization parameter h and the time discretization parameter N . The main result is summarized
in the following theorem.

Theorem 6.32. Let the steady state solution ỹ of the eddy current problem (3.6) be as regular as

ỹ ∈W 1
2 ((0, T ),H

s(curl2,Ω1),L2(Ω1))

for some s > 1
2 . Then the following estimate holds:

‖(ỹ, λ̃)− (yN,h,λN,h)‖L2((0,T ),V×R) ≤ c
(
N− 1

2 +N
1
2hmin(1,s)

)
‖ỹ‖W 1

2 ((0,T ),Hs(curl2,Ω1),L2(Ω1)),

where the constant c is independent of the mesh size h and the number of modes N .

Proof. Using (6.74), Lemma 6.30 and Lemma 6.31, we obtain

‖(ỹ, λ̃)− (yNh,λNh)‖L2((0,T ),V×R)

≤ c
(
N− 1

2 ‖ỹ‖W 1
2 ((0,T ),H(curl2,Ω1),L2(Ω1)) + hmin(1,s)N

1
2 ‖ỹ‖L2((0,T ),Hs(curl2,Ω1))

)

≤ c
(
N− 1

2 +N
1
2hmin(1,s)

)
‖ỹ‖W 1

2 ((0,T ),Hs(curl2,Ω1),L2(Ω1)).

This finishes the proof.
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Therefore, under the compatibility condition N < h2ε−2min(1,s), for ε > 0, we have convergence of
the MH-FEM-BEM approximated solution to the exact periodic steady state solution.

Remark 6.33 (Regularity in time). Sufficient regularity of the periodic steady state solution ỹ (in
time) can be deduced by the regularity of the source ũ. Indeed, from ũ ∈ L2((0, T ),L2(Ω1)), we can
deduce ỹ ∈W 1

2 ((0, T ), V,L2(Ω1)), cf. [54, §7.1.3,Theorem 6].

6.3 Nonlinear problems

This section is devoted to the discussion of efficient solution strategies for nonlinear eddy current
problems. We present a candidate for an efficient solution procedure without providing theoretical
results. The heuristic arguments used in this section are strongly related to the theory developed in
the previous two sections.
So far we have assumed that the coefficient ν only depends on the spatial variable x. However, for
ferromagnetic materials the reluctivity ν depends on the absolute value of the magnetic induction B

as well, i.e.,
ν = ν(|B|) = ν(| curl y|), in Ω1, (6.75)

cf. Section 1.1. For the analysis of the multiharmonic FEM applied to nonlinear eddy current
problems, we refer to [15, 17, 18], see also [41, 96]. It turns out, that, due to the nonlinearity, even
for harmonic excitation of the form

u(x, t) = uc cos(ωt) + us sin(ωt),

the full range of modes has to be taken into account. For numerical computations we only consider
a finite number of Fourier modes, i.e.,

y(t) =
N∑

k=0

yc
k cos(kωt) + ys

k sin(kωt).

Moreover the nonlinear reluctivity (6.75) causes a full coupling of the sine and cosine coefficients with
respect to all modes k = 0, . . . , N , and therefore we lose the advantageous block-diagonal structure.

FEM After a FEM discretization in the conducting domain Ω1, we are dealing with the nonlinear
system of equations:

Find y ∈ R
(2N+1)Nh : (K[y] +D)y = u.

Since the Fréchet derivative of the nonlinear frequency domain equations is explicitly computable,
the nonlinearity can be overcome by applying Newton’s method. Anyhow, at each step of the Newton
iteration, a huge and fully block-coupled Jacobi system with sparse blocks has to be solved. Indeed,
the defect equation has the following structure:

Find w ∈ R
(2N+1)Nh : (K′[y] +D)w = d.

Here the block-diagonal and block-skew symmetric matrix D is given by

D = diag

(
0 Mσ,kω

−Mσ,kω 0

)

k=0,...,N

,

and the fully populated and symmetric block-matrix K′[y] for a given approximation of the solution
y is given by

K′[y] =

(
Kcc

kl [y] Ksc
kl[y]

Kcs
kl[y] Kss

kl[y]

)

k,l=0,...,N

.
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Here the matrices Kcc
kl [y], K

cs
kl[y],K

sc
kl[y], and Kss

kl[y] are given by

(Kcc
kl )ij = (ν̃cckl (| curl y|) curlϕi, curlϕj)0,Ω1

,

(Kcs
kl)ij = (ν̃cskl (| curl y|) curlϕi, curlϕj)0,Ω1

,

(Ksc
kl)ij = (ν̃sckl (| curl y|) curlϕi, curlϕj)0,Ω1

,

(Kss
kl)ij = (ν̃sskl (| curl y|) curlϕi, curlϕj)0,Ω1

,

with the coefficients ν̃cc, ν̃cs = ν̃sc, and ν̃ss, that can be computed in the following manner, cf. [17],

ν̃cckl (|B|) = 2

T

∫ T

0

[
ν′(|B(t)|) (B(t))T (B(t))

|(B(t))| + ν(|(B(t))|)I
]
cos(kωt) cos(lωt) dt,

ν̃cskl (|B|) = 2

T

∫ T

0

[
ν′(|B(t)|) (B(t))T (B(t))

|(B(t))| + ν(|(B(t))|)I
]
cos(kωt) sin(lωt) dt,

ν̃sskl (|B|) = 2

T

∫ T

0

[
ν′(|B(t)|) (B(t))T (B(t))

|(B(t))| + ν(|(B(t))|)I
]
sin(kωt) sin(lωt) dt.

(6.76)

One important issue is the fast evaluation of these kind of integrals. This can be done in an efficient
way, e.g., by using the idea of forward-backward recurrence, that is based on the three-term recurrence
for the sine and cosine functions, cf. Remark 6.35.
Furthermore, due to the block-skew symmetric contribution from D, we are dealing with a non-
symmetric problem. Hence the MinRes method is no longer applicable, but, for instance, the GmRes
method [139] or QMR method [56] can be used. Anyhow, preconditioning is still an important issue,
but the fact, that the system matrix is non-symmetric, complicates the issue of preconditioning and
analyzing.
Inspired by the structure of the preconditioner (6.33), we propose to use the block-diagonal precon-
ditioner

P = diag (Pk)k=0,...,N ,

with
Pk = diag

(
Kcc

kk +Mσ,kω,−(Kss
kk +Mσ,kω)

)
.

Unfortunately the convergence rate analysis for the preconditioned GmRes method is more involving,
since an estimate of the condition number of the preconditioned system is not sufficient. Indeed, a
field of value estimate, see e.g. [112], is needed.

Remark 6.34. In order to investigate preconditioners for the Jacobi system, it is important to
investigate the non-symmetric system

(
Kν Mσ,ω

−Mσ,ω Kν

)

︸ ︷︷ ︸
=:ĀF1

(
yc
h

ys
h

)
=

(
uc
h

us
h

)
, (6.77)

that reflects the structure of the Jacobi system in the nonlinear case. Indeed, such a kind of system
has already been considered in [18], wherein a multigrid-preconditioned QMR solver is proposed. The
main ingredient of this solver is a specific block preconditioner P̂, that only involves the inversion of
standard H(curl,Ω1) problems

P̂−1 :=
1

2

(
(Kν +Mσ,ω)

−1 0

0 (Kν +Mσ,ω)
−1

)(
I I

I −I

)
.

This preconditioner leads to a parameter-robust bound for the condition number of the preconditioned
system, i.e.,

κP(P̂−1ĀF1) := ‖P̂−1ĀF1‖P‖Ā−1
F1P̂−1‖P ≤ 2.
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Following the approach of Section 6.1, we can even do better. Inspired by the parameter-robust
preconditioner (6.33) we propose the following preconditioner for the non-symmetric case

P̄ =

(
Kν +Mσ,ω 0

0 −(Kν +Mσ,ω)

)
.

Again we can verify an inf-sup condition and a sup-sup condition in a non-standard norm, and
analogous to the symmetric case we obtain the condition number estimate

κP(P̄−1ĀF1) = κP(P−1AF2) ≤
√
2.

FEM-BEM In the non-conducting (unbounded) domain Ω2, we are still dealing with a linear
problem. Anyhow, after a FEM-BEM discretization in the full computational domain Ω, a nonlinear
system is obtained. Since the nonlinearity is just due to the FEM contribution, the defect equation
can be derived as in the pure FEM case. Therefore, at each Newton step a defect equation of the
form

Find w ∈ R
(2N+1)(Nh+Lh): (K′

B [w] +DB)w = d,

has to be solved. In this setting the block-diagonal matrix DB is given by

DB = diag




−N BT Mσ,kω 0

B −A 0 0

−Mσ,kω 0 −N BT

0 0 B −A




k=0,...,N

,

and the block-matrix K′
B [y] is given by

K′
B [y] =




Kcc
kl [y] 0 Ksc

kl[y] 0

0 0 0 0

Kcs
kl[y] 0 Kss

kl[y] 0

0 0 0 0




k,l=0,...,N

.

Again, inspired by the structure of the preconditioner (6.63), we propose to use the block-diagonal
preconditioner

C = diag (Ck)k=0,...,N

with

Ck = diag
(
Kcc

kk +Mσ,kω −N+BTA−1B,A,−(Kss
kk +Mσ,kω −N+BTA−1B),−A

)
.

Hence, the preconditioners developed in Section 6.1 and 6.2 are very promising to be usable also in the
nonlinear case. Anyhow, any theoretical results concerning robustness with respect to the involved
parameters are illusive at the moment.
Beside the efficient solution of the Jacobi system, also the assembling of the Jacobi matrix K′[y] has
to be done in an efficient way. Due to the time integral in the coefficients in (6.76), efficient time
integration methods have to be developed. For example, exploring the orthogonality of the sine and
cosine functions, three-term recurrences can be used to evaluate the integrals by a forward-backward
recursion.

Remark 6.35. In order to evaluate integrals of the following form

Jkl =
2

T

∫ T

0

f(t) cos(lωt) cos(kωt)︸ ︷︷ ︸
=:Tk(t)

dt,
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a three-term recurrence for the cosine by means of Tk+1(t) = 2 cos(ωt)Tk(t) − Tk−1(t) can be used.
Indeed, a three-term recurrence for Jkl can be deduced as follows

Jk+1,l =
2

T

∫ T

0

f(t)Tk+1(t)Tl(t)dt =
2

T

∫ T

0

f(t)Tk(t) [2 cos(ωt)Tl(t)] dt−
2

T

∫ T

0

f(t)Tk−1(t)Tl(t)dt

=
2

T

∫ T

0

f(t)Tk(t) [Tl+1(t) + Tl−1(t)] dt−
2

T

∫ T

0

f(t)Tk−1(t)Tl(t)dt = Jk,l+1 + Jk,l−1 − Jk−1,l.

Therefore, after the initialization of 2N initial values J0,l (l = 0, . . . 2N), the remaining terms can be
computed by using the recurrence for Jk,l. A similar approach can be used for the integrals that are
stemming from the sin(lωt) cos(kωt) and sin(lωt) sin(kωt) terms in (6.76).

6.4 Summary

In order to keep the presentation clear, we summarize the results obtained for the time-periodic eddy
current problem in this chapter.
We established the multiharmonic discretization technique as an adequate tool to discretize time-
periodic eddy current problems. This approach allows to switch from the time-domain to the fre-
quency domain, and therefore to replace the solution of a time-dependent problem by a system of
time-independent problems in the Fourier coefficients. Due to the linear nature of the underlying
problem, a total decoupling of the individual modes is observed. We have analyzed numerous FEM
and FEM-BEM formulations for the frequency domain equations in the continuous and discrete set-
ting.
In order to obtain parameter-robust preconditioners for appropriate iterative solution techniques,
we heavily explored the operator preconditioning technique to construct and analyze block-diagonal
preconditioners for a huge range of problem settings in the regime of eddy current computations. In
all the considered settings, we were able to construct preconditioners, that yield condition number
bounds for the preconditioned system matrices, that are independent of the discretization parameters
h, ω,N , as well as the model parameters σ and ν.
One of the big advantages of our block-diagonal preconditioning technique is, that for the realization
of the diagonal blocks, only solvers for standard problems, that for example also appear in the
magnetostatic case are needed. Indeed, we are dealing with the following five fundamental kinds of
problems:

FEM Kν +Mσ H(curl,Ω1) inner product
FEM Kν +DσLσ

−1Dσ
T H(curl,Ω1) inner product

FEM Lσ H1
0 (Ω1) inner product

BEM A H
−1/2
‖ (divΓ,Γ) inner product

FEM-BEM Kν +Mσ −N+BTA−1B H(curl,Ω1) inner product (FEM-BEM Schur complement)

The efficient realization of these diagonal blocks is discussed in Chapter 8.
Indeed, the combination of the multiharmonic FEM-BEM coupling discretization technique with the
robust and efficient solution strategies for the resulting systems of linear equations, justifies this
method as a very powerful tool in the framework of time-periodic eddy current computations, not
only in the considered linear setting, but also in the general nonlinear setting.

Finally, we briefly summarize the most important benefits of the proposed method:

• The periodic structure of our problem is treated by a natural approach in terms of a Fourier
approximation. Therefore, the computations can be done in the frequency domain, where we
can benefit from the full decoupling with respect to the individual modes.

• Unbounded domains are treated in terms of a FEM-BEM method.
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• Parameter-robust solvers for the resulting systems of linear equations in the frequency domain
guarantee competitiveness of the proposed method not only in theory but also in practice.

• Due to the decoupling nature of the frequency domain equations with respect to the individual
modes, a parallelization of the proposed method is straightforward.

• Since, our proposed solver just relies on solvers or preconditioners for standard problems, any
further improvements of these solvers or preconditioners will lead to additional improvements
of our solver as well.

In the next Chapter, we use the MH-FEM-BEM method in order to discretize periodic optimal
control problems. Optimal control problems are typically solved by deriving the optimality system.
Due to the saddle point structure of the optimality system on the one hand, and due to the fact, that
we have already constructed parameter-robust solvers for the state equations on the other hand, a
generalization of the theory developed in this chapter seems to be obvious.
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Chapter 7

Time-periodic eddy current optimal

control problems

One basic task in optimal control of electromagnetic processes is to control a magnetic field B = curl y

by an applied current ji = u, e.g., [152]. Again, the key point of interest is the asymptotic behavior
of the magnetic field, i.e., we want to obtain a steady state solution. This approach leads to the
framework of time-periodic optimal control problems. As for time-periodic eddy current problems,
an approximation in time in terms of a truncated Fourier series is an adequate tool to derive sufficient
approximations to the time-periodic solution.
Therefore, this chapter is devoted to the numerical treatment of eddy current optimal control problems
by the MH-FEM-BEM method. Using the results of Chapter 4, we switch from the time domain to the
frequency domain. For the optimal control problem in the frequency domain, we state the reduced
optimality system and discretize it by means of a finite element method or by means of a finite
element - boundary element coupling method. We derive appropriate variational formulations and
show well-posedness in non-standard norms. In order to obtain these norms, we heavily stress the
theory developed in Chapter 5. Based on these well-posedness results, we propose block-diagonal
preconditioners for the resulting systems of linear equations and provide rigorous condition number
estimates for the preconditioned systems, that are uniform in all involved discretization, model and
regularization parameters.
In this chapter the main emphasis is on the development of robust preconditioners for the resulting
frequency domain equations. Therefore, we mostly consider the simple model problem

J (ŷ, û) = min
(y,u)∈W 1

2 ((0,T ),H(curl,Ω1))×L2((0,T ),L2(Ω1))
J (y,u), (7.1)

subject to the state equation (6.47). Indeed, in Section 7.1 and Section 7.2, we consider the simple
case of distributed control, i.e., the minimization functional under consideration is given by

J (y,u) =
1

2

∫

Ω1×(0,T )

|y − yd|2dx dt +
λ

2

∫

Ω1×(0,T )

|u|2dx dt. (7.2)

Here yd ∈ L2((0, T ),L2(Ω1)) is a given desired state and λ > 0 is a cost or regularization parameter.
As we have seen in Section 3.2, under mild assumptions, both, the conservation of charges law imposed
on the control u, and the divergence condition imposed on the state y, are fulfilled for (7.1)-(7.2) at
the solution in a natural way, and therefore they can be omitted. Consequently, this model problem
is well suited to demonstrate the construction and analysis of efficient and robust solution strategies.
Following the spirit of the previous chapter, this chapter is divided into four main parts:

• In Section 7.1 we start by analyzing the eddy current optimal control problem on the bounded
domain Ω1, discretized in terms of the MH-FEM method. Therein we consider the different
variational formulations of the state equation, that have been derived in Chapter 6.

95
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• In Section 7.2, we extend the results obtained in Section 7.1, by taking the exterior domain into
account in terms of a FEM-BEM coupling method, leading to a full MH-FEM-BEM discretiza-
tion of the optimality system.

• Furthermore, we discuss the application of the solvers constructed in Section 7.1 to problems
with various constraints. We include the cases of different control and observation domains,
observation of the B-field and box constraints imposed on the Fourier coefficients of the state
y and/or the control u. In all these cases, the decoupling of the resulting systems of linear
equations with respect to the individual modes is retained.

• Finally, we also discuss the application of our solver to constrained optimization problems,
where the advantageous decoupling structure is lost. As an example we consider the case of the
observation at the final time.

In most of the cases, the optimality system obtains a linear structure, and therefore it is sufficient
to analyze the efficient and robust solution of the resulting linear system of equations. Anyhow, box
constraints imposed on the Fourier coefficients of the control and/or the state render the resulting
optimality systems nonlinear. In these two cases, linear solvers for the Jacobi systems, that have to
be solved at each step of a semi-smooth Newton iteration, are proposed and analysed.

7.1 Symmetric FEM formulations

In this section, we restrict ourselves to the case of a problem, that is located in the conducting domain
Ω1. Therefore, we consider equation (6.3) as a PDE constraint in (7.1). Indeed, in this setting we are
dealing with a special regime in the framework of optimal control problems with distributed control,
since all three domains, the computational domain of the state equation, the observation domain and
the control domain coincide with Ω1.

7.1.1 Multiharmonic discretization

Following Chapter 4, we assume that the desired state yd is given by a multiharmonic excitation in
terms of a truncated Fourier series, i.e.,

yd(x, t) =

N∑

k=0

yc
d,k(x) cos(kωt) + ys

d,k(x) sin(kωt). (7.3)

Consequently, we have, that the time-periodic state y and the periodic control u, can be expressed
in terms of the same frequency ω, i.e.,

y(x, t) =
N∑

k=0

yc
k(x) cos(kωt) + ys

k(x) sin(kωt),

u(x, t) =
N∑

k=0

uc
k(x) cos(kωt) + us

k(x) sin(kωt).

(7.4)

Using the multiharmonic representations (7.3) and (7.4), we can rewrite the eddy current optimal
control problem in the frequency domain as follows: For all modes k = 1, . . . , N , find (ŷc

k, ŷ
s
k, û

c
k, û

s
k),

such that

J̃ (ŷc
k, ŷ

s
k, û

c
k, û

s
k) = min

(yc
k,y

s
k,u

c
k,u

s
k)

∑

j∈{c,s}

[
1

2

∫

Ω1

|yj
k − y

j
d,k|2dx+

λ

2

∫

Ω1

|uj
k|2dx

]
, (7.5)
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where (yc
k,y

s
k,u

c
k,u

s
k) fulfills (6.7). Furthermore, for the mode k = 0, we are dealing with the

minimization problem: Find (ŷc
0, û

c
0), such that

J̃ (ŷc
0, û

c
0) = min

(yc
0,u

c
0)

1

2

∫

Ω1

|yc
0 − yc

d,0|2dx+
λ

2

∫

Ω1

|uc
0|2dx, (7.6)

where (yc
0,u

c
0) fulfills (6.8). Due to the linearity of the state equation, we obtain a decoupling of our

minimization problem with respect to the modes k = 0, . . . , N . For the minimization problems (7.5)
and (7.6) for a fixed mode k a similar result as in Subsection 3.2.2 is valid. Under the assumptions
of Theorem 3.8 the Fourier coefficients u

j
k, j ∈ {c, s}, of the state u, automatically fulfill (6.5) at the

solution.

7.1.2 Symmetric variational formulation for FEM

In order to solve the minimization problem in the frequency domain, we compute the corresponding
optimality system. Therefore, we use the different variational formulations for the state equation,
derived in Subsection 6.1.2. Indeed, we concentrate on the two variational formulations Formulation
FEM 1 and Formulation FEM 3. Since for each mode k = 0, . . . , N , the optimality systems have the
same structure, we concentrate on the time-harmonic case, i.e., k = 1. The analysis for the remaining
modes can be deduced by formally setting ω = kω. In contrast to the forward problem, in the optimal
control setting the analysis for the mode k = 0 can also be deduced from the analysis for the mode
k = 1 by setting k = 0 and dropping the two equations, that correspond to the sine parts of the state
and the co-state.

Formulation OC-FEM 1 We start by considering the state equation in the variational formulation
Formulation FEM 1, cf. Problem 6.1. Following Subsection 3.2.2 and Section 4.5, the multiharmonic
approach is applied to the optimal control problem and the optimality system is derived. In the usual
manner we are using the identity u = λ−1p in order to remove the control u from the optimality
system. Hence, we are dealing with the reduced optimality system in the frequency domain, given by:
For each mode k = 0, 1, . . . , N , find the Fourier coefficients (yc

k,y
s
k,p

c
k,p

s
k) ∈ H0(curl,Ω1)

4, such
that





−ωk(σps
k,v

c
k)0,Ω1 + (ν curl pc

k, curl v
c
k)0,Ω1 + (yc

k,v
c
k)0,Ω1 = (yc

d,k,v
c
k)0,Ω1 ,

ωk(σpc
k,v

s
k)0,Ω1

+ (ν curl ps
k, curl v

s
k)0,Ω1

+ (ys
k,v

s
k)0,Ω1

= (ys
d,k,v

s
k)0,Ω1

,

ωk(σys
k,q

c
k)0,Ω1 + (ν curl yc

k, curl q
c
k)0,Ω1 − λ−1(pc

k,q
c
k)0,Ω1 = 0,

−ωk(σyc
k,q

s
k)0,Ω1

+ (ν curl ys
k, curl q

s
k)0,Ω1

− λ−1(ps
k,q

s
k)0,Ω1

= 0,

(7.7)

for all test functions (vc
k,v

s
k,q

c
k,q

s
k) ∈ H0(curl,Ω1)

4. Indeed, this is the kind of equation under
consideration in this section. Due to the decoupling nature, it is sufficient to investigate (7.7) for the
fixed mode k = 1. Consequently, the corresponding variational problem can be stated as follows.

Problem 7.1 (Primal formulation). Find (yc,ys,pc,ps) ∈ H0(curl,Ω1)
4, such that

B ((yc,ys,pc,ps), (vc,vs,qc,qs)) =

∫

Ω1

[
yc
d · vc + ys

d · vs
]
dx, (7.8)

for all test functions (vc,vs,qc,qs) ∈ H0(curl,Ω1)
4. Here the symmetric and indefinite bilinear

form B is given by

B ((yc,ys,pc,ps), (vc,vs,qc,qs)) :=
∑

j∈{c,s}
(yj,vj)0,Ω1 +AF1((v

s,vc), (pc,ps))

+AF1((y
s,yc), (qc,qs))− 1

λ

∑

j∈{c,s}
(pj,qj)0,Ω1 .

(7.9)
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Problem 6.1 has a unique solution (yc,ys,pc,ps) ∈ H0(curl,Ω1)
4, cf. Lemma 7.3. Under the

assumptions of Theorem 3.8, the solution (yc,ys,pc,ps) is weakly divergence-free, and therefore the
charge conservation law is fulfilled automatically.

Formulation OC-FEM 2 Next we consider the state equation in the variational formulation For-
mulation FEM 3, cf. Problem 6.3, where the divergence constraint on the state y is incorporated in
a mixed variational framework. Applying the multiharmonic approach and deriving the optimality
system, we end up with the following system of partial differential equations in the frequency do-
main: For each mode k = 0, 1, . . . , N , find the Fourier coefficients (yc

k,y
s
k,p

c
k,p

s
k, µ

c
k, µ

s
k, ρ

c
k, ρ

s
k) ∈

H0(curl,Ω1)
4 ×H1

0 (Ω1)
4, such that





−ωk(σps
k,v

c
k)0,Ω1 + (ν curl pc

k, curl v
c
k)0,Ω1

+(yc
k,v

c
k)0,Ω1 + ωk(σvc

k,∇ρck)0,Ω1 = (yc
d,k,v

c
k)0,Ω1

,

ωk(σpc
k,∇ηck)0,Ω1 = 0,

ωk(σpc
k,v

s
k)0,Ω1 + (ν curl ps

k, curl v
s
k)0,Ω1

+(ys
k,v

s
k)0,Ω1 + ωk(σvs

k,∇ρsk)0,Ω1 = (ys
d,k,v

s
k)0,Ω1 ,

ωk(σps
k,∇ηsk)0,Ω1

= 0,

ωk(σys
k,q

c
k)0,Ω1

+ (ν curl yc
k, curl q

c
k)0,Ω1

−λ−1(pc
k,q

c
k)0,Ω1 + ωk(σqc

k,∇µc
k)0,Ω1 = 0,

ωk(σyc
k,∇θck)0,Ω1 = 0,

−ωk(σyc
k,q

s
k)0,Ω1 + (ν curl ys

k, curl q
s
k)0,Ω1

−λ−1(ps
k,q

s
k)0,Ω1 + ωk(σqs

k,∇µs
k)0,Ω1 = 0,

ωk(σys
k,∇θsk)0,Ω1 = 0,

for all test functions (vc
k,v

s
k,q

c
k,q

s
k, η

c
k, η

s
k, θ

c
k, θ

s
k) ∈ H0(curl,Ω1)

4 ×H1
0 (Ω1)

4. For convenience, we
introduce the following abbreviation

Υ := (yc,ys,pc,ps) and Ψ := (µc, µs, ρc, ρs),

Φ := (vc,vs,qc,qs) and Θ := (ηc, ηs, θc, θs).

