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Abstract

Finite and boundary element discretizations of elliptic partial differential equations result
in large linear systems of algebraic equations. In this dissertation we study a special class
of domain decomposition solvers for such problems, namely the finite and boundary element
tearing and interconnecting (FETI/BETI) methods. We generalize the theory of FETI/BETI
methods in two directions, unbounded domains and highly heterogeneous coefficients.

The basic idea of FETI/BETI methods is to subdivide the computational domain into
smaller subdomains, where the corresponding local problems can still be handled efficiently
by direct solvers, if feasible, in parallel. The global solution is then constructed iteratively
from the repeated solution of local problems. Here, suitable preconditioners are needed
in order to ensure that the number of iterations depends only weakly on the size of the
local problems. Furthermore, the incorporation of a coarse solve ensures the scalability of
the method, which means that the number of iterations is independent of the number of
subdomains.

For scalar second-order elliptic equations given in a bounded domain where the diffusion
coefficient is constant on each subdomain, FETI/BETI methods are proved to be quasi-
optimal. In particular, the condition number of the corresponding preconditioned system is
bounded in terms of a logarithmic expression in the local problem size. Furthermore, the
bound is independent of jumps in the diffusion coefficient across subdomain interfaces.

First, we consider the case of unbounded domains, where one subdomain corresponds
to an exterior problem, while the other subdomains are bounded. The exterior problem is
approximated using the boundary element method. The fact that this exterior domain can
touch arbitrarily many interior subdomains and that the diameter of its boundary is larger
than those of the interior subdomains leads to special difficulties in the analysis. We provide
explicit condition number bounds that depend on a few geometric parameters, and which
are quasi-optimal in special cases. Our results are confirmed in numerical experiments.

Second, we consider elliptic equations with highly heterogeneous coefficient distributions.
We prove rigorous bounds for the condition number of the preconditioned FETI system that
depend only on the coefficient variation in the vicinity of the subdomain interfaces. To
be more precise, if the coefficient varies only moderately in a layer near the boundary of
each subdomain, the method is proved to be robust with respect to arbitrary variation
in the interior of each subdomain and with respect to coefficient jumps across subdomain
interfaces. In our analysis we develop and use new technical tools such as generalized Poincaré
and discrete Sobolev inequalities. Our results are again confirmed in numerical experiments.
We also demonstrate that FETI preconditioners can lead to robust behavior even for certain
coefficient distributions that are highly varying in the vicinity of the subdomain interfaces.

Finally, we consider nonlinear stationary magnetic field problems in two dimensions, as
an important application of our preceding analysis. There, the Newton linearization leads
to problems with highly heterogeneous coefficients, which can be efficiently solved using the
proposed FETI/BETI methods.
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Zusammenfassung

Die Finite-Elemente-Methode und die Randelementmethode sind Standardverfahren zur
Diskretisierung elliptischer partieller Differentialgleichungen. Beide Verfahren führen auf
großdimensionierte, lineare algebraische Gleichungssysteme, deren schnelle Lösung ganz we-
sentlich die Effizienz dieser numerischen Methoden bestimmt. In dieser Arbeit betrachten
wir eine spezielle Klasse von Gebietszerlegungsmethoden zur Lösung derartiger Probleme,
genannt FETI/BETI-Methoden (Finite/Boundary Element Tearing and Interconnecting Me-
thods). Wir erweitern die bekannte Theorie dieser Methoden in zwei Richtungen, auf unbe-
schränkte Gebiete und auf Probleme mit stark variierenden Koeffizienten.

Die Grundidee der FETI/BETI-Methoden ist eine Zerlegung des Rechengebiets in klei-
nere Teilgebiete, auf denen lokalisierte Gleichungen effizient durch direkte Verfahren gelöst
werden können. Dabei bietet sich zudem die Möglichkeit der Parallelisierung. Die globa-
le Lösung wird dann schrittweise durch wiederholtes Lösen lokaler Probleme rekonstruiert.
Hier werden Vorkonditionierer benötigt, damit die Größe der lokalen Probleme die Anzahl
der Iterationsschritte nur schwach beeinflusst. Weiters stellt erst die Einbeziehung eines so-
genannten Grobgitter-Problems die Skalierbarkeit sicher, was bedeutet dass die Anzahl der
Schritte nicht mit der Anzahl der Teilgebiete anwächst.

Für skalare elliptische partielle Differentialgleichungen zweiter Ordnung auf beschränkten
Gebieten ist bekannt, dass FETI/BETI-Methoden quasi-optimal sind, sofern der Diffusions-
koeffizient der Gleichung auf jedem Teilgebiet konstant ist oder nur schwach variiert. Genauer
gesagt ist die Konditionszahl des zugehörigen vorkonditionierten Systems durch einen loga-
rithmischen Term in der lokalen Problemgröße beschränkt. Diese Schranke ist unabhängig
von möglichen Sprüngen des Diffusionskoeffizienten zwischen den einzelnen Teilgebieten.

Zunächst betrachten wir den Fall eines unbeschränkten Gebiets, in welchem eines der
Teilgebiete den Außenraum umfasst. Dort wird die Lösung mit Hilfe der Randelementme-
thode berechnet. Die Tatsache, dass dieses äußere Teilgebiet beliebig viele innere Teilgebiete
berühren kann und dass der Durchmesser seines Randes im Allgemeinen größer ist als die der
inneren Teilgebiete, führt auf Schwierigkeiten in der Analysis. Wir leiten explizite Schranken
für die zugehörigen Konditionszahlen her, die von geometrischen Parametern abhängen und
für Spezialfälle quasi-optimal sind. Unsere theoretischen Resultate werden in numerischen
Experimenten bestätigt.

Weiters betrachten wir den Fall skalarer elliptischer partieller Differentialgleichungen mit
stark variierenden Koeffizienten, deren Werte insbesondere auch innerhalb jedes Teilgebiets
schwanken können. Wir zeigen explizite Schranken für die Konditionszahl der vorkonditio-
nierten FETI-Systeme, welche nur von der Koeffizientenvariation in der Nähe der Teilge-
bietsränder abhängen. Genauer gesagt, falls der Koeffizient pro Teilgebiet in einem Bereich
nahe des jeweiligen Randes nur schwach variiert, ist die FETI-Methode robust in jeglicher
Variation im Inneren der Teilgebiete und in Koeffizientensprüngen zwischen den einzelnen
Teilgebieten. Für unsere Analysis entwickeln wir neuartige technische Hilfsmittel, wie etwa
verallgemeinerte Poincaré- und diskrete Sobolev-Ungleichungen. Unsere theoretischen Er-
gebnisse werden wiederum in numerischen Experimenten bestätigt.

Zuletzt wenden wir die zuvor diskutierten Methoden auf nichtlineare zweidimensionale
stationäre Magnetfeldprobleme an. Hier führt die Newton-Linearisierung auf Problemstel-
lungen mit stark variierenden Koeffizienten, welche durch geeignete FETI/BETI-Methoden
effizient gelöst werden können.
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Introduction

State of the Art

PDEs, FEM, and BEM

Partial differential equations (PDEs) appear almost everywhere in the modeling of physical
processes, e. g., heat transfer, fluid dynamics, structural mechanics, and electromagnetics, to
name just some important applications. In this thesis we will mostly be concerned with the
potential equation

−div [α(x)∇u(x)] = f(x) , x ∈ Ω ,

with the unknown function u, the given coefficient α, the source term f , and the computa-
tional domain Ω ⊂ Rd. In only a few cases the solution of PDEs can be computed analytically.
In the remaining cases the solution has to be approximated using discretization techniques.
In the past decades—besides the finite difference method (FDM), the finite volume method
(FVM), and the finite integration technique (FIT)—the finite element method (FEM) and
the boundary element method (BEM) have been established as probably the most powerful
tools in the numerical simulation of PDEs.

The finite element method is based on the variational formulation of boundary value
problems for PDEs. Its main advantages are the general applicability to linear and nonlin-
ear PDEs, coupled multi-physics systems, complex geometries, varying material coefficients,
and different kinds of boundary conditions. Furthermore, the FEM is based on a pro-
found functional analytical framework (cf. Braess [16], Brenner and Scott [26], and
Ciarlet [35]), allowing for a rigorous error analysis. The main idea is to subdivide the
computational domain into small simple domains called elements, which altogether form a
triangulation (mesh) of the domain. On the elements the solution is approximated by local
finite dimensional spaces, e. g., polynomials. The unknown coefficients with respect to a cho-
sen basis are called degrees of freedom (DOFs) or unknowns. For well-posed linear boundary
value problems, the FEM discretization leads to a linear system of algebraic equations that
uniquely determines the unknowns, and therefore the approximate solution.

For many PDEs, e. g., the potential equation, the Stokes, Lamé, Helmholtz, and also
Maxwell equations, analytical fundamental solutions are known. In some cases, e. g., con-
stant coefficients and vanishing source terms of the PDE, by using the fundamental solution,
one can derive integral equations that completely describe the underlying boundary value
problem involving the unknown function (here u) only on the boundary of the computational
domain. The solution in the interior can then be calculated directly from a representation
formula involving the fundamental solution. The boundary element method (BEM) dis-
cretizes these integral equations on the boundary. Here, as an obvious advantage, only

1



2 INTRODUCTION

boundary meshes have to be constructed in contrast to the volume meshes when using the
FEM. A particular difficulty of the BEM is the non-locality of the boundary integral oper-
ators which have to be approximated by data-sparse techniques in order to obtain efficient
solvers. For a comprehensive mathematical theory on boundary integral equations see, e. g.,
McLean [134] and Hsiao and Wendland [90]. For boundary integral equations and BEM
see, e. g., Sauter and Schwab [164], Steinbach [175], and also Rjasanow and Stein-
bach [158]. For data-sparse approximation techniques we additionally refer to the recently
published monograph by Bebendorf [8] and the references therein.

Domain decomposition methods and parallelization

If the number N of DOFs gets large, direct solvers for linear systems result in non-optimal
complexity, i. e., O(Nβ) with β > 1. In the case of standard Gaussian elimination for
banded FEM systems the complexity is as bad as O(N2) in two and O(N7/3) in three space
dimensions, which can be enhanced to O(N3/2) resp. O(N2) for sparse systems using special
elimination strategies, cf., e. g., Zumbusch [197]. Therefore, iterative solvers become the
key ingredient to fast simulation. In this field, domain decomposition (DD) solvers have
proved to be a powerful technique. Among them are overlapping and non-overlapping DD
methods (also called substructuring methods), which subdivide the computational domain
into (overlapping or non-overlapping) subdomains. The underlying algorithms are built from
a number of local solves of smaller problems on the subdomains. This concept is embedded
in the more general abstract Schwarz theory, coined by Schwarz [169], where the solution
space is subdivided into subspaces. This theory covers additive, multiplicative, and hybrid
Schwarz methods; among them multilevel and multigrid methods. Some of these methods
result in quasi-optimal solvers with a computational complexity O(N(1+logN)β). In certain
cases they can even lead to optimal complexity O(N). Particularly in the context of elliptic
PDEs, the incorporation of a coarse space has proved to be the key ingredient to achieve
solvers which are robust in the number of subdomains. For a comprehensive account of
the theory and the algorithms in domain decomposition but also of the general Schwarz
theory, we refer to the monograph by Toselli and Widlund [184], see also Quarteroni
and Valli [150] and Smith, Bjørstad, and Gropp [171]. For multigrid and multilevel
methods we refer to Bramble and Zhang [18], Hackbusch [80], and Vassilevski [187].

The abstract framework of non-overlapping domain decomposition methods allows us (i)
to couple different discretization techniques, such as BEM and FEM, and (ii) to parallelize
solution algorithms on a mathematical level. Furthermore, there is a great potential to treat
multi-physics problems (see, e. g., Quarteroni and Valli [150]).

In many situations, it is of interest to couple FEM and BEM to exploit the advantages of
both methods, also known as marriage a la mode – the best of both worlds (see Zienkiewicz,
Kelly, and Bettess [195]). For instance, the finite element method is suitable for hetero-
geneous coefficients, source terms, and nonlinearities, whereas one can model subdomains
with constant coefficients (such as large air regions or small air gaps) and even unbounded re-
gions very suitably using the boundary element method. A remarkable work is the article by
Costabel [38] on the symmetric coupling of FEM and BEM, which was successfully used in
(hybrid) domain decomposition methods, see, e. g., Carstensen, Kuhn, and Langer [30],
Haase, Heise, Kuhn, and Langer [78], Hsiao, Steinbach, and Wendland [91], Hsiao
and Wendland [89], Langer [115], Langer and Steinbach [120], Steinbach [174].
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In the last decades parallel computing has become more and more important, since
the physical speed barrier has almost been reached by today’s computer chips. However,
parallelization is often only added as an afterthought in software design, which usually results
in the fact that the parallel speed-up is limited to just a few processors. Far more efficiency
can be gained using algorithms that can be parallelized on a mathematical level, and for which
a profound mathematical analysis of the parallel scalability on massively parallel computers
is available. This means that parallelization must already enter the design of numerical
algorithms. Here, domain decomposition methods serve as a natural framework: In the
simplest case, each processor treats one subdomain of the decomposition of the computational
domain. Since communication between processors is still the dominant part, it should by
all means be minimized, and so the mathematical algorithm should only require a relatively
weak coupling between the subdomain problems. On the other hand, as described above, a
global coupling via a coarse problem is essential when dealing with elliptic PDEs. Finding
algorithms without any loss of efficiency has been a very active topic of research since thirty
years. Here we refer, e. g., to Bastian [5], Douglas, Haase, and Langer [47], Haase [77],
Smith, Bjørstad, and Gropp [171], Toselli and Widlund [184], Zumbusch [197], the
references therein, the more recent works by Klawonn and Rheinbach [105, 106, 107] and
Rheinbach [154], and to the software projects Hypre (http://acts.nersc.gov/hypre/),
PETSc (http://www-unix.mcs.anl.gov/petsc/petsc-as/), and UG (http://sit.iwr.
uni-heidelberg.de/~ug/), see also DUNE (http://www.dune-project.org/).

Iterative substructuring methods

Among the most successful non-overlapping domain decomposition methods (at least for el-
liptic PDEs) are the balancing Neumann-Neumann methods, the finite element tearing and
interconnecting (FETI) methods, the dual-primal FETI (FETI-DP) methods, and a method
called balanced domain decomposition by constraints (BDDC). The classical FETI method,
nowadays called the one-level FETI method, was introduced by Farhat and Roux [55, 56]
in 1991 as a dual iterative substructuring method, where it was first used for computational
mechanics. In contrast to primal iterative substructuring methods, the finite element sub-
spaces are given on each subdomain including its boundary, and in the first instance this
leads to a discontinuous approximation space. The global continuity of the solution is en-
forced by pointwise algebraic constraints, modeled by Lagrange multipliers. The resulting
saddle point problem is equivalent to a dual problem which is symmetric positive semidefi-
nite. Using a preconditioned conjugate gradient (PCG) subspace iteration this dual problem
can be solved iteratively. Farhat, Mandel, and Roux [57] proposed the first precondi-
tioner for this dual problem, called Dirichlet preconditioner, which results in a weak growth
of the number of iterations with respect to the number of degrees of freedom in the local
problems. The main ingredients of FETI are local Dirichlet and Neumann solves, as well as
an algebraic coarse solve.

We note that the pioneering work for iterative substructuring methods is a series of
papers by Bramble, Pasciak, and Schatz [19, 20, 21, 22], and that many of the tools
developed there are essential in the FETI theory. Secondly we mention that the basic ideas
in FETI and Neumann-Neumann methods can be tracked back to early work by Glowinski
and Wheeler [70] on certain mixed methods.

Nowadays, an extensive mathematical framework for FETI methods is available. In their
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pioneering work, Mandel and Tezaur [131] published the first convergence proof for the
one-level FETI method with non-redundant Lagrange multipliers for two-dimensional elliptic
problems with homogeneous coefficients. They showed that the spectral condition number
of the corresponding preconditioned system is bounded by C (1 + log(H/h))β, with β ≤ 3,
where H denotes the subdomain diameter, h the local mesh size, and C is a generic con-
stant independent of H, h, and the number of subdomains. For a special two-dimensional
case, they could show β ≤ 2. Another breakthrough was the work by Klawonn and
Widlund [109, 108] who introduced and analyzed new one-level FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients. They could prove the spectral
bound C (1 + log(H/h))2, including also the case of redundant Lagrange multipliers, which
are more commonly used in parallel implementations. Furthermore, provided that the coeffi-
cients of the PDE are constant (or at most mildly varying) in each subdomain, Klawonn and
Widlund showed that the constant C is also independent of possible jumps in the coefficients
across subdomain interfaces when a special scaling of the preconditioner is applied.

Using the basic idea of FETI methods, Langer and Steinbach [118, 119] introduced
the boundary element tearing and interconnecting (BETI) method and coupled FETI/BETI
methods. The coupling of BEM and FEM in the tearing and interconnecting framework is
possible mainly for two reasons: (i) the domain decomposition is non-overlapping, and (ii)
FETI acts on the subdomain interfaces and relies on the finite element Schur complement on
the local boundaries which is an approximation of the Steklov-Poincaré operator, also known
as the Dirichlet-to-Neumann map. This operator can also be approximated using the BEM.
Due to spectral arguments, the condition number of the BETI and the coupled FETI/BETI
methods is also bounded by C (1 + log(H/h))2.

One-level FETI methods involve an algebraic coarse problem which is built from a special
projection that deals with the local kernel of elliptic operators in floating subdomains that
have no contribution from the Dirichlet boundary. In fact, the solution of the local Neumann
problem −div [αi∇u] = f in Ωi, with the conormal derivative αi ∂u∂ni

prescribed on the whole
of the boundary ∂Ωi, is only unique up to an additive constant, and this constant spans the
kernel of the operator. In the construction of the coarse problem that guarantees parallel
scalability of one-level FETI, we rely heavily on these non-trivial kernels of the local Neumann
problems. The exact characterization of these local kernels is a non-trivial task for some more
complicated PDEs, e. g., linear elasticity. There, the local kernel can have a dimension up
to six in three dimensions. For local Neumann problems that are always uniquely solvable,
e. g., for the equation −div [αi∇u] +βi u = f , the one-level FETI method has to be modified
in order to get a coarse problem which ensures scalability. Such a modification has been
proposed by Farhat, Chen, and Mandel [58] for time-dependent problems, see also
Toselli and Klawonn [182] for problems arising in electromagnetics.

These technical and implementational difficulties led to the introduction of the dual-
primal FETI (FETI-DP) methods by Farhat, Lesoinne, Le Tallec, Pierson, and
Rixen [63]. Here, not all of the continuity constraints are imposed by Lagrange multipli-
ers, but some of the DOFs are designated as primal DOFs and eliminated from the system
like in a block Cholesky factorization, cf. Li and Widlund [125]. This way the local Neu-
mann problems are always uniquely solvable and the size of the coarse problem is then the
number of such primal DOFs. The first analysis was given by Mandel and Tezaur [132]
for two-dimensional problems with homogeneous coefficients. Klawonn, Widlund, and
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Dryja [111] gave a full analysis for the three-dimensional case with heterogeneous coeffi-
cients. As already observed numerically by Farhat, Lesoinne, and Pierson [61] in three
dimensions, fixing only a few vertices as primal DOFs is not sufficient and leads to a linear
growth of the condition number in H/h. This is due to the fact that finite element ver-
tex evaluations in two dimensions are almost continuous with a logarithmic dependency on
H/h, whereas vertex evaluations in three dimensions have a linear dependency on H/h. The
quasi-optimal bound can be obtained by introducing more primal constraints, such as edge
or face constraints, which enforce edge or face averages of the solution to be continuous.
The BEM counterpart of FETI-DP is called BETI-DP and was first introduced in Langer,
Pohoaţǎ, and Steinbach [121].

A convenient alternative to FETI-DP, when dealing with PDEs with no elliptic operators
such as Laplace or linear elasticity with no zero-order terms, is a modification of the one-level
FETI method that simplifies the characterization of the local kernels. Such an approach was
independently introduced for finite elements by Dostál, Horák, and Kučera [46], named
total FETI, and for boundary elements by Of [138, 139], referred to as all-floating BETI
(AF-BETI). Here, the Dirichlet boundary conditions are not incorporated into the FE or BE
spaces, but rather imposed by additional Lagrange multipliers. Therefore, all subdomains
become floating, and one can work uniformly with the full kernel.

Let us make a few remarks on Neumann-Neumann methods and the more recent bal-
ancing domain decomposition by constraints (BDDC). Neumann-Neumann methods (see
Bourgat, Glowinski, LeTallec, and Vidrascu [15], De Roeck and LeTallec [41],
Dryja and Widlund [48], Le Tallec [124], Mandel and Brezina [129], Sarkis [162])
provide a preconditioner to the Schur complement system by solving local Neumann prob-
lems using the jumps in the flux on each subdomain and then correcting the previous iterate
with the corresponding function values. With the incorporation of a coarse space, the num-
ber of iterations becomes independent of the number of subdomains. For piecewise constant
coefficients with respect to the subdomains, the method can be made robust using a partition
of unity related to the coefficient values, which is also central in the FETI theory. As shown
by Klawonn and Widlund [109], FETI and Neumann-Neumann methods are very closely
related and can be considered as dual to each other.

BDDC, introduced by Dohrmann [42] and analyzed by Mandel and Dohrmann [130],
is a balancing Neumann-Neumann method with a special coarse space that is derived from
primal constraints in the same way as in FETI-DP methods. Indeed, it was shown by
Mandel, Dohrmann, and Tezaur [133] and Brenner and Sung [27] that the FETI-
DP and the BDDC methods have essentially the same spectrum. For further references on
BDDC methods see, e. g., Dohrmann [43] and Li and Widlund [126].

We mention that FETI type and Neumann-Neumann type methods have been gener-
alized to structural mechanics (see, e. g., Brenner [24], Farhat, Chen, Mandel, and
Roux [59], Farhat and Mandel [54], Klawonn and Widlund [108, 110]), Helmholtz
problems (Farhat, Macedo, and Lesoinne [62], Farhat, Macedo, and Tezaur [60]),
eddy current problems (Toselli and Klawonn [182], Toselli [180, 181]), and also to non-
conforming (mortar) discretizations (Kim and Lee [103], Kim [101, 102], Stefanica [172],
Stefanica and Klawonn [173]). Inexact FETI-DP methods were introduced in Kla-
wonn and Rheinbach, Rheinbach [106, 154]; here preconditioners on the saddle point
formulation of FETI-DP methods are used to allow for an inexact solution of the coarse
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problem. For extensions of FETI type methods to high-order (hp and spectral element)
methods, see, e. g., Klawonn, Pavarino, and Rheinbach [112, 112], Pavarino [141],
Toselli and Vasseur [183], and the references in Toselli and Widlund [184, Chap. 7].
A special hp method called interface-concentrated FETI has been introduced by Beuchler,
Eibner, and Langer [11], building on a work by Khoromskij and Melenk [100] for
boundary-concentrated hp-FEM discretizations.

Highly heterogeneous coefficients

In many applications, the coefficients of the underlying PDE are heterogeneous in the sense
that they jump across material interfaces while being homogeneous within a single material.
The analysis of FETI type methods in this case can be covered by the theory in Klawonn
and Widlund [109] and Klawonn, Widlund, and Dryja [111], as long as the material
interfaces are resolved by the subdomain partitioning. However, there are other applications
where the coefficient varies also within the subdomains, among them the simulation of com-
plicated layered, heterogeneous, porous, or stochastic media, and nonlinear problems. We
call such coefficients highly heterogeneous or multiscale coefficients. The development of fast
and robust iterative solvers for problems with (highly) heterogeneous coefficients has been
a very active area of research, specifically in the setting of multiscale solvers, and in the
domain decomposition and multigrid communities. In the following we first review results
on the heterogeneous case (apart from [109, 111]), where the coefficient is resolved by the
subdomains or the coarsest mesh. Secondly, we review known results for the much more
difficult highly heterogeneous case.

An important contribution concerning the heterogeneous case was the one by Sarkis [162,
163, 161] building on earlier works by Dryja and Widlund [48], Dryja, Smith, and Wid-
lund [49], and Widlund [190] who used non-standard (sometimes known as exotic) coarse
spaces to obtain robust additive and multiplicative Schwarz type solvers for coefficients which
are piecewise constant with respect to the subdomains, see also Bjørstad, Dryja, and
Vainikko [12], Chan and Mathew [31], and Toselli and Widlund [184]. We note that
Sarkis introduced the concept of quasi-monotone coefficient distributions on cross points.
The quasi-monotonicity is violated, e. g., in case of a checkerboard distribution with two dif-
ferent coefficient values. It turns out that for many methods, non-quasi-monotone coefficient
distributions form indeed the harder case.

In their recent article [192], Xu and Zhu consider the conjugate gradient method with
various multilevel preconditioners. If the coefficient is constant in M connected regions
that are resolved by the coarsest mesh, the convergence is uniform in the coefficient jumps.
In particular, the case of non-quasi-monotone coefficient distributions is covered as well.
Although the condition number of the preconditioned system deteriorates in general, the
number of small eigenvalues can be shown to be equal to M while the other eigenvalues form
a cluster. Therefore, the number of iterations of the CG method depends only on M and the
ratio of the extremal eigenvalues of the cluster. Robustness analysis for algebraic multilevel
methods can be found in Kraus and Margenov [114].

Let us now come to works on highly heterogeneous coefficient distributions which are
not resolved by subdomains or the coarse mesh. Graham and Hagger [71, 72] discovered
and analyzed clustering effects (similar to those later exploited by Xu and Zhu) in the
spectrum of FEM systems for high contrast coefficients, and they used additive Schwarz
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preconditioned CG methods to exploit these effects. For similar computational results see
Vuik, Segal, and Meijerink [189]. If the coefficient is constant on M different regions,
the number of small eigenvalues is equal to M . Graham and Hagger proved the convergence
of CG with an additive Schwarz preconditioner for such coefficient distributions, where the
iteration number depends only on M and is independent of the jumps in the coefficient. In
contrast to previous works, the jumps need be resolved neither by the subdomains nor by
the coarse grid.

In the articles by Graham, Lechner, and Scheichl [75], Graham and Sche-
ichl [73, 74], and Scheichl and Vainikko [165] we find theory for Schwarz type domain
decomposition solvers for highly heterogeneous coefficients, which adjust the basis functions
of the coarse space according to the coefficients. The authors come up with very general
bounds for the condition number in terms of one or two indicators which describe the rela-
tionship between the coefficients, the subdomain partitioning, and the coarse basis functions.
In order to obtain robust bounds the authors specialize on certain “island” configurations.
By an “island” we understand a region of heterogeneity in the coefficient which is fully
contained in another homogeneous region where the coefficient is constant. Under certain
assumptions on these islands, the indicators mentioned above can be estimated in terms of
accessible geometric parameters, such as the overlap parameter, diameters of the islands, and
distances between islands and element or subdomain interfaces. Here we must point out that
in spite of the rather special assumptions, islands may still cut through subdomain facets or
can be included in their interior. Indeed, the theoretical analyses are rather involved, which
is for sure associated to the difficulty of the problem of highly heterogeneous coefficients.

Numerical robustness results for (algebraic) multigrid and multilevel methods can be
found, e. g., in Alcouffe, Brandt, Dendy, Jr., and Painter [4], Ruge and Stüben [160],
and Vanek, Mandel, and Brezina [186]. Theoretical results are given in Aksoylu, Gra-
ham, Klie, and Scheichl [3], Georgiev, Kraus, and Margenov [68].

As observed numerically by several authors, FETI type methods seem to be robust even
when coefficient jumps are not aligned with the subdomain partitioning, see Rixen and
Farhat [155, 156] for one-level methods and Klawonn and Rheinbach [104, 107] for
FETI-DP methods. A theoretical foundation is so far still lacking.

On this work

The aims of this work are to investigate FETI/BETI type methods for the case of

(i) unbounded domains, i. e., coupling to exterior problems, and

(ii) highly heterogeneous coefficients.

The aspect of exterior problems and highly heterogeneous coefficients is mainly driven by
the application to nonlinear magnetic field computations as they will be explained in more
detail in the sequel. In two dimensions, the linearization of such equations results in potential
equations. Similar equations arise in nonlinear electrostatics, see, e. g., Ida and Bastos [92,
Chap. 3] or Kaltenbacher [93, Sect. 4.3]. Therefore the potential equation (in two and
three dimensions) will serve as our model problem throughout. In the following we describe
some phenomena which occur in the context of these magnetic field problems in order to
motivate our investigations on FETI/BETI type methods.
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Exterior problems Except for special cases, electromagnetic fields radiate to infinity,
although they might decay rather fast according to radiation conditions, such as the Silver-
Müller radiation condition for the Maxwell equations or the Sommerfeld radiation condition
for the Helmholtz equation, cf., e. g., Monk [136]. Henceforth, the computational domain is
at first sight unbounded. There are many techniques to deal with such unbounded domains
in connection with magnetic field computations. Besides the use of Dirichlet boundary
conditions on an artificial boundary exploiting the fast decay far away from the sources,
infinite elements, conformal mappings, perfectly matches layers, etc., the boundary element
method can handle radiation conditions in homogeneous media with high accuracy. Here,
one introduces an artificial interface away from the sources and can find boundary integral
equations which exactly model the entire PDE in the exterior of that interface. In particular,
the exterior Steklov-Poincaré operator, i. e., the exterior Dirichlet-to-Neumann map, for
Laplace’s equation can be fully described by means of such integral operators.

Since the FETI/BETI methods for bounded domains can be described very naturally by
Steklov-Poincaré operators on the subdomains, it seems straightforward to treat unbounded
domains with FETI/BETI type methods. From a practical point of view this is indeed the
case. However, new questions concerning robustness arise which are usually not present in
the bounded case. In the standard theory of FETI/BETI type methods, it is assumed that
each subdomain has a finite, uniformly bounded number of neighbors, and that neighboring
subdomains are of comparable size. In the context of our theory, the “size” of the exterior
subdomain is measured by the diameter of its boundary (which is finite), in the following
denoted by H0. Therefore, the standard assumption requires that all the neighboring sub-
domains of the exterior domain have a diameter proportional to H0 which implies that there
can only be very few of them. In general, using the known theory in its basic form, the con-
dition number depends on the ratios H0/Hi and on the number of neighbors of the exterior
domain, which would be rather limiting. In practice, we are interested in problems where
the exterior domain can have arbitrarily many neighboring subdomains and in solvers which
are robust with respect to the number of neighbors and the different sizes of the subdomains.

Nonlinearity and heterogeneity In two-dimensional nonlinear magnetic field computa-
tions the coefficient of the PDE, called reluctivity ν, depends nonlinearly on the gradient of
the solution, or equivalently on the magnetic flux density |B|. For many materials, such as
ferromagnetic ones, this dependency is nonlinear. In other materials, such as air or insula-
tors, the reluctivity coefficient can be modeled as constant. In any case, we expect jumps in
the coefficient across material interfaces, and these jumps can be of order O(103) and more.
If we apply a Newton type method to the nonlinear equation, the linearized equation in
each iterative step is again a potential equation with a tensor-valued coefficient, denoted by
ζ, that depends on the gradient of the current iterate. Since such gradients can grow arbi-
trarily large near singularities which arise at material corners (cf., e. g., Grisvard [76]), the
coefficient ζ can become highly heterogeneous, even within a homogeneous (but nonlinear)
material. In summary, for such nonlinear problems we have

• large jumps in the coefficient ζ across material interfaces, and

• smooth but large variation in ζ within an individual material due to nonlinear effects.

Iterative solvers for the linearized problems should be robust with respect to the variation in
the coefficient ζ. The existing theory on FETI methods covers only the case of coefficients
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that are piecewise constant on the subdomains or only slightly varying. If we apply the
methods naively to highly heterogeneous coefficients as described above, the rate of variation
will enter the condition number bound, i. e., the method is, in its basic form, not robust with
respect to the variation. However, Rixen and Farhat [155, 156] introduced modified scaling
strategies for one-level FETI methods, known as superlumping, which are proved to be rather
effective for coefficient jumps which are not aligned with interfaces, at least numerically. A
similar scaling has been numerically tested for nonlinear magnetostatic field problems in
Langer and Pechstein [116]. Scalings for related FETI-DP together with numerical
results can be found in Klawonn and Rheinbach, Klawonn and Rheinbach [104, 107].
However, a theoretical proof of all these robustness results has so far been lacking.

Main achievements The main emphasis of this thesis is not on computations but on
theory. Nevertheless we have also confirmed our theoretical results by numerical experiments
and applied the methods to nonlinear magnetic field problems. Our main achievements are
the following ones.

Exterior problems. We provide explicit condition number bounds for standard one-level
and all-floating FETI/BETI methods in the unbounded case, which we summarize in the
following. Let Γ0 denote the artificial interface separating the exterior domain from the
interior subdomains. If in addition to the radiation condition, no further Dirichlet boundary
conditions are imposed (e. g., on parts of the interior subdomain boundaries), the condition
number κ of the preconditioned FETI/BETI system is bounded by

C max
i∈Iint

(1 + log(Hi/hi))2 ,

where Iint is the index set of the interior subdomain and the constant C is independent of
H0, Hi, hi, the number of subdomains, and in particular of the ratio H0/Hi and the number
of neighbors of the exterior subdomain. If additionally, the coefficient corresponding to the
exterior subdomain is larger or equal to those of the interior subdomains, the constant C is
independent of the values of the (piecewise constant) subdomain coefficients. In case of a
Dirichlet boundary in the interior that is separated from Γ0 by a distance η > 0, we obtain

κ ≤ C
H0

η
max
i∈Iint

(1 + log(Hi/hi))2 .

Similar estimates hold true if the Dirichlet boundary touches Γ0. In the worst case, we can
prove the same estimate as above where η equals the minimal diameter of the subdomains
neighboring the exterior domain. Then the constant C is independent of the coefficients and
the location of the Dirichlet boundary. We note that in three dimensions, the factor H0/Hj

is a measure for the square root of the number of neighbors of the exterior domain.
We prove that dual-primal FETI/BETI methods for unbounded domains result always in

the quasi-optimal condition number bound C maxi∈Iint(1+log(Hi/hi))2, with C independent
of H0, Hi, hi, the number of subdomains, the neighbors of the exterior domain, and the values
of the (piecewise) coefficients. We discuss implementation issues of both the one-level and
the dual-primal methods for unbounded domains.

Highly heterogeneous coefficients. As previously discussed, there are only very few theoretical
results for domain decomposition methods for highly heterogeneous coefficients. Our work is
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mainly inspired by the articles by Graham, Lechner, and Scheichl [75] and Scheichl
and Vainikko [165].

Using energy minimization and cut-off arguments, and by proving some new generalized
Sobolev inequalities, we can show a rigorous bound for the condition number of the pre-
conditioned FETI system that depends only on the coefficient variation in the vicinity of
subdomain interfaces. To be more precise, for suitably chosen parameters ηi > 0, let Ωi,ηi

denote the layer of width ηi near the boundary of each subdomain Ωi. Then, for a gen-
eral (positive) coefficient function α ∈ L∞(Ω), the condition number of the preconditioned
one-level FETI system is bounded by

C max
k∈I

(Hk

ηk

)β
max
i∈I

max
x,y∈Ωi,ηi

α(x)
α(y)

(1 + log(Hi/hi))2 ,

where I is the index set of the subdomain, and the constant C is independent of α(·). In
general, β = 2; if the coefficient in the interior is always larger than in the boundary layers,
β = 1. In particular the dependency of the condition number is restricted to the boundary
layers only, i. e., the coefficient may vary a lot in the interior of each subdomain. Our
condition number bound holds also in case of the all-floating and the dual-primal method.

Application to nonlinear magnetic field problems. We apply the one-level FETI/BETI
method to nonlinear stationary magnetic field problems in two dimensions, where in partic-
ular the highly heterogeneous case is of strong relevance.

The analyses of our theoretical results will be treated in the more interesting three-dimensional
case. The corresponding proofs for the two-dimensional case can be obtained easily from the
three-dimensional ones. As a matter of fact, we need to enter and modify the known theory
on a rather deep level. This is why we have decided to review this theory in detail. We
present numerical experiments that illustrate and confirm our results on one-level (including
all-floating) FETI/BETI methods.

Outline

This dissertation is structured as follows.

• Chapter 1 provides some preliminaries, such as Sobolev spaces, the variational for-
mulation, FEM, BEM, and Steklov-Poincaré operators. The experienced reader may
bypass this chapter.

• In Chapter 2 we discuss hybrid one-level tearing and interconnecting methods, pre-
senting a unified theory for standard one-level and all-floating FETI/BETI methods.

• Chapter 3 investigates the extension of one-level FETI/BETI methods to unbounded
domains.

• In Chapter 4 we discuss dual-primal FETI/BETI methods for bounded and unbounded
domains.

• Chapter 5 deals with FETI type methods for highly heterogeneous coefficients.

• In Chapter 6, we apply the FETI/BETI methods to nonlinear magnetic field problems
in two dimensions and provide some numerical results.



Chapter 1

Preliminaries

This chapter contains the preliminaries for our thesis. Section 1.1 introduces some basic
concepts. In Section 1.2 we briefly discuss the potential equation. Section 1.3 deals with
Sobolev spaces, variational formulations and Galerkin’s method. In Section 1.4 we introduce
boundary integral equations related to the interior and exterior Laplace equation as well
as the corresponding Steklov-Poincaré operators, which are among the key tools of non-
overlapping domain decomposition methods. Section 1.5 briefly covers two discretization
techniques, the finite element method (FEM) and the boundary element method (BEM).
Furthermore, we introduce approximations of Steklov-Poincaré operators. We very briefly
address solvers for finite element systems and data-sparse techniques for the BEM, such as
H-matrices. Finally, Section 1.6 contains spectral estimates relating the approximate and
the continuous Steklov-Poincaré operators.

1.1 Basic concepts

1.1.1 Basic notation and auxiliary results

Vectors and matrices For two vectors p, q ∈ Rn, we denote the Euclidean inner product
by p · q := (p, q)`2 :=

∑n
i=1 pi qi, and the Euclidean norm by |p| := (p · p)1/2. If it is clear

from the context we simply denote the vector of zero entries by 0. When not pointed out
explicitly, all vectors are understood as column vectors. The transpose p> of a column vector
p is a row vector. Similarly, we denote the transpose of a matrix A ∈ Rn×m by A>. A matrix
A ∈ Rn×n is called symmetric positive definite (SPD) if it is symmetric and (Ap) · p > 0 for
all p ∈ Rn \ {0}. The identity matrix is denoted by I. A number λ ∈ R is called eigenvalue
of A if there exists a vector z 6= 0 such that Az = λz. If A is SPD, all eigenvalues are strictly
positive. Denote by λmax(A) and λmin(A) the largest and smallest eigenvalue, respectively,
which can be characterized by

λmax(A) = max
z 6=0

(Az, z)∗
(z, z)∗

, λmin(A) = min
z 6=0

(Az, z)∗
(z, z)∗

,

for any inner product (·, ·)∗ on Rn. The spectral condition number of an SPD matrix A is
defined by

κ(A) :=
λmax(A)
λmin(A)

.

11
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Figure 1.1: Two domains that fail to be Lipschitz.

Banach spaces and linear operators We denote the dual of a Banach space V by V ∗.
The dual is the space of the linear and bounded functionals on V . The duality product on
V ∗ × V is denoted by 〈·, ·〉, i. e., for a functional f ∈ V ∗, we have 〈f, v〉 = f(v) ∈ R. For
subspace U ⊂ V we define its polar space U◦ ⊂ V ∗ by

U◦ :=
{
f ∈ V ∗ : 〈f, v〉 = 0 ∀v ∈ U

}
.

Let W be another Banach space and A : V → W ∗ a bounded linear operator. We define
the adjoint A> : W → V ∗ by the relation 〈A>w, v〉 = 〈Av, w〉 for all v ∈ V , w ∈ W . An
operator S : V → V ∗ is said to be self-adjoint if S> = S. If in addition, there exists a
constant c > 0 with 〈S v, v〉 ≥ c‖v‖2

V for all v ∈ V , we call S elliptic. As it is well-known in
the elliptic case, the inverse S−1 : V ∗ → V is linear, bounded, and elliptic as well. In case
that V is of finite dimension, we may call the operator S symmetric positive definite (SPD)
as well, since it can be represented by an SPD matrix. As a convention, we call a general
self-adjoint elliptic operator S : V → V ∗ SPD as well. Any such SPD operator S defines
an inner product 〈v, w〉S := 〈S v, w〉 on V . For a subset U ⊂ V , we define the orthogonal
complement of U with respect to V by

U⊥S :=
{
w ∈ U : 〈w, v〉S = 0 ∀v ∈ V

}
.

The kernel and range of a general linear operator A : V →W are denoted by

kerA := {v ∈ V : Av = 0} , rangeA := {w ∈W : ∃v ∈ V : w = Av} .

If V and W are of finite dimension, we have (kerA)◦ = rangeA> because rangeA is closed,
cf. Brezzi and Fortin [29, Chap. II]. The identity operator on a space V is denoted by
IV , where we omit the subscript V if the corresponding space is clear from the context.

Domains and manifolds We call an open and connected subset Ω ⊂ Rd a domain. In
most cases, a domain Ω will be bounded, too. The boundary of a domain is denoted by ∂Ω.
We call a non-empty boundary ∂Ω Lipschitz if it can be represented by a finite family of
Lipschitz continuous functions, see, e. g., Evans [53] or McLean [134]. We call a domain
Lipschitz if its boundary is Lipschitz. Note that for each bounded Lipschitz domain Ω, its
open complement Rd \Ω is Lipschitz too. Due to Rademacher’s theorem (see the references
in McLean [134, p. 96f]), Lipschitz domains have a unique outward unit normal vector to
the boundary in the L∞ sense. Figure 1.1 shows two famous examples of domains which
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fail to be Lipschitz. However, both are the union of two Lipschitz domains. A manifold
Γ ⊂ ∂Ω is called relatively open (relatively closed), if its open (closed) in the topology of the
(d − 1)-dimensional boundary ∂Ω. A manifold is called closed if it has no boundary in the
∂Ω-topology. If clear from context we will often write open, but meaning relatively open.
For a domain or manifold M, let 1M denote the function which is identical to 1 on M,
and let 0M denote the function being identical to 0 on M. Finally, we define the diameter
diam (M) := sup

x, y∈M
|x− y|.

Integrals All domain integrals are Lebesgue integrals and will be written in the form∫
Ω f(x) dx or in short

∫
Ω f dx. Integrals on hypersurfaces are understood as Lebesgue inte-

grals with respect to the corresponding surface measure or arc length and are written in the
form

∫
Γ f(x) dsx or in short

∫
Γ f ds.

Constants in estimates Throughout this work the notion a . b means that some
(generic) constant C > 0 exists with a ≤ C b. Such a constant C will never depend on
the relevant parameters such as mesh size, (sub)domain diameters, coefficients, number of
subdomains, etc., but it may depend on the geometric shapes of subdomains, elements, etc.
Similarly, a & b is short hand for b . a, and a ' b stands for a . b and b . a.

Suprema and infima We agree on the convention that we write

sup
x∈X

a(x)
b(x)

as short hand for sup
{a(x)
b(x)

: x ∈ X, b(x) 6= 0
}
,

i. e., we exclude those x ∈ X where the denominator vanishes. Similarly, we write

inf
x∈X

a(x)
b(x)

as short hand for inf
{a(x)
b(x)

: x ∈ X, b(x) 6= 0
}
.

Auxiliary result

Lemma 1.1. Let V be a Hilbert space and A : V → V ∗ a self-adjoint and elliptic operator
with its self-adjoint and elliptic inverse A−1 : V ∗ → V . Then

〈w, A−1w〉 = sup
v∈V

〈w, v〉2

〈Av, v〉
∀w ∈ V ∗ .

Proof. The operator A−1 defines an inner product (u, v)A−1 := 〈u, A−1v〉1/2 on V ∗ with
associated norm ‖ · ‖A−1 . The Cauchy-Schwarz inequality implies

‖w‖A−1 = sup
u∈V ∗

(w, u)A−1

‖u‖A−1

= sup
v∈V

〈w, v〉
〈Av, v〉1/2

,

where we have substituted v := A−1u.
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1.1.2 Projections

Let U and Z be finite-dimensional Hilbert spaces with dimZ < dimU , and let G : Z → U∗

be an injective linear operator. Due to our assumptions kerG = {0} but kerG> 6= {0}. We
are interested in operators P : U → U and their adjoints P> : U∗ → U∗ of the form

P = I −QG (G>QG)−1G> ,

P> = I −G (G>QG)−1G>Q ,
(1.1)

where the operator Q : U∗ → U is SPD and therefore defines inner products 〈v, w〉Q =
〈v, Qw〉 and 〈v, w〉Q−1 = 〈Q−1 v, w〉 on U and U∗, respectively. Note, that the term
(G>QG)−1 is well-defined because G is injective and Q is SPD. By construction we have

G>P = 0 , P QG = 0 , P Q = QP> ,

P>G = 0 , G>QP> = 0 , Q−1 P = P>Q−1 .
(1.2)

The operator P is a projection, i. e., P 2 = P . Also P>, I − P , and I − P> are projections,
which implies

〈P v, (I − P )w〉Q−1 = 0 ∀v, w ∈ U ,
〈P> v, (I − P>)w〉Q = 0 ∀v, w ∈ U∗ ,

(1.3)

i. e., P and I − P are orthogonal in the inner product defined by Q−1, and P> as well as
I − P> are Q-orthogonal. From the identities in (1.2) we obtain

rangeP = kerG> ,

range (I − P ) = (kerG>)⊥Q−1 = range (QG) ,

rangeP> = ker(G>Q) ,

range (I − P>) = ker(G>Q)⊥Q = rangeG .

(1.4)

We note that the above projections remain well-defined if Q is only SPD on rangeG.

1.2 The potential equation

This section introduces the classical potential equation (sometimes also called heat equation
or diffusion equation) together with interface and boundary conditions. Let Ω ⊂ Rd (with
d = 2 or 3) be a bounded Lipschitz domain.

Differential operators Let the following fields be sufficiently smooth. For scalar fields
u : Ω → R we define the gradient,

∇u :=
( ∂u
∂x1

, . . . ,
∂u

∂xd

)>
. (1.5)

For vector fields v = (v1, . . . , vd)> : Ω → Rd, which, with a few exceptions, will be denoted
by boldface symbols, we define the divergence,

div v :=
d∑

k=1

∂vk
∂xk

. (1.6)
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Figure 1.2: Two subdomains Ω1, Ω2 with interface Γ12.

The Laplace operator ∆ is defined by

∆u := div (∇u) =
d∑

k=1

∂2u

∂x2
k

. (1.7)

The potential equation The potential equation reads: Find a sufficiently smooth function
u : Ω → R such that

−div
[
A∇u

]
= f in Ω , (1.8)

for a given source function f : Ω → R and a sufficiently smooth coefficient matrix A : Ω →
Rd×d. If A = α I for some scalar function α we can write

−div
[
α∇u

]
= f in Ω . (1.9)

In case α ≡ 1 we call (1.8) Poisson’s equation. If additionally f ≡ 0, we call (1.8) Laplace’s
equation since it reads

−∆u = 0 in Ω . (1.10)

Boundary conditions We consider Dirichlet and Neumann boundary conditions. Let the
boundary ∂Ω split into two disjoint parts, a Dirichlet boundary ΓD and a Neumann boundary
ΓN . For technical reasons we assume that ΓD is a relatively closed manifold, whereas ΓN is
open. The boundary conditions read

u = gD on ΓD , (1.11)
(A∇u) · n = gN on ΓN , (1.12)

where gD and gN are given, and n is the outward unit normal vector to ∂Ω. The term
(A∇u) · n is called conormal derivative.

Interface conditions So far we have assumed that the coefficient A (or α) is sufficiently
smooth, in particular continuous. Suppose now that Ω is composed of two disjoint subdo-
mains Ω1, Ω2, so that Ω = Ω1∪Ω2. Then we call the manifold Γ12 = ∂Ω1∩∂Ω2 the interface,
see Figure 1.2. If A is smooth on each of the subdomains Ω1, Ω2 but discontinuous across
Γ12, and if f is piecewise smooth too, the potential equation can only be formulated in each
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of the subdomains. On the interface Γ12 we have to introduce interface conditions. The
entire system reads

−div
[
A∇ui

]
= f in Ωi , i = 1, 2 (1.13)

u1 = u2 on Γ12 , (1.14)
(A∇u1) · n1 + (A∇u2) · n2 = 0 on Γ12 , (1.15)

where u1, u2 are the restrictions of the global solution u to Ω1, Ω2 respectively, and n1

and n2 = −n1 are the outward unit normal vectors to ∂Ω1 and ∂Ω2, respectively. The
interface conditions (1.14)–(1.15) state that both the solution and the conormal derivative
are continuous.

Remark 1.2. Note that, here the source function f may be discontinuous across Γ12, later
on we can allow for f ∈ L2(Ω). For less regularity, as in the case of surface sources, the
condition (1.15) needs to be changed accordingly.

Interface conditions for the case of many subdomains are straightforward.

Mixed boundary value problem Summarizing we state the mixed boundary value prob-
lem for the potential equation, here again for the case of two subdomains. For given A, f ,
gD, and gN sufficiently (piecewise) smooth find a function u : Ω → R such that

−div [A∇u] = f in Ωi i = 1, 2 ,
(A∇u) · n1 + (A∇u) · n2 = 0 on Γ12 ,

u|ΓD
= gD on ΓD ,

(A∇u) · n = gN on ΓN .

(1.16)

1.3 Variational methods

In this section we introduce the concept of weak solutions to the potential equation. To this
end, Section 1.3.1 introduces Sobolev spaces, trace operators, and some important results
such as Friedrichs’ and Poincaré’s inequalities. Section 1.3.2 contains the variational for-
mulation of the potential equation, Section 1.3.3 discusses existence and uniqueness thereof,
and finally we state Galerkin’s method in Section 1.3.4

1.3.1 Sobolev spaces

1.3.1.1 Definition

Comprehensive introductions to Sobolev spaces can be found, e. g., in Adams and Fournier [1],
Evans [53], or McLean [134]. In the following let Ω ⊂ Rd be a (possibly unbounded) domain
with Lipschitz boundary ∂Ω, or Ω = Rd. We start with a list of some basic spaces:

C(Ω) space of continuous functions in Ω

Ck(Ω) space of k-times continuously differentiable functions in Ω (C0(Ω) := C(Ω))

C∞(Ω) space of infinitely many times continuously differentiable functions in Ω
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C∞0 (Ω) space of functions from C∞(Ω) with compact support in Ω

D(Ω) functions from C∞0 (Ω) equipped with a special topology

D′(Ω) space of distributions in Ω

Lp(Ω) space of Lebesgue-measurable functions v on the domain Ω where
∫
Ω |v|

p dx
is bounded

L∞(Ω) space of Lebesgue-measurable functions with bounded essential supremum

L1
loc(Ω) space of locally Lebesgue-integrable functions, i. e., absolutely integrable on

every compact subset of Ω

Hk(Ω) closure of C∞(Ω) in the norm ‖u‖Hk(Ω) =
(∑

|α|≤k
∫
Ω |D

αu|2 dx
)1/2

H1
0 (Ω) closure of C∞0 (Ω) in the norm ‖ · ‖H1(Ω)

H−1(Ω) the dual of H1
0 (Ω)

Occasionally, we make use of the spaces Ck(M), C∞(M), and Lp(M) on a manifold M.
We need the following notion of weak derivatives.

Definition 1.3. A function u ∈ L1
loc(Ω) has weak derivative v ∈ L1

loc(Ω) with respect to xi
if and only if ∫

Ω
v ϕ dx = −

∫
Ω
u
∂ϕ

∂xi
dx ∀ϕ ∈ C∞0 (Ω) .

We write ∂u
∂xi

= v. If all weak derivatives of a function u of order one exist, we write ∇u =
( ∂u∂x1

, . . . , ∂u∂xd
)>. This is justified by the fact that if additionally u ∈ C1(Ω) the weak derivative

coincides with the classical derivative. Higher order derivatives are defined recursively.

This definition gives rise to the distributional derivative. A distribution f ∈ D′(Ω) is a
linear functional on the space D(Ω) which is continuous in a special topology. Distributions
are generalized functions in the sense that every locally integrable function f ∈ L1

loc(Ω)
naturally defines a distribution f̃ ∈ D′(Ω) by 〈f̃ , ϕ〉 =

∫
Ω f ϕ dx. In the following we identify

f and f̃ . Finally, Definition 1.3 can be generalized to distributions, resulting in the fact that
all derivatives of distributions (or functions) are well-defined in the distributional sense.

For Lipschitz domains Ω, the space H1(Ω) defined as above contains those functions
in L2(Ω) whose distributional derivatives up to order 1 can be represented by functions in
L2(Ω). Equipped with the inner product

(u, v)H1(Ω) :=
∫

Ω
u v dx+

∫
Ω
∇u · ∇v dx , (1.17)

and with the seminorm | · |H1(Ω) and norm ‖ · ‖H1(Ω) defined by

|u|2H1(Ω) :=
∫

Ω
|∇u|2 dx and ‖u‖2

H1(Ω) := ‖u‖2
L2(Ω) + |u|2H1(Ω) , (1.18)

respectively, H1(Ω) becomes a Hilbert space.



18 CHAPTER 1. PRELIMINARIES

If Ω is bounded and Lipschitz, denote its open complement by Ωext := Rd \Ω. We define
the space H1

loc(Ω
ext) which is more general than H1(Ωext) by

H1
loc(Ω

ext) :=
{
u ∈ D′(Ωext) : u ∈ H1(Ωext ∩BR) ∀R > 0

}
, (1.19)

where BR is the open ball with center in the origin and radius R, cf. [134, Chap. 7, p. 234ff].
Sobolev spacesHs(Ω) with real indices s > 0 can be defined using the Sobolev-Slobodeckii

norm (see also the next paragraph), the Fourier transform, or an interpolation method, cf.
[134, Sect. 3]. As long as Ω is bounded and Lipschitz we have Hs(Ω) ⊂ Ht(Ω) ⊂ L2(Ω) for
1 ≥ s > t > 0, and the inclusions are compact (by Rellich’s theorem, cf. [134, Theorem 3.27]).