For a fixed mode k = 1, the corresponding variational formulation reads as follows.

Problem 7.2 (Mixed formulation). Find (Υ,Ψ) ∈ H0(curl,Ω1)
4 ×H1

0 (Ω1)
4, such that

BM ((Υ,Ψ), (Φ,Θ)) =

∫

Ω1

[
yc
d · vc + ys

d · vs
]
dx, (7.10)

for all test functions (Φ,Θ) ∈ H0(curl,Ω1)
4 ×H1

0 (Ω1). Here the symmetric and indefinite bilinear
form BM is given by

BM ((Υ,Ψ), (Φ,Θ)) :=B(Υ,Φ) + b(Φ,Ψ) + b(Υ,Θ), (7.11)

where the bilinear form b(·, ·) is given by

b(Φ,Ψ) := ω
∑

j∈{c,s}

[
(σvj,∇ρj)0,Ω1 + (σqj,∇µj)0,Ω1

]
.

Problem 7.2 has a unique solution (Υ,Ψ) ∈ H0(curl,Ω1)
4 × H1

0 (Ω1)
4, cf. Lemma 7.4. Under the

assumptions of Theorem 3.8, the solution Υ is weakly divergence-free.
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7.1.3 Discretization

In order to discretize the problems, we use ND0
0(Th), a conforming finite element subspace of

H0(curl,Ω1), and S1
0 (Th), a conforming finite element subspace of H1

0 (Ω1), cf. Section 2.4. Let
{ϕi}i=1,Nh

denote the usual edge basis of ND0
0(Th), and let {ψi}i=1,Mh

denote the usual nodal basis
of S1

0 (Th), respectively. We define the following FEM matrices:

(Kν)ij = (ν curlϕi, curlϕj)0,Ω1 ,

(Mσ,ω)ij = ω(σϕi,ϕj)0,Ω1 ,

(M)ij = (ϕi,ϕj)0,Ω1
,

(Dσ,ω)ij = ω(σϕi,∇ψj)0,Ω1
,

(Lσ,ω)ij = ω(σ∇ψi,∇ψj)0,Ω1
.

(7.12)

7.1.3.1 Symmetric formulations (k = 1)

Formulation OC-FEM 1 Find (yc
h,y

s
h,p

c
h,p

s
h)

T ∈ R
4Nh :




M 0 Kν −Mσ,ω

0 M Mσ,ω Kν

Kν Mσ,ω −λ−1M 0

−Mσ,ω Kν 0 −λ−1M




︸ ︷︷ ︸
=:B




yc
h

ys
h

pc
h

ps
h


 =




yc
d,h

ys
d,h

0

0


 . (7.13)

Formulation OC-FEM 2 Find (yc
h,y

s
h,p

c
h,p

s
h,µ

c
h,µ

s
h,ρ

c
h,ρ

s
h)

T ∈ R
4(Nh+Mh):




M 0 Kν −Mσ,ω 0 0 Dσ,ω
T 0

0 M Mσ,ω Kν 0 0 0 Dσ,ω
T

Kν Mσ,ω −λ−1M 0 Dσ,ω
T 0 0 0

−Mσ,ω Kν 0 −λ−1M 0 Dσ,ω
T 0 0

0 0 Dσ,ω 0 0 0 0 0

0 0 0 Dσ,ω 0 0 0 0

Dσ,ω 0 0 0 0 0 0 0

0 Dσ,ω 0 0 0 0 0 0




︸ ︷︷ ︸
=:BM




yc
h

ys
h

pc
h

ps
h

µc
h

µs
h

ρch
ρsh




=




yc
d,h

ys
d,h

0

0

0

0

0

0




.

(7.14)
In fact, the system matrices B and BM are symmetric and indefinite, and have double or three-fold
saddle point structure. Typically small mesh sizes h, large or small ω, small λ and large jumps in
the material coefficients ν and σ across interfaces lead to a dramatic growth in the condition number
of these matrices. Therefore, we expect a very bad convergence rate if any Krylov subspace method,
like the MinRes method, is applied to the unpreconditioned systems of equations. Hence appropriate
preconditioning is an important issue.

7.1.4 Block-diagonal preconditioners

This subsection is devoted to the construction of parameter-robust preconditioners for the systems
of linear equations of the last subsection. For each proposed formulation, we investigate its structure
to construct a preconditioner either by the matrix interpolation technique, cf. Subsection 5.2.2, or
the technique of inexact Schur complement preconditioning, cf. Subsection 5.2.3. Furthermore, we
provide condition number bounds for the resulting preconditioned systems of linear equations, by
showing well-posedness of the underlying systems of partial differential equations in non-standard
norms.
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Formulation OC-FEM 1 In order to construct parameter-robust and block-diagonal precondi-
tioners, we want to use the matrix interpolation theory presented in Subsection 5.2.2. We start by
analyzing the special case of constant conductivity in Ω1, i.e., σ(x) = σ ∈ R

+. In this special setting,
we have Mσ,ω = ωσM with the constant positive conductivity σ. Due to this special structure, this
case is much easier to handle. We explore the saddle point structure of our system matrix B that can
be rewritten as follows:

B =

(
A BT

B −C

)
,

where the blocks A, B, and C are defined by the relations

A =

(
M 0

0 M

)
, B =

(
Kν Mσ,ω

−Mσ,ω Kν

)
and C =

1

λ
A.

Since A is symmetric and positive definite, we can build both Schur complements S and R = λS,
given by

S =

(
(λ−1 + ω2σ2)M+KνM

−1Kν 0

0 (λ−1 + ω2σ2)M+KνM
−1Kν

)
,

and therefore the Schur complement preconditioners (cf. Theorem 5.3). Due to Theorem 5.5, a
candidate for a parameter-robust and block-diagonal preconditioner is an interpolant of the previous
standard Schur complement preconditioners. Therefore we choose θ = 1/2 and interpolate to obtain
a new preconditioner

C̃ =

(
[A,R] 1

2
0

0 [S,C] 1
2

)
= diag

(
[M, λG] 1

2
, [M, λG] 1

2
, [G, λ−1M] 1

2
, [G, λ−1M] 1

2

)

= diag

(√
λ[M,G] 1

2
,
√
λ[M,G] 1

2
,

1√
λ
[M,G] 1

2
,

1√
λ
[M,G] 1

2

)
,

where G := (λ−1 +ω2σ2)M+KνM
−1Kν . Due to the restriction of the conductivity to be constant,

the interpolation of two by two block matrices reduces to the simpler interpolation [M,G] 1
2
. Conse-

quently, we can derive another new preconditioner Cc, that is spectral equivalent to the interpolated
preconditioner C̃. Again, by using the spectral inequality (6.32), we obtain

xT [M,G] 1
2
x = xT [M, (λ−1 + ω2σ2)M+KνM

−1Kν ] 1
2
x

≤ xT
(√

λ−1 + ω2σ2M+ [M,KνM
−1Kν ] 1

2

)
x

= xT

(√
λ−1 + ω2σ2M+M

1
2

(
M− 1

2KνM
−1KνM

− 1
2

) 1
2

M
1
2

)
x

= xT
(√

λ−1 + ω2σ2M+M
1
2

(
M− 1

2KνM
− 1

2

)
M

1
2

)
x

= xT
(√

λ−1 + ω2σ2M+Kν

)
x, ∀x ∈ (kerKν)

⊥

and

xT [M,G] 1
2
x = xT [M, (λ−1 + ω2σ2)M+KνM

−1Kν ] 1
2
x

≥ 1√
2
xT

(√
λ−1 + ω2σ2M+ [M,KνM

−1Kν ] 1
2

)
x

=
1√
2
xT

(√
λ−1 + ω2σ2M+M

1
2

(
M− 1

2KνM
−1KνM

− 1
2

) 1
2

M
1
2

)
x

=
1√
2
xT

(√
λ−1 + ω2σ2M+M

1
2

(
M− 1

2KνM
− 1

2

)
M

1
2

)
x

=
1√
2
xT

(√
λ−1 + ω2σ2M+Kν

)
x, ∀x ∈ (kerKν)

⊥.
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Furthermore, using the simpler diagonal block Fc = (1/
√
λ + ωσ)M + Kν , we immediately obtain

the spectral inequality

1

2
xTFcx ≤ xT [M,G] 1

2
x ≤ xTFcx, ∀x ∈ (kerKν)

⊥.

Hence, from Subsection 5.2.4, we have, that the preconditioner Cc, given by the block-diagonal matrix

Cc = diag

(√
λFc,

√
λFc,

1√
λ
Fc,

1√
λ
Fc

)
(7.15)

is a candidate for a parameter-robust preconditioner. In the subspace
[
(kerKν)

⊥]4 ⊂ R
4Nh , we

immediately obtain the condition number estimate

κCc
(C−1

c B) := ‖C−1
c B‖Cc

‖B−1Cc‖Cc
≤ 2(

√
5 + 1)√
5− 1

≈ 5.235.

In the next step, we extend the qualitative estimate of the condition number to the full vector space
R

4Nh and to the case of piecewise constant conductivity σ. Exploring the structural similarities to
Cc, our guess for the block-diagonal preconditioner is

C := diag

(√
λF,

√
λF,

1√
λ
F,

1√
λ
F

)
, (7.16)

with the block F = Kν +Mσ,ω + 1/
√
λM. We mention that for the case σ ∈ R

+ we have F = Fc.
Inspired by the structure of the preconditioner (7.16), we introduce the non-standard norm ‖ · ‖C in
H0(curl,Ω1)

4 by

‖(yc,ys,pc,ps)‖2C =
√
λ‖yc‖2C1

+
√
λ‖ys‖2C1

+
1√
λ
‖pc‖2C1

+
1√
λ
‖ps‖2C1

,

where the non-standard norm ‖ · ‖C1
in H0(curl,Ω1) is given by

‖y‖2C1
= (ν curl y, curl y)0,Ω1

+ ω(σy,y)0,Ω1
+

1√
λ
(y,y)0,Ω1

.

The main result is summarized in the following lemma, that claims that an inf-sup and a sup-sup
condition are fulfilled with parameter-independent constants, namely 1/

√
3 and 1.

Lemma 7.3. We have

1√
3
‖(yc,ys,pc,ps)‖C ≤ sup

0 6=(vc,vs,qc,qs)

B((yc,ys,pc,ps), (vc,vs,qc,qs))

‖(vc,vs,qc,qs)‖C

‖(yc,ys,pc,ps)‖C ≥ sup
0 6=(vs,vc,qs,qc)

B((yc,ys,pc,ps), (vc,vs,qc,qs))

‖(vc,vs,qc,qs)‖C

(7.17)

for all (yc,ys,pc,ps) ∈ H0(curl,Ω1)
4.

Proof. Boundedness follows from reapplication of Cauchy’s inequality with appropriate scaling of
the parameter λ. The lower estimate can be attained by choosing vc = yc + 1√

λ
pc − 1√

λ
ps, vs =

ys + 1√
λ
ps + 1√

λ
pc, qc = −pc +

√
λyc +

√
λys and qs = −ps +

√
λys −

√
λyc. Note that, for the

special choice of the test functions, we have ‖(vc,vs,qc,qs)‖C =
√
3‖(yc,ys,pc,ps)‖C .

In general, an inf-sup bound for H0(curl,Ω1)
4 does not imply such a lower bound on the finite

element subspace ND0
0(Th)4. However, in this case the inequalities (7.17) remain also valid for the

Nédélec finite element subspace ND0
0(Th)4, since the proof can be repeated for the finite element

functions step by step. Therefore, we obtain the improved condition number estimate

κC(C−1B) := ‖C−1B‖C‖B−1C‖C ≤
√
3 ≈ 1.732.
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Formulation OC-FEM 2 Since we already have a robust preconditioner for B, we pursue the
strategy of inexact Schur complement preconditioning, cf. Subsection 5.2.3. Therefore, we propose
the following block-diagonal inexact Schur complement preconditioner

CM = diag

(√
λF,

√
λF,

1√
λ
F,

1√
λ
F,

1√
λ
SJ,

1√
λ
SJ,

√
λSJ,

√
λSJ

)
, (7.18)

where SJ = Dσ,ω
TF−1Dσ,ω. Since the matrix Dσ,ω has full rank, the block SJ is positive definite

and therefore the whole preconditioner CM is positive definite. According to the choice of the block-
diagonal preconditioner (7.18), we introduce the non-standard norm ‖ · ‖CM

in the product space
H0(curl,Ω1)

4 ×H1
0 (Ω1)

2 by

‖(Υ,Ψ)‖2CM
:= ‖Υ‖2C +

(
sup

Φ∈H0(curl,Ω1)4

b(Φ,Ψ)

‖Φ‖C

)2

.

The main result is summarized in the following Lemma, that claims that an inf-sup condition and a
sup-sup condition are fulfilled in the non-standard norm with constants 1

2
√
3

and 1+
√
5

2 .

Lemma 7.4. We have

1

2
√
3
‖(Υ,Ψ)‖CM

≤ sup
(Φ,Θ) 6=0

BM ((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖CM

≤ 1 +
√
5

2
‖(Υ,Ψ)‖CM

(7.19)

for all (Υ,Ψ) ∈ H0(curl,Ω1)
4 ×H1

0 (Ω1)
4.

Proof. From Lemma 7.3 we obtain, that the bilinear form B(·, ·) is bounded with constant 1 and
satisfies an inf-sup condition on the kernel of b(·, ·) with constant 1/

√
3. Boundedness of b(·, ·) easily

follows with constant 1. Finally, by definition of ‖ · ‖CM
, the bilinear form b(·, ·) satisfies an inf-sup

condition with constant 1. Consequently the lower and upper bound follow from Theorem 2.3.

Furthermore, the inequalities (7.19) remain valid for the finite element subspace ND0
0(Th)4×S1

0 (Th)4,
since the proof can be repeated for the finite element functions step by step. Therefore, we obtain
the condition number estimate

κCM
(C−1

M BM ) := ‖C−1
M BM‖CM

‖B−1
M CM‖CM

≤
√
3(1 +

√
5) ≈ 5.605.

7.1.5 Summary

We table the condition number κ and the theoretical number of MinRes iterations maxiter needed,
for reducing the initial error by a factor of 10−8. Furthermore, we collect the diagonal blocks, that
are needed to apply the block-diagonal preconditioner.

κ maxiter diagonal blocks
Formulation OC-FEM 1 1.732 30 F

Formulation OC-FEM 2 5.605 106 F, SJ

The realization of the diagonal blocks F and SJ is discussed in Chapter 8.

7.1.6 Numerics

In order to confirm our theoretical results numerically, we report on our first numerical tests for an
academic example. Therefore, we consider the solution of the system corresponding to the block of the
mode k = 1. The numerical results presented in this section were attained using ParMax1. First, we
demonstrate the robustness of the block-diagonal preconditioners with respect to the frequency ω, the

1 http://www.numa.uni-linz.ac.at/P19255/software.shtml
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conductivity σ and the regularization parameter λ. Therefore, for the solution of the preconditioning
equations arising from the diagonal blocks, we use the sparse direct solver UMFPACK2 that is very
efficient for several thousand unknowns in the case of three dimensional problems [45, 46, 47].
In the following numerical experiments, we provide the number of MinRes iterations needed for
reducing the initial residual by a factor 10−8 for different ω, σ, λ and h for Problem 7.1 and 7.2.
These numerical experiments were performed for a three-dimensional linear problem on the unit cube
Ω1 = (0, 1)3, discretized by tetrahedra. Furthermore the piecewise constant conductivity σ is given
by

σ =

{
σ1 in Ωa = {(x, y, z)T ∈ [0, 1]3 : z > 0.5}
σ2 in Ωb = {(x, y, z)T ∈ [0, 1]3 : z ≤ 0.5} . (7.20)

Formulation OC-FEM 1 Table 7.1-7.5 provide the number of MinRes iterations needed for re-
ducing the initial residual by a factor of 10−8. These experiments demonstrate the independence of
the MinRes convergence rate of the parameters ω, σ, λ and the mesh size h since the number of
iterations is bounded by 28 for all computed constellations. Furthermore, in Table 7.1 and Table 7.2
we also report the number of unpreconditioned MinRes iterations, that are necessary for reducing
the initial residual by a factor of 10−8. The large number of iterations in the unpreconditioned case
underline the importance of appropriate preconditioning.

Formulation OC-FEM 1 (modified preconditioner) Table 7.6-7.9 provide the number of Min-
Res iterations needed for reducing the initial residual by a factor of 10−8, using a modified precondi-
tioner

Cmod = diag

(√
λ̃Fmod,

√
λ̃Fmod,

1√
λ̃
Fmod,

1√
λ̃
Fmod

)
, (7.21)

with the diagonal block Fmod = 1/
√
λ̃M +Mσ,ω +Kν , where we use the truncated regularization

parameter λ̃ = min(λ, 1) in the preconditioner. It is clear, that for λ ≤ 1, the modified preconditioner
(7.21) is identical to the original one as stated in (7.15). Indeed, this simple modification is suggested
in [99], where the usage of (7.21) provides some benefits in the reduction of possible FEM-BEM Schur
complements. These experiments demonstrate the independence of the MinRes convergence rate of
the parameters ω, σ, λ and the mesh size h since the number of iterations is bounded by 76 for all
computed constellations.

Formulation OC-FEM 2 Table 7.10 and Table 7.11 provide the number of MinRes iterations
needed for reducing the initial residual by a factor 10−8. These experiments demonstrate the inde-
pendence of the MinRes convergence rate of the parameters ω, σ, λ and the mesh size h since the
number of iterations is bounded by 88 for all computed constellations.

The numerical experiments presented in this section clearly demonstrate the theoretical robustness
of the proposed block-diagonal preconditioners. In large-scale applications, the realization of the
diagonal preconditioners by using a sparse direct solver like UMFPACK is illusive. The practical
realization of our preconditioners is addressed in Chapter 8.

Remark 7.5. Let us mention, that in order to provide a rigorous numerical verification of the
theoretical condition number bounds numerical experiments for the parameter settings (ω, σ, ν, λ) ∈
[10−10, 1010]4 are required. Indeed, these experiments have to be performed for all the proposed settings
and various mesh sizes of h. Since these experiments are too expensive, we just present a selection of
results for critical parameter settings and mesh sizes h.

2 http://www.cise.ufl.edu/research/sparse/umfpack/
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ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 7 7 7 7 7 7 7 7 7 6 4
[587] [587] [586] [587] [587] [587] [587] [591] [485] [263] [116]

10−8 11 11 11 11 11 11 11 10 6 4 4
[481] [482] [482] [481] [481] [481] [482] [468] [263] [116] [114]

10−6 21 21 21 21 21 21 20 12 6 4 4
[373] [373] [373] [373] [373] [373] [373] [263] [116] [114] [114]

10−4 19 19 19 19 20 20 22 12 6 4 4
[719] [719] [720] [720] [718] [719] [534] [114] [114] [114] [114]

10−2 20 20 20 20 20 20 20 12 6 4 4
[1134] [1134] [1134] [1136] [1135] [1134] [227] [114] [114] [114] [114]

λ 1 10 10 10 10 10 14 20 12 6 4 4
[2349] [2351] [2349] [2350] [2350] [2274] [222] [114] [114] [114] [114]

102 6 6 6 6 8 10 20 12 6 4 4
[2688] [2681] [2696] [2667] [3291] [2494] [224] [114] [114] [114] [114]

104 4 4 4 6 6 10 20 12 6 4 4
[2477] [2500] [2983] [3572] [4641] [2499] [224] [114] [114] [114] [114]

106 4 4 4 6 6 10 20 12 6 4 4
[1152] [1159] [3434] [4697] [4867] [2493] [222] [114] [114] [114] [114]

108 2 4 4 6 6 10 20 12 6 4 4
[1143] [1162] [4101] [5659] [4810] [2502] [222] [114] [114] [114] [114]

1010 2 4 4 4 4 10 20 12 6 4 4
[1157] [1163] [4937] [5881] [4791] [2501] [224] [114] [114] [114] [114]

Table 7.1: Formulation OC-FEM 1. Number of MinRes iterations for different values of ω and λ
using the EXACT version of the preconditioner with UMFPACK for F (DOF = 2416, ν = σ = 1),
[·] number of MinRes iterations without preconditioner.

ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 9 9 9 9 9 9 9 10 6 4 4
[708] [708] [708] [708] [708] [708] [708] [711] [578] [308] [134]

10−8 17 17 17 17 17 17 18 15 6 4 4
[575] [575] [575] [575] [575] [575] [575] [557] [308] [134] [132]

10−6 21 21 21 21 21 21 20 18 6 4 4
[825] [824] [825] [825] [825] [825] [824] [307] [134] [132] [132]

10−4 20 20 20 20 20 21 26 20 6 4 4
[2536] [2535] [2535] [2536] [2536] [2536] [1848] [133] [132] [132] [132]

10−2 18 18 18 18 18 20 22 20 6 4 4
[6698] [6669] [6696] [6698] [6690] [6676] [1095] [132] [132] [132] [132]

λ 1 10 10 10 10 10 14 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

102 6 6 6 6 8 10 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

104 4 4 4 6 6 10 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

106 4 4 4 6 6 10 22 20 6 4 4
[7365] [7547] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

108 2 4 4 4 6 10 22 20 6 4 4
[7391] [7552] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

1010 2 4 4 4 4 10 22 20 6 4 4
[7381] [1545] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

Table 7.2: Formulation OC-FEM 1. Number of MinRes iterations for different values of ω and λ
using the EXACT version of the preconditioner with UMFPACK for F (DOF = 16736, ν = σ = 1),
[·] number of MinRes iterations without preconditioner. [-] indicates that MinRes did not converge
within 10000 iterations.
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ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 13 13 13 13 13 13 13 13 8 4 4
10−8 21 21 21 21 21 21 21 17 8 4 4
10−6 21 21 21 21 21 21 21 20 8 4 4
10−4 20 20 20 20 20 20 28 22 8 4 4
10−2 16 16 16 16 16 18 22 22 8 4 4

λ 1 10 10 10 10 10 12 20 22 8 4 4
102 6 6 6 6 8 10 20 22 8 4 4
104 4 4 4 6 6 10 20 22 8 4 4
106 4 4 4 4 6 10 20 22 8 4 4
108 2 4 4 4 6 10 20 22 8 4 4
1010 3 4 4 4 4 10 20 22 8 4 4

Table 7.3: Formulation OC-FEM 1. Number of MinRes iterations for different values of ω and λ
using the EXACT version of the preconditioner with UMFPACK for F (DOF = 124096, ν = σ = 1).

ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 2 2 3 3 5 13 21 16 6 4 3
10−8 2 2 3 4 7 21 20 10 4 4 3
10−6 2 3 3 5 13 21 16 6 4 4 4
10−4 2 3 4 7 21 20 10 6 4 4 4
10−2 3 4 6 13 21 18 8 4 4 6 6

λ 1 4 4 8 17 28 12 6 4 6 6 9
102 4 4 8 20 22 10 6 4 6 6 8
104 4 4 8 22 20 10 6 4 4 4 8
106 4 4 8 22 20 10 4 4 4 4 8
108 4 4 8 22 20 10 4 4 4 4 8
1010 4 4 8 22 20 10 4 2 4 4 8

Table 7.4: Formulation OC-FEM 1. Number of MinRes iterations for different values of ν and λ
using the EXACT version of the preconditioner with UMFPACK for F (DOF = 124096, ω = σ = 1).

σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 13 13 13 13 13 13 13 17 16 13 13
10−8 21 21 21 21 21 21 21 28 21 21 21
10−6 21 21 21 21 21 21 22 26 22 21 21
10−4 21 21 21 21 21 20 28 22 20 20 20
10−2 18 18 18 18 18 18 24 20 16 16 16

λ 1 18 18 18 18 18 12 20 18 12 12 12
102 14 14 14 14 14 10 18 18 10 10 10
104 8 8 8 8 10 10 18 18 8 8 8
106 8 8 8 8 8 10 18 18 8 8 8
108 6 6 6 8 8 10 18 18 8 8 8
1010 6 6 8 8 8 10 18 18 8 8 8

Table 7.5: Formulation OC-FEM 1. Number of MinRes iterations for different values of σ2 and λ
using the EXACT version of the preconditioner with UMFPACK for F (DOF = 124096, ν = ω = 1,
σ1 = 1).
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ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

λ 1 10 10 10 10 10 14 22 20 6 4 4
102 9 11 12 12 12 13 22 20 6 4 4
104 9 11 15 15 14 13 22 20 6 4 4
106 9 11 17 17 15 13 22 20 6 4 4
108 9 11 19 19 15 13 22 20 6 4 4
1010 9 11 21 19 15 13 22 20 6 4 4

Table 7.6: Formulation OC-FEM 1 with modified preconditioner. Number of MinRes iterations for
different values of ω and λ using the EXACT version of the preconditioner with UMFPACK for Fmod

(DOF = 16736, ν = σ = 1).

ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

λ 1 10 10 10 10 10 12 20 22 8 4 4
102 9 9 12 12 12 13 20 22 8 4 4
104 9 11 14 14 14 13 20 22 8 4 4
106 9 11 16 16 14 13 20 22 8 4 4
108 9 11 19 18 14 13 20 22 8 4 4
1010 9 11 21 19 14 13 20 22 8 4 4

Table 7.7: Formulation OC-FEM 1 with modified preconditioner. Number of MinRes iterations for
different values of ω and λ using the EXACT version of the preconditioner with UMFPACK for Fmod

(DOF = 124096, ν = σ = 1).

σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

λ 1 18 18 18 18 18 14 20 18 12 12 12
102 34 34 40 40 40 13 23 19 13 13 13
104 34 35 50 50 47 13 23 19 13 13 13
106 34 35 57 57 48 13 23 19 13 13 13
108 34 35 64 63 48 13 23 19 13 13 13
1010 34 35 71 64 48 13 23 19 13 13 13

Table 7.8: Formulation OC-FEM 1 with modified preconditioner. Number of MinRes iterations for
different values of σ2 and λ using the EXACT version of the preconditioner with UMFPACK for
Fmod (DOF = 16736, ν = ω = 1, σ1 = 1).

σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

λ 1 18 18 18 18 18 12 20 18 12 12 12
102 34 34 41 41 41 13 21 21 13 13 13
104 35 35 50 50 49 13 21 21 13 13 13
106 35 35 60 60 50 13 21 21 13 13 13
108 35 35 68 66 50 13 21 21 13 13 13
1010 35 35 76 68 50 13 21 21 13 13 13

Table 7.9: Formulation OC-FEM 1 with modified preconditioner. Number of MinRes iterations for
different values of ω and λ using the EXACT version of the preconditioner with UMFPACK for Fmod

(DOF = 124096, ν = ω = 1, σ1 = 1).
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ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 21 19 19 17 17 17 17 17 12 8 10
10−8 29 29 29 29 29 29 29 24 12 8 8
10−6 33 33 33 33 33 33 29 33 10 8 8
10−4 28 28 28 28 28 28 36 42 18 12 10
10−2 22 22 22 22 26 31 34 32 14 12 10

λ 1 12 13 14 14 14 14 24 22 10 8 8
102 11 11 13 13 13 18 34 32 14 12 10
104 11 11 11 14 16 24 44 40 18 12 10
106 13 13 13 17 21 28 56 50 22 14 14
108 15 15 18 21 25 36 68 62 24 18 16
1010 31 34 34 23 33 42 80 78 30 20 16

Table 7.10: Formulation OC-FEM 2. Number of MinRes iterations for different values of ω and λ
using the EXACT version of the preconditioner with UMFPACK for F (DOF = 19652, ν = σ = 1).

ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 27 27 25 25 25 25 25 25 16 8 10
10−8 35 35 35 35 35 35 35 29 16 8 8
10−6 32 32 32 32 32 32 33 35 14 8 8
10−4 28 28 28 28 28 28 38 48 20 12 10
10−2 20 20 20 20 23 29 35 34 16 12 10

λ 1 12 12 14 14 14 14 24 26 12 8 8
102 11 11 13 13 13 18 34 34 16 12 10
104 11 11 11 14 16 24 44 46 20 12 10
106 13 13 15 17 21 30 58 60 24 16 14
108 24 17 18 21 27 36 70 72 32 18 16
1010 46 61 65 23 33 42 88 88 38 24 16

Table 7.11: Formulation OC-FEM 2. Number of MinRes iterations for different values of ω and λ
using the EXACT version of the preconditioner with UMFPACK for F (DOF = 143748, ν = σ = 1).



108 CHAPTER 7. TIME-PERIODIC EDDY CURRENT OPTIMAL CONTROL PROBLEMS

7.2 Symmetric FEM-BEM couplings

In the previous section, we have investigated the optimality systems stemming from different varia-
tional formulations of the state equation, that all aim a FEM discretization. Therefore, in all these
cases, we restricted the analysis to the bounded domain Ω1. In this section, we consider the state
equation in the full computational domain R

3. Therefore, we consider equation (6.47) as a PDE
constraint in (7.1). Again, we are dealing with the special regime, that the observation and control
domain coincide with the conducting domain Ω1.

7.2.1 Multiharmonic discretization

Following Chapter 4, we assume that the desired state yd is given by a multiharmonic excitation in
terms of a truncated Fourier series, cf. (7.3). Consequently, we have, that the periodic state y and
the periodic control u, also can be expressed in terms of the same frequency ω, cf. (7.4).

7.2.2 Symmetric variational formulations for FEM-BEM

In order to solve the minimization problem in the frequency domain, we compute the corresponding
optimality system. Therefore, we consider the variational formulations for the state equation Formu-
lation FEM-BEM 1, derived in Subsection 6.2.2. Since for each mode k = 0, . . . , N , the optimality
systems have the same structure, we concentrate on the time-harmonic case, i.e., k = 1. The analysis
for the remaining modes can be deduced by formally setting ω = kω. In contrast to the forward
problem, in the optimal control setting, the analysis for the mode k = 0 can also be deduced from
the analysis for the mode k = 1, by setting k = 0 and dropping the two equations, that correspond
to the sine parts of the state and the co-state.

Introducing the Neumann data of the Fourier coefficients yc, ys of the state, and the Neumann data
of the Fourier coefficients pc, ps of the co-state as additional unknowns, i.e.,

λc := γNyc, λs := γNys, ηc := γNpc and ηs := γNps,

and using the Calderon projection (2.22) for all four, the cosine and the sine component of the state
and the co-state, allow to state the optimality system in a framework, that is suited for a FEM-BEM
discretization.

For simplicity, we introduce the abbreviation

Υ := (yc,λc,ys,λs) and Ψ := (pc,ηc,ps,ηs),

Φ := (wc,ρc,ws,ρs) and Θ := (vc,µc,vs,µs).

We mention, that Υ represents the variables corresponding to the state y, Ψ represents the variables
corresponding to the co-state p and Φ and Θ are the corresponding test functions, respectively.
According to the definition of Υ and Ψ, we introduce the appropriate product space

W := H(curl,Ω1)×H
− 1

2

‖ (divΓ 0,Γ)×H(curl,Ω1)×H
− 1

2

‖ (divΓ 0,Γ).

Therefore, we end up with the weak formulation of the reduced symmetric coupled optimality system:
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Find (Υ,Ψ) ∈ W2, such that





−ω(σps,wc)0,Ω1 + (ν curl pc, curlwc)0,Ω1 + (yc,wc)0,Ω1

−〈N(γDpc),γDwc〉τ + 〈B(ηc),γDwc〉τ = (yc
d,w

c)0,Ω1 ,

〈ρc, (C− Id)(γDpc)〉τ − 〈ρc,A(ηc)〉τ = 0,

ω(σpc,ws)0,Ω1 + (ν curl ps, curlws)0,Ω1 + (ys,ws)0,Ω1

−〈N(γDps),γDws〉τ + 〈B(ηs),γDws〉τ = (ys
d,w

s)0,Ω1 ,

〈ρs, (C− Id)(γDps)〉τ − 〈ρs,A(ηs)〉τ = 0,

ω(σys,vc)0,Ω1 + (ν curl yc, curl vc)0,Ω1 − λ−1(pc,vc)0,Ω1

−〈N(γDyc),γDvc〉τ + 〈B(λc),γDvc〉τ = 0,

〈µc, (C− Id)(γDyc)〉τ − 〈µc,A(λc)〉τ = 0,

−ω(σyc,vs)0,Ω1
+ (ν curl ys, curl vs)0,Ω1

− λ−1(ps,vs)0,Ω1

−〈N(γDys),γDvs〉τ + 〈B(λs),γDvs〉τ = 0,

〈µs, (C− Id)(γDys)〉τ − 〈µs,A(λs)〉τ = 0,

(7.22)

for all test functions (Φ,Θ) ∈ W2. For simplicity, we introduce the bilinear form BB , representing
the latter variational problem by

BB((Υ,Ψ), (Φ,Θ)) := a(Υ,Φ) + b(Φ,Ψ) + b(Υ,Θ)− c(Ψ,Θ),

where the bilinear forms a, b and c are given by

a(Υ,Φ) = (yc,wc)0,Ω1
+ (ys,ws)0,Ω1

,

b(Υ,Θ) = ω(σys,vc)0,Ω1
− ω(σyc,vs)0,Ω1

+
∑

j∈{c,s}
(ν curl yj, curl vj)0,Ω1

−〈N(γDyj),γDvj〉τ + 〈B(λj),γDvj〉τ +
〈
µj, (C− Id)(γDyj)

〉
τ
−

〈
µj,A(λj)

〉
τ
,

c(Ψ,Θ) = λ−1(pc,vc)0,Ω1 + λ−1(ps,vs)0,Ω1 .

Using this notation, we can state (7.22) in the abstract form:

Problem 7.6. Find (Υ,Ψ) ∈ W2, such that

BB((Υ,Ψ), (Φ,Θ)) =
∑

j∈{c,s}
(yj

d,w
j)0,Ω1

, (7.23)

for all test functions (Φ,Θ) ∈ W2.

Problem 7.6 has a unique solution (Υ,Ψ) ∈ W2, cf. Lemma 7.7.

7.2.3 Discretization

For discretization we use ND0(Th), a conforming finite element subspace of H(curl,Ω1), and RT 0
0(Kh),

a conforming finite element subspace of H
− 1

2

‖ (divΓ 0,Γ), cf. Section 2.4. Furthermore, we define the
finite element product space Wh, given by

Wh := ND0(Th)×RT 0
0(Kh)×ND0(Th)×RT 0

0(Kh).

Using the definition of the FEM and BEM matrices, cf. (6.62) and (7.12), allows to state the resulting
system of finite and boundary element equations.
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Formulation OC-FEM-BEM 1 Find (yc
h,λ

c
h,y

s
h,λ

s
h,p

c
h,η

c
h,p

s
h,η

s
h)

T ∈ R
4(Nh+Lh):




M · · · K̃ν B −Mσ,ω ·
· · · · BT −A · ·
· · M · Mσ,ω · K̃ν B

· · · · · · BT −A

K̃ν B Mσ,ω · −λ−1M · · ·
BT −A · · · · · ·

−Mσ,ω · K̃ν B · · −λ−1M ·
· · BT −A · · · ·




︸ ︷︷ ︸
=:BB




yc
h

λc
h

ys
h

λs
h

pc
h

ηc
h

ps
h

ηs
h




=




yc
d,h

0

ys
d,h

0

0

0

0

0




.

7.2.4 Block-diagonal preconditioners

This subsection is devoted to the construction of parameter-robust preconditioners for the systems
of linear equations of the last subsection. For the proposed formulation, we investigate its structure
to construct a preconditioner by the technique of inexact Schur complement preconditioning, cf.
Subsection 5.2.3. Furthermore, we provide condition number bounds for the resulting preconditioned
systems of linear equations, by showing well-posedness of the underlying systems of partial differential
equations in non-standard norms.

Formulation OC-FEM-BEM 1 We explore the structure of the system matrix BB . Since we
already have a robust preconditioner for the part of BB , corresponding to the interior, i.e., B, we
pursue the strategy of inexact Schur complement preconditioning, cf. Subsection 5.2.3. The contri-
bution from the boundary is taken into account by forming the Schur complements. Therefore, we
propose the following block-diagonal inexact Schur complement preconditioner

CB = diag

(√
λSB,

√
λA,

√
λSB,

√
λA,

1√
λ
SB,

1√
λ
A,

1√
λ
SB,

1√
λ
A

)
, (7.24)

where SB = K̃ν + Mσ,ω + 1√
λ
M − N + BTA−1B. According to the choice of the block-diagonal

preconditioner CB , we introduce the non-standard norm ‖ · ‖CB
in the product space W2:

‖(Υ,Ψ)‖2CB
:=

√
λ


‖Υ‖2PB1

+
∑

j∈{c,s}

1√
λ
‖yj‖20,Ω1


+

1√
λ


‖Ψ‖2PB1

+
∑

j∈{c,s}

1√
λ
‖pj‖20,Ω1


 . (7.25)

The main result is summarized in the following lemma, that claims that an inf-sup and a sup-sup
condition are fulfilled with parameter-independent constants, namely 1

4 and 2.

Lemma 7.7. We have

1

4
‖(Υ,Ψ)‖CB

≤ sup
(Φ,Θ) 6=0

BB((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖CB

≤ 2‖(Υ,Ψ)‖CB
(7.26)

for all (Υ,Ψ) ∈ W2.

Proof. By an appropriate distribution of the regularization parameter λ and application of Cauchy’s
inequality several times, the sup-sup condition follows with constant 2. For the special choices of the
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test functions

(Φ1,Θ1) := (Υ,−Ψ),

(Φ2,Θ2) :=

(
1√
λ
pc,− 1√

λ
ηc,

1√
λ
ps,− 1√

λ
ηs,

√
λyc,−

√
λλc,

√
λys,−

√
λλs

)
,

(Φ3,Θ3) :=

(
− 1√

λ
ps,− 1√

λ
ηs,

1√
λ
pc,

1√
λ
ηc,

√
λys,

√
λλs,−

√
λyc,−

√
λλc

)
,

we have

BB((Υ,Ψ), (Φ1,Θ1)) =
∑

j∈{c,s}

[
‖yj‖20,Ω1

+
1

λ
‖pj‖20,Ω1

]
,

BB((Υ,Ψ), (Φ2,Θ2)) =
√
λ

∑

j∈{c,s}

[
(ν curl yj, curl yj)0,Ω1

− 〈N(γDyj),γDyj〉τ + 〈λj,A(λj)〉τ
]

+
1√
λ

∑

j∈{c,s}

[
(ν curl pj, curl pj)0,Ω1

− 〈N(γDpj),γDpj〉τ + 〈ηj,A(ηj)〉τ
]
,

BB((Υ,Ψ), (Φ3,Θ3)) =
∑

j∈{c,s}

[√
λω(σyj ,yj)0,Ω1

+
1√
λ
ω(σpj ,pj)0,Ω1

]
,

and therefore

sup
(Φ,Θ)∈W2

BB((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖CB

≥ BB((Υ,Ψ), (Φ1 + 2Φ2 +Φ3,Θ1 + 2Θ2 +Θ3))

‖(Φ1 + 2Φ2 +Φ3,Θ1 + 2Θ2 +Θ3)‖CB

≥
‖(yc,ys,pc,ps)‖2C +

√
λ
∑

j∈{c,s} −〈N(γDyj),γDyj〉τ + 〈λj,A(λj)〉τ
2‖(Υ,Ψ)‖CB

+

1√
λ

∑
j∈{c,s} −〈N(γDpj),γDpj〉τ + 〈ηj,A(ηj)〉τ

2‖(Υ,Ψ)‖CB

.

Furthermore, for the choice

(Φ4,Θ4) :=

(
0,

1√
λ
λc,0,

1√
λ
λs,0,

√
ληc,0,

√
ληs

)
,

we have

sup
(Φ,Θ)∈W2

BB((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖CB

≥
√
λ

∑
j∈{c,s} supµj

〈B(µj),γDyj〉2τ
〈µj,A(µj)〉τ

− 〈λj,A(λj)〉τ
√
2‖(Υ,Ψ)‖CB

+
1√
λ

∑
j∈{c,s} supµj

〈B(µj),γDpj〉2τ
〈µj,A(µj)〉τ

− 〈ηj,A(ηj)〉τ
√
2‖(Υ,Ψ)‖CB

,

cf. (6.65). Combining these two estimates, we obtain the inf-sup bound with constant 1/4.

Furthermore, the inequalities (7.26) remain valid for the finite element subspace W2
h, since the proof

can be repeated for the finite element functions step by step. Therefore, we obtain the condition
number estimate

κCB
(C−1

B BB) := ‖C−1
B BB‖CB

‖B−1
B CB‖CB

≤ 8.
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7.3 Various constraints yielding a decoupling nature

In Section 7.1 and Section 7.2 time-periodic eddy current optimal control problems with distributed
control are analyzed and a preconditioned MinRes solver is constructed, that yields parameter-
independent convergence rates. Indeed, the applicability of this approach to time-periodic eddy
current optimal control problems is shown with some eminent restrictions, that limits the applicabil-
ity of this solver to general problems in the engineering practice:

1) The observation domain and the control domain have to be equal to the computational domain,
i.e., Ωa = Ωb = Ω1 (cf. (7.30)).

2) The observation is restricted to be done in a L2-type norm.

3) There are no control constraints involved.

4) There are no state constraints involved.

Therefore, in this section we extend the basic model problem (7.1)-(7.2) step by step to problems as
required in practical applications. For simplicity, we only consider the bounded domain Ω1, where
the conductivity is strictly positive. Therefore, in all these cases, the resulting system matrices obtain
high structural similarities to BM and B as in (7.13) and (7.14), respectively. We mention, that the
case of domains consisting of both, conducting and non-conducting regions can be dealt with in terms
of a FEM-BEM coupling method.
Anyhow, the construction of parameter-robust solvers taking into account modifications of 1) - 4) is
not straightforward, since we have to cope with various discretization and model parameters, that
impinge upon the convergence rate of any iterative method. Anyhow, in all these cases an efficient
preconditioned MinRes method can be constructed, that is robust at least in the space and time
discretization parameters. Moreover, in some cases we are able to prove robustness with respect to
some more involved model parameters. In fact, the aim of these work is to generalize and extend the
ideas derived in [94] for simple parabolic optimal control problems to eddy current optimal control
problems. Therefore, we treat the modification of each issue 1) - 4) separately and provide the
dependence of the convergence rate on the model parameters, if our solver is applied to the resulting
system of equations. Furthermore, we explore the decoupling with respect to the modes of the Fourier
coefficients in 1)- 4).
In some applications, it is reasonable to impose control constraints to the individual Fourier coeffi-
cients of the control u. Therefore, we analyze this specific case. Pointwise state constraints are of
importance for instance to avoid undesired singularities in the optimal state. This issue can also be
achieved by adding pointwise state constraints to the Fourier coefficients of the state y. Following
[159] and [73], we use a Moreau Yosida regularization to incorporate these pointwise state constraints
to the Fourier coefficients. Since even linear inequality constraints give rise to nonlinear optimality
systems, we apply a Newton-type approach for their solution, cf. [25, 26, 76]. At every Newton
step a saddle point problem has to be solved, that obtains high structural similarities with the linear
problems. Therefore in these nonlinear cases, our focus is on the efficient solution of these linear
systems arising at each Newton step, cf. [73].
It turns out, that we have to pay a price in the sense, that we lose robustness with respect to specific
model or regularization parameters in order to get robustness with respect to modifications in the
cost functional and/or the state equation. The idea is to use the same block-diagonal preconditioners
C and CM , given in (7.16) and (7.18), as for the optimal control problem with distributed control.
The crucial point is, that in order to provide theoretical results, it is essential to have a Friedrichs’
inequality in some of the cases, especially if 1) - 3) are modified. While the existence of a Friedrichs’
inequality in a H1(Ω1) setting only requires a non-empty Dirichlet boundary, cf. Lemma 2.7, in
the H(curl,Ω1) setting a Friedrichs’ inequality is only available for weakly divergence-free functions,
cf. Lemma 2.8. In fact this is a strong limitation, since we want to use the full H(curl,Ω1) space
in our computations. Therefore, we have to incorporate the weakly divergence-free condition in
terms of additional Lagrange multipliers in a weak setting. Consequently, in these cases, we rely
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on Formulation OC-FEM 2. For modifications in the case 4), it is sufficient to rely on Formulation
OC-FEM 1.
Before we start with the analysis, we prepare some technical tools and notations that simplify the
subsequent analysis. We recall the definition of the bilinear form BM :

BM ((Υ,Ψ), (Φ,Θ)) := a(Υ,Φ) + b(Φ,Ψ) + b(Υ,Θ),

with the bilinear forms

a(Υ,Φ) : = aa((y
c,ys), (vc,vs)) + ab((v

c,vs), (pc,ps))

+ ab((y
c,ys), (qc,qs))− ac((p

c,ps), (qc,qs)),
(7.27)

that are further decomposed into

aa((y
c,ys), (vc,vs)) :=

∑

j∈{c,s}
(yj,vj)0,Ω1

,

ab((y
c,ys), (qc,qs)) := ω [(σys,qc)0,Ω1

− (σyc,qs)0,Ω1
] +

∑

j∈{c,s}
(ν curl yj, curl qj)0,Ω1

,

ac((p
c,ps), (qc,qs)) :=

∑

j∈{c,s}
λ−1(pj,qj)0,Ω1 .

Furthermore, we use the following splitting of the C-norm.

‖Υ‖2C := ‖(yc,ys)‖2C1
+ ‖(pc,ps)‖2C2

, (7.28)

with

‖(yc,ys)‖2C1
:=

√
λ

∑

j∈{c,s}
‖yj‖2C1

and ‖(pc,ps)‖2C2
:=

1√
λ

∑

j∈{c,s}
‖pj‖2C1

. (7.29)

In the following, we use Lemma 2.9 (weighted Friedrichs’ inequality in H(curl,Ω1)) in a very specific
style.

Corollary 7.8. For any v ∈ H0(curl,Ω1) which satisfies

(σv,∇q)0,Ω1 = 0, ∀ q ∈ H1
0 (Ω1),

we have
‖v‖0,Ω1 ≤ Cσ,ν‖ν1/2 curl v‖0,Ω1 ,

where Cσ,ν = CF
2

√
σ
σ ν .

Proof. Using Lemma 2.9, we obtain

‖v‖20,Ω1
= (v,v)0,Ω1 ≤ 1

σ
(σv,v)0,Ω1 ≤ (CF

2 )2

σ
(σ curl v, curl v)0,Ω1

≤ (CF
2 )2 σ

σ
(curl v, curl v)0,Ω1 ≤ (CF

2 )2 σ

σ ν
(ν curl v, curl v)0,Ω1 = C2

σ,ν‖ν1/2 curl v‖20,Ω1
.

Note, that for constant conductivity, i.e., σ ∈ R
+, Cσ,ν does not depend on σ. Hence, we have

the important property, that in the space of weakly divergence-free functions, the mass matrix is
basically dominated by the stiffness matrix, with a constant independent of any involved discretization
parameters (h, ω, N). Hence, Corollary 7.8 allows us to derive a very specific inf-sup and sup-sup
bound for ab(·, ·).
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Lemma 7.9. We have

cb‖(yc,ys)‖C1
≤ sup

(yc,ys)∈H0(curl,Ω1)2

ab((y
c,ys), (qc,qs))

‖(qc,qs)‖C2

≤ cb‖(yc,ys)‖C1

and

cb‖(yc,ys)‖C2
≤ sup

(qc,qs)∈H0(curl,Ω1)2

ab((q
c,qs), (yc,ys))

‖(qc,qs)‖C1

≤ cb‖(yc,ys)‖C2

for all (yc,ys) ∈ H0(curl,Ω1)
2 fulfilling (σyc,∇p)0,Ω1 = 0 and (σys,∇p)0,Ω1 = 0, for all p ∈

H1
0 (Ω1). Here cb and cb are constants that depend on λ, σ and ν, but are independent of h, ω and

N .

Proof. First we show boundedness of ab(·, ·), indeed

ab((y
c,ys), (qc,qs)) ≤ ‖(yc,ys)‖C1‖(qc,qs)‖C2 .

In order to verify the inf-sup condition of ab(·, ·), we use the special choice (qc,qs) = (yc+ys,ys−yc)
for the test functions. Due to the restriction on yc and ys to be weakly divergence-free, we can use
Corollary 7.8:

ab((y
c,ys), (yc,ys)) + ab((y

c,ys), (ys,−yc)) ≥
≥

∑

j∈{c,s}

[
(ν curl yj, curl yj)0,Ω1

+ kω(σyj,yj)0,Ω1

]

≥
∑

j∈{c,s}

[
1

2
(ν curl uj, curl uj)0,Ω1 +

1

2Cσ,ν
(yj,yj)0,Ω1 + kω(σyj,yj)0,Ω1

]

≥ c ‖(yc,ys)‖2C2
.

Note, that for this special choice we have ‖(vc,vs)‖C2 =
√
2‖(yc,ys)‖C2 . Therefore the first result

follows. Since ab(·, ·) is skew symmetric, the same estimate can be obtained for the adjoint setting.