Sobolev spaces on manifolds For a bounded manifold Γ̃ (open or closed) recall that
L2(Γ̃) is the space of square-integrable functions with respect to the Lebesgue surface mea-
sure. For a bounded domain Ω with Lipschitz boundary ∂Ω we define the space

H1/2(∂Ω) :=
{
u ∈ L2(∂Ω) : ‖u‖H1/2(∂Ω) <∞

}
, (1.20)

using the Sobolev-Slobodeckii norm

‖u‖H1/2(∂Ω) :=
(
‖u‖2

L2(∂Ω) + |u|2
H1/2(∂Ω)

)1/2
, (1.21)

with the seminorm

|u|H1/2(∂Ω) :=
(∫

∂Ω

∫
∂Ω

|u(x)− u(y)|2

|x− y|d
dsx dsy

)1/2
. (1.22)

For an open hypersurface Γ̃ ⊂ ∂Ω, we define the space

H1/2(Γ̃) :=
{
u ∈ L2(Γ̃) : ∃ ũ ∈ H1/2(∂Ω), ũ|eΓ = u

}
, (1.23)

with the norm

‖u‖
H1/2(eΓ)

:= inf
{
‖ũ‖H1/2(∂Ω) : ũ ∈ H1/2(∂Ω), ũ|eΓ = u

}
. (1.24)

As a matter of fact, the space C∞0 (Γ̃)
‖·‖

H1/2(eΓ) coincides with H1/2(Γ̃). We define

H
1/2
00 (Γ̃) :=

{
u|eΓ : u ∈ H1/2(∂Ω) , u|

∂Ω\eΓ = 0
}
, (1.25)

which is in general a genuine subspace of H1/2(Γ̃) and contains those functions whose ex-
tension by zero from Γ̃ to ∂Ω has still a bounded H1/2(∂Ω)-norm. Alternatively, the space
is characterized as the interpolation of H1

0 (Γ̃) and L2(Γ̃) with interpolation parameter 1/2,
cf. Toselli and Widlund [184, Lemma A.8]. An intrinsic norm for H1/2

00 (Γ̃) is given by

‖u‖
H

1/2
00 (eΓ)

:=
{
‖u‖2

H1/2(eΓ)
+
∫

eΓ
u(x)2

d(x, ∂Γ̃)
dsx

}1/2
, (1.26)

where d(x, ∂Γ̃) denotes the distance from x to the boundary of Γ̃, see, e. g., Lions and

Magenes [127, Theorem 11.7]. Obviously, for a closed hypersurface Γ, the spaces H1/2
00 (Γ)

and H1/2(Γ) coincide. We define

H−1/2(Γ̃) :=
[
H

1/2
00 (Γ̃)

]∗
. (1.27)

Note that in the literature, H−1/2(Γ̃) is sometimes denoted by H̃−1/2
00 (Γ̃), and [H1/2(Γ̃)]∗ is

often denoted by H̃−1/2(Γ̃).
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1.3.1.2 Trace operators

In the following let Ω be a bounded domain with Lipschitz boundary ∂Ω.

The Dirichlet trace

Theorem 1.4 (Trace theorem). Let Ω be a bounded domain with Lipschitz boundary ∂Ω.
Then the Dirichlet trace operator γ0 : C∞(Ω) → C∞(∂Ω) defined by

γ0u := u|∂Ω ,

has a unique continuous extension as a linear operator from H1(Ω) to H1/2(∂Ω), i. e., there
exists a constant CT > 0 with

‖γ0u‖H1/2(∂Ω) ≤ CT ‖u‖2
H1(Ω) ∀u ∈ H1(Ω) .

Proof. See, e. g., McLean [134, Theorem 3.37].

Notation. In the sequel we will often write u|∂Ω instead of γ0u, even if u is only from H1(Ω).

Theorem 1.5 (Inverse trace theorem). Let Ω be a bounded domain with Lipschitz boundary
∂Ω. Then there exists a linear extension operator E : H1/2(∂Ω) → H1(Ω) and a constant
CIT > 0 such that

γ0(Eu) = u , ‖Eu‖2
H1(Ω) ≤ CIT ‖u‖H1/2(∂Ω) ∀u ∈ H1/2(∂Ω) ,

i. e., E is a continuous right inverse of γ0. The same inequality holds if we replace the norms
by the respective seminorms.

Proof. See, e. g., McLean [134, Theorem 3.37].

It is important to note that

|||u|||H1/2(∂Ω) := inf
{
‖ũ‖H1(Ω) : ũ ∈ H1(Ω), ũ|∂Ω = u

}
(1.28)

is an equivalent norm to the H1/2(∂Ω)-norm, and that the characterization

H1
0 (Ω) = C∞0 (Ω)

‖·‖H1(Ω) =
{
u ∈ H1(Ω) : u|∂Ω = 0

}
(1.29)

holds; see, e. g., [134, Theorem 3.40]. In particular, functions from H1
0 (Ω) can be extended

by zero to H1(Rd).

The Neumann trace Let n : ∂Ω → Rd denote the outward unit normal vector to ∂Ω
which is piecewise smooth for Lipschitz domains. For a function u ∈ C∞(Ω), we can define
the normal derivative

γ1u :=
∂u

∂n
:= ∇u · n , (1.30)

also called Neumann trace of u. This definition can be directly extended to H2-functions,
but not to arbitrary H1-functions. Solutions to the potential equation, however, do have a
well-defined Neumann trace. For u ∈ D′(Ω) we define the distributional Laplacian ∆u by

〈∆u, v〉 := 〈u, ∆v〉 ∀v ∈ C∞0 (Ω) .
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Figure 1.3: Interior domain Ω, exterior domain Ωext and the two outward unit normal vector
n and next to the boundary Γ.

Theorem 1.6. Let f ∈ (H1(Ω))∗ and let u ∈ H1(Ω) be a solution of

−∆u = f ,

as an equation in (H1(Ω))∗. Then, there exists a unique functional g ∈ H−1/2(∂Ω) such that

(∇u, ∇v)L2(Ω) = 〈f, v〉Ω + 〈g, γ0v〉∂Ω ∀v ∈ H1(Ω) ,

and
‖g‖H−1/2(∂Ω) ≤ C

(
‖u‖H1(Ω) + ‖f‖(H1(Ω))∗

)
.

Proof. See, e. g., [134, Lemma 4.3].

It is important to note that, in general, the functional g, which is the generalization of
the normal derivative, depends not alone on u, but also on f ∈ (H1(Ω))∗. If f is clear from
the context, we write γ1u := g.

If f ∈ L2(Ω), i. e., ∆u ∈ L2(Ω), we have

(∇u, ∇v)L2(Ω) = (−∆u, v)L2(Ω) + 〈g, γ0v〉∂Ω ∀v ∈ H1(Ω) .

This is Green’s first identity which is known to hold for u, v ∈ C∞(Ω) with g = γ1u. The
discussion shows that g depends only on u, and that the Neumann trace operator γ1 is
continuous as a linear operator

γ1 : H1
∆(Ω) → H−1/2(∂Ω) ,

where
H1

∆(Ω) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω)} .

An alternative argument is that if f ∈ L2(Ω), the gradient ∇u is in H(div , Ω) and therefore
its normal trace ∇u · n is well-defined in H−1/2(∂Ω); see, e. g., Girault and Raviart [69],
Monk [136].

The conormal derivative (A∇u)·n can be generalized in a similar way, using the equation
−div (A∇u) = f , see [134, Lemma 4.3].
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Exterior traces Let Ω be a bounded Lipschitz domain with Lipschitz boundary Γ and
outward unit normal vector n, and set Ωext := Rd \ Ω. Let furthermore C∞0 (Ω) denote the
space of restrictions of functions from C∞0 (Rd) to Ω, i. e., the functions can have non-trivial
values at ∂Ω but they need to have compact support in Rd. Let next := −n denote the unit
normal vector on Γ pointing into Ω, i. e., the outside of Ωext, cf. Figure 1.3. Similarly to the
interior case, we define the trace operators

γext
0 : C∞0 (Ωext) → C∞(Γ) : u 7→ u|Γ , (1.31)

γext
1 : C∞0 (Ωext) → L2(Γ) : u 7→ ∂u

∂next
:= ∇u|Γ · next . (1.32)

The space L2(Γ) is justified here, because the gradient ∇u is C∞(Γ) ⊂ L2(Γ) and next is
L∞(Γ). Note, that the alternative definition γext

1 u = − ∂u
∂next is used often in the literature.

The exterior Dirichlet trace operator can be continuously be extended to

γext
0 : H1(Ωext) → H1/2(Γ) . (1.33)

As in the interior case, γext
0 is surjective and there exists a continuous right inverse. This

is intuitively clear, because we can restrict the function u to a suitable subset of Ωext and
apply the interior trace theorem. This way, also functions from H1

loc(Ω
ext) have a well-defined

Dirichlet trace. For details see, e. g., Sauter and Schwab [164, Sect. 2.6] and the references
therein.

Applying McLean [134, Lemma 4.1] we find that for each function u ∈ H1(Ωext) satis-
fying the equation

−∆u = 0 in Ωext ,

to be read in the distributional sense, there exists a unique functional g ∈ H−1/2(Γ) with
satisfies

(∇u, ∇v)L2(Ωext) = 〈g, γext
0 v〉Γ ∀v ∈ H1(Ωext) .

However, in general solutions to exterior boundary value problems are not in H1(Ωext) but
only in H1

loc(Ω
ext). In order to make use of Green’s identity, we need to prescribe a radiation

condition, i. e., some assumption about the behavior of the solution at infinity. We will return
to this issue in Section 1.4.

More notes on traces With the Dirichlet trace being defined on the whole of Γ, it is also
well-defined on any part Γ̃ of the boundary Γ, as a function in H1/2(Γ̃). As stated before, the
restriction of the Neumann trace from H−1/2(Γ) is well-defined as a functional in H−1/2(Γ̃),
i. e., with test functions from H

1/2
00 (Γ̃).

Notation. We write γint
0 , γint

1 if we want to emphasize the use of the interior trace operators
γ0, γ1. We will often write u|Γ as a short hand for γint

0 u or γext
0 u when the context allows

to do so, and we write u|eΓ for the restriction of a function u from H1 to the hypersurface

Γ̃ ⊂ ∂Ω.

1.3.1.3 Friedrichs and Poincaré type inequalities

Friedrichs and Poincaré type inequalities are powerful tools for the analysis of variational
problems, finite element approximations, and domain decomposition methods. They can be
derived from the following general result.
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Theorem 1.7. Let Ω be a bounded and connected domain with Lipschitz boundary ∂Ω. Let
ψ : H1(Ω) → R a bounded linear functional which reproduces the constants, i. e.,

z ∈ P0(Ω) , ψ(z) = 0 =⇒ z = 0 .

Then

|||u|||H1(Ω) :=
{
|u|2H1(Ω) + ψ(u)2

}1/2

is a norm on H1(Ω) equivalent to ‖ · ‖H1(Ω). Furthermore there exists a constant Cψ > 0
depending only on Ω and on ψ such that

‖u‖L2(Ω) ≤ Cψ |u|H1(Ω) ∀u ∈ H1(Ω) , ψ(u) = 0 .

Proof. The proof is performed by reductio ad absurdum using an embedding argument due
to Rellich; see e. g., Brenner and Scott [26, Sect. 5.3], Nečas [137], and also Toselli
and Widlund [184, Theorem A.12].

Theorem 1.8 (Friedrichs’ inequality). Let Ω be a bounded Lipschitz domain and let ΓD be
a connected part of ∂Ω with positive surface measure. Then there exists a constant CF > 0
depending only on Ω and ΓD such that for all u ∈ H1(Ω) with u|ΓD

= 0 we have

‖u‖L2(Ω) ≤ CF |u|H1(Ω) .

Proof. Follows from Theorem 1.7 by setting ψ(u) =
∫
ΓD

u ds, cf. Toselli and Wid-
lund [184, Lemma A.14].

Theorem 1.9 (Poincaré’s inequality). Let Ω be a bounded Lipschitz domain. Then there
exists a constant CP > 0 depending only on Ω such that for all u ∈ H1(Ω) with

∫
Ω u dx = 0,

we have
‖u‖L2(Ω) ≤ CP |u|H1(Ω) .

Proof. Follows from Theorem 1.7, see Brenner and Scott [26, Sect. 5.3] or Toselli and
Widlund [184, Lemma A.13].

Note that since constants CF and CP stem from a reductio ad absurdum, we only know
about their existence, but nothing on their magnitude. For a certain class of simply shaped
domains, such as simplices, rectangles, hexagons, star-shaped domains, etc. some direct
proofs with explicit constants exist; see, e. g., Michlin [135], Zheng and Qi [194]. Never-
theless, the dependence of CF , CP on the size (i. e., the diameter) of Ω can be made explicit
using a simple scaling argument.

Corollary 1.10. There exist a constant C̃F > 0 depending on Ω and ΓD but not on the size
of Ω, and a constant C̃P > 0 depending only on the shape of Ω such that

‖u‖L2(Ω) ≤ C̃F (diam Ω) |u|H1(Ω) ∀u ∈ H1(Ω) , u|ΓD
= 0 , (1.34)

‖u‖L2(Ω) ≤ C̃P (diam Ω) |u|H1(Ω) + |Ω|−1/2
∣∣∣ ∫

Ω
u dx

∣∣∣ ∀u ∈ H1(Ω) . (1.35)
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Proof. The proof is easily worked out by an argument called dilation. We represent the
domain Ω as a transformed domain Ω̂ of unit diameter by a simple scaling of the coordinates.
The L2-norm and the H1-seminorm scale differently because of the derivatives in |·|H1(Ω). For
a detailed presentation see Toselli and Widlund [184, Sect. 3.4]. To show (1.35) we apply
Theorem 1.9 (with the dilation argument) to the function u− u where u = |Ω|−1

∫
Ω u dx:

‖u‖L2(Ω) ≤ ‖u− u‖L2(Ω) + ‖u‖L2(Ω) ≤ C̃P |u|H1(Ω) + |Ω|1/2 |u| .

Remark 1.11. In particular for Poincaré’s inequality it is essential that Ω is connected. The
inequality does in general not hold for sets with more than one component.

Corollary 1.12. Let Ω be a bounded Lipschitz domain. Then the following (squared) norms
are equivalent,

|u|2H1(Ω) +
1

(diam Ω)2
‖u‖2

L2(Ω)

|u|2H1(Ω) +
1

diam Ω
‖u‖2

L2(∂Ω) ,

|u|2H1(Ω) +
1

|∂Ω|diam Ω

(∫
∂Ω
u ds

)2
,

and the equivalence constants depend only on the shape of Ω.

Proof. Follows from a variant of Theorem 1.7, see Toselli and Widlund [184, Lemma A.17],
and a dilation argument.

Lemma 1.13 (Bramble-Hilbert). Let Ω be a bounded and connected domain with Lipschitz
boundary ∂Ω. Let ψ : H1(Ω) → R be a bounded linear functional which satisfies

|ψ(u)| ≤ Cψ ‖u‖H1(Ω) ∀u ∈ H1(Ω) ,

for some Cψ > 0, and vanishes on the constants, i. e.,

ψ(z) = 0 ∀z ∈ P0(Ω) .

Then we also have
|ψ(u)| ≤ Cψ CP |u|H1(Ω) ∀u ∈ H1(Ω) ,

where CP is the constant from Theorem 1.9.

Proof. For the proof of the original more general result on functions in Hk(Ω) for domains
that satisfy a strong cone condition see Bramble and Hilbert [17], for a proof on domains
which are star-shaped with respect to a ball see Brenner and Scott [26, Lemma 4.3.8].
Here we give a proof (for the case k = 1) using Poincaré’s inequality: Due to the linearity
and boundedness of ψ we have

|ψ(u)| = |ψ(u+ z)| ≤ Cψ ‖u+ z‖H1(Ω) ∀z ∈ P0(Ω) ,

i. e., for all constant z. Choosing z := 1
|Ω|
∫
Ω u dx we have

∫
Ω u + z dx = 0, and Poincaré’s

inequality yields ‖u+ z‖H1(Ω) ≤ CP |u+ z|H1(Ω) ≤ |u|H1(Ω) .

Remark 1.14. The dependence of the factor Cψ CP in Lemma 1.13 on the diameter of Ω
can be made explicit by dilation.
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1.3.2 Variational formulation

We start with the potential equation from Section 1.2 in classical form for the case of two
subdomains: Find u ∈ C(Ω) with u ∈ C2(Ωi) ∩ C1(Ωi ∪ (ΓN ∩ Ωi) ∪ Γ12) for i = 1, 2, such
that

−div [A∇u] = f in Ωi i = 1, 2 ,
(A∇u) · n1 + (A∇u) · n2 = 0 on Γ12 ,

u|ΓD
= gD on ΓD ,

(A∇u) · n = gN on ΓN .

(1.36)

We call solutions of (1.36) classical solutions. Multiplying the first equation by a trial
function v, integrating subdomain-wise, using integration by parts, the interface conditions,
and the boundary conditions, we obtain the variational formulation: Find u ∈ H1(Ω) with
u|ΓD

= gD such that

a(u, v) = 〈F, v〉 ∀v ∈ H1
D(Ω) , (1.37)

where
H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD

= 0} ,

with the bilinear form a(·, ·) : H1(Ω)×H1(Ω) → R defined by

a(u, v) :=
∫

Ω
(A∇u) · ∇v dx ,

and the linear form F : H1(Ω) → R defined by

〈F, v〉 :=
∫

Ω
f v dx+

∫
ΓN

gN v ds .

We call solutions u of (1.37) weak solutions to (1.36). If a weak solution and the data A, f ,
gD, gN are sufficiently smooth, the weak solution is also a classical solution. Note that the
case of multiple interfaces is straightforward.

In the following, we assume with out loss of generality that gD = 0. Indeed, if gD 6= 0 we
can homogenize (1.37) by choosing an arbitrary extension g̃ ∈ H1(Ω) with g̃|ΓD

= gD. Such
extensions must exist due to Theorem 1.5. If we solve

a(u0, v) = 〈F, v〉 − a(g̃, v)︸ ︷︷ ︸
=:〈 eF ,v〉

∀v ∈ H1
D(Ω) , (1.38)

for u0 ∈ H1
D(Ω), the solution u of (1.37) is given by u = g̃ + u0. Obviously, F̃ ∈ (H1

D(Ω))∗.

Lemma 1.15. Let the Dirichlet boundary ΓD be of positive surface measure, A ∈ (L∞(Ω))d×d,
f ∈ L2(Ω), gD ∈ H1/2(ΓD), and gN ∈ L2(ΓN ). Furthermore, assume that there exist uniform
bounds of the coefficient matrix, i. e., there exist constants α, α > 0 with

α |p|2 ≤ (A(x)p) · p ≤ α |p|2 for all p ∈ Rd and almost all x ∈ Ω .
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Then the bilinear form is elliptic ( coercive) and bounded on H1
D(Ω), i. e., there exist con-

stants ca, ca > 0 with

a(v, v) ≥ ca ‖v‖2
H1(Ω) ∀v ∈ H1

D(Ω) ,

a(u, v) ≤ ca ‖u‖H1(Ω) ‖v‖H1(Ω) ∀u, v ∈ H1
D(Ω) ,

and the linear form is bounded, i. e., there exists a constant cF > 0 with

〈F, v〉 ≤ cF ‖v‖H1(Ω) ∀v ∈ H1
D(Ω) .

Proof. The ellipticity of a(·, ·) follows from our assumptions on A and from Friedrichs’
inequality. The boundedness of a(·, ·) and 〈F, ·〉 follow basically using the Cauchy-Schwarz
inequality.

1.3.3 Existence of unique solutions to abstract variational problems

Let V be a Hilbert space and let a(·, ·) : V × V → R be an elliptic and bounded bilinear
form, and F ∈ V ∗. For the time being, V , a(·, ·), and F can be arbitrary, but we keep our
model problem in mind. Consider the abstract variational problem: Find u ∈ V such that

a(u, v) = 〈F, v〉 ∀v ∈ V . (1.39)

Theorem 1.16 (Lax-Milgram). Let V be a Hilbert space. Let a(·, ·) : V × V → R be
an elliptic and bounded bilinear form, and let F ∈ V ∗ be a bounded linear form. Then the
variational formulation (1.39) has a unique solution u ∈ V which fulfills the a priori estimate

1
ca
‖F‖V ∗ ≤ ‖u‖V ≤ 1

ca
‖F‖V ∗ ,

where ca and ca are the constants of ellipticity and boundedness of a(·, ·), respectively.

Proof. Follows directly from the variational problem, the ellipticity and boundedness, and
the definition of the dual norm, see, e. g., Brenner and Scott [26, Sect. 2.7].

Lemma 1.15 shows that the assumptions of the Lax-Milgram theorem are fulfilled. Hence,
under suitable assumptions the potential equation (1.36) has a unique weak solution.

Introducing the operator

A : V → V ∗ : u 7→ a(u, ·) , (1.40)

we can rewrite (1.39) as operator equation: Find u ∈ V such that

Au = F in V ∗ . (1.41)

The operator A is linear and elliptic. The statement of the Lax-Milgram theorem can be
generalized to nonlinear strongly monotone and Lipschitz continuous operators; for a proof
see Zeidler [193].
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Theorem 1.17 (Zaranthonello). Let V be a Hilbert space. Let the operator A : V → V ∗ be
strongly monotone, i. e., there exists cA > 0 with

〈A(u)−A(v), u− v〉 ≥ cA ‖u− v‖2
V ∀u, v ∈ V ,

and Lipschitz continuous, i. e., there exists cA > 0 with

‖A(u)−A(v)‖V ∗ ≤ cA ‖u− v‖V ∀u, v ∈ V .

Then, the (nonlinear) operator equation

A(u) = F in V ∗ (1.42)

has a unique solution u ∈ V .

1.3.4 Galerkin’s method

Let V be a Hilbert space with a closed subspace V0 ⊂ V , and let g ∈ V . We consider the
abstract variational problem: Find u ∈ Vg := g + V0 such that

a(u, v) = 〈F, v〉 ∀v ∈ V0 , (1.43)

with the bounded and V0-elliptic bilinear form a(·, ·) : V × V → R and F ∈ V ∗
0 . Galerkin’s

method is as follows. Choose a finite dimensional subspace V h
0 ⊂ V0 and consider the

projected problem: Find uh ∈ V h
g := g + V h such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ V h
0 . (1.44)

The following a-priori estimate (see, e. g., [26, Sect. 2.8]) states that the discretization error
is controlled in terms of the approximation error of the space V h.

Lemma 1.18 (Céa). Let u ∈ Vg be the solution of (1.43) and let uh ∈ V h
g be the solution of

(1.44). Then we have

‖u− uh‖V ≤ ca
ca

inf
vh∈V h

g

‖u− vh‖V ,

where ca and ca are the constants of V0-ellipticity and boundedness of a(·, ·), respectively.

In the case that the bilinear form is symmetric and F ∈ V ∗, the solutions u of (1.39) and
uh of (1.44) are characterized via the Ritz energy functional,

J(v) := 1
2a(v, v)− 〈F, v〉 , (1.45)

and the following result (cf., e. g., Brenner and Scott [26, Sect. 2.5]).

Lemma 1.19. Let V be a Hilbert space, let a(·, ·) : V × V → R be symmetric, bounded,
and V0-elliptic, and assume F ∈ V ∗. Then the solutions u and uh of (1.39) and (1.44),
respectively, fulfill

u = argmin
v∈Vg

J(v) , J(u) ≤ J(uh) ,

uh = argmin
vh∈V h

g

J(vh) , a(uh, uh) ≤ a(u, u) .
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1.4 Boundary integral equations

In this section we embrace the concept of boundary integral equations and Steklov-Poincaré
operators. Using fundamental solutions, the partial differential equation on a domain can be
reformulated in terms of integral equations on the boundary. For a comprehensive discussion
see, e. g., McLean [134], Sauter and Schwab [164], or Steinbach [175].

1.4.1 Boundary integral operators and the Calderón system

Let Ω ⊂ Rd (d = 2 or 3) be a bounded domain with a simply connected Lipschitz boundary
Γ := ∂Ω. In the following we consider the interior Ωint := Ω and the exterior Ωext := Rd \Ω
of Γ. Let n and next denote the outward unit normal vectors on Γ pointing into Ωext and
Ωint, respectively, see Figure 1.3 on page 20. We consider the interior and exterior Laplace
problem

−∆u = 0 in Ωint , (1.46)
−∆u = 0 in Ωext , (1.47)

respectively. A fundamental solution to (1.46) and (1.47) is given by

U∗(x, y) :=


− 1

2π
log |x− y| for d = 2,

1
4π

1
|x− y|

for d = 3 ,
(1.48)

see, e. g., Evans [53], McLean [134, Theorem 8.1]. In fact, in two dimensions, we could
use 1/(2π) log(r/|x − y|) for any r > 0. Note that for other classes of domains, such as the
half space Rd−1×R+ or the domain Rd \ {0}, other fundamental solutions must be used, cf.
Costabel and Dauge [40].

As mentioned in Section 1.3.1.2, exterior problems require special care. Solutions to
(1.47) are in general only in the space H1

loc(Ω
ext) and in order to make use of Green’s

identity we need a radiation condition. To this end we follow an approach by Costabel
and Dauge [40], see also McLean [134, pp. 234ff].

Lemma 1.20. Let u ∈ D′(Ωext) fulfill equation (1.47) in the distributional sense, and let
U∗(x, y) be a fundamental solution for the Laplace operator on Ωext. Then the distribution u
is in C∞(Ωext), and there exists a unique function Mu ∈ C∞(Rd) such that for each bounded
Lipschitz domain Ω1 with Rd \ Ωext is compactly contained in Ω1,

(Mu)(x) =
∫
∂Ω1

U∗(x, y) γext
1 u(y) dsy −

∫
∂Ω1

γext
1,yU

∗(x, y)u(y) dsy ∀x ∈ Ω1 .

Proof. See McLean [134, Theorem 6.4 and Lemma.7.11].

In particular, the lemma ensures that solutions u of (1.47) with γext
0 u ∈ H1/2(Γ) are in

H1
loc(Ω

ext). Furthermore, −∆Mu = 0. The radiation condition we will use throughout reads

Mu = 0 , (1.49)

and it is characterized by the following lemma.
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Lemma 1.21. Let u ∈ D′(Ωext) fulfill equation (1.47) in the distributional sense. Then the
following statements hold.

(i) If d = 3, Mu = 0 if and only if

u(x) = O(|x|−1) as |x| → ∞ .

(ii) If d = 2, Mu = 0 if and only if there exists a constant b such that

u(x) = b log |x|+O(|x|−1) as |x| → ∞ .

(iii) If d = 2, then u(x) = O(1) as |x| → ∞ if and only if there exists a constant b such
that

u(x) = b+O(|x|−1) as |x| → ∞ .

In this case Mu = b.

Proof. See McLean [134, Theorem 8.9].

If the radiation condition (1.49) holds, each H1
loc(Ω

ext) solution of (1.47) exhibits a well-
defined Neumann trace γext

1 u ∈ H−1/2(Γ), cf. McLean [134, Theorem 7.15], which fulfills
the identity

〈γext
1 u, ϕ〉Γ =

∫
Ωext

∇u · ∇ϕdx ∀ϕ ∈ C∞0 (Ωext) . (1.50)

In order to come up with integral equations that characterize the solutions of the interior
and exterior Laplace problem, we define the single layer potential operator V : H−1/2(Γ) →
H1/2(Γ), the double layer potential operator K : H1/2(Γ) → H1/2(Γ), and the hypersingular
integral operator D : H1/2(Γ) → H−1/2(Γ) by

(V t)(x) :=
∫

Γ
U∗(x, y) t(y) dsy,

(K u)(x) :=
∫

Γ

∂

∂ny
U∗(x, y)u(y) dsy,

(Du)(x) := − ∂

∂nx

∫
Γ

∂

∂ny
U∗(x, y)u(y) dsy,

(1.51)

where x ∈ Γ. The adjoint double layer potential K> : H−1/2(Γ) → H−1/2(Γ) is given by

(K>t)(x) =
∫

Γ

∂

∂nx
U∗(x, y) t(y) dsy . (1.52)

The integral representations for V , K, and D in (1.51) are to be understood as weakly
singular, Cauchy singular, and hypersingular surface integrals, respectively; for details see,
e. g., Steinbach [175]. Note also, that H1/2(Γ) and H−1/2(Γ) are dual to each other as long
as Γ is a closed hypersurface. The following assumption is needed for the ellipticity of the
single layer potential operator V in two dimensions.
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Assumption 1.22. Throughout this work, we assume that

diam Ω < 1 if d = 2 ,

which can always be obtained by a simple scaling of the coordinates.

In two dimension, instead of scaling one could also use an alternative fundamental solution
U∗(x, y) = 1/(2π) log(r/|x− y|) with a suitably chosen parameter r > 0, cf. McLean [134,
pp. 264f].

The results summarized in the next Lemma can essentially be found in Steinbach [175],
where the reader can also find the corresponding references to the original papers.

Lemma 1.23. The boundary integral operators defined in (1.51) are linear and bounded
operators with the following properties:

(i) Every weak solution of the interior Laplace problem (1.46) fulfills the Calderón system(
γint

0 u
γint

1 u

)
=
(

1
2I −K V
D 1

2I +K>

)(
γint

0 u
γint

1 u

)
. (1.53)

For weak solutions to the exterior Laplace problem (1.47) which fulfill the radiation
condition (1.49), the same equations hold, where we have to take the exterior traces
and flip the signs in front of K and K>.

(ii) The single layer potential operator V is self-adjoint and elliptic, i. e., there exists a
constant cV > 0 such that

〈V w, w〉 ≥ cV ‖w‖2
H−1/2(Γ)

∀w ∈ H−1/2(Γ) .

Consequently, the inverse V −1 : H1/2(Γ) → H−1/2(Γ) is self-adjoint, elliptic, and
bounded, and ‖v‖V −1 := 〈V −1v, v〉1/2 defines a norm on H1/2(Γ) which is equivalent
to ‖ · ‖H1/2(Γ).

(iii) The single layer potential operator V is an isomorphism between the subspaces H−1/2
∗ (Γ)

and H1/2
∗ (Γ), defined by

H
−1/2
∗ (Γ) :=

{
w ∈ H−1/2(Γ) : 〈w, 1Γ〉 = 0

}
,

H
1/2
∗ (Γ) :=

{
v ∈ H1/2(Γ) : 〈V −1v, 1Γ〉 = 0

}
.

(1.54)

(iv) The hypersingular integral operator D is self-adjoint and there exists an ellipticity
constant cD > 0 such that

〈Dv, v〉 ≥ cD ‖v‖2
H1/2(Γ)

∀v ∈ H1/2
∗ (Γ) ,

〈Dv, v〉 ≥ cD |v|2H1/2(Γ)
∀v ∈ H1/2(Γ) .

Moreover, we have kerD = span{1Γ}.
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(v) The double layer potential operator K admits the contraction properties

(1− cK)‖v‖V −1 ≤ ‖(1
2I ±K)v‖V −1 ≤ cK ‖v‖V −1 ∀v ∈ H1/2

∗ (Γ) ,
(1− cK)‖v‖V −1 ≤ ‖(1

2I −K)v‖V −1 ≤ ‖v‖V −1 ∀v ∈ H1/2(Γ) ,
0 ≤ ‖(1

2I +K)v‖V −1 ≤ cK ‖v‖V −1 ∀v ∈ H1/2(Γ) ,

where

cK :=
1
2

+

√
1
4
− c0 < 1 , c0 := inf

v∈H1/2
∗ (Γ)

〈Dv, v〉
〈V −1 v, v〉

∈
(

0,
1
4

)
.

Additionally,

ker(1
2I +K) = span{1Γ} , ker(1

2I −K) = {0Γ} , (1
2I −K)1Γ = 1Γ .

Remark 1.24. The constants c0 and cK do not depend on the size of the domain Ωint

but only on its shape. This can be shown by introducing a simple scaling of the domain
and transforming the energy forms induced by D and V . In two dimensions the logarithm
occurring in the fundamental solution yields an additive term in the V -form; nevertheless this
term vanishes for functions in the space H1/2

∗ (Γ). We note that an important contribution
to the contraction properties is the article by Steinbach and Wendland [177], see also
Costabel [39] for a historical remark.

The two boundary integral equations appearing in the Calderón system (1.53) can be
used to solve Dirichlet, Neumann, and mixed boundary value problems in the sense that
we determine the complete Cauchy data (γint

0 u, γint
1 u). We do not go into details here,

because we will mainly use Steklov-Poincaré operators in this work, which are introduced in
Section 1.4.3. For the corresponding theory and other approaches see, e. g., Steinbach [175,
Sect. 7].

1.4.2 Representation formulae

With the help of the Cauchy data (γint
0 u, γint

1 u), the actual solution u ∈ H1(Ωint) of (1.46)
is given by the representation formula

u(x) =
∫

Γ
U∗(x, y) γint

1 u(y) dsy −
∫

Γ
γint

1 U∗(x, y) γint
0 u(y) dsy for x ∈ Ωint . (1.55)

For the exterior problem (1.47), (1.49) we have

u(x) =
∫

Γ
U∗(x, y) γext

1 u(y) dsy −
∫

Γ
γext

1 U∗(x, y) γext
0 u(y) dsy for x ∈ Ωext . (1.56)

For details see, e. g., McLean [134, Theorem 7.5, Theorem 7.12].

1.4.3 Steklov-Poincaré operators

The properties of the boundary integral operators justify the following definition of the
interior Steklov-Poincaré operator Sint : H1/2(Γ) → H−1/2(Γ) and the exterior Steklov-
Poincaré operator Sext : H1/2(Γ) → H−1/2(Γ),

Sint := V −1 (1
2I +K) , Sext := V −1 (1

2I −K) , (1.57)
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which are linear and bounded. We find that for every solution u of (1.46) we have γint
1 u =

Sintγint
0 u, and for every solution u of (1.47) we have γext

1 u = Sextγext
0 u. In other words,

Sint (resp. Sext) is the Dirichlet to Neumann map for the interior (resp. exterior) Laplace
equation. Furthermore, the Calderón system (1.53) yields the symmetric representations

Sint = D + (1
2I +K>)V −1(1

2I +K) ,

Sext = D + (1
2I −K>)V −1(1

2I −K) ,
(1.58)

which imply that Sint and Sext are self-adjoint operators. We define the interior energy form

aΩint(u, v) :=
∫

Ωint

∇u · ∇v dx for u, v ∈ H1(Ωint) .

Due to Theorem 1.6,

〈Sintv, w〉Γ = aΩint(u, w) ∀w ∈ H1(Ωint) , (1.59)

where u ∈ H1(Ωint) solves −∆u = 0 (in the distributional sense) and u|Γ = v. Using the
minimizing property Lemma 1.19, we obtain that

〈Sint v, v〉 = min
u∈H1(Ωint)

u|Γ=v

aΩint(u, u) , (1.60)

see also Steinbach [175]. The function ũ where the minimum is attained is called harmonic
extension of u from Γ to Ωint.

For the exterior problem, we can show a similar minimizing property. We define the
linear functional

|||u|||H1
∗(Ωext) :=

{∫
Ωext

|∇u(x)|2 dx+
∫

Ωext

|u(x)|2 dx

ρ(x)

}1/2
for u ∈ H1

loc(Ω
ext) ,

where ρ(x) = |x|2 if d = 3 and ρ(x) = |x|2 (log |x|)2 if d = 2, and we assume that 0 6∈ Ωext.
The subspace

H1
∗ (Ωext) := {v ∈ H1

∗ (Ωext) : |||u|||H1
loc(Ω

ext) <∞}

equipped with ||| · |||H1
∗(Ωext) as norm is a Hilbert space because it is equivalent to a weighted

Sobolev space. Furthermore, one can show that C∞0 (Ωext) is dense in H1
∗ (Ωext). Obviously,

the solution u to our exterior problem subject to the radiation condition is in H1
∗ (Ωext). By

a density argument, one can even show that | · |H1(Ωext) is a norm equivalent to ||| · |||H1
∗(Ωext)

on H1
∗ (Ωext), Consequently, we have existence and uniqueness of the variational problem to

find u ∈ H1
∗ (Ωext) with some prescribed Dirichlet data such that

aΩext(u, w) = 0 ∀w ∈ H1
∗ (Ωext) , w|Γ = 0 .

where
aΩext(u, w) :=

∫
Ωext

∇u · ∇w dx for u, w ∈ H1
∗ (Ωext)
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denotes the exterior energy form. Finally, an application of Lemma 1.19 yields

〈Sext v, v〉 = min
u∈H1

∗(Ωext)

u|Γ=v

aΩext(u, u) . (1.61)

For details, see Lung-An and Ying [128] and Sauter and Schwab [164]. Summarizing,
if u solves the interior Laplace equation or the exterior one with the radiation condition,
then

〈Sintγint
0 u, γint

0 u〉 = aΩint(u, u) ,
〈Sextγext

0 u, γext
0 u〉 = aΩext(u, u) ,

(1.62)

respectively. Moreover, (1.57) implies

〈V −1v, v〉 = 〈Sint v, v〉+ 〈Sext v, v〉 ∀v ∈ H1/2(Γ) , (1.63)

and if u solves (separately) the interior and the exterior Laplace equation, we have

〈V −1u, u〉 = aΩint(u, u) + aΩext(u, u) . (1.64)

One can quite easily show that the semi-norm induced by Sint is equivalent to the V −1-
norm on the subspace H

1/2
∗ (Γ), and that there are similar estimates for the Sext norm.

The following lemma which summarizes results by Steinbach and Wendland [177] and
Costabel [39] gives such estimates with more or less explicit constants which depend only
on the shape of Γ.

Lemma 1.25. (i) The following estimates hold for the Steklov-Poincaré operators:

(1− cK) 〈V −1v, v〉 ≤ 〈Sint/ext v, v〉 ≤ cK 〈V −1v, v〉 ∀v ∈ H1/2
∗ (Γ) ,

(1− cK) 〈V −1v, v〉 ≤ 〈Sext v, v〉 ≤ 〈V −1v, v〉 ∀v ∈ H1/2(Γ) ,
0 ≤ 〈Sint v, v〉 ≤ cK 〈V −1v, v〉 ∀v ∈ H1/2(Γ) ,

with the contraction constant cK > 0 from Lemma 1.23(v). In particular, Sext is H1/2(Γ)-
elliptic and Sint is H1/2

∗ (Γ)-elliptic with kerSint = span{1Γ}.
(ii) Poincaré’s fundamental theorem holds (cf. Costabel [39]):

〈Sext v, v〉 ≤ cK
1− cK

〈Sint v, v〉 ∀v ∈ H1/2
∗ (Γ) ,

〈Sint v, v〉 ≤ cK
1− cK

〈Sext v, v〉 ∀v ∈ H1/2(Γ) ,

where cK/(1− cK) > 1.
(iii) For v ∈ H1/2(Γ), the decomposition v = ṽ + v01Γ with v0 ∈ R and ṽ ∈ H

1/2
∗ (Γ) is

unique and orthogonal in the inner products induced by V −1 and Sext,

〈V −1ṽ, v01Γ〉 = 0 , 〈Sext ṽ, v01Γ〉 = 0 .

(iv) For all v ∈ H1/2(Γ), we have

1− cK
cK

〈Sext v, v〉 ≤ 〈Sint v, v〉+
〈V −1v, 1Γ〉2

〈V −11Γ, 1Γ〉
≤ cK

1− cK
〈Sext v, v〉 .
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Proof. The proof follows mainly from Lemma 1.23. We start with (iii): For v ∈ H1/2(Γ),
the relations ṽ = v − v01Γ and 〈V −1(v − v01Γ), 1Γ〉 = 0 imply

v0 =
〈V −1v, 1Γ〉
〈V −11Γ, 1Γ〉

, (1.65)

which proves the uniqueness of the decomposition. Using that (1
2I−K)1Γ = 1Γ (Lemma 1.23(v))

we obtain

Sext 1Γ = V −1(1
2I −K)1Γ = V −11Γ , (1.66)

and thus
〈Sext v01Γ, ṽ〉 = 〈V −1v01Γ, ṽ〉 = 0 ,

which proves the orthogonality in (iii).
Part (i): For v ∈ H1/2

∗ (Γ), the Cauchy-Schwarz inequality and the contraction properties
stated in Lemma 1.23(v) yield

〈Sint/ext v, v〉 = 〈V −1(1
2I ±K)v, v〉 ≤ ‖(1

2I ±K)v‖V −1‖v‖2
V −1 ≤ cK‖v‖2

V −1 .

On the other hand, for all v ∈ H1/2
∗ (Γ) we have

〈Sint/ext v, v〉 = 〈V −1(1
2I ±K)v, v〉 = 〈V −1v, v〉 − 〈V −1(1

2I ∓K)v, v〉
≥ 〈V −1v, v〉 − cK‖v‖2

V −1 ≥ (1− cK)〈V −1v, v〉 .

The inequalities on the full space H1/2(Γ) can be derived using the decomposition (iii) and
the mapping properties of (1

2I ±K), see Lemma 1.23(v).
Statement (ii) is an immediate consequence of (i). Since cK ∈ (1

2 , 1) one easily proves
cK/(1− cK) > 1.

Finally, with the decomposition from (iii) and formula (1.66) we obtain

〈Sext v, v〉 = 〈Sext ṽ, ṽ〉+ 〈Sext v01Γ, v01Γ〉 = 〈Sext ṽ, ṽ〉+ 〈V −1 v01Γ, v01Γ〉 .

Using formula (1.65), Poincaré’s fundamental theorem (ii), and ck/(1 − cK) > 1, we can
easily show the desired estimates (iv).

To summarize, we have

〈Sint v, v〉 ' |v|2
H1/2(Γ)

, 〈Sext v, v〉 ' ‖v‖2
H1/2(Γ)

∀v ∈ H1/2(Γ) ,

where in two dimensions we have to fix diam Γ < 1.

1.4.4 Newton potentials and Dirichlet-to-Neumann maps

Let Ω be a bounded domain with Lipschitz boundary Γ and let f ∈ H−1(Ω) = (H1
0 (Ω))∗

and let u ∈ H1
0 (Ω) be the weak solution to

−∆u = f in Ω ,

u = 0 on Γ .
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Due to Theorem 1.6, there exists a unique functional g ∈ H−1/2(Γ) which depends on f ,
such that

(∇u, ∇v)L2(Ω) = 〈f, v〉Ω + 〈g, v〉Γ ∀v ∈ H1(Ω) ,

which generalizes the normal derivative ∂u
∂n . We define the Newton potential N by

N : H−1(Ω) → H−1/2(Γ) : f 7→ −g . (1.67)

In other words, N f gives the negative flux induced by the source f subject to homogeneous
Dirichlet boundary conditions. Obviously, the Newton potential is linear and continuous,
see also Steinbach [174].

The complete Dirichlet to Neumann map corresponding to the boundary value problem

−∆u = f in Ω ,

u = gD on Γ

is given by

gD 7→ γint
1 u =

∂u

∂n
= Sint gD −N f . (1.68)

1.5 Discretization techniques

1.5.1 Triangulations

Let Ω ⊂ Rd (d = 2 or 3) be a bounded domain with Lipschitz boundary ∂Ω. A triangulation
T = {τ} of Ω or ∂Ω is a non-overlapping partition into finitely many elements. In this work
we consider only simplicial elements, i. e., line segments, triangles, and tetrahedra. For a
simplex τ ∈ T , we set hτ := diam τ , and we define ρτ by the diameter of the largest ball
contained in τ . Furthermore, for a triangulation T we set h := maxτ∈T hτ . We introduce
the notions of geometrically conforming, shape-regular, and quasi-uniform triangulations
following Toselli and Widlund [184, Appendix B].

Definition 1.26. A triangulation T of Ω or ∂Ω is called geometrically conforming (in
brief: conforming) if the intersection of the closure of two different elements is either empty,
a vertex, an edge, or a face that is common to both elements.

A family of triangulations T h of Ω or ∂Ω is called shape-regular if there exists a constant
C > 0 independent of h such that

hτ ≤ C ρτ ∀τ ∈ T h .

A family of triangulations T h of Ω or ∂Ω is called quasi-uniform if it is shape-regular and
if there exists a constant c > 0 independent of h such that

hτ ≥ c h ∀τ ∈ T h .

Notation. For a given triangulation T h(Ω), let Ωh denote the set of nodes (vertices) of the
triangulation, including the nodes on the boundary ∂Ω, and let ∂Ωh denote the set of nodes of
the triangulation that lie on ∂Ω. Finally, we define the set of Dirichlet nodes ΓhD := ∂Ωh∩ΓD
(note that ΓD is relatively closed). A typical node will be denoted by xh.
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1.5.2 Finite element method

In this subsection we briefly show the concept of the finite element method. For more details
we refer the reader, e. g., to Braess [16], Brenner and Scott [26], Ciarlet [35], and
Zulehner [196].

1.5.2.1 Formulation

In this work we consider mainly linear finite elements. For a given family of triangulations
T h(Ω) of Ω, we define the family of spaces

V h(Ω) :=
{
v ∈ C(Ω) : v|τ ∈ P1(τ) ∀τ ∈ T h(Ω)

}
, (1.69)

where P1 is the space of affine linear polynomials. It can be shown that V h(Ω) ⊂ H1(Ω).
For each node xh ∈ Ωh, define the nodal finite element basis function ϕxh ∈ V h(Ω) by

ϕxh(yh) =
{

1 for yh = xh ,
0 else.

(1.70)

Then, {ϕxh}xh∈Ωh is a basis for V h.

The mixed boundary value problem Let ΓD be a relatively closed part of ∂Ω with
positive surface measure and set ΓN = ∂Ω \ ΓD. Consider the variational formulation of
the potential equation with homogeneous boundary conditions on ΓD. For simplicity, we
choose the coefficient in the PDE equal to one although everything works for more general
coefficients. The infinite-dimensional problem reads: Find u ∈ H1

D(Ω) such that

a(u, v) = 〈F, v〉 ∀v ∈ H1
D(Ω) , (1.71)

where H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0} and

a(u, v) =
∫

Ω
∇u · ∇v dx , 〈F, v〉 =

∫
Ω
f v dx+

∫
ΓN

gN v ds .

The corresponding Galerkin equation reads: Find uh ∈ V h
D(Ω) such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ V h
D(Ω) , (1.72)

where V h
D(Ω) := V h(Ω) ∩H1

D(Ω). We introduce a suitable enumeration of the nodes, Ωh =
{x1, . . . , xnN }, such that the nodes on ΓD are given by {xnF +1, . . . , xnN }. Consequently,
{ϕ1, . . . , ϕnF } is a basis for V h

D(Ω). Furthermore, we define the stiffness matrix K and the
load vector f by

Kij = a(ϕxj , ϕxi) , fi = 〈F, ϕxi〉 for i, j = 1, . . . , nF . (1.73)

We can transform equation (1.72) to the following system of linear equations: Find u ∈ RnF

such that

Ku = f . (1.74)
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Due to the fact that the basis functions have local support and due to the structure of the
bilinear form a(·, ·), the stiffness matrix is sparse, i. e., there are only a few non-zero entries
per row. The solution uh is finally given by

uh :=
nF∑
i=1

ui ϕxi .

Note that the homogeneous Dirichlet boundary conditions are fulfilled automatically because
the basis functions corresponding to the Dirichlet nodes are excluded. The entries ui of the
coefficient vector u are associated to the nodes xi and called degrees of freedom (DOFs).
The map between uh and u is one-to-one and called Ritz isomorphism.

Later on in this chapter we will make use of the full stiffness matrix K and the full load
vector f defined by

Kij = a(ϕxj , ϕxi) , f i = 〈F, ϕxi〉 for i, j = 1, . . . , nN , (1.75)

i. e., incorporating the complete set of nodes and basis functions. When the context allows
we may drop the bars.

The pure Neumann problem If ΓD = ∅, i. e., ΓN = ∂Ω, the continuous problem is not
uniquely solvable. Testing the variational equation with the constant function 1Ω we obtain
the compatibility condition ∫

Ω
f dx+

∫
∂Ω
gN ds = 0 . (1.76)

Let us assume that the data (f, gN ) fulfills this condition, then the solution is unique up to
an additive constant. A particular solution u can be found by applying some gauge, e. g.,∫

Ω
u dx = 0 , (1.77)

or alternatively,
∫
∂Ω u ds = 0. Using the regularized bilinear form

ã(u, v) := a(u, v) + β

∫
Ω
u dx

∫
Ω
v dx , (1.78)

for some regularization parameter β > 0, the Galerkin equation ã(u, v) = 〈F, v〉 is always
solvable, and if the data (f, gN ) fulfills the compatibility condition, the solution fulfills the
gauge condition (1.77).

The same concept carries over to the discrete setting. The stiffness matrix K (which
coincides with the full stiffness matrix) has a kernel of dimension 1 and is spanned by the
vector 1 of ones. To obtain a unique solution we can use the modified stiffness matrix K̃
corresponding to the bilinear form ã(·, ·). However, this might affect the sparsity of K̃.
Alternatively, we can use any discrete regularization,

ã(uh, vh) := a(uh, vh) + βh (uh, 1Ω)Rh
(vh, 1Ω)Rh

∀uh, vh ∈ V h , (1.79)
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for some βh > 0 where (·, ·)Rh
: V h× V h → R needs to be SPD only on span{1Ω} ⊂ V h(Ω).

For instance we can use

(uh, vh)Rh
:= uh(yh)uh(yh) , or (uh, vh)Rh

:=
∫
L
uh ds

∫
L
vh ds , (1.80)

for a vertex yh ∈ Ωh or a curve L ⊂ Ωi. In three dimensions, vertex regularizations might
cause numerical stability problems. No matter which regularization we take, K̃−1 is a pseu-
doinverse of K.

1.5.2.2 Properties of the stiffness matrix

Let us consider again the mixed boundary value problem with a non-trivial Dirichlet bound-
ary ΓD. With the Ritz isomorphism uh ↔ u, vh ↔ u we have that

a(uh, vh) = (Ku, v) ∀uh, vh ∈ V h
D(Ω) ,

from which we that properties of the bilinear form a(·, ·) (such as symmetry, SPD, etc.)
carry over to the stiffness matrix K. In can be shown that for a quasi-uniform triangulation
T h(Ω), the spectral condition number κ(K) of the stiffness matrix fulfills

κ(K) = O(h−2) as h→ 0 , (1.81)

i. e., it grows with the number of DOFs. The bound is sharp in general; see, e. g., Brenner
and Scott [26].

1.5.2.3 Solvers for finite element systems

In order to solve a system of the form

Ku = f ,

with a sparse stiffness matrix K ∈ Rn×n, where n is the number of DOFs, we can use direct
and iterative solvers.

Direct solvers It is known that the complexity of Gauss’ method, the LU -factorization
or the Cholesky-factorization of a dense matrix is O(n3) as n → ∞. For sparse matrices
pivoting and reordering techniques can be used to obtain a matrix with small bandwidth,
which enhances the complexity. The optimal complexity of O(n) can only be obtained for
one-dimensional problems or special cases in higher dimensions. However, there exist sparse
direct solvers, such as PARDISO [37], see also Schenk and Gärtner [166, 167], with
complexities like O(n3/2) in three dimensions, and O(n logα(n)) in two dimensions. Other
solvers worth mentioning are MUMPS (http://graal.ens-lyon.fr/MUMPS), UMFPACK
(http://www.cise.ufl.edu/research/sparse/umfpack/), and SUPERLU (http://www.
cs.berkeley.edu/~demmel/SuperLU.html).
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Iterative solvers The most general iterative method is Richardson’s method, where a
successive application of the matrix (which can be performed in optimal complexity if the
matrix is sparse) leads to an approximate solution of the system. The number of steps in
order to obtain a certain precision is strongly depending on the spectral condition number κ
of K. For SPD systems, the conjugate gradient (CG) method accelerates the convergence:
After k steps the error in the energy norm (induced by K) decays at least by a factor

2
(√κ− 1√

κ+ 1

)k
,

In the non-symmetric case, methods with similar properties exist, named Krylov methods.
However, we have seen that κ(K) ' h−2 ' n2/d for a quasi-uniform mesh. In order to
obtain better convergence we can seek for a preconditioner C whose inverse can be applied
in optimal complexity such that κ(C−1 K) is much smaller than κ(K), ideally independent
of N and h, or at least only weakly depending on N or h. We can then apply the same
method to the preconditioned system

C−1 Ku = C−1 f .

For the CG method, the preconditioner C must be SPD as well, then the method is still
well-defined and can be seen as a CG method working with the inner product induced by
the preconditioner. In that case we speak of the preconditioned conjugate gradient (PCG)
method.

Solving the pure Neumann problem As discussed above, the stiffness matrix corre-
sponding to the pure Neumann problem is not regular. However, many direct solvers are
capable of factorizing such positive semi-definite matrices correctly. Alternatively, one can
use on of the suggested regularizations, but taking care of the sparsity and the numerical
stability. Using iterative solvers, one can make use of the fact that the application of any of
the suggested regularizions K̃ can be performed in optimal complexity.

1.5.2.4 The approximation error

The approximation error of the space V h(Ω) is given as follows.

Lemma 1.27. Let T h(Ω) be a geometrically conforming quasi-uniform triangulation, and
assume that u ∈ Hm(Ω) for some m ≤ 2. Then there exists a constant C > 0 depending on
T h(Ω) such that

inf
vh∈V h(Ω)

‖u− vh‖Hk(Ω) ≤ C hm−k |u|Hm(Ω) ∀k ≤ min(m, 1) .

The inequality also holds for real Sobolev indices m and k.

Proof. The proof uses a special interpolator, an affine map to a reference simplex, and the
Bramble-Hilbert lemma, cf. Brenner and Scott [26, Sect. 4.4].



1.5. DISCRETIZATION TECHNIQUES 39

1.5.2.5 The Scott-Zhang quasi-interpolation operator

The following lemma has been shown Scott and Zhang [170], see also Brenner and
Scott [26].

Lemma 1.28. For a family T h(Ω) of conforming and shape-regular triangulations of Ω,
there exists a corresponding family of quasi-interpolation operators Πh : H1(Ω) → V h(Ω)
and a constant CSZ > 0 depending only on the shape regularity constant of T h(Ω), such that

(Πhuh)|∂Ω = uh ∀uh ∈ V h(∂Ω) ,

|Πhu|H1(Ω) ≤ CSZ |u|H1(Ω) ∀u ∈ H1(Ω) ,

‖Πhu‖L2(Ω) ≤ CSZ ‖u‖L2(Ω) ∀u ∈ H1(Ω) ,

|u−Πhu|H`(τ) ≤ CSZ h
k−` |u|Hk(ωτ ) ∀τ ∈ T h(Ω), ∀u ∈ Hk(Ω), ∀0 ≤ ` ≤ k ≤ 2 ,

where ωτ is the union of elements touching τ . The last estimate holds true even for real
Sobolev indices k and `.

Remark 1.29. The construction is somehow related to the quasi-interpolation operator
introduced by Clément [36], which ensures the H1-continuity by averaging over volume
patches. Scott and Zhang use a special basis which is dual to the nodal basis with respect
to the L2-product on elements for nodes in the interior, and on element faces for nodes on
the boundary.

Corollary 1.30 (Existence of a bounded discrete extension). For a family T h(Ω) of con-
forming and shape-regular triangulations of Ω, there exists a corresponding family of bounded
linear extension operators Eh : V h(∂Ω) → V h(Ω) such that

|Ehvh|2H1(Ω) ≤ C2
SZ 〈Sint vh, vh〉 ∀vh ∈ V h(∂Ω) .

with the constant CSZ > 0 from Lemma 1.28

Proof. Let ṽ ∈ H1(Ω) be the harmonic extension of vh such that 〈Sintvh, vh〉 = |ṽ|2H1(Ω).
Setting Ehvh := Πh ṽ we obtain the desired statement.

Remark 1.31. An alternative proof of Corollary 1.30 is the following. The discrete trace
theorem (cf. [184, Lemma 4.6]) states that for each function vh ∈ V h(∂Ω) there exists a
function ṽh ∈ V h(Ω)

|ṽh|2H1(Ωk) ≤ Ct |vh|2H1/2(∂Ω)
,

for a constant Ct > 0 depending only on the shape of Ω and the shape regularity constant of
T h(Ω). The desired statement follows immediately since the norm induced by Sint and the
| · |H1/2(∂Ω)-norm are equivalent. However, the constant in Corollary 1.30 is independent of
the shape of Ω as well, which can by very irregular.

1.5.2.6 FEM approximation of the Steklov-Poincaré operator and the Newton
potential

The Schur complement system Let K and f denote the full stiffness matrix and load
vector corresponding to problem (1.72). We reorder and partition the stiffness matrix cor-
responding to interior DOFs (subscript I) and boundary DOFs (subscript B). We split the
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load vector f into two parts f and t. The part t corresponds to the linear form
∫
∂Ω t · ds,

where t = ∂u
∂n is the prescribed normal flux. The part f corresponds to the linear form∫

Ω f · dx; we partition it into blocks f I and fB similarly to the stiffness matrix. The discrete
FE equation reads (

KBB KBI

KIB KII

)(
uB
uI

)
=
(

fB + t
f I

)
.

We now eliminate the interior DOFs uI to obtain the Schur complement system

SuB = Nf + t ,

with

S := KBB −KBI(KII)−1KIB , (1.82)

N :=
[

IB
∣∣∣−KBI(KII)−1

]
, Nf = fB −KBI(KII)−1f I . (1.83)

where IB is the identity with respect to the boundary DOFs. We can read off the discrete
Dirichlet to Neumann map, t = SuB − Nf . Setting f = 0, which corresponds to the
homogeneous problem, we find that t = SuB. For uB = 0, which corresponds to the
homogeneous Dirichlet problem, we find that t = −Nf .

A functional background to the discrete Schur complement system Due to The-
orem 1.6, see also Steinbach [174], we have

〈Sint g, w〉 = a(u0 + Eg, Ew) ∀g, w ∈ H1/2(∂Ω) , (1.84)

where the operator E is an arbitrary bounded extension operator, e. g., the one from Theo-
rem 1.4, and the function u0 ∈ H1

0 (Ω) is the unique solution of

a(u0 + Eg, v) = 0 ∀v ∈ H1
0 (Ω) . (1.85)

Note, that this is also an alternative definition which generalizes the interior Steklov-Poincaré
operator (i. e., the Neumann trace operator) for the case of more general coefficients. We
define the operator

Sint
FEM : H1/2(∂Ω) → H−1/2(∂Ω) ,

〈Sint
FEMg, w〉 = a(u0,h + Ehg, Ehw) ∀w ∈ H1/2(∂Ω) ,

(1.86)

where Eh := ΠhE with the Scott-Zhang quasi-interpolation operator Πh, and the function
u0,h ∈ V h

0 (Ω) := V h(Ω) ∩H1
0 (Ω) is the unique solution of

a(u0,h + Ehg, vh) = 0 ∀vh ∈ V h
0 (Ω) . (1.87)

Apparently, the operator Sint
FEM is symmetric and positive semidefinite. Combining the proof

of Steinbach [174, Theorem 3.5] with the approximation properties of the Scott-Zhang
quasi-interpolation operator, one can show that the error (Sint−Sint

FEM)g is controlled by the
approximation properties of the trial space V h(Ω) and the Scott-Zhang quasi-interpolation
operator Πh for g sufficiently smooth. A careful investigation reveals that the Galerkin
projection of Sint

FEM to the space V h(∂Ω) is represented by the Schur complement matrix S
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from (1.82). Note that in general, since the approximation Sint
FEM extends to Ω by discrete

functions whereas Sint extends by H1-functions,

〈Sint
FEM vh, wh〉 6= 〈Sint vh, wh〉 for vh, wh ∈ V h(∂Ω) .

With similar means one can show that the operator

NFEM : V h(Ω)∗ → V h(∂Ω)∗ (1.88)

corresponding to N is a suitable approximation of the exact Newton potential N . For details
see Steinbach [174].

Minimization property of the Schur complement

Lemma 1.32. The operator Sint
FEM admits the minimizing property

〈Sint
FEM vh, vh〉 = minevh∈V h(Ω)evh |∂Ω=vh

a(ṽh, ṽh) ∀vh ∈ V h(∂Ω) . (1.89)

Proof. Follows from the definition of S and K, and by simple linear algebra.

1.5.3 Boundary element method

The Galerkin boundary element method is a special Galerkin finite element method applied
to boundary integral equations, cf. Hsiao and Wendland [88]. For a comprehensive in-
troduction we refer to the monographs by Rjasanow and Steinbach [158], Sauter and
Schwab [164], and Steinbach [175].

1.5.3.1 BEM approximation of Sint, Sext

Recall our setting: Ω is a bounded domain with Lipschitz boundary Γ, and Ωext := Rd\Ω. In
order to get symmetric approximations of the Steklov-Poincaré operators Sint and Sext using
discretized boundary integral equations, we consider a triangulation T h(Γ) of Γ. The leading
role will be played by Calderón’s system (1.53). We approximate the Dirichlet trace γint

0 u by
a piecewise linear function uh ∈ V h(Γ). The Neumann trace γint

1 u has two different kinds of
approximations on which we will comment later on. One the one hand, we can approximate
γint

1 as a functional th ∈ V h(Γ)∗ ⊂ H−1/2(Γ), on the other hand, we can approximate it by
a piecewise constant function wh ∈ Zh ⊂ H−1/2(Γ), where

Zh(Γ) :=
{
z ∈ H−1/2(Γ) : z|τ ∈ P0 ∀τ ∈ T h(Γ)

}
. (1.90)

Introducing a numbering of the nodes x1, . . . , xnN in Γh, and the elements τ1, . . . , τnT in
T h(Γ) we obtain bases for the two approximation spaces:

V h(Γ) = span{ϕi}nN
i=1 , Zh(Γ) = span{ψk}nT

k=1 , (1.91)

where ϕi is the nodal basis function being 1 at the i-th node and zero elsewhere, and ψk is
1 on the k-th element and zero elsewhere.
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From (1.58) can conclude that

Sint g = Dg + (1
2I +K>)wint ,

Sext g = Dg + (1
2I −K>)wext ,

(1.92)

where

〈V wint, z〉 = 〈(1
2I +K)g, z〉 ∀z ∈ H−1/2(Γ) ,

〈V wext, z〉 = 〈(1
2I −K)g, z〉 ∀z ∈ H−1/2(Γ) .

(1.93)

The Galerkin projection of (1.93) to the space Zh(Γ) reads: Find wint
h , wext

h ∈ Zh(Γ) such
that

〈V wint
h , zh〉 = 〈(1

2I +K)g, zh〉 ∀zh ∈ Zh(Γ) ,

〈V wext
h , zh〉 = 〈(1

2I −K)g, zh〉 ∀zh ∈ Zh(Γ) .
(1.94)

Replacing wint, wext in (1.92) by wint
h , wext

h , respectively, we obtain the approximations Sint
BEM,

Sext
BEM : H1/2(Γ) → H−1/2(Γ) defined by

Sint
BEM g = Dg + (1

2I +K>)wint
h .

Sext
BEM g = Dg + (1

2I −K>)wext
h .

(1.95)

According to Steinbach [174] we have the quasi-optimal error estimate

‖(Sint − Sint
BEM)g‖H−1/2(Γ) ≤ c inf

zh∈Zh(Γ)
‖Sintg − zh‖H−1/2(Γ) ∀g ∈ H1/2(Γ) , (1.96)

and the analogous estimate for Sext. It states that the error is controlled by the approxi-
mation property of the trial space Zh(Γ). The Galerkin projections of Sint

BEM, Sext
BEM to the

space V h(Γ) can be represented in matrix form by

Sint = D + (1
2M

> + K>)V−1(1
2M + K) ,

Sext = D + (1
2M

> −K>)V−1(1
2M−K) ,

(1.97)

with the boundary element matrices

Dij = 〈ϕj , D ϕi〉 , Kik = 〈ψk, K ϕi〉 , (1.98)
Vkl = 〈ψl, V ψk〉 , Mik = 〈ψk, ϕi〉 , (1.99)

for i, j = 1, . . . , nN , and k, l = 1, . . . , nT . The approximations Sint
BEM and Sext

BEM are self-
adjoint and semi-elliptic, respectively, elliptic, as the original operators Sint/ext. In case of
exact arithmetics we preserve the kernel of Sint,

kerSint
BEM = span{1Γ} . (1.100)
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1.5.3.2 Data-sparse approximation and solvers for BEM systems

Except for the mass matrix M, which is apparently sparse, all the boundary element matrices
in (1.98) are dense (despite the fact that the basis functions have local support). This is
because of the non-local operators involving the fundamental solution; for assembling the
matrices, double integrals have to be evaluated. However, the fundamental solution U∗(x, y)
decays exponentially when moving away from the singularity at x = y.

The notion fast boundary element methods embraces techniques to design methods using
this phenomenon in order to realize a fast (i. e., quasi-optimal) application of (approxi-
mate) BEM matrices, or even achieve data-sparse approximation of BEM matrices (i. e.,
quasi-optimal memory requirements). Only with fast BEM, quasi-optimal solvers of BEM
systems become possible. For an overview we refer to Steinbach [175] and Rjasanow
and Steinbach [158] and the references therein. We mention the fast multipole method
(Rokhlin [159], Cheng, Greengard, and Rokhlin [33]), the panel clustering method
(Hackbusch and Nowak [82]), wavelet approximations (Schneider [168]), and the adap-
tive cross approximation (ACA) (Bebendorf [6]). The computational complexities and
storage demands are typically O(N logN) where N is the number of unknowns on the
boundary.

The data structure for a data-sparse representation is called hierarchical matrix or H-
matrix using a hierarchy of low-rank approximations, where the maximum rank is bounded.
The class of such matrices induces the so-called H-arithmetic, cf. Hackbusch [79], Hack-
busch and Khoromskij [81], see also the recent monograph by Bebendorf [8]. Within
this arithmetic, one can compute an H-LU factorization, cf. Bebendorf [7], i. e., an ap-
proximate factorization of an H-matrix, where the two factors are again H-matrices. The
factorization can also be done in a O(N logN)-complexity, although it additionally depends
on the maximum rank. We mention the two software packages AHMED (see http://
www.math.uni-leipzig.de/~bebendorf/AHMED.html and Bebendorf [8]), and Hlib (see
http://www.hlib.org and Börm, Grasedyck, and Hackbusch [14]).

1.5.3.3 BEM approximation of the Newton potential

A suitable BEM approximation of the Newton potential N can be found in Steinbach [174].
In some cases volume triangulations can even be avoided; see, e. g., Bertoglio, Hack-
busch, and Khoromskij [10], Khoromskij [97, 98], Of, Steinbach, and Urthaler [140],
and Urthaler [185]. In this work, however, we will use the boundary element method only
on subdomains with vanishing sources.
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1.6 Spectral estimates for approximate Steklov-Poincaré op-
erators

Lemma 1.33. The following spectral equivalence relations between the exact and approxi-
mated Steklov-Poincaré operators hold.

〈Sint vh, vh〉 ≤ 〈Sint
FEM vh, vh〉 ≤ C2

SZ 〈Sint vh, vh〉 ∀vh ∈ V h(Γ)
c0
cK
〈Sint v, v〉 ≤ 〈Sint

BEM v, v〉 ≤ 〈Sint v, v〉 ∀v ∈ H1/2(Γ)
〈Sext

BEM v, v〉 ≤ 〈Sext v, v〉 ∀v ∈ H1/2(Γ)
c0
cK
〈Sext v, v〉 ≤ 〈Sext

BEM v, v〉 ∀v ∈ H1/2
∗ (Γ)

c0
cK
〈Sint v, v〉 ≤ 〈Sext

BEM v, v〉 ∀v ∈ H1/2(Γ)

(1.101)

Additionally,

〈Sint v, v〉+
1

diam Γ
‖u‖2

L2(Γ) ≤ Cext 〈Sext
BEM v, v〉 ∀v ∈ H1/2(Γ) ,

〈Sext v, v〉 ≤ C ′
ext 〈Sext

BEM v, v〉 ∀v ∈ H1/2(Γ) .
(1.102)

The constants c0, cK , and CSZ depend only on the shape of Γ and the shape regularity of the
triangulation T h(Ω). In three dimensions, Cext and C ′

ext depend as well only on the shape
of Γ.

Remark 1.34. In two dimensions, the constants Cext and C ′
ext additionally depend loga-

rithmically on the diameter of Γ. Since we have to scale the domain anyway, we can fix the
diameter, e. g., to diam Γ = 1/2.

Proof of Lemma 1.33. By (1.60) and (1.89), it becomes clear that

〈Sint vh, vh〉 ≤ 〈Sint
FEM vh, vh〉 ∀vh ∈ V h(Γ) .

The other direction follows from Lemma 1.32 and Lemma 1.30:

〈Sint
FEM vh, vh〉 ≤ |Ehvh|2H1(Ω) ≤ C2

SZ 〈Sint vh, vh〉 ∀vh ∈ V h(Γ) . (1.103)

The following proof of the estimates concerning Sint
BEM, Sext

BEM follows the line in Stein-
bach [174]. For the boundary element approximations Sint

BEM of the continuous Steklov-
Poincaré operator we can apply Lemma 1.19 choosing Zh ⊂ H−1/2(Γ) as approximation
space, 〈V ·, ·〉 as bilinear form, and 〈(1

2I +K)v, ·〉 as linear form to obtain that

〈V wint
h , wint

h 〉 ≤ 〈V wint, wint〉 , (1.104)

with the functions wint, wint
h from (1.93) and (1.94). Using the identities

〈Sint v, v〉 = 〈Dv, v〉+ 〈V wint, wint〉 ,
〈Sint

BEM v, v〉 = 〈Dv, v〉+ 〈V wint
h , wint

h 〉 ,
(1.105)

which follow from (1.57), the adjoint relation between K and K>, and the analogous argu-
ments for the exterior operators Sext and Sext

BEM, we finally obtain

〈Sint/ext
BEM v, v〉 ≤ 〈Sint/ext v, v〉 ∀v ∈ H1/2(Γ) .
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For the opposite direction, we first obtain for ṽ ∈ H1/2
∗ (Γ),

〈Sint/ext
BEM ṽ, ṽ〉 = 〈D ṽ, ṽ〉+ 〈V wh, wh〉

≥ 〈D ṽ, ṽ〉 ≥ c0〈V −1ṽ, ṽ〉 ≥ c0
cK
〈Sint/ext ṽ, ṽ〉 ,

(1.106)

where we have used the ellipticity of V , Lemma 1.23(v) and Lemma 1.25(i). Secondly, using
the V −1-orthogonal splitting v = v01Γ+ ṽ with ṽ ∈ H1/2

∗ (Γ) and v0 ∈ R, see Lemma 1.25(iii),
we get

〈Sint/ext
BEM v, v〉 ≥ 〈Dv, v〉 = 〈D ṽ, ṽ〉 ≥ c0

cK
〈Sint ṽ, ṽ〉 =

c0
cK
〈Sint v, v〉 .

This finishes the proof of the estimates (1.101).
Now, we prove the two estimates (1.102) of the Sext

BEM energy form from below by the Sext

form and a regularized Sint form on the whole space H1/2(Γ). In order achieve this goal, we
recall once again that

〈Sext
BEM v, v〉 = 〈Dv, v〉+ 〈V wh, wh〉

with wh defined by (1.94). We choose w0 ∈ R by

w0 =
〈(1

2I −K)v, 1Γ〉
〈V 1Γ, 1Γ〉

,

which is well-defined thanks to Assumption 1.22. Consequently, we get the relation

〈V w01Γ, 1Γ〉 = 〈(1
2I −K)v, 1Γ〉

which is the Galerkin projection of equation (1.94) to the one-dimensional subspace

span{1Γ} ⊂ Zh ⊂ H−1/2(Γ) .

Again, by Lemma 1.19 choosing span{1Γ} ⊂ Zh as approximation space, 〈V ·, ·〉 as bilinear
form, and 〈(1

2I −K)v, ·〉 as linear form, we obtain

〈V wh, wh〉 ≥ 〈V w01Γ, w01Γ〉 =
〈(1

2I −K)v, 1Γ〉2

〈V 1Γ, 1Γ〉
= |Ψ(v)|2 . (1.107)

with the linear functional Ψ : H1/2(Γ) → R defined by

Ψ(v) :=
〈(1

2I −K)v, 1Γ〉
〈V 1Γ, 1Γ〉1/2

for v ∈ H1/2(Γ) .

We observe that Ψ is bounded in the H1/2-norm and, most importantly, that the definition of
Ψ is independent of the discretization parameter h. Furthermore, |Ψ(v)| defines a semi-norm
that becomes a norm on the constant functions, since for some v0 ∈ R with Ψ(v01Γ) = 0 we
have

0 = 〈(1
2I −K)v01Γ, 1Γ〉 = 〈v01Γ, 1Γ〉 = v0 · |Γ| ,
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thus v0 = 0. On the other hand, we obtain from (1.60) and (1.106) that

〈Dv, v〉 ≥ c0
cK
〈Sint v, v〉 =

c0
cK

minev∈H1(Ω)ev|Γ=v

|ṽ|2H1(Ω) . (1.108)

Due to Theorem 1.7,

|u|2H1(Ω) + |Ψ(u|Γ)|2 ' ‖u‖2
H1(Ω) ' |u|2H1(Ω) +

1
diam Γ

‖u|Γ‖2
L2(Γ) ,

where the scaling factor 1/diam Γ is obtained by dilation from a domain with unit diameter.
Combining this result with (1.105), (1.107), and (1.108) we obtain

〈Sext
BEM v, v〉 = 〈Dv, v〉+ 〈V wh, wh〉 ≥

c0
cK

minev∈H1(Ω)ev|Γ=v

{
|ṽ|2H1(Ω) + |Ψ(v)|2

}

& minev∈H1(Ω)ev|Γ=v

{
|ṽ|2H1(Ω) +

1
diam Γ

‖v‖2
L2(Γ)

}
= 〈Sint v, v〉+

1
diam Γ

‖v‖2
L2(Γ) .

In other words, there exists a constant Cext > 0 such that

〈Sint v, v〉+
1

diam Γ
‖v‖2

L2(Γ) ≤ Cext 〈Sext
BEM v, v〉 . (1.109)

The constant Cext is independent of the discretization parameter h, and in three dimensions
it is independent of diam Γ, i. e., it depends only on the shape of Ω. In two dimensions, the
single layer potential V does not scale linearly due to the logarithmic term in the fundamental
solution.

Finally, due to Lemma 1.25(iv) we have

〈Sext v, v〉 ' 〈Sint v, v〉+
〈V −1v, 1Γ〉2

〈V −11Γ, 1Γ〉
.

Since Υ(v) := 〈V −1v, 1Γ〉/‖1Γ‖V −1 is a bounded linear functional that reproduces the con-
stant functions, we can apply Sobolev’s norm theorem once again and using (1.109) we can
conclude that

〈Sext v, v〉 ≤ C ′
ext〈Sext

BEM v, v〉 , (1.110)

where C ′
ext depends (at least in three dimensions) only on the shape of Ω.

This finishes the proof of Lemma 1.33. �



Chapter 2

Hybrid one-level methods

This chapter deals with hybrid one-level tearing and interconnecting methods. The term
“hybrid” refers to the coupling of finite elements and boundary elements. The term “one-
level” refers to a special type of coarse space, which in case of the potential equation is
spanned by piecewise constant functions.

We first introduce the concept of non-overlapping domain decomposition together with
continuous and discrete variational skeleton formulations in Section 2.1. There we use the
approximate Steklov-Poincaré operators from Section 1.5.2.6 and Section 1.5.3. The rest of
the chapter is devoted to various one-level methods. In Section 2.2 we discuss two sub-classes
of one-level FETI/BETI methods.

The first sub-class, which we call standard one-level FETI/BETI methods, was introduced
by Langer and Steinbach [118, 119] as a follow-up of a family of one-level FETI methods
proposed and analyzed by Klawonn and Widlund [109], which builds upon works by
Rixen and Farhat [155, 156] and Mandel and Tezaur [131]. These methods are com-
pletely analyzed, and our presentation basically follows [109, 118, 119] and the monograph
by Toselli and Widlund [184].

The second sub-class, which we call all-floating FETI/BETI methods, embraces hybrid
methods which combine the all-floating BETI methods, introduced by Of [138, 139], and
the total FETI methods, independently introduced by Dostál, Horák, and Kučera [46].
Both approaches follow the same concept of additional Lagrange multipliers which enforce
the Dirichlet boundary conditions. In this sense all subdomains are decoupled from the
Dirichlet boundary, which we call floating. Although the all-floating methods are very close
to the standard one-level methods, there are obviously some technical differences, such as the
additional Lagrange multipliers and the larger coarse space. To the best of our knowledge
the first rigorous condition number estimate for all-floating methods was given in Pech-
stein [143].

The scope of Section 2.2 is to give a unified formulation and analysis of all these one-
level methods, with the all-floating methods naturally included, to discuss implementation
details, and to provide some numerical results. In Section 2.3, we finally discuss a special
FETI method, called interface-concentrated FETI, which was introduced by Beuchler,
Eibner, and Langer [11], in particular we provide some numerical examples.

47
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2.1 Variational skeleton formulations

2.1.1 Continuous skeleton formulations

Let Ω ⊂ Rd (d = 2 or 3) be a bounded domain with Lipschitz boundary ∂Ω which consists
of a Dirichlet boundary ΓD, regarded as a relatively closed manifold, i. e., ΓD = ΓD, and an
open Neumann boundary ΓN , such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The outward
unit normal vector to ∂Ω is denoted by n. We consider the following scalar elliptic model
problem in its weak variational formulation: Find u ∈ H1(Ω) with u|ΓD

= gD such that∫
Ω
α∇u · ∇v dx =

∫
Ω
f v dx+

∫
ΓN

gN v ds ∀v ∈ H1
D(Ω) , (2.1)

where H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD

= 0}. For a simple presentation, assume that f ∈ L2(Ω)
and gN ∈ L2(ΓN ) and that the coefficient α is piecewise constant. Let {Ωi}i=1,...,s be a
non-overlapping partition of Ω into open subdomains Ωi such that

Ω =
s⋃
i=1

Ωi , Ωj ∩ Ωj = ∅ for i 6= j , (2.2)

and such that the coefficient is piecewise constant on the subdomains, i. e.,

α|Ωi
= αi = const > 0 ∀i = 1, . . . , s . (2.3)

In the following we use the index set I := {1, . . . , s} as an abbreviation. We denote the
subdomain boundaries by ∂Ωi, the corresponding outward unit normal vector by ni, and
we define the subdomain diameters Hi := diam Ωi. The following assumption ensures that
the subdomains are Lipschitz, and that neighboring subdomains are of comparable size. In
Section 2.2.4 we will additionally introduce stronger assumptions on the subdomain partition.

Assumption 2.1. Each subdomain boundary is Lipschitz and the decomposition (2.2) fulfills

Hi ≤ CHDDHj for ∂Ωi ∩ ∂Ωj 6= ∅ ,

with a uniformly bounded constant CHDD > 0.

We define the (pairwise) subdomain interfaces by

Γij := (∂Ωi ∩ ∂Ωj) \ ΓD for i 6= j . (2.4)

We exclude the Dirichlet boundary ΓD from the interfaces because no coupling occurs there.
Furthermore we define the interface Γ and the skeleton ΓS by

Γ :=
⋃
i6=j

Γij , ΓS :=
⋃
i∈I

∂Ωi . (2.5)

We additionally introduce the following topological sets generalizing a concept given in
Toselli and Widlund [184, Definition 4.1].
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Definition 2.2. In three dimensions, the skeleton ΓS is the disjoint union of

• subdomain faces, regarded as open and connected manifolds, which are shared by two
subdomains or by one subdomain and the outer boundary ∂Ω,

• subdomain edges, also regarded as open and connected, which are shared by at least
two subdomains, such that the closure of all edges forms the boundaries of the faces,

• subdomain vertices, which are endpoints of edges.

In two dimensions, the subdomain edges are open and connected sets shared by two subdo-
mains, or by one subdomain and the outer boundary ∂Ω, and the vertices are the endpoints
of the edges.

Notation. We denote faces, edges, and vertices that are part of the interface Γ and that are
shared by at least two subdomains Ωi and Ωj generically by Fij , Eij , Vij , respectively. Note
that the index pair (i, j) does not necessarily specify the face, edge, or vertex uniquely, and
that, e. g., Vij can happen to be the same vertex as Vik for k 6= j. Faces, edges, and vertices
on ∂Ωi (possibly shared by Ωi and the outer boundary) are denoted generically by Fi, Ei,
and Vi, respectively.

Remark 2.3. Our presentation slightly differs from the one in Toselli and Widlund [184]
because we will need to treat all-floating methods, which operate on the subdomain bound-
aries as well, not only on the interfaces.

Remark 2.4. With Assumption 2.1 being fulfilled, we can drop the assumption that the
original domain Ω is Lipschitz, as long as the boundary of each subdomain remains Lipschitz.
This might be advantageous in view of Figure 1.1, page 12. Note that of course the cut in
the domain from Figure 1.1(left) must then be discretized on each subdomain separately
without coupling conditions. Depending on the boundary conditions the solution may be
discontinuous across that cut.

To be able to couple domain variational formulations and boundary integral equations,
we need to make an additional assumption on the data. Let IBEM ⊂ I be a subset of indices
such that

f|Ωi
= 0 ∀i ∈ IBEM , (2.6)

which makes it possible to use boundary elements on the corresponding subdomain bound-
aries only. See Remark 2.5 for more general assumptions. The remaining subdomains cor-
respond to the index set IFEM := I \ IBEM and will be treated with the finite element
method.

We can rewrite (2.1) as follows: Find u ∈ H1(Ω) with u|ΓD
= gD such that∑

i∈I
αi

∫
Ωi

∇u · ∇v dx =
∫

Ω
f v dx+

∫
ΓN

gN v ds ∀v ∈ H1
D(Ω) . (2.7)

Assume now for a moment that the Dirichlet trace of the solution u is known on the complete
skeleton ΓS . Then the conormal derivatives on the subdomains are given by the Dirichlet to
Neumann map, i. e.,

ti := αi
∂u

∂ni
= Si(u|∂Ωi

) −Ni(f|Ωi
) ∀i ∈ I , (2.8)
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where Si = αi S
int
i is the interior Steklov-Poincaré operator on ∂Ωi, see Section 1.4.3, and

Ni : H−1(Ωi) → H1/2(∂Ωi), is the corresponding Newton potential on the subdomain Ωi,
see Section 1.4.4. In the present context, both operators scale with the coefficient αi. In the
following we simply write Si u for Si(u|∂Ωi

) and Ni f for Ni(f|Ωi
) when the context allows to

do so. By partial integration and a density argument, we find that the conormal derivatives
have to fulfill the interface conditions

ti + tj = 0 on Γij ,

and the boundary conditions

ti = gN on ∂Ωi ∩ ΓN .

We can summarize all these conditions in the weak skeleton formulation. Find u ∈ H1/2(ΓS)
with u|ΓD

= gD such that∑
i∈I
〈Si u, v〉∂Ωi

=
∑
i∈I
〈fi, v〉∂Ωi

∀v ∈ H1/2
D (ΓS) , (2.9)

where H1/2
D (ΓS) := {v ∈ H1/2(ΓS) : v|ΓD

= 0} and the linear forms fi ∈ H−1/2(∂Ωi) are
defined by

〈fi, v〉∂Ωi
:= 〈Ni f, v〉∂Ωi

+
∫
∂Ωi∩ΓN

gN v ds for v ∈ H1/2(∂Ωi) . (2.10)

Remark 2.5. We see that it is sufficient to assume that the coefficient α(·) is in L∞(Ωi)
for i ∈ IFEM, uniformly positive, and sufficiently smooth such that the conormal derivatives
on the subdomain boundaries ∂Ωi are well-defined. In that case, we must use the general
Steklov-Poincaré operator instead of αi Si, and also the general Newton potential. We can
also relax from f ∈ L2(Ω) and gN ∈ L2(ΓN ) to f ∈ (H1

D(Ω))∗ and gN ∈ H−1/2(ΓN ) with the
side condition that the restrictions of f to each subdomain Ωi and of gN to each part ∂Ωi∩ΓN
are well-defined. In the BEM subdomains, however, the coefficients must still be constant
and the sources must vanish (unless suitable approximations of the Newton potentials are
available, cf. Section 1.5.3).

With the usual homogenization technique, as described in Section 1.3.2, we can rewrite
problem (2.9): Find ũ ∈ H1/2

D (ΓS) such that∑
i∈I
〈Si ũ, v〉∂Ωi

=
∑
i∈I
〈fi − Si g̃D, v〉∂Ωi

∀v ∈ H1/2
D (ΓS) , (2.11)

where g̃D ∈ H1/2(ΓS) is an arbitrary extension of gD from ΓD to ΓS , and the actual solution
u is given by u = g̃D + ũ. Both skeleton formulations (2.9) and (2.11) are equivalent to (2.7)
in the sense that the solution u ∈ H1/2(ΓS) of any of the skeleton formulations coincides with
the trace of the solution u to the volume variational formulation (2.7) on ΓS , in particular
on all subdomain boundaries ∂Ωi. The values of the solution u in the subdomains Ωi are
then determined by purely local problems.

If the Dirichlet boundary is of positive surface measure, the symmetric bilinear form in
(2.11) is elliptic on H1/2

D (ΓS), which easily follows from the (semi-)ellipticity of the Steklov-
Poincaré operators Si, cf. Section 1.4.3 Hence, both skeleton problems (2.9) and (2.11) are
well-posed.
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2.1.2 Discrete skeleton formulations

Let T (ΓS) be a conforming simplicial triangulation of the skeleton ΓS . For i ∈ I, let T (∂Ωi)
denote its restriction to the subdomain boundary ∂Ωi with the local mesh parameter hi. The
local meshes T (∂Ωi) are assumed to be shape-regular and quasi-uniform. As a consequence,
hi ' hj for neighboring subdomains Ωi and Ωj . On each FEM subdomain Ωi, i ∈ IFEM, we
extend the triangulation T (∂Ωi) to a conforming, shape-regular, and quasi-uniform simplicial
triangulation T (Ωi) of the subdomains Ωi.

Notation. We denote by ∂Ωh
i the set of nodes on ∂Ωi, and by ΓhS and Γhij the set of nodes

on ΓS and Γij , respectively. Similarly, let Fh
i and Ehi denote the set of nodes on the (open)

face Fi, respectively on the (open) edge Ei. A typical node will be denoted by xh.

Let V h(ΓS) and V h(∂Ωi) denote the spaces of continuous functions on ΓS and ∂Ωi, re-
spectively, which are piecewise linear on the elements of the triangulation. Let V h

D(ΓS) and
V h
D(∂Ωi) denote the corresponding spaces which satisfy homogeneous Dirichlet boundary con-

ditions on ΓD. Based on these triangulations we discretize the derived skeleton formulations
in two steps: First, we project the equations to the discrete spaces. Second, we approximate
the Steklov-Poincaré operators Si and the Newton potentials Ni by approximations Si,h and
Ni,h, respectively. According to the notation from Section 1.5, we set

Si,h :=
{
αi S

int
i,BEM for i ∈ IBEM ,

αi S
int
i,FEM for i ∈ IFEM .

(2.12)

Ni,h :=
{

0 for i ∈ IBEM ,
αiNi,FEM for i ∈ IFEM .

(2.13)

As we have seen there, these operators do in general not coincide with the Galerkin projec-
tions of Si, Ni. Without loss of generality but for a simplified notation, assume that the
boundary data gD, g̃D, and gN are contained in the corresponding discrete spaces. Otherwise,
we would have to project them as well.

Let fi,h denote the resulting approximations of the continuous linear forms fi, replacing
Ni by Ni,h. Then the approximation of (2.9) reads: Find u ∈ V h(ΓS) with u|ΓD

= gD such
that ∑

i∈I
〈Si,h u, v〉∂Ωi

=
∑
i∈I
〈fi,h, v〉∂Ωi

∀v ∈ V h
D(ΓS) . (2.14)

The approximation of (2.11) reads: Find ũ ∈ V h
D(ΓS) such that∑

i∈I
〈Si,h ũ, v〉∂Ωi

=
∑
i∈I
〈fi,h − Si,h g̃D, v〉∂Ωi

∀v ∈ V h
D(ΓS) , (2.15)

As in the continuous case the bilinear form in (2.15) is symmetric and elliptic on V h
D(ΓS).

Therefore, the homogenized skeleton variational formulation (2.15) is equivalent to the min-
imization problem∑

i∈I

{1
2
〈Si,h ũ, ũ〉∂Ωi

− 〈fi,h − Si,h g̃D, ũ〉∂Ωi

}
→ mineu∈V h

D(ΓS)
. (2.16)
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Dirichlet boundary Dirichlet boundary

Figure 2.1: Illustration of two different one-level methods. Left: Standard one-level method.
Right: All-floating method. Floating subdomains are dark-shaded.

A simple computation reveals that the non-homogenized problem (2.14) is equivalent to the
minimization problem

∑
i∈I

{1
2
〈Si,h u, u〉∂Ωi

− 〈fi,h, u〉∂Ωi

}
→ min

u∈V h(ΓS), u|ΓD
=gD

. (2.17)

In the following two subsections we derive two different saddle point formulations using
the tearing and interconnecting technique. The first formulation in Section 2.2.1 is derived
from the homogenized minimization problem (2.16), and we refer to it by the term standard
one-level formulation. The second one, the all-floating formulation treated in Section 2.2.2,
is derived from the non-homogenized minimization problem (2.17).

Notation. Since the following methods are set up on the discrete level, we simplify our
notation a bit and drop the subscript h in the approximate Steklov-Poincaré operators Si,h
and in the right hand sides fi,h and write Si, fi.

2.2 Standard one-level and all-floating FETI/BETI methods

2.2.1 Formulation of standard one-level FETI/BETI methods

As mentioned before, our presentation follows Klawonn and Widlund [109], Langer and
Steinbach [118, 119], and Toselli and Widlund [184, Sect. 6.3]. Our starting point is
the homogenized minimization problem (2.16). To simplify the notation we assume only in
this subsection on the standard one-level formulation that gD ≡ 0. Otherwise we have to
use fi−Si g̃D instead of fi and ũ instead of u. We will not use such a homogenization in the
all-floating methods in Section 2.2.2.
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Figure 2.2: Sketch of non-redundant constraints (left) and fully redundant constraints (right)
for a subdomain edge in three dimensions, or a subdomain vertex (cross point) in two di-
mensions sharing four subdomains.

2.2.1.1 Tearing and interconnecting

We introduce separate unknowns ui ∈ V h
D(∂Ωi) for u on the subdomains and define the

working spaces

Wi := V h
D(∂Ωi) and W :=

∏
i∈I

Wi . (2.18)

Now we can compactly write

u := [ui]i∈I ∈W . (2.19)

Functions in the product space W are typically discontinuous across subdomain interfaces.
The continuity of the solution is enforced by constraints of the form

ui(xh) = uj(xh) for xh ∈ Γhij . (2.20)

In this work, we restrict ourselves to fully redundant constraints, i. e., all possible constraints
are used, cf. [184, Sect. 6.3.3]. They appear to be really advantageous in implementations due
to the full symmetry, see Figure 2.2, right. In the non-redundant case (cf. [184, Sect. 6.3.2]
and Figure 2.2, left) a minimal number of necessary constraints is used. For other variants,
such as orthogonal constraints, see e. g. Fragakis and Papadrakakis [65, 66]. Introducing
a jump operator B = [Bi]i∈I we can write all the constraints (2.20) in the compact form

B u = 0 , or equivalently,
∑
i∈I

Bi ui = 0 . (2.21)

In the standard nodal basis the operators B and Bi can easily be represented by signed
Boolean matrices, i. e., matrices with entries 0, 1 or −1. To be a bit more precise we define
the space of Lagrange multipliers

U := Rm , (2.22)

where m is the total number of constraints. In the following we continue our philosophy to
keep track of “dual” (i. e., functional) and “primal” spaces, even if they might seem to be
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the same in the discrete case. We choose the operator B to map into the space U∗ of “dual”
kind, as it evaluates the jump of u. Since the dual U∗ can be identified with Rm, the dual
pairing in U∗ × U is nothing else than the Euclidean inner product, i. e., 〈µ, λ〉 = (µ, λ)`2
for λ ∈ U , µ ∈ U∗.

Notation. The component of λ ∈ U (respectively µ ∈ U∗) which corresponds to the constraint
ui(xh) = uj(xh) at the node xh ∈ Γhij is denoted by λij(xh) (respectively µij(xh)).

We can now precisely define the jump operator B : W → U∗ by

(Bw)ij(xh) = wi(xh)− wj(xh) for xh ∈ Γhij , i > j , (2.23)

where we have chosen a fixed (but in principle arbitrary) sign of the jump. Let Bi : Wi → U∗

be defined by

(Biwi)jk(xh) =


wi(xh) if i = j
−wi(xh) if i = k
0 else

 for xh ∈ Γhjk , j > k . (2.24)

By construction we have 〈Bw, λ〉 =
∑

i∈I〈Biwi, λ〉 for all λ ∈ U . Apparently the compact
form (2.21) of the constraints has to be read as an equation in U∗. For a comprehensive
functional presentation of FETI type Lagrange multipliers we refer to Brenner [23].

In what follows we will always regard the approximate Steklov-Poincaré operators Si as
operators mapping from Wi to W ∗

i . In addition, we define S : W →W ∗ by

〈S w, v〉 =
∑
i∈I
〈Siwi, vi〉 for w, v ∈W , (2.25)

in short S := diag (Si), and the linear form f ∈W ∗ by

〈f, w〉 :=
∑
i∈I
〈fi, wi〉 for w ∈W , (2.26)

in short f := [fi]i∈I . With this notation we can write the minimization problem (2.16)
equivalently as the constrained minimization problem

1
2
〈S u, u〉 − 〈f, u〉 → min

u∈W, Bu=0
.

The corresponding saddle point problem reads as follows. Find (u, λ) ∈W × U :(
S B>

B 0

)(
u
λ

)
=
(
f
0

)
. (2.27)

This problem is uniquely solvable (up to adding elements from kerB> to λ) if and only if

kerS ∩ kerB = {0} , (2.28)

cf. Brezzi and Fortin [29]. Condition (2.28) holds true whenever the Dirichlet boundary
is non-empty. The solution u satisfies B u = 0, i. e., it is continuous across the subdomain
interfaces. We define the corresponding subspace of continuous functions by

Ŵ :=
{
w ∈W : Bw = 0

}
, (2.29)

and point out that it can be identified with V h
D(ΓS).
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Remark 2.6. The saddle point formulation (2.27) can also be derived algebraically from the
skeleton formulation without exploiting minimization problems. We show this alternative
derivation because it gives more insight on the meaning of the Lagrange multipliers. Let

ti := Si ui − fi

denote the representation of the normal flux on the subdomain boundary ∂Ωi in W ∗
i . From

the discrete skeleton formulation (2.14) we obtain that

〈t, v〉 =
∑
i∈I
〈ti, vi〉∂Ωi

= 0 ∀v ∈ Ŵ . (2.30)

We define the averaging operator E : W → Ŵ ⊂W by the relation

(E w)i(xh) =
1

|Nxh |
∑
j∈N

xh

wj(xh) for xh ∈ ∂Ωh
i \ ΓD , w ∈W , (2.31)

where Nxh := {i ∈ I : xh ∈ ∂Ωi}, i. e., the index set of the subdomains sharing the node
xh ∈ ΓhS . Obviously, E is a projection onto the space Ŵ . Hence, we can represent v by E w
for some w ∈ W . Therefore, condition (2.30), which states that the fluxes are continuous,
can be written as 〈t, E w〉 = 0 or equivalently 〈E>t, w〉 = 0. The complete set of equations
for (u, t) reads

S u− t = f in W ∗ , (2.32)
B u = 0 in U∗ , (2.33)

E>t = 0 in W ∗ . (2.34)

In order to get rid of condition (2.34) we represent the continuous flux t by t = −B>λ for
some Lagrange multiplier λ ∈ U . This is indeed possible because the condition E>t = 0
implies that t is in rangeB>. Condition (2.34) is now automatically satisfied because BE = 0
in U∗ and consequently E>B> = 0 in W ∗. Our set of equations transforms to(

S B>

B 0

)(
u
λ

)
=
(
f
0

)
,

which is exactly (2.27). Under this perspective, the Lagrange multipliers themselves can be
interpreted as normal fluxes. For such an interpretation in a mechanical context see Rixen
and Farhat [155, 156].

2.2.1.2 Singular local Neumann problems – A projection

In the usual theory of iterative substructuring methods, a floating subdomain is defined as a
subdomain Ωi whose boundary ∂Ωi does not intersect the Dirichlet boundary ΓD. In order
to use this concept also for the all-floating methods in Section 2.2.2 and the FETI/BETI
methods for unbounded domains in Chapter 3, we generalize the standard definition a bit.

Definition 2.7 (floating subdomain). A subdomain Ωi is by definition a floating subdomain
if Si : Wi → W ∗

i is singular, otherwise it is a non-floating subdomain. We introduce the
index set corresponding to the floating subdomains,

Ifloat :=
{
i ∈ I : Si is singular

}
.
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In the case of our potential equation, the pure Neumann problem on a floating subdomain
is uniquely solvable up to the constant function, and so

kerSi = span{1∂Ωi
} , rangeSi =

{
v ∈W ∗

i : 〈v, 1∂Ωi
〉 = 0

}
∀i ∈ Ifloat ,

kerSi = {0} , rangeSi = Wi ∀i 6∈ Ifloat .
(2.35)

Consequently, a solution u in the first equation of (2.27) exists if and only if f − B>λ ∈
rangeS. This compatibility condition will lead to the introduction of a projection P . We
introduce operators

Ri : R →Wi :
{
ξi 7→ ξi 1∂Ωi

for i ∈ Ifloat ,
ξi 7→ 0 else,

(2.36)

such that rangeRi = kerSi, and we define R : Z → kerS by R = diag (Ri) where

Z :=
{
ξ ∈ Rs : ξi = 0 ∀i 6∈ Ifloat

}
. (2.37)

For i ∈ Ifloat, let S†i denote an arbitrary pseudoinverse of Si and set S†i = S−1
i for i 6∈ Ifloat,

as well as S† := diag (S†i ). We will discuss later on how such pseudoinverses can be applied
efficiently. With these considerations we obtain from (2.27) that

ui = S†i (fi −B>
i λ) +Ri ξi , (2.38)

for some ξ ∈ Z under the compatibility condition

〈fi −B>
i λ, 1∂Ωi

〉 = 0 ∀i ∈ Ifloat ,

or equivalently, R>i (fi −B>
i λ) = 0 ∀i ∈ I . (2.39)

For a floating subdomain, the term Ri ξi in (2.38) is the constant that we need to add in
order to parameterize all possible solutions. For a non-floating subdomain Ωi, the term Ri ξi
in (2.38) and the compatibility condition (2.39) are of course meaningless. Both could be
dropped but we keep them to have a unified notation. With the abbreviations

F := B S†B> , G := BR , d := B S† f , e := R>f , (2.40)

condition (2.39) reads
e−G>λ = 0 .

Using formula (2.38), the variable u can be expressed in terms of λ and ξ, and the continuity
condition B u = 0 transforms to

d− F λ+Gξ = 0 .

We can therefore reformulate problem (2.27) as follows. Find (λ, ξ) ∈ U × Z such that(
F −G
G> 0

)(
λ
ξ

)
=
(
d
e

)
. (2.41)

Once solved, the solution u is given by (2.38). In order to satisfy the second equation (i. e.,
the compatibility condition), we introduce the projection P : U → kerG> ⊂ U ,

P = I −QG (G>QG)−1G> , (2.42)
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where the SPD operator Q : U∗ → U is yet to be specified. For projections of this type
see also Section 1.1.2. Note that G>QG is the Galerkin projection of B>QB onto kerS.
Because of (2.28), i. e., kerS ∩ kerB = {0}, the operator G is injective. Hence, the operator
G>QG is SPD as long as Q is SPD on rangeG. The operator P projects to the subspace

V := {λ ∈ U : 〈B z, λ〉 = 0 ∀z ∈ kerS} = kerG> = rangeP

= {λ ∈ U : B>λ ∈ rangeS} ,
(2.43)

which we call the space of admissible Lagrange increments following Farhat, Chen, and
Mandel [58]. In case f = 0, this is the subspace of U where the compatibility condition
(2.39) is fulfilled. In general, if we fix a particular λ0 ∈ U with G>λ0 = e, the solution λ of
(2.41) can be represented by λ = λ0 + λ̃ for some λ̃ ∈ V . In the following we use

λ0 := QG (G>QG)−1e . (2.44)

In the spirit of Galerkin we can test the first equation in (2.41) with trial functions in V
which yields the following problem: Find λ̃ ∈ V such that

P>F λ̃ = P>(d− F λ0) . (2.45)

The variable ξ has disappeared because P>G = 0. Once equation (2.45) is solved, the
original variables λ and ξ can be recovered from the relations

λ = λ0 + λ̃ and ξ = (G>QG)−1G>Q (F λ− d) , (2.46)

where the second formula can be derived by testing the first equation in (2.41) with the
remaining trial functions, i. e., applying (I − P>) to it. For later purposes we define

V ′ :=
{
µ ∈ U∗ : 〈B z, Qµ〉 = 0 ∀z ∈ kerS

}
= rangeP> , (2.47)

such that P> : U∗ → V ′ ⊂ U∗. It can be shown that V ′ is isomorphic to V .
The following lemma shows that problem (2.45) is in a certain sense SPD. Before, we

define the spaces

Ṽ := V/ kerB> , and Ṽ ′ := V ′ ∩ rangeB . (2.48)

The space Ṽ is the factor space of V with respect to kerB>, where the redundancies in the
Lagrange multipliers are unified, cf. Tezaur [179, Sect. 3.1.4]. The following lemma would
be straightforward if rangeB = U and therefore Ṽ = V .

Lemma 2.8. Let F and P be defined as above. Then the operator P>F is SPD on the
subspace Ṽ .

Proof. First, from the definitions of F and P we see that F λ and P λ are invariant if we
add elements from kerB> to λ, and that P>F maps into rangeB = (kerB>)◦. These
considerations justify to work in the quotient factor. Secondly, we know from (2.43) that
B>λ ∈ rangeS for each λ ∈ Ṽ . Due to the fact that S† is SPD on rangeS, we obtain

〈P>F λ, λ〉 = 〈F λ, P λ〉 = 〈F λ, λ〉 = 〈S†B>λ, B>λ〉 > 0 ∀λ ∈ Ṽ \ {0} ,

which shows that P>F is SPD on Ṽ .
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As a consequence of the above lemma, problem (2.45) can be solved using a precon-
ditioned conjugate gradient subspace iteration. Of course, preconditioners accelerate the
method. All FETI type preconditioners have the form

P M−1 , (2.49)

where the operator M−1 : U∗ → U is a suitable preconditioner for F . The projection P is
necessary to keep the search directions in the space V . Since

λ ∈ V =⇒ P M−1P>F λ = (P M−1P>)(P>F P )λ ,

the preconditioned operator is the product of two symmetric operators and can be analyzed
in the usual framework. Once problem (2.45) is solved, the actual solution u can finally
be recovered using formulae (2.46) and (2.38). Note that even if λ is only unique up to an
element from kerB>, the solution u is always unique. The crucial ingredients of the method
are the choices of Q and M−1 above. If chosen in the right way the method will be (i)
only weakly depending on the local problem size, (ii) robust with respect to the number s
of subdomains, and (iii) robust with respect to the values of the coefficients αi.

2.2.1.3 Preconditioning

In order to define a suitable preconditioner M−1 for F we first need to introduce some
functions and operators, among them the weighted counting functions δ†j which play an
important role in balancing Neumann-Neumann methods, cf. Toselli and Widlund [184,
Section 6.2.1]. For each j ∈ I we define the function δ†j ∈ V h(ΓS) by

δ†j(x
h) :=


αj∑

k∈N
xh

αk
for xh ∈ ∂Ωh

j ,

0 for xh ∈ ΓhS \ ∂Ωh
j ,

(2.50)

where Nxh := {i ∈ I : xh ∈ ∂Ωi}, i. e., the index set of the subdomains sharing the node
xh ∈ Γh. The union of all these functions provides a partition of unity on the skeleton. For
each subdomain i ∈ I we define a diagonal scaling operator Di : U∗ → U by

(Di µ)ij(xh) := δ†j(x
h)µij(xh) for µ ∈ U∗ , xh ∈ Γhij , (2.51)

where all other components are set to zero. We define the operator BD : W ∗ → U by

BD :=
∑
i∈I

DiBi JWi . (2.52)

Here, JWi denotes the Riesz isomorphism with respect to the Euclidean inner product in the
standard nodal basis, i. e.,

JWi : W ∗
i →Wi : f 7→

∑
xh∈∂Ωh

i

〈f, ϕxh〉ϕxh , (2.53)

where ϕxh is the basis function corresponding to the node xh ∈ ∂Ωh
i . In matrix-vector

notation, JWi is the identity matrix and BD = [D1B1| . . . |DsBs]. The preconditioner is
now chosen to be

M−1 = BD S B
>
D . (2.54)
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Remark 2.9. For non-redundant Lagrange multipliers, the operator BD reads

BD = (BD−1B>)−1BD ,

where D : W ∗ → W is a diagonal scaling operator similar to the Di. For an efficient algo-
rithmic construction of BD see, e. g., Of [138]. In either case, redundant or non-redundant,
the operator B>

D can be shown to be a pseudoinverse of B, such that BB>
DB = B and

BD B
>BD = BD, see Mandel, Dohrmann, and Tezaur [133] and Lemma 2.16 later on.

Remark 2.10. Each block Si in S appearing in the preconditioner (2.54) may be replaced
by the hypersingular operator on ∂Ωi since it is spectrally equivalent to Si, even for a
FEM subdomain Ωi. The resulting preconditioner is then called scaled hypersingular BETI
preconditioner, cf. Langer and Steinbach [118, 119].

2.2.1.4 The operator Q

According to Klawonn and Widlund [109], the linear operator Q : U∗ → U is either set
to M−1 or is chosen as a diagonal matrix. In the second case we set

(Qµ)ij(xh) := min(αi, αj) qij(xh)µij(xh) for µ ∈ U∗ , (2.55)

where qij(xh) = min(qi(xh), qj(xh)) and

qi(xh) :=

 (1 + log(Hi/hi))
h2

i
Hi

if xh lies on a face Fi

hi if xh lies on an edge Ei or a vertex Vi

 if d = 3 ,

qi(xh) :=

{
(1 + log(Hi/hi)) hi

Hi
if xh lies on an edge Ei

1 if xh is a vertex Vi

}
if d = 2 .

(2.56)

Note that if Hi ' Hj and hi ' hj for neighboring subdomains Ωi and Ωj , then we have
also qi(xh) ' qj(xh). This diagonal choice of Q mimics the action of M−1 when restricted
to rangeG, and it will be better understood in the proof of the condition number estimate.
Nevertheless, in the following remark we inspect the structure of the operator G>QG which
appears in the projections P and P>.

Remark 2.11. Let Q be chosen according to (2.55)–(2.56) and let G denote the connectivity
graph whose nodes correspond to the subdomains Ωi with an edge between two nodes when-
ever the corresponding subdomains are neighboring, cf. Figure 2.3. Recall that G = BR
and that R : Z → kerS with

Z =
{
ξ ∈ Rs : ξi = 0 ∀i 6∈ Ifloat

}
.

We can think of elements from Z as discrete functions on the nodes of G which satisfy homo-
geneous boundary conditions at the nodes which correspond to the non-floating subdomains,
cf. Figure 2.3. Using the definition of the jump operator B, we find that

〈G>QGy, z〉 =
∑
i≥j

Γij 6=∅

(yi − yj)
{

min(αi, αj)
∑

xh∈Γh
ij

qij(xh)
}

︸ ︷︷ ︸
=:Qij

(zi − zj) ∀y, z ∈ Z .
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Figure 2.3: Left: Subdomains with Dirichlet boundary. Right: Corresponding connectivity
graph G.