Indeed, in the following subsections we will consider different minimization functionals, that in par-
ticular effect the specific structure of the parts aa(·, ·) and ac(·, ·) of A. In all the considered settings,
the bilinear form ab(·, ·) stays the same, and therefore Lemma 7.9 plays the following important role:
As long as the bounds

0 ≤ ai((y
c,ys), (yc,ys)) ≤ ci‖(yc,ys)‖C1

, for i ∈ {a, c},

can be verified with constants ci, that are independent of h, ω and N , Theorem 2.3 and Theorem 2.4 in
combination with Lemma 7.9 can be used to provide well-posedness results for the resulting bilinear
form BM,· in the non-standard norm ‖ · ‖CM

that are uniform in h, ω and N . At that point it
can clearly be seen, that in these settings it is essential to work with the divergence constrained
formulation Formulation OC-FEM 2 instead of Formulation OC-FEM 1, since Lemma 7.9 is only
true in the space of weakly divergence-free functions.

7.3.1 Different control and observation domains

In many practical applications, it makes no sense to locate the observation and/or control in the full
computational domain Ω1, since the computational domain consists of conducting and non-conducting
regions. Typically, some electrical current is prescribed in a coil and the magnetic potential is tracked
in some other predefined region, cf. [152].
Therefore, we assume that the observation and control domains Ωa and Ωb are non-empty, simply
connected subdomains of the computational domain Ω1, i.e., Ωa ⊂ Ω1 and Ωb ⊂ Ω1. In order to deal
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with the different support of the observation and control, we define the prolongation operators Pi,
i ∈ {a, b}, by

Pi : L2(Ωi) → L2(Ω1),

(Piu,v)0,Ω1 = (u,v)0,Ωi
, ∀u ∈ L2(Ωi), ∀v ∈ L2(Ω1),

and the appropriate restriction operators P∗
i , i ∈ {a, b}, by

P∗
i : L2(Ω1) → L2(Ωi),

(Piu,v)0,Ω1 = (u,P∗
i v)0,Ωi

, ∀u ∈ L2(Ωi), ∀v ∈ L2(Ω1).

We obtain the following minimization problem:

min
y,u

J(y,u) =
1

2

∫

Ωa×(0,T )

|Pa
∗[y − yd]|2 dx dt +

λ

2

∫

Ωb×(0,T )

|u|2dx dt, (7.30)

subject to the state equation




σ
∂y

∂t
+ curl(ν curl y) = Pbu, in Ω1 × (0, T ),

div(σy) = 0, in Ω1 × (0, T ),

y × n = 0, on ∂Ω1 × (0, T ),

y(0) = y(T ), on Ω1 × {0}.

(7.31)

In this setting we have

BM,1((Υ,Ψ), (Φ,Θ)) := a1(Υ,Φ) + b(Φ,Ψ) + b(Υ,Θ)

with

a1((yc,ys,pc,ps), (vc,vs,qc,qs)) := a1a((y
c,ys), (vc,vs))

+ ab((v
c,vs), (pc,ps)) + ab((y

c,ys), (qc,qs))− a1c((p
c,ps), (qc,qs)),

and the new bilinear forms

a1a((y
c,ys), (vc,vs)) :=

∑

j∈{c,s}
(yj,vj)0,Ωa

and a1c((p
c,ps), (qc,qs)) :=

∑

j∈{c,s}
λ−1(pj,qj)0,Ωb

.

The main result is summarized in the following Lemma, that claims that an inf-sup condition and a
sup-sup condition are fulfilled, where the constants are independent of h, N and ω.

Lemma 7.10. We have

c1‖(Υ,Ψ)‖CM
≤ sup

(Φ,Θ) 6=0

BM,1((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖CM

≤ c1‖(Υ,Ψ)‖CM

for all (Υ,Ψ) ∈ H0(curl,Ω1)
4 ×H1

0 (Ω1)
4. Here the constants c1, c1 are independent of h, N and ω.

Proof. In order to proof boundedness and the inf-sup condition of a(·, ·) on the kernel of b(·, ·), we
use Theorem 2.4. We have to verify the lower and upper bounds for a1a(·, ·) and a1c(·, ·). Indeed, we
have

0 ≤ a1a((y
c,ys), (yc,ys)) ≤ aa((y

c,ys), (yc,ys)) ≤ ‖(yc,ys)‖2C1

and

0 ≤ a1c((p
c,ps), (pc,ps)) ≤ ac((p

c,ps), (pc,ps)) ≤ ‖(pc,ps)‖2C2
.
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Furthermore we use the result of Lemma 7.9 to obtain the inf-sup conditions for ab(·, ·). Therefore,
combining the last estimates yields

c‖(yc,ys)‖2C2
≤ aa((y

c,ys), (yc,ys)) +

(
sup

0 6=(qc,qs)

ab((y
c,ys), (qc,qs))

‖(qc,qs)‖C2

)2

≤ ‖(yc,ys)‖2C2
,

c‖(pc,ps)‖2C2
≤ ac((p

c,ps), (pc,ps)) +

(
sup

0 6=(vc,vs)

ab((v
c,vs), (pc,ps))

‖(vc,vs)‖C2

)2

≤ ‖(pc,ps)‖2C2
,

for all (yc,ys,pc,ps) in the kernel of b(·, ·), where c is some generic constant, independent of h, ω
and N . Now with Theorem 2.4, we obtain that the inf-sup condition of a(·, ·) on the kernel of b(·, ·)
is satisfied. Boundedness of a(·, ·) follows easily with constant 1. Furthermore boundedness and the
inf-sup condition of b(·, ·) can be done analogously to Lemma 7.4. Therefore, by Theorem 2.3, the
desired result follows.

Due to Lemma 7.10 the preconditioner CM , that was derived for Formulation OC-FEM 2, can be
reused in the setting, where the observation domain differs from the control domain. Furthermore,
we immediately obtain that the condition number of the preconditioned system can be estimated by
a constant, i.e.,

κCM
(C−1

M BM,1) := ‖C−1
M BM,1‖CM

‖B−1
M,1CM‖CM

≤ c1,

where the constant c1 is independent of the mesh size h, the frequency ω and the total number of
modes N .

7.3.2 Observation of the magnetic flux density B

Instead of the vector potential y, we want to observe the magnetic flux density B = curl y. Therefore
we obtain the following minimization problem:

min
y,u

J(y,u) =
1

2

∫

Ω1×(0,T )

|curl y − yc|2 dx dt +
λ

2

∫

Ω1×(0,T )

|u|2dx dt, (7.32)

subject to the state equation




σ
∂y

∂t
+ curl(ν curl y) = u, in Ω1 × (0, T ),

div(σy) = 0, in Ω1 × (0, T ),

y × n = 0, on ∂Ω1 × (0, T ),

y(0) = y(T ), on Ω1 × {0}.

(7.33)

Here yc ∈ L2((0, T ),L2(Ω1)) is some prescribed desired state of the magnetic flux density curl y. In
this setting we have

BM,2((Υ,Ψ), (Φ,Θ)) := a2(Υ,Φ) + b(Φ,Ψ) + b(Υ,Θ),

with

a2((yc,ys,pc,ps), (vc,vs,qc,qs)) : = a2a((y
c,ys), (vc,vs)) + ab((v

c,vs), (pc,ps))

+ ab((y
c,ys), (qc,qs))− ac((p

c,ps), (qc,qs)),

and the new bilinear form

a2a((y
c,ys), (vc,vs)) :=

∑

j∈{c,s}
(curl yj, curl vj)0,Ω1 .

The main result is summarized in the following Lemma, that claims that an inf-sup condition and a
sup-sup condition are fulfilled, where the constants are independent of h, N and ω.
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Lemma 7.11. We have

c2‖(Υ,Ψ)‖CM
≤ sup

(Φ,Θ) 6=0

BM,2((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖CM

≤ c2‖(Υ,Ψ)‖CM
,

for all (Υ,Ψ) ∈ H0(curl,Ω1)
4 ×H1

0 (Ω1). Here the constants c2, c2 are independent of h, N and ω.

Proof. The proof is basically the same as the proof of Lemma 7.10. The main differences are the
lower and upper bounds for a2a(·, ·) and a2c(·, ·). We have

0 ≤ a2a((y
c,ys), (yc,ys)) ≤ 1

ν
‖(yc,ys)‖2C2

and

0 ≤ a2c((p
c,ps), (pc,ps)) ≤ ‖(pc,ps)‖2C2

.

This completes the proof.

Due to Lemma 7.11 the preconditioner CM , that was derived for Formulation OC-FEM 2, can be
reused in the setting, where the B filed is observed. Furthermore, we immediately obtain that the
condition number of the preconditioned system can be estimated by a constant, i.e.,

κCM
(C−1

M BM,2) := ‖C−1
M BM,2‖CM

‖B−1
M,2CM‖CM

≤ c2,

where the constant c2 is independent of the mesh size h, the frequency ω and the total number of
modes N .

7.3.3 Control constraints to the Fourier coefficients

In some practical applications it is reasonable to add box constraints for the control u. Indeed,
this approach is reasonable, if the amplitudes of the individual modes are intended to be bounded
individually. We mention, that in this setting also the special case is included, that the exciting
current is of the form u(x, t) = uc(x) cos(ωt), cf. [17]. In this case, it is reasonable to add box
constraints to the Fourier coefficient uc.
Therefore in this subsection, we consider the case where the control constraints are associated to the
Fourier coefficients of the control u for all modes k = 0, . . . , N , i.e.,

uc
k ≤ uc

k ≤ uc
k, a.e. in Ω1, k = 0, 1, . . . , N,

us
k ≤ us

k ≤ us
k, a.e. in Ω1, k = 1, . . . , N.

Here uc
k,u

s
k,u

c
k,u

s
k ∈ L2(Ω1) are given data and furthermore uc

k ≤ uc
k and us

k ≤ us
k holds a.e. in Ω1.

Since the problem decouples with respect to the modes k, we again concentrate on one block for a
fixed mode k. For simplicity we drop the subindex k. Therefore we consider the following problem:
Minimize the functional

J(yc,ys,uc,uc) =
1

2

∑

j∈{c,s}

∫

Ω1

|yj − y
j
d|2dx+

λ

2

∑

j∈{c,s}

∫

Ω1

|uj|2dx,

subject to the state equation




ωσ ys + curl(ν curl yc) = uc, in Ω1,

−ωσ yc + curl(ν curl ys) = us, in Ω1,

div(σyc) = 0, in Ω1,

div(σys) = 0, in Ω1,

yc × n = ys × n = 0, on ∂Ω1,

(7.34)
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with the control constraints associated to the Fourier coefficients

uc ≤ uc ≤ uc, a.e. in Ω1,

us ≤ us ≤ us, a.e. in Ω1.

The first order system of necessary and sufficient optimality conditions can be expressed as follows:





−ω(σps,vc)0,Ω1
+ (ν curl pc, curl vc)0,Ω1

+ (yc,vc)0,Ω1 + ω(σvc,∇ρc)0,Ω1 = (yc
d,v

c)0,Ω1 ,

ω(σpc,∇ηc)0,Ω1 = 0,

ω(σpc,vs)0,Ω1 + (ν curl ps, curl vs)0,Ω1 + (ys,vs)0,Ω1 + ω(σvs,∇ρs)0,Ω1 = (ys
d,v

s)0,Ω1
,

ω(σps,∇ηs)0,Ω1 = 0,

λ(uc,wc)0,Ω1 − (pc,wc)0,Ω1
+ (ξc,wc)0,Ω1

= 0,

λ(us,ws)0,Ω1
− (ps,ws)0,Ω1

+ (ξs,ws)0,Ω1
= 0,

ω(σys,qc)0,Ω1
+ (ν curl yc, curl qc)0,Ω1

− (uc,qc)0,Ω1
+ ω(σqc,∇µc)0,Ω1

= 0,

ω(σyc,∇θc)0,Ω1
= 0,

−ω(σyc,qs)0,Ω1
+ (ν curl ys, curl qs)0,Ω1

− (us,qs)0,Ω1
+ ω(σqs,∇µs)0,Ω1

= 0,

ω(σys,∇θs)0,Ω1
= 0,

ξc −max(0, ξc + C(uc − uc))−min(0, ξc + C(uc − uc)) = 0,

ξs −max(0, ξs + C(us − us))−min(0, ξs + C(us − us)) = 0,
(7.35)

with the Lagrange multipliers pj, ρj , ξj, j ∈ {c, s}. Here, for any three-dimensional vector function y,
max(0,y) is the component wise application of max in the pointwise sense. Furthermore C is some
positive constant. Due to the last two equations, this system is nonlinear, but due to [76] the last two
equations enjoy the Newton differentiability, at least for C = λ. In order to solve this system, we use
the primal-dual active set method as introduced in [76]. This method is equivalent to a semi-smooth
Newton method. The strategy proceeds as follows: At each Newton iterate l for j ∈ {c, s} the active
sets are determined by

Ej,+
l = {x ∈ Ω1 : ξjl + C(uj

l − uj) > 0},
Ej,−
l = {x ∈ Ω1 : ξjl − C(uj − uj) < 0},

and the inactive sets are Ij
l = Ω1\Ej

l , where Ej
l = Ej,+

l ∪Ej,−
l . Consequently, the Newton step for the

solution of (7.35), given in terms of the new iterate, reads as follows (for simplicity the index for the
Newton iteration is dropped):





−ω(σps,vc)0,Ω1 + (ν curl pc, curl vc)0,Ω1 + (yc,vc)0,Ω1 + ω(σvc,∇ρc)0,Ω1 = (yc
d,v

c)0,Ω1 ,

ω(σpc,∇ηc)0,Ω1
= 0,

ω(σpc,vs)0,Ω1
+ (ν curl ps, curl vs)0,Ω1

+ (ys,vs)0,Ω1
+ ω(σvs,∇ρs)0,Ω1

= (ys
d,v

s)0,Ω1
,

ω(σps,∇ηs)0,Ω1
= 0,

λ(uc,wc)0,Ω1
− (pc,wc)0,Ω1

+ (ξc,wc)0,Ω1
= 0,

λ(us,ws)0,Ω1
− (ps,ws)0,Ω1

+ (ξs,ws)0,Ω1
= 0,

ω(σys,qc)0,Ω1
+ (ν curl yc, curl qc)0,Ω1

− (uc,qc)0,Ω1
+ ω(σqc,∇µc)0,Ω1

= 0,

ω(σyc,∇θc)0,Ω1
= 0,

−ω(σyc,qs)0,Ω1
+ (ν curl ys, curl qs)0,Ω1

− (us,qs)0,Ω1
+ ω(σqs,∇µs)0,Ω1

= 0,

ω(σys,∇θs)0,Ω1
= 0,

CχEcuc + χIcξc − C(χEc,+uc + χEc,−uc) = 0,

CχEsus + χIsξs − C(χEs,+us + χEs,−us) = 0.
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The symbol χ denotes the characteristic function with respect to the set denoted in the subscript.
Next we use, that the restriction of ξj, j ∈ {c, s}, to the inactive sets Ij is zero, and hence this
variable can be eliminated from the system. Therefore, we introduce the new variables ξjE , namely
the restriction of ξj to the active set Ej . Furthermore, we derive the weak formulation of the last
two equations by multiplying with test functions zjE ∈ L2(Ej). Consequently, we are dealing with the
following variational problem:





−ω(σps,vc)0,Ω1
+ (ν curl pc, curl vc)0,Ω1

+ (yc,vc)0,Ω1
+ ω(σvc,∇ρc)0,Ω1

= (yc
d,v

c)0,Ω1
,

ω(σpc,∇ηc)0,Ω1
= 0,

ω(σpc,vs)0,Ω1
+ (ν curl ps, curl vs)0,Ω1

+ (ys,vs)0,Ω1
+ ω(σvs,∇ρs)0,Ω1

= (ys
d,v

s)0,Ω1
,

ω(σps,∇ηs)0,Ω1
= 0,

λ(uc,wc)0,Ω1
− (pc,wc)0,Ω1

+ (ξcE ,PEcwc)0,Ec = 0,

λ(us,ws)0,Ω1
− (ps,ws)0,Ω1

+ (ξsE ,PEsws)0,Es = 0,

ω(σys,qc)0,Ω1
+ (ν curl yc, curl qc)0,Ω1

− (uc,qc)0,Ω1
+ ω(σqc,∇µc)0,Ω1 = 0,

ω(σyc,∇θc)0,Ω1 = 0,

−ω(σyc,qs)0,Ω1
+ (ν curl ys, curl qs)0,Ω1 − (us,qs)0,Ω1 + ω(σqs,∇µs)0,Ω1 = 0,

ω(σys,∇θs)0,Ω1 = 0,

(PEcuc, zcE)0,Ec − (PEc,+uc + PEc,−uc, zcE)0,Ec = 0,

(PEsus, zsE)0,Es − (PEs,+us + PEs,−us, zsE)0,Es = 0.

Here the projections PX , X ∈ {Ec,+, Ec,−, Ec, Es,+, Es,−, Es}, are defined by

PX : L2(Ω1) → L2(X ),

(PXu,v)0,X = (u,v)0,X , ∀u ∈ L2(Ω1),v ∈ L2(X ).

The adjoint operators P∗
X are defined by

P∗
X : L2(X ) → L2(Ω1),

(u,P∗
Xv)0,Ω1

= (PXu,v)0,X , ∀u ∈ L2(Ω1),v ∈ L2(X ).

In the usual manner, the control variables uc and us can be eliminated, using the fifth and the sixth
equation. Finally, we eliminate ξcE and ξsE and end up with the reduced optimality system: Find
(Υ,Ψ) ∈ H0(curl,Ω1)

4 ×H1
0 (Ω1)

4, such that




−ω(σps,vc)0,Ω1 + (ν curl pc, curl vc)0,Ω1

+(yc,vc)0,Ω1 + ω(σvc,∇ρc)0,Ω1 = (yc
d,v

c)0,Ω1 ,

ω(σpc,∇ηc)0,Ω1
= 0,

ω(σpc,vs)0,Ω1
+ (ν curl ps, curl vs)0,Ω1

+(ys,vs)0,Ω1
+ ω(σvs,∇ρs)0,Ω1

= (ys
d,v

s)0,Ω1
,

ω(σps,∇ηs)0,Ω1
= 0,

ω(σys,qc)0,Ω1
+ (ν curl yc, curl qc)0,Ω1

− 1

λ
[(pc,qc)0,Ω1

− (P∗
EcPEcpc,qc)0,Ω1

] + ω(σqc,∇µc)0,Ω1
= (fc,qc)0,Ω1

,

ω(σyc,∇θc)0,Ω1 = 0,

−ω(σyc,qs)0,Ω1 + (ν curl ys, curl qs)0,Ω1

− 1

λ
[(ps,qs)0,Ω1

− (P∗
EsPEsps,qs)0,Ω1

] + ω(σqs,∇µs)0,Ω1
= (f s,qs)0,Ω1

,

ω(σys,∇θs)0,Ω1 = 0,
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for all (Φ,Θ) ∈ H0(curl,Ω1)
4 ×H1

0 (Ω1)
4. Here f j, for j ∈ {c, s}, is given by

f j = P∗
Ej (PEj,+uj + PEj,−uj).

In this setting we have

BM,3((Υ,Ψ), (Φ,Θ)) := a3(Υ,Φ) + b(Φ,Ψ) + b(Υ,Θ)

with

a3((yc,ys,pc,ps), (vc,vs,qc,qs)) := aa((y
c,ys), (vc,vs))

+ ab((v
c,vs), (pc,ps)) + ab((y

c,ys), (qc,qs))− a3c((p
c,ps), (qc,qs))

and the new bilinear form

a3c((y
c,ys), (vc,vs)) :=

∑

j∈{c,s}
(pj,qj)0,Ω1

− (P∗
EjPEjpj,qj)0,Ω1

.

The main result is summarized in the following Lemma, that claims that an inf-sup condition and a
sup-sup condition are fulfilled, where the constants are independent of h, N and ω.

Lemma 7.12. We have

c3‖(Υ,Ψ)‖CM
≤ sup

(Φ,Θ) 6=0

BM,3((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖CM

≤ c3‖(Υ,Ψ)‖CM

for all (Υ,Ψ) ∈ H0(curl,Ω1)
4 ×H1

0 (Ω1). Here the constants c3, c3 are independent of h, N , ω and
the active sets Ec and Es.

Proof. The proof is basically the same as the proof of Lemma 7.10. The main differences are the
lower and upper bounds for a3c(·, ·). We have

0 ≤ a3c((p
c,ps), (pc,ps)) ≤ 2‖(pc,ps)‖2C2

.

This completes the proof.

Due to Lemma 7.12 the preconditioner CM , that was derived for Formulation OC-FEM 2, can be
reused in the setting, where control constraints are added to the Fourier coefficient. Furthermore, we
immediately obtain that the condition number of the preconditioned system can be estimated by a
constant, i.e.,

κCM
(C−1

M BM,3) := ‖C−1
M BM,3‖CM

‖B−1
M,3CM‖CM

≤ c3,

where the constant c3 is independent of the mesh size h, the frequency ω, the total number of modes
N and the active sets Ec, Es.

7.3.4 State constraints to the Fourier coefficients

In some practical applications it is reasonable to add box constraints for the state y. For example,
constraints imposed on the state y are important to filter out undesired singularities in the solution
y of the eddy current problem. Indeed, this can already be achieved by imposing box constraints on
the Fourier coefficients of the state y, i.e.,

yc
k
≤ yc

k ≤ yc
k, a.e. in Ω1, k = 0, 1, . . . , N,

ys
k
≤ ys

k ≤ ys
k, a.e. in Ω1, k = 1, . . . , N.

Here yc
k
,ys

k
,yc

k,y
s
k ∈ L2(Ω1) are given data and furthermore yc

k
≤ yc

k and ys
k
≤ ys

k holds a.e. in
Ω1. In this setting we rely on Formulation OC-FEM 1, cf. Problem 7.1 and Remark 7.14. Again we
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observe a decoupling with respect to the modes k, and therefore drop the mode subindex k = 0, . . . , N .
In order to incorporate the state constraints, we follow the analytical framework presented in [159].
Due to the lack of regularity of the control-to-state map, a penalization method, that is also called
Moreau-Yosida regularization, is used. Therefore the regularized problem reads as follows: Minimize
the functional

Jε(yc,ys,uc,uc) =
1

2

∑

j∈{c,s}

∫

Ω1

|yj − y
j
d|2dx+

λ

2

∑

j∈{c,s}

∫

Ω1

|uj|2dx

+
1

2ε

∑

j∈{c,s}

(
‖max(0,yj − yj)‖20,Ω1

+ ‖min(0,yj − yj)‖20,Ω1

)
,

(7.36)

subject to the state equation




ωσ ys + curl(ν curl yc) = uc, in Ω1,

−ωσ yc + curl(ν curl ys) = us, in Ω1,

yc × n = ys × n = 0, on ∂Ω1.

(7.37)

Here ε is an additional regularization parameter. The first order system of necessary and sufficient
optimality conditions of (7.36)-(7.37) can be expressed as follows





−ω(σps,vc)0,Ω1 + (ν curl pc, curl vc)0,Ω1 + (yc,vc)0,Ω1 + (ξc,vc)0,Ω1 = (yc
d,v

c)0,Ω1 ,

ω(σpc,vs)0,Ω1 + (ν curl ps, curl vs)0,Ω1 + (ys,vs)0,Ω1 + (ξs,vs)0,Ω1 = (ys
d,v

s)0,Ω1 ,

ω(σys,qc)0,Ω1
+ (ν curl yc, curl qc)0,Ω1

− λ−1(pc,qc)0,Ω1
= 0,

−ω(σyc,qs)0,Ω1 + (ν curl ys, curl qs)0,Ω1 − λ−1(ps,qs)0,Ω1 = 0,

ξc − 1

ε
max(0,yc − yc) +

1

ε
min(0,yc − yc) = 0,

ξs − 1

ε
max(0,ys − ys) +

1

ε
min(0,ys − ys) = 0.

Again, we use a primal-dual active set strategy. Therefore, at each Newton step (for simplicity
the index for the Newton iteration is skipped), we have to solve the variational problem: Find
(Υ,Ψ) ∈ H0(curl,Ω1)

4 ×H1
0 (Ω1)

4, such that




−ω(σps,vc)0,Ω1 + (ν curl pc, curl vc)0,Ω1 + (yc,vc)0,Ω1 +
1

ε
(yc,vc)0,Ec

= (yc
d,v

c)0,Ω1 +
1

ε

(
χEc,+yc + χEc,−yc,vc

)
0,Ω1

,

ω(σpc,vs)0,Ω1 + (ν curl ps, curl vs)0,Ω1 + (ys,vs)0,Ω1 +
1

ε
(ys,vs)0,Es

= (ys
d,v

s)0,Ω1
+

1

ε

(
χEs,+ys + χEs,−ys,vs

)
0,Ω1

,

ω(σys,qc)0,Ω1 + (ν curl yc, curl qc)0,Ω1 − λ−1(pc,qc)0,Ω1 = 0,

−ω(σyc,qs)0,Ω1
+ (ν curl ys, curl qs)0,Ω1

− λ−1(ps,qs)0,Ω1
= 0,

for all (Φ,Θ) ∈ H0(curl,Ω1)
4×H1

0 (Ω1)
4. Here the active sets for the cosine and the sine components,

i.e., j ∈ {c, s}, are given by

Ej,+ = {x ∈ Ω1 : yj − yj > 0} and Ej,− = {x ∈ Ω1 : yj − yj < 0}.