This bilinear form corresponds to the (sparse) matrix induced by the graph Laplacian (see
e. g., Fiedler [64]) where we assign each edge between node i and j in G the weight Qij .
Thus, (G>QG)−1 solves a discrete Laplace problem on the connectivity graph, which acts as
a coarse problem for the FETI/BETI algorithm. Without this coarse problem, the method
would for sure suffer from a dependency on the number of subdomains. Assume that in three
dimensions each face Fi covers O((Hi/hi)2) mesh nodes and each edge Ei covers O(Hi/hi)
nodes. Then,

Qij '


min(αi, αj) (1 + log(Hi/hi))Hi if Ωi and Ωj share a subdomain face,
min(αi, αj)Hi if Ωi and Ωj share only a subdomain edge,
min(αi, αj)hi if Ωi and Ωj share only a subdomain vertex.

With the analogous assumptions in two dimensions we have

Qij '
{

min(αi, αj) (1 + log(Hi/hi)) if Ωi and Ωj share a subdomain edge,
min(αi, αj) if Ωi and Ωj share only a subdomain vertex.

We observe that vertex connections in three dimensions are weighted weaker than others,
and that connections between subdomains with large coefficients are in general weighted
stronger than others.

Remark 2.12. If the coefficients αi are all equal, or only moderately varying, one can
simplify the scaling operators Di by replacing all the αi by one. Then the functions δ†j still
form a partition of unity due to the node multiplicity involved. The scaling operator Q can
then simply be chosen as the identity matrix.

2.2.1.5 Summary of the standard one-level FETI/BETI method

Let us summarize the standard one-level FETI/BETI algorithm. To solve system (2.41),
we apply a projected preconditioned conjugate gradient method to the projected Lagrange
multiplier system (2.45) with a special initial guess λ0 given by (2.44). The actual solu-
tion u is then computed via the relations (2.46) and (2.38). In each step of the projected
PCG method, the application of F essentially means solving local (regularized) Neumann
problems, while the application of the preconditioner M−1 essentially means solving local
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Dirichlet problems. The projection steps P and P> involve the solution of a coarse prob-
lem given by G>QG. Implementation issues and the analysis of the method are treated in
Section 2.2.3 and Section 2.2.4, respectively.

Remark 2.13. The name one-level method refers to the specific kind of coarse problem,
not to the entire algorithm. On the contrary, two-level FETI methods were designed for
biharmonic and shell problems (Farhat, Chen, Mandel, and Roux [59], Farhat and
Mandel [54]) and, as we have already mentioned in the introduction, the dual-primal meth-
ods (FETI-DP, BETI-DP) end up with a completely different coarse problem.

2.2.2 Formulation of all-floating FETI/BETI methods

The starting point for the all-floating formulation is the non-homogenized minimization
problem (2.17), i. e.,∑

i∈I

{1
2
〈Si u, u〉∂Ωi

− 〈fi, u〉∂Ωi

}
→ min

u∈V h(ΓS), u|ΓD
=gD

.

In contrast to the standard one-level formulation, we will not incorporate the Dirichlet
conditions in the solution space but impose them as side conditions. Hence, we need new
definitions of the working spaces and operators. Nevertheless, we use the same notation as
in Section 2.2.1 because (i) there are only differences in details but not in the structure, (ii)
the context should always be clear, and (iii) we will give uniform statements concerning both
formulations later on. We define

Wi := V h(∂Ωi) , W :=
∏
i∈I

Wi , (2.57)

and we write

Si : Wi →Wi , S : W →W , fi ∈W ∗
i , and f ∈W ∗ (2.58)

for the corresponding Steklov-Poincaré operators and source functionals. As in the standard
one-level formulation we introduce separate unknowns ui for u and impose the continuity by
the constraints

ui(xh) = uj(xh) for xh ∈ Γhij . (2.59)

Additionally, we impose the (possibly inhomogeneous) Dirichlet boundary conditions by the
constraints

ui(xh) = gD(xh) for xh ∈ ∂Ωh
i ∩ ΓD . (2.60)

We define the space of Lagrange multipliers as U := Rm, where m is the total number of
constraints in (2.59) and (2.60). We can define a similar jump operator B : W → U∗ as
in Section 2.2.1 which evaluates additionally the jump on the Dirichlet interfaces ∂Ωi ∩ ΓD.
For λ ∈ U and µ ∈ U∗ let again λij(xh) and µij(xh) denote the components corresponding
to the constraint (2.59) at the node xh ∈ Γhij , respectively. Additionally, let λiD(xh) and
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µiD(xh) denote the components corresponding to the constraint (2.60) at the Dirichlet node
xh ∈ ∂Ωh

i ∩ ΓD. The operator B : W → U∗ is defined by{
(Bw)ij(xh) = wi(xh)− wj(xh) for xh ∈ Γhij , i > j

(Bw)iD(xh) = wi(xh) for xh ∈ ∂Ωh
i ∩ ΓD

}
for w ∈W . (2.61)

The operators Bi : Wi → U∗ are defined accordingly such that Bw =
∑

i∈I Biwi . We define
b ∈ U∗ by {

bij(xh) = 0 for xh ∈ Γhij ,

biD(xh) = gD(xh) for xh ∈ ∂Ωh
i ∩ ΓD .

(2.62)

In other words b = B g̃D, where (g̃D)i is the extension by zero of gD |ΓD∩∂Ωi
to ∂Ωi with

respect to the nodal basis. We can summarize all the constraints in the compact form

B u = b , (2.63)

to be read as an equation in U∗. Note that

Ŵ :=
{
w ∈W : Bw = 0

}
(2.64)

is the space of continuous functions which satisfy the homogeneous Dirichlet boundary con-
ditions. Thus it coincides exactly with the corresponding space from the standard one-level
formulation. Using the same tearing and interconnecting technique as in Section 2.2.1, we
can derive the corresponding dual formulation: Find (u, λ) ∈W × U such that(

S B>

B 0

)(
u
λ

)
=
(
f
b

)
. (2.65)

Remark 2.14. As in the standard one-level formulation, the saddle point problem (2.65)
can be derived directly from the skeleton formulation (2.14). We define the normal fluxes
ti ∈W ∗

i by
ti := Si ui − fi ,

and t ∈W ∗ by 〈t, v〉 :=
∑

i∈I〈ti, vi〉∂Ωi
. As in Remark 2.6 we define the averaging operator

E : W → Ŵ ⊂W by

(E w)i(xh) =

{
1

|N
xh |
∑

j∈N
xh
wj(xh) for xh ∈ ∂Ωh

i \ ΓD ,

0 for xh ∈ ∂Ωh
i ∩ ΓD ,

(2.66)

for w ∈ W . Again, E is a projection onto Ŵ and it satisfies the identity BE = 0. Note
that the space V h

D(ΓS) can be identified with Ŵ and the skeleton formulation (2.14) yields
the condition 〈t, v〉 = 0 ∀v ∈ Ŵ . Since each v ∈ Ŵ can be represented by E ṽ for some
ṽ ∈W , the complete set of equations reads

S u− t = f in W ∗ , B u = b in U∗ , E>t = 0 in W ∗ .

The last condition can be eliminated introducing λ ∈ U with B>λ = −t, which leads to
problem (2.65).
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Since the none of the local spaces Wi incorporates any Dirichlet boundary conditions, Si
always is singular, i. e.,

kerSi = span{1∂Ωi
} , rangeSi = {v ∈W ∗

i : 〈v, 1∂Ωi
〉 = 0} ∀i ∈ I . (2.67)

Hence, all subdomains are floating in the sense of Definition 2.7. Also intuitively, imposing
the Dirichlet boundary conditions by the Lagrange multipliers, all subdomains decouple from
the Dirichlet boundary – they “float”, cf. Figure 2.1. For each i ∈ I, define

Ri : R →Wi : ξi 7→ ξi 1∂Ωi
, (2.68)

such that R = diag (Ri) : Rs → kerS, and let S†i be an arbitrary pseudoinverses of Si.
Analogously to Section 2.2.1, and with the abbreviations

F := B S†B> , G := BR , d := B S† f − b , e := R>f , (2.69)

(note that now d includes b) we arrive at the dual formulation(
F −G
G> 0

)(
λ
ξ

)
=
(
d
e

)
. (2.70)

and the projected equation

P>F λ̃ = P>(d− F λ0) , (2.71)

where P = I − QG (G>QG)−1G> with Q : U∗ → U specified below. The subspaces of
admissible Lagrange increments read

V :=
{
λ ∈ U : 〈B z, λ〉 = 0 ∀z ∈ kerS

}
(2.72)

=
{
λ ∈ U : 〈B>

i λ, 1∂Ωi
〉 = 0 ∀i ∈ I

}
,

V ′ :=
{
µ ∈ U∗ : 〈B z, Qµ〉 = 0 ∀z ∈ kerS

}
. (2.73)

Lemma 2.15. The operator P>F is SPD on the factor space Ṽ = V/ kerB>.

Proof. Analogously to Lemma 2.8.

The preconditioner for P>F is chosen to be P M−1 with

M−1 := BD S B
>
D :=

∑
i∈I

DiBi JWi Si JWi B
>
i Di . (2.74)

For the scaling operators Di : U∗ → U we can use the definition (2.51) from Section 2.2.1 and
specify the additional values (Di µ)iD we need for the all-floating formulation. To summarize,{

(Di µ)ij(xh) := δ†j(x
h)µij(xh) ∀xh ∈ Γhij

(Di µ)jD(xh) := µjD(xh) ∀xh ∈ ∂Ωh
j ∩ ΓD

}
for µ ∈ U∗ , (2.75)

with the weighted counting functions δ†j(x
h) defined according to (2.50). Note that the factor

in front of µjD(xh) in the second line is 1 (although in general δ†j(x
h) 6= 1 for xh ∈ ∂Ωh

j ∩ΓD)
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because the Dirichlet constraints are imposed locally on each subdomain. As in the standard
one-level method, each block Si in the preconditioner (2.74) may be replaced by the local
hypersingular operator. Analogously to Section 2.2.1, the operator Q : U∗ → U is either set
to M−1 or chosen as{

(Qµ)ij(xh) := min(αi, αj) qij(xh)µij(xh) for xh ∈ Γhij ,

(Qµ)iD(xh) := αi qi(xh)µiD(xh) for xh ∈ ∂Ωh
i ∩ ΓD ,

}
for µ ∈ U∗ , (2.76)

with qij(xh) and qi(xh) defined as in the standard one-level formulation, i. e.,

qi(xh) :=

 (1 + log(Hi/hi))
h2

i
Hi

if xh lies on a face Fi

hi if xh lies on an edge Ei or a vertex Vi

 if d = 3 ,

qi(xh) :=

{
(1 + log(Hi/hi)) hi

Hi
if xh lies on an edge Ei

1 if xh is a vertex Vi

}
if d = 2 ,

qij(xh) := min(qi(xh), qj(xh)) . (2.77)

We see that structurally, the standard one-level and the all-floating methods do not differ
from each other.

2.2.3 Implementation of one-level FETI/BETI methods

In this subsection we discuss implementation issues of the standard one-level and the all-
floating FETI/BETI methods described above. The entire algorithm is displayed in Algo-
rithm 1. The meaning of highlighted variables (boldface such as λ(n) and underlined such
as r(n)) will be explained later on.

2.2.3.1 Mesh and topology information

In addition to the subdomain meshes and the usual coupling information, the algorithm
needs the explicit information on the subdomain faces, edges, and vertices if Q is chosen in
diagonal form according to (2.55)–(2.56) or (2.76)–(2.77). Either this topological information
is provided together with a coarse mesh and updated during refinement, or it is generated
from an already refined mesh by combinatorial means, see Rheinbach [154, Sect. 3.3.3].

2.2.3.2 Implementation of the underlying operators

Jump operators. The operators B, B>, BD and B>
D need not be stored but are encoded as

routines which perform their application (matrix-by-vector multiplication).

Coarse space restriction/prolongation operators. Also the operators R and R> are not
stored in matrix form but encoded directly.
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Algorithm 1: Standard one-level / all-floating PCG FETI/BETI algorithm.
Input: f (and b for all-floating), ε, nmax

Output: u
e = R>f
d = B S† f ( d = B S† f − b for all-floating)
λ(0) = QG(G>QG)−1 e
r(0) = P>(d− F λ(0))
z(0) = P M−1 r(0)

s(0) = z(0)

β0 = 〈r(0), z(0)〉
n = 0
while βn ≥ β0 · ε and n < nmax do

x(n) = P>F s(n)

αn = 〈x(n), s(n)〉
α = βn/αn
λ(n+1) = λ(n) + α s(n)

r(n+1) = r(n) − αx(n)

z(n+1) = P M−1 r(n+1)

βn+1 = 〈r(n+1), z(n+1)〉
β = βn+1/βn
s(n+1) = z(n+1) + β s(n)

n = n+ 1
end
ξ = (G>QG)−1G>Q (F λ(n) − d)
u = S†(f −B>λ(n)) +Rξ



66 CHAPTER 2. HYBRID ONE-LEVEL METHODS

Local FEM Neumann problems. For a each i ∈ IFEM, the action vi = S†i fi for a given
fi ∈ rangeSi is performed as follows: Let vB and fB denote the vector representations of vi
and fi, respectively, with respect to the standard nodal basis. Let Ki denote the full FEM
stiffness matrix on Ωi with respect to the same basis, grouped into DOFs on the subdomain
boundary ∂Ωi (subscript “B”) and DOFs in the interior of the subdomain Ωi (subscript “I”),
and Si the Schur complement of Ki with respect to the interior DOFs, i. e.,

Ki =

(
K(i)
BB K(i)

BI

K(i)
IB K(i)

II

)
, Si = K(i)

BB −K(i)
BI

[
K(i)
II

]−1K(i)
IB .

By definition, Si is the matrix representation of Si. We search for some vB such that
Si vB = fB. Introducing formally the auxiliary vector vI = −

[
K(i)
II

]−1K(i)
IB vB, we can

rewrite the equation as (
K(i)
BB K(i)

BI

K(i)
IB K(i)

II

)(
vB
vI

)
=
(

fB
0

)
,

which corresponds to solving a local problem with the full stiffness matrix Ki. In case of a
non-floating subdomain, some of the unknowns in vB are zero due to the definition of the
space Wi, the corresponding rows and columns can be deleted, and the resulting matrix is
SPD. For the floating subdomains, the solution [v>B|v>I ]> is unique only up to a constant.
Both types of equations can be solved as discussed in Section 1.5.2. The factorizations of
the corresponding matrices can be built and stored in the preprocessing phase.

Local BEM Neumann problems. For each i ∈ IBEM, the action vi = S†i fi for a given
f ∈ rangeSi is performed as follows: Let v and f denote the vector representations of vi
and fi, respectively, in the standard nodal basis. Let Di, Ki, and Vi denote the matrix
representations of the hypersingular operator, the double layer potential, and the single
layer potential, respectively, and let Mi be the mass matrix from Section 1.5.3. Then Si =
Di+(1

2M
>
i +K>

i )V−1
i (1

2Mi+Ki) is per construction the matrix representation of Si. Instead
of solving Siv = f , we formally introduce the auxiliary variable t = V−1

i (1
2Mi + Ki v), and

equivalently solve the saddle point problem(
Di

1
2M

>
i + K>

i
1
2Mi + Ki −Vi

)(
v
t

)
=
(

f
0

)
,

which is a standard BEM problem corresponding to the local Neumann problem. If the
subdomain Ωi is floating, we can regularize the saddle point problem by regularizing the
hypersingular operator Di similar as in the FEM case. As briefly described in Section 1.5.3
the matrices Di, Ki, and Vi can be approximated in data-sparse form using H-matrices.
Thus, also the matrix corresponding to the above, possibly regularized, saddle point problem
is represented by an H-matrix, and for each BEM subdomain its LU -factorization in the H-
arithmetic can be built and stored in quasi-optimal time and memory complexity in the
preprocessing phase.

Local FEM Dirichlet problems. For each i ∈ IFEM, the action fi = Si vi for a given vi is
performed as follows: Let fB and vB denote the vector representations of fi and vi with
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respect to the standard nodal basis, and let Si and Ki be defined as above. Then, instead
of forming the Schur complement and applying fB = Si vB we solve the SPD system

K(i)
II vI = −K(i)

IB vB

for vI by a direct solver, and set fB = K(i)
BB vB + K(i)

BI vI . The factorization of K(i)
II is also

built and stored in the preprocessing phase.

Local BEM Dirichlet problems. For each i ∈ IBEM, the action of fi = Si vi for a given vi is
performed as follows: Let f and v denote the vector representations of fi and vi. Then we
solve the SPD system

Vi t = (1
2Mi + Ki) v

for t, and set f = Di v + (1
2M

>
i +K>

i ) t. An LU -factorization of Vi in the H-arithmetic can
be built and stored in the preprocessing phase.

Operator F and preconditioner M−1. Since F = B S†B> and M−1 = BD S B
>
D we see that

the action of these operators mainly means solving local Dirichlet and Neumann problems
as described above.

Coarse problem. Let G and Q denote the matrix representations of G and Q. As discussed
in Remark 2.11, the matrix G>QG is sparse and its sparsity pattern is determined by the
connectivity graph of the subdomain partition where each floating subdomains is a node of
that graph. Once G>QG is assembled, its factorization (in the preprocessing phase) can
be done very efficiently, as long as the number of subdomains is not very large. If we set
Q = M−1 an efficient assembly of G>QG is tricky, and furthermore the extra actions of
Q during the FETI/BETI algorithm involve the solution of extra local Dirichlet problems.
Therefore, it is much more attractive to choose Q as the diagonal matrix defined by (2.55)–
(2.56) for standard one-level methods, or (2.76)–(2.77) for all-floating methods. In that case,
the action of Q and the assembly of G>QG are of course cheap.

2.2.3.3 Stability with respect to redundancy

In Algorithm 1 we have highlighted the variables in the spaces U and U∗ in the following
way: The boldface variables λn), z(n), and s(n) correspond to unknowns in V or λ0 + V .
The underlined variables x(n) and r(n) correspond to unknowns in Ṽ ′ = V ′ ∩ rangeB. The
key observations is that all operators applied to the boldface variables, such as F and B>,
are invariant if we add elements from kerB>, and each inner product of the form 〈x(n), s(n)〉
is invariant if we add terms from kerB> to s(n) since x(n) ∈ rangeB. Furthermore, all
terms assigned to the underlined variables, such as r(n) really stay in Ṽ ′ = V ′ ∩ rangeB.
It can be shown by induction that the variables λ(n), z(n), and s(n) are always sums of
elements in range (QB) and rangeBD, i. e., sums of elements where the redundant parts
are normalized. Therefore, no serious numerical stability problems will occur during the
FETI/BETI iteration.
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2.2.3.4 Parallelization

Algorithm 1 can easily be parallelized. In the simplest case each processor is responsible for
one subdomain, but also the multi-subdomain case is possible. Each processor has to keep
only the local mesh(es) with some information for communication. Such local meshes are
either generated from a global mesh using a mesh partitioner such as METIS (see Karypis
and Kumar [95, 96]). Alternatively, one can start from a geometric domain decomposition,
mesh and distribute the skeleton ΓS , and build the volume meshes in parallel.

The Lagrange parameters are global and have to be parallelized using the concept of
accumulated and distributed vectors. We would like to briefly sketch this concept using a
simple example. Below we see a sketch of a FETI method with nine Lagrange multipliers
between four subdomains, each of them assigned to one processor. Due to the topology, two
processors must handle six of the Lagrange multipliers, the others three of them.

proc I proc II proc III proc IV

1

2

3

4

5

6

8

9

7

The table below shows an accumulated and a distributed vector according to this setting:
In the accumulated case, the entries of the vector of each processor match. In the distributed
case, the entries of the local vectors must be summed up to the real value. For details we
refer, e. g., to Haase [77].

global index accumulated distributed global vector
1 9 9 – – 5 4 – – 9
2 8 8 – – 3 5 – – 8
3 7 7 – – 6 1 – – 7
4 – 6 6 – – 3 3 – 6
5 – 5 5 – – 3 2 – 5
6 – 4 4 – – 3 1 – 4
7 – – 3 3 – – 1 2 3
8 – – 2 2 – – -1 3 2
9 – – 1 1 – – 0 1 1

processor I II III IV I II III IV

The Lagrange variables in U and U∗ in Algorithm 1 are encoded as accumulated and
distributed vectors: The boldface variables, such as λ(n), correspond to accumulated vectors,
whereas the underlined variables, such as r(n), correspond to distributed vectors. The only
communication is necessary for the evaluation of the inner products, the preconditioner, the
projections, and the operations involving the coarse solver (G>QG)−1. For a more detailed
discussion see Of [138]. If the data of the problem is kept locally as well, some extra
communication is needed to provide the coefficient information for the weighted counting
functions δ†j .
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2.2.3.5 Fast multipole and inexact BETI methods

We would like to mention, that the need of the assembling and the H-LU factorization of
the BEM matrices can be circumvented using special inexact formulations introduced by
Langer, Of, Steinbach, and Zulehner [122, 123], and which are related to an earlier
work by Klawonn and Widlund [108]. There, the FETI/BETI system is rewritten as a
two-fold saddle-point problem. For a pure BETI formulation it has the form −V 1

2I +K 0
1
2I +K> D B>

0 B

 t
u
λ

 =

 0
f
0

 , (2.78)

with the block operators V = diag (Vi), D = diag (Di) (hyper singular operators), etc.
Using standard preconditioners for the single layer potentials Vi and the Steklov-Poincaré
operators Si, and using the hypersingular BETI preconditioner, one can come up with an
iterative method for the two-fold saddle-point problem which requires only the application
of boundary element matrices, such as it is offered by the fast multipole method. The
same technique can analogously be applied to hybrid FETI/BETI methods, as it is briefly
discussed in Langer and Pechstein [117].

2.2.4 Analysis of one-level FETI/BETI methods

In this subsection we show that the FETI/BETI methods described above are well-defined,
and that the corresponding PCG subspace iteration is quasi-optimal. As discussed in Sec-
tion 1.5.2.3, the convergence of the PCG method is determined by the condition number κ
of the preconditioned system. In the case of one-level FETI/BETI we have to restrict this
condition number to the subspace Ṽ . Following Klawonn and Widlund [109] we show
that

κ ≤ C max
i∈I

(1 + log(Hi/hi))2 ,

where the constant C is independent of Hi, hi, the number of subdomains, and the values
αi of the coefficient. For a self-contained presentation we have included all the proofs in this
work. Throughout the following analysis we extensively use the following (semi-)norms

|wi|Si := 〈Siwi, wi〉1/2 , for wi ∈ V h(∂Ωi) , (2.79)

|w|S :=
(∑
i∈I

|wi|2Si

)1/2
for w ∈

∏
i∈I

V h(∂Ωi) . (2.80)

2.2.4.1 Basic results on some of the FETI/BETI operators

First, we show that the projections P and P> are well-defined, and that the operator M−1

is SPD on V ′ = rangeP>. An important role is played by the projection operator

PD := B>
DB , (2.81)

whose properties are summarized in the following two lemmas. The result for standard
one-level FETI methods was proved by Klawonn and Widlund [109], cf. [184].
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Lemma 2.16. The operator PD : W →W defined in (2.81) satisfies the identities

BM−1B> = P>
D S PD , (2.82)

B PD = B , (2.83)

for both the standard one-level and the all-floating formulation. Furthermore, ED := I −PD
is a projection to the subspace Ŵ , and can be evaluated by

(ED w)i(xh) :=


∑

j∈N
xh

δ†j(x
h)wj(xh) for xh ∈ ∂Ωh

i \ ΓD ,

0 for xh ∈ ∂Ωh
i ∩ ΓD .

(2.84)

In particular, ED w = w−PD w satisfies the homogeneous Dirichlet boundary conditions on
ΓD, and PD w vanishes at all non-coupling Neumann nodes.

Proof. The identity BM−1B> = P>
D S PD immediately follows from the definition of M−1

and PD. From the definition of Di, Bi, and BD we find that for v = B>
Dλ we have

vi(xh) =
∑
j∈N

xh

±δ†j(x
h)λij(xh) for xh ∈ Γhij ,

vi(xh) = λiD(xh) for xh ∈ ∂Ωh
i ∩ΓD in the all-floating case, and vi(xh) = 0 for non-coupling

Neumann nodes xh ∈ (∂Ωh
i ∩ ΓN ) \ Γ. Using the definition of the jump operator B and

respecting the signs correctly, we obtain the formula

(PD w)i(xh) =


∑

j∈N
xh

δ†j(x
h)
(
wi(xh)− wj(xh)

)
for x ∈ ∂Ωh

i \ ΓD ,

wi(xh) for xh ∈ ∂Ωh
i ∩ ΓD .

(2.85)

It immediately implies that PD = I − ED and therefore B PD = B −BED = B.

Lemma 2.17. For each µ ∈ rangeB we can find a function w ∈ rangePD such that µ = Bw.

Proof. Since µ ∈ rangeB, we can find a function ŵ ∈ W with µ = B ŵ. By Lemma 2.16,
B PD = B. Hence, setting w = PD ŵ, we have Bw = B PD ŵ = B ŵ = µ.

Remark 2.18. The weighted averaging operator ED plays an important role in the theory
of balancing Neumann-Neumann methods. If the coefficients αi are all equal to one, we have
ED = E with the operator E from Remark 2.6 for the standard one-level formulation, and
Remark 2.14 for the all-floating formulation.

For the diagonal choices of Q according to (2.55)–(2.56) or (2.76)–(2.77), the operator Q
is SPD per definition. Hence, G>QG is SPD, and therefore the projections P and P> are
well-defined. As the following lemma shows, G>QG is also SPD for the choice Q = M−1.
We note that this issue has neither been discussed in [109] nor [184].

Lemma 2.19. The operator G>M−1G is SPD, i. e.,

〈B z, M−1B z〉 > 0 ∀z ∈ kerS \ {0} .
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Proof. From the definitions (2.54) and (2.74), we see that M−1 is positive semi-definite.
To show the definiteness, assume that 〈B z, M−1B z〉 = 0 for some z ∈ kerS. Due to
identity (2.82) we obtain |PD z|2S = 0 which implies that PD z = z − ED z ∈ kerS and
consequently, ED z ∈ kerS. However, ED z ∈ kerB and kerS ∩ kerB = {0} imply that
ED z = 0. This means that the function z, which is piecewise constant on the subdomains, is
continuous across the subdomain interfaces and vanishes on the Dirichlet boundary. Since the
domain Ω is connected, there is no other possibility than z = 0, which shows the definiteness.

The next lemma follows [109] and shows that the preconditioner P M−1 is SPD on
Ṽ ′ = V ′ ∩ rangeB for both choices of Q.

Lemma 2.20. If Q is SPD on rangeG, then P M−1 is SPD on Ṽ ′, i. e.,

〈µ, M−1µ〉 > 0 ∀µ ∈ Ṽ ′ \ {0} .

Proof. From the definitions (2.54) and (2.74), we see that M−1 is positive semi-definite. To
show the definiteness on Ṽ ′, we assume that

〈µ, M−1µ〉 = 0 for some µ ∈ Ṽ ′.

According to Lemma 2.17 we can find a function w ∈ rangePD with µ = Bw. Our assump-
tion implies 〈µ, M−1 µ〉 = |PD w|2S = |w|2S = 0 and therefore w ∈ kerS. From the definition
of Ṽ ′ we conclude that

〈Bw︸︷︷︸
∈eV ′

, QB w︸︷︷︸
∈kerS

〉 = 0 .

Since Q is SPD on rangeG = B(kerS), we obtain that µ = Bw = 0 which shows the
definiteness.

2.2.4.2 The condition number estimate

Since we have seen that all operations in Algorithm 1 applied to elements in V are invariant
if we add elements from kerB>, we can identify all these elements using the factor space
Ṽ . To be accurate in notation we introduce the operator Π : V → Ṽ which performs this
identification. Lemma 2.8 and Lemma 2.15 show that the operator P>F : Ṽ → Ṽ ′ is SPD.
From Lemma 2.20 we can conclude that the operator ΠP M−1 : Ṽ ′ → Ṽ is SPD and has a
well-defined SPD inverse

M : Ṽ → Ṽ ′ . (2.86)

The condition number of the preconditioned operator ΠP M−1P>F : Ṽ → Ṽ can be ob-
tained by the Rayleigh quotient. We choose the inner product 〈M ·, ·〉 on the space Ṽ . If we
have bounds c1, c2 > 0 such that

c1 ≤ 〈

=I︷ ︸︸ ︷
M ΠP M−1 P>F λ, λ〉

〈M λ, λ〉
=

〈F λ, λ〉
〈M λ, λ〉

≤ c2 ∀λ ∈ Ṽ , (2.87)

then κ ≤ c2/c1.
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The next two lemmas, proved in [109], characterize the operators F and M , and the
space Ṽ ′. Recall our convention that writing supx∈X

a(x)
b(x) implicitly excludes those x from X

with a(x) = b(x) = 0.

Lemma 2.21. We have the identities

〈F λ, λ〉 = sup
w∈W

〈Bw, λ〉2

|w|2S
∀λ ∈ Ṽ , (2.88)

〈M λ, λ〉 = sup
µ∈eV ′

〈µ, λ〉2

〈µ, M−1 µ〉
∀λ ∈ Ṽ . (2.89)

Proof. The second identity (2.89) follows from Lemma 1.1 and Lemma 2.17. For the first
identity (2.88), recall that the pseudoinverse S† is SPD on rangeS and that B>λ ∈ rangeS.
Moreover, with W⊥ := range (S†|rangeS) we have W⊥ ⊕ kerS = W . Finally, by Lemma 1.1,

〈F λ, λ〉 = 〈B>λ, S†B>λ〉 = sup
w∈W⊥

〈B>λ, w〉2

|w|2S
= sup

w∈W⊥
z∈kerS

〈B (w + z), λ〉2

|w + z|2S
= sup

w∈W

〈B>w, λ〉2

|w|2S
,

where we have used that λ ∈ V .

Lemma 2.22. Let Q be SPD on rangeG and symmetric positive semi-definite on U∗. Then,
for any w ∈W , there exists a unique zw ∈ kerS such that B(w + zw) ∈ Ṽ ′. Moreover,

zw = argmin
z∈kerS

‖B (w + z)‖Q , and ‖B zw‖Q ≤ ‖Bw‖Q ,

where ‖µ‖Q := 〈µ, Qµ〉1/2. The mapping w 7→ −zw is a (linear) projection onto kerS =
rangeR which is orthogonal with respect to the inner product induced by B>QB.

Proof. Due to the definition of V ′, the element zw has to fulfill the equation

〈QB (w + zw), B z〉 = 0 ∀z ∈ kerS .

This is a Galerkin equation on the space kerS, and equivalent to the above minimization
problem because Q is SPD on rangeG. The solution zw is explicitly given by

zw = −R (G>QG)−1G>QBw ,

from which we see the linearity and the projection property. The minimizing property and
the inequality follow from the Galerkin orthogonality.

Until this point all the arguments were more or less algebraic and could be performed on
the operator level. The key result for the FETI/BETI condition number bound, Lemma 2.27,
however, needs deep insight in the structure of the underlying partial differential equation.
Its statement

|PD(w + zw)|2S . max
i∈I

(1 + log(Hi/hi))2 |w|2S ∀w ∈W ,
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was proved by Klawonn and Widlund [109] for the standard one-level FETI case, building
on a less general but pioneering proof by Mandel and Tezaur [131]. The standard one-
level FETI/BETI case can be found in Langer and Steinbach [118, 119]. The general
proof including the all-floating case will be given in Section 2.2.4.4. Before, we need some
extra assumptions on the subdomain partition. The first assumption basically ensures that
the subdomains are not very thin, cf. Toselli and Widlund [184, Assumption 4.3], Part 1,
and it is stronger than Assumption 2.1.

Assumption 2.23. Each subdomains is a union of a few simplices forming a bounded and
connected Lipschitz domain. The simplices altogether form a coarse, shape-regular, and
conforming triangulation TH of Ω. The number of simplices per subdomain is uniformly
bounded.

Remark 2.24. Assumption 2.23 is typical for iterative substructuring methods. It is of
course very restrictive to assume that each subdomain is composed of a few simplices, in
particular in view of mesh partitioning. Indeed, partitioning of unstructured meshes result
in subdomains where one cannot even ensure that they are uniform Lipschitz. Recently,
a new theory of domain decomposition methods for less regular subdomains was initiated
by Dohrmann, Klawonn, and Widlund [44, 45] using in particular the theory of John
domains (see Haj lasz [83] and the references therein). A complete analysis of FETI-DP
methods in the plane is given by Klawonn, Rheinbach, and Widlund [113]. The three-
dimensional case is still an open problem although there seem to be promising results [191].
We mention that one of the key tools for this theory is the Scott-Zhang quasi-interpolation
operator, see Section 1.5.2.5. In this thesis we will stick to Assumption 2.23, also because
we need uniform Lipschitz domains for the theory of boundary integral operators.

Assumption 2.23 implies that the number of subdomains sharing the same vertex, edge,
or face is uniformly bounded, and the number of vertices, edges, and faces of a subdomain
is uniformly bounded too.

The next assumption basically states that if a face intersects ΓD the intersection has
measure O(H2

i ) and is well-shaped, and if an edge intersects ΓD the intersection has measure
O(Hi) and is well-shaped too, see also [184, Assumption 4.3], Part 2. For simplicity, we
introduce the following little bit stronger assumption.

Assumption 2.25. The interface between the Dirichlet boundary ΓD and the Neumann
boundary ΓN is aligned with the subdomain partition.

With Definition 2.2 and Assumption 2.25, we find that ΓS \ (Γ ∪ ΓD) consists only of
faces (edges in two dimensions) which are part of the Neumann boundary ΓN .

The next assumption is only needed for the standard one-level method, and can be
dropped in the all-floating case.

Assumption 2.26. In case of the standard one-level formulation in three dimensions, we
have to assume that the intersection of a subdomain boundary ∂Ωi with the Dirichlet boundary
ΓD is either empty or at least a subdomain edge.

For the following lemma and theorem, let all the assumptions from above be fulfilled, in
particular Assumption 2.23, Assumption 2.25, and Assumption 2.26.
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Lemma 2.27. For the standard one-level or the all-floating method, let either Q be chosen
according to (2.55)–(2.56), respectively (2.76)–(2.77), or let Q = M−1. Then,

|PD (w + zw)|2S ≤ C max
i∈I

(1 + log(Hi/hi))2 |w|2S ∀w ∈W ,

where zw ∈ kerS is the unique element from Lemma 2.22 and the constant C is independent
of Hi, hi, the number of subdomains, and the values αi of the coefficient.

Proof. Postponed to Section 2.2.4.4

With this lemma, we can formulate the main theorem on the condition number of the
FETI/BETI algorithm, which is taken from [109].

Theorem 2.28. For the standard one-level or the all-floating method, let either Q be chosen
according to (2.55)–(2.56), respectively (2.76)–(2.77), or let Q = M−1. Then we have the
condition number bound

κ ≤ C max
i∈I

(1 + log(Hi/hi))2 ,

where the constant C is independent of Hi, hi, the number of subdomains, and the values αi
of the coefficient.

Proof. With the previous considerations it suffices to show the upper and lower bound in
(2.87).

Lower bound. Let µ ∈ Ṽ ′ be arbitrary. Due to Lemma 2.17 we can find a function
w ∈ rangePD with Bw = µ. From Lemma 2.21 and Lemma 2.16 we obtain that

〈F λ, λ〉 ≥ 〈Bw, λ〉2

|w|2S
=
〈µ, λ〉2

|PD w|2S
=

〈µ, λ〉2

〈Bw, M−1Bw〉
=

〈µ, λ〉2

〈µ, M−1µ〉
∀λ ∈ Ṽ . (2.90)

Since µ ∈ Ṽ ′ was arbitrary, this implies the desired lower bound with c1 = 1.
Upper bound. Let λ ∈ Ṽ be arbitrary but fixed. According to Lemma 2.22, for each

w ∈W there exists a unique zw ∈ kerS with B(w+ zw) ∈ Ṽ ′. It is also easy to see that the
set {B(w + zw) : w ∈W} is a non-trivial subset of Ṽ ′. We obtain

〈M λ, λ〉 Lemma 2.21= sup
µ∈eV ′

〈µ, λ〉2

〈µ, M−1µ〉
smaller space

≥ sup
w∈W

〈B(w + zw), λ〉2

〈B(w + zw), M−1B(w + zw)〉
zw∈kerS, λ∈eV

= sup
w∈W

〈Bw, λ〉2

|PD(w + zw)|2S
Lemma 2.27

≥ 1
C max

i∈I
(1 + log(Hi/hi))2

sup
w∈W

〈Bw, λ〉2

|w|2S
Lemma 2.21=

1
C max

i∈I
(1 + log(Hi/hi))2

〈F λ, λ〉 ,

which shows the desired upper bound with c2 = C max
i∈I

(1 + log(Hi/hi))2.

Remark 2.29. As shown in Brenner [23], the condition number bound from Theorem 2.28
is sharp in two dimensions. Sharp bounds for the closely related Neumann-Neumann method
in three dimensional can be found in Brenner and He [25].
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2.2.4.3 Technical tools

Recalling the characterization (2.85) of the PD operator,

(PD w)i(xh) =


∑

j∈N
xh

δ†j(x
h)
(
wi(xh)− wj(xh)

)
for x ∈ ∂Ωh

i \ ΓD ,

wi(xh) for xh ∈ ∂Ωh
i ∩ ΓD ,

we see that the operator delivers a weighted difference of wi and neighboring functions wj .
Obviously, the set of neighboring functions changes if we move, e. g., from a subdomain face
to a subdomain edge (see Definition 2.2). We can easily construct a function u ∈ W such
that (PD u)i is supported only on an edge by choosing u discontinuous across the edge and
continuous elsewhere. This observation suggests that we can estimate the face, edge, and
vertex contributions of PD (w+zz) separately without being too generous. Indeed, Brenner
and He [25] showed that the estimate in Theorem 2.28 is sharp. In order to separate the
contributions we define the following cut-off functions, according to [184, Section 4.6].

Definition 2.30 (Finite element cut-off functions).

• For a vertex Vi we define the function θVi ∈ V h(∂Ωi) as being 1 at the vertex Vi, and
zero on all other nodes.

• For an edge Ei we define θEi ∈ V h(∂Ωi) as being 1 at the nodes on the (open) edge Ei,
and zero on all other nodes.

• For a face Fi we define θFi ∈ V h(∂Ωi) as being 1 at the nodes on the (open) face Fi,
zero on all nodes.

Definition 2.31. Let Ih denote the nodal interpolator onto V h(Ωi) (resp. V h(∂Ωi)) which
is continuous in the H1-seminorm (resp. H1/2-seminorm) and in the L2-norm for quadratic
functions. See [184, Lemma 3.9].

Notation. We write Xi generically for a face, edge, or vertex on ∂Ωi. By the expressions∑
Xi

Ih(θXiwi) ,
∑
Xi⊂Γ

Ih(θXiwi) , and
∑

Xi⊂ΓD

Ih(θXiwi) ,

we mean that we sum over all faces, edges, and vertices on ∂Ωi, ∂Ωi ∩ Γ, and ∂Ωi ∩ ΓD,
respectively. In two dimensions, the faces are of course skipped.

The cut-off functions provide a partition of unity in the sense that∑
Xi

Ih(θXiu) = u ∀u ∈ V h(∂Ωi) . (2.91)

Definition 2.32 (discrete harmonic extension). For a function u ∈ V h(∂Ωi) let Hiu ∈
V h(Ωi) denote its discrete harmonic extension from ∂Ωi to Ωi such that

Hiu = argmineu∈V h(Ωi)eu|∂Ωi
=u

|ũ|H1(Ωi) . (2.92)
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Due to the minimization property of the FEM Schur complement (Lemma 1.32) we have

|u|2Si
= αi |Hiu|2H1(Ωi)

for i ∈ IFEM . (2.93)

In order to work with discrete harmonic extensions in the BEM domains as well, we introduce
auxiliary quasi-uniform and shape-regular triangulations T (Ωi) with mesh parameter hi for
i ∈ IBEM. Due to the FEM-BEM equivalence from Lemma 1.33, we have

|u|2Si
' αi |Hiu|2H1(Ωi)

for i ∈ IBEM . (2.94)

Notation. To be short, we write Hi(θXiu) for Hi(Ih(θXiu)).

Notation. In the sequel we use a scaled H1-norm defined by

‖u‖2
H1(Ωi)

= |u|2H1(Ωi)
+

1
H2
i

‖u‖2
L2(Ωi)

, (2.95)

which helps to keep track of the explicit dependency of the following estimates on the sub-
domain diameters Hi.

The following two lemmas give several estimates on discrete spaces. The indicated refer-
ences are to be understood as sources where the corresponding estimates can be found, but
not necessarily the original sources.

Lemma 2.33. In two dimensions, for all functions u ∈ V h(Ωi) we have

(i) |Hi(θViu)|2H1(Ωi)
. |u(Vi)|2 ≤ ‖u‖2

L∞(Ωi)
(trivially),

(ii) ‖u‖2
L∞(Ωi)

. (1 + log(Hi/hi)) ‖u‖2
H1(Ωi)

[184, Lemma 4.15],

(iii) |Hi(θEiu)|2H1(Ωi)
. (1 + log(Hi/hi))2 ‖u‖2

H1(Ωi)
,

(iv) |HiθEi |2H1(Ωi)
. (1 + log(Hi/hi)) .

For inequality (iii) we refer, e. g., to Mandel and Brezina [129, Lemma 4.5] which
provides (iv) as a byproduct. The first inequalities of that kind were probably given in
Bramble, Pasciak, and Schatz [19]. See Brenner and Sung [28] for sharp estimates.

Lemma 2.34. In three dimensions, for all functions u ∈ V h(Ωi) we have

(i) |Hi(θEiu)|2H1(Ωi)
. ‖u‖2

L2(Ei)
[184, Lemma 4.19],

(ii) ‖u‖2
L2(Ei)

. (1 + log(Hi/hi)) ‖u‖2
H1(Ωi)

[184, Lemma 4.16],

(iii) |Hi(θFiu)|2H1(Ωi)
. (1 + log(Hi/hi))2 ‖u‖2

H1(Ωi)
[184, Lemma 4.24],

(iv) |HiθFi |2H1(Ωi)
. (1 + log(Hi/hi))Hi [184, Lemma 4.25].

For a vertex Vi in three dimensions, we see that u(Vi)ϕVi is a discrete extension of
Ih(θViu), where ϕVi denotes the nodal finite element basis function corresponding to Vi.
Therefore, we obtain the trivial estimate

|Hi(θViu)|2H1(Ωi)
. hi |u(Vi)|2 ≤ ‖u‖2

L2(Ei)
, (2.96)

where Ei is an edge with Vi being one of its endpoints.
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Remark 2.35. The face estimates in Lemma 2.34 are proved constructing a particular
function ϑFi ∈ V h(Ωi) which is an extension of θFi and which satisfies the same estimates.
Similarly the edge estimates are proved using the function ϑEi ∈ V h(Ωi) which equals 1 at
all the nodes on the open edge Ei, and zero elsewhere.

Corollary 2.36. The cut-off functions from Definition 2.30 induce a stable decomposition
in the sense that ∑

Xi

|Hi(θXiu)|2H1(Ωi)
. (1 + log(Hi/hi))2 ‖u‖2

H1(Ωi)
.

The constant hidden in “.” depends on the number of faces, edges, and vertices of Ωi, which
is due to our assumptions uniformly bounded by a relatively small number.

Proof. Directly follows from Lemma 2.34 and Lemma 2.33.

The following lemma is kind of reverse to Corollary 2.36: The composition of cutted
parts of a function is continuous in the energy norm.

Lemma 2.37. For each u ∈ V h(Ωi) we have

|Hiu|2H1(Ωi)
.
∑
Xi

|Hi(θXiu)|2H1(Ωi)
,

The constant hidden in “.” depends only on the number of faces, edges, and vertices of Ωi.

Proof. With the partition of unity property (2.91) we see that
∑

Xi
Hi(θXiu) is a discrete

extension of u from ∂Ωi to Ωi. The minimization property (2.92) and the triangle inequality
imply

|Hiu|2H1(Ωi)
≤
(∑

Xi

|Hi(θXiu)|H1(Ωi)

)2
.

Using the Cauchy-Schwarz inequality in the Euclidean space Rm, where m is the number of
faces, edges, and vertices of Ωi, we obtain the desired statement.

If a non-floating subdomain intersects the Dirichlet boundary ΓD only in an edge (vertex
in two dimensions), we cannot use a Friedrichs inequality, which we can if the intersection is
a face. The following discrete Poincaré-Friedrichs inequality helps to overcome this problem
in the discrete case.

Lemma 2.38 (Discrete Poincaré-Friedrichs inequality). In two dimensions, let Vi be a vertex
of Ωi. Then we have,

‖u− u(Vi)‖2
L2(Ωi)

. H2
i (1 + log(Hi/hi)) |u|2H1(Ωi)

∀u ∈ V h(Ωi) .

In three dimensions, let Ei be an edge of Ωi. Then we have

‖u− uEi‖2
L2(Ωi)

. H2
i (1 + log(Hi/hi)) |u|2H1(Ωi)

∀u ∈ V h(Ωi) ,

with the edge average uEi := 1
|Ei|
∫
Ei
u ds.
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Proof. The statement in two dimensions is a direct consequence of Lemma 2.33,(i)–(ii). The
three-dimensional case is proved using Lemma 2.34,(ii) and a Poincaré type inequality, see
[184, Lemma 4.21].

The last statement we need is that the discrete harmonic extensions from a face to its
two adjacent subdomains are equivalent in the energy norm.

Lemma 2.39. Let Fij be a face shared by Ωi and Ωj. Then,

|Hi(θFiju)|2H1(Ωi)
' |Hj(θFiju)|2H1(Ωj)

∀u ∈ V h(Fij) .

Proof. We present two techniques.
(i) One can use the discrete trace theorem (cf. [184, Lemma 4.6]) stating that

|Hk(θFiju)|2H1(Ωk) ' |Ih(θFiju)|2
H1/2(∂Ωk)

for k = i, j .

The norm on the right hand side is equivalent to the H1/2
00 -norm on the open face Fij for

both k = i and j and the equivalence constant depends only on the shapes of Ωi and Ωj

because Hi ' Hj .
(ii) Let Uij denote the open union of Ωi and Ωj . Due to the extension theorem (cf. Evans [53,
Sect. 5.4]), there exists an operator Eij : H1(Ωi) → H1(Uij) with

(Eij w)|Ωi
= w , and |Eij w|2H1(Uij)

. |w|2H1(Ωi)
∀w ∈ V h(Ωi) . (2.97)

The hidden constant depends only on the shapes of Ωi and Uij . As shown by Scott and
Zhang [170], cf. Lemma 1.28, there exists a quasi-interpolation operator Πh : H1(Uij) →
V h(Uij) with

(Πhw)|Fij
= w ∀w ∈ V h(Uij) ,

|Πhw|2H1(Uij)
. |w|2H1(Uij)

∀w ∈ H1(Uij) .
(2.98)

The hidden constant depends only on the shapes regularity constant of T (Ui). With these
two operators we can conclude that for ũi := Hi(θFiu), the function (ΠhEij ũj)|Ωj

is an
extension of Ih(θFiju) from V h(∂Ωj) to V h(Ωj). Finally, we can conclude from (2.97) and
(2.98) that

|Hj(θFiju)|2H1(Ωj)
. |ΠhEij ũi|2H1(Ωj)

. |Eij ũi|2H1(Uij)
. |ũi|2H1(Ωi)

.

Switching the roles of i and j finishes the proof.

Remark 2.40. The norm |Hi(θFiju)|2H1(Ωi)
is a discrete realization of the H1/2

00 -norm of u
on the open face Fij .

2.2.4.4 The PD-estimates

Applying the tools from the last subsection to |(PD w)i|2Si
we will end up with terms in the

scaled H1-norm,

‖Hiwi‖2
H1(Ωi)

= |Hiwi|2H1(Ωi)
+

1
H2
i

‖Hiwi‖2
L2(Ωi)

.
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In order to eliminate the L2-norms we would like to employ a Poincaré inequality on the
floating subdomains: If the mean value of Hiwi over the boundary ∂Ωi vanishes, we have

1
H2
i

‖Hiwi‖2
L2(Ωi)

≤ 1
H2
i

C2
P H

2
i |Hiwi|2H1(Ωi)

. |Hiwi|2H1(Ωi)
,

due to Corollary 1.10. The next lemma helps to make Poincaré’s inequality applicable.

Lemma 2.41. The following inequalities are equivalent.

|PD (w + zw)|2S ≤ C∗ |w|2S ∀w ∈W ,

|PD (w + zw)|2S ≤ C∗ |w|2S ∀w ∈W⊥ ,

where

W⊥ :=
{
w ∈W :

∫
Ωi

(Hiwi)(x) dx = 0 ∀i ∈ Ifloat

}
.

Proof. Of course the first inequality implies the second one. Assume that the second in-
equality holds true, and let w ∈W be arbitrary but fixed. First, Lemma 2.22 states that the
mapping w 7→ zw is linear and that zy = −y for y ∈ kerS. Therefore, w+zw = (w+y)+(zw+y)
for any y ∈ kerS. Secondly, |w+y|2S = |w|2S for any y ∈ kerS. We can easily find an element
yw ∈ kerS such that w + yw ∈W⊥ by setting

(yw)i :=
1
|Ωi|

∫
Ωi

(Hiwi)(x) dx for i ∈ Ifloat , (yw)i := 0 for i 6∈ Ifloat .

Apparently, the above invariants directly imply the first inequality.

Lemma 2.42. We have

|PD w|2S . max
i∈I

(1 + log(Hi/hi))2 |w|2S ∀w ∈W⊥ .

Proof. We give the proof in three dimensions. The two-dimensional case works analogously.
Let w ∈W⊥ and i ∈ I be fixed. Recall the characterization (2.85) of the PD operator,

(PD w)i(xh) =


∑

j∈N
xh

δ†j(x
h)
(
wi(xh)− wj(xh)

)
for x ∈ ∂Ωh

i \ ΓD ,

wi(xh) for xh ∈ ∂Ωh
i ∩ ΓD ,

which reveals that there is no contribution on non-coupling Neumann nodes. As noticed
before, the index sets Nxh are invariant for xh ∈ Xi, which justifies to write NXi for these
sets. Using the BEM-FEM spectral equivalence (2.94) and Lemma 2.37 we obtain

|(PD w)i|2Si
. αi |Hi(PD w)i|2H1(Ωi)

. αi
∑
Xi⊂Γ

∣∣∣Hi

{
θXi

∑
j∈NXi

δ†j(wi − wj)
}∣∣∣2
H1(Ωi)︸ ︷︷ ︸

=:Υi

+ αi
∑

Xi⊂ΓD

|Hi(θXiwi)|2H1(Ωi)
. (2.99)
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Since the weighted counting functions δ†j are invariant on the nodes on faces, edges, and

vertices Xi, we can write δ†j |Xi
for these constant values. Using the fact that each face, edge,

and vertex is shared by a uniformly bounded number of subdomains, we obtain

Υi .
∑
Xi⊂Γ

∑
j∈NXi

αi
(
δ†j |Xi

)2 |Hi(θXi(wi − wj))|2H1(Ωi)
.

With the inequality

αi
(
δ†j(x

h)
)2 ≤ min(αi, αj) ∀xh ∈ Γhij , (2.100)

which can be proved by an elementary argument, we can conclude that

Υi .
∑
Xi⊂Γ

∑
j∈NXi

min(αi, αj) |Hi(θXi(wi − wj))|2H1(Ωi)
.

∑
Xi⊂Γ

∑
j∈NXi

αj |Hi(θXiwj)|2H1(Ωi)
.

Combining with (2.99) we obtain

|(PD w)i|2Si
.

∑
Xi⊂Γ∪ΓD

∑
j∈NXi

αj |Hi(θXiwj)|2H1(Ωi)
. (2.101)

• For faces Fi, Lemma 2.39 and Lemma 2.34(iii) gives

|Hi(θFiwj)|2H1(Ωi)
. |Hj(θFiwj)|2H1(Ωj)

. (1+log(Hj/hj))2 ‖Hjwj‖2
H1(Ωj)

∀j ∈ NFi .

• For an edge Ei, Lemma 2.34(i)–(ii) yields

|Hi(θEiwj)|2H1(Ωi)
. ‖u‖2

L2(Ei)
. (1 + log(Hj/hj)) ‖wj‖2

H1(Ωj)
∀j ∈ NEi .

• For a vertex Vi we can find an edge Ej for each j ∈ NVi touching Vi and obtain from
(2.96) that

|Hi(θViwj)|2H1(Ωi)
. ‖u‖2

L2(Ej)
.

From here we can continue as in the edge case.

Summarizing, we have

|(PD w)i|2Si
.
∑
j∈Ni

αj (1 + log(Hj/hj))2 ‖Hjwj‖2
H1(Ωj)

, (2.102)

where Ni is the index set of subdomains which are neighbors of Ωi. Since w ∈ W⊥, we can
use Poincaré’s inequality on the floating subdomains to obtain

‖Hjwj‖2
H1(Ωj)

. |Hjwj |2H1(Ωj)
∀j ∈ Ifloat . (2.103)

Note that the hidden constant is independent of Hi because we have used the scaled H1-norm
due to (2.95).
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All-floating formulation Since all subdomains are floating, we obtain from (2.102),
(2.103), and the BEM-FEM spectral equivalence (2.94) that

|(PD w)i|2Si
.
∑
j∈Ni

(1 + log(Hj/hj))2 |wj |2Sj
. (2.104)

Since the number of neighbors to each subdomain is uniformly bounded, the statement of
Lemma 2.42 follows immediately.

Standard one-level formulation Here we need to investigate the non-floating subdo-
mains. If a subdomain Ωi shares a face with the Dirichlet boundary ΓD, the Friedrichs
inequality from Corollary 1.10 implies

‖Hjwj‖2
H1(Ωj)

. |Hjwj |2H1(Ωj)
.