The full active sets for j ∈ {c, s} are denoted by Ej = Ej,+ ∪ Ej,−. Again, we use a common notation
and introduce the bilinear form

B4(Υ,Φ) : = a4a((y
c,ys), (vc,vs)) + ab((v

c,vs), (pc,ps))

+ ab((y
c,ys), (qc,qs))− ac((p

c,ps), (qc,qs))
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with ab(·, ·) and ac(·, ·) defined as in (7.27) and a4a(·, ·) given by

a4a((y
c,ys), (vc,vs)) :=

∑

j∈{c,s}
(yj,vj)0,Ω1 +

1

ε
(yj,vj)0,Ej .

The main result is summarized in the following Lemma, that claims that an inf-sup condition and a
sup-sup condition are fulfilled, where the constants are independent of h, N and ω.

Lemma 7.13. We have

c4‖Υ‖C ≤ sup
Φ 6=0

B4(Υ,Φ)

‖Φ‖C
≤ c4‖Υ‖C ,

for all Υ ∈ H0(curl,Ω1)
4. Here the constants c4, c4 are independent of h, N , ω, σ, ν, λ and the

active sets Ec and Es.

Proof. From Lemma 7.3 we obtain that the bilinear form a(·, ·) is bounded with constant 1 and
satisfies an inf-sup condition on the kernel of b(·, ·) with constant 1/

√
3. Therefore for a(·, ·), the two

conditions (2.8) and (2.9) of Theorem 2.4 are fulfilled. Now the proof for B4(·, ·) immediately follows,
since

a4a((y
c,ys), (vc,vs)) = aa((y

c,ys), (vc,vs)) +
1

ε

∑

j∈{c,s}
(yj,vj)0,Ej ,

and

aa((y
c,ys), (yc,ys)) ≤ a4a((y

c,ys), (yc,ys)) ≤ (1 +
1

ε
)aa((y

c,ys), (yc,ys)).

Indeed, since the conditions (2.8) and (2.8) are necessary and sufficient, the desired result follows.

Due to Lemma 7.13 the preconditioner C, that was derived for Formulation OC-FEM 1, can be
reused in the setting, where state constraints are added to the Fourier coefficients. Furthermore, we
immediately obtain that the condition number of the preconditioned system can be estimated by a
constant, i.e.,

κC(C−1B4) := ‖C−1B4‖C‖B−1
4 C‖C ≤ c4,

where the constant c4 is independent of the mesh size h, the frequency ω, the total number of modes
N and the active sets Ec, Es, as well as the model parameters σ, ν, and the regularization parameter
λ.

Remark 7.14. In principal, for the case of state constraints imposed on the Fourier coefficients,
the same analysis relying on Formulation OC-FEM 2 can be carried out. Anyhow, in this setting, it
turns out, that at least from the theoretical point of view, no Friedrichs’ inequality is needed to provide
theoretical results yielding a condition number bound, that is uniform in the discretization parameters
h, ω and N . Therefore, we rely on Formulation OC-FEM 1, cf. Problem 7.1.

7.3.5 Summary

Lemma 7.10-7.13 are also valid in the corresponding finite element subspace, since the setup and the
proofs can be repeated step by step for the finite element functions. Therefore, for the corresponding
system matrices BM,1, BM,2, BM,3 and B4, given by

BM,1 =




K 0 Kν −Mσ,ω 0 0 Dσ,ω
T 0

0 K Mσ,ω Kν 0 0 0 Dσ,ω
T

Kν Mσ,ω −λ−1M 0 Dσ,ω
T 0 0 0

−Mσ,ω Kν 0 −λ−1M 0 Dσ,ω
T 0 0

0 0 Dσ,ω 0 0 0 0 0

0 0 0 Dσ,ω 0 0 0 0

Dσ,ω 0 0 0 0 0 0 0

0 Dσ,ω 0 0 0 0 0 0




,
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BM,2 =




Ma 0 Kν −Mσ,ω 0 0 Dσ,ω
T 0

0 Ma Mσ,ω Kν 0 0 0 Dσ,ω
T

Kν Mσ,ω −λ−1Mb 0 Dσ,ω
T 0 0 0

−Mσ,ω Kν 0 −λ−1Mb 0 Dσ,ω
T 0 0

0 0 Dσ,ω 0 0 0 0 0

0 0 0 Dσ,ω 0 0 0 0

Dσ,ω 0 0 0 0 0 0 0

0 Dσ,ω 0 0 0 0 0 0




,

BM,3 =




M 0 Kν −Mσ,ω 0 0 Dσ,ω
T 0

0 M Mσ,ω Kν 0 0 0 Dσ,ω
T

Kν Mσ,ω −λ−1MEc 0 Dσ,ω
T 0 0 0

−Mσ,ω Kν 0 −λ−1MEs 0 Dσ,ω
T 0 0

0 0 Dσ,ω 0 0 0 0 0

0 0 0 Dσ,ω 0 0 0 0

Dσ,ω 0 0 0 0 0 0 0

0 Dσ,ω 0 0 0 0 0 0




,

and

B4 =




M+ 1
εMEc 0 Kν −Mσ,ω

0 M+ 1
εMEs Mσ,ω Kν

Kν Mσ,ω −λ−1M 0

−Mσ,ω Kν 0 −λ−1M


 ,

we immediately obtain, that the spectral condition number of the preconditioned systems can be
estimated by constants, i.e.,

κ(P−1BM,1) ≤ c1/c1 6= c1(h, ω,N),

κ(P−1BM,2) ≤ c2/c2 6= c2(h, ω,N),

κ(P−1BM,3) ≤ c3/c3 6= c3(h, ω,N, Ec, Es),

κ(C−1B4) ≤ c4/c4 6= c4(h, ω,N, ν, σ, λ, Ec, Es).

(7.38)

Due to the need for the Friedrichs’ inequality in the proofs of Lemma 7.10, Lemma 7.11 and
Lemma 7.12, we cannot gain a uniform quantitative bound for the condition numbers of the pre-
conditioned systems. Typically, the Friedrichs’ constant depends on the computational domain Ω1.
Nevertheless, the qualitative estimates provide us the desired robustness properties.

7.3.6 Numerics

This subsection is devoted to the numerical verification of the condition number estimates stated
in (7.38). We report on numerical experiments, that were performed for a three-dimensional linear
problem on the unit cube Ω1 = (0, 1)3, discretized by tetrahedra. As in Subsection 7.1.6, we consider
the solution of the system corresponding to the block of the mode k = 1. We provide the number of
MinRes iterations, needed for reducing the initial residual by a factor of 10−8 for different problem
settings and various parameter constellations.
As exposed in the introduction of Section 7.3, in some constellation it is essential (at least from the
theoretical point of view) to work with Formulation OC-FEM 2 in order to obtain condition number
estimates with respect to the preconditioner CM , that are independent of the frequency ω and the
total number of modes N . In order to investigate this claim from the numerical point of view, we
also report on results on the basis of Formulation OC-FEM 1 using the preconditioner C. We will
see, that in the latter constellations, robustness with respect to ω is not attained.
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7.3.6.1 Different control and observation domains

In this subsection we consider a numerical example with different observation and control domains
Ωa and Ωb, i.e., Ωa = Ω1 = (0, 1)3 and Ωb = (0.25, 0.75)3. Let us mention that we have to ensure,
that Ωa and Ωb are resolved by the mesh. The corresponding numerical results are documented in
Table 7.12-7.16. Robustness with respect to the space and time discretization parameters h and ω
is demonstrated in Table 7.12. Table 7.13 describes the behavior with respect to the non-robust
parameters λ and ν. Table 7.14 in combination with Table 7.16 indicates, that for Formulation OC-
FEM 1 in combination with the preconditioner C, robustness with respect to the frequency ω, that
is related to the time discretization parameters, cannot be obtained. Here, we want to mention, that
the good iteration numbers observed in Table 7.14 are caused by the special choice of λ = 1.

7.3.6.2 Observation of the magnetic flux density B

Numerical results for observation of the magnetic flux density are reported in Table 7.17-7.20. The
robustness with respect to the space and time discretization parameters h and ω is demonstrated in
Table 7.17. Table 7.18 and Table 7.19 describe the behavior with respect to the non-robust parameters
λ and ν. In Table 7.20 we observe that for large mesh sizes, good iteration numbers are observed
even for small λ. Nevertheless, for fixed λ, the iteration numbers are growing with respect to the
involved degrees of freedom.
The next experiment demonstrates, that robustness with respect to the time discretization parameter
ω cannot be achieved by using the C preconditioner in Formulation OC-FEM 1. In Table 7.21 the
number of MinRes iteration needed for reducing the initial residual by a factor of 10−8 are tabled.
In Table 7.22, the same experiment as in Table 7.18 is performed, but using Formulation OC-FEM
1 instead of Formulation OC-FEM 2. Indeed, comparing Table 7.17 with Table 7.21 and Table 7.18
with Table 7.22 clearly shows, that it is essential to work with Formulation OC-FEM 2. Beside the
robustness with respect to the frequency ω, that is related to the time discretization parameters, we
additionally observe better iteration numbers with respect to the regularization parameter λ in the
feasible region λ < 1.

7.3.6.3 State constraints

Numerical results for the case of state constraints imposed on the Fourier coefficients are presented
in Table 7.23-7.26. Here we choose 15512 random points as the active sets Ec and Es and solve the
resulting Jacobi system with the system matrix B4. The dependence of the MinRes convergence
rate on the Moreau-Yosida regularization parameter ε is demonstrated in Table 7.23 and Table 7.24.
Table 7.25 and Table 7.26 clearly demonstrate the robustness with respect to the parameters λ, ω
and σ.

Remark 7.15. As already mentioned in Remark 7.5, a full numerical verification requires compu-
tations over the parameter settings (ω, σ, ν, λ, ε) ∈ [10−10, 1010]5. Since we only present a selection
of these numerical experiments, it may happen that we encounter a two-dimensional hyperplane of
[10−10, 1010]5, where robustness qualities of the proposed solvers with respect to certain parameters can
be observed, that are not predicted by theory. Let us mention, that from these experiments robustness
in the full parameter settings (ω, σ, ν, λ, ε) cannot be concluded.

7.4 Various constraints yielding a non-decoupling nature

In this section we discuss the application of the MH-FEM method to problems including end time
control. It is clear, that in this setting the advantageous block-diagonal structure is lost. Anyhow,
we demonstrate that a generalization of our solver can also be applied in this case.
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DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

2916 19 19 20 21 23 30 30 22 12 8 8
19652 19 19 20 21 24 30 32 26 12 8 8
143748 19 19 19 21 23 29 32 28 14 10 8

Table 7.12: Different control and observation domains in Formulation OC-FEM 2. Number of MinRes
iterations for different values of ω and various DOF using the EXACT version of the preconditioner
with UMFPACK for F (ν = σ = λ = 1).

ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 1038 1006 661 3421 [-] [-] [-] 946 49 28 9
10−8 479 478 497 1091 [-] [-] 2217 426 37 18 8
10−6 342 344 363 843 6843 7142 619 256 26 9 8
10−4 261 261 324 586 4086 769 275 134 39 14 16
10−2 188 206 209 313 607 204 114 82 79 80 106

λ 1 40 40 41 48 52 30 26 26 26 24 26
102 41 41 42 64 70 40 26 22 22 20 28
104 28 28 30 60 64 34 20 16 22 22 63
106 24 24 30 68 76 38 24 16 26 42 414
108 22 22 30 76 84 42 22 20 28 67 [-]
1010 22 22 34 88 148 46 44 36 68 276 [-]

Table 7.13: Different control and observation domains in Formulation OC-FEM 2. Number of Min-
Res iterations for different values of ν and λ using the EXACT version of the preconditioner with
UMFPACK for F (DOF = 19652, σ = ω = 1). [-] indicates that MinRes did not converge within
10000 iterations.

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

2416 34 34 67 61 52 30 22 12 6 4 4
16736 32 33 82 67 51 30 22 20 6 4 4
124096 29 31 83 63 48 30 20 22 8 4 4

Table 7.14: Different control and observation domains in Formulation OC-FEM 1. Number of MinRes
iterations for different values of ω and various DOF using the EXACT version of the preconditioner
with UMFPACK for F (ν = σ = λ = 1). [-] indicates that MinRes did not converge within 10000
iterations.

ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 34 34 36 66 2701 [-] 983 103 60 47 [-]
10−8 32 32 34 80 2890 6795 168 67 45 41 [-]
10−6 31 32 32 87 2630 828 81 46 41 58 73
10−4 30 30 42 86 1294 139 51 40 38 50 64
10−2 29 37 37 66 169 61 43 39 37 43 47

λ 1 19 20 22 29 39 30 25 23 22 21 24
102 10 10 11 20 22 13 12 12 11 10 10
104 6 6 8 20 22 10 8 8 8 8 8
106 6 6 6 20 22 10 6 6 6 6 6
108 4 4 6 20 22 10 4 4 4 4 6
1010 4 4 6 20 22 10 4 4 4 4 6

Table 7.15: Different control and observation domains in Formulation OC-FEM 1. Number of Min-
Res iterations for different values of ν and λ using the EXACT version of the preconditioner with
UMFPACK for F (DOF = 16736, σ = ω = 1). [-] indicates that MinRes did not converge within
10000 iterations.
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ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 9338 9347 9346 9340 [-] [-] 2630 66 11 6 4
10−8 4272 4271 4274 4308 8260 6795 1294 29 8 4 4
10−6 571 571 571 1075 983 828 169 20 6 4 4
10−4 100 100 103 193 168 139 39 20 6 4 4
10−2 49 49 122 103 81 61 22 20 6 4 4

λ 1 32 33 82 67 51 30 22 20 6 4 4
102 23 112 60 46 43 13 22 20 6 4 4
104 17 90 45 40 25 10 22 20 6 4 4
106 [-] 46 41 39 12 10 22 20 6 4 4
108 [-] 41 38 23 8 10 22 20 6 4 4
1010 [-] 58 37 12 6 10 22 20 6 4 4

Table 7.16: Different control and observation domains in Formulation OC-FEM 1. Number of Min-
Res iterations for different values of ω and λ using the EXACT version of the preconditioner with
UMFPACK for F (DOF = 16736, σ = ν = 1). [-] indicates that MinRes did not converge within
10000 iterations.

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

500 13 13 14 14 14 16 23 12 9 8 7
2916 11 12 13 13 13 15 29 16 10 8 8
19652 11 11 12 12 12 14 30 21 11 8 8
143748 11 11 12 12 12 14 28 27 13 8 8

Table 7.17: Observation of the magnetic flux density B in Formulation OC-FEM 2. Number of MinRes
iterations for different values of ω and various DOF using the EXACT version of the preconditioner
with UMFPACK for F (ν = σ = λ = 1).

ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 174 175 175 176 175 213 290 68 14 10 8
10−8 155 155 155 154 155 214 257 16 10 6 8
10−6 146 146 146 146 177 215 58 12 8 6 8
10−4 147 147 147 176 200 195 13 8 7 7 9
10−2 272 272 272 289 306 55 13 10 9 10 13

λ 1 290 290 290 292 240 14 8 6 8 10 12
102 475 474 479 448 83 18 12 10 14 14 26
104 757 758 757 703 53 24 14 12 18 20 54
106 193 193 195 179 55 28 18 24 24 26 360
108 57 57 57 61 68 36 20 18 28 64 [-]
1010 36 38 39 77 84 42 26 36 50 264 [-]

Table 7.18: Observation of the magnetic flux density B in Formulation OC-FEM 2. Number of
MinRes iterations for different values of ν and λ using the EXACT version of the preconditioner with
UMFPACK for F (DOF = 19652, σ = ω = 1). [-] indicates that MinRes did not converge within
10000 iterations.
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ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 325 324 326 326 327 411 505 65 14 10 8
10−8 289 289 287 289 289 402 352 16 10 6 8
10−6 289 289 289 289 359 392 53 12 10 6 8
10−4 292 292 292 348 391 265 15 8 7 9 11
10−2 543 543 543 561 523 52 13 10 8 11 15

λ 1 543 544 541 564 325 14 8 6 8 10 14
102 948 949 941 861 79 18 12 10 14 14 36
104 1829 1832 1835 1279 53 24 14 12 18 28 134
106 688 688 680 377 55 30 18 22 26 40 [-]
108 129 128 192 81 70 36 20 30 42 120 [-]
1010 56 56 55 91 88 42 26 38 54 [-] [-]

Table 7.19: Observation of the magnetic flux density B in Formulation OC-FEM 2. Number of
MinRes iterations for different values of ν and λ using the EXACT version of the preconditioner with
UMFPACK for F (DOF = 143748, σ = ω = 1). [-] indicates that MinRes did not converge within
10000 iterations.

DOF λ

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

500 36 36 37 39 40 16 19 26 30 36 44
2916 115 113 121 121 55 15 18 24 28 38 44
19652 213 214 215 195 55 14 18 24 28 36 42
143748 411 402 392 265 52 14 18 24 30 36 42

Table 7.20: Observation of the magnetic flux density B in Formulation OC-FEM 2. Number of MinRes
iterations for different values of λ and various DOF using the EXACT version of the preconditioner
with UMFPACK for F (ν = σ = λ = 1).

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

392 4133 [-] 46 20 16 15 21 9 5 4 3
2416 [-] [-] 64 29 15 13 27 12 6 4 4
16736 [-] [-] 102 28 15 13 26 18 7 4 4
124096 [-] [-] 28 13 12 26 24 9 5 4 4

Table 7.21: Observation of the magnetic flux density B in Formulation OC-FEM 1. Number of MinRes
iterations for different values of ω and various DOF using the EXACT version of the preconditioner
with UMFPACK for F (ν = σ = λ = 1). [-] indicates that MinRes did not converge within 10000
iterations.

ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 739 901 1073 1140 1462 1153 1548 182 32 19 [-]
10−8 515 533 534 577 641 918 589 28 16 15 21
10−6 357 361 357 385 478 607 96 17 10 9 18
10−4 316 316 233 253 318 272 15 8 9 8 13
10−2 234 234 234 253 279 50 9 6 7 6 9

λ 1 260 260 260 259 214 13 7 5 6 6 8
102 462 462 469 440 76 11 6 4 6 6 7
104 524 524 523 489 26 10 6 4 4 4 6
106 79 79 79 73 21 10 4 4 4 4 6
108 17 17 17 18 22 10 4 4 4 4 6
1010 10 10 9 19 22 10 4 3 4 4 6

Table 7.22: Observation of the magnetic flux density B in Formulation OC-FEM 1. Number of
MinRes iterations for different values of ν and λ using the EXACT version of the preconditioner with
UMFPACK for F (DOF = 16736, σ = ω = 1). [-] indicates that MinRes did not converge within
10000 iterations.
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ǫ

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 88 74 59 45 31 17 9 9 9 9 9
10−8 217 179 142 104 66 29 19 17 17 17 17
10−6 992 801 612 421 220 36 21 21 21 21 21
10−4 6184 4874 3558 2131 416 35 22 21 21 21 21
10−2 [-] [-] [-] 3259 351 29 20 20 20 20 20

λ 1 [-] [-] [-] 3795 191 24 16 16 14 14 14
102 [-] [-] [-] 1619 120 13 12 10 10 10 10
104 [-] [-] 8588 727 26 10 10 10 10 10 10
106 [-] [-] 5852 160 12 10 10 10 10 10 10
108 [-] [-] 924 26 10 10 10 10 10 10 10
1010 [-] 7681 162 12 10 10 10 10 10 10 10

Table 7.23: State constraints in Formulation OC-FEM 1. Number of MinRes iterations for different
values of ε and λ using the EXACT version of the preconditioner with UMFPACK for F (DOF =
16736, ν = σ = ω = 1). [-] indicates that MinRes did not converge within 10000 iterations.

ǫ

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 142 118 94 70 46 22 13 13 13 13 13
10−8 532 434 335 236 137 36 21 21 21 21 21
10−6 3275 2602 1930 1241 372 35 21 21 21 21 21
10−4 [-] [-] [-] 4360 460 34 21 20 20 20 20
10−2 [-] [-] [-] 5482 383 29 18 18 18 18 18

λ 1 [-] [-] [-] 5443 206 24 16 14 13 12 12
102 [-] [-] [-] 1836 124 13 12 10 10 10 10
104 [-] [-] [-] 830 26 10 10 10 10 10 10
106 [-] [-] 6619 167 11 10 10 10 10 10 10
108 [-] [-] 1080 26 10 10 10 10 10 10 10
1010 [-] 8883 167 11 10 10 10 10 10 10 10

Table 7.24: State constraints in Formulation OC-FEM 1. Number of MinRes iterations for different
values of ε and λ using the EXACT version of the preconditioner with UMFPACK for F (DOF =
124096, ν = σ = ω = 1). [-] indicates that MinRes did not converge within 10000 iterations.

ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 22 22 22 22 22 22 22 22 12 6 4
10−8 36 36 36 36 36 36 36 27 10 6 4
10−6 35 35 35 35 35 35 35 22 8 4 4
10−4 33 33 33 33 33 34 32 22 8 4 4
10−2 30 30 30 30 30 29 22 22 8 4 4

λ 1 20 20 20 20 20 24 20 22 8 4 4
102 16 16 16 16 18 13 20 22 8 4 4
104 15 15 15 15 21 10 20 22 8 4 4
106 13 13 14 18 12 10 20 22 8 4 4
108 13 13 15 20 8 10 20 22 8 4 4
1010 13 13 16 12 6 10 20 22 8 4 4

Table 7.25: State constraints in Formulation OC-FEM 1. Number of MinRes iterations for different
values of ω and λ using the EXACT version of the preconditioner with UMFPACK for F (DOF =
124096, ν = σ = ε = 1).
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σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 17 17 17 17 17 17 17 21 25 16 16
10−8 29 29 29 29 29 29 29 41 29 29 29
10−6 36 36 36 36 36 36 37 40 36 36 36
10−4 35 35 35 35 35 35 42 34 34 34 34
10−2 30 30 30 30 30 29 34 28 25 25 25

λ 1 33 33 33 33 33 24 23 23 21 21 21
102 28 28 28 28 26 13 20 18 13 13 13
104 18 18 18 18 23 10 20 18 10 10 10
106 17 17 17 19 13 10 20 18 10 10 10
108 17 17 17 21 8 10 20 18 10 10 10
1010 17 17 18 12 8 10 20 18 10 10 10

Table 7.26: State constraints in Formulation OC-FEM 1. Number of MinRes iterations for different
values of σ2 and λ using the EXACT version of the preconditioner with UMFPACK for F (DOF =
16736, ν = ω = ε = σ1 = 1).

σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 22 22 22 22 22 22 22 25 28 22 22
10−8 36 36 36 36 36 36 36 46 36 36 36
10−6 35 35 35 35 35 35 36 42 35 35 35
10−4 35 35 35 35 35 34 42 34 34 34 32
10−2 30 30 30 30 30 29 33 29 25 25 25

λ 1 33 33 33 33 33 24 23 23 21 21 21
102 28 28 28 28 27 13 20 18 12 12 12
104 18 18 18 18 22 10 18 18 10 10 10
106 17 17 17 19 12 10 18 18 8 8 8
108 17 17 17 21 8 10 18 18 8 8 8
1010 17 17 18 12 8 10 18 18 8 8 8

Table 7.27: State constraints in Formulation OC-FEM 1. Number of MinRes iterations for different
values of σ2 and λ using the EXACT version of the preconditioner with UMFPACK for F (DOF =
124096, ν = ω = ε = σ1 = 1).
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7.4.1 End time control

In this section, we additionally want to control the end time of the state y. Consequently, we obtain
the following minimization problem: Minimize the functional

J(y,u) =
1

2

∫

Ω1×(0,T )

|y − yd|2dx dt +
α

2

∫

Ω1

|y(T )− yT|2dx+
λ

2

∫

Ω1×(0,T )

|u|2dx dt, (7.39)

subject to the state equation





σ
∂y

∂t
+ curl(ν curl y) = u, in Ω1 × (0, T ),

y × n = 0, on ∂Ω1 × (0, T ),

y(0) = y(T ), in Ω1.

(7.40)

Here the additional weight parameter α > 0 and yT ∈ L2(Ω1) are given data, where yT represents
the desired state at the end time T . Using the multiharmonic representation of the state y, the
desired state yd and the control u, we can state the minimization problem in the frequency domain:
Minimize the functional

JN (y,u) =
∑

j∈{c,s}

N∑

k=0

[
1

2

∫

Ω1

|yj
k − y

j
d,k|2dx+

λ

2

∫

Ω1

|uj
k|2dx

]
+
α

2

∫

Ω1

|
N∑

k=0

yc
k − yT|2dx, (7.41)

subject to the state equation

for k = 0, . . . , N :





kωσ ys
k + curl(ν curl yc

k) = uc
k, in Ω1 × (0, T ),

−kωσ yc
k + curl(ν curl ys

k) = us
k, in Ω1 × (0, T ),

yc
k × n = ys

k × n = 0, on ∂Ω1 × (0, T ).