Due to Assumption 2.26 the only case left is that a (non-floating) subdomain shares an edge
Ei with ΓD. The discrete Poincaré-Friedrichs type inequality Lemma 2.38 yields

‖Hjwj‖2
H1(Ωj)

. (1 + log(Hj/hj)) |Hjwj |2H1(Ωj)
,

which would result in a total power of 3 in the logarithmic term compared to (2.104). To get
rid of one power we need to enhance the estimates above, cf. Klawonn and Widlund [109].
First, note that in the standard one-level formulation, the second summand in (2.99) equals
zero. Therefore,

|(PD w)i|2Si
.

∑
Xi⊂Γ

∑
j∈NXi

|Hi(θXi(wi − wj))|2H1(Ωi)
. (2.105)

We define the averages

wk :=
1
|Ωk|

∫
Ωk

(Hkwk)(x) dx for k ∈ I .

For a face Fij sharing Ωi and Ωj we have

|Hi(θFij (wi − wj))|2H1(Ωi)

. |Hi(θFij (wi − wi))|2H1(Ωi)
+ |wi − wj |2 |HiθFij |2H1(Ωi)

+ |Hi(θFij (wj − wj))|2H1(Ωi)
.

The first term (and analogously the last term) can be estimated using Lemma 2.34(iii) and
Poincaré’s inequality:

|Hi(θFij (wi − wi))|2H1(Ωi)
. (1 + log(Hi/hi))2 ‖Hiwi − wi‖2

H1(Ωi)

. (1 + log(Hi/hi))2 |Hiwi|2H1(Ωi)
.

The second term can be bounded using Lemma 2.34(iv) and the Cauchy-Schwarz inequality:

|wi − wj |2 |HiθFij |2H1(Ωi)
. (1 + log(Hi/hi))

{
|wi|2 + |wj |2

}
. (1 + log(Hi/hi))

{ 1
H2
i

‖wi‖2
L2(Ωi)

+
1
H2
j

‖wj‖2
L2(Ωj)

}
.
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Both L2-terms can be estimated in terms of the H1-seminorm using either the discrete
Poincaré-Friedrichs inequality from Lemma 2.38 or Poincaré’s inequality, resulting in a total
factor of (1+log(Hi/hi))2. For edge and vertex terms, the estimates from above need not be
modified, since they deliver only one power of the logarithmic term. This finishes the proof
of Lemma 2.42.

Lemma 2.43. If Q = M−1, then

|PD zw|2S ≤ |PD w|2S .

Proof. Using identity (2.82), i. e., P>
DS PD = B>M−1B = B>QB, and Lemma 2.22 we have

|PD zw|2S = ‖B zw‖2
Q ≤ ‖Bw‖2

Q = |PD w|2S .

Lemma 2.44. If Q is chosen according to (2.55)–(2.56) or (2.76)–(2.77), then

|PD zw|2S . max
i∈I

(1 + log(Hi/hi))2 |w|2S ∀w ∈W⊥ .

Proof. Again we give the proof in three dimensions. The two-dimensional case works analo-
gously. Let w ∈W⊥ be fixed. Note that zw is constant on the subdomains and vanishes on
the non-floating subdomains. We denote the components by zi. Using the same arguments
as in the proof of Lemma 2.42 we obtain for each i ∈ I,

|(PD zw)i|2Si
(2.106)

.
∑
Xi⊂Γ

∑
j∈NXi

min(αi, αj) |Hi(θXi(zi − zj))|2H1(Ωi)
+
∑

Xi⊂ΓD

αi |Hi(θXizi)|2H1(Ωi)

=
∑
Xi⊂Γ

∑
j∈NXi

min(αi, αj) |HiθXi |2H1(Ωi)
|zi − zj |2 +

∑
Xi⊂ΓD

αi |HiθXi |2H1(Ωi)
|zi|2 .

Lemma 2.34(i), (iv) and the trivial estimate (2.96) yield

|HiθFi |2H1(Ωi)
. (1 + log(Hi/hi))Hi ,

|HiθEi |2H1(Ωi)
. Hi ,

|HiθVi |2H1(Ωi)
. hi .

(2.107)

We interpret the terms zi − zj as components of B zw (up to the sign). In the standard
one-level case, the subdomains Ωi touching the Dirichlet boundary are non-floating. Conse-
quently, the second summand in (2.106) vanishes as zi = 0 for i 6∈ Ifloat. In the all-floating
case, the zi are components of B zw if the subdomain Ωi touches the Dirichlet boundary.
Using that each face Fi contains O((Hi/hi)2) nodes, and each edge Ei contains O(Hi/hi)
nodes, a coefficient comparison with the values of Q (see also Remark 2.11) reveals that

|(PD zw)i|2Si
. ‖B zw‖2

Q ≤ ‖Bw‖2
Q , (2.108)

where in the last step we have used Lemma 2.22. The right choice for Q can in fact be read
off from (2.106) and (2.107).

In order to bound ‖Bw‖2
Q in terms of |w|2S , we employ another splitting into face, edge,

and vertex contributions.
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• A face Fij contributes∑
xh∈Fh

ij

qij(xh) |wi(xh)− wj(xh)|2

. min(αi, αj) (1 + log(Hi/hi))
1
Hi

h2
i

∑
xh∈Fh

ij

|wi(xh)− wj(xh)|2

︸ ︷︷ ︸
'‖wi−wj‖2

L2(Fi)

. αi (1 + log(Hi/hi))
1
Hi
‖wi‖2

L2(Fi)
+ αj (1 + log(Hj/hj))

1
Hj
‖wj‖2

L2(Fi)
.

• Similarly, in the all-floating case, a face Fi ⊂ ΓD contributes∑
xh∈Fh

i

qi(xh) |wi(xh)|2 . αi (1 + log(Hi/hi))
1
Hi

‖wi‖2
L2(Fi)

.

• An edge Eij contributes∑
xh∈Eh

ij

qij(xh) |wi(xh)− wj(xh)|2 . min(αi, αj)hi
∑
xh∈Eh

ij

|wi(xh)− wj(xh)|2

. min(αi, αj) ‖wi − wj‖2
L2(Ei)

. αi ‖wi‖2
L2(Ei)

+ αj‖wj‖2
L2(Ei)

.

• Similarly, in the all-floating case, an edge Ei ⊂ ΓD contributes∑
xh∈Eh

i

qi(xh) |wi(xh)|2 . αi ‖wi‖2
L2(Ei)

.

• The contribution from a vertex Vij can be bounded as follows,

qij(Vhij) |wi(Vij)− wj(Vij)|2 . min(αi, αj)hi |wi(Vij)− wj(Vij)|2

. αi ‖wi‖2
L2(Ei)

+ αj ‖wj‖2
L2(Ej)

,

where the edges Ei and Ej are chosen such that they touch Vij .

• Similarly, in the all-floating case, the contribution from a vertex Vi ⊂ ΓD can be
bounded by

qi(Vhi ) |wi(Vi)|2 . αi hi |wi(Vi)|2 . αi ‖wj‖2
L2(Ei)

,

for an edge Ei touching Vi.

Summarizing, we obtain

‖Bw‖2
Q .

∑
i∈I

∑
j∈Ni

αj (1 + log(Hj/hj))
{ 1
Hj

‖wj‖2
L2(∂Ωj)

+
∑
Ej

‖wj‖2
L2(Ej)

}
. (2.109)
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Using Corollary 1.12, the term 1
Hj
‖wj‖2

L2(∂Ωj)
is bounded by ‖Hjwj‖2

H1(Ωj)
. With the help

of Lemma 2.34(ii) we can bound the edge terms,

‖wj‖2
L2(Ej)

. (1 + log(Hj/hj)) ‖Hjwj‖2
H1(Ωj)

.

With the discrete Poincaré-Friedrichs inequality, and combining (2.108) and (2.109) we ob-
tain

|PD zw|2S .
∑
i∈I

∑
j∈Ni

αj (1 + log(Hj/hj))2 |Hjwj |2H1(Ωj)
. max

i∈I
(1 + log(Hi/hi))2 |w|2S ,

where in the last step we have used the BEM-FEM spectral equivalence (2.94). This finishes
the proof of Lemma 2.44.

Combining Lemma 2.42, Lemma 2.43, and Lemma 2.44 immediately implies the state-
ment of Lemma 2.27.

Remark 2.45. If the coefficients are all equal (or at least only moderately varying) and
Q = I, the statement of Lemma 2.44 holds still true, cf. Klawonn and Widlund [108].
We see this from a slight modification of the above proof. The only crucial point is that if
two subdomains Ωi, Ωj share an edge or a vertex but not a face, the term |zi − zj |2 can be
simply estimated by the sum of terms |zk − z`|2 where Ωk and Ω` share a face. Note that
here we really use that the coefficients are all equal. This way all terms can be estimated by
face contributions of B z. The rest of the proof is then mainly identical.

2.2.5 Numerical results

In this section we present some numerical results for one-level FETI/BETI methods for a
two-dimensional linear model problem with coefficient jumps. The main implementation
was done in C++. The FEM stiffness matrices and the coarse matrix were factorized using
PARDISO [37, 166, 167]. For the boundary element method we have used Olaf Steinbach’s
Fortran package OSTBEM [176]. The condition numbers are estimated using the Lanczos
method, where we used a code fragment by Eero Vainikko. For the visualization we use GMV
(see http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html). Mainly interested in verifying
the theoretical results of this chapter, we have not used any data-sparse approximation of
the boundary element matrices.

Note that detailed computational results for FETI methods are found in Rheinbach [153];
for numerical results on all-floating BETI methods see Of [138, 139].

D
Γ

f = 1

Figure 2.4: Example 2.1: Unit square.
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Example 2.1: Unit square, homogeneous coefficient We consider the unit square
Ω = (0, 1)2, subdivided into 64 equal-sized square-shaped subdomains, with homogeneous
Dirichlet boundary conditions on the left side ΓD, and homogeneous Neumann boundary
conditions on the rest of ∂Ω. The source term f is chosen to be zero except for the four
shaded subdomains in Figure 2.4, and the coefficient α is set uniformly to one.

Table 2.1 and Table 2.2 show the results for FETI and FETI/BETI, respectively. There,
the column entitled “Lagr. mult.” indicates number of Lagrange multipliers (additional
multipliers enforcing the Dirichlet boundary conditions in the all-floating method are not
counted). For simplicity, H denotes the height/width of the subdomain. In the columns
entitled “PCG” we give the number of PCG steps needed to get a reduction of ε = 10−8 in
the residual, and the columns entitled “cond.” show the estimated condition number using
the Lanczos method. We see that the condition numbers of the preconditioned systems
behaves as predicted by the theory. From the first column in the two tables one can observe
the reduction in the global DOFs when using the boundary element method. In Table 2.3 we
demonstrate the scalability, i. e., the robustness with respect to the number of subdomains.

global Lagr. local std. one-level all-floating
DOFs mult. DOFs H/h PCG cond. PCG cond.

289 406 9 2 9 1.67 8 1.40
1 089 630 25 4 11 2.20 10 1.88
4 225 1 078 81 8 13 2.97 12 2.43

16 641 1 974 289 16 16 3.92 14 3.15
66 049 3 766 1 089 32 18 5.05 16 4.05

263 169 7 350 4 225 64 21 6.33 18 5.12
1 050 625 14 518 16 641 128 23 7.77 19 6.36
4 198 403 28 854 66 049 256 24 9.38 21 7.76

16 785 409 57 526 263 169 512 25 11.15 23 9.33

Table 2.1: Example 2.1: Standard one-level vs. all-floating FETI method; 64 subdomains.

global Lagr. FEM BEM std. one-level all-floating
DOFs mult. loc. DOFs loc. DOFs H/h PCG cond. PCG cond

229 406 9 8 2 9 1.65 9 1.64
549 630 25 16 4 10 1.91 9 1.67

1 285 1 078 81 32 8 13 2.58 11 2.08
3 141 1 974 289 64 16 15 3.44 13 2.72
8 389 3 766 1 089 128 32 18 4.48 16 3.54

25 029 7 350 4 225 256 64 20 5.68 18 4.54
82 885 14 518 16 641 512 128 23 7.03 20 5.71

296 901 28 854 66 049 1024 256 24 8.55 22 7.05
1 118 149 57 526 263 169 2048 512 25 10.24 23 8.55

Table 2.2: Example 2.1: Standard one-level vs. all-floating FETI/BETI method; 64 subdo-
mains (60 BEM, 4 FEM).
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number of global std. one-level all-floating
subdomains DOFs PCG cond. PCG cond.

64 66 049 18 5.049 16 4.045
256 263 169 18 5.055 16 4.064

1024 591 361 18 5.055 16 4.064
4096 1 050 625 18 5.053 15 4.057

Table 2.3: Example 2.1: Standard one-level vs. all-floating FETI method; fixed ratio H/h =
32; fixed number 1089 of local FEM DOFs, varying number of subdomains.

Example 2.2: Unit square, heterogeneous coefficient In this example we consider
the unit square (0, 1)2 with the same partitioning as before, but we choose the coefficient α
and the source f according to Figure 2.5, left. The Dirichlet boundary conditions read

u(x1, x2) = 8x2(1− 8x2) for (x1, x2) ∈ ΓD ,

and on the rest of ∂Ω we impose homogeneous Neumann boundary conditions.

Table 2.4 and Table 2.5 show the number of PCG steps and the estimated condition num-
ber for the standard one-level and all-floating FETI and FETI/BETI method, respectively.
In the second case, the BEM subdomains are exactly those where f = 0. The numbers in
the tables demonstrate the robustness with respect to the heterogeneous coefficient, which
would not be the case without the careful scalings in Di and Q. Figure 2.5, right displays the
solution u to the problem. We see that a large coefficient results in a relatively flat solution.

10

1010

ΓD

1

f

α = 10

= 0

f

α

2

5

α

= 10

= 1

2

α = 10

f = 0

= 1f

5

= 1
3

3

ΓD

Figure 2.5: Left: Setting in Example 2.2: Piecewise constant coefficient distribution, Dirich-
let boundary, source distribution. Right: Visualization of the solution u via the graph
(x1, x2, u(x1, ux)); different colors indicate different subdomains.
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global local std. one-level all-floating
DOFs DOFs H/h PCG cond. PCG cond

289 9 2 10 2.23 8 1.54
1 089 25 4 11 2.69 11 2.12
4 225 81 8 13 3.18 13 2.90

16 641 289 16 15 3.84 15 3.84
66 049 1 089 32 17 4.91 17 4.91

263 169 4 255 64 19 6.10 19 6.10
1 050 625 16 641 128 21 7.42 22 7.43
4 198 401 66 049 256 23 8.91 24 8.88

16 785 409 263 169 512 26 10.60 25 10.47

Table 2.4: Example 2.2: Standard one-level vs. all-floating FETI for jumping coefficients.

global FEM BEM std. one-level all-floating
DOFs loc. DOFs loc. DOFs H/h PCG cond. PCG cond

257 9 8 2 7 1.68 7 1.64
801 25 16 4 10 2.24 9 2.24

2 657 81 32 8 11 3.09 12 3.09
9 441 289 64 16 13 4.08 13 4.08

35 297 1 089 128 32 14 5.21 15 5.21
136 161 4 255 256 64 16 6.46 17 6.46
534 497 16 641 512 128 17 7.83 18 7.83

2 117 601 66 049 1024 256 18 9.33 20 9.33
8 429 537 263 169 2048 512 19 10.96 21 10.96

Table 2.5: Example 2.2: Standard one-level vs. all-floating FETI/BETI for jumping coeffi-
cients; 32 FEM, 32 BEM subdomains.

The above results and the ones that follow were carried out on the RICAM computer
thebrain which offers four dual-core Intel Xeon processors at 3.40 GHz (in total 8 proces-
sors), 16 MB processor cache and 64 GB RAM in total.

2.2.6 A reformulation of the FETI/BETI PCG algorithm

In this subsection we present a slightly different approach to the analysis of the FETI/BETI
methods discussed before which uses a (formal) reformulation of Algorithm 1. In our refor-
mulation we get rid of the auxiliary Lagrange variables in U and U∗ via a transformation to
variables in W ∗ and W . This is not in order to enhance the FETI/BETI algorithm, but to
gain more insight into the algorithm. In particular we will see that the Lagrange multipliers
are just auxiliary variables which parameterize the flux, and that the actual FETI/BETI
method happens between Dirichlet and Neumann data on the interface.
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With the notation from Algorithm 1 we introduce new variables

t(n) := B>λ(n) ,

s(n) := B>s(n) ,

z(n) := B>z(n) ,

(2.110)

in rangeB> ⊂W ∗ and choose r(n), x(n) ∈W such that

r(n) = B r(n) ,

x(n) = B x(n) .
(2.111)

Note, that t(n) is an element from W ∗ and not a vector. In order to reformulate Algorithm 1
in terms of the new variables, we define the operators

PW := I −R (G>QG)−1G>QB, (2.112)

P>
W := I −B>QG (G>QG)−1R> , (2.113)

which imply the relations

B>P = P>
W B> , P>B = B PW , S PW = S , (2.114)

Recall that

b = B g̃D (2.115)

for the all-floating methods. The resulting reformulation is displayed in Algorithm 2 for the
all-floating case. To obtain the standard one-level FETI/BETI algorithm, we formally have
to set g̃D = 0. We point out that the Lagrange multipliers are now hidden in the operators
PD and PW .

A short investigation reveals that PW : W → W and P>
W : W ∗ → W ∗ are projections

satisfying

rangePW = (kerS)⊥B>Q B = {w ∈W : 〈B>QBw, z〉 = 0 ∀z ∈ kerS} , (2.116)

rangeP>
W = rangeS = kerR> . (2.117)

The projection I − PW onto kerS = rangeR is B>QB-orthogonal. From the proof of
Lemma 2.22 we see that

PW w = w + zw .

Furthermore, we have the following invariants in Algorithm 1 (left column) and in Algo-
rithm 2 (right column) which can easily be shown by induction.

f −B>λ(n) ∈ rangeS , f − t(n) ∈ rangeP>
W = rangeS ,

λ(n) − λ(0) ∈ rangeP = V , t(n) − t(0) ∈ rangeP>
W ∩ rangeB> ,

t(n) ∈ rangeB> ,

z(n) , s(n) ∈ rangeP , z(n) , s(n) ∈ rangeP>
W ∩ rangeB> ,

x(n) , r(n) ∈ rangeP> ∩ rangeB = Ṽ ′ , x(n) , r(n) ∈ rangePW ,

r(n) = P>(d− F λ(n)) , r(n) = PW S†
[
(f − r(n))− g̃D

]
.

(2.118)
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Algorithm 2: Reformulated all-floating FETI/BETI algorithm.
Input: f (and b for all-floating), ε, nmax

Output: u
t(0) = (I − P>

W )f
r(0) = PW

[
S†(f − t(0))− g̃D

]
= PW (S†P>

W f − g̃D)
z(0) = P>

W P>
D S PD r(0)

s(0) = z(0)

β0 = 〈r(0), z(0)〉
n = 0
while βn ≥ β0 · ε and n < nmax do

x(n) = PW S† s(n)

αn = 〈x(n), s(n)〉
α = βn/αn
t(n+1) = t(n) + α s(n)

r(n+1) = r(n) − α x(n)

z(n+1) = P>
W P>

D S PD r(n)

βn+1 = 〈r(n+1), z(n+1)〉
β = βn+1/βn
s(n+1) = z(n+1) + β s(n)

n = n+ 1
end
ξ = (G>QG)−1G>QB

[
S†(t(n) − f) + g̃D

]
u = S†(f − t(n)) +Rξ

}
u = PW

[
S†(f − t(n))− g̃D

]
+ g̃D
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From the last line above, we see that if the algorithm terminates after n steps, we have

u = r(n) + g̃D . (2.119)

We summarize that there are two kinds of main variables in Algorithm 2:

• The variables t(n), z(n), and s(n) ∈ rangeB> ⊂ W ∗ are continuous normal fluxes
because E>t = 0, see Remark 2.6 and Remark 2.14. The expressions f−t(n), t(n)−t(0),
z(n), and s(n) stay in the subspace rangeP>

W = rangeS. The block pseudoinverse S†

is only applied to these expressions.

• The variables r(n) and x(n) are projected, discontinuous Dirichlet traces in the subspace
rangePW ⊂ W . Note that the space of continuous functions Ŵ is a subspace of
rangePW . Since (I − PW ) r(n) = 0 and (I − PW ) x(n) = 0, we can call r(n) and x(n)

partially continuous as their projections to the coarse space kerS are continuous.

The inner product used in the PCG is nothing but the duality pairing 〈·, ·〉W ∗×W .
Assume that we have exact arithmetics and that the original FETI/BETI algorithm

terminates after n steps such that βn = 0. This implies 〈M−1r(n), r(n)〉 = 0. Since M−1 is
SPD on Ṽ ′, we can conclude that r(n) = P>(d − F λ(n)) = 0. The resulting solution u is
continuous and satisfies the given Dirichlet boundary conditions because

B u = B P>
WS

†[(B>λ(n) − f) + g̃D
]

+B g̃D = P>(F λ(n) − d)︸ ︷︷ ︸
=−r(n)=0

+ b = b , (2.120)

where we have used the identity (2.115). The continuous solution u satisfies the skeleton
equation (2.14) because

E>(f − S u) = E>f − E>S S†(f −B>λ(n))− S R ξ

= E>f − E>(f −B>λ(n)) = E>B>λ(n) = 0 .
(2.121)

Here, we have used the fact that f − B>λ(n) ∈ rangeS, and the identities S R = 0 and
E>B> = 0, see also Remark 2.6 and Remark 2.14.

These properties can also be seen from the reformulated FETI/BETI algorithm. If it
terminates after n steps with exact arithmetics and ε = 0, we have βn which implies that

|PD r(n)|2S = 0 . (2.122)

Lemma 2.46. For each w ∈ rangePW , we have PD w ∈ rangePW .

Proof. Let w ∈ rangePW = (kerS)⊥B>Q B be fixed, then we have

〈Bw, QB z〉 = 0 ∀z ∈ kerS .

By Lemma 2.16 we have B PD = B and can conclude that

〈B PD w, QB z〉 = 0 ∀z ∈ kerS ,

which proves that PD w ∈ rangePW .
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Using Lemma 2.46 and the fact that S is SPD on rangePW = (kerS)⊥B>Q B , equa-
tion (2.122) implies

PD r(n) = 0 .

Using the identity (2.119) (u = r(n) + g̃D) and Lemma 2.16 (B PD = B) we obtain

B u = B r(n) +B g̃D = B PD r(n)︸ ︷︷ ︸
=0

+ b = b , (2.123)

showing that the solution u is continuous across Γ and satisfies the correct Dirichlet boundary
conditions on ΓD. The skeleton equation (2.14) is satisfied since

E>(f − S u) = E>f − E>S
{
PW
[
S†(f − t(n))− g̃D

]
+ g̃D

}
= E>f − E> S PW︸ ︷︷ ︸

=S

S†(f − t(n)) + E> S PW︸ ︷︷ ︸
=S

g̃D − E>S g̃D

= E>f − E> S S†(f − t(n))︸ ︷︷ ︸
=f−t(n)

= E>t(n) = 0 .

(2.124)

Here, S S†(f − t(n)) = f − t(n) because f − t(n) ∈ rangeS, and in the last step we have used
that t(n) ∈ rangeB>.

Remark 2.47. This above discussion reveals the role of the residual, here for simplicity for
the standard one-level method. Since 〈M−1r(n), r(n)〉 = |PD r(n)|2S , and since after n steps
we set u = r(n), we have

〈M−1r(n), r(n)〉 = |u− ED u|2S . (2.125)

This means, by controlling the energy norm of the residual r(n), we control the error between
the discontinuous approximation u and its average ED u in the energy norm.

Next, we show that Algorithm 2 is a well-defined projected PCG method. We define

W ′ := rangeP>
W ∩ rangeB> = rangeS ∩ rangeB> ,

W :=
{
w ∈ rangePW : S w ∈ rangeB>} . (2.126)

Lemma 2.48. For each w ∈ W,

〈S w, ŵ〉 = 0 ∀ŵ ∈ Ŵ

holds. In particular we have 〈S w, ED w〉 = 0.

Proof. Since rangeB> = (kerB)◦ and kerB = Ŵ , the definition of W immediately implies
〈S w, ŵ〉 = 0.

Lemma 2.49. Algorithm 2 is a projected PCG method with the operator

PW S† : W ′ →W ,

and with the preconditioner
P>
WP

>
DS PD : W →W ′ .
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The condition number of the preconditioned system is bounded by c2/c1 where

c1 |w|2S ≤ |PD w|2S ≤ c2 |w|2S ∀w ∈ W . (2.127)

Since Algorithm 2 is just a reformulation of Algorithm 1, this implies the condition number
bound

κ ≤ c2/c1 ,

where κ is the condition number of the preconditioned FETI/BETI system P M−1P>F on
the space Ṽ .

Proof. First we see that PW S† : rangeP>
W → PW is SPD and its inverse is

S : rangePW → rangeP>
W = rangeS .

By the definition of W ′ and W, we have that PW S† maps W ′ into W. The preconditioner

P>
WP

>
D S PD : rangePW → rangeP>

W

is positive semidefinite. Since P>
W (rangeB>) ⊂ rangeB> and rangeP>

D ⊂ rangeB>, we find
that

P>
WP

>
D S PD : W →W ′ .

Moreover it is definite on W: Suppose that 〈S PD w, PD w〉 = 0 for some w ∈ W. Since S is
SPD on rangePW and PD w ∈ rangePW , we can conclude that PD w = 0. Lemma 2.48 and
Lemma 2.16 (I = ED + PD) imply

0 = 〈S w, ED w〉 = 〈S ED w, ED w〉 .

Since kerS ∩ kerB = {0} and ED w ∈ kerB we can conclude that ED w = 0. Hence,

w = PD w + ED w = 0 ,

which shows the definiteness. The condition number of the preconditioned operator

P>
WP

>
DS PD PW S† : W ′ →W ′

can be determined using the Rayleigh quotient in the inner product 〈·, PW S†·〉:

〈P>
WP

>
DS PD

=:w︷ ︸︸ ︷
PW S† t,

=w︷ ︸︸ ︷
PW S† t〉

〈 t︸︷︷︸
=P>W S w

, PW S† t︸ ︷︷ ︸
=w

〉
=

〈P>
DS PD w, w〉
〈S w, w〉

, (2.128)

where t ∈ W ′ and w ∈ W. To bound the Rayleigh quotient from above and from below, we
have to show that

c1 |w|2S ≤ |PD w|2S ≤ c2 |w|2S ∀w ∈ W . (2.129)

The upper bound in (2.127) has been shown already in Lemma 2.27. For the lower bound
we use Lemma 2.16 (I = ED + PD), Lemma 2.48, and the Cauchy-Schwarz inequality with
respect to the positive semi-definite inner product 〈S ·, ·〉 to obtain

|w|2S = 〈S w, w〉 = 〈S w, ED w〉︸ ︷︷ ︸
=0

+〈S w, PD w〉 ≤ |w|S |PD w|S .

This implies the desired lower bound with c1 = 1.
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2.3 Interface-concentrated FETI methods

In this section we briefly describe a variant of FETI introduced by Beuchler, Eibner,
and Langer [11] using interface-concentrated meshes and a special high-order finite element
method, called boundary-concentrated FEM, which was originally introduced by Khorom-
skij and Melenk [100]. The main idea thereof is that singularities at the boundary can be
well approximated using linear finite elements, whereas the smooth solution in the interior
can be well approximated by high-order polynomials on larger elements. With this technique
the local number of DOFs on each subdomain Ωi can be reduced to O((Hi/hi)d−1) where
hi is the mesh size on the subdomain boundary, i. e., one gets the same complexity as in
the boundary element method. The usual condition number estimate of the corresponding
FETI methods and hybrid FETI/BETI methods remain valid.

2.3.1 Boundary-concentrated FEM

In this subsection we briefly introduce the concept of the boundary-concentrated FEM.
For details see the original paper by Khoromskij and Melenk [100] and the doctoral
dissertation by Eibner [50]. For local error analysis and efficient solvers we refer also to
Khoromskij and Melenk [99] and Eibner and Melenk [51, 52].

Let Ω ∈ Rd (with d = 2 or 3) be a bounded domain with Lipschitz boundary ∂Ω and let
T (Ω) be a conforming, shape-regular, and simplicial triangulation of Ω. Each element τ is
the image of the reference simplex τ̂ under the affine linear map Fτ : τ̂ → τ .

Definition 2.50 (geometric mesh). A triangulation T (Ω) is called a geometric mesh with
boundary mesh size h > 0 if there exist constants c1, c2 > 0 such that for all τ ∈ T (Ω),

(i) if τ ∩ ∂Ω 6= ∅ then h ≤ hτ ≤ c2 h, and

(ii) if τ ∩ ∂Ω = ∅ then c1 inf
x∈τ

dist (x, ∂Ω) ≤ hτ ≤ c2 sup
x∈τ

dist (x, ∂Ω).

Note that the corresponding boundary mesh T (∂Ω) is quasi-uniform with mesh size h.
Next, we define an hp-FEM space on the geometric mesh. To each element τ ∈ T (Ω),

we associate a polynomial degree pτ ∈ N and collect these pτ in the polynomial degree vector
p := (pτ )τ∈T (Ω).

Definition 2.51 (linear degree vector). Let T (Ω) be a geometric mesh with boundary mesh
size h and let p be a polynomial degree vector. We call p a linear degree vector with slope
α > 0 if there exist constants c1, c2 > 0 such that

1 + c1 α log
hτ
h

≤ pτ ≤ 1 + c2 α log
hτ
h
.

In practical applications, one usually sets α = 1. In particular, the polynomial degree
equals one in the elements touching the boundary.

Furthermore, for each edge e and face f of the triangulation we define

pe := min{pτ : e is an edge of the element τ} ,
pf := min{pτ : f is a face of the element τ} ,

(2.130)
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respectively. For each element τ we collect all the degrees corresponding to τ in a vector

pτ :=
(
pτ , {pe}e: edge of τ , {pf}f : face of τ

)
. (2.131)

The hp-FEM spaces V hp(Ω) and V hp
0 (Ω) are defined by

V hp(Ω) :=
{
v ∈ H1(Ω) : v ◦ Fτ ∈ Ppτ (τ̂) ∀τ ∈ T (Ω)

}
,

V hp
0 (Ω) := V hp(Ω) ∩H1

0 (Ω) .
(2.132)

where Ppτ is the space of polynomials on the reference simplex τ̂ with the polynomial degrees
on the elements, edges, and faces are given according to pτ .

Due to [100, Proposition 2.7], there exists a constant C > 0 depending on the shape-
regularity constant of T (Ω) and on the constants in Definition 2.50 and Definition 2.51 such
that ∑

τ∈T (Ω)

1 ≤ C (H/h)(d−1) , dimV hp(Ω) ≤ C (H/h)(d−1) ,

max
τ∈T (Ω)

pτ ≤ C (1 + log(H/h)) ,
(2.133)

where H = diam Ω. In particular there are as many elements in T (Ω) and DOFs in V hp(Ω),
as there are elements on the boundary ∂Ω, and the maximal polynomial degree grows only
logarithmically with the number of elements on the boundary.

In case that the coefficients and the right hand side of the PDE are sufficiently smooth
(analytic), the discretization error of the boundary concentrated FEM is of the same order of
magnitude as the discretization error of a low-order FEM on a quasi-uniform triangulation T h
of Ω. Due to Beuchler, Eibner, and Langer [11, Theorem 3.13], the Schur complement
of the hp-stiffness matrix is spectrally equivalent to the Schur complement of the stiffness
matrix of the quasi-uniform FEM.

A finite element basis for the space V hp(Ω) is given by a hierarchical basis using vertex-
based, edge-based, cell-based, and (in three dimensions) face-based basis functions, cf. Kar-
niadakis and Sherwin [94]. The term “hierarchical” means that for increasing polynomial
degree new basis functions are added to the basis, whereas the other ones remain unchanged.
This is not the case for basis functions related to the Gauss-Lobatto points as used in spectral
element methods; see, e. g., Karniadakis and Sherwin [94], Toselli and Widlund [184,
Sect. 7].

2.3.2 Interface-concentrated FETI

Consider a partition of a domain Ω into subdomains. We can now use the boundary-
concentrated FEM on each subdomain. The resulting global mesh is then interface-con-
centrated, cf. Figure 2.6. If the polynomial degree on those elements touching the subdo-
main boundaries is one, we immediately obtain the interface-concentrated FETI (IC-FETI)
method from the standard low-order FETI method by just replacing the low-order stiffness
matrices by the hp-BC-FEM stiffness matrices with respect to the hierarchical basis. Thanks
to the spectral equivalence of the corresponding Schur complement matrices, the analysis is
straightforward, and the condition number bound reads

κ ≤ C max
i∈I

(1 + log(Hi/hi))2 ,
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Figure 2.6: Example for an interface concentrated mesh for a partition of the unit square
into four subdomains.

where hi is the mesh size of the subdomain boundary ∂Ωi, and the constant C > 0 is
independent of Hi, hi, the polynomial degrees pi, the number s of subdomains, and the
values of the coefficients αi (provided that there are constant on each subdomain).

2.3.3 Numerical results

In this subsection, we would like to briefly demonstrate the reduction of DOFs using IC-FETI
and also IC-FETI/BETI. The following results were obtained using some code fragments by
Tino Eibner and parts of the open source code NetGen/NGSolve by Joachim Schöberl (see
http://www.hpfem.jku.at) for the generation of the high-order element stiffness matrices
and for visualization. For similar results see also Langer and Pechstein [117].

Example 2.3 In this example we have chosen a model problem related to magnetic field
computations, as we will discuss in Chapter 6. The coefficient and the source distribution
on the square (0, 0.1)2 are displayed in Figure 2.7, left. We impose homogeneous Dirichlet
boundary conditions on the whole of ∂Ω.

Table 2.6 shows the number of global DOFs, the number of PCG iterations and the con-
dition numbers for FETI, IC-FETI and IC-FETI/BETI. In the latter case we use BEM on all
of the “air” subdomains. The largest polynomial degree used for the interface-concentrated
methods is displayed in column “pmax”. Wee see that the number of PCG iterations and the
condition numbers of all the three methods are comparable. The number of global DOFs is
however significantly reduced using the interface-concentrated methods. In the last row, the
low-order approximation results in 1 050 625 DOFs per subdomain, and the corresponding
local matrices could not be factored in memory. This reduction also takes place using BETI,
but interface-concentrated methods can be used for non-vanishing source terms and, more
importantly, also for non-constant coefficients. Figure 2.7, right displays a detail of the mesh
and the solution u in the vicinity of a material corner.



96 CHAPTER 2. HYBRID ONE-LEVEL METHODS

a
rm

a
rt

u
re

iron core

air

coil

α

α

α

α

=

=

=

=

ν
0

ν
0

10

10

−3

−5

ν
0

ν
0

f

f

f

f

=

=

=

=

0

0

2.3 10. 6

0

Figure 2.7: Example 2.3: Left: Model valve problem. Here, ν0 = 107/(4π). Right: Zoom
into the mesh, with solution u (visualization by NGSolve).

global DOFs H/h PCG cond. pmax

289 289 247 2 8 8 9 1.61 1.75 1.77 1
1 089 1 089 711 4 9 10 11 2.13 2.40 2.23 1
4 225 3 969 2 079 8 11 12 14 2.85 3.24 3.08 1

16 641 13 313 6 047 16 13 15 17 3.73 4.24 4.08 2
66 049 42 497 17 591 32 15 17 19 4.77 5.40 5.23 3

263 169 121 875 47 895 64 17 18 21 5.96 6.72 6.54 4
1 050 625 315 649 120 559 128 18 20 23 7.31 8.19 8.00 5
4 198 401 755 969 284 015 256 19 21 25 8.82 9.81 9.62 6

16 785 409 1 710 593 636 359 512 21 22 27 11.40 11.60 11.39 7
67 125 249 3 718 657 1 375 015 1024 — 23 30 — 13.54 13.31 8

Table 2.6: Example 2.3: Comparison between FETI, IC-FETI, and coupled IC-FETI/BETI.



Chapter 3

One-level methods for unbounded
domains

In this chapter we extend the methods and theory from Chapter 2 to a specific class of
problems in unbounded domains. We add an unbounded exterior subdomain (similar to
Ωext from Section 1.4) to our potential equation and prescribe a radiation condition for
u(x) as |x| goes to infinity. The treatment of other problem classes concerning unbounded
domains, such as half-spaces, with FETI/BETI methods is probably possible but not scope
of this thesis. In Section 3.1 we introduce a precise description of our model problem and
the corresponding variational skeleton formulation. Section 3.2 discusses a generalization of
standard one-level as well as all-floating FETI/BETI methods for this model problem, which
has been published in Pechstein [143, 144].

It might seem that such generalizations are straightforward as the exterior part can be
modeled simply by the exterior Steklov-Poincaré operator from Section 1.4.3. However,
some of the properties of the bounded case apparently fail to hold in the general unbounded
case. In the bounded case, a shape-regular subdomain partition implies that each subdomain
has a finite number of neighboring subdomain, and that the diameters of two neighboring
subdomains are comparable. In the unbounded case such an assumption is very limiting.
Actually, we are looking for a method that works for the case where the number of neighbors
of the exterior subdomain can be large, and where the boundary of the exterior subdomain
can be very large in comparison to the interior subdomains. A straightforward analysis
of FETI/BETI methods would lead to a condition number estimate which is not anymore
robust with respect to the number of neighbors and sizes of the subdomains. In the course
of this chapter we derive tools which allows for an analysis with explicit estimates.

In the case that in addition to the radiation condition no further Dirichlet boundary
conditions are given, we obtain the same type of estimate as in the bounded case, i. e.,
κ ≤ C (1 + log(H/h))2. The method is robust with respect to the above described possibly
large parameters under reasonable assumptions. The case of interior Dirichlet boundary
conditions is more subtle. One of our crucial tools is the so-called extension indicator which
relates the Dirichlet boundary and the boundary of the exterior subdomain. We are able to
give a condition number estimate for one-level FETI/BETI methods in terms of the extension
indicator, and we show how to bound that indicator in terms of a few accessible geometric
parameters. The reason for such a subtle condition number bound is the lack of coarse space
components corresponding to the exterior subdomain.

97
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3.1 Model problem and skeleton formulation

3.1.1 Continuous formulation

Let Ω ⊂ Rd (with d = 2 or 3) be an unbounded domain which can be decomposed into
finitely many bounded Lipschitz domains and an unbounded part Ω0 whose complement is
bounded and Lipschitz. Furthermore, let the bounded part Ω \Ω0 be Lipschitz too. Let the
coefficient α and the source f satisfy

α|Ω0
= α0 = const > 0 , and f|Ω0

= 0 . (3.1)

With our assumptions it is possible that Ω has no boundary at all (Ω = Rd), and it is also
possible that its boundary ∂Ω consists of more than one connected component. We assume
that each such connected component of ∂Ω is Lipschitz, and we denote the corresponding
outward unit normal vector by n. As in Chapter 2, ∂Ω decomposes into a Dirichlet boundary
ΓD (regarded as relatively closed) and an open Neumann boundary ΓN which are disjoint
to each other. Of course also these parts may be empty or may consist of more than one
component. Note, that we can allow the boundary ∂Ω to touch ∂Ω0. For an illustration of
such different configurations see Figure 3.1.

Our model problem reads as follows. Find the weak solution u ∈ H1
loc(Ω) to

−div
[
α∇u

]
= f in Ω , (3.2)

u = gD on ΓD , (3.3)

α
∂u

∂n
= gN on ΓN , (3.4)

with the radiation condition (1.49) from Section 1.4.1, which is equivalent to

u(x) =
{
b log |x|+O(|x|−1) for d = 2 ,
O(|x|−1) for d = 3 ,

as |x| → ∞, for some b ∈ R (see Lemma 1.21). Note that even if ΓD is empty, the problem is
still well-posed, because the radiation condition acts like a Dirichlet boundary condition at
infinity. Since we will model the equation in Ω0 using the exterior Steklov-Poincaré operator,
we call Ω0 the exterior part.

We consider a non-overlapping partition {Ωi}i=0,...,s of Ω into open subdomains such that

Ω =
s⋃
i=0

Ωi , Ωi ∩ Ωj = ∅ for i 6= j ,

where Ω0 is the exterior part from above. The subdomain boundaries are denoted by ∂Ωi

(hence, ∂Ω0 is the interface between the exterior part and the rest), and ni is the outward
unit normal vector to ∂Ωi. In particular, n0 points inside Ω \Ω0 (similar to next introduced
in Section 1.3.1.2). We define Hi := diam Ωi for i 6= 0, and set

H0 := diam Ωc
0 , (3.5)

where Ωc
0 := Rd \Ω0. Due to our assumption, H0 is finite, but it can happen that H0 � Hi

for some i 6= 0. Similarly to Chapter 2, we will heavily work with the index set

I := {0, . . . , s} , (3.6)
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Figure 3.1: Illustrations of the configuration of the unbounded setting. The grey region is
the domain Ω, the white region is excluded from Ω. Illustrated are the exterior part Ω0, the
Dirichlet boundary ΓD, the Neumann boundary ΓN , and the outward unit normal vector n
to ∂Ω. Upper left: Configuration with a connected boundary ∂Ω. Upper right: Configuration
with a boundary ∂Ω consisting of two connected components. Middle left: Configuration
with no boundary, ∂Ω = ∅. Middle right: Configuration with a Dirichlet boundary ΓD that
touches ∂Ω0. Lower: Subdomain partition for the first configuration.
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and consider subsets IFEM ⊂ I and IBEM = I \IFEM such that 0 ∈ IBEM. Finally, we define
the interior part Ωint and the index set of the interior subdomains by

Ωint := Ω \ Ω0 , Iint := I \ {0} , (3.7)

such that Ωint =
⋃
i∈Iint

Ωi. In the following, we make assumptions on the data and on the
subdomain partition similar to those in Chapter 2. We consider constant coefficients on the
all subdomains,

α|Ωi
= αi = const > 0 ∀i ∈ I , (3.8)

and assume that f ∈ L2(Ω), gD ∈ H1/2(ΓD), and gN ∈ L2(ΓN ). The source f must vanish
in all BEM subdomains, i. e.,

f|Ωi
= 0 ∀i ∈ IBEM . (3.9)

Remark 3.1. Note that as in Chapter 2 we can relax the assumptions on the coefficients
α, the source function f , and the prescribed Neumann trace gN . We can also relax the
assumption that the bounded part Ωint is Lipschitz to a certain extent, cf. Remark 2.4.

The following assumption is almost identical to Assumption 2.23 but it concerns only the
interior subdomains.

Assumption 3.2. The interior subdomains Ωi, i ∈ Iint are bounded and connected Lipschitz
domains, each one formed by a few simplices. The simplices altogether form a coarse, shape-
regular, and conforming triangulation TH of Ωint. The number of simplices per subdomain is
uniformly bounded.

The shape-regularity from Assumption 3.2 implies the existence of a uniformly bounded
constant CHDD > 0 such that

∂Ωi ∩ ∂Ωj 6= ∅ =⇒ Hi ≤ CHDDHj ∀i, j ∈ Iint .

Concerning the exterior part, we need to make the following assumption.

Assumption 3.3. The coarse triangulation of Ωint can be extended to a shape-regular, con-
forming triangulation of an auxiliary domain Ω′ ⊂ Ω such that Ωint is compactly contained
in Ω′.

For an illustration see Figure 3.2, which shows that there exist configurations which fulfill
Assumption 3.2 but violate Assumption 3.3 in the sense that the shape regularity constant
is very large. In case that Ω0 is well-shaped, Assumption 3.3 poses no real restriction.

As in the bounded case we can define the subdomain interfaces Γij , the interface Γ, and
the skeleton ΓS by

Γij := (∂Ωi ∩ ∂Ωj) \ ΓD , Γ :=
⋃
i6=j

Γij , ΓS :=
⋃
i∈I

∂Ωi . (3.10)

Similarly we can define faces, edges, and vertices according to Definition 2.2. Assumption 3.2
implies that the number of subdomains sharing the same vertex, edge, or face is uniformly
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Figure 3.2: Left: Illustration of the extended triangulation of the auxiliary domain Ω′ in
Assumption 3.3 for the example in Figure 3.1 (light grey: Ωint, dark grey: Ω′ \Ωint). Right:
Different configuration with small geometric angle.

bounded, and the number of vertices, edges, and faces of each interior subdomain is uniformly
bounded too. On the contrary, the number of faces, edges, and vertices of the exterior part
Ω0 can be very large.

Analogously to Section 2.1, we can introduce the conormal derivatives ti of the solution
u on the subdomain boundaries, given in terms of Steklov-Poincaré operators and Newton
potentials. In order to model the equation in Ω0 correctly, we have to use α0 S

ext
0 as Steklov-

Poincaré operator. From the transmission and boundary conditions on ti, we can derive a
continuous skeleton formulation. Since Sext

0 is elliptic (due to the radiation condition), this
problem is well-posed even if the Dirichlet boundary ΓD is empty.

3.1.2 Discrete formulation

We introduce triangulations of the subdomain boundaries and the FEM subdomains as in
Section 2.1. Let T h(ΓS) be a shape-regular triangulation of ΓS . For each i ∈ IFEM let
T h(Ωi) be a quasi-uniform and shape-regular triangulation of Ωi with mesh parameter hi
which matches with T h(ΓS). For each i ∈ IBEM let the restriction T h(∂Ωi) of T h(ΓS)
to ∂Ωi be a quasi-uniform and shape-regular triangulation of ∂Ωi of mesh parameter hi.
In particular, the restriction T h(∂Ω0) of T h(ΓS) to ∂Ω0 is assumed to be quasi-uniform
with mesh parameter h0, and h0 ' hi if the subdomain Ωi touches ∂Ω0. We define the
approximations

Si :=


α0 S

ext
0,BEM for i = 0 ,

αi S
int
i,BEM for i ∈ IBEM \ {0} ,

αi S
int
i,FEM for i ∈ IFEM .

(3.11)

and the functionals fi by

〈fi, v〉∂Ωi
= αi 〈Ni,FEMf, v〉∂Ωi

+
∫
∂Ωi∩ΓN

gN v ds for v ∈ V h(∂Ωi), i ∈ IFEM ,

〈fi, v〉∂Ωi
=
∫
∂Ωi∩ΓN

gN v ds for v ∈ V h(∂Ωi), i ∈ IBEM .

(3.12)
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Since we will work in the discrete setting only, we omit the subscript h. We assume again
that gD and gN are contained in the corresponding discrete spaces. Finally, the discrete
skeleton formulation reads: Find u ∈ V h(ΓS) with u|ΓD

= gD such that∑
i∈I
〈Si u, v〉∂Ωi

=
∑
i∈I
〈fi, v〉∂Ωi

∀v ∈ V h
D(ΓS) , (3.13)

where V h
D(ΓS) = {v ∈ V h(ΓS) : v|ΓD

= 0}. Recall, that by Lemma 1.33,

〈S0 u, u〉 ' α0

{
|u|2

H1/2(∂Ω0)
+

1
H0

‖u‖2
L2(∂Ω0)

}
. (3.14)

3.2 Difficulties in the case of unbounded domains

As outlined in the beginning of this chapter, we face two crucial difficulties that are not
present in the bounded case.

• The number of neighbors of Ω0 can be arbitrary.

• The diameter H0 can be very large compared to the diameter Hi of a neighboring
subdomain.

However, we are looking for a method that is robust with respect to the possibly large number
of neighbors of Ω0, and with respect to the ratio

max
i∈N0

H0

Hi
,

where N0 is the index set of neighboring subdomains of Ω0. As our discussion will show, this
is in some cases possible. We give explicit estimates of the condition number in terms of geo-
metric parameters such as Hi, H0, hi, and the so-called extension indicator γh(Ω0, Ωint, ΓD).
In special cases, this indicator can be estimated again in terms of H0, hi, and a shape pa-
rameter η which will be introduced later on. It will turn out that if the Dirichlet boundary
ΓD is empty or sufficiently separated from ∂Ω0, we get perfect robustness with respect to
the ratio max

i∈N0

H0/Hi.

3.3 Formulation of FETI/BETI methods in unbounded do-
mains

The following two assumptions are just the same as in the bounded case.

Assumption 3.4. The interface between the Dirichlet boundary ΓD and the Neumann
boundary ΓN is aligned with the subdomain partition.

Assumption 3.5. In case of the standard one-level formulation in three dimensions, we have
to assume that the intersection of a subdomain boundary ∂Ωi and the Dirichlet boundary ΓD
is either empty or at least a subdomain edge.

We can set up the standard one-level and the all-floating method analogously to Sec-
tion 2.2. The exterior part Ω0 is just an additional subdomain with a special Steklov-Poincaré
operator. Only the following issues are of crucial importance.
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(i) Ω0 is always a non-floating subdomain because the operator S0 is regular, see (3.14),
even in the case of an all-floating method (cf. Definition 2.7 on page 55).

(ii) If the Dirichlet boundary ΓD touches ∂Ω0, we do always incorporate the corresponding
Dirichlet conditions into the space W0, even in the case of an all-floating method. As
a consequence we have no Lagrange multipliers of the form λ0D and we always have

W0 := V h
D(∂Ω0) =

{
w ∈ V h(∂Ω0) : w|ΓD

= 0
}
. (3.15)

(iii) We need to adapt the operator Q slightly.

(iv) If we are in two dimensions, the coordinates must be scaled such that H0 = 1
2 for

theoretical reasons, cf. Lemma 1.33, page 44. Doing so, all interior diameters Hi stay
below 1, such that the local single layer potentials remain elliptic.

Everything else is analogous to Section 2.2. Convention (ii) is needed for technical reasons
and it forces us to add the following assumption.

Assumption 3.6. In case of the all-floating formulation in three dimensions, we have to
assume that the intersection of the Dirichlet boundary ΓD with ∂Ω0 is either empty or at
least a subdomain edge.

Remark 3.7. Similarly as outlined in Remark 2.10, the block S0 appearing in the precondi-
tioner M−1 = BD S B

>
D may be replaced by a suitable regularization D̃0 of the hypersinguar

operator on ∂Ω0, for instance defined by

〈D̃0 v, w〉 = 〈D0 v, w〉+
1
Hd

0

∫
∂Ω0

v ds

∫
∂Ω0

w ds .

The operator Q is either set to M−1 (which is however not recommended) or defined by

(Qµ)ij(xh) := min(αi, αj) qij(xh)µij(xh) for µ ∈ U∗ , (3.16)

q0i(xh) := qi0(xh) := qi(xh) ,

qij(xh) := min(qi(xh), qj(xh)) for i, j 6= 0 , (3.17)

qi(xh) :=

 (1 + log(Hi/hi))
h2

i
Hi

if xh lies on a face Fi

hi if xh lies on an edge Ei or a vertex Vi

 if d = 3 ,

qi(xh) :=

{
(1 + log(Hi/hi)) hi

Hi
if xh lies on an edge Ei

1 if xh is a vertex Vi

}
if d = 2 . (3.18)

For the all-floating method, we additionally set

(Qµ)iD(xh) := αi qi(xh)µiD(xh) for xh ∈ ∂Ωh
i ∩ ΓD for µ ∈ U∗ , (3.19)

where i 6= 0. Note that by this construction, the possibly large diameter H0 never occurs in
the entries of Q. Alternatively, we could have also used the diameters of the faces and edges
instead of the subdomain diameters Hi.
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3.4 Condition number estimates for FETI/BETI methods in
unbounded domains

3.4.1 The extension indicator

It turns out that in the case of Dirichlet boundary conditions, cf. Figure 3.1, the condition
number depends on a geometric parameter, the extension indicator, which is associated to
the Dirichlet boundary ΓD and the outer boundary ∂Ω0. In this subsection we define this
indicator and give bounds in terms of more accessible parameters.

First of all, we need a technical assumption and some definitions.

Assumption 3.8. There exists an auxiliary triangulation T̃ h(Ωint) of the interior part Ωint

which is shape-regular and quasi-uniform with mesh parameter h0, which matches with the
triangulation T h(∂Ω0), and which resolves ΓD.

Note that T̃ h(Ωint) does not need to match with the existing triangulations on the in-
terface Γ and on the FEM subdomains. We will transfer between the different meshes using
the Scott-Zhang quasi-interpolation operator.

Remark 3.9. Assumption 3.8 holds unless the interior part Ωint or the Dirichlet boundary
ΓD exhibit fine geometric details that cannot be resolved using the mesh parameter h0, in
other words, h0 needs to be small enough. We will comment on a remedy in Remark 3.17.

We fix a triangulation T̃ h(Ωint) which fulfills the requirements of Assumption 3.8 and
denote the finite element space associated to it by Ṽ h(Ωint). For a discrete function w0 ∈
V h
D(∂Ω0), the discrete harmonic extension H̃intw0 ∈ Ṽ h(Ωint) is defined by

H̃intw0 := argmin
{
|v|H1(Ωint) : v ∈ Ṽ h(Ωint), v|∂Ω0

= w0

}
. (3.20)

We define a second discrete extension that satisfies homogeneous Dirichlet boundary condi-
tions on ΓD.

Definition 3.10 (Restricted discrete harmonic extension). For a function w0 ∈ V h
D(∂Ω0),

the restricted discrete harmonic extension H̃int
D w0 ∈ Ṽ h(Ωint) is defined by

H̃int
D w0 := argmin

{
|v|H1(Ωint) : v ∈ Ṽ h(Ωint), v|∂Ω0

= w0, v|ΓD
= 0
}
.

The following indicator measures the ratio of the two different extensions in suitable
energy norms.

Definition 3.11 (Extension indicator). We call

γh(Ω0, Ωint, ΓD) := sup
w0∈V h

D(∂Ω0)

|H̃int
D w0|2H1(Ωint)

|H̃intw0|2H1(Ωint)
+ 1

H0
‖w0‖2

L2(∂Ω0)

.

the extension indicator. The subscript h indicates the dependence on T̃ h(Ωint).