(7.42)

The reduced optimality system of (7.41)-(7.42) is given by: For each mode k = 0, 1, . . . , N , find the
Fourier coefficients (yc

k,y
s
k,p

c
k,p

s
k) ∈ H0(curl,Ω1)

4, such that





(1 + α)(yc
k,v

c
k)0,Ω1 − ω(σps

k,v
c
k)0,Ω1 + (ν curl pc

k, curl v
c
k)0,Ω1

+α
∑

l 6=k

(yc
l ,v

c
k)0,Ω1 = (yc

d,k,v
c
k)0,Ω1 + α(yT,v

c
k)0,Ω1 ,

(ys
k,v

s
k)0,Ω1 + ω(σpc

k,v
s
k)0,Ω1 + (ν curl ps

k, curl v
s
k)0,Ω1 = (ys

d,k,v
s
k)0,Ω1 ,

ω(σys
k,q

c
k)0,Ω1 + (ν curl yc

k, curl q
c
k)0,Ω1 −

1

λ
(pc

k,q
c
k)0,Ω1

= 0,

−ω(σyc
k,q

s
k)0,Ω1 + (ν curl ys

k, curl q
s
k)0,Ω1 −

1

λ
(ps

k,q
s
k)0,Ω1 = 0,

for all test functions (vc
k,v

s
k,q

c
k,q

s
k) ∈ H0(curl,Ω1)

4. Due to the control of the final time, there is
a coupling through the cosine terms yc

k of the state. Nevertheless, the resulting system of equations
fits into our framework. We end up with the variational formulation: Find Υ = (Υ0, . . . ,ΥN ) ∈
H0(curl,Ω1)

4N+2, such that

A5(Υ,Φ) = F5(Φ), (7.43)

for all Φ = (Φ0, . . . ,ΦN ) ∈ H0(curl,Ω1)
4N+2, where the left hand side A5 is given by

A5(Υ,Φ) := a(Υy,Φv) + b(Φv,Υp) + b(Υy,Φq) + c(Υp,Φq)
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with the bilinear forms

a(Υy,Φv) :=
N∑

k=0

(1 + α)(yc
k,v

c
k)0,Ω1

+ (ys
k,v

s
k)0,Ω1

+ α
∑

k 6=l

(yc
l ,v

c
k)0,Ω1

,

c(Υp,Φq) :=
1

λ

∑

j∈{c,s}

N∑

k=0

(pj
k,q

j
k)0,Ω1 ,

b(Υy,Φq) :=
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k=0

ωk
[
(σys

k,q
c
k)0,Ω1 − (σyc

k,q
s
k)0,Ω1

]
+

∑

j∈{c,s}
(ν curl yj

k, curl q
j
k)0,Ω1 .

Therein we used the following notations

Υy = (yc
0,y

c
1,y

s
1, . . . ,y

c
N,y

s
N) and Υp = (pc

0,p
c
1,p

s
1, . . . ,p

c
N,p

s
N),

Φv = (vc
0,v

c
1,v

s
1, . . . ,v

c
N,u

s
N) and Φq = (qc

0,q
c
1,q

s
1, . . . ,q

c
N,p

s
N).

The right hand side F5 is given by

F5(Φ) :=
N∑

k=0

(yc
d,k,v

c
k)0,Ω1 + (ys

d,k,v
s
k)0,Ω1 + α(yT,v

c
k)0,Ω1 .

Furthermore, we introduce a non-standard norm in the product space H0(curl,Ω1)
4N+2. In principal,

we reuse the definition of the norm (7.28) for each mode k, but for technical reasons, we define a
different splitting by

‖Υ‖2CN
= ‖Υy‖2CN,1

+ ‖Υp‖2CN,2
,

where the two components are given by

‖Υy‖2CN,1
=

N∑

k=0

‖(yc
k,y

s
k)‖2C1

and ‖Υp‖2CN,2
=

N∑

k=0

‖(yc
k,y

s
k)‖2C2

.

Here we use ‖(·, ·)‖C1 and ‖(·, ·)‖C2 as defined in (7.29) with ω replaced by ωk. The main result is
summarized in the following lemma, that claims that an inf-sup condition and a sup-sup condition
are fulfilled, where the constants are independent of h, ω, σ, ν and λ.

Lemma 7.16. We have

c5‖(Υ)‖CN
≤ sup

Φ 6=0

A5(Υ,Φ)

‖Φ‖CN

≤ c5‖Υ‖CN
, (7.44)

for all Υ ∈ H0(curl,Ω1)
4N+2. Here the constants c5, c5 are independent of h, ω, ν, σ and λ.

Proof. In order to show the inf-sup and the sup-sup condition for A5, we use Theorem 2.4. By
definition of c(·, ·), we have

c(Υp,Υp) =
1

λ

∑

j∈{c,s}

N∑

k=0

‖pj
k‖20,Ω1

.

Furthermore, using Cauchy’s inequality and the definition of ‖ · ‖CN,2
, we obtain

sup
Φq 6=0

b(Υy,Φq)

‖Φq‖CN,2

≤
√
λ

∑

j∈{c,s}

N∑

k=0

ωk(σyj
k,y

j
k)0,Ω1 + (ν curl yj

k, curl y
j
k)0,Ω1 .
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It remains to show the inf-sup condition for b(·, ·). Using the idea of Lemma 7.9, we can derive

sup
Φq 6=0

b(Υy,Φq)

‖Φq‖CN,2

≥ 1√
2

∑
j∈{c,s}

∑N
k=0 ωk(σy

j
k,y

j
p)0,Ω1

+ (ν curl yj
k, curl y

j
k)0,Ω1

‖Υy‖CN,2

.

Since b(·, ·) is skew symmetric, the same estimate can be obtained for the adjoint setting. Finally, it
remains to estimate a(·, ·). Since we have

N∑

k=0


‖yc

k‖20,Ω1
+

∑

l 6=k

(yc
l ,y

c
k)0,Ω1


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N∑

l,k=0

(yc
l ,y

c
k)0,Ω1 = (
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l ,

N∑

k=0

yc
k)0,Ω1 ≥ 0,

the lower bound follows. The upper bound can be derived by applying Cauchy’s inequality several
times:

∑

j∈{c,s}

N∑

k=0

‖yj
k‖20,Ω1

≤ a(Υy,Υy) ≤ (1 + α)N
∑

j∈{c,s}

N∑

k=0

‖yj
k‖20,Ω1

.

Combining the estimates according to Theorem 2.4 yields the desired result.

Furthermore, the inequalities (7.44) remain valid for the finite element subspace ND0
0(Th)4N+2, since

the proof can be repeated for the finite element functions step by step. Hence, we immediately obtain
that the condition number of the preconditioned system can be estimated by a constant, i.e.,

κCN
(C−1

N A5) := ‖C−1
N A5‖CN

‖A−1
5 CN‖CN

≤ c5,

where the constant c5 is independent of the mesh size h, the frequency ω, the regularization parameter
λ and the model parameters ν and σ.

7.5 Summary

In order to keep the presentation clear, we give an overview of the results obtained in this chapter. We
established the multiharmonic discretization technique as an adequate tool to discretize time-periodic
eddy current optimal control problems in various constrained settings. We explored the decoupling
structure of the resulting frequency domain equations and analyzed numerous FEM and FEM-BEM
formulations for the continuous and discrete settings. For the unconstrained optimization problems
we constructed parameter-robust preconditioned iterative solvers for the discretized optimality system
and provided quantitative bounds for the condition numbers, that are independent of the discretiza-
tion parameters h, ω and N , the model parameters σ and ν and the regularization parameter λ.
For the constrained optimization problems, we obtain qualitative bounds for the condition number
estimates. In the following table, we summarize the robustness results. Note that the notation (σ)
denotes robustness for σ ∈ R

+.

setting robust parameters
1) different control and observation domains h ω N (σ) Ωa, Ωb

2) desired curl state h ω N (σ)
3) desired final state h ω σ ν λ
4) control constraints (Fourier coefficients) h ω N (σ) active index sets
5) state constraints (Fourier coefficients) h ω N σ ν λ active index sets
distributed control (model problem) h ω N σ ν λ

For the problem settings, that obtain a structure, that decouples with respect to the modes k =
0, . . . , N , we were able to construct solvers, that are a least robust with respect to the space and time
discretization parameters ω, N and h. For the problem settings with non-decoupling structure, the
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block-diagonal preconditioning technique does not lead to a solver, that is robust with respect to the
time discretization parameter N .
Using the proposed preconditioners, the convergence rate deteriorates with respect to small λ. Fur-
thermore, the dependence on the model parameters σ and ν is also a delicate issue, since in practice
these parameters are typically piecewise constant and may have large jumps. Indeed, in the case of
simple H1 parabolic problems, the estimates can be improved, cf. [94]. Another possibility to tackle
the robustness with respect to the remaining parameters is to develop all-at-once multigrid methods,
cf. [142, 145, 146].
One of the big advantages of our block-diagonal preconditioning technique is, that for the realization
of the diagonal blocks, only solvers for standard problems, that for example also appear in the
magnetostatic case, are needed. Indeed, we are dealing with the following four fundamental kinds of
problems:

FEM F = Kν +Mσ,ω + 1√
λ
M H(curl,Ω1) inner product

FEM Dσ,ω
TF−1Dσ,ω H1

0 (Ω1) inner product

BEM A H
−1/2
‖ (divΓ,Γ) inner product

FEM-BEM F−N+BTA−1B H(curl,Ω1) inner product

The efficient realization of these diagonal blocks is discussed in Chapter 8.
The analysis presented in Section 7.3 and Section 7.4 is limited to the case of uniform positive
conductivity. Anyhow, the non-conducting parts can be taken into account either by performing an
inexact regularization technique, cf. Section 6.1, or by a symmetrical FEM-BEM coupling method,
cf. Section 7.2. Parameter-robust solvers for the resulting FEM-BEM systems can be obtained by
combining the analysis of Section 7.2-7.4.

Finally, we briefly summarize the most important benefits of the proposed method:

• The periodic structure of our problem is treated by a natural approach in terms of a Fourier
approximation. Therefore, the computations can be done in the frequency domain, where we
can benefit from the full decoupling with respect to the individual modes.

• Inequality constraints imposed on the Fourier coefficients preserve the decoupling structure.

• Unbounded domains are treated by means of a FEM-BEM method.

• Parameter-robust solvers for the resulting systems of linear equations in the frequency domain
guarantee competitiveness of the proposed method not only in theory but also in practice.

• The proposed solvers are applicable to a full range of practical relevant settings for optimal
control problems.

• Due to the decoupling nature of the frequency domain equations with respect to the individual
modes, a parallelization of the proposed method is straightforward.

• Since, our proposed solver just relies on solvers or preconditioners for standard problems, any
further improvements in these solvers or preconditioners will lead to additional improvements
in our solver as well.
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Chapter 8

Preconditioners for the diagonal

blocks

This chapter is devoted to stable and efficient solution strategies for linear systems arising from the
space and time discretization technique as presented in the previous chapters. So far we have seen,
that the solution procedure can be accelerated in a robust way by using preconditioned iterative
methods, whereas the preconditioners obtain block-diagonal structures. Anyhow, the application of
the proposed block-diagonal preconditioners involves the solution of systems with certain diagonal
blocks. In large-scale computations the exact inversion of these diagonal blocks is still illusive, and
therefore these have to be replaced by easy “invertible“ symmetric and positive definite precondition-
ers. Following Subsection 5.2.4, the quality of these new preconditioners, directly enters the condition
number estimate of the preconditioned systems. Therefore, the accurate choice of the preconditioners
for the diagonal blocks is a delicate issue.

In the following, we list the matrices, that have to be inverted in order to apply the theoretical
preconditioners. Indeed, the efficient and robust application of the inverse to a given vector is sufficient
for the application of the preconditioners.

I FEM Kν +Mσ,ω H(curl,Ω1) inner product

II FEM Kν +Mσ,ω + 1√
λ
M H(curl,Ω1) inner product

III FEM Kν +DσLσ
−1Dσ

T H(curl,Ω1) inner product

IV FEM Dσ,ω
T (Kν +Mσ,ω + 1√

λ
M)−1Dσ,ω H1

0 (Ω1) inner product

V FEM Lσ,ω H1
0 (Ω1) inner product

VI BEM A H
−1/2
‖ (divΓ,Γ) inner product

VII FEM-BEM Kν +Mσ,ω −N+BTA−1B H(curl,Ω1) inner product

VIII FEM-BEM Kν +Mσ,ω + 1√
λ
M−N+BTA−1B H(curl,Ω1) inner product

IX FEM-BEM A+B(Kν +Mσ,ω −N)−1BT H
−1/2
‖ (divΓ,Γ) inner product

All these matrices are not severally, but they are related with the underlying Hilbert spaces and
therefore correspond to standard problem settings in computational electromagnetics. Therefore, in
the remainder of this chapter, we discuss already existing solvers and/or preconditioners for these
kinds of systems.

135
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8.1 FEM preconditioners for H
1 and H(curl)

The cases IV and V correspond to system matrices of the bilinear form

(α∇p,∇q)0,Ω1 + (βp, q)0,Ω1 , (8.1)

with respect to the space S1(Th). These kinds of problems are well studied in literature. Candidates
for (almost) optimal and robust preconditioners can be found among the following list of references
(this list is not exhaustive).

Multigrid and multilevel methods Bramble [29]
Vassilevski et al. [31, 55]
Hackbusch [68]
Henson, Yang [72]1

Kraus et al. [104, 105, 106]
Olshanski, Reusken [125]
Ruge, Stüben [138]

Domain decomposition methods Pechstein [130, 131]
Toselli, Widlund [149]

H-matrices Hackbusch [69, 70]

The cases I, II and III correspond to system matrices of the bilinear form

(α curl u, curl v)0,Ω1
+ (βu,v)0,Ω1

, (8.2)

with respect to the space ND0(Th). The development of fast solvers for these kinds of problems is a
hot topic in actual research. Candidates for (almost) optimal and robust preconditioners are listed
in the following table (this list is not exhaustive).

Multigrid methods Arnold, Falk, Winther [9]
Hiptmair [78]

Algebraic multigrid methods Bochev et al. [28]
Jones, Lee [90]
Schöberl, Reitzinger [136]

Auxiliary space methods Hiptmair, Xu [85]
Kolev, Vassilevksi [93]2

Xu, Zhu [154]
Domain decomposition methods Dohrmann, Widlund [50]

Hu, Zou [87, 88]
Toselli [147, 148]
Toselli, Widlund [149]

H-matrices Bebendorf, Hiptmair [21, 127]

Depending on the robustness and optimality qualities of the chosen preconditioner for the diagonal
blocks, a robust and optimal solver is obtained.

8.2 BEM preconditioners for H(curl) and H
1

In contrast to finite element methods, the operators involved in boundary element methods are
nonlocal and therefore lead to dense populated matrices. This issue clearly indicates the need for fast
implementations of boundary element methods with low memory consumption.

1Implementation of [138] BoomerAMG in software library hypre.
2Implementation of [85] AMS (Auxiliary-space Maxwell Solver) in software library hypre.
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Efficient techniques for the assembling of the system matrices and the evaluation of the matrix-vector
products for boundary integral equations are well developed and one could use H-matrices [69, 70],
multilevel methods [75, 150], multipole methods [62, 63] or adaptive cross approximation methods
[19] to reduce the memory cost and speed up the assembly procedure and the evaluation of the
matrix-vector product.
The case VI corresponds to the system matrix of the bilinear form

〈Aλ,µ〉τ (8.3)

with respect to the space RT 0
0(Kh). In practice, it is more convenient to use the space curlΓ S1(Kh)

and utilize the identity

〈Dϕ,ψ〉1/2 = 〈AcurlΓ ϕ, curlΓ ψ〉τ , ∀φ, ψ ∈ S1(Kh), (8.4)

where D : H1/2(Γ) → H−1/2(Γ) is the hypersingular operator for the Laplacian, cf. [44]. Hence, in
order to tackle this problem, any tools from the Galerkin boundary element method for the Laplacian
problem can be used.

8.3 Preconditioners for the FEM-BEM Schur complement

In this section we discuss the realization of the diagonal blocks VII-IX, that indeed correspond to
FEM-BEM Schur complements of standard H(curl) problems.
In [57] block-diagonal preconditioners for a FEM-BEM coupled system are proposed, that are based
on multigrid solvers for the individual blocks. Indeed, the proposed preconditioners are spectral
equivalent to a Schur complement preconditioner, where the spectral constants are independent of
the mesh size h. Indeed, this approach leads to an efficient method, but robustness of the proposed
method with respect to the involved model parameters is not clear at the first glance.
A block-diagonal preconditioning technique for FEM-BEM systems arising in computational electro-
magnetics was developed in [116] as a generalization of the method proposed in [57]. Therein the
resulting solver is based on domain decomposition methods applied to the FEM-part and the BEM-
part separately. It is shown, that the resulting method is efficient in the sense that it only depends
on the ratio of the coarse grid mesh size and the overlap. The dependence on the involved model
parameters is not addressed. Indeed, these two approaches exactly fit into the framework mentioned
in Remark 6.29. Consequently, we can say, that optimal or almost optimal (with respect to the
mesh size h) solvers or preconditioners are provided by existing solvers or preconditioners discussed
in Section 8.1. Nevertheless, the robustness with respect to the remaining parameters is a delicate
issue and calls for a careful study. So far it seems to be essential to work with the full FEM-BEM
Schur complements in order to obtain (theoretical) parameter-robust solvers for the MH-FEM-BEM
matrices.

8.4 Numerical validation of inexact solvers and preconditioners

In this section we demonstrate, that our proposed block-diagonal preconditioners can efficiently be
combined with the preconditioners for the diagonal blocks. In our application we choose the algebraic
multigrid solver [138] (BOOMERAMG) and the auxiliary space solver [85] (AMG) for theH1

0 (Ω1) and
H0(curl,Ω1) problems, respectively. For both, we rely on the implementation in the library hypre3.
Indeed, therein the implementation of AMG employs hypre’s BOOMERAMG solver. The choice of
algebraic multigrid solvers is justified, since those can be applied to systems stemming from the finite
element discretization of unstructured meshes, where only fine grid information is employed. This
allows a great flexibility in the discretization of the computational domain, since no mesh hierarchies
have to be constructed explicitly.

3https://computation.llnl.gov/casc/hypre/software.html
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8.4.1 Time-periodic eddy current problems

Formulation FEM 2 For numerical validation of a candidate for a robust and optimal precondi-
tioner, we consider Problem 6.2. In this setting, we again address the setup used in Subsection 6.1.6.
Lemma 6.11 suggests to choose the block-diagonal preconditioning matrix as

P = diag (Mσ,ω +Kν ,Mσ,ω +Kν) = diag (P1,P1) .

That is, that the preconditioning matrix Mσ,ω +Kν is chosen as the finite element discretization of
(8.2) with α = ν and β = σω. According to Subsection 5.2.4 the application of (Mσ,ω + Kν)

−1 is

replaced by P̃1
−1

, the application of one V-cycle of AMG as implemented in hypre with standard
parameter settings, cf. [93]. This results in the block-diagonal preconditioning matrix

P̃ = diag
(
P̃1, P̃1

)
.

For this example the condition number of the preconditioned diagonal matrix P̃−1P is computed
numerically and is listed in the following table. Furthermore, we table the resulting estimate of
the condition number of the preconditioned system P̃−1AF2 and the resulting upper bound for the
number of MinRes iteration for reducing the initial residual by a factor of 10−8 for various sizes of
the system matrix AF2.

DOF 196 1208 8368 62048 477376 3744128

computed κ(P̃−1P) 1.16 1.37 1.81 2.52 3.87 5.58

bound for κ(P̃−1AF2) 1.64 1.94 2.58 3.56 5.46 7.87
resulting bound for maxiter 28 34 48 68 104 150

In the following numerical experiments, we provide the number of MinRes iterations needed for
reducing the initial residual by a factor 10−8 for different ω, σ and h. Table 8.1 and Table 8.2
provide experiments for Formulation FEM 2. Again, the numerical results show robustness of our
preconditioner, since the number of iterations is bounded by the predicted bound derived in the
previous table for all computed constellations.

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

196 4 6 8 8 10 13 18 10 8 8 8
1208 30 30 30 30 30 19 22 14 12 12 12
8368 26 26 26 24 26 24 24 20 12 12 12

62048 34 36 38 38 38 42 36 22 12 12 12
477376 46 54 45 52 62 66 53 22 14 12 12

3744128 100 78 78 76 90 96 75 24 18 12 12

Table 8.1: Formulation FEM 2. Number of MinRes iterations for various ω and various DOF using
the INEXACT version of the preconditioner with one V-cycle of AMG for P1 (ν = 1, σ = 1).

DOF σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

196 12 12 12 12 12 13 20 12 11 11 11
1208 8 10 10 12 14 19 22 19 20 20 20
8368 22 22 24 22 26 24 28 28 28 36 27

62048 32 32 34 36 40 42 47 46 46 44 44
477376 42 48 46 54 62 66 70 69 64 62 64

3744128 78 70 78 78 92 96 100 100 92 90 90

Table 8.2: Formulation FEM 2. Number of MinRes iterations for various σ2 and various DOF using
the INEXACT version of the preconditioner with one V-cycle of AMG for P1 (ν = 1, σ1 = 1, ω = 1).
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Formulation FEM 4 For numerical validation of a candidate for a robust and optimal precondi-
tioner, we consider Problem 6.4. In this setting, we again address the setup used in Subsection 6.1.6.
Lemma 6.13 suggests to choose the block-diagonal preconditioning matrix as

PM = diag (Mσ,ω +Kν ,Mσ,ω +Kν ,Lσ,ω,Lσ,ω) = diag (P1,P1,P2,P2) .

That is, that the first preconditioning matrix Mσ,ω+Kν is chosen as the finite element discretization
of (8.2) with α = ν and β = σω, and the second preconditioning matrix Lσ,ω is chosen as the finite
element discretization of (8.1) with α = σω and β = 0. According to Subsection 5.2.4 the application
of (Mσ,ω + Kν)

−1 is replaced by P̃−1
1 , the application of one V-cycle of AMG as implemented in

hypre with standard parameter settings, cf. [93], and the application of Lσ,ω
−1 is replaced by P̃−1

2 ,
the application of one V-cycle of BOOMERAMG as implemented in hypre with standard parameter
settings, cf. [72]. This results in the block-diagonal preconditioning matrix

P̃M = diag
(
P̃1, P̃1, P̃2, P̃2

)
.

For this example the condition number of the preconditioned diagonal matrix P̃−1
M PM is computed

numerically and is listed in the following table. Furthermore, we table the resulting estimate of
the condition number of the preconditioned system P̃−1

M AM2 and the resulting upper bound for the
number of MinRes iteration for reducing the initial residual by a factor of 10−8 for various sizes of
the system matrix AM2.

DOF 250 1458 9826 71874 549250 4293378

computed κ(P̃−1

M
PM ) 1.06 1.22 1.43 2.22 3.37 4.84

bound for κ(P̃−1

M
AM2) 3.01 3.45 4.04 6.28 9.52 13.68

resulting bound for maxiter 56 66 76 120 182 262

In the following numerical experiments, we provide the number of MinRes iterations needed for
reducing the initial residual by a factor 10−8 for different ω, σ and h. Table 8.3 and Table 8.4
provide experiments for Formulation FEM 4. Again, the numerical results show robustness of our
preconditioner, since the number of iterations is bounded by the predicted bound derived in the
previous table for all computed constellations.

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

250 12 12 10 14 18 22 22 16 15 16 16
1458 28 28 31 32 34 32 32 25 25 25 25
9826 45 45 43 45 47 48 37 31 29 29 29

71874 61 61 64 65 67 74 55 37 33 33 33
549250 79 89 80 91 103 113 83 41 41 39 39

4293378 139 119 127 128 145 161 123 50 49 47 47

Table 8.3: Formulation FEM 4. Number of MinRes iterations for various ω and various DOF using
the INEXACT version of the preconditioner with one V-cycle of AMG for P1 and one V-cycle of
BOOMERAMG for P2 (ν = 1, σ = 1).

8.4.2 Time-periodic eddy current optimal control problems

Formulation OC-FEM 1 In Table 8.5-8.7 we provide iteration numbers and CPU times for a
time-harmonic eddy current optimal control problem with a typical parameter setting for λ and ω.
Therein we present three different kinds for the realization of the block-diagonal preconditioner:

1. Realization of the diagonal blocks using the exact solver UMFPACK.

2. Realization of the diagonal blocks using the CG method preconditioned by one V-cycle of AMG.
Therein the CG solves up to a relative tolerance of 10−8. We mention, that here we are using
a nonlinear preconditioner.
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DOF σ2

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

250 23 23 23 23 23 22 26 19 18 18 18
1458 22 24 25 28 30 32 36 32 32 32 32
9826 36 34 43 40 50 48 46 49 47 58 48

71874 55 53 57 62 67 74 78 74 73 71 73
549250 73 79 79 91 103 113 117 113 103 103 105

4293378 119 113 123 129 147 161 167 163 149 149 149

Table 8.4: Formulation FEM 4. Number of MinRes iterations for various σ2 and various DOF using
the INEXACT version of the preconditioner with one V-cycle of AMG for P1 and one V-cycle of
BOOMERAMG for P2 (ν = 1, σ1 = 1, ω = 1).

3. Realization of the diagonal blocks using one V-cycle of AMG.

In all the three considered settings, we clearly see the optimality of the solver, since the CPU times
only grow linearly with respect to the involved degrees of freedom. We also observe, that variant 3
is almost as fast as variant 1, but due to the cheap preconditioner also higher numbers of degrees of
freedom can be treated efficiently. Furthermore, from Table 8.6 it turns out that a CG acceleration
for the diagonal blocks does not pay off in the total CPU time (even if the CG tolerance is reduced).
Anyhow, in the case of strongly varying piecewise constant coefficients σ and ν, the CG acceleration
might help, since the AMG may not be able to efficiently treat these strong discontinuities. Another
thing that catches our eyes are the slightly growing iteration numbers in Table 8.7. In light of the
theory presented in Subsection 5.2.4, the growing iteration numbers in Table 8.7 are certainly below
the bound

√
3κ(C̃−1C) and therefore perfectly fit into the developed framework.

DOF iter CPU time
392 14 0.04s

2416 22 0.36s
16736 22 3.04s

124096 20 27.95s
954752 [-] [-]

7488256 [-] [-]

Table 8.5: Formulation OC-FEM 1. Number of MinRes iterations for ω = 1000, λ = 10−3 and various
DOF using the EXACT version of the preconditioner with UMFPACK for F, cf. (7.16) (ν = σ = 1).
[-] indicates that UMFPACK ran out of memory.

DOF iter CPU time
392 14 0.06s

2416 22 0.69s
16736 22 5.54s

124096 20 44.38s
954752 22 441.61s

7488256 22 4344.16s

Table 8.6: Formulation OC-FEM 1. Number of MinRes iterations for ω = 1000, λ = 10−3 and various
DOF using the INEXACT version of the preconditioner with CG preconditioned by one V-cycle of
AMG for F (ν = σ = 1).
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DOF iter κ(C̃−1C) CPU time
392 15 1.01 0.04s

2416 23 1.03 0.38s
16736 27 1.09 3.22s

124096 33 1.22 30.94s
954752 39 2.51 289.11s

7488256 62 8.05 3663.97s

Table 8.7: Formulation OC-FEM 1. Number of MinRes iterations for ω = 1000, λ = 10−3 and various
DOF using the INEXACT version of the preconditioner with one V-cycle of AMG for F (ν = σ = 1).
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Chapter 9

Software development and numerical

experiments

9.1 Software development

For our numerical experiments we used the framework ParMax1. ParMax is a C++ research code
developed at the Institute of Computational Mathematics at the Johannes Kepler University Linz in
the research project “Data-sparse Boundary and Finite Element Domain Decomposition Methods in
Electromagnetics” (FWF-Project P19255) under the main developer Dr. Clemens Pechstein. Indeed,
ParMax provides a unified framework for developing finite element research codes and has successfully
been used for a wide range of FEM, FETI, BEM-based-FEM or optimal control applications in
computational electromagnetics, elasticity or biomechanical applications.
In order to capture the theory developed in this thesis and perform numerical tests, we were required
to extend ParMax to master the following main tasks:

1. Implementation of H(curl) conforming finite elements in 3D, i.e., Nédélec elements of lowest
order.

2. Implementation of assembling procedure for the MH-FEM block matrices.

3. Implementation of solution algorithms including Krylov subspace methods and block-diagonal
preconditioners.

4. Implementation of solution or preconditioning algorithms for the diagonal blocks.

5. Visualization of the solution.

While tasks 1-3 were directly incorporated into the ParMax framework, for the last two tasks, we
relied on external libraries. Indeed, for task 4, i.e., for the solution or preconditioning of the diagonal
blocks, we used two fundamentally different kinds of approaches:

Sparse direct solvers: In order to verify the condition number bounds for the theoretical robust
block-diagonal preconditioners, the diagonal blocks were realized exactly by using sparse direct
solvers. Of course, the development of direct solvers for three dimensional problems are a
delicate issue. Therefore, our software relies on already existing software packages and an
interface to PARDISO2 and UMFPACK3 was implemented.4

1http://www.numa.uni-linz.ac.at/P19255/software.shtml
2http://www.pardiso-project.org/
3http://www.cise.ufl.edu/research/sparse/umfpack/
4Unfortunately, during this work the developers of PARDISO changed their licensing policy to restricting the free-

academic access. Therefore, we decided to change to the free package UMFPACK.
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Iterative solvers: In practical applications, especially in large scale applications, direct solvers are
illusive. Hence, iterative solution or preconditioning algorithms have to be taken into account.
Indeed, there exists a full range of candidates for preconditioners for the diagonal blocks, cf.
Chapter 8. Our choice fell on the family of algebraic multigrid methods, since they can be
applied directly to the system matrices with hardly any additional informations about the
underlying partial differential equations, the discretization or mesh hierarchies. Therefore, an
interface to hypre5 was implemented, where especially for H(curl) problems we used AMG and
for the H1 problems we used BOOMERAMG, cf. Section 8.4.

Combining the individual software fragments leads to a robust and optimal (or at least almost optimal)
solver for MH-FEM discretized time-periodic eddy current problems and eddy current optimal control
problems. Furthermore, for task 5, i.e., the visualization of the solution, we relied on the open-source
data analysis and visualization application ParaView6.
Additionally, we mention, that all the experiments described in Chapter 6-9 were performed on a PC
with Intel(R) Core(TM) i7-2600 CPU @3.40GHz.

9.2 Numerical experiments including visualization of the solu-
tion

In order to validate the proposed solving algorithms and their implementation, we use a series of
problems for both, the eddy current problem and the eddy current optimal control problem. Therein
we put the main emphasis on eddy current optimal control computations. Throughout this section,
we restrict the computational domain to be given by the unit cube Ω1 = (0, 1)3 and solve for the fixed
time-period (0, 1). For the discretization of Ω1 we use tetrahedral elements whereas the corresponding
finite element space has DOF = 238688 degrees of freedom. Therefore, the resulting systems of
equations have size (2N + 1)DOF or (4N + 2)DOF for eddy current problems or eddy current
optimal control problems, respectively. In all the considered constellations, the systems of linear
equations are solved up to a relative accuracy of 10−8.

9.2.1 Eddy current problems

For the eddy current problem, we consider a test example with known analytic solution in order
to demonstrate, that our algorithm converges to the correct solution. Let us consider the following
time-periodic test problem:





∂y

∂t
+ curl(curl y) = u, in Ω1 × (0, 1),

y × n = 0, on ∂Ω1 × (0, 1)

y(0) = y(T ), on Ω1.

(9.1)

Here u ∈ L2((0, 1),L2(Ω1)) is given by the time-harmonic excitation

u((x, y, z), t) = 800π2



sin(2πy) sin(2πz)
sin(2πx) sin(2πz)
sin(2πx) sin(2πy)


 cos(t)− 100



sin(2πy) sin(2πz)
sin(2πx) sin(2πz)
sin(2πx) sin(2πy)


 sin(t),

satisfying div(u) = 0. The exact unique solution of the test problem (9.1) is given by

y((x, y, z), t) = 100



sin(2πy) sin(2πz)
sin(2πx) sin(2πz)
sin(2πx) sin(2πy)


 cos(t),

5https://computation.llnl.gov/casc/hypre/software.html
6http://www.paraview.org/
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and obviously fulfills div(y) = 0. W mention, that due to the specific design of the test example,
we have y((x, y, z), 0) = 8π2u((x, y, z), 0). The numerical solution, computed by using our MH-FEM
MinRes solver, can be seen in Figure 9.1 and Figure 9.2. Due to the knowledge of the exact solution
y, it is easy to see, that we have computed a correct approximation.

(a) Norm of the vector field y(·, 0). (b) Vector field y(·, 0).

Figure 9.1: 3D-visualization of the solution y at t = 0.

9.2.2 Eddy current optimal control problems

This subsection is devoted to the numerical validation of the algorithms developed for the eddy
current optimal control problem. Therefore, we consider the following test problem: Minimize the
functional

J (y,u) =
1

2

∫

Ω1×(0,1)

|y − yd|2dx dt +
λ

2

∫

Ω1×(0,1)

|u|2dx dt. (9.2)

subject to the state equation (9.1) for a prescribed desired state yd ∈ L2((0, T ),L2(Ω1)). In particular
we present three examples, whereas the desired state yd is

1. analytic in time,

2. non-differentiable in time,

3. a characteristic function in time.

For all these settings, we derive a time-periodic solution using the MH-FEM MinRes solver and
demonstrate the convergence with respect to the discretization parameters.
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(a) Norm of the vector field y((·, ·, 0.25), 0). (b) Vector field y((·, ·, 0.25), 0).

Figure 9.2: 2D-visualization of the solution y at t = 0 and z = 0.25.

Example 1

We start by considering the time-harmonic desired state

yd((x, y, z), t) =







100

0

0


 cos(t), in

(
1
4 ,

3
4

)3 × (0, 1),



0

0

0


 , else,

that is obviously analytic in time. We mention, that here we are dealing with a desired state, that is
not weakly divergence-free. The numerical solution, computed by using our MH-FEM MinRes solver,
can be seen in Figure 9.3-9.6. While in Figure 9.3 and Figure 9.4 we use the regularization parameter
λ = 10−4, in Figure 9.5 and Figure 9.6 the choice λ = 10−8 is used. Therein the colored contour
visualizes the norm of the state y and the control u, respectively. We observe, that for the choice
λ = 10−8 the state y is a better approximation to the desired state yd, than for the choice λ = 10−4.

Furthermore we mention, that yd /∈ L2((0, T ),H0(curl,Ω1) since there is no tangential continuity
over the boundary of the interior cube (1/4, 3/4)3. Therefore, the desired state is not reachable.
Indeed, in the visualization of the computed state y this issue can be observed by the frayed contour
at the boundary of (1/4, 3/4)3. Furthermore we mention, that the tangential continuity of the desired
state yd in the x-direction is recovered by the computed state y.

For completeness, we mention, that due to the exact representation of the desired state as a Fourier
series (N = 1), there is no discretization error in time.
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(a) State y((·, ·, 0.5), 0). (b) Control u((·, ·, 0.5), 0).

Figure 9.3: Example 1: 2D-visualization of the state y and the control u at t = 0 and z = 0.5
(λ = 10−4).

Example 2

As a second example we consider a continuous, but non-differentiable desired state yd, given by

yd((x, y, z), t) =







100

0

0


 (1− |t− 0.5|) in

(
1
4 ,

3
4

)3 × (0, 1),



0

0

0


 , else.

Since yd has no multiharmonic representation, we use an approximation of yd in terms of a truncated
Fourier series yd,N with frequency ω = 2π and N modes, i.e.,

yd,N((x, y, z), t) =







100

0

0




(
3
4 − 2

π2

∑N
k=1

sign(k(mod 2))
k2 cos(2πkt)

)
in

(
1
4 ,

3
4

)3 × (0, 1),



0

0

0


 , else.

The numerical solution of the state y and the corresponding control u, computed by using our MH-
FEM MinRes solver with N = 5 modes, can be seen in Figure 9.7 and Figure 9.8. We clearly
observe the linear increase/decrease of the magnitude of the state y with respect to the time t. The
approximation due to the truncation of the Fourier series is displayed in Figure 9.9. By taking into
account only a few modes (N < 10), we already observe a good approximation of the desired state.
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(a) State y((0.5, ·, ·), 0). (b) Control u((0.5, ·, ·), 0).

Figure 9.4: Example 1: 2D-visualization of the state y and the control u at t = 0 and x = 0.5
(λ = 10−4).

Example 3

Finally, we consider a non-continuous desired state, given by

yd((x, y, z), t) =







100

0

0


 in

(
1
4 ,

3
4

)3 × (1/3, 2/3),



0

0

0


 else.

Again, we use an approximation of yd in terms of the truncated Fourier series yd,N with frequency
ω = 2π and N modes, i.e.,

yd,N((x, y, z), t) =







100

0

0




(
1
3 +

√
3

π

∑N
k=1(−1)k(mod 3) sign(k(mod 3))

k cos(2πkt)
)

in
(
1
4 ,

3
4

)3 × (0, 1),



0

0

0


 else.

The numerical solution, computed by using our MH-FEM MinRes solver with N = 50 modes, can
be seen in Figure 9.10 and Figure 9.11. The approximation due to the truncation of the Fourier
series is displayed in Figure 9.12. Furthermore, we also observe the well known Gibbs phenomenon,
in terms of oscillations near the jump at t = 1/3 and t = 2/3. In contrast to the previous example,
we require a higher number of modes N (in our numerical example N = 50) in order to obtain an
accurate approximation in time. Again, we want to point out, that the computations corresponding
to the individual modes can be done total in parallel. Therefore, on a machine with N ≥ 50 cores,
all the computations with respect to the individual modes can be done total in parallel; i.e., on such
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(a) State y((·, ·, 0.5), 0). (b) Control u((·, ·, 0.5), 0).

Figure 9.5: Example 1: 2D-visualization of the state y and the control u at t = 0 and z = 0.5
(λ = 10−8).

a parallel machine, the total CPU time is basically defined by the CPU time that is needed for one
mode, which corresponds to one time-harmonic optimal control problem.
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(a) State y((0.5, ·, ·), 0). (b) Control u((0.5, ·, ·), 0).

Figure 9.6: Example 1: 2D-visualization of the state y and the control u at t = 0 and x = 0.5
(λ = 10−8).
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(a) State y((·, ·, 0.5), 0). (b) State y((·, ·, 0.5), 0.125). (c) State y((·, ·, 0.5), 0.25).

(d) State y((·, ·, 0.5), 0.375). (e) State y((·, ·, 0.5), 0.5). (f) State y((·, ·, 0.5), 0.625).

(g) State y((·, ·, 0.5), 0.75). (h) State y((·, ·, 0.5), 0.875). (i) State y((·, ·, 0.5), 1).

Figure 9.7: Example 2: 2D-visualization of the x-component of the state y at z = 0.5 (λ = 10−6,
N = 5).
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(a) Control u((·, ·, 0.5), 0). (b) Control u((·, ·, 0.5), 0.125). (c) Control u((·, ·, 0.5), 0.25).

(d) Control u((·, ·, 0.5), 0.375). (e) Control u((·, ·, 0.5), 0.5). (f) Control u((·, ·, 0.5), 0.625).

(g) Control u((·, ·, 0.5), 0.75). (h) Control u((·, ·, 0.5), 0.875). (i) Control u((·, ·, 0.5), 1).

Figure 9.8: Example 2: 2D-visualization of the x-component of the control u at z = 0.5 (λ = 10−6,
N = 5).
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(e) N = 9.

Figure 9.9: Example 2: 1D-visualization of the x component of the state y((0, 5, 0.5, 0.5), ·) (λ =
10−8).
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(a) State y((·, ·, 0.5), 0). (b) State y((·, ·, 0.5), 0.5). (c) State y((·, ·, 0.5), 1).

Figure 9.10: Example 2: 2D-visualization of the x-component of the state y at z = 0.5 (λ = 10−8,
N = 50).

(a) State u((·, ·, 0.5), 0). (b) State u((·, ·, 0.5), 0.5). (c) State u((·, ·, 0.5), 1).

Figure 9.11: Example 2: 2D-visualization of the x-component of the control u at z = 0.5 (λ = 10−8,
N = 50).
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(j) N = 100.

Figure 9.12: Example 3: 1D-visualization of the x component of the state y((0.5, 0.5, 0.5), ·) (λ =
10−8).
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Chapter 10

Conclusion and outlook

10.1 Conclusion

We established the MH-FEM and MH-FEM-BEM method as powerful tools for solving both, time-
periodic eddy current problems and time-periodic eddy current optimal control problems. We demon-
strated, that appropriate discretization techniques in combination with efficient and parameter-robust
solvers lead to a very competitive method.
Therefore, the key points of our method were the usage of

• a non-standard time discretization technique in terms of a truncated Fourier series in order to
capture the time-periodic structure of the solution,

• a FEM-BEM coupling method in order to capture the different physical behavior of the under-
lying possible unbounded domain

• and the construction of parameter-robust solvers for the resulting systems of equations in the
frequency domain.

We devoted special attendance to the development of efficient and parameter-robust solvers on a
theoretical basement. Hence, the solvers were constructed and analyzed in the following fashion:

• Construct candidates for block-diagonal preconditioners via a matrix interpolation technique
or a Schur complement approach for special regimes.

• Based on these special regimes, introduce non-standard norms in the underlying Hilbert spaces
and show well-posedness of the variational problems in these norms.

• Transfer these well-posedness results to the discrete system by using a stable discretization and
derive uniform condition number estimates.

• Replace the non-standard norms by appropriate well-known preconditioners.

Indeed, this approach has been applied to a full range of problems in our computational setting.

10.2 Outlook

Further work

• The theoretical results obtained for the MH-FEM-BEM approach have to be validated nu-
merically. While the theory developed for the MH-FEM discretization is fully confirmed by
numerical experiments, the preconditioners developed for the MH-FEM-BEM discretization are
still of theoretical nature and therefore have to be verified numerically. Hence, a fast boundary
element method has to be implemented in our research code ParMax.

155
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• Another issue concerning software development is the optimization and parallelization of our
algorithm. Improvements in the efficiency of the method could dramatically decrease the total
computational time. So far, the implementation of the solution algorithm in ParMax is not
parallel. Indeed, the proposed solution technique offers a full range of starting points for a
parallelization of the solution procedure. Indeed, the new super computer MACH1 at the
Johannes Kepler University Linz offers the unique possibility to test the algorithms on a parallel
machine.

• This work covers the analysis and solution of linear eddy current problems. In real life ap-
plications, one is often faced with nonlinear problems. As already addressed in Section 6.3,
solvers for the nonlinear systems of equations, stemming from the MH-FEM approximation of
the nonlinear eddy current problem, should be analysed.

Open questions The following questions concerning eddy current optimal control problems remain
open:

• As outlined in Subsection 3.2.2, one crucial point in the optimal control of Maxwell’s equations
is to enforce the conservation of charges law in the state equation. So far, our analysis only
covers the case of constant conductivity. Extending this analysis also to the case of piecewise
constant conductivity is a delicate issue.

• Another way of dealing with the conservation of charges law is described in Remark 3.11. In
this setting, the conservation of charges is even fulfilled for piecewise constant conductivity.
Nevertheless, due to the vector potential ansatz for u, the construction of parameter-robust
solvers is not straightforward. It turns out, that for the construction of parameter-robust
solvers, different scalings with respect to the regularization parameter λ of the gradient and
divergence-free parts appearing in the Helmholtz decomposition have to be taken into account.
The approach of Hiptmair and Xu [85] is certainly one candidate to tackle this kind of problem.

• So far our analysis covers the case of box constraints imposed on the Fourier coefficients of the
control and the state. The efficient treatment of full box constraints in the minimization problem
(7.1) for the control and the state is much harder. The inclusion of such inequality constraints
into the cost functional as a penalty term is one technique to handle this problem, cf. [59].
Another possibility is to use barrier methods, cf. [140]. However, this adds another nonlinear,
non-quadratic term to the quadratic cost functional. In the case of nonlinear problems caused
by the penalty technique or other nonlinearities in the state equation, we lose the decoupling
of the optimality system with respect to the Fourier coefficients.

• In some of the considered optimal control settings, it was necessary to incorporate the divergence
constraints in an explicit manner, in order to be able to provide theoretical condition number
estimates. Anyhow, numerical experiments indicate, that in some settings the incorporation is
not needed in practice.

Possible continuations

• The efficient and parameter-robust evaluation of the FEM-BEM Schur complement Kν+Mσ,ω−
N+BTA−1B is a delicate task. Indeed, this issue is also relevant for a full range of computations
in the electromagnetic regime, cf. [57].

• In Section 7.3 and Section 7.4, we discussed the application of our solver to optimal control
problems with various constraints. Due to these additional modifications, robustness with
respect to certain regularization or model parameters is lost. The application of the technique
of block-diagonal preconditioning is limited in these settings. Hence other preconditioning

1SGI Altix UltraViolet 1000, 256 processors, 16 TB shared memory.
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techniques should be investigated to obtain full parameter-robust solvers. Possible continuations
are offered by recent investigations of the research groups around Anton Schiela, Andy Wathen
and Walter Zulehner.

• Another issue is the improvement of the error estimate corresponding to the time-discretization
error. Indeed, for functions that are analytic in time, one may expect exponential convergence
with respect to the number of Fourier modes N .

• Investigating other types of time discretization methods. Instead of an approximation in time
by means of a Fourier series, other spectral methods can be used. Therein, one of the crucial
points is to use spectral methods, that allow the incorporation of initial conditions. Candidates
are orthogonal polynomials like Legendre polynomials or integrated Legendre polynomials.

• Another possibility is to use a full space-time discretization of a four-dimensional space-time
cylinder into finite elements, which also allows a rather general and flexible discretization in
time. Starting points for this approach are provided by Neumüller and Steinbach in [122, 123].



158 CHAPTER 10. CONCLUSION AND OUTLOOK



Bibliography

[1] D. Abbeloos, M. Diehl, M. Hinze, and S. Vandewalle. Nested multigrid methods for time-
periodic, parabolic optimal control problems. Computing and Visualization in Science, 14:27–
38, 2011.

[2] R. Acevedo and S. Meddahi. An E-based mixed FEM and BEM coupling for a time-dependent
eddy current problem. IMA J. Numer. Anal., 31(2):667–697, 2011.

[3] R. Acevedo, S. Meddahi, and R. Rodríguez. An E-based mixed formulation for a time-dependent
eddy current problem. Math. Comp., 78(268):1929–1949, 2009.

[4] R. Adams and J. Fournier. Sobolev spaces. Second Edition. Academic Press, 2008. Volume 140
in the Pure and Applied Mathematics series, Elsevier.

[5] A. Alonso Rodríguez, P. Fernandes, and A. Valli. Weak and strong formulations for the time-
harmonic eddy-current problem in general multi-connected domains. European J. Appl. Math.,
14(4):387–406, 2003.

[6] A. Alonso Rodríguez and A. Valli. Eddy current approximation of Maxwell equations, volume 4
of MS&A. Modeling, Simulation and Applications. Springer-Verlag Italia, Milan, 2010.

[7] H. Ammari, A. Buffa, and J.-C. Nédélec. A justification of eddy currents model for the Maxwell
equations. SIAM J. Appl. Math., 60(5):1805–1823, 2000.

[8] D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning in H(div) and applications. Math.
Comp., 66(219):957–984, 1997.

[9] D. N. Arnold, R. S. Falk, and R. Winther. Multigrid in H(div) and H(curl). Numer. Math.,
85(2):197–217, 2000.

[10] L. Arnold and B. Harrach. A unified variational formulation for the parabolic-elliptic eddy
current equations. SIAM Journal on Applied Mathematics, 72(2):558–576, 2012.

[11] S. Ausserhofer, O. Biro, and K. Preis. An efficient harmonic balance method for nonlinear eddy
current problems. In Electromagnetic Field Computation, 2006 12th Biennial IEEE Conference
on, pages 22 –22, 2006.

[12] S. Ausserhofer, O. Biro, and K. Preis. An efficient harmonic balance method for nonlinear
eddy-current problems. Magnetics, IEEE Transactions on, 43(4):1229 –1232, April 2007.

[13] S. Ausserhofer, O. Biro, and K. Preis. Frequency and time domain analysis of nonlinear periodic
electromagnetic problems. In Electromagnetics in Advanced Applications, 2007. ICEAA 2007.
International Conference on, pages 229 –232, sep. 2007.

[14] I. Babuška. Error-bounds for finite element method. Numer. Math., 16(4):322–333, 1971.

[15] F. Bachinger. Multigrid solvers for 3D multiharmonic nonlinear magnetic field computations.
Master’s thesis, Johannes Kepler University, Linz, October 2003.

159



160 BIBLIOGRAPHY

[16] F. Bachinger, M. Kaltenbacher, and S. Reitzinger. An Efficient Solution Strategy for the HBFE
Method. In Proceedings of the IGTE ’02 Symposium Graz, Austria, pages 385–389, 2002.

[17] F. Bachinger, U. Langer, and J. Schöberl. Numerical analysis of nonlinear multiharmonic eddy
current problems. Numer. Math., 100(4):593–616, 2005.

[18] F. Bachinger, U. Langer, and J. Schöberl. Efficient solvers for nonlinear time-periodic eddy
current problems. Comput. Vis. Sci., 9(4):197–207, 2006.

[19] M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86(4):565–589,
2000.

[20] M. Bebendorf. Hierarchical matrices, volume 63 of Lecture Notes in Computational Science and
Engineering. Springer-Verlag, Berlin, 2008.

[21] M. Bebendorf and J. Ostrowski. Parallel hierarchical matrix preconditioners for the curl-curl
operator. J. Comput. Math., 27(5):624–641, 2009.

[22] Z. Belhachmi, C. Bernardi, S. Deparis, and F. Hecht. A truncated Fourier/finite element
discretization of the Stokes equations in an axisymmetric domain. Math. Models Methods Appl.
Sci., 16(2):233–263, 2006.

[23] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numer., 14:1–137, 2005.

[24] J. Bergh and J. Löfström. Interpolation spaces: An introduction. Springer-Verlag, Berlin-
Heidelberg-New York, 1976.

[25] M. Bergounioux, K. Ito, and K. Kunisch. Primal-dual strategy for constrained optimal control
problems. SIAM J. Control Optim., 37(4):1176–1194, 1999.

[26] M. Bergounioux and K. Kunisch. Primal-dual strategy for state-constrained optimal control
problems. Comput. Optim. Appl., 22(2):193–224, 2002.