Note that

ΓD = ∅ or ΓD ⊂ ∂Ω0 =⇒ γh(Ω0, Ωint, ΓD) ≤ 1 , (3.21)
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ν

νint,Ω

Ω int

Ω 0 Ω

jω

0

Figure 3.3: Illustration of the boundary layer Ωint,ν from Definition 3.12 for two different
configurations. Dark grey: Ωint,ν ; light grey: Ωint\Ωint,ν . Right: Illustration of the partition
property, see Definition 3.13.

because then, the two extensions, H̃intw0 and H̃int
D w0 coincide. In all other cases, the

extension indicator can be bounded in terms of a shape parameter η which is specified in the
sequel. The following concept of boundary layers and shape parameters is borrowed from
a work by Graham, Lechner, and Scheichl [75] on overlapping Schwarz methods and
slightly adapted for our purposes.

Definition 3.12 (Boundary layer). A subset Ωint,ν of Ωint is called boundary layer of Ωint

with parameter ν if it fulfills

∀x ∈ Ωint,ν : dist (x, ∂Ω0) < 2 ν , ∀x ∈ ∂Ω0 : Bx,ν ∩ Ωint ⊂ Ωint,ν ,

where Bx,ν is the open ball with center x and radius ν.

Note that in the above definition, we use the distance of points x ∈ Ωint from the outer
boundary ∂Ω0, and not the boundary ∂Ωint of the interior part, which are not necessarily
the same, cf. Figure 3.3.

Definition 3.13 (Partition property). A boundary layer Ωint,ν fulfills the partition property
if it can be partitioned into finitely many non-overlapping patches {ωj}j∈J such that the
following holds.

(i) Each patch ωj consists of a union of a few simplices with diamωj ' ν and the number
of simplices per patch is uniformly bounded.

(ii) The union of all the simplices forms a quasi-uniform, shape-regular coarse triangulation
of Ωint,ν .

(iii) For each j ∈ J , the intersection γj := ∂ωj ∩ ∂Ω0 is the closure of a union of faces
(edges in two dimensions) of the simplices of the coarse triangulation, and in particular,
diam (γj) ' ν.

(iv) The patches are aligned with the auxiliary triangulation T̃ h(Ωint).

For an illustration see Figure 3.3, right. Since the auxiliary triangulation T̃ h(Ωint) can
be chosen almost arbitrarily, the requirement that the patches are aligned with T̃ h(Ωint)



106 CHAPTER 3. ONE-LEVEL METHODS FOR UNBOUNDED DOMAINS

poses no real restriction concerning the interfaces between the patches. The patches must
however resolve the interior part of ∂Ωint,ν , that is why we allow a distance up to 2 ν in
Definition 3.12.

Definition 3.14 (Shape parameter η). The shape parameter η > 0 is the largest number
such that a boundary layer Ωint,η of Ωint exists which fulfills the partition property.

By this construction we have for sure that η ≥ Hi for i ∈ N0. If the boundary ∂Ω0 stays
fixed, or if it is sufficiently regular in the sense that it can be represented by a small number
of straight-sided faces (edges), we have

η ' dist (ΓD \ ∂Ω0, ∂Ω0) if dist (ΓD \ ∂Ω0, ∂Ω0) > 0 , (3.22)

see also Remark 3.18 at the end of this subsection. In case the Dirichlet boundary ΓD touches
∂Ω0, there exists a shape parameter η > 0 in the sense of Definition 3.14 as long as there
exists at least one interior subdomain, for an illustration see Figure 3.3, right.

The following theorem gives bounds of the extension indicator for different classes of
geometric configurations.

Theorem 3.15. Let the extension indicator γh(Ω0, Ωint, ΓD) and the shape parameter η > 0
be defined according to Definition 3.11 and Definition 3.14. Then the following estimates
hold.

(i) If ΓD is empty or if ΓD ⊂ ∂Ω0 then γh(Ω0, Ωint, ΓD) ≤ 1 ,

(ii) if ΓD \ ∂Ω0 is separated from ∂Ω0 then γh(Ω0, Ωint, ΓD) .
H0

η
,

(iii) otherwise, γh(Ω0, Ωint, ΓD) .
H0

η
(1 + log(η/h0))2 .

Note that Part (i) is trivial due to Definition 3.11. Before we give the proofs of Part (ii)
and Part (iii) we need the following lemma which is related to a partition of unity function
used for overlapping Schwarz methods, cf. Toselli and Widlund [184, Lemma 3.4].

Lemma 3.16. Assume that ΓD \ ∂Ω0 is separated from ∂Ω0 (Case (ii) of Theorem 3.15).
Then there exists a discrete cut-off function χ ∈ Ṽ h(Ωint) which fulfills

(i) χ(x) ∈ [0, 1] ∀x ∈ Ωint,

(ii) χ|∂Ω0
= 1, and χ vanishes entirely on Ωint \ Ωint,η, in particular on ΓD \ ∂Ω0,

(iii) ‖∇χ‖L∞(Ωint) . 1/η,

where η is the shape parameter and Ωint,η the boundary layer according to Definition 3.14.

Proof. We construct a particular cut-off function χ. First, we define the continuous function

χ0(x) :=

 1− dist (x, ∂Ω0)
η

if dist (x, ∂Ω0) ≤ η ,

0 otherwise,

 for x ∈ Ωint .

A simple inspection shows that this function is well-defined, continuous, and that ∇χ0 ∈
L∞(Ωint). We define χ ∈ Ṽ h(Ωint) by the nodal interpolation of χ0. Both functions obviously
fulfill the properties (i)–(iii).



3.4. CONDITION NUMBER ESTIMATES 107

Proof of Theorem 3.15, Part (ii): In this proof we estimate the energy of a particular
extension that matches the Dirichlet boundary conditions using the cut-off function χ ∈
Ṽ h(Ωint) from Lemma 3.16. Our argumentation follows the line of Graham, Lechner,
and Scheichl [75, Lemma 3.3 and Theorem 4.3], where instead of χ, a continuous partition
of unity function with respect to an overlapping subdomain partition is used.

Let w0 ∈ V h
D(∂Ω0) be fixed and let w̃ := H̃intw0 ∈ Ṽ h(Ωint) denote its discrete harmonic

extension. Recall that Ωint,η is partitioned into finitely many shape-regular patches ωj ,
j ∈ J . Let Ĩh denote the nodal interpolator with respect to the triangulation T̃ h(Ωint).
Because of Lemma 3.16(ii), the function Ĩh(χ w̃) is an extension of w0 from ∂Ω0 to Ṽ h(Ωint)
and it vanishes on ΓD and on Ωint \ Ωint,η. By Definition 3.10 of the restricted discrete
harmonic extension, the H1-continuity of Ĩh, and Lemma 3.16 we obtain

|H̃int
D w0|2H1(Ωint)

≤ |Ĩh(χ w̃)|2H1(Ωint)
= |Ĩh(χ w̃)|2H1(Ωint,η)

.
∫

Ωint,η

∣∣∇(χ(x) w̃(x)
)∣∣2 dx

.
∫

Ωint,η

|∇χ(x)|2 |w̃(x)|2 + |χ(x)|2 |∇w̃(x)|2 dx

. ‖∇χ‖2
L∞(Ωint)

‖w̃‖2
L2(Ωint,η) + |w̃|2H1(Ωint,η)

.
∑
j∈J

{ 1
η2
‖w̃‖2

L2(ωj)
+ |w̃|2H1(ωj)

}
.

(3.23)

By Theorem 1.7 (see also Toselli and Widlund [184, Corollary A.15]), whose application
is justified by Definition 3.13(iii), we conclude that

1
η2
‖w̃‖2

L2(ωj)
. |w̃|2H1(ωj)

+
1
η
‖w̃‖2

L2(∂ωj∩∂Ω0) . (3.24)

Finally, since the union of the patches forms the boundary layer Ωint,η ⊂ Ωint and using the
fact that H0 ≥ η, we can conclude from (3.23) and (3.24) that

|H̃int
D w0|2H1(Ωint)

. |w̃|2H1(Ωint)
+

1
η
‖w̃‖2

L2(∂Ω0)

.
H0

η

{
|H̃intw0|2H1(Ωint)

+
1
H0
‖w0‖2

L2(∂Ω0)

}
,

which proves Part (ii) of Theorem 3.15. �
Proof of Theorem 3.15, Part (iii): In this case, ΓD touches ∂Ω0. We cannot use the

cut-off function from Lemma 3.16 anymore. However, due to Definition 3.14 we still have
the partition {ωj}j∈J of the boundary layer Ωint,η, where the shape-regular patches ωj have
a diameter proportional to the shape parameter η. The partition defines patch faces, edges,
and vertices analogous to Definition 2.2 (page 48) considering a patch as a subdomain. For
a patch ωj , we denote by

• fj the patch face,

• ej (generically) a patch edge,

• vj (generically) a patch vertex,
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of ωj which is part of the boundary ∂Ω0 (in two dimension we have of course no faces). The
interior patch faces, edges, and vertices are not considered. Using the auxiliary triangulation
T̃ h(Ωint) we can define the cut-off functions ϑfj , ϑej , and ϑvj ∈ Ṽ h(Ωint), according to
Definition 2.30 (page 75) and Remark 2.35 (page 77), see also Toselli and Widlund [184,
Sect. 4.6]. Each such function is supported in only a few patches, and the supports of all these
functions overlap finitely many times. For a patch face, edge, or vertex of ωj which is part
of the boundary ∂Ω0 we generically write xj , similar to the notation on page 75. For a fixed
function w ∈ V h

D(∂Ω0) we denote its discrete harmonic extension by w̃ := H̃intw ∈ Ṽ h(Ωint).
We define another function

ŵ :=
∑
xj

Ĩh(ϑxj w̃) ,

where the sum runs over all the patch faces, edges, and vertices of the partition which are
part of the boundary ∂Ω0. Using Remark 2.35 and Definition 3.14, it is not hard to see that
(i) the function ŵ is an element of Ṽ h(Ωint), (ii) the function ŵ is a discrete extension of
w, and (iii) the function ŵ vanishes on ΓD. Using Definition 3.10, the finite overlap of the
supports of the functions ϑxj , Toselli and Widlund [184, Lemma 4.15, Lemma 4.19, and
Lemma 4.24] (see also Lemma 2.33 and Lemma 2.34), and Theorem 1.7, we obtain

|H̃int
D w0|2H1(Ωint)

≤ |ŵ|2H1(Ωint)
.
∑
xj

|Ih(ϑxj w̃)|2H1(supp (ϑxj ))

.
∑
j∈J

(1 + log(η/h0))2
{
|w̃|2H1(ωj)

+
1
η2
‖w̃‖2

L2(ωj)

}
.
∑
j∈J

(1 + log(η/h0))2
{
|w̃|2H1(ωj)

+
1
η
‖w̃‖2

L2(∂ωj∩∂Ω0)

}
≤ (1 + log(η/h0))2

{
|w̃|2H1(Ωint)

+
1
η
‖w̃‖2

L2(∂Ω0)

}
≤ (1 + log(η/h0))2

H0

η

{
|H̃intw0|2H1(Ωint)

+
1
H0

‖w0‖2
L2(∂Ω0)

}
,

which concludes the proof of Theorem 3.15, Part (iii). �
We finish this subsection with two remarks on possible extensions of Theorem 3.15.

Remark 3.17. In case Assumption 3.8 is violated (i. e., h0 cannot resolve fine details in
Ωint or ΓD) the theory being presented in this section may still be useful. One needs to
replace Ωint and ΓD in Definition 3.11 by suitable sets Ω̃int and Γ̃D, respectively, such that
Ω̃int excludes the fine details, and Γ̃D is chosen such that any function w ∈ V h(Ω̃int) with
w|eΓD

= 0 can be extended by zero to Ωint where this extension vanishes on ΓD.

Remark 3.18. If the outer boundary ∂Ω0 has many faces, it can happen that η ' Hi for
i ∈ N0 because ∂Ω0 is too “rough” in the sense that it cannot be represented by a small
number of straight faces. Using the theory from [45] and [113] concerning domain decompo-
sition methods for less regular subdomains (at least in two dimensions), we may relax the
partition property from Definition 3.13 such that the patches can be chosen less regular.
For many cases this may result in a larger shape parameter η, and therefore better bounds
in Theorem 3.15. However, this issue is only important if one is interested in asymptotic
bounds that remain robust when changing the outer boundary ∂Ω0. Note also, that the
constants in our bounds depend in any case on the shapes of the subdomains.
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3.4.2 Main result

As discussed in Section 2.2.4, most arguments in the analysis of one-level FETI/BETI meth-
ods are algebraic except for the estimate of the PD-operator. This is indeed true for the
present case. The following lemma gives such PD-estimates. Recall the space

W⊥ :=
{
w ∈W :

∫
Ωi

Hiwi dx = 0 ∀i ∈ Ifloat

}
. (3.25)

Lemma 3.19. Let w ∈ W⊥ be arbitrary but fixed and let zw ∈ kerS be the unique element
from Lemma 2.22. Then for Q = M−1 or Q chosen according to (3.16)–(3.19), the estimates

|PD(w + zw)|2S ≤ C max
j∈N0

H0

Hj
max
i∈Iint

(1 + log(Hi/hi))2 |w|2S ,

|PD(w + zw)|2S ≤ C γh(Ω0, Ωint, ΓD) max
j∈I

αj
α0

max
i∈Iint

(1 + log(Hi/hi))2 |w|2S ,

hold, where γh(Ω0, Ωint, ΓD) is the extension indicator according to Definition 3.11, and the
constant C > 0 is independent of Hi, hi, the number of subdomains, the number of neighbors
of the exterior part Ω0, and the coefficients αi.

Proof. Postponed to Section 3.4.4.

The above lemma immediately implies our main result of the current section.

Theorem 3.20. For Q = M−1 or Q chosen according to (3.16)–(3.19), the one-level and
the all-floating FETI/BETI methods for unbounded domains defined in this section satisfy
the condition number estimates

κ ≤ C max
j∈N0

H0

Hj
max
i∈Iint

(1 + log(Hi/hi))2 ,

κ ≤ C γh(Ω0, Ωint, ΓD) max
j∈I

αj
α0

max
i∈Iint

(1 + log(Hi/hi))2 ,

where γh(Ω0, Ωint, ΓD) is the extension indicator according to Definition 3.11, and the con-
stant C > 0 is independent of Hi, hi, the number of subdomains, the number of neighbors of
the exterior part Ω0, and the coefficients αi.

Proof. The proof is identical to the proof of Theorem 2.28 in Section 2.2.4 replacing Lemma 2.27
by Lemma 3.19.

Remark 3.21. Note that under the condition α0 & αi for all i ∈ Iint, we have

max
j∈I

αj
α0

' 1 .

If additionally, the Dirichlet boundary ΓD is empty, or separated from ∂Ω0 with a shape
parameter η being proportional to H0, we get the quasi-optimal bound

κ ≤ C max
i∈Iint

(1 + log(Hi/hi))2 ,

according to Theorem 3.15. This is the same (sharp) estimate that we obtained in the
bounded case, cf. Theorem 2.28.
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Ω
Ω i

0

H0H i

Figure 3.4: Illustration of Remark 3.22.

Remark 3.22. The fact that the quasi-optimal condition number estimate does not hold in
general is not so surprising: Since Ω0 is a non-floating subdomain there is no direct coarse
space component concerning S0. However, S0 is regular, which is similar to the case that we
have an equation of the type

−α0 ∆u+
α0

H2
0

u = 0 in Ω0 ,

with a bounded domain Ω0 as sketched in Figure 3.4. As pointed out by Farhat, Chen,
and Mandel [58], differential operators of the form −div [α∇u] + β u (which occur mostly
in connection with time-dependent problems) require a different projection (and therefore a
different method) to guarantee robustness with respect to the number of subdomains. See
also Toselli and Klawonn [182] for related electromagnetic problems.

The result of Theorem 3.20, however, shows that the coarse space built from the interior
subdomains is strong enough to serve for the exterior part as well, as long as the interior
coefficients are not essentially larger than α0, and as long as there is enough (geometric) space
in Ωint in the neighborhood of ∂Ω0. We note close similarities to the theory of overlapping
Schwarz methods; in particular the shape parameter η acts like the overlap parameter, cf.
Toselli and Widlund [184, Sect. 3] and Graham, Lechner, and Scheichl [75].

Remark 3.23. We point out that the following tools and proofs might also be useful for the
bounded case, e. g., to give precise estimates for the case that a large region of homogeneous
material is handled by one single BEM subdomain with smaller neighboring subdomains, cf.
Figure 3.5.

3.4.3 Additional technical tools

Before we come to the proof of Lemma 3.19, we need a few additional technical tools. As
in Chapter 2 we restrict ourselves to the three-dimensional case, since the two-dimensional
case can be derived from it. First, we need some constructions and a lemma which allows to
estimate split and composed functions in the energy-norm induced by the exterior Steklov-
Poincaré operator S0.

Construction 3.24. Using the coarse triangulation of the auxiliary domain Ω′, see Assump-
tion 3.3, we can find for each face F0 an auxiliary subdomain Ω′

F0
⊂ Ω′ \Ωint consisting of a

few simplices, such that F0 is shared by an interior subdomain and the auxiliary subdomain
Ω′
F0

. Similarly, for each edge E0 (and respectively each vertex V0), we can find auxiliary
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Figure 3.5: Illustration of the auxiliary subdomains Ω′
E0

, and Ω′
V0

from Construction 3.24
for a two-dimensional configuration.

subdomains Ω′
E0

(respectively Ω′
V0

) such that all the simplices from the coarse triangulation
that touch E0 (respectively V0) are contained in ΩE0 (respectively ΩV0). This construction
can be done such that the auxiliary subdomains have diameters proportional to the diame-
ters of the interior subdomains which share the corresponding face, edge, or vertex. For an
illustration see Figure 3.5.

Construction 3.25. We introduce an auxiliary triangulation T h(Ω′ \ Ωint) which is con-
forming, shape-regular, and quasi-uniform with shape parameter h0 and which matches with
T h(∂Ω0) and with the coarse triangulation of Ω′. We denote the corresponding finite el-
ement space by V h(Ω′ \ Ωint) and the local restrictions of that space to Ω′

X0
by V h(Ω′

X0
).

Analogously to Definition 2.30 (page 75) and Remark 2.35 (page 77) we define the cut-off
functions ϑ′F0

∈ V h(Ω′
F0

), ϑ′E0
∈ V h(Ω′

E0
), and ϑ′V0

∈ V h(Ω′
V0

). Finally, we denote the
discrete harmonic extension of a function w ∈ V h(F0) to V h(Ω′

F0
) by H′

F0
w such that

H′
F0
w = argmin

{
|w̃|H1(Ω′F0

) : w̃ ∈ V h(Ω′
F0

), w̃|F0
= w

}
. (3.26)

Lemma 3.26. For all w ∈ V h(∂Ω0), and any extension w̃ of w from ∂Ω0 to V h(Ω′ \ Ωint),
we have

(i) |w|2S0
.
∑
X0

α0 |Ih(ϑ′X0
w̃)|2H1(Ω′X0

) ,

(ii)
∑
F0

α0 |H′
F0
w|2H1(Ω′F0

) . |w|2S0
.

Proof. Part (i): Let w ∈ V h(∂Ω0) be fixed. By Construction 3.24, the function

ψ =
∑
X0

Ih(ϑ′X0
w̃)

is an extension of w from ∂Ω0 to H1
∗ (Ω0) because it vanishes outside of Ω′ \ Ωint. Using
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relation (1.62) from page 32 we obtain

|w|2S0
≤ α0 min

u∈H1
∗(Ω0)

u|∂Ω0
=w

∫
Ω0

|∇u|2 dx

≤ α0

∫
Ω0

∣∣∣∇(∑
X0

Ih(ϑ′X0
w̃)
)∣∣∣2 dx .

∑
X0

α0

∣∣Ih(ϑ′X0
w̃)
∣∣2
H1(Ω′X0

)
,

where in the last step we have used that the supports of the cut-off functions ϑX0 have finite
overlap.

Part (ii): First we show ∑
F0

|H′
F0
w|2H1(Ω′F0

) . |w|2
Sint

0,FEM
, (3.27)

where Sint
0,FEM is the Steklov-Poincaré FEM-approximation using an auxiliary triangulation

T̃ h(Ω \Ω0) of Ω \Ω0 which is shape-regular and quasi-uniform with mesh parameter h0. Let
ŵ denote the discrete harmonic extension of w from ∂Ω0 to V h(Ω \ Ω0) such that

|w|2
Sint

0,FEM
= |ŵ|2H1(Ω\Ω0) .

Let now F0 be a face shared by the interior subdomain Ωi and the auxiliary subdomain Ω′
F0

.
Using Lemma 2.39 (see page 78) we can conclude that

|H′
F0
w|H1(Ω′F0

) . |Hiw|2H1(Ωi)
≤ |ŵ|2H1(Ωi)

,

which immediately implies (3.27) by summing over the faces. Using Lemma 1.33 we obtain∑
F0

|H′
F0
w|2H1(Ω′F0

) . |w|2
Sint

0,FEM
. |w|2Sext

0,BEM
,

which shows the desired statement.

Remark 3.27. We can read Lemma 3.26(ii) as∑
F0

α0 |H′
F0
w|2

H1/2(F0)
. |w|2S0

' α0

{
|w|2

H1/2(∂Ω0)
+

1
H0
‖w‖2

L2(∂Ω0)

}
.

Assume that the function w ∈ V h(∂Ω0) vanishes on the boundaries of all faces F0, then
Lemma 3.26(i) can be read as

|w|2S0
.
∑
F0

α0 |w|2
H

1/2
00 (F0)

.

Under this viewpoint, our theory of one-level methods for unbounded domains is strongly con-
nected to the theory of iterative substructuring and additive Schwarz methods for the BEM,
see, e. g., the works by Ainsworth and Guo [2], Heuer [85], Heuer and Stephan [86, 87],
Stephan and Tran [178], and von Petersdorff [188].
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Lemma 3.28. For all w ∈W and for all i ∈ Iint, we have

|(PD w)i|2Si
.
∑
Xi∩Γ

∑
j∈NXi

min(αi, αj)
∣∣Ih(ϑXi(wi − wj)

)∣∣2
H1(Ωi)

+
∑

Xi∩ΓD

αi |Ih(ϑXiwi)|2H1(Ωi)
,

|(PD w)0|2S0
.
∑
X0∩Γ

∑
j∈NX0

min(α0, αj)
∣∣Ih(ϑ′X0

(w0 − wj)
)∣∣2
H1(Ω′X0

)
+
∑

X0∩ΓD

α0 |Ih(ϑX0w0)|2H1(Ω′X0
) .

Proof. Reusing Lemma 2.16 we can show that in the current unbounded case, the operator
PD is characterized by

(PD w)i(xh) =


∑

j∈N
xh

δ†j(x
h)
(
wi(xh)− wj(xh)

)
for xh ∈ ∂Ωh

i \ ΓD ,

wi(xh) for xh ∈ ∂Ωh
i ∩ ΓD .

(3.28)

Using the proof in Section 2.2.4.4, Lemma 2.39, and Lemma 3.26(i), we obtain for i ∈ Iint,

|(PD w)i|2Si
.

∑
Xi∩Γ

αi

∣∣∣ ∑
j∈NXi

Ih
(
δ†j ϑXi(wi − wj)

)∣∣∣2
H1(Ωi)

+
∑

Xi∩ΓD

αi |Ih(ϑXiwi)|2H1(Ωi)
,

|(PD w)0|2S0
.
∑
X0

α0

∣∣∣ ∑
j∈NX0

Ih
(
δ†j ϑ

′
X0

(w0 − wj)
)∣∣∣2
H1(Ω′X0

)
+
∑

X0∩ΓD

α0 |Ih(ϑX0w0)|2H1(Ω′X0
) .

Using the fact that δ†j is constant on the inner nodes of each edge and face, and using the
elementary inequality (2.100) from page 80, we obtain the desired statement.

3.4.4 The PD estimates – Proof of Lemma 3.19

Let w ∈ W⊥ be arbitrary. We introduce the projection that selects the component of
w0 ∈ V h

D(∂Ω0), i. e.,

Π0w := [w0, 0, . . . , 0] . (3.29)

In the following we write w = Π0w + w̃ where w̃ = (I − Π0)w, i. e., w̃0 = 0. Lemma 2.22
assures that zw depends linearly on w. Hence, zw = z(Π0 w) + z ew, which implies

|PD(w + zw)|2S . |PD(w̃ + z ew)|2S + |PD(Π0w + z(Π0 w))|2S . (3.30)

Using the fact that w̃0 = 0, and using Lemma 3.28 and the proof of Lemma 2.27 from
Section 2.2.4.4, one can show that

|PD(w̃ + z ew)|2S . max
i∈Iint

(1 + log(Hi/hi))2 |w̃|2S , (3.31)

which bounds the first summand in (3.30). For the second summand we prove the following
estimates.
Claim 1. For all w ∈W ,

|PD(Π0w + z(Π0 w))|2S ≤ C max
j∈N0

H0

Hj
max
i∈Iint

(1 + log(Hi/hi))2 |w0|2S0
.

Claim 2. For all w ∈W ,

|PD(Π0w + z(Π0 w))|2S ≤ C γh(Ω0, Ωint, ΓD) max
j∈I

αj
α0

max
i∈Iint

(1 + log(Hi/hi))2 |w0|2S0
.
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Proof of Claim 1 for the case Q = M−1. First, the identity P>
DS PD = B>M−1B =

B>QB (see Lemma 2.16, page 70) and Lemma 2.22 (page 72) imply

|PD(Π0w + z(Π0 w))|2S = ‖B(Π0w + z(Π0 w))‖2
Q

= min
z∈kerS

‖B(Π0w + z)‖2
Q ≤ ‖B(Π0w)‖2

Q = |PD(Π0w)|2S .
(3.32)

Secondly, we apply Lemma 3.28. Due to the fact that Π0w has only a non-trivial zero-
component, we get only contributions from faces, edges, and vertices Xj0 shared by Ω0

and one of its neighboring subdomains Ωj . There are no contributions from the Dirichlet
boundary, because (w0)|ΓD

= 0 due to (3.15).

|PD(Π0w)|2S .
∑
Xj0

min(α0, αj) |Ih(ϑ′Xj0
w0)|2H1(Ω′X0

) (3.33)

+
∑
Xj0

min(α0, αj) |Ih(ϑXj0 w0)|2H1(Ωj)
.

We can simply estimate min(α0, αj) from above by α0. By Lemma 2.39 and Lemma 2.34
we obtain

|Ih(ϑ′Xj0
w0)|2H1(Ω′Xj0

) + |Ih(ϑXj0 w0)|2H1(Ωj)

. (1 + log(Hj/hj))2
{
|H′

Xj0
w0|2H1(Ω′Xj0

) +
1
Hj

‖w0‖2
L2(F0k)

}
,

(3.34)

where F0k is chosen such that Xj0 touches it. Combining (3.33), (3.34), and Lemma 3.26(ii),
we obtain

|PD(Π0w)|2S . max
j∈N0

(1 + log(Hj/hj))2
{
|w0|2S0

+
∑
F0k

α0

Hk
‖w0‖2

L2(F0k)

}
. max

j∈N0

(1 + log(Hj/hj))2 max
k∈N0

H0

Hk

{
|w0|2S0

+
α0

H0
‖w0‖2

L2(∂Ω0)

}
.

Using Lemma 1.33, the L2-term in the last line can be bounded from above by |w0|2S0
.

Combining the last result with (3.32) proves Claim 1 for the case Q = M−1. �

Proof of Claim 1 for Q chosen according to (3.16)–(3.19). We start with the elemen-
tary estimate

|PD(Π0w + z(Π0 w))|2S . |PD(Π0w)|2S + |PD z(Π0 w)|2S . (3.35)

As shown in the above proof of Claim 1 (for Q = M−1),

|PD(Π0w)|2S . max
j∈N0

(1 + log(Hj/hj))2 max
k∈N0

H0

Hk
|w0|2S0

, (3.36)

which bounds the first term in (3.35). For the second term, let zi denote the (constant) com-
ponents of z(Π0 w). Since Ω0 is a non-floating subdomain, z0 = 0. Lemma 3.28, Lemma 2.34
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and a comparison with the entries of Q yield

|PD z(Π0 w)|2S .
∑
i∈Iint

∑
Xji

min(αi, αj) |ϑXji(zi − zj)|2H1(Ωi)
+

∑
Xi∩ΓD

αi |ϑXi zi|2H1(Ωi)

+
∑
Xj0∩Γ

min(α0, αj) |ϑXj0 (z0 − zj)|2H1(Ω′Xj0
)

. ‖B z(Π0 w)‖2
Q .

The above estimate holds for both the standard and the all-floating formulation, see the
proof of Lemma 2.44, page 82ff. Using Lemma 2.22 and the same technique as in the proof
of Lemma 2.44 we obtain

|PD z(Π0 w)|2S . ‖B z(Π0 w)‖2
Q ≤ ‖B (Π0w)‖2

Q

.
∑
F0j

α0 (1 + log(Hj/hj))
1
Hj

‖w0‖2
L2(F0j)

+
∑
E0k

α0 ‖w0‖2
L2(E0k) .

Using Lemma 2.34(ii), one can show that

‖w0‖2
L2(E0k) . (1 + log(Hj/hj))

{
|H′

Fj
w0|2H1(Ω′Fj

) +
1
Hj
‖w0‖2

L2(Fj)

}
if the face Fj touches the edge E0k. Combining the last two estimates, Lemma 3.26(ii), and
Lemma 1.33 we finally obtain

|PD z(Π0 w)|2S . max
k∈Nk

(1 + log(Hk/hk))
{

max
i∈N0

α0

Hi
‖w0‖2

L2(∂Ω0) +
∑
F0j

α0 |H′
Fj
w0|2H1(Ω′Fj

)

}
. max

k∈Nk

(1 + log(Hk/hk)) max
i∈N0

H0

Hi
|w0|2S0

,

which proves Claim 1 for the diagonal choice of Q. �

Proof of Claim 2 for the case Q = M−1. We show

|PD(Π0w + z(Π0 w))|2S ≤ C γh(Ω0, Ωint, ΓD) max
j∈I

αj
α0

max
i∈Iint

(1 + log(Hi/hi))2 |w0|2S0
.

As shown in the proof of Claim 1 for the case Q = M−1,

|PD(Π0w + z(Π0 w))|2S = min
z∈kerS

|PD(Π0w + z)|2S . (3.37)

We construct a special element z̃ ∈ kerS to bound this minimum from above:

z̃i :=

{
1
|Ωi|

∫
Ωi

Πh
i H̃int

D w0 dx if i ∈ Ifloat ,

0 else,
(3.38)

where H̃int
D w0 ∈ Ṽ h(Ωint) is the restricted discrete harmonic extension according to Def-

inition 3.10, and Πh
i is the Scott-Zhang quasi-interpolation operator corresponding to the
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triangulation T h(Ωi) which preserves the boundary values on Γi0 (if this set is non-empty).
With the abbreviation y := Π0w + z̃, Lemma 3.28 yields

|PD(Π0w + z̃)|2S .
∑
Xj0

min(α0, αj)
∣∣Ih(ϑ′Xj0

(w0 − z̃j)
)∣∣2
H1(Ω′Xj0

)︸ ︷︷ ︸
=: ϕ1

(3.39)

+
∑
i∈Iint

{∑
Xij

min(αi, αj)
∣∣Ih(ϑXij (yi − yj)

)∣∣2
H1(Ωi)︸ ︷︷ ︸

=: ϕ2

+
∑

Xi∩ΓD

αi |Ih(ϑXi yi)|2H1(Ωi)︸ ︷︷ ︸
=: ϕ3

}
.

Note, that we have no contributions from ∂Ω0 ∩ ΓD because w0 vanishes there. For the
contributions in ϕ1 we first note that the function Πh

j H̃int
D w0 is an extension of w0 from Xj0

to V h(Ωj). This follows mainly from the properties of the Scott-Zhang quasi-interpolation
operator. Using the face extension Lemma 2.39 (page 78) and the discrete estimates from
Lemma 2.34 (page 76) we obtain∣∣Ih(ϑ′Xj0

(w0 − z̃j)
)∣∣2
H1(Ω′Xj0

)

. (1 + log(Hj/hj))2
{
|Πh

j H̃int
D w0|2H1(Ωj)

+
1
H2
j

‖Πh
j H̃int

D w0 − z̃j‖2
L2(Ωj)

}
.

(3.40)

If Ωi is a floating subdomain, we can eliminate the L2-term using the definition of z̃j and
Poincaré’s inequality. If Ωi is non-floating, z̃j = 0, but Assumption 3.5 and Assumption 3.6
assure that the intersection ∂Ωi ∩ ΓD is at least an edge of ∂Ωi. By the discrete Poincaré-
Friedrichs inequality (Lemma 2.38, page 77), we conclude that

1
H2
j

‖Πh
j H̃int

D w0‖2
L2(Ωj)

. (1 + log(Hj/hj)) |Πh
j H̃int

D w0|2H1(Ωj)
.

Using a similar trick as in the proof of Lemma 2.42 (see the part standard one-level formula-
tion), we can avoid getting three powers of the logarithmic factor. Combining these results
with Lemma 1.28 (page 39) we obtain∣∣Ih(ϑ′Xj0

(w0 − z̃j)
)∣∣2
H1(Ω′Xj0

)
. (1 + log(Hj/hj))2 |H̃int

D w0|2H1(Ωj)
, (3.41)

and thus,

ϕ1 . α0

∑
j∈N0

(1 + log(Hj/hj))2 |H̃int
D w0|2H1(Ωj)

. (3.42)

In order to bound ϕ2, assume that i ∈ Iint and let Xij be a face, edge, or vertex shared
by Ωi and Ωj . If j = 0 the corresponding terms can be bounded using the same ideas as
above. Otherwise, Lemma 2.34 yields∣∣Ih(ϑXij (yi − yj)

)∣∣2
H1(Ωi)

=
∣∣Ih(ϑXij (z̃i − z̃j)

)∣∣2
H1(Ωi)

. (1 + log(Hj/hj))Hj |z̃i − z̃j |2 .
(3.43)
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Let Uij ⊂ Ωint be a suitably shaped connected domain containing Ωi and Ωj such that
diamUij ' Hi ' Hj . Furthermore, let Πh

ij denote the Scott-Zhang quasi-interpolation
operator on Uij whose restrictions to Ωi and Ωj coincide with Πh

i and Πh
j , respectively.

If i, j ∈ Ifloat, the Bramble-Hilbert lemma (Lemma 1.13) and the continuity of Πh
ij yield

Hj |z̃i − z̃j |2 . |Πh
ij H̃int

D w0|2H1(Uij)
. |H̃int

D w0|2H1(Uij)
. (3.44)

The case i ∈ Ifloat and j 6∈ Ifloat can only happen in the standard formulation. Note that
then, z̃j = 0 and H̃int

D w0 vanishes at least on an edge of Ωj (cf. Assumption 3.5). With the
definition of

ẑj :=
1
|Ωj |

∫
Ωj

Πh
j H̃int

D w0 dx ,

we obtain the following estimate by similar arguments,

Hj |z̃i − z̃j |2 . Hj |z̃i − ẑj |2 +Hj |ẑj |2

. |Πh
ij H̃int

D w0|2H1(Uij)
+

1
H2
j

‖Πh
j H̃int

D w0‖2
L2(Ωj)

. |H̃int
D w0|2H1(Uij)

+
1
H2
j

‖H̃int
D w0‖2

L2(Ωj)

. (1 + log(Hi/hi)) |H̃int
D w0|2H1(Uij)

.

(3.45)

Here, we have used the same Bramble-Hilbert argument as before, the Cauchy-Schwarz
inequality, the continuity of the Scott-Zhang quasi-interpolation operator, the fact that Hi '
Hj and |Ωj | ' H3

j , and the discrete Poincaré-Friedrichs inequality. With the previous
considerations, i. e., combining (3.43), (3.44), and (3.45), and using the fact that the auxiliary
domains Uij have finite overlap, we can conclude that

ϕ2 .
∑
i∈Iint

∑
j∈Ni

min(αi, αj) (1 + log(Hj/hj)) |H̃int
D w0|2H1(Uij)

. max
k∈I

αk
α0

max
j∈Iint

(1 + log(Hj/hj))2 α0 |H̃int
D w0|2H1(Ωint)

,

(3.46)

where Ui0 := Ωi.
In case of the standard formulation, ϕ3 = 0. For the all-floating formulation we can use

Lemma 2.34 to show

ϕ3 =
∑

Xi∩ΓD

αi |Ih(ϑXi z̃i)|2H1(Ωi)
.

∑
i∈Iint\Ifloat

(1 + log(Hi/hi))αiHi |z̃i|2

.
∑

i∈Iint\Ifloat

(1 + log(Hi/hi))
αi
H2
i

‖Πh
i H̃int

D w0‖2
L2(Ωi)

.
∑

i∈Iint\Ifloat

(1 + log(Hi/hi))2 αi|H̃int
D w0|2H1(Ωi)

,

where in the last steps we have used the Cauchy-Schwarz inequality, Lemma 1.28, and the
discrete Poincaré-Friedrichs inequality, which is justified because H̃int

D w0 vanishes on ΓD.
We see that ϕ3 is absorbed in the bound (3.46).
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Combining the estimates for ϕ1, ϕ2, and ϕ3, and using the definition of the extension
indicator, we obtain

|PD(Π0w + z̃)|2S . max
k∈I

αk
α0

max
j∈Iint

(1 + log(Hj/hj))2 α0 |H̃int
D w0|2H1(Ωint)

. γh(Ω0, Ωint, ΓD) max
k∈I

αk
α0

max
j∈Iint

(1 + log(Hj/hj))2 α0

{
|H̃intw0|2H1(Ωint)

+
1
H0
‖w0‖2

L2(∂Ω0)

}
.

Combining this result with (3.37) and Lemma 1.33 we can conclude that

|PD(Π0w + zΠ0 w)|2S . γh(Ω0, Ωint, ΓD) max
k∈I

αk
α0

max
j∈Iint

(1 + log(Hj/hj))2 |w0|2S0
,

which proves Claim 2 for the case Q = M−1.

Proof of Claim 2 for Q chosen according to (3.16)–(3.19). With the special z̃ ∈ kerS
defined in the last proof, we obtain by the triangle inequality that

|PD(Π0w + zΠ0 w)|2S . |PD(Π0w + z̃)|2S + |PD(z̃ − zΠ0 w)|2S . (3.47)

The first term can be bounded using the proof of Claim 2 for Q = M−1. For the second
term we perform the usual splitting into face, edge, and vertex terms, and bound these local
contributions, just as in the proof of Claim 1 for the diagonal choice of Q. Exploiting the
careful choice of Q, the sum of all these local estimates can be bounded by ‖B(z̃− zΠ0 w)‖2

Q.
By another application of the triangle inequality and Lemma 2.22, we obtain

|PD(Π0w + zΠ0 w)|2S . ‖B(z̃ − zΠ0 w)‖2
Q . ‖B(Π0w − z̃)‖2

Q + ‖B(Π0w − zΠ0 w)‖2
Q

= ‖B(Π0w − z̃)‖2
Q + min

z∈kerS
‖B(Π0w − z)‖2

Q . ‖B(Π0w − z̃)‖2
Q .

(3.48)

Similar to previous proofs we consider the contributions of ‖B(Π0w− z̃)‖2
Q from face, edge,

and vertex separately. For a face, edge, or vertex X0i, the contributions can be bounded by

min(α0, αi) (1 + log(Hi/hi))
1
H2
i

‖z̃i −Πh
i H̃int

D w0‖2
L2(Ωi)

.

If i 6∈ Ifloat, then Ωi has at least an edge in common with ΓD and z̃i = 0, thus we can use
the discrete Poincaré-Friedrichs inequality and the H1-stability of the Scott-Zhang quasi-
interpolation operator to bound the L2-term by the H1-norm of H̃int

D w0 times another loga-
rithmic factor. If i ∈ Ifloat, z̃i is the average of Πh

i H̃int
D w0 on Ωi, thus we can apply Poincaré’s

inequality in order to get the same bound, i. e.,

min(α0, αi) (1 + log(Hi/hi))2 |H̃int
D w0|2H1(Ωi)

.

The contribution from a face, edge, or vertex Xij with i, j 6= 0 can be bounded by

min(αi, αj) (1 + log(Hi/hi))Hi |z̃i − z̃j |2 .

Using estimates (3.44) and (3.45), we obtain the bound(
max
k∈I

αk
α0

)
(1 + log(Hi/hi))α0 |H̃int

D w0|2H1(Uij)
.
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For the all-floating formulation we additionally have to investigate the contributions from
faces, edges, and vertices Xi on the Dirichlet boundary. Note that since w0 vanishes on ΓD,
there is no contribution if i = 0. For i 6= 0, the contribution can be bounded by

αi (1 + log(Hi/hi))Hi |z̃i|2 . αi (1 + log(Hi/hi))
1
H2
i

‖Πh
i H̃int

D w0‖2
L2(Ωi)

.

Due to the finite overlap of all these local estimates, we finally obtain

‖B(Π0w + z̃)‖2
Q .

(
max
k∈I

αk
α0

)
max
i∈Iint

(1 + log(Hi/hi))α0 |H̃int
D w0|2H1(Ωint)

.

Combining this result with (3.47) and (3.48) we can continue in the analogous way to the
proof of Claim 2 for Q = M−1. In the end, we get the desired estimate

|PD(Π0w + zΠ0 w)|2S . γh(Ω0, Ωint, ΓD) max
k∈I

αk
α0

max
i∈Iint

(1 + log(Hi/hi))2 |w0|2S0
,

which finishes the proof of Claim 2.

3.5 Numerical results

In the following, we give some results on one-level BETI methods for two-dimensional un-
bounded domains. We consider three different geometric configurations. First, we choose
Ωint to be the unit square, second, ring-shaped as in Figure 3.6 (left), and last, C-shaped as in
Figure 3.6 (middle). In our examples we vary the subdomain partition of Ωint, where we use
simply quadrilaterals as subdomains, and we vary the discretization parameters, hi = h0 = h.
Tables 3.1–3.3 display the number of PCG iterations and the condition numbers (estimated
by the Lanczos method) for the three geometric configurations. In the tables, we have used
the notation H/h = maxi∈I Hi/hi and H0/HF = maxi∈N0 H0/Hi. In the computations we
have considered the heterogeneous coefficient distribution shown in Figure 3.6, right. Choos-
ing the homogeneous coefficient distribution αi ≡ 1 results in almost the same behavior. In
our implementation, which builds upon OSTBEM [176], we have used the diagonal choice
of Q according to (3.16)–(3.19), and the PCG iteration was stopped when the relative error
(measured in the energy norm) went below ε = 10−8.
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Figure 3.6: Sketch of the geometries for Table 3.2 (left) and Table 3.3 (middle). Right:
Coefficient distribution with jumps.
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Example 3.1 We choose Ω to be a square plus its exterior domain, where the square
is subdivided into the interior subdomains. Thus, we expect the quasi-optimal bound
C maxi∈Iint(1 + log(Hi/hi))2 which is reflected by the condition numbers displayed in Ta-
ble 3.1. We mention that the case H0/HF = 96 corresponds to 1297 subdomains. The
slightly growing numbers as the ratio H0/HF increases are probably due to pre-asymptotic
effects.

H0/HF H/h = 2 4 8 16 32 64

6 9 1.6 10 2.0 12 2.6 14 3.5 16 4.4 18 5.6
12 9 1.8 11 2.5 14 3.3 16 4.3 18 5.5 20 6.8
24 10 2.1 12 2.9 14 3.9 17 5.2 18 6.5 20 7.9
48 10 2.4 12 3.4 15 4.6 18 6.0 20 7.5 — —
96 11 2.6 13 3.8 16 5.1 18 6.6 — — — —

Table 3.1: Number of PCG iterations and condition numbers for a unit square plus its
exterior without any interior boundary conditions.

Example 3.2 Here, we choose the geometry shown in Figure 3.6, left, where the grey
region is subdivided into subdomains. As we see the Dirichlet boundary is separated from
∂Ω0 by a distance η, which implies the condition number bound

κ ≤ C
H0

η
max
i∈Iint

(1 + log(Hi/hi))2 .

Indeed we observe a non-negligible growth in the estimated condition numbers in Table 3.2
compared to Table 3.1 when we vary the ratio H0/η.

H0/HF H/h = 2 4 8 16 32 64

6 11 2.3 13 4.1 15 6.4 18 9.3 20 12.7 21 16.7
H0/η = 6 12 12 3.3 15 5.7 17 9.0 21 13.1 24 18.0 28 23.9

24 13 3.1 15 5.0 17 7.9 21 11.7 24 16.3 27 21.7
48 12 3.3 15 5.0 18 7.7 21 11.4 24 15.8 — —
96 13 3.5 15 5.1 18 7.6 21 11.2 — — — —

H0/HF H/h = 2 4 8 16 32

24 13 4.6 16 7.2 20 11.8 23 15.1 25 18.4
H0/η = 24 48 15 7.0 20 13.1 22 18.1 25 23.4 27 28.8

96 17 10.6 20 16.0 24 21.7 28 27.7 — —
192 17 12.1 21 17.8 24 23.8 — — — —

H0/HF H/h = 2 4 8 16

96 18 19.1 23 31.5 28 43.8 33 56.1
H0/η = 96 192 23 31.6 30 49.6 35 68.7 — —

384 27 40.7 33 61.9 — — — —

Table 3.2: Number of PCG iterations and condition numbers for a unit square with Dirichlet
conditions on a “hole” (cf. Figure 3.6, left) with distance η from Γ0.

Example 3.3 For the example shown in Figure 3.6, middle, and Table 3.3, we have proved
the same bound with an additional logarithmic factor. However, we do not observe this
behavior in our calculations: the condition numbers are actually better than predicted,
and effectively a bit less than those in Table 3.2. This is no contradiction to our theory
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since we have proved (asymptotic) upper bounds only. The numbers of PCG iterations are
comparable to those in Table 3.2 and they show the efficiency of the proposed one-level BETI
preconditioner.

H0/HF H/h = 2 4 8 16 32 64

6 11 2.3 13 4.1 16 6.4 18 9.3 21 12.7 23 16.7
H0/η = 6 12 12 3.3 15 5.7 18 9.0 21 13.1 24 18.0 26 23.9

24 13 3.1 15 5.1 17 8.0 21 11.7 25 16.3 27 21.7
48 13 3.3 15 5.1 18 7.8 21 11.4 24 15.8 — —
96 13 3.5 16 5.2 19 7.6 22 11.2 — — — —

H0/HF H/h = 2 4 8 16 32

24 13 5.0 17 7.8 19 10.7 22 13.7 25 16.8
H0/η = 24 48 16 7.6 19 11.8 22 16.4 24 21.2 28 26.1

96 16 9.6 21 14.5 24 19.7 28 25.1 — —
192 18 10.9 21 16.2 25 21.6 — — — —

H0/HF H/h = 2 4 8 16

96 20 17.1 25 28.1 28 39.1 32 50.0
H0/η = 96 192 24 28.1 30 44.2 35 61.2 — —

384 27 36.3 33 55.2 — — — —

Table 3.3: Number of PCG iterations and condition numbers for a unit square with Dirichlet
conditions on a rectangular outline touching Γ0, see Figure 3.6, middle.

Choosing a heterogeneous coefficient distribution with very small interior coefficients
αi � α0 (10−3, 10−5) leads to better condition numbers. This might be due the fact that
the solution is relatively flat in Ω0 and so the problem gets more similar to a Dirichlet
problem on the bounded domain Ωint.

3.6 Implementation issues

As outlined before, the principal differences to FETI/BETI methods for the bounded case
are

(i) the possibly large number of neighbors to ∂Ω0, and

(ii) the possibly large number of DOFs in V h(∂Ω0) compared to the other subdomains.

Issue (i) means that in practice, the processor which handles the exterior subdomain has to
communicate with a lot of other processors. Issue (ii) implies that we might have no load
balancing. In order to address these problems we can go for the following strategies.

Buffering We introduce several layers of “buffer” subdomains in between the original
interior subdomains and the exterior subdomain Ω0, cf. Figure 3.7. This way we can reduce
the number of neighbors to Ω0. If the problem setting permits, we can make the mesh on
∂Ω0 coarser such that we regain load balancing. However, this strategy is somehow against
the principle of using a boundary element approximation for the exterior subdomain instead
of introducing a large layer (as the buffering layer) with Dirichlet boundary conditions on
the outer boundary.
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buffer subdomains

Ω
0

Figure 3.7: Illustration of the buffering strategy. Original interior subdomains in dark grey,
buffering subdomains in light gray.

Sub-parallelization It would be more favorable if the computational work corresponding
to the exterior subdomain Ω0 could be further distributed. In this context we would like to
briefly discuss a possible procedure. The two bottlenecks in the method are the application
of S0 in the preconditioner M−1 and the application of S−1

0 in the operator F .
According to Remark 3.7, we can replace the block S0 appearing in the preconditioner

M−1 by the regularized hypersinuglar operators D̃0. A close inspection of the underlying
proofs reveals that S in the preconditioner can be replaced by any operator SM which satisfies

|w|2S ≤ C1 |w|2SM
, and |PD|2SM

≤ C2 |w|2S .

Then the condition number bound is given by C1C2. For example, we can use SM :=
(SM,0, S1, . . . , Ss) where SM,0 is a parallelizable preconditioner, e. g., a suitable wirebasket
type preconditioner, see Toselli and Widlund [184, Sect. 5.4.2] and the references therein.

In order to sub-parallelize the action of S−1
0 we can move to the inexact method, cf.

Section 2.2.3.5. Assume for the time being that we are in the pure BETI case. The system
to solve has the form −V 1

2I +K 0
1
2I +K> D B>P

0 P>B 0

 t
u
λ

 =

 0
f
0

 .

Having at hand

(i) parallel applications of the boundary element matrices V0, K0, M0, and D0,

(ii) parallel preconditioners for V0 and S0, and

(iii) a sub-parallelized BETI preconditioner (e. g., of wirebasket type as described above),

we can perform the inexact BETI method with a quasi-optimal load balancing. Here, there
is some space left for future research, although many BEM parallelization techniques can
be found in the literature, see, e. g., Boerm and Bendoraityte [13], Bebendorf and
Kriemann [9], Chew et al. [34]. We remark that if ∂Ω0 is a circle or a sphere, the Steklov-
Poincaré operator can be realized very efficiently using the fast Fourier transform, see, e. g.,
Rjasanow [157].



Chapter 4

Dual-primal methods

Dual-primal FETI (FETI-DP) methods were first introduced by Farhat, Lesoinne, Le
Tallec, Pierson, and Rixen [63]. Their idea was to keep the unknowns at the subdomain
vertices “primal”, i. e., do not break the continuity there. This way, after an elimination of
these unknowns, the resulting subdomain operators are always invertible. The elimination
step of the primal unknowns can be seen as a coarse problem. A first analysis for the
two-dimensional case was given by Mandel and Tezaur [132], which showed that the
method of this type equipped with a Dirichlet preconditioner leads to the condition number
bound C (1 + log(H/h))2, the same as for one-level FETI methods. Algorithms for the
three-dimensional case were contributed by Farhat, Lesoinne, and Pierson [61], see
also the doctoral dissertation by Pierson [149], and finally by Klawonn, Widlund, and
Dryja [111] where a rigorous analysis of the three-dimensional case can be found. See also
Brenner [24] and Brenner and He [25] for sharp estimates. It turned out that in three
dimensions, primal vertex constraints result in a poor condition number. A polylogarithmic
bound can be obtained by additionally imposing edge and/or face average constraints. A
comprehensive description of various FETI-DP algorithms and their analysis is contained in
the monograph by Toselli and Widlund [184].

The dual-primal BETI (BETI-DP) methods were introduced in Langer, Pohoaţǎ,
and Steinbach [121], however, without giving any analysis and without much discussion
on an efficient implementation for large-scale problems. It is clear from Chapter 2 that the
condition number bound will again be C (1 + log(H/h))2 for the BETI-DP and hybrid dual-
primal methods, due to the spectral equivalence of the BEM and FEM approximations of
the Steklov-Poincaré operator. Nevertheless, it is at first glance unclear if difficulties will
arise in case of an unbounded domain.

Section 4.1 gives the formulation of hybrid FETI/BETI-DP methods, where the un-
bounded case is included. A condition number bound is proved in Section 4.2. It will turn
out that, in contrast to Chapter 3, we get the quasi-optimal bound also for the unbounded
case since the coarse space directly incorporates the exterior problem. However, assembling
the coarse matrix is much more costly as compared to our proposed one-level method. This
is because many exterior problems need to be solved, leading to a non-optimal computa-
tional complexity. We discuss implementation issues and possible future extensions for both
one-level and dual-primal methods in Section 4.3. We note that parts of this chapter rely on
results published in Pechstein [143, 145].

123
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4.1 Formulation of FETI/BETI-DP methods

In the sequel, we consider the weak formulation of the potential equation

−div [αi∇u] = f in Ωi , i ∈ I ,

cf. Chapter 2 and Chapter 3, where we treat the bounded (0 6∈ I) and the unbounded case
(0 ∈ I) in one and the same formulation. We assume that either 0 ∈ I and the radiation
condition (1.49) is fulfilled, or we have a Dirichlet boundary ΓD of positive surface measure.
We take the same assumptions on the coefficient, the source, and the Neumann data as we
did in the previous chapters, and without loss of generality, we assume homogeneous Dirichlet
boundary conditions, i. e., gD ≡ 0. In what follows, we will restrict ourselves mostly to the
three-dimensional case. Note, however, that in contrast to the methods before, we can allow
that the Dirichlet boundary touches a subdomain only in a vertex, even if this subdomain
is the exterior domain. As in Section 2.2 and Chapter 3, we start from the discrete skeleton
formulation, see, e. g., (3.13), which is equivalent to the minimization problem∑

i∈I

[1
2
〈Si u, u〉∂Ωi

− 〈fi, u〉∂Ωi

]
→ min

u∈V h
D(ΓS)

. (4.1)

There again, Si denotes the discrete Steklov-Poincaré operator, obtained by FEM or BEM,
depending on the subdomain. As in the formulation of standard one-level methods, we use
the definitions

Wi := V h
D(Γi) and W :=

∏
i∈I

Wi , (4.2)

and we consider the Steklov-Poincaré operators Si as mappings from Wi to W ∗
i . Similarly,

we set S = diag (Si) : W →W ∗ and f = [fi]i∈I ∈W ∗.