[27] C. Bernardi, M. Dauge, and Y. Maday. Spectral methods for axisymmetric domains, volume 3
of Series in Applied Mathematics (Paris). Gauthier-Villars, Éditions Scientifiques et Médicales
Elsevier, Paris, 1999.

[28] P. B. Bochev, C. J. Garasi, J. J. Hu, A. C. Robinson, and R. S. Tuminaro. An improved algebraic
multigrid method for solving Maxwell’s equations. SIAM J. Sci. Comput., 25(2):623–642, 2003.

[29] J. H. Bramble. Multigrid methods, volume 294 of Pitman Research Notes in Mathematics Series.
Longman Scientific & Technical, Harlow, 1993.

[30] J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite systems resulting
from mixed approximations of elliptic problems. Math. Comp., 50(181):1–17, 1988.

[31] J. H. Bramble, J. E. Pasciak, and P. S. Vassilevski. Computational scales of Sobolev norms
with application to preconditioning. Math. Comp., 69(230):463–480, 2000.

[32] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising
from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér.
Rouge, 8(R-2):129–151, 1974.

[33] A. Buffa and P. Ciarlet, Jr. On traces for functional spaces related to Maxwell’s equations. I.
An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci., 24(1):9–30,
2001.



BIBLIOGRAPHY 161

[34] A. Buffa and P. Ciarlet, Jr. On traces for functional spaces related to Maxwell’s equations. II.
Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods
Appl. Sci., 24(1):31–48, 2001.

[35] A. Buffa, M. Costabel, and C. Schwab. Boundary element methods for Maxwell’s equations on
non-smooth domains. Numer. Math., 92(4):679–710, 2002.

[36] A. Buffa and R. Hiptmair. Galerkin boundary element methods for electromagnetic scattering.
In Topics in computational wave propagation, volume 31 of Lect. Notes Comput. Sci. Eng.,
pages 83–124. Springer, Berlin, 2003.

[37] A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab. Boundary element methods for
Maxwell transmission problems in Lipschitz domains. Numer. Math., 95(3):459–485, 2003.

[38] J. Chen, Z. Chen, T. Cui, and L.-B. Zhang. An adaptive finite element method for the eddy
current model with circuit/field couplings. SIAM J. Sci. Comput., 32(2):1020–1042, 2010.

[39] P. Ciarlet, Jr. and J. Zou. Fully discrete finite element approaches for time-dependent Maxwell’s
equations. Numer. Math., 82(2):193–219, 1999.

[40] D. Copeland, M. Kolmbauer, and U. Langer. Domain Decomposition Solvers for Frequency-
Domain Finite Element Equations. In Domain Decomposition Methods in Science and Engi-
neering XIX, volume 78 of Lecture Notes in Computational Science and Engineering, pages
301–308. Springer, 2011.

[41] D. Copeland and U. Langer. Domain Decomposition Solvers for Nonlinear Multiharmonic Finite
Element Equations. J. Numer. Math., 18(3):157–175, 2010.

[42] M. Costabel. Symmetric methods for the coupling of finite elements and boundary elements
(invited contribution). In Boundary elements IX, Vol. 1 (Stuttgart, 1987), pages 411–420.
Comput. Mech., Southampton, 1987.

[43] W. J. Cunningham. Introduction to nonlinear analysis. McGraw-Hill Electrical and Electronic
Engineering Series. McGraw-Hill Book Co., Inc., New York, 1958.

[44] R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for science and
technology. Vol. 4. Springer-Verlag, Berlin, 1990.

[45] T. A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw., 30:196–199, June 2004.

[46] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw., 30:165–195, June 2004.

[47] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric sparse
matrices. ACM Trans. Math. Softw., 25:1–20, March 1999.

[48] H. De Gersem, S. Vandewalle, and K. Hameyer. Krylov subspace methods for harmonic balanced
finite element methods. In Lecture Notes in Computational Science and Engineering, pages 387
– 396, 2001.

[49] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, and A. Zdunek. Computing
with hp-adaptive finite elements. Vol. 2. Chapman & Hall/CRC Applied Mathematics and
Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL, 2008.

[50] C. Dohrmann and O. Widlund. Some recent tools and a BDDC algorithm for 3D problems in
H(curl). In Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in
Computational Science and Engineering. Springer, 2012. (to appear).



162 BIBLIOGRAPHY

[51] J. Driesen, G. Deliege, T. Van Craenenbroeck, and H. K. Implementation of the harmonic bal-
ance FEM method for large-scale saturated electromagnetic devices. In Proceedings of ELEC-
TROSOFT 99 conference, Sevilla, Spain, pages 75 – 84, 1999.

[52] P.-É. Druet, O. Klein, J. Sprekels, F. Tröltzsch, and I. Yousept. Optimal control of three-
dimensional state-constrained induction heating problems with nonlocal radiation effects. SIAM
J. Control Optim., 49(4):1707–1736, 2011.

[53] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers: with
applications in incompressible fluid dynamics. Numerical Mathematics and Scientific Compu-
tation. Oxford University Press, New York, 2005.

[54] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010.

[55] R. D. Falgout and P. S. Vassilevski. On generalizing the algebraic multigrid framework. SIAM
J. Numer. Anal., 42(4):1669–1693, 2004.

[56] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian
linear systems. Numer. Math., 60(3):315–339, 1991.

[57] S. A. Funken and E. P. Stephan. Fast solvers with block-diagonal preconditioners for linear
FEM-BEM coupling. Numer. Linear Algebra Appl., 16(5):365–395, 2009.

[58] H. D. Gersem., H. V. Sande, and K. Hameyer. Strong coupled multi-harmonic finite element
simulation package. COMPEL, 20:535 –546, 2001.

[59] H. Gfrerer. Generalized penalty methods for a class of convex optimization problems with
pointwise inequality constraints. NuMa-Report 07, Institute of Computational Mathematics,
Linz, 2009.

[60] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, volume 5 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.

[61] A. Greenbaum. Iterative methods for solving linear systems, volume 17 of Frontiers in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[62] L. Greengard. The rapid evaluation of potential fields in particle systems. ACM Distinguished
Dissertations. MIT Press, Cambridge, MA, 1988.

[63] L. Greengard and V. Rokhlin. The rapid evaluation of potential fields in three dimensions.
In Vortex methods (Los Angeles, CA, 1987), volume 1360 of Lecture Notes in Math., pages
121–141. Springer, Berlin, 1988.

[64] R. Griesse and K. Kunisch. Optimal control for a stationary MHD system in velocity-current
formulation. SIAM J. Control Optim., 45(5):1822–1845, 2006.

[65] M. Gunzburger and C. Trenchea. Analysis and discretization of an optimal control problem for
the time-periodic MHD equations. J. Math. Anal. Appl., 308(2):440–466, 2005.

[66] J. Gyselinck, P. Dular, C. Geuzaine, and W. Legros. Harmonic-balance finite-element modeling
of electromagnetic devices: a novel approach. Magnetics, IEEE Transactions on, 38(2):521
–524, March 2002.

[67] J. Gyselinck, P. Dular, C. Geuzaine, and W. Legros. 2D harmonic balance FE modelling of
electromagnetic devices coupled to nonlinear circuits. COMPEL, 23(3):800–812, 2004.

[68] W. Hackbusch. Multigrid methods and applications, volume 4 of Springer Series in Computa-
tional Mathematics. Springer-Verlag, Berlin, 1985.



BIBLIOGRAPHY 163

[69] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices.
Computing, 62(2):89–108, 1999.

[70] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. II. Application to multi-
dimensional problems. Computing, 64(1):21–47, 2000.

[71] B. Heinrich. The Fourier-finite-element method for Poisson’s equation in axisymmetric domains
with edges. SIAM J. Numer. Anal., 33(5):1885–1911, 1996.

[72] V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver and precon-
ditioner. Appl. Numer. Math., 41(1):155–177, 2002.

[73] R. Herzog and E. Sachs. Preconditioned conjugate gradient method for optimal control problems
with control and state constraints. SIAM J. Matrix Anal. Appl., 31(5):2291–2317, 2010.

[74] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Research Nat. Bur. Standards, 49:409–436 (1953), 1952.

[75] N. Heuer and E. P. Stephan. Iterative substructuring for hypersingular integral equations in
R

3. SIAM J. Sci. Comput., 20(2):739–749, 1998.

[76] M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth
Newton method. SIAM J. Optim., 13(3):865–888, 2002.

[77] R. Hiptmair. Canonical construction of finite elements. Math. Comp., 68(228):1325–1346, 1999.

[78] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal., 36(1):204–225,
1999.

[79] R. Hiptmair. Finite elements in computational electromagnetism. Acta Numer., 11:237–339,
2002.

[80] R. Hiptmair. Symmetric coupling for eddy current problems. SIAM J. Numer. Anal., 40(1):41–
65, 2002.

[81] R. Hiptmair. Boundary element methods for eddy current computation. In Computational
electromagnetics (Kiel, 2001), volume 28 of Lect. Notes Comput. Sci. Eng., pages 103–126.
Springer, Berlin, 2003.

[82] R. Hiptmair. Operator preconditioning. Comput. Math. Appl., 52(5):699–706, 2006.

[83] R. Hiptmair and P. Meury. Stabilized FEM-BEM coupling for Maxwell transmission problems.
In Modeling and computations in electromagnetics, volume 59 of Lect. Notes Comput. Sci. Eng.,
pages 1–38. Springer, Berlin, 2008.

[84] R. Hiptmair and J. Ostrowski. Coupled boundary-element scheme for eddy-current computa-
tion. J. Engrg. Math., 51(3):231–250, 2005.

[85] R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl) and H(div) spaces.
SIAM J. Numer. Anal., 45(6):2483–2509, 2007.

[86] B. Houska and M. Diehl. Robustness and stability optimization of power generating kite sys-
tems in a periodic pumping mode. In Control Applications (CCA), 2010 IEEE International
Conference on, pages 2172 –2177, September 2010.

[87] Q. Hu and J. Zou. A nonoverlapping domain decomposition method for Maxwell’s equations
in three dimensions. SIAM J. Numer. Anal., 41(5):1682–1708, 2003.

[88] Q. Hu and J. Zou. A weighted Helmholtz decomposition and application to domain decompo-
sition for saddle-point Maxwell systems. Technical Report 15, CUHK, 2007.



164 BIBLIOGRAPHY

[89] K. Ito and K. Kunisch. Semi-smooth Newton methods for state-constrained optimal control
problems. Systems Control Lett., 50(3):221–228, 2003.

[90] J. Jones and B. Lee. A multigrid method for variable coefficient Maxwell’s equations. SIAM J.
Sci. Comput., 27(5):1689–1708, 2006.

[91] M. Kaltenbacher. Numerical Simulation of Mechatronic Sensors and Actuators. Springer Berlin
Heidelberg, 2007.

[92] G. Koczka, S. Ausserhofer, O. Biro, and K. Preis. Optimal fixed-point method for solving 3D
nonlinear periodic eddy current problems. COMPEL, 28(4):1059 – 1067, April 2009.

[93] T. V. Kolev and P. S. Vassilevski. Parallel auxiliary space AMG for H(curl) problems. J.
Comput. Math., 27(5):604–623, 2009.

[94] M. Kollmann and M. Kolmbauer. A preconditioned MinRes solver for time-periodic parabolic
optimal control problems. Numer. Linear Algebra Appl., 2012. DOI: 10.1002/nla.1842.

[95] M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, and W. Zulehner. A robust finite
element solver for a multiharmonic parabolic optimal control problem. Computers and Mathe-
matics with Applications, 2012. DOI: 10.1016/j.camwa.2012.06.012.

[96] M. Kolmbauer. A multiharmonic solver for nonlinear parabolic problems. Master’s thesis,
Johannes Kepler University, Linz, October 2009.

[97] M. Kolmbauer. Existence and uniqueness of eddy current problems in bounded and unbounded
domains. NuMa-Report 03, Johannes Kepler University Linz, Institute of Computational Math-
ematics, Linz, May 2011.

[98] M. Kolmbauer. Efficient solvers for multiharmonic eddy current optimal control problems with
various constraints and their analysis. IMA J. Numer. Anal., 2012. (to appear).

[99] M. Kolmbauer. A robust FEM-BEM MinRes solver for distributed multiharmonic eddy cur-
rent optimal control problems in unbounded domains. Electronic Transactions on Numerical
Analysis, 39:231–252, 2012.

[100] M. Kolmbauer and U. Langer. A frequency-robust solver for the time-harmonic eddy current
problem. In Scientific Computing in Electrical Engineering SCEE 2010, volume 16 of Mathe-
matics in Industry, pages 97–106. Springer, 2011.

[101] M. Kolmbauer and U. Langer. A robust preconditioned MinRes solver for distributed time-
periodic eddy current optimal control problems. NuMa-Report 2011-04, Institute of Computa-
tional Mathematics, Linz, May 2011.

[102] M. Kolmbauer and U. Langer. A robust FEM-BEM solver for time-harmonic eddy current
problems. In Domain Decomposition Methods in Science and Engineering XX, Lecture Notes
in Computational Science and Engineering. Springer, 2012. (to appear).

[103] M. Kolmbauer and U. Langer. A robust preconditioned MinRes solver for time-periodic eddy
current problems. Comput. Methods Appl. Math., January 2012. DOI: 10.2478/cmam-2012-
0023.

[104] J. Kraus. Algebraic multilevel preconditioning of finite element matrices using local Schur
complements. Numer. Linear Algebra Appl., 13(1):49–70, 2006.

[105] J. Kraus. Additive schur complement approximation and application to multilevel precon-
ditioning. RICAM Report 2011-22, Johann Radon Institute for Computational and Applied
Mathematics (RICAM) of the Austrian Academy of Sciences, Linz, August 2011.



BIBLIOGRAPHY 165

[106] J. Kraus and S. Margenov. Robust algebraic multilevel methods and algorithms. Walter de
Gruyter, 2009.

[107] M. Kuhn. Efficient Parallel Numerical Simulation of Magnetic Field Problems. PhD thesis,
Johannes Kepler University, Linz, 1998.

[108] K. Kunisch and A. Rösch. Primal-dual active set strategy for a general class of constrained
optimal control problems. SIAM J. Optim., 13(2):321–334, 2002.

[109] Y. A. Kuznetsov. Efficient iterative solvers for elliptic finite element problems on nonmatching
grids. Russ. J. Numer. Anal. Math. Model., 10:187–211, 1995.

[110] P. D. Ledger and S. Zaglmayr. hp-finite element simulation of three-dimensional eddy cur-
rent problems on multiply connected domains. Comput. Methods Appl. Mech. Engrg., 199(49-
52):3386–3401, 2010.

[111] F. Leydecker, M. Maischak, E. P. Stephan, and M. Teltscher. Adaptive FE-BE coupling for
an electromagnetic problem in R

3—a residual error estimator. Math. Methods Appl. Sci.,
33(18):2162–2186, 2010.

[112] D. Loghin and A. J. Wathen. Analysis of preconditioners for saddle-point problems. SIAM J.
Sci. Comput., 25(6):2029–2049, 2004.

[113] J. Lu, Y. Li, C. Sun, and S. Yamada. A parallel-computation model for nonlinear electromag-
netic field analysis by harmonic balance finite element method. volume 2, pages 780 –787 vol.2,
April 1995.

[114] J. Lu, S. Yamada, and K. Bessho. Time-periodic magnetic field analysis with saturation and
hysteresis characteristics by harmonic balance finite element method. Magnetics, IEEE Trans-
actions on, 26(2):995 –998, March 1990.

[115] J. W. Lu, S. Yamada, and H. Harrison. Application of harmonic balance-finite element method
(HBFEM) in the design of switching power supplies. Power Electronics, IEEE Transactions
on, 11(2):347 –355, March 1996.

[116] M. Maischak and T. Tran. A block preconditioner for an electromagnetic FEM-BEM coupling
problem is R

3. In Proceedings of the 2nd International Conference on Scientific Computing
and Partial Differential Equations, Recent Progress in Scientific Computing, pages 302–318,
Beijing, 2007.

[117] K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial differential
equations. Numer. Linear Algebra Appl., 18(1):1–40, 2011.

[118] P. Monk. Finite element methods for Maxwell’s equations. Numerical Mathematics and Scien-
tific Computation. Oxford University Press, New York, 2003.

[119] M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for indefinite linear
systems. SIAM J. Sci. Comput., 21:1969–1972, 2000.

[120] J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980.

[121] J.-C. Nédélec. A new family of mixed finite elements in R3. Numer. Math., 50(1):57–81, 1986.

[122] M. Neumüller and O. Steinbach. Refinement of flexible space-time finite element meshes and
discontinuous galerkin methods. Computing and Visualization in Science, 14:189–205, 2011.

[123] M. Neumüller. Eine Finite Elemente Methode für optimale Kontrollprobleme mit parabolischen
Randwertaufgaben. Master’s thesis, Technische Universität Graz, Graz, 2010.



166 BIBLIOGRAPHY

[124] B. F. Nielsen and K.-A. Mardal. Efficient preconditioners for optimality systems arising in
connection with inverse problems. SIAM J. Control Optim., 48(8):5143–5177, 2010.

[125] M. A. Olshanskii and A. Reusken. On the convergence of a multigrid method for linear reaction-
diffusion problems. Computing, 65(3):193–202, 2000.

[126] M. A. Olshanskii and V. Simoncini. Acquired clustering properties and solution of certain
saddle point systems. SIAM J. Matrix Anal. Appl., 31(5):2754–2768, 2010.

[127] J. Ostrowski, M. Bebendorf, R. Hiptmair, and F. Krämer. H-matrix-based operator precon-
ditioning for full Maxwell at low frequencies. Magnetics, IEEE Transactions on, 46(8):3193
–3196, aug. 2010.

[128] C. C. Paige and M. A. Saunders. Solutions of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal., 12(4):617–629, 1975.

[129] G. Paoli, O. Biro, and G. Buchgraber. Complex representation in nonlinear time harmonic
eddy current problems. Magnetics, IEEE Transactions on, 34(5):2625 –2628, Sep. 1998.

[130] C. Pechstein. Finite and Boundary Element Tearing and Interconnecting Methods for Multiscale
Elliptic Partial Differential Equations. PhD thesis, Universität Linz, Linz, 2008.

[131] C. Pechstein. Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems, volume 90 of Lecture Notes in Computational Science and Engineering. Springer,
2013.

[132] C. Pechstein and B. Jüttler. Monotonicity-preserving interproximation of B-H-curves. J.
Comput. Appl. Math., 196(1):45–57, 2006.

[133] A. Potschka, M. Mommer, J. Schlöder, and H. Bock. Newton-Picard-based preconditioning for
linear-quadratic optimization problems with time-periodic parabolic PDE constraints. SIAM
Journal on Scientific Computing, 34(2):A1214–A1239, 2012.

[134] R. A. Prato Torres, E. P. Stephan, and F. Leydecker. A FE/BE coupling for the 3D time-
dependent eddy current problem. Part I: a priori error estimates. Computing, 88(3-4):131–154,
2010.

[135] R. A. Prato Torres, E. P. Stephan, and F. Leydecker. A FE/BE coupling for the 3D time-
dependent eddy current problem. Part II: a posteriori error estimates and adaptive computa-
tions. Computing, 88(3-4):155–172, 2010.

[136] S. Reitzinger and J. Schöberl. An algebraic multigrid method for finite element discretizations
with edge elements. Numer. Linear Algebra Appl., 9(3):223–238, 2002.

[137] A. A. Rodríguez and A. Valli. A FEM-BEM approach for electro-magnetostatics and time-
harmonic eddy-current problems. Appl. Numer. Math., 59(9):2036–2049, 2009.

[138] J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods, volume 3 of Frontiers
Appl. Math., pages 73–130. SIAM, Philadelphia, PA, 1987.

[139] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986.

[140] A. Schiela. Barrier methods for optimal control problems with state constraints. SIAM J.
Optim., 20(2):1002–1031, 2009.

[141] K. Schmidt, O. Sterz, and R. Hiptmair. Estimating the eddy-current modeling error. Magnetics,
IEEE Transactions on, 44(6):686 –689, june 2008.



BIBLIOGRAPHY 167

[142] J. Schöberl, R. Simon, and W. Zulehner. A robust multigrid method for elliptic optimal control
problems. SIAM J. Numer. Anal., 49(4):1482–1503, 2011.

[143] J. Schöberl and W. Zulehner. Symmetric indefinite preconditioners for saddle point problems
with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl.,
29(3):752–773, 2007.

[144] E. P. Stephan and M. Maischak. A posteriori error estimates for FEM-BEM couplings of three-
dimensional electromagnetic problems. Comput. Methods Appl. Mech. Engrg., 194(2-5):441–452,
2005.

[145] M. Stoll. One-shot solution of a time-dependent time-periodic PDE-constrained optimization
problem. Preprint MPIMD/11-04, Max-Planck-Institut für Dynamik komplexer Technischer
Systeme, Magdeburg, July 2011.

[146] S. Takacs and W. Zulehner. Convergence analysis of multigrid methods with collective point
smoothers for optimal control problems. Comput. Vis. Sci., 14(3):131–141, 2011.

[147] A. Toselli. Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer.
Math., 86(4):733–752, 2000.

[148] A. Toselli. Dual-primal FETI algorithms for edge finite-element approximations in 3D. IMA J.
Numer. Anal., 26(1):96–130, 2006.

[149] A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory, volume 34
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.

[150] T. Tran and E. P. Stephan. An overlapping additive Schwarz preconditioner for boundary
element approximations to the Laplace screen and Lamé crack problems. J. Numer. Math.,
12(4):311–330, 2004.

[151] F. Tröltzsch. Optimal Control of Partial Differential Equations. Theory, Methods and Ap-
plications. Graduate Studies in Mathematics 112, American Mathematical Society (AMS),
Providence, RI, 2010.

[152] F. Tröltzsch. Some results in the optimal control of electro-magnetic fields. In European Multi-
Grid Conference EMG 2010, Ischia, 2010.

[153] U. van Rienen. Numerical methods in computational electrodynamics, volume 12 of Lecture
Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 2001.

[154] J. Xu and Y. Zhu. Robust preconditioner for H(curl) interface problems. In Domain De-
composition Methods in Science and Engineering XIX, volume 78 of LNCSE, pages 173–180,
Heidelberg, 2011. Springer.

[155] S. Yamada and K. Bessho. Harmonic field calculation by the combination of finite element
analysis and harmonic balance method. Magnetics, IEEE Transactions on, 24(6):2588 –2590,
nov. 1988.

[156] S. Yamada, K. Bessho, J. Lu, and K. Hirano. Development and application of harmonic balance
finite element method in electromagnetic fields. International Journal of Applied Electromag-
netics in Materials, 1(1-2):305–312, 1990.

[157] S. Yamada, P. Biringer, and K. Bessho. Calculation of nonlinear eddy-current problems by the
harmonic balance finite element method. Magnetics, IEEE Transactions on, 27(5):4122 – 4125,
sep. 1991.

[158] I. Yousept. Optimal control of a nonlinear coupled electromagnetic induction heating system
with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(1):45–77, 2010.



168 BIBLIOGRAPHY

[159] I. Yousept. Optimal control of Maxwell’s equations with regularized state constraints. Compu-
tational Optimization and Applications, pages 1–23, 2011.

[160] S. Zaglmayr. High Order Finite Element Methods for Electromagnetic Field Computation. PhD
thesis, Universität Linz, Linz, 2006.

[161] E. Zeidler. Nonlinear functional analysis and its applications. II/A. Springer-Verlag, New York,
1990.

[162] E. Zeidler. Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York,
1990.

[163] O. C. Zienkiewicz, D. W. Kelly, and P. Bettess. Marriage à la mode—the best of both worlds
(finite elements and boundary integrals). In Energy methods in finite element analysis, pages
81–107. Wiley, Chichester, 1979.

[164] W. Zulehner. Nonstandard norms and robust estimates for saddle point problems. SIAM
J. Matrix Anal. Appl., 32:536 – 560, 2011.



Eidesstattliche Erklärung

Ich, Michael Kolmbauer, erkläre an Eides statt, dass ich die vorliegende Dissertation selbständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw.
die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die vorliegende
Dissertation ist mit dem elektronisch übermittelten Textdokument identisch.

Linz, August 2012

————————————————
Michael Kolmbauer

169



170 EIDESSTATTLICHE ERKLÄRUNG



Curriculum Vitae

Name: Dipl.-Ing. Michael Kolmbauer Bakk.techn.

Nationality: Austria

Date of Birth: 4th February, 1985

Place of Birth: Linz, Austria

Education:

1995–2003 Öffentliches Gymnasium der Benediktiner in Kremsmünster
(secondary comprehensive school).

2003–2004 Basic military service, Kremstalkaserne Kirchdorf.

2004–2008 Studies in Technical Mathematics (Bachelor), JKU Linz.

2008–2009 Studies in Technical Mathematics (Master), JKU Linz.

2009–2012 Studies in Technical Mathematics (PhD), JKU Linz.

Professional Career:
2009-2012 Research Assistant, Institute of Computational Mathematics, JKU Linz.

FWF Project P19255 and Doctoral Program DK W1214 (project DK4).

171