4.1.1 Dual-primal spaces

In dual-primal methods, one works with subspaces W̃ ⊂ W , for which sufficiently many
constraints are enforced such that the block operator S is SPD when restricted to W̃ , cf.
Toselli and Widlund [184, Sect. 6.4]. Such spaces are constructed as follows. We choose
a primal space ŴΠ ⊂ V h

D(ΓS) and a dual subspace W̃∆ ⊂ W̃ such that

W̃ = ŴΠ ⊕ W̃∆ .

Note that for simplicity, we identify functions from V h
D(ΓS) with the corresponding contin-

uous functions in the product space W . We denote the component of the product space
W̃∆ which corresponds to the i-th subdomain by W̃∆, i. According to Klawonn, Widlund,

and Dryja [111] we display several choices of the space W̃ . The first one, Algorithm A, is
illustrated in Figure 4.1.

Algorithm A. The primal subspace ŴΠ is spanned by the nodal basis functions θVij ∈
V h
D(ΓS), where Vij runs over all the subdomain vertices on the interface. The local subspace
W̃∆, i is defined as the subspace of Wi with its elements vanishing on the subdomain vertices,
i. e.,

W̃∆, i := {wi ∈Wi : wi(Vij) = 0 ∀Vij} .

Thus, W̃ is the subspace of W of functions being continuous at the subdomain vertices.
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Dirichlet boundary

Figure 4.1: Illustration of the dual-primal space in Algorithm A. The “◦” indicate the primal
DOFs.

Algorithm B. The primal subspace ŴΠ is spanned by the nodal basis functions θVij ∈
V h
D(ΓS), for all subdomain vertices on the interface, and the cut-off functions θEij , θFij ∈
V h
D(ΓS), for subdomain edges and faces on the interface. The local subspace W̃∆, i is defined

as the subspace of Wi where the values at the subdomain vertices vanish, together with the
averages

wi
Eij :=

1
|Eij |

∫
Eij

wi(x) dsx , wi
Fij :=

1
|Fij |

∫
Fij

wi(x) dsx ,

i. e.,
W̃∆, i :=

{
wi ∈Wi : wi(Vij) = 0 , wiEij = 0 , wiFij = 0 ∀Vij , Eij , Fij

}
.

Thus, W̃ is the subspace of W of functions being continuous at the subdomain vertices and
with continuous edge and face averages.

Algorithm C. The primal subspace ŴΠ is spanned by the nodal basis functions θVij ∈
V h
D(ΓS) for all interface subdomain vertices, and the cut-off functions θEij ∈ V h

D(ΓS), for all
interface subdomain edges. The local subspace W̃∆, i is defined as the subspace of Wi where
the values at the subdomain vertices vanish, together with the edge averages, i. e.,

W̃∆, i := {wi ∈Wi : wi(Vij) = 0 , wiEij = 0 ∀Vij , Eij} .

Thus, W̃ is the subspace of W of functions being continuous at the subdomain vertices and
with continuous edge averages.

Note, that Algorithm A works well in two dimensions only, see also Farhat, Lesoinne,
Le Tallec, Pierson, and Rixen [63] and Mandel and Tezaur [132] for some numerical
experiments on such FETI-DP methods. Its poor behavior in three dimensions relates to the
fact that there is no comparable discrete Poincaré-Friedrichs inequality to Lemma 2.38 for
functions vanishing at single vertices, at least not with a logarithmic factor. On the contrary,
Algorithms B and C will lead to a polylogarithmic bound for the condition number. We will
briefly sketch another algorithm (Algorithm D) at the end of Section 4.2 after the proof of
the condition number bound.
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4.1.2 The actual dual-primal methods

Depending on the choice of the spaces W̃∆ and ŴΠ, we define the Schur complement operator
S̃ : W̃∆ → W̃ ∗

∆ by

S̃ := S∆ − S∆Π S
−1
Π SΠ∆ , (4.3)

where the block operators S∆ : W̃∆ → W̃ ∗
∆ , SΠ∆ : ŴΠ → W̃ ∗

∆ , S∆Π : W̃∆ → Ŵ ∗
Π and

SΠ : ŴΠ → Ŵ ∗
Π satisfy the relations

〈S∆ v∆, w∆〉 = 〈S v∆, w∆〉 ∀v∆, w∆ ∈ W̃∆ ,

〈S∆Π v∆, wΠ〉 = 〈SΠ∆wΠ, v∆〉 = 〈S v∆, wΠ〉 ∀v∆ ∈ W̃∆, ∀wΠ ∈ ŴΠ ,

〈SΠ vΠ, wΠ〉 = 〈S vΠ, wΠ〉 ∀vΠ, wΠ ∈ ŴΠ .

Due to the nature of the space W̃∆, the operator S∆ can be written in the form diag (S∆, i).
It is important to note that in particular for Algorithms A–C, the operators SΠ and S∆ are
SPD. The latter is true because on each subdomain Ωi, at least one vertex DOFs is fixed to
zero, thus kerS∆, i = {0}. Moreover, we have the minimizing property

〈S̃ w∆, w∆〉 = min
wΠ∈cWΠ

〈S(w∆ + wΠ), w∆ + wΠ〉 . (4.4)

Furthermore, we define the functional

f̃ := f∆ − S∆Π S
−1
Π fΠ in W̃ ∗

∆ , (4.5)

where f∆ and fΠ are the projections of f onto the corresponding subspaces. The continuity
constraints on the interface are incorporated using fully redundant Lagrange multipliers, but
(in contrast to one-level methods) only for the degrees of freedom in W̃∆. In particular, for
Algorithms A–C, there are no Lagrange multipliers corresponding to subdomain vertices.
We denote the space of these Lagrange multipliers by U∆ and define the corresponding jump
operators B(i)

∆ : W̃∆, i → U ∗
∆ and B∆ : W̃∆ → U ∗

∆ analogously to Chapter 2. Since functions
from ŴΠ are continuous, we will occasionally extend the domain of definition of B∆ to the
full space W̃ . As in Chapter 2, we restrict ourselves to fully redundant constraints. Note,
that the continuous edge averages in Algorithms B and C already create some redundancy,
cf. [184, Sect. 6.4.2]. With these definitions, we arrive at the following minimization problem,∑

i∈I

[1
2
〈S̃ u∆, u∆〉 − 〈f̃ , u∆〉

]
→ min

u∆∈fW∆

B∆ u∆=0

. (4.6)

This problem is equivalent to (4.1). Suppose we have the solution u∆ to (4.6), then the solu-
tion to (4.1) is given by u = u∆ +uΠ with uΠ = S−1

Π (fΠ−SΠ∆u∆). The above minimization
problem is equivalent to the following saddle point problem: Find (u∆, λ) ∈ W̃∆ × U∆ such
that (

S̃ B>
∆

B∆ 0

)(
u∆

λ

)
=
(
f̃
0

)
,
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where the Lagrange parameters λ are unique up to kerB>
∆. It can be shown that S̃ is SPD

on W̃∆, cf. [184, Lemma 6.33], and thus its inverse S̃−1 exists. We define the operator
F : U∆ → U ∗

∆ and the functional d ∈ U ∗
∆ by

F := B∆S̃
−1B>

∆ and d := B∆S̃
−1f̃ .

Then, the above saddle point problem reduces to find λ ∈ U∆ such that

F λ = d . (4.7)

Similar to Chapter 2 we see that F is SPD (and invariant) on the factor space V :=
(U∆)/ kerB>∆

, and maps to V ′ := U ∗
∆ ∩ rangeB∆. Hence, λ can be obtained by a PCG

iteration on V . A suitable preconditioner M−1 is introduced in the next paragraph. By
the same arguments as in Chapter 2, we do not have to care about any contributions from
kerB>

∆ in the Lagrange multipliers during the PCG algorithm. As a main difference to the
one-level method discussed in Chapter 2 and Section 2.2, no projection P appears, instead
we need the coarse solve S−1

Π in every PCG step when applying S̃−1, cf. formula (4.3).
Analogously to Section 2.2.1 we introduce the scaled jump operator BD,∆ : W̃ ∗

∆ → U .
Let δ†j denote the weighted counting functions (see equation (2.50) in Chapter 2). For each
i ∈ I, define the operators Di : U ∗

∆ → U∆ by

(Di µ)ij(xh) := δ†j(x
h)µij(xh) for µ ∈ U ∗

∆ , xh ∈ Γhij , (4.8)

where all other components are set to zero. Finally, we set

BD,∆ :=
∑
i∈I

DiB
(i)
∆ JW∆, i

,

where JW∆, i
: W∆, i

∗ → W∆, i is the Riesz isomorphism with respect to the Euclidean inner
product, cf. Chapter 2.53. Note that, when using the standard nodal basis, JW∆, i

corre-
sponds to the identity matrix. According to [111, 184], the preconditioner is defined by

M−1 = BD,∆ S∆B
>
D,∆ .

As we have seen before, S∆ = diag (S∆, i) with the operators S∆, i : W̃∆, i → W̃ ∗
∆, i defined

by the projections of Si to the corresponding spaces. Consequently, the application of S∆ is
purely local and the application of M−1 can easily be parallelized. For the BEM subdomains
(including the exterior one), the operator S∆, i in the preconditioner may be replaced by
the Galerkin projection of the hypersingular operator D∆, i : W∆, i → W∆, i

∗, cf. Langer,
Pohoaţǎ, and Steinbach [121].

As the next section will show, the system M−1F λ = M−1 d satisfies the same condition
number bound as that of the one-level FETI/BETI methods in the bounded case. For
unbounded domains, it satisfies in general a better bound than the one-level method.

4.2 Condition number bounds for dual-primal methods

In the sequel we elaborate a characterization of the dual-primal preconditioner M−1 in terms
of the projection

P∆ := B>
D,∆B∆ ,

so that B>
∆M

−1B∆ = P>
∆S∆P∆, similar to Section 2.2.1.3.
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Lemma 4.1. Let the spaces ŴΠ and W̃∆ be defined according to Algorithm A, B or C. Then,
for all w∆ ∈ W̃∆,

(P∆w∆)i(xh) =


∑

j∈N
xh

δ†j(x
h)
(
w∆, i(xh)− w∆, j(xh)

)
for xh ∈ ∂Ωh

i \ ΓD ,

w∆, i(xh) = 0 for xh ∈ ∂Ωh
i ∩ ΓD .

In particular, P∆w∆ vanishes at all non-coupling Neumann nodes. Furthermore, P∆w ∈ W̃∆

for any w ∈ W̃ , and B∆P∆ = B∆.

Proof. The proof is in most parts analogous to the proof of Lemma 2.16, see also Klawonn,
Widlund, and Dryja [111]. The only difference is that there are no Lagrange multipliers
corresponding to subdomain vertices; however, the values of w∆ vanish there anyway.

It can be shown that the operator F : V → V ′ is invertible. Let Π : U∆ → V the `2-
projection that fixes the kerB>

∆ component of a Lagrange multiplier and embeds the result
in the factor space V = U∆/ kerB>∆

. Then one can show that the mapping ΠM−1 : V ′ → V is

invertible. For a detailed proof for many different choices of the spaces W̃∆ and ŴΠ we refer
to Toselli and Widlund [184, Lemma 6.33]. Similar to our discussion in Section 2.2.4.2,
the solution u obtained by the dual primal PCG algorithm does not change when we omit
the projection Π; only the Lagrange multipliers λ differ by a term from kerB>

∆.
Next we state a stability estimate similar to Lemma 2.27 and Lemma 3.19.

Lemma 4.2. Let W̃∆ be defined according to Algorithm B or Algorithm C. Then,

|P∆w∆|2S∆
≤ C max

i∈Iint

(1 + log(Hi/hi))2 |w∆|2eS ∀w∆ ∈ W̃∆ ,

where Iint = I \ {0} and the constant C > 0 is independent of hi, Hi, the values of αi, the
number of subdomains, and the number of neighbors of Ω0. In particular, the estimate does
not depend on H0.

Proof. The proof follows the line of Klawonn, Widlund, and Dryja [111], see also
Toselli and Widlund [184, Sect. 6.4.3]. Only a few of the arguments need to be adapted
to the unbounded case. For the sake of completeness, we display the whole proof for the
three-dimensional case. A proof for the case of Algorithm A in two dimensions can then be
derived relatively easily.

Let w∆ ∈ W̃∆ be arbitrary and let wΠ ∈ ŴΠ denote the minimizing function, such that
we have |w∆|eS = |w|S , with w = w∆ +wΠ, see equation (4.4). Since wΠ is continuous across
the subdomain interfaces and vanishes on ΓD, we obtain by Lemma 4.1 that P∆w = P∆w∆.
Moreover, recall that P∆w ∈ W̃∆, and that S∆ is identical to S on the subspace W̃∆. With
these considerations it suffices to show that

|P∆w|2S ≤ C max
i∈Iint

(1 + log(H/h))2 |w|2S ∀w ∈ W̃ . (4.9)

As in previous proofs we split |(P∆w)i|2Si
into edge and face contributions. For the algorithms

considered, we do neither get any vertex contributions nor contributions from the Dirichlet
boundary ΓD because P∆w ∈ W̃∆. For convenience we introduce the notation Yij referring
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to edges and faces on the interface Γij . Analogous to the analysis of one-level methods we
can show that for i 6= 0,

|(P∆w)i|2Si
=
∣∣∣∑
Yij

Ih
(
δ†j θYij (wi − wj)

)∣∣∣2
Si

.
∑
Yij

αi
(
δ†j
)2︸ ︷︷ ︸

≤min(αi,αj)

∣∣∣Hi

(
θYij (wi − wj)

)∣∣∣2
H1(Ωi)

.
(4.10)

By similar arguments and the help of Lemma 3.26(i) and Lemma 2.39,

|(P∆w)0|2S0
.
∑
Y0j

min(α0, αj)
∣∣∣Hj

(
θY0j (w0 − wj)

)∣∣∣2
H1(Ωj)

. (4.11)

Face contributions Let the face Fij be fixed with i ∈ I and j 6= 0. By Lemma 2.34 and
Lemma 2.39, the contributions from the face Fij of (4.10) and (4.11) are bounded by

min(αi, αj)
∣∣∣Hj

(
θFij (wi − wj)

)∣∣∣2
H1(Ωj)

(4.12)

= min(αi, αj)
∣∣∣Hj

[
θFij

(
(wi − wi

Fij )− (wj − wj
Fij ) + (wiFij − wj

Fij )
)]∣∣∣2

H1(Ωj)

. (1 + log(Hj/hj))2 min(αi, αj)
{
|Hj(wi − wj)|2H1(Ωj)

+

+
1
Hj

∥∥(wi − wi
Fij )− (wj − wj

Fij )
∥∥2

L2(Fij)

}
+ min(αi, αj) |wiFij − wj

Fij |2 |HjθFij |2H1(Ωj)
.

In case of Algorithm B, we have continuous face averages by the definition of the space W̃ ,
i. e., wiFij = wj

Fij , and so the last term vanishes. For the remaining L2-term we use a
Poincaré-Friedrichs type inequality (based on Theorem 1.7) to finally obtain the bound

C (1 + log(Hj/hj))2
{
αi|Hiwi|2H1(Ωi)

+ αj |Hiwj |2H1(Ωj)

}
,

of the face contribution for the case i 6= 0. If i = 0, we have to replace the term |Hiwi|2H1(Ωi)

by |H′
F0j
w0|H1(Ω′F0j

), i. e., the extension of w0 from the face F0j to auxiliary subdomain Ω′
F0j

,

cf. Section 3.4.3.
For Algorithm C, Lemma 2.34(iv) yields

|HjθF |2H1(Ωj)
. (1 + log(Hj/hj))Hj . (4.13)

We choose an edge Eij ⊂ ∂Fij and obtain

|wiFij − wj
Fij |2 . |wiFij − wi

Eij |2 + |wjFij − wj
Eij |2

=
∣∣∣(wi − wiFij )

Eij
∣∣∣2 +

∣∣∣(wj − wjFij )
Eij
∣∣∣2 (4.14)

because wiEij = wj
Eij due to the definition of W̃ . Using the definition of the edge average,

the Cauchy-Schwarz inequality and Lemma 2.34(ii), we obtain∣∣∣(wj − wjFij )
Eij
∣∣∣2 .

1
Hj
‖wj − wj

Fij‖2
L2(Eij)

.
1
Hj

(1 + log(Hj/hj))
{
|Hjwj |2H1(Ωj)

+
1
Hj
‖wj − wj

Fij‖2
L2(Fij)

}
.

(4.15)
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An analogous estimate holds for the first term in (4.14). Combining (4.12)–(4.15) and using
again a Poincaré-Friedrichs type inequality, we are finally able to bound the face contribution
(4.12) from above by

C (1 + log(Hj/hj))2
{
αi|Hiwi|2H1(Ωi)

+ αj |Hjwj |2H1(Ωj)

}
,

where again, if i = 0, we need to replace |Hiwi|2H1(Ωi)
by |H′

F0j
w0|H1(Ω′F0j

).

Edge contributions We fix an edge Eij with i ∈ I and j 6= 0. Using Lemma 2.34(i) and
the face that for both Algorithms B and C, wiEij = wj

Eij , the contributions in (4.10) and
(4.11) from the edge Eij can be bounded by

min(αi, αj)
∥∥Hj

(
θEij (wi − wj)

)∥∥2

H1(Ωj)

. min(αi, αj) ‖wi − wj‖2
L2(Eij)

= min(αi, αj) ‖(wi − wi
Eij )− (wj − wj

Eij )‖2
L2(Eij)

= min(αi, αj)
∥∥∥[(wi − wi

Fi)− (wi − wiFi)
Eij
]

+
[
(wj − wj

Fj )− (wj − wjFj )
Eij
]∥∥∥2

L2(Eij)
,

where the faces Fi and Fj are chosen such that Eij ⊂ ∂Fi ∩ ∂Fj . By the Cauchy-Schwarz
inequality, we see that ∥∥∥(wi − wiFi)

Eij
∥∥∥2

L2(Eij)
. ‖wi − wi

Fi‖2
L2(Eij)

.

If i 6= 0, Lemma 2.34(ii) and a Poincaré-Friedrichs type inequality yield

min(αi, αj)
∥∥Hj

(
θEij (wi − wj)

)∥∥2

H1(Ωj)

. αi‖wi − wi
Fi‖2

L2(Eij)
+ αj‖wj − wj

Fj‖2
L2(Eij)

. (1 + log(Hj/hj))
{
αi

[
|Hiwi|2H1(Ωi)

+
1
Hj
‖wi − wi

Fi‖2
L2(Fi)

]
+

+ αj

[
|Hjwj |2H1(Ωj)

+
1
Hj
‖wj − wj

Fj‖2
L2(Fj)

]}
. (1 + log(Hj/hj))

{
αi |Hiwi|2H1(Ωi)

+ αj |Hjwj |2H1(Ωj)

}
.

For the case i = 0, we obtain the bound

C (1 + log(Hj/hj))
{
α0 |H′

0w0|2H1(Ω′Fi
) + αj |Hjwj |2H1(Ωj)

}
.

Since each edge and face is shared only by a finite number of subdomains, we obtain

|P∆w|2S . max
j∈Iint

(1 + log(Hj/hj))2
{[ ∑

i∈Iint

αi |Hiwi|2H1(Ωi)

]
+
∑
F0j

α0 |H′
jw0|2H1(Ω′F0j

)

}
.

Using the equivalence relations of the Steklov-Poincaré operators and Lemma 3.26(ii), we
obtain the desired result,

|P∆w|2S . max
j∈Iint

(1 + log(Hj/hj))2
∑
i∈I

|wi|2Si
∀w ∈ W̃ .

which concludes the proof of Lemma 4.2.
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The estimate of the PD operator directly leads to the main theorem.

Theorem 4.3. Let the spaces ŴΠ and W̃∆ be defined according to Algorithm B or C. Then
the dual-primal preconditioner fulfills the following condition number estimate,

κ(M−1F ) ≤ C max
i∈Iint

(1 + log(Hi/hi))2 ,

which is to be understood in the factor space modulo kerB>
∆. The constant C is independent

from Hi, hi, the values αi, and the number of subdomains. If 0 ∈ I, the entire bound is
independent of H0 and the number of neighbors of Ω0.

Proof. For completeness, we display the proof which can be found in Klawonn et al. [111].
The crucial estimate is of course that from Lemma 4.2. From previous considerations we
know that the inverse M : V → V ′ of ΠM−1 exists. Hence, it suffices to show

〈M λ, λ〉 ≤ 〈F λ, λ〉 ≤ C max
i∈Iint

(1 + log(Hi/hi))2 〈M λ, λ〉 ∀λ ∈ V . (4.16)

Lower bound. Due to Lemma 1.1,

〈F λ, λ〉 = sup
v∆∈fW∆

〈λ, B∆ v∆〉2

|v∆|2eS , 〈M λ, λ〉 = sup
µ∈V ′

〈λ, µ〉2

〈M−1µ, µ〉
.

For an arbitrary µ ∈ V ′ there exists a function w∆ ∈ W̃∆ with µ = B∆w∆. Recall from
Lemma 4.1 that B∆P∆ = B∆ and rangeP∆ ⊂ W̃∆. Since the minimizing property (4.4)
implies |u∆|eS ≤ |u∆|S∆

for all u∆ ∈ W̃∆, we can conclude that

〈F λ, λ〉 ≥ 〈λ, B∆P∆w∆〉2

|P∆w∆|2eS ≥ 〈λ, B∆w∆〉2

|P∆w∆|2S∆

=
〈λ, µ〉2

〈M−1µ, µ〉
.

Choosing µ = Mλ we arrive at the lower bound in (4.16).
Upper bound. Combining the estimates from before with Lemma 4.1, and Lemma 4.2, we
can conclude that for all λ ∈ V ,

〈F λ, λ〉 = sup
v∆∈fW∆

〈λ, B∆ v∆〉2

|v∆|2eS
Lemma 4.2

. max
i∈Iint

(1 + log(Hi/hi))2 sup
v∆∈fW∆

〈λ, B∆ v∆〉2

|P∆v∆|2eS
Lemma 4.1

. max
i∈Iint

(1 + log(Hi/hi))2 sup
v∆∈fW∆

〈λ, B∆ v∆〉2

〈M−1B∆ v∆, B∆ v∆〉
V ′=U ∗

∆ ∩rangeB∆

. max
i∈Iint

(1 + log(Hi/hi))2 sup
µ∈V ′

〈λ, µ〉2

〈M−1µ, µ〉
.

By Lemma 1.1 we arrive at the upper bound in (4.16).

Remark 4.4. 1. In two dimensions, Algorithm A gives the same condition number es-
timate, also in presence of an unbounded subdomain. The proof of such an estimate
requires no new ideas and is therefore skipped.
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2. It was shown in Brenner [24] that for bounded domains, the estimate in Theo-
rem 4.3 is sharp in two dimensions. For sharp bounds of related three-dimensional
non-overlapping DD methods see Brenner and He [25].

3. We see that in contrast to the one-level methods, the analysis for dual-primal methods
with unbounded domains is much simpler, because the L2-terms on the faces of the
exterior domain Ω0 can immediately be eliminated using the continuity properties of
the space W̃ . Moreover, we do not need any restrictions on the coefficients or on the
boundary conditions. This means the coarse spaces WΠ of the dual-primal methods
are more powerful than the coarse spaces of the one-level methods. In the next section,
we discuss drawbacks of this coarse space.

The number of DOFs of the coarse spaces from Algorithms B and C can be very large
in comparison to the coarse space from the one-level methods. The following algorithm pro-
posed by Klawonn, Widlund, and Dryja [111] addresses this issue. In the unbounded
case, it is possible to show the polylogarithmic bound from Theorem 4.3 also for this algo-
rithm by combining the previously presented ideas and the proof in [111].

Algorithm D. In order to get a small number of primal DOFs, we select only a few primal
edges and vertices, while at the same time assuring that each local problem is well-posed, and
that the overall dual-primal system is well-conditioned. We sketch this selection algorithm in
brief. For each face, at least one edge must be designated as primal. For all pairs of subdo-
mains Ωi, Ωj which share an edge but not a face, or share a vertex but not an edge, a so-called
acceptable edge path must exist. Such a path is a sequence of subdomains Ωi,Ωk, . . . ,Ωj ,
linked through primal edges, where the coefficients assigned to the subdomains in between
are effectively not smaller than min(αi, αj). This means, in the case of jumping coefficients,
some of the vertices and edges must additionally be designated primal in order to achieve
this property. For details, see, e. g., Toselli and Widlund [184, pp. 171ff].

4.3 Implementation issues of dual-primal methods

In this section, we would like to give a few remarks on the implementation of the previously
discussed hybrid dual-primal methods. First, we briefly describe how the operators are
actually realized. There, much of the material is taken from the doctoral dissertation by
Rheinbach [154] where a detailed description of FETI-DP methods can be found, see also
Klawonn and Rheinbach [105]. Last, we compare the dual-primal methods to the one-
level methods from Chapter 2 and Chapter 3. In particular we discuss how effective each of
them performs in the unbounded case.

4.3.1 Handling of edge and face constraints

For the implementation of methods for three-dimensional problems, one needs to handle the
edge and possibly face average constraints, cf. Algorithms B and C. We briefly discuss two
approaches, which are well-described in Rheinbach [154, Sect. 3.3.1f],

Change of basis. We first restrict ourselves to Algorithm C. Let the subdomain Ωi be fixed
and let xh ∈ ∂Ωh

i be an interior node of the edge Eij . In a first step we replace the nodal
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basis function ϕxh by the cut-off function θEij .1 The remaining nodal basis functions ϕyh for
nodes yh in the interior of the edge are orthogonalized such that

∫
Eij
ϕyh ds = 0. We perform

analogously for every edge. Doing so, the functions ϕVij , θEij form a basis of ŴΠ, i, i. e., the
space ŴΠ restricted to ∂Ωi, whereas the remaining basis functions span W̃∆, i. The analogous
recipe can be applied for Algorithm B. For a FEM subdomain, the stiffness matrices, load
vectors, and boundary element matrices with respect to the new basis can be calculated
via a standard basis transformation. Elements in Wi,∆ can then easily be represented by
constraining their DOFs with respect to the vertex-, edge-, and possibly face-based basis
functions to zero. It is clear that this approach will affect the sparsity of the stiffness matrix,
at least for Algorithm B in three dimensions.

Local Lagrange multipliers. The basis transformation is carried out as before, but we can
circumvent forming the matrices with respect to the new basis. For a FEM subdomain Ωi,
let Ki and fi denote the (full) stiffness matrix and load vector with respect to the original
basis, and let K̂i and f̂i be the stiffness matrix and load vector with respect to the new basis.
Furthermore, let K̂(i)

RR and f̂ (i)
R denote the blocks without the primal DOFs (here we assume

that the primal DOFs are indexed at the very end). A system of the form

K̂(i)
RR û(i)

R = f̂ (i)
R (4.17)

is then solved by the constrained system

(
Ki C>

i

Ci 0

)(
ui
µi

)
=

 T−>
i

(
f̂i,R
0

)
0

 . (4.18)

Here, Ti denotes the transformation from the new basis to the standard nodal basis and Ci

is the matrix which constrains ui (which is given in the original basis) such that ui ∈ W̃i,∆.
The solution to the original system (4.17) is finally given by

û(i)
R =

(
I(i)
R | 0

)
T−1
i ui .

This means, instead of an SPD system with a possibly non-sparse stiffness matrix K̂(i)
RR, we

can solve a saddle point system with the original sparse stiffness matrix and with the local
Lagrange multiplier µi. The same technique can be applied also for the BEM subdomains,
as we will demonstrate below.

4.3.2 Realization of the operators

Realization of S∆, i on a FEM subdomain. First, we partition the full stiffness matrix K̂i

into blocks

K̂i =

 K̂(i)
∆∆ K̂(i)

∆I K̂(i)
∆Π

K̂(i)
I∆ K̂(i)

II K̂(i)
IΠ

K̂(i)
Π∆ K̂(i)

ΠI K̂(i)
ΠΠ

 .

1In the finite element context, this means effectively that we replace ϕxh by ϑEij , see Remark 2.35.



134 CHAPTER 4. DUAL-PRIMAL METHODS

Here, the subscript I refers to the DOFs corresponding to nodes in the interior of the
subdomain, whereas ∆ and Π refer to the dual and primal DOFs, respectively, which can be
associated to nodes, vertices, edges, or faces on the boundary ∂Ωi. The matrix representation
of S∆, i is then given by

Ŝ∆∆, i = K̂(i)
∆∆ − K̂(i)

∆I

[
K̂(i)
II

]−1K̂(i)
I∆ .

Note, that for the basis transformation described above, K̂(i)
II = K(i)

II . Therefore, up to the
basis transformation, the application of S∆, i is performed by solving a Dirichlet problem,
analogously to Section 2.2.3.

Realization of S∆, i on a BEM subdomain. Let Ti denote the basis transformation on Wi

which transforms from the new basis to the old basis. By Di, Mi, Ki and Vi we denote the
usual boundary integral matrices with respect to the standard bases. Furthermore, let D̂i,
M̂i, and K̂i denote the matrix representation with respect to the new basis for the space
V h(∂Ωi), whereas the basis for Zh(∂Ωi) remains unchanged. The Steklov-Poincaré operator
Si has also two representations, Si and Ŝi with

Ŝi =

(
Ŝ(i)

∆∆ Ŝ(i)
∆Π

Ŝ(i)
Π∆ Ŝ(i)

ΠΠ

)
.

In order to compute f̂ (i)
∆ = Ŝ(i)

∆∆v̂(i)
∆ , we can solve ti = V−1

i (1
2M̂

(i)
∆ + K̂(i)

∆ )v(i)
∆ and set

f̂ (i)
∆ = D̂(i)

∆∆v̂(i)
∆ +

(
1
2 [M̂(i)

∆ ]> + [K̂(i)
∆ ]>

)
ti .

Up to the basis transformation, this is the same procedure as described in Section 2.2.3.

Realization of S−1
∆, i for a FEM subdomain. In order to compute v̂(i)

∆ = [Ŝ(i)
∆∆]−1ĝ(i)

∆ , we can
solve (

K̂(i)
∆∆ K̂(i)

∆I

K̂(i)
I∆ K̂(i)

II

)(
v̂(i)

∆

v̂(i)
I

)
=

(
ĝ(i)

∆

0

)
,

which is of the form (4.17).

Realization of S−1
∆, i for a BEM subdomain. Instead of computing v̂(i)

∆ = [Ŝ(i)
∆∆]−1ĝ(i)

∆ , we
can solve the saddle point system(

D̂(i)
∆∆

1
2 [M̂(i)

∆ ]> + [K̂(i)
∆ ]>

1
2M̂

(i)
∆ + K̂(i)

∆ −Vi

)(
v̂(i)

∆

ti

)
=

(
ĝ(i)

∆

0

)
. (4.19)

If one wishes to use the original matrices, one can instead solve the modified system

 Di
1
2M

>
i + K>

i C>
i

1
2Mi + Ki −Vi 0

Ci 0 0

 vi
ti
µi

 =


T−>
i

(
ĝ(i)

∆

0

)
0
0

 , (4.20)

where Ci is the matrix with respect to the standard nodal basis which constrains the respec-
tive function to be in W̃i,∆, and set v̂(i)

∆ =
(
I(i)
∆ | 0

)
T−1
i vi.
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Realization of S̃−1. Computing v∆ = S̃−1g∆ is equivalent to solving(
S∆ S∆Π

SΠ∆ SΠ

)(
v∆
vΠ

)
=
(
g∆
0

)
. (4.21)

We use the block factorization(
S∆ S∆Π

SΠ∆ SΠ

)−1

=
(
I∆ −S−1

∆ S∆Π

0 IΠ

)(
S−1

∆ 0
0 S̃−1

Π

)(
I∆ 0

−SΠ∆S
−1
∆ IΠ

)
, (4.22)

with
S̃Π := SΠ − SΠ∆S

−1
∆ S∆Π .

Let S̃ΠΠ denote the matrix representing S̃Π with respect to the new basis. We first describe
how to assemble S̃ΠΠ from local contributions S̃(i)

ΠΠ. For each FEM subdomain Ωi, we find
that

S̃(i)
ΠΠ = K̂(i)

ΠΠ − K̂(i)
ΠR

[
K̂(i)
RR

]−1K̂(i)
RΠ ,

i. e., the entries can be obtained by solving one Dirichlet problem for each local primal DOF,
cf. (4.17). For a BEM subdomain the corresponding entries can be obtained using the identity

S̃(i)
ΠΠ = D̂(i)

ΠΠ +
(

1
2 [M̂(i)

Π ]> + [K̂(i)
Π ]>

)
V−1
i

{(
1
2M̂

(i)
Π + K̂(i)

Π

)
−
(

1
2M̂

(i)
∆ + K̂(i)

∆

)[
Ŝ(i)

∆∆

]−1Ŝ(i)
∆Π

}
,

from which we see that the action can be performed solving two systems with the single
layer potential, and one saddle point system of the form (4.19) or (4.20). As soon as the
matrix S̃ΠΠ has been assembled, its factorization can be performed and stored. Under the
condition that the number of local primal DOFs is uniformly bounded, it can be shown that
the matrix S̃ΠΠ is sparse, as the coarse matrix G>QG occurring in the one-level methods.
We will return to that issue in Section 4.3.3.

Looking back to (4.22) we see that the application of S̃−1 reduces essentially to applica-
tions of S−1

i,∆ and S̃−1
Π . Further simplifications by exploiting the Schur complement structure

are possible, for FETI methods see Rheinbach [154].

Representation of d = S̃−1f̃ . Instead of forming and factorizing a matrix representing SΠ

to obtain f̃ according to (4.5), we find that v∆ = S̃−1f̃ is equivalent to solving(
S∆ S∆Π

SΠ∆ SΠ

)(
v∆
vΠ

)
=
(
f∆

fΠ

)
, (4.23)

i. e., we can use the block factorization from above.

Computing u from λ. The realizations of F , M−1, and d are now clear. Let λ denote the
solution to (4.7) after the PCG iteration has been stopped. The solution u we are looking for

is then obtained as follows. We solve (4.23) replacing f∆ by f∆−B>
∆λ and set u =

(
v∆
vΠ

)
.

For the FEM subdomains, the interior values u(i)
I are provided as a byproduct, for details

see Rheinbach [154].
In order to obtain an efficient algorithm, all the BEM matrices need to be approximated

by data-sparse matrices, and all corresponding BEM systems need to be efficiently solved,
e. g., using H-LU factorization, cf. Bebendorf [7, 8].
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4.3.3 Comparison of dual-primal and one-level methods

4.3.3.1 The bounded case

A fine comparison of FETI-DP and the standard one-level FETI methods can be found in
Toselli and Widlund [184, Sect. 6.4.1]. In the following, we compare the dual primal
methods to the one-level methods, including the all-floating methods.

• Dual-primal algorithms do not require the characterization of the kernels of the Steklov-
Poincaré operators in practice. All-floating methods need such a characterization but
without incorporation of (possibly complicated) boundary conditions.

• In three dimensions, the dual-primal methods require the handling of edge and possibly
face constraints via a change of basis, which is not needed at all in case of the one-level
methods. In order to be competitive with the one-level methods in view of the size of
the coarse problem, dual-primal methods require a careful choice of the primal DOFs,
such as Algorithm D.

• The same dual-primal algorithms and codes can be applied to problems with and
without non-trivial local kernels, e. g., differential operators with zero-order terms.
According to Remark 3.22, in such cases, one-level methods need a non-trivial adaption.

• Dual-primal methods do not require the construction of a scaling matrix Q which
appears in the coarse solver of one-level methods. The dual-primal coarse solver is
determined just by the FEM or BEM system matrices and the primal DOFs.

• As a possible drawback of one-level methods, the initial guess λ0 of the underlying
projected PCG methods needs to be fixed somehow, since the condition G>λ0 = e
must hold. This initial guess can however be far away from the solution λ. In contrast,
an arbitrary initial guess λ0 can be employed for dual-primal methods.

4.3.3.2 The unbounded case

We have seen that the coarse space of dual-primal methods for unbounded domains is more
powerful than that of the one-level methods. However, this goes along with a possibly high
computational cost. If the number of primal DOFs nΠ,0 on ∂Ω0 stays small, the algorithm
will work fine. If nΠ,0 grows, however, alone the assembling of the coarse matrix representing
S̃Π involves at least nΠ,0 solves of the single layer potential on ∂Ω0. Note that even for the
carefully selecting Algorithm D, nΠ,0 is at least as big as the number of faces on ∂Ω0. In
other words, a large number nΠ,0 goes along with a large number of neighbors of ∂Ω0. This,
in turn, implies that the coarse matrix S̃Π loses its sparsity. It might be that this problem
can be solved using an H-matrix approximation of S̃Π. Note that such a fill-in phenomenon
cannot happen in case of the one-level methods, since the Steklov-Poincaré operator S0 does
not at all contribute to the coarse matrix G>QG. When being parallelized, both the one-
level and the dual-primal methods can suffer from the lack of load balancing if the number
of DOFs on ∂Ω0 is large. The buffer strategy outlined in Section 3.6 can be used to cope
with this problem. To summarize, the one-level method can be used unless the predicted
condition number due to Theorem 3.20, Theorem 3.15 is getting very large, either because
of a relatively small coefficient α0 or a relatively small shape parameter η. In such cases, the
dual-primal method might be of greater advantage.



Chapter 5

Multiscale coefficients

In this chapter, we would like to discuss FETI methods for problems with highly hetero-
geneous (multiscale) coefficients, i. e., coefficients which do not only jump across material
interfaces resolved by the subdomain partitioning, but which can have large jumps or large
variation on the fine scale.

To the best of our knowledge, all the present analyses of FETI methods assume that the
coefficient α is piecewise constant with respect to the subdomain partitioning (or at least
only moderately varying in each subdomain). It has already been observed numerically by
several authors (see Klawonn and Rheinbach [107], Langer and Pechstein [116], and
Rixen and Farhat [155, 156]) that a simple generalization of the scaling employed by
Klawonn and Widlund [109] (cf. Section 2.2.1.3) leads to robustness of the FETI method
even in this case. However, a theoretical justification for this kind of robustness has been
still lacking. In this chapter we give an analysis which was first published in Pechstein and
Scheichl [147]. It shows that the condition number of the preconditioned system depends
only on the variation of the coefficient in the vicinity of the subdomain interfaces. More
precisely, if we fix a boundary layer of width η in each subdomain such that α(x) ≤ Cη α(y)
for all x, y in each subdomain boundary layer, the condition number bound reads Cη (H/η)2.
Under stronger assumptions, the quadratic dependence on H/η can be relaxed to a linear one.
Our result is a generalization of that by Klawonn and Widlund [109] (cf. Theorem 2.28)
and it shows that FETI methods can still be very robust if the coefficient varies a lot in the
interior of each subdomain. The same statement holds for FETI-DP methods.

Our theoretical findings for the one-level methods are confirmed in numerical experi-
ments. These also show that our bound is not always sharp when the coefficient varies
strongly near subdomain interfaces. In practice FETI methods often seem to be robust even
in this case, in particular when the variation along the interface is smooth or when the coef-
ficient jumps only in a few places. The analysis in this case is much harder and will be the
focus of future investigations.

In Section 5.1 we briefly discuss the multiscale elliptic model problem. Section 5.2 em-
braces the formulation of one-level FETI methods for this problem, where we adapt and
generalize the one-level methods from Chapter 2. The main robustness results are contained
in Section 5.3. The proof of these results is given in Section 5.4, where we also introduce
some technical tools needed for the analysis, in particular generalized Poincaré, Friedrichs,
and discrete Sobolev type inequalities for boundary layers. Finally, we give numerical results
in Section 5.5.
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5.1 Problem formulation of multiscale elliptic PDEs

As discussed in the introduction, highly heterogeneous (multiscale) coefficients arise, e. g., in
the simulation of complicated layered media or heterogeneous (e. g., porous) media. Large
but smooth variation of coefficients can appear in the setting of nonlinear problems. In the
following we consider the scalar elliptic model problem

−div (α∇u) = f in Ω ,

u = 0 on ΓD ,

α
∂u

∂n
= gN on ΓN ,

(5.1)

on a bounded domain Ω in R2 or R3 where ΓD is a relatively closed part of ∂Ω of positive
surface measure and ΓN = ∂Ω\ΓD. For the sake of simplicity, we consider only homogeneous
Dirichlet boundary conditions on ΓD, and we assume that gN ∈ L2(ΓN ) and f ∈ L2(Ω).

Unlike in Chapter 2, the coefficient α(·) may vary over many orders of magnitude in
an unstructured way on Ω. Concerning the discretization we consider a family of shape-
regular, geometrically conforming meshes T h(Ω) resolving ΓD and ΓN . We need the following
assumption on the regularity of the coefficient α(·).

Assumption 5.1. The coefficient α(·) is assumed to be in L∞(Ω), uniformly strictly positive,
and constant in the elements of the triangulation T h(Ω).

Under this assumption, the bilinear form associated to (5.1) is elliptic on H1
D(Ω) and

bounded on H1(Ω) according to Lemma 1.15. Hence, Theorem 1.16 (Lax-Milgram) guaran-
tees the existence of a unique solution. The assumption that the coefficient is constant on
each element is not essential when working with linear finite elements, because∫

τ
α(x)∇u(x) · ∇v(x) dx =

(∫
τ
α(x) dx

)
∇u|τ · ∇v|τ , ∀u, v ∈ P1(τ) , ∀τ ∈ T h(Ω) ,

cf. Graham, Lechner, and Scheichl [75].
The discrete variational problem reads: Find uh ∈ V h

D(Ω) such that∫
Ω
α∇uh · ∇vh dx =

∫
Ω
f vh dx+

∫
ΓN

gN vh ds ∀vh ∈ V h
D(Ω) , (5.2)

where V h(Ω), V h
D(Ω) are defined according to (1.5.2). The global system of finite element

equations reads

K̃ũ = f̃ . (5.3)

It is easily shown that the condition number κ(K̃) fulfills the bound

κ(K̃) ≤ C sup
x,y∈Ω

α(x)
α(y)

h−2 , (5.4)

for the case of a globally quasi-uniform mesh. As outlined before we are interested in iterative
solvers which are not only robust with respect to the factor h−2, but also with respect to
the coefficient variation.
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5.2 Formulation of FETI methods for multiscale PDEs

First we briefly recall some of the notations and assumptions from Chapter 2. Let {Ωi}i∈I
be a shape-regular subdomain partition of Ω, and let the global mesh T h(Ω) be chosen such
that it resolves the subdomain interfaces. For each subdomain Ωi, the restriction T h(Ωi)
of T h(Ω) to Ωi is assumed to be quasi-uniform with mesh size hi. In particular, we have
Hi ' Hj and hi ' hj for neighboring subdomains Ωi, Ωj . As in previous sections we assume
that the boundary parts ΓD and ΓN are unions of faces, edges, and vertices of the subdomain
partition, cf. Assumption 2.25.

In principle, the derivation of standard one-level and all-floating methods for problem
(5.1) is performed analogously to Chapter 2, where we carefully generalize for the case of
the non-constant coefficients. Note that for the standard one-level formulation we need
Assumption 2.26, which states that in three dimensions, ∂Ωi∩ΓD is either empty or at least
an edge. We define the local spaces

W h(Ωi) := V h
D(Ωi) , Wi := V h

D(∂Ωi) for a standard one-level method,

W h(Ωi) := V h(Ωi) , Wi := V h(∂Ωi) for an all-floating method,
(5.5)

and the product space W :=
∏
i∈IWi. On each subdomain Ωi, let K(i) and f (i) denote the

stiffness matrix and the load vector with respect to the space W h(Ωi). By Si : Wi →W ∗
i and

fi ∈W ∗
i we denote the discrete Steklov-Poincaré operator and the discrete Newton potential

which correspond to the matrix/vector representations

Si = K(i)
BB −K(i)

BI [K(i)
II ]−1 K(i)

IB , Nif (i) = f (i)
B −K(i)

BI [K(i)
II ]−1 f (i)

I ,

respectively, where the subscript I indicates interior DOFs, and the subscript B indicates
the (free) DOFs associated to nodes on ∂Ωh

i . Apparently, kerSi = {1∂Ωi
} in case of the

all-floating formulation, and otherwise, kerSi = {0} if and only if ∂Ωi ∩ΓD 6= ∅. Finally, we
set S := diag (Si) : W →W ∗ and f := [fi]i∈I .

Analogously to Chapter 2 we introduce suitable jump operators Bi : Wi → U∗ and
B : W → U∗ with the Lagrange multiplier space U , the (pseudo)inverses S†i : W ∗

i → Wi,
S† = diag (S†i ), the operators Ri with rangeRi = kerSi and R : Z → W defined according
to (2.36)–(2.37), G = BR, and the projection P = I − QG (G>QG)−1G> where the SPD
operator Q : U∗ → U is yet to be specified. With F = B S†B> and d = B S†f , we obtain
the equation

P>F λ̃ = P>(d− F λ0) ∀λ̃ ∈ V , (5.6)

where λ0 = QG (G>QG)−1R>f and V = {λ ∈ U : 〈B>λ, z〉 = 0 ∀z ∈ kerS}.

Remark 5.2. (i) In case of the all-floating formulation for non-homogeneous Dirichlet
problems we have to use d = B S†f − b where b ∈ U∗ contains the Dirichlet values, cf.
Section 2.2.2.

(ii) If we view the operators Bi as mappings from W h(Ωi) to U∗ and let fi ∈ W h(Ω)∗

correspond to the load vectors f (i), we can equivalently use

F =
∑
i∈I

BiK
†
i B

>
i , d =

∑
i∈I

BiK
†
i fi ,
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where on the floating subdomains, the pseudoinverse K†
i : W h(Ωi)∗ → W h(Ωi) can

be realized using a suitable regularization of the stiffness matrix K(i), see also Sec-
tion 1.5.2. With λ = λ0 + λ̃ and with Ri mapping to the constant functions in W h(Ωi),
the solution u to the original problem is given by

ui = K†
i (fi −B>

i λ) +Ri (G>QG)−1G>Q (F λ− d) .

5.2.1 Different scaling operators and preconditioners

In Chapter 2 we have used the constant values αi = α|Ωi = const in the scaling matrices Di

and Q. However, the entries of Di and Q are associated to entries of Lagrange multipliers
and therefore to nodes xh. In order to generalize such scalings for multiscale coefficients we
can either use

(i) constant values, such as the upper and lower bound of α(·) on each subdomain,

(ii) some nodal evaluations of the varying coefficient α(·), or

(iii) some evaluations of the coefficient on a part of the subdomain (such as maximum,
minimum, or average).

Ad (i). Assumption 5.1 allows to define

αi := max
τ∈T h(Ωi)

α|τ , αi := min
τ∈T h(Ωi)

α|τ > 0 . (5.7)

Ad (ii). We define for each node xh ∈ ∂Ωh
i the open nodal subdomain patch ωi(xh) ⊂ Ωi by

the relation

ωi(xh) =
⋃{

τ : τ ∈ T h(Ωi) , xh ∈ τ
}
, (5.8)

i. e., the patch of elements in Ωi around xh (cf. Figure 5.1, left). Using these patches, we can
define the following nodal evaluations of α,

α̂max
i (xh) := max

y∈ωi(xh)
α(y)

α̂min
i (xh) := min

y∈ωi(xh)
α(y)

α̂mean
i (xh) :=

1
|ωi(xh)|

∫
ωi(xh)

α(y) dy


for xh ∈ ∂Ωh

i , (5.9)

Ad (iii). The following variant is mainly needed for theoretical purposes. Here, we reuse the
concept of a boundary layer introduced in Section 3.4.1, and we will use the maximum of
the coefficient on this boundary layer for scaling.

Definition 5.3 (Boundary layer). A subset Ωi,ηi of Ωi is called boundary layer of Ωi with
parameter ηi > 0 if it fulfills

∀x ∈ Ωi,ηi : dist (x, ∂Ωi) < 2 ηi and ∀x ∈ ∂Ωi : Bx,ηi ∩ Ωi ⊂ Ωi,ηi ,

where Bx,ηi is the open ball with center x and radius ηi.
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Figure 5.1: Left: Subdomain node patches ω1(xh), ω4(yh) corresponding to the nodes xh

and yh, cf. (5.8). Right: Boundary layer Ωi,ηi of the subdomain Ωi, cf. Definition 5.3.

For the rest of this chapter we assume that we have fixed parameters ηi and boundary
layers Ωi,ηi which are the union of elements of the triangulations T h(Ωi), cf. Figure 5.1,
right. We set

αηi
i := max

x∈Ωi,ηi

α(x) , αηi
i := min

x∈Ωi,ηi

α(x) > 0 . (5.10)

Remark 5.4. It is important to note that the ratio αηi
i /α

ηi
i neither depends on inter-

subdomain coefficient jumps nor on the values of α(·) in the interior regions Ωi \ Ωi,ηi .
The coefficients α(·) may have arbitrary large jumps across the subdomain interfaces and
arbitrary but positive values in the subdomain interiors.

In order to define the scaling operators Di and Q we choose the functions α̂i ∈ V h(∂Ωi)
from the set {αi, αi, α̂max

i , α̂min
i , α̂mean

i , αηi
i , αηi

i

}
, and define the weighted counting functions

δ̂†j(x
h) :=


α̂j(xh)∑

k∈N
xh
α̂k(xh)

for xh ∈ ∂Ωh
j ,

0 for xh ∈ ΓhS \ ∂Ωh
j .

(5.11)

We can now define Di : U∗ → U by

(Di µ)ij(xh) := δ̂†j(x
h)µij(xh) ∀xh ∈ Γhij ,

(Di µ)jD(xh) := µjD(xh) ∀xh ∈ ∂Ωh
j ∩ ΓD ,

(5.12)

for µ ∈ U∗, where the second line has to be dropped in case of a standard one-level FETI
method. In three dimensions, the scaling operator Q : U∗ → U is defined by

(Qµ)ij(xh) := min
(
α̂i(xh), α̂j(xh)

)
qij(xh)µij(xh) for xh ∈ Γhij ,

(Qµ)iD(xh) := α̂i(xh) qi(xh)µiD(xh) for xh ∈ ∂Ωh
i ∩ ΓD ,

(5.13)

for µ ∈ U∗, where qij(xh) and qi(xh) are defined according to (2.56) and (2.77), and the
second line is dropped for standard one-level FETI methods.
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Note that we will use the parameters αηi
i , αηi

i mostly for theoretical purposes. In practice
α̂max
i is a much more convenient choice. Nevertheless, if α is constant on each boundary layer,

we have
αηi
i = α̂max

i (xh) ∀xh ∈ ∂Ωh
i .

The preconditioner finally reads

M−1 = BD S B
>
D =

∑
i∈I

DiBi JWi Si JWi B
>
i Di . (5.14)

Remark 5.5. When substituting the coefficient α̂i(xh) in (5.11) by the entry of the stiffness
matrix K(i) corresponding to the basis function ϕ

(i)

xh , the scaling operators Di are exactly
those proposed by Rixen and Farhat [155, 156], known as superlumped smoothing.

As we know from Chapter 2, each step of the FETI PCG algorithm needs the solution
of a Dirichlet problem, a regularized Neumann problem, and the coarse problem given by
the operator G>QG. In what follows, we assume that all these problems can be handled by
direct solvers, which means that their condition numbers (which will usually be large due to
the coefficient variation) do not affect the solves.

5.3 Robustness analysis

5.3.1 A straigtforward condition number bound

First, we would like to clarify the efficiency of the constant weights αi, αi, from which we
do not expect robustness in general. The following lemma (which can essentially be found
in Langer and Pechstein [116, Proposition 2.2]) states that constant weights result in a
linear factor of the maximal subdomain variation in the condition number bound.

Lemma 5.6. Let α̂i = αi for all i ∈ I and let the operators Di and Q be defined according
to (5.11)–(5.13). Then the condition number κ of the preconditioned FETI system (standard
one-level or all-floating) satisfies the bound

κ ≤ C
{

max
i∈I

max
x,y∈Ωi

α(x)
α(y)

}
max
j∈I

(1 + log(Hj/hj))2 ,

with C > 0 independent of Hi, hi, α(·), and the number of subdomains. The statement
remains valid if we choose α̂i = αβi α

1−β
i with some global exponent β ∈ [0, 1].

Proof. A careful inspection of the analysis from Chapter 2 reveals that we only need to
bound |PD(w + zw)|S in terms of |w|S for all w ∈ W . Let Si, Si : Wi → W ∗

i denote the
Steklov-Poincaré operators corresponding to the bilinear forms

ai(u, v) := αi

∫
Ωi

∇u · ∇v dx , ai(u, v) := αi

∫
Ωi

∇u · ∇v dx ,

respectively, where u, v ∈W h(Ωi). Furthermore, we set S = diag (Si) and S = diag (Si). By
the minimizing property of the FEM Schur complement, cf. Lemma 1.32, we easily obtain

|wi|2Si
≤ |wi|2Si

≤ |wi|2Si
=

αi
αi
|wi|2Si

∀wi ∈Wi .
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We see that the weights in Di and Q are exactly those of the method from Chapter 2 for the
bilinear form ai(u, v). Reusing Lemma 2.27 we obtain

|PD (w + zw)|2S ≤ |PD (w + zw)|2
S
≤ max

j∈I
C (1 + log(Hj/hj) |w|2S

≤ max
j∈I

C (1 + log(Hj/hj) max
i∈I

αi
αi
|w|2S ,

for all w ∈W . The proof for the case β 6= 1 follows immediately, for details see [116].

5.3.2 New coefficient-robust condition number bounds

In this section we analyze the proposed FETI method with the weights α̂i = αηi
i . We give a

condition number bound which is independent of the values of α in the interior Ωi \Ωi,ηi of
each subdomain Ωi, but which depends on the variation of α in the boundary layers and on
the ratios Hi/ηi.

Assumption 5.7. For each i ∈ I let Ωi,ηi be a boundary layer with parameter ηi > 0 such
that

αηi
i ≤ α(x) ≤ αηi

i ∀x ∈ Ωi,ηi ,

and assume that ηi ' ηj for neighboring subdomains Ωi, Ωj.

Before we state our main result, we need a few regularity assumptions on the subdomains
and the boundary layers.

Definition 5.8 (Regular domain). For d = 2 or 3, we call a domain D ⊂ Rd regular if it is
bounded, contractible, and Lipschitz, and if it can be decomposed into a conforming coarse
mesh of shape-regular triangles (tetrahedra). Whenever considering a family of regular do-
mains, such as partitions into subdomains, we implicitly assume that the number of simplices
forming an individual subdomain is uniformly bounded.

Definition 5.9 (Shape parameter). We define the shape parameter of a regular domain D
by

ρ(D) := min
1≤i≤s

ρ(Ti) ,

where {Ti}1≤i≤s are the simplices according to Definition 5.8 and ρ(Ti) is the diameter of
the largest ball contained in T i.

As in Chapter 2 we assume that the subdomains are regular domains with

ρ(Ωi) ' Hi and Hi ' Hj for ∂Ωi ∩ ∂Ωj 6= ∅ .

cf. Assumption 2.1 and Assumption 2.23. The following assumption concerning the boundary
layers Ωi,ηi is very similar to the partition property from Definition 3.13.

Assumption 5.10. Assume that for each i ∈ I, the boundary layer Ωi,ηi is a union of
elements of the triangulation T h(Ωi) and that it can be covered by finitely many patches
{ω(i)

j }j∈J (i) such that the following assumptions hold.

(i) The patches {ω(i)
j }j∈J (i) form a family of regular domains in the sense of Definition 5.8

with diamω
(i)
j ' ηi, such that the number of simplices per patch is uniformly bounded.
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(ii) The patches have finite overlap, i. e., the number of patches sharing a point y ∈ Ωi,ηi

is uniformly bounded.

(iii) For each j ∈ J (i), the intersection γ(i)
j := ∂ω

(i)
j ∩ ∂Ωi is the closure of a union of faces

(edges in two dimensions) of the simplices forming the patch. Furthermore in three
dimensions, for any edge Ei of Ωi, the intersection ∂ω(i)

j ∩ Ei is a union of edges of the

simplices forming the patch ω(i)
j .

(iv) For two neighboring patches ω(i)
j , ω(i)

k that share at least a manifold of dimension d−1,

we assume that the compound patch ω(i)
j,k defined by the union of ω(i)

j and ω(i)
k is regular

in the sense of Definition 5.8.

Remark 5.11. Note that Assumption 5.10 requires a covering only, whereas in Defini-
tion 3.13 we have assumed a non-overlapping partitioning into patches. Clearly, such a
non-overlapping partition is also a covering in the above sense, and if the simplices, which
the patches consist of, form a conforming coarse mesh of the boundary layer Ωη, Part (iv)
of Assumption 5.10 is automatically fulfilled.

Theorem 5.12. For each i ∈ I, let Ωi,ηi be a boundary layer with parameter ηi satisfying
Assumption 5.7 and Assumption 5.10. Let α̂i = αηi

i , and let the operators Di and Q be
defined according to (5.11)–(5.13). Then the standard one-level and the all-floating FETI
method with the preconditioner defined in (5.14) satisfy the condition number estimate

κ ≤ C max
k∈I

(Hk

ηk

)β
max
i∈I

αηi
i

αηi
i

(1 + log(Hi/hi))2 ,

with the exponent β = 2. The constant C is independent of the parameters Hi, ηi, hi, the
number of subdomains, and the values of the coefficient α(·). Under the stronger assumption

α(x) & αηi
i ∀x ∈ Ωi ∀i ∈ I ,

we have the improved estimate with β = 1, i. e., linear dependence on Hk/ηk. These state-
ments hold in both two and three dimensions.

Proof. Postponed to Section 5.4.

Remark 5.13. There are two special cases of Theorem 5.12 concerning the coefficient α
and the parameters ηi.

(i) For the case that α(·) is piecewise constant in the subdomains, Theorem 5.12 reproduces
Theorem 2.28, in particular the known result by Klawonn and Widlund [109]. This
is because αHi

i = αHi
i ≡ α|Ωi

.

(ii) If the ηi can be chosen with ηi ' Hi and α(x) ≤ Cη α(y) for x, y ∈ Ωi,ηi for each i ∈ I,
then we obtain the condition number bound Cη (1 + log(H/h))2, i. e., the method is
completely robust to possible coefficient variation in Ωi \ Ωi,ηi .

Remark 5.14. In the subsequent proof we will never use the values of the coefficient α(·)
in the subdomain interiors, i. e., any positive values in (0, ∞) are possible. It is therefore
interesting to consider also the following two limit cases which correspond to applying our
FETI methods to (homogeneous) problems on perforated domains (e. g., bubbly flow).
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(i) The case that the coefficient in the subdomain interiors goes to infinity corresponds to
Dirichlet boundary conditions on ∂Ωi,ηi \ ∂Ωi, see e. g., Aksoylu, Graham, Klie,
and Scheichl [3]. We obtain the condition number bound as in Theorem 5.12 with
β = 1.

(ii) The case that the coefficient vanishes completely in Ωi \Ωi,ηi corresponds to Neumann
boundary conditions on ∂Ωi,ηi \∂Ωi. Thus in this case we obtain the condition number
bound as in Theorem 5.12 with β = 2.

Remark 5.15. From the proof given in the subsequent section, it will become clear that
Theorem 5.12 holds true as well if subdomains where α is constant are treated with BEM.

Corollary 5.16. Let κ denote the condition number of the preconditioned FETI-DP method
from Chapter 4 (Algorithm B or C) where the values αηi

i are used in the scaling operators
Di, cf. (4.8). Then we have

κ ≤ C max
k∈I

(Hk

ηk

)β
max
i∈I

αηi
i

αηi
i

(1 + log(Hi/hi))2 ,

where β = 2 in general, and β = 1 if α(x) & αηi
i for all x ∈ Ωi and i = I.

Proof. Postponed to Section 5.4.4.

5.4 Proof of the theoretical results

Due to the discussion in Chapter 2 it is sufficient to show the bound

|PD(w + zw)|2S ≤ max
k∈I

(Hk

ηk

)β
max
i∈I

αηi
i

αηi
i

(1 + log(Hi/hi))2 |w|2S ∀w ∈W⊥ , (5.15)

in order to prove Theorem 5.12. In this chapter, we use the definition

W⊥ :=
{
w ∈W :

∫
∂Ωi

wi(x) dx = 0 ∀i ∈ Ifloat

}
, (5.16)

which differs slightly form the one in Chapter 2, but which can be justified by modifying the
proof of Lemma 2.41 accordingly. The spaces Wi can be interpreted as spaces of discrete
α-harmonic functions, since

|v|2Si
= min

{∫
Ωi

αi|∇ṽ|2 dx : ṽ ∈ V h(Ωi), ṽ|∂Ωi
= v
}

∀v ∈Wi . (5.17)

Note that for a non-floating subdomain, Wi is a genuine subspace of V h(∂Ωi). Using the
above formula, however, we can extend the definition of |·|Si to the entire space V h(∂Ωi). The
function Hα

i v for which the minimum is attained is called the discrete α-harmonic extension
of v from V h(∂Ωi) to V h(Ωi). For convenience, we also define the discrete trace seminorm

|v|2
H

1/2
h (∂Ωi)

:= min
{∫

Ωi

|∇ṽ|2 dx : ṽ ∈ V h(Ωi), ṽ|∂Ωi
= v
}

for v ∈ V h(∂Ωi) , (5.18)
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which coincides with |v|Si if α|Ωi
≡ 1. The function Hiv for which the minimum in (5.18) is

attained is the discrete harmonic extension of v from ∂Ωi to Ωi, cf. Definition 2.32. Recall
also the norm equivalence

|u|2H1(Ωi)
+

1
H2
i

‖u‖2
L2(Ωi)

' |u|2H1(Ωi)
+

1
Hi

‖u‖2
L2(∂Ωi)

, (5.19)

due to Theorem 1.7.
For the proof of (5.15) we will use two main tools which are interesting on their own. As

a first tool, in Section 5.4.1 we show an estimate of the form

|v|2Si
. αηi

i

{
|v|2

H
1/2
h (∂Ωi)

+
1
ηi
‖v‖2

L2(∂Ωi)

}
∀v ∈ V h(∂Ωi) , (5.20)

which is proved using a cut-off function as in Lemma 3.16 and in the proof of Theorem 3.15(ii).
This result allows us (i) to remove the dependence on α(·) in the interior of the subdomain
completely, and (ii) to reuse the known FETI tools which are worked out with harmonic
extensions in the H1-seminorms, or equivalently in the H1/2

h -seminorms. The price to pay
is a factor of 1/ηi in front of the L2-term instead of 1/Hi in the piecewise constant case, cf.
(5.19). This will lead to a factor Hi/ηi in the condition number estimate.

In the case where α(·) is completely arbitrary in the interior (in particular not bounded
from below by αηi

i ), we need a second tool. We estimate the L2-term in (5.20) from above
by the H1-seminorm of v, but restricted to the boundary layer Ωi,ηi . That means, we need
Poincaré and Friedrichs type inequalities on boundary layer domains (which are topologically
non-trivial) with explicit information on the dependence of the Poincaré/Friedrichs constant
on the aspect ratio Hi/ηi. It turns out that the dependence is linear in Hi/ηi which leads
to the second factor in the condition number estimate. To get the exact dependence of
the constants, we need direct proofs of Friedrichs and Poincaré type inequalities for simple
domains, which can be found in the literature. However, we also need discrete estimates
similar to the ones in Lemma 2.33 and Lemma 2.34. We generalize an idea which can be
found, e. g., in Zheng and Qi [194] to show all the needed inequalities in Section 5.4.2. The
proof of (5.15) is finally given in Section 5.4.3. The proof of Corollary 5.16 concerning the
FETI-DP method is briefly discussed in Section 5.4.4.

5.4.1 A cut-off result

Lemma 5.17. For all v ∈ V h(∂Ωi) we have

(i) |v|2Si
. αηi

i

{
|ṽ|2H1(Ωi,ηi

) +
1
ηi
‖v‖2

L2(∂Ωi)

}
,

(ii) |v|2Si
. αηi

i

{
|v|2

H
1/2
h (∂Ωi)

+
1
ηi
‖v‖2

L2(∂Ωi)

}
,

where ṽ is an arbitrary extension of v from V h(∂Ωi) to V h(Ωi).

Proof. By slightly adjusting the proof of Lemma 3.16 we can find a discrete cut-off function
χ ∈ V h(Ωi) with

χ(x) ∈ [0, 1] , χ|∂Ωi
= 1 , χ|Ωi\Ωi,ηi

= 0 , and ‖∇χ‖L∞(Ωi) . η−1
i .
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Let v ∈ V h(∂Ωi) be fixed and let ṽ ∈ V h(Ωi) denote an arbitrary extension of v from ∂Ωi

to Ωi. Then, Ih(χ ṽ) ∈ V h(Ωi) is also an extension of v from ∂Ωi to Ωi, and because of
the minimum property (5.17) we can bound the Si-energy norm of v by the α-weighted
H1-seminorm of Ih(χ ṽ). Using the continuity of the nodal interpolator Ih we obtain

|v|2Si
≤
∫

Ωi

α(x)
∣∣∇[Ih(χ ṽ)(x)]

∣∣2︸ ︷︷ ︸
0 in Ωi\Ωi,ηi

dx =
∫

Ωi,ηi

α(x)
∣∣∣∇[Ih(χ ṽ)(x)

]∣∣∣2 dx
≤
∫

Ωi,ηi

αηi
i

∣∣∣∇[Ih(χ ṽ)(x)
]∣∣∣2 dx . αηi

i

∫
Ωi,ηi

∣∣∇(χ(x) ṽ(x)
)∣∣2 dx

. αηi
i

{
‖∇χ‖2

L∞(Ωi)︸ ︷︷ ︸
.η−2

i

‖ṽ‖2
L2(Ωi,ηi

) + ‖χ‖2
L∞(Ωi)︸ ︷︷ ︸
=1

‖∇ṽ‖2
L2(Ωi,ηi

)

}
.

(5.21)

As in the proof of Toselli and Widlund [184, Lemma 3.10] we cover the boundary
layer Ωi,ηi by regular patches {ω(i)

j }j∈J (i) which satisfy the requirements stated in Assump-
tion 5.10. We have, trivially,

1
η2
i

‖ṽ‖2
L2(Ωi,ηi

) ≤
∑
j∈J (i)

1
η2
i

‖ṽ‖2

L2(ω
(i)
j )

. (5.22)

Due to Assumption 5.10, for each j the intersection ∂ω
(i)
j ∩ ∂Ωi is a union of shape-regular

faces of the patch ω(i)
j with its diameter proportional to ηi. Thus, we can apply a Friedrichs

type inequality on each patch ω
(i)
j which yields∑

j∈J (i)

1
η2
i

‖ṽ‖2

L2(ω
(i)
j )

.
∑
j∈J (i)

{
|ṽ|2

H1(ω
(i)
j )

+
1
ηi
‖ṽ‖2

L2(∂ω
(i)
j ∩∂Ωi)

}
. (5.23)

Since the patches have finite overlap, combining (5.21)–(5.23), we easily obtain (i). Choosing
ṽ to be the discrete harmonic extension Hiv, we also obtain estimate (ii).

5.4.2 Generalized Poincaré, Friedrichs, and discrete Sobolev inequalities

First we consider three inequalities on the regular domain Ωi. Let Γ̃ be a relatively closed
part of ∂Ωi with diameter Hi and surface measure Hd−1

i , such as a union of faces of Ωi (edges
in two dimensions). The Poincaré type inequality

1
Hi

‖u‖2
L2(∂Ωi)

. |u|2H1(Ωi)
+Hd−2

i

( 1

|Γ̃|

∫
eΓ u(x) dsx

)2
∀u ∈ H1(Ωi) , (5.24)

can be derived from Theorem 1.7. An immediate consequence thereof is the Friedrichs type
inequality

1
Hi

‖u‖2
L2(∂Ωi)

. |u|2H1(Ωi)
∀u ∈ H1(Ωi) , u|eΓ=0

. (5.25)

For u ∈ V h(Ωi), let ζ(u) denote the average of u over an edge (in three dimensions), or a
vertex evaluation on ∂Ωi (in two dimensions). The discrete Sobolev type inequality

1
Hi

‖u− ζ(u)‖2
L2(∂Ωi)

. (1 + log(Hi/hi)) |u|2H1(Ωi)
∀u ∈ V h(Ωi) , (5.26)
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H
η

ηΩ

ω

ω

j

k

Figure 5.2: Left: Boundary layer Ωη of diameter O(H) and width η. Right: Sketch of
partitioning of Ωη into patches, cf. (5.27) and the path Pjk connecting the patches ωj and
ωk, cf. Definition 5.18.

can be derived from Theorem 1.7, Lemma 2.33, and Lemma 2.34. The left hand side may also
be replaced by ‖u− ζ(u)‖2

L2(Ei)
for an edge Ei in three dimensions, or by ‖u− ζ(u)‖2

L∞(∂Ωi)
in two dimensions.

In this section, we provide generalizations of the above inequalities where we replace Ωi

by the boundary layer Ωi,ηi , and we make explicit the dependence of the respective constants
on the aspect ratio Hi/ηi. For the sake of simplicity we will occasionally drop the subdomain
indices i (in this subsection only) and thus work on a generic domain Ω with boundary ∂Ω
and diameter H, and with the boundary layer Ωη with parameter η.

5.4.2.1 Auxiliary results

The proofs of all our inequalities are based on the concept of a path through the patches due
to the partition from Assumption 5.10. Recall that we can cover the boundary layer Ωη by
finitely many patches

Ξη := {ω1, . . . , ωs} . (5.27)

The patches ωj are regular in the sense of Definition 5.8, cf. Figure 5.2. They have uniform
diameter η and the intersection γj := ∂ωj ∩ ∂Ω is a union of faces of ωj with a diameter
proportional to η. Due to the finite overlap assumption it is clear that there are at most
s = O((H/η)d−1) such patches.

Definition 5.18. Let ωj , ωk ∈ Ξη. We call Pjk ⊂ Ωη a path of length M connecting the
patches ωj and ωk, if it is a connected union of M patches from Ξη such that ωj, ωk ⊂ Pjk.

The following lemma is essential for the proofs of all the generalized inequalities that will
follow.

Lemma 5.19. Suppose Ω ⊂ Rd, d = 2, 3. Let ωj, ωk ∈ Ξη and let Pjk be a path of length
M connecting ωj, ωk.

(i) Then

1
ηd

∫
γj

∫
γk

|u(x)− u(y)|2 dsx dsy . M |u|2H1(Pjk) ∀u ∈ H1(Ωη) .
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(ii) Let d = 2 and let xj ∈ γj and xk ∈ γk be two points on ∂Ω. Then

|u(xj)− u(xk)|2 . M (1 + log(η/h)) |u|2H1(Pjk) ∀u ∈ V h(Ωη) .

(iii) Let d = 3 and let ej ⊂ γj and ek ⊂ γj be two edges on ∂Ω. Then

1
η

∫
ej

∫
ek

|u(x)− u(y)|2 dsy dsx . M (1 + log(η/h)) |u|2H1(Pjk) ∀u ∈ V h(Ωη) ,

1
η2

∫
γj

∫
ek

|u(x)− u(y)|2 dsy dsx . M (1 + log(η/h)) |u|2H1(Pjk) ∀u ∈ V h(Ωη) .

Proof. Let j, k and the path Pjk be fixed. Without loss of generality, we assume that the
patches in Ξη and in the path Pjk are ordered in such a way that {ω`}j≤`≤k are exactly the
patches in Pjk and that ω`, ω`+1 share at least a manifold of dimension d− 1 for j ≤ ` < k.
We define the average values

u` :=
1
|γ`|

∫
γ`

u(x) dsx for j ≤ ` ≤ k .

Proof of Part (i): Let x ∈ γj and y ∈ γk. Using the Cauchy-Schwarz inequality in RM and
the fact that Pjk is a path of length M we obtain

|u(x)− u(y)|2 =
∣∣∣∣[u(x)− uj

]
+
[ k−1∑
`=j

u` − u`+1

]
+
[
uk − u(y)

]∣∣∣∣2

. M

{
|u(x)− uj |2 +

[ k−1∑
`=j

|u` − u`+1|2
]

+ |uk − u(y)|2
}
.

(5.28)

Since |γj | ' |γk| ' ηd−1 we can conclude that

1
ηd

∫
γj

∫
γk

|u(x)− u(y)|2 dsx dsy (5.29)

. M

{
1
η

∫
γj

|u(x)− uj |2 dsx + ηd−2

[ k−1∑
`=j

|u` − u`+1|2
]

+
1
η

∫
γk

|uk − u(y)|2
}
.

Using a Poincaré type inequality on ω`, cf. (5.24), we obtain

1
η

∫
γ`

|u(x)− u`|2 dsx . |u|2H1(ω`)
, ` = j, k .

For the terms ηd−2 |u`−u`+1|2, ` = j, . . . , k−1, we apply an argument similar to Lemma 1.13
(Bramble-Hilbert). Using that ω`,`+1 is regular due to Assumption 5.10, we obtain by the
Cauchy-Schwarz inequality that

|u` − u`+1|2 .
( 1
|γ`|

∫
γ`

u(x)− u`+1 dsx

)2
. η1−d

∫
γ`

|u(x)− u`+1|2 dsx

. η1−d
∫
∂ω`,`+1

|u(x)− u`+1|2 dsx .
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On the regular domain ω`,`+1 we can apply another Poincaré type inequality using the fact
that γ` is a union of edges (resp. faces) of ω`,`+1 in two (resp. three) dimensions. This yields

ηd−2 |u` − u`+1|2 .
1
η
‖u− u`+1‖2

L2(∂ω`,`+1) . |u|2H1(ω`,`+1) . (5.30)

Since all the compound patches ω`,`+1 have only finite overlap and their union forms the
path Pjk, we easily obtain the desired result (i) by combining (5.29) and (5.30).

Proof of Part (ii): Suppose Ω ⊂ R2. Let T̃ h(ωj) be an auxiliary quasi-uniform mesh on ωj
of mesh width h that coincides on γj with the original mesh T h(Ω). Note that T̃ h(ωj) does
not have to coincide with T h(Ω) on the rest of ωj , i. e., the patches ωj are allowed to cut
through triangles/tetrahedra in the original mesh T h(Ω). Let Π(j)

h denote the Scott-Zhang
quasi-interpolation operator on ωj with respect to T̃ h(ωj) such that

(Π(j)
h u)|γj

= u|γj
∀u ∈ V h(ωj) ,

|Π(j)
h u|H1(ωj) . |u|H1(ωj) ∀u ∈ H1(ωj) ,

cf. Lemma 1.28.
Assume that the patches in the path Pjk are enumerated successively as before. In (5.28),

let x = xj ∈ γj and y = xk ∈ γk. But now we estimate the first and last term in (5.28) using
the discrete Sobolev inequality from Lemma 2.33(ii) and the properties of the Scott-Zhang
operator outlined above. Then

|u(xj)− uj |2 + |uk − u(xk)|2 . (1 + log(η/h))
[
|Π(j)

h u|2H1(ωj)
+ |Π(k)

h u|2H1(ωk)

]
. (1 + log(η/h))

[
|u|2H1(ωj)

+ |u|2H1(ωk)

]
.

The terms |u` − u`+1|2 = ηd−2 |u` − u`+1|2 can be treated as before. Again because of the
finite overlap assumption this immediately proves (ii).

Proof of Part (iii): Suppose Ω ⊂ R3. Let ej ⊂ γj and ek ⊂ γk be two edges on ∂Ω (with
|ej | ' |ek| ' η). It follows again from (5.28) that

1
η

∫
ej

∫
ek

|u(x)− u(y)|2 dsy dsx

. M
{∫

ej

|u(x)− uj |2 dsx + η
[ k−1∑
`=j

|u` − u`+1|2
]

+
∫
ek

|u(x)− uk|2 dsy
}
.

For the first and the last term we can use the discrete Sobolev inequality from Lemma 2.34(ii).
The remaining terms are treated as in (i). This finishes the proof of the first estimate in
(iii). The second estimate is shown analogously, but using the usual Poincaré inequality to
bound the term

∫
γj
|u(x)− uj |2 dsx.

Lemma 5.20. Let ωj, ωk ∈ Ξη. Then there exists a path Pjk connecting ωj and ωk of length
M = O(H/η).

Proof. This follows directly from Assumption 5.10, in particular from the regularity of the
patches and from the finite overlap assumption.

With Lemma 5.19 being proved we can state and prove the generalized inequalities.
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5.4.2.2 Generalized Poincaré and Friedrichs type inequalies

Lemma 5.21 (Generalized Poincaré type inequality). Let the boundary layer Ωi,ηi satisfy
Assumption 5.10 and let Γ̃ be either (a) an edge of Ωi (in two dimensions), (b) a face of Ωi

(in three dimensions), or (c) the entire boundary ∂Ωi of Ωi. Then

1
Hi
‖u‖2

L2(∂Ωi)
.

Hi

ηi
|u|2H1(Ωi,ηi

) +Hd−2
i

( 1

|Γ̃|

∫
eΓ u(x) dsx

)2
∀u ∈ H1(Ωi,ηi) . (5.31)

Before we give the proof, we state the following inequality which immediately follows
from Lemma 5.21.

Corollary 5.22 (generalized Friedrichs type inequality). Let the boundary layer Ωi,ηi satisfy
Assumption 5.10 and let Γ̃ ⊂ ∂Ωi be an edge of Ωi (in two dimensions) or a face of Ωi (in
three dimensions). Then

1
Hi
‖u‖2

L2(∂Ωi)
.

Hi

ηi
|u|2H1(Ωi,ηi

) ∀u ∈ H1(Ωi,ηi) , u|eΓ = 0 . (5.32)

Proof of Lemma 5.21: Assume first that Γ̃ = ∂Ω. We start as in many direct proofs of
Poincaré’s inequality from the literature. For x, y ∈ ∂Ω, we have

u(x)2 + u(y)2 − 2u(x)u(y) =
[
u(x)− u(y)

]2
. (5.33)

Integrating twice over ∂Ω and using the patch covering/decomposition from (5.27) yields

2|∂Ω|
∫
∂Ω

u(x)2 dsx − 2
(∫
∂Ω

u(x) dsx

)2

=
∫
∂Ω

∫
∂Ω

[
u(x)− u(y)

]2
dsx dsy

≤
s∑

j,k=1

∫
γj

∫
γk

[u(x)− u(y)]2 dsx dsy .

(5.34)

Using Lemma 5.19(i) we can bound each one of the double integrals on the right hand side
of (5.34) from above by ηdM |u|2H1(Pjk), where Pjk is a path of length M connecting ωj and
ωk. Due to Lemma 5.20 we know that M . H/η, and so

s∑
j,k=1

∫
γj

∫
γk

[u(x)− u(y)]2 dsx dsy . ηd
H

η

s∑
j,k=1

|u|2H1(Pjk) . (5.35)

Combining (5.34) and (5.35), and using the trivial bound |u|2H1(Pjk) . |u|2H1(Ωη) as well as

the fact that s = O((H/η)d−1) we get

1
H
‖u‖2

L2(∂Ω) .
(H
η

)d−1
|u|2H1(Ωη) +

1
H |∂Ω|

(∫
∂Ω
u ds

)2
,

which is the desired inequality (5.31) for d = 2, case (c).
In three dimensions this leads to the suboptimal quadratic factor (H/η)2 in front of the

H1-seminorm. In order to get the linear factor H/η in three dimensions we make use of an
overlap argument. In the following we restrict ourselves to the case that Ω is a tetrahedron.
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ω
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direction 2

P

k
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Figure 5.3: Left: Unfolding the boundary of a tetrahedron. Right: Sketch illustrating the
three-dimensional path algorithm from the proof of Lemma 5.21.

It is straightforward to generalize the arguments to more general regular domains. We
cover the boundary ∂Ω by faces of the patches ωj and unfold and flatten the boundary,
essentially as depicted in Figure 5.3. We introduce two main directions (cf. Figure 5.3) and
local coordinates j = (j1, j2) for each of the patches ωj . We create a special path Pjk by
starting from ωj : first running through patches in the first direction from j1 to k1 keeping
the second coordinate j2 fixed, then through patches in the second direction from j2 to k2

keeping the first coordinate k1 fixed, see Figure 5.3. We denote the two parts of Pjk by P (1)
jk

and P (2)
jk , respectively. To improve our bound on the right hand side of (5.35) we now fix j1

and k = (k1, k2). Then, because of the finite overlap of the patches ω`, we have∑
j2

|u|2
H1(P

(1)
jk )

. |u|2H1(Ωη) .

Since the remaining indices j1 and k = (k1, k2) can take O((H/η)3) possible different values,
we conclude that

s∑
j,k=1

|u|2
H1(P

(1)
jk )

.
(H
η

)3
|u|2H1(Ωη) .

Similarly, we obtain
s∑

j,k=1

|u|2
H1(P

(2)
jk )

.
(H
η

)3
|u|2H1(Ωη) .

Now combining this with (5.34) and (5.35) and using the fact that Pjk = P
(1)
jk ∪P

(2)
jk , we get

(5.31) for d = 3, case (c).
Cases (a) and (b) are treated as follows. For

∫eΓ u ds = 0 we obtain

|∂Ω|
∫

eΓ u2 ds︸ ︷︷ ︸
≥0

+ |Γ̃|
∫
∂Ω
u2 ds =

∫
∂Ω

∫
eΓ
[
u(x)− u(y)

]2
dsx dsy

from (5.33) by integration. With the arguments from before this implies

1
Hi

‖u‖2
L2(∂Ω) .

H

η
|u|2H1(Ωη) .
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For a general function u, the desired inequality follows immediately by a quotient argument
using the mean value |Γ̃|−1

∫eΓ u ds. �

5.4.2.3 Generalized discrete Sobolev type inequalities

Lemma 5.23 (generalized discrete Sobolev type inequalities). Let the boundary layer Ωi,ηi

fulfill Assumption 5.10 and suppose u ∈ V h(Ωi,ηi).

(i) Let Ωi ⊂ R2 and let ζ(u) be (a) a nodal evaluation of u in ∂Ωi, (b) the average value
of u over an edge Ei of Ωi, or (c) the average of u over the entire boundary ∂Ωi. Then

‖u− ζ(u)‖2
L∞(∂Ωi)

.
Hi

ηi

(
1 + log

ηi
hi

)
|u|2H1(Ωi,ηi

) , (5.36)

1
Hi
‖u− ζ(u)‖2

L2(∂Ωi)
.

Hi

ηi

(
1 + log

ηi
hi

)
|u|2H1(Ωi,ηi

) . (5.37)

(ii) Let Ωi ⊂ R3 and let ζ(u) be the average value of u over (a) an edge Eij of Ωi, (b) a
face Fij of Ωi, or (c) all of ∂Ωi. Then, for all edges Eik of Ωi,

‖u− ζ(u)‖2
L2(Eik) .

Hi

ηi

(
1 + log

ηi
hi

)
|u|2H1(Ωi,ηi

) , (5.38)

1
Hi

‖u− ζ(u)‖2
L2(∂Ωi)

.
Hi

ηi

(
1 + log

ηi
hi

)
|u|2H1(Ωi,ηi

) . (5.39)

Proof. Part (i). Let d = 2 and let ζ(u) be a point evaluation at a point xi ∈ ∂Ω. Then
xi ∈ ∂ωi for some patch ωi. Since u ∈ V h(Ωi,ηi) ⊂ C(Ωi,ηi) we can also find another
distinguished patch ωj ∈ Ξη and a point xj ∈ ωj where the L∞-norm of u− ζ(u) is attained.
Thus it follows from Lemma 5.19(ii) that

‖u− ζ(u)‖2
L∞(∂Ω) = |u(xj)− u(xi)|2 .

H

η
(1 + log(η/h)) |u|2H1(Pij)

.

Since the path Pij is a subset of Ωη this completes the proof of (5.36) for case (a), i. e.,
point evaluations. However, thanks to the continuity of u we can also find a distinguished
point xi ∈ ∂Ω such that ζ(u) = u(xi) in the remaining two cases (b) and (c), and so the
corresponding estimates follows immediately. Due to |∂Ωi| ' Hi, (5.37) is also immediate
from (5.36).

Part (ii). In three dimensions, we restrict ourselves to the proof of (5.38) in the case of face
averages, i. e., we prove

‖u− ζ(u)‖2
L2(E) .

H

η
(1 + log(η/h)) |u|2H1(Ωη) ,

for the case that ζ(u) = 1
|F|
∫
F u(x) dsx, where F is a face of Ω and E is an edge of Ω. The

proofs of the remaining cases are similar.
Firstly, we can cover the edge E by NE edges e1, . . . , eNE of the patches {ωj}, where

NE . H/η. Similarly, the face F can be covered by NF sets γ1, . . . , γNF where γj := ∂ωj∩∂Ω
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as before and NF . (H/η)2. Hence, using Lemma 5.19(iii) we obtain

‖u− ζ(u)‖2
L2(E) =

∫
E

∣∣∣u(x)− 1
|F|

∫
F
u(y) dsy

∣∣∣2 dsx =
∫
E

∣∣∣ 1
|F|

∫
F
u(x)− u(y) dsy

∣∣∣2 dsx
≤ 1

|F|

∫
E

∫
F
|u(x)− u(y)|2 dsy dsx ≤

1
|F|

NE∑
k=1

NF∑
j=1

∫
ek

∫
γj

|u(x)− u(y)|2 dsy dsx

.
1
|F|

NE∑
k=1

NF∑
j=1

Mjk (1 + log(η/h)) |u|2H1(Pjk) ,

where the path Pjk of length Mjk . H/η is chosen as in the proof of Lemma 5.21. Now
using the same arguments as in that proof we obtain the desired estimate.

Remark 5.24. For ηi chosen such that Ωi,ηi = Ωi, i. e., Hi/ηi ' 1, Lemma 5.21, Corol-
lary 5.22, and Lemma 5.23 reproduce the known Poincaré, Friedrichs, and discrete Sobolev
type inequalities, cf. (5.24)–(5.26), and the inequalities in Lemma 2.33 and Lemma 2.34, see
also Toselli and Widlund [184, Sect. A.4, Lemma 4.15, Lemma 4.16, and Lemma 4.21].

5.4.3 Proof of the PD-estimate (5.15)

We only give a detailed proof for the three-dimensional case. We have to show that

|PD (w + zw)|2S .
{

max
j∈I

(Hj

ηj

)β
max
i∈I

αηi
i

αηi
i

(1 + log(Hi/hi))2
}
|w|2S ∀w ∈W⊥ , (5.40)

with β = 2 in general and β = 1 if α(x) & αηi
i for all x ∈ Ωi and for all i ∈ I. As in

Chapter 2, we split the left hand side into two parts

|PD (w + zw)|2S . |PD w|2S + |PD zw|2S ,

and treat them separately.

5.4.3.1 Estimating |PD w|S

We prove that for all w ∈W⊥,

|PD w|2S =
∑
i∈I

|(PD w)i|2Si
. max

j∈I

{(Hj

ηj

)β αηj

j

α
ηj

j

(1 + log(Hj/hj))2
} ∑

i∈I
|wi|2Si

. (5.41)

By Lemma 5.17(ii), the characterization of PD w in Lemma 2.16, and the partition of unity
on ∂Ωi provided by the cut-off functions θXi from Definition 2.30, we obtain

|(PD w)i|2Si
. αηi

i

{
|(PD w)i|2

H
1/2
h (∂Ωi)

+
1
ηi
‖(PD w)i‖2

L2(∂Ωi)

}
.

∑
Xi⊂Γ

∑
j∈NXi

αηi
i

{
|Ih(θXi δ̂

†
j(wi − wj))|2

H
1/2
h (∂Ωi)

+
1
ηi
‖Ih(θXi δ̂

†
j(wi − wj))‖2

L2(∂Ωi)

}
+

+
∑

Xi⊂ΓD

αηi
i

{
|Ih(θXi wi)|2H1/2

h (∂Ωi)
+

1
ηi
‖Ih(θXi wi)‖2

L2(∂Ωi)

}
, (5.42)
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where the last line can be dropped in the standard one-level formulation. The next steps are
almost analogous to the proof of Lemma 2.42. Using the fact that δ̂†j(·) is constant on edges
and faces, as well as the elementary inequality

αηi
i [δ̂†j(x)]2 ≤ min(αηi

i , α
ηj

j ) , (5.43)

cf. inequality (2.100), we can show that

|(PD w)i|2Si
.
∑
Xi⊂Γ

∑
j∈NXi

α
ηj

j

{
|Ih(θXiwj)|2H1/2

h (∂Ωi)
+

1
ηi
‖Ih(θXiwj)‖2

L2(∂Ωi)

}
+

∑
Xi⊂ΓD

{
|Ih(θXiwi)|2H1/2

h (∂Ωi)
+

1
ηi
‖Ih(θXiwi)‖2

L2(∂Ωi)

}
.

(5.44)

Using Lemma 2.34(iii) and the fact that ‖Ih(θXiwj)‖L2(∂Ωj) . ‖wj‖L2(∂Ωj), the contribution
from wj on a face Fi can (up to a constant) be estimated by

α
ηj

j (1 + log(Hj/hj))2
{
|wj |2

H
1/2
h (∂Ωj)

+
1
Hj

‖wj − wj‖2
L2(∂Ωj)

}
+

+ α
ηj

j

{
(1 + log(Hj/hj))

1
Hj

‖wj‖2
L2(∂Ωj)

+
1
ηj
‖wj‖2

L2(∂Ωj)

}
,

(5.45)

with wj = |Ωj |−1
∫
Ωj
wj dx. Here, we have used the same trick as in the proof of Lemma 2.42

(see the paragraph entitled standard one-level method) in order not to get a quadratic factor
(1 + log(Hj/hj))2 in front of the term ‖wj‖2

L2(∂Ωj)
.

By Lemma 2.34(i), the contribution of wj on an edge Ei is bounded by

α
ηj

h

{
‖wj‖2

L2(Ei)
+

1
ηj
‖wj‖2

L2(∂Ωj)

}
. (5.46)

This bound also holds for the contribution of wj on a vertex Vj which is the endpoint of Ej ,
cf. estimate (2.96). In order to complete the proof of (5.41) we need to bound

|wj |2
H

1/2
h (∂Ωj)

, ‖wj − wj‖2
L2(∂Ωj)

, ‖wj‖2
L2(∂Ωj)

, and ‖wj‖2
L2(Ej)

(5.47)

in terms of |wj |2Sj
. To this end, recall that the discrete α-harmonic extension Hα

j (wj − wj)
of wj − wj from ∂Ωj to Ωj satisfies∫

Ωi

α(x) |∇Hα
j (wj − wj)(x)|2 dx = |wj − wj |2Sj

= |wj |2Sj
. (5.48)

Firstly, applying Lemma 5.17(i) with coefficient α′ ≡ 1 (to bound |wj −wj |2
H

1/2
h (∂Ωj)

) we can

conclude that

|wj |2
H

1/2
h (∂Ωj)

= |wj − wj |2
H

1/2
h (∂Ωj)

. |Hα
j (wj − wj)|2H1(Ωj,ηj

) +
1
ηj
‖wj − wj‖2

L2(∂Ωj)
.

(5.49)
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Secondly, applying Lemma 5.21 (the generalized Poincaré inequality) to u = Hα
j (wj − wj)

yields

‖wj − wj‖2
L2(∂Ωj)

.
H2
j

ηj
|Hα

j (wj − wj)|2H1(Ωj,ηj
) , (5.50)

which is at the same time a bound for the second term in (5.47). For any of the formulations
(standard one-level or all-floating), the function wj vanishes either at least on an edge, or
its mean value over ∂Ωj is zero, see the definition (5.16) of W⊥. Using the discrete Sobolev
type inequalities from (5.23) we obtain the following bound for the two remaining terms in
(5.47)

1
Hj

‖wj‖2
L2(∂Ωi)

+ ‖wj‖2
L2(Ej)

.
Hj

ηj
(1 + log(ηj/hj)) |Hα

j wj |2H1(Ωj,ηj
) . (5.51)

Combining (5.44)–(5.46), (5.48)–(5.51), and using that

Hj ≥ ηj , and |Hα
j (wj − wj)|H1(Ωj,ηj

) = |Hα
j wj |H1(Ωj,ηj

) ,

we obtain

|(PD w)i|2Si
.

∑
Xi⊂Γ∪ΓD

∑
j∈NXi

(Hj

ηj

)2
(1 + log(Hj/hj))2 α

ηj

j |H
α
j wj |2H1(Ωj,ηj

) . (5.52)

Due to the definition of the discrete α-harmonic extension,

α
ηj

j |H
α
j wj |2H1(Ωj,ηj

) =
α
ηj

j

α
ηj

j

∫
Ωj,ηj

α
ηj

j |∇H
α
j wj |2 dx

≤
α
ηj

j

α
ηj

j

∫
Ωj

α(x) |∇(Hα
j wj)(x)|2 dx =

α
ηj

j

α
ηj

j

|wj |2Sj
.

(5.53)

Combining (5.52) and (5.53), and using that each subdomain has a finite number of neigh-
bors, we obtain the desired inequality (5.41) with β = 2.

Under the additional assumption that α(x) & α
ηj

j for all x ∈ Ωj , we can estimate the
terms in (5.47) more directly:

|wj |H1/2
h (∂Ωi)

. |Hα
j wj |2H1(Ωj)

by identity (5.18),

‖wj − wj‖2
L2(∂Ωj)

. Hj |Hα
j wj |2H1(Ωj)

by Theorem 1.7,

‖wj‖2
L2(∂Ωj)

. Hj (1 + log(Hj/hj)) |Hα
j wj |2H1(Ωj)

by Lemma 2.38,

‖wj‖2
L2(Ej)

. (1 + log(Hj/hj)) |Hα
j wj |2H1(Ωj)

by Lemma 2.34.

(5.54)

Using these bounds instead of (5.49)–(5.51), we obtain

|(PD w)i|2Si
.

∑
Xi⊂Γ∪ΓD

∑
j∈NXi

Hj

ηj
(1 + log(Hj/hj))2 α

ηj

j |H
α
j wj |2H1(Ωj,ηj

) .

Combining this with (5.53) we get (5.41) with β = 1. �



5.4. PROOF OF THE THEORETICAL RESULTS 157

5.4.3.2 Estimating |PD zw|S

We prove that for all w ∈W⊥,∑
i∈I

|(PDzw)i|2 .
{

max
k∈I

(Hk

ηk

)β
max
j∈I

α
ηj

j

α
ηj

j

(1 + log(Hj/hj))2
} ∑

i∈I
|wi|2Si

, (5.55)

where zw is the unique element in kerS associated with w from Lemma 2.22. Again, we
restrict ourselves to the more interesting three-dimensional case. Throughout the proof we
denote the (constant) components of zw by zi.

Note first that in the standard one-level formulation,

‖B zw‖2
Q = 〈B zw, QB zw〉 '

∑
{i, j:Γij 6=∅}

min(αηi
i , α

ηj

j )
∑

xh∈Γh
ij

qij(xh) |zi − zj |2 . (5.56)

In the all-floating formulation, we have to add∑
i:∂Ωi∩ΓD 6=∅

αηi
i

∑
xh∈∂Ωh

i ∩ΓD

qi(xh) |zi|2 (5.57)

to the right hand side of (5.56). Now we consider a fixed index i and obtain by formula (5.42)
and the elementary inequality (5.43) that

|(PD zw)i|2Si
.

∑
Xij⊂Γ

min(αηi
i , α

ηj

j )
{
|IhθXij |2H1/2

h (∂Ωi)
+

1
ηi
‖IhθXij‖2

L2(∂Ωi)

}
|zi − zj |2

+
∑

Xi⊂ΓD

αηi
i

{
|IhθXi |2H1/2

h (∂Ωi)
+

1
ηi
‖IhθXi‖2

L2(∂Ωi)

}
|zi|2 , (5.58)

where the last line is dropped in the standard one-level formulation. Using the estimates
(2.107) from page 82 as well as the trivial estimates

‖HiθFi |2L2(∂Ωi)
. H2

i , ‖HiθEi |2L2(∂Ωi)
. Hi , ‖HiθVi |2L2(∂Ωi)

. hi ,

a comparison with (5.56), (5.57), and (5.13) yields

|PD zw|2S .
(

max
k∈I

Hk

ηk

)
‖B zw‖2

Q. (5.59)

By Lemma 2.22 and using the accordingly modified formula (2.109) from page 83, we
can conclude that

|PD zw|2S .
(

max
k∈I

Hk

ηk

) ∑
i∈I

αηi
i (1 + log(Hi/hi))

{ 1
Hi

‖wi‖2
L2(∂Ωi)

+
∑
Ei

‖wj‖2
L2(Ei)

}
.

(5.60)

In order to bound the L2-terms of wj we use the same argument as in the proof of (5.41),
which finally yields the desired inequality (5.55),

|PD zw|2S .
(

max
k∈I

Hk

ηk

)β ∑
i∈I

αηi
i (1 + log(Hi/hi)) |wi|2Si

. (5.61)

Together with (5.41), this completes the proof of (5.15) for the case of three dimensions. �

The above proof can easily be adapted to the two-dimensional case using in particular
Part (i) instead of Part (ii) in Lemma 5.23, i. e., the discrete Sobolev type inequalities for
the case of two dimensions.



158 CHAPTER 5. MULTISCALE COEFFICIENTS

5.4.4 Proof of Corollary 5.16

A close inspection of the proof of Theorem 4.3 reveals that we can use the same tools from
the proof of Theorem 5.12 to obtain the estimate

|P∆w|2S ≤ C max
k∈I

(Hk

ηk

)β
max
i∈I

αi
ηi

αηi
i

(1 + log(Hi/hi))2 |w|2S ∀w ∈ W̃ ,

which immediately implies the statement of Corollary 5.16.

5.5 Numerical results

In this section we first give two examples with so-called “island” coefficients that do not
vary in the vicinity of the interface, but have a jump or are even randomly distributed in
the subdomain interiors. We use these examples mainly to confirm our theoretical results.
In particular, we will see from the experiments that the factor H/η in our condition number
bound is sharp. However, we also study more complicated multiscale and nonlinear problems
where the coefficient varies also in the vicinity of the interface. We will see that our bounds
are sharp in these cases as well, and that the condition number does indeed grow with
αηi
i /α

ηi
i . As a remedy we use the pointwise weights α̂max

i in Q and Di (instead of αηi
i on all

of ∂Ωi). These are more natural and suitable for boundary layer variation and seem to lead
to an extremely robust method even in the case of very high variation near the interface. We
compare various weightings for the case of “edge islands” and finish the section with some
nonlinear magnetic field computations with huge variation. Note that such problems will be
treated in more detail in Chapter 6. All the experiments are two-dimensional although our
theory holds true as well in three dimensions.

Interior “island” coefficients

Example 5.1 We choose Ω to consist of 25 squares, with an island coefficient in the center
square, cf. Figure 5.4, left. Here, and in what follows, H denotes the subdomain width/height
and η denotes the distance of the material interface to the subdomain boundary. We set
the coefficient to 1 outside the shaded square and to a constant value αI inside. We impose
Dirichlet boundary conditions on the entire boundary ∂Ω and choose a constant source f .

In Table 5.1 and Table 5.2 we display the required numbers of PCG iterations (to achieve
a relative residual reduction of 10−8) and the condition numbers (estimated by the Lanczos
method) for the case of αI = 10+5 as well as αI = 10−5. For comparison we have included also
the cases αI = 1 (no jump) as well as η = 0 (jump aligned with the subdomain boundary).
Finally, Figure 5.5 shows various estimated condition numbers when keeping H/h = 512
constant, but varying H/η as well as the jump, i. e., the value of αI . From these figures we
see that the linear growth in H/η is asymptotically sharp and that the case of αI � 1 = αηi

i

is indeed harder than αI � 1.
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ηη

η

η

H

Figure 5.4: Left: Coefficient distribution and subdomain partition in Example 5.1. Right:
Coefficient distribution (logarithmic scale) and subdomain partition in Example 5.2.

H
h

= 4 8 16 32 64 128 256 512
H
η

= 4 10(10) 12(12) 14(13) 15(14) 16(15) 17(17) 18(18) 18(18)

8 – 13(12) 14(14) 15(15) 16(16) 17(17) 18(19) 18(18)
16 – – 14(15) 15(17) 17(17) 18(19) 18(20) 18(21)
32 – – – 16(19) 17(19) 19(20) 19(22) 19(21)
64 – – – – 19(23) 19(24) 20(25) 22(27)
128 – – – – – 24(30) 23(30) 25(31)
256 – – – – – – 30(35) 29(36)
512 – – – – – – – 39(48)

η = 0 10( 9) 13(11) 14(11) 15(13) 15(13) 17(15) 17(16) 18(16)
αI ≡ 1 10 12 13 14 15 17 18 17

Table 5.1: Example 5.1: Number of CG iterations; island coefficient with αI ≡ 10+5, in
brackets: αI ≡ 10−5

H
h

= 4 8 16 32 64 128 256 512
H
η

= 4 2.4( 2.4) 3.2( 3.2) 4.3( 4.3) 5.4( 5.5) 6.8( 6.8) 8.3( 8.3) 9.9( 9.9) 11.7( 11.7)

8 – 3.2( 3.8) 4.3( 5.0) 5.4( 6.3) 6.8( 7.9) 8.3( 9.5) 9.9( 11.3) 11.7( 13.3)
16 – – 4.3( 8.5) 5.4(11.0) 6.8(13.4) 8.3( 15.8) 9.9( 18.4) 11.7( 21.1)
32 – – – 5.5(20.7) 6.8(24.8) 8.3( 29.0) 9.9( 33.3) 11.7( 37.8)
64 – – – – 8.7(47.8) 9.4( 55.6) 10.4( 63.5) 11.9( 71.5)
128 – – – – – 15.6(108.7) 16.0(123.8) 16.6(139.0)
256 – – – – – – 29.6(243.8) 29.9(273.4)
512 – – – – – – – 57.7(540.7)

η = 0 2.4( 2.4) 3.2( 3.2) 4.3( 4.3) 5.4( 5.4) 6.8( 6.8) 8.2( 8.3) 9.9( 9.9) 11.7( 11.7)
αI ≡ 1 2.4 3.2 4.3 5.4 6.8 8.3 9.9 11.7

Table 5.2: Example 5.1: Estimated condition numbers; island coefficient with αI ≡ 10+5, in
brackets: αI ≡ 10−5
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Figure 5.5: Example 5.1: Estimated condition numbers; H/h = 512, varying ratio H/η and
varying magnitude of the jump αI . Left: αI > 1. Right: αI < 1.

Example 5.2 We investigate the behavior of our method in the case of more complexly
shaped island coefficients, as depicted in Figure 5.4, right, in order to rule out any symmetry
effects. Note that here we have interface jumps (across the interface between subdomains),
as well as strong variation in the subdomain interiors. The values in the interior islands are
randomly distributed (piecewise constant) such that log10 α is uniformly distributed in [0, 5]
or [−5, 0]. Again, η denotes the distance of the islands from the interface. In Table 5.3
and Table 5.4 we display again the required number of PCG iterations and the estimated
condition numbers. The results are similar to those for Example 5.1.

Using the coefficient distribution from Example 5.2 and setting η = 0, we get strong
coefficient variation along the subdomain boundaries over 5 orders of magnitude. Neverthe-
less, using α̂max

i as the new weights in our method the results in Table 5.5 suggest that it is
almost coefficient robust even in this case.

H
h

= 8 16 32 64 128 256 512
H
η

= 8 15(17) 17(19) 19(21) 22(23) 24(25) 26(27) 27(28)

16 – 28(22) 20(25) 22(28) 24(30) 26(31) 28(33)
32 – – 22(29) 24(31) 26(34) 28(37) 30(40)
64 – – – 27(36) 28(39) 29(41) 31(44)
128 – – – – 32(43) 33(47) 35(51)
256 – – – – – 41(50) 42(56)
512 – – – – – – 53(58)

Table 5.3: Example 5.2: Number of CG iterations; island coefficient with αI ∈ [1, 10+5], in
brackets: αI ∈ [10−5, 1], randomly distributed.
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H
h

= 8 16 32 64 128 256 512
H
η

= 8 3.8( 4.8) 4.7( 6.3) 5.8( 8.0) 6.9( 9.8) 8.3( 11.6) 9.7( 13.6) 11.3( 15.7)

16 – 5.8( 9.9) 6.7( 13.0) 7.7( 15.7) 8.9( 18.8) 10.3( 22.0) 11.8( 25.3)
32 – – 9.6( 19.5) 10.4( 23.9) 11.4( 29.5) 12.4( 35.0) 13.7( 40.3)
64 – – – 16.9( 33.9) 17.7( 43.0) 18.5( 51.6) 19.4( 60.1)
128 – – – – 31.0( 58.1) 31.8( 69.5) 32.6( 81.6)
256 – – – – – 58.0( 86.3) 58.8( 101.8)
512 – – – – – – 107.7( 122.1)

Table 5.4: Example 5.2: Estimated condition numbers; island coefficient with αI ∈ [1, 10+5],
in brackets: αI ∈ [10−5, 1], randomly distributed.

H
h

= 8 16 32 64 128 256 512

αI ∈ [1, 10+5] it 16 19 25 27 31 40 52
cond 4.1 5.2 29.1 12.4 22.5 34.5 66.4

αI ∈ [10−5, 1] it 32 36 42 44 53 70 86
cond 205.5 59.3 57.9 58.9 99.1 118.8 218.3

Table 5.5: Example 5.2: Iteration counts and estimated condition numbers; random island
coefficient, η = 0.

“Edge” and “crosspoint” islands

Example 5.3 Here, we investigate the dependence of our method(s) on coefficient variation
near the interface. The coefficient distribution is depicted in Figure 5.6. As in Example 5.1
we have 25 subdomains with α = 1 everywhere except for the shaded regions. In the interior
island we choose αI = 107. In the edge islands the coefficients are α2 and α3, respectively,
which we will vary in the range of [10−5, 10+5]. Table 5.6 displays the iteration and condition
numbers for a fixed discretization with H/h = 64 and for three different weightings:

1. First we use the subdomain maximum αi (denoted max ). Here we get a very poor
behavior in the condition number (as expected).

2. Then we use αηi
i (denoted layer max ), where ηi is chosen such that the value αI

disappears from the weights. The behavior in this case (albeit slightly better than
for the first choice) confirms our theoretical results in Theorem 5.12, i. e., a linear
growth of the condition number with αηi

i /α
ηi
i but no dependence on jumps across the

subdomain interfaces. The iteration numbers do not seem to be affected as badly by the
size of the coefficient variation. This is due to clustering effects in the spectrum of the
preconditioned matrix, since we only introduce a small number of islands (cf. Aksoylu,
Graham, Klie, and Scheichl [3], Graham and Hagger [72], Xu and Zhu [192]).

3. Finally, using the pointwise weights α̂maxi (denoted pw max ) defined in (5.9) results in
a fully robust method with respect to any kind of variation of α2, α3, and αI . This
is very encouraging, but unfortunately we cannot give a sound theoretical explanation
for that robustness in this thesis.
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Figure 5.6: Coefficient distribution in Example 5.3.

max layer max pw max
α2 it cond it cond it cond

10−5 61 1.0 · 105 56 2.5 · 104 19 6.34
10−4 62 1.0 · 104 52 2.5 · 103 20 6.34
10−3 56 1.0 · 103 44 2.5 · 102 21 6.34
10−2 44 1.0 · 102 30 2.6 · 101 21 6.34
10−1 29 1.5 · 101 21 6.4 · 100 21 6.34

1 25 1.5 · 101 18 6.3 · 100 18 6.34
10+1 30 1.6 · 101 26 1.3 · 101 21 6.37
10+2 47 1.0 · 102 36 2.6 · 101 21 6.78
10+3 61 1.0 · 103 60 2.5 · 102 21 6.88
10+4 76 1.0 · 104 74 2.5 · 103 21 6.89
10+5 86 1.0 · 105 88 2.5 · 104 21 6.89

max layer max pw max
α2 it cond it cond it cond

10−5 110 1.0 · 108 25 3.2 · 103 20 6.34
10−4 141 1.0 · 108 26 3.2 · 102 20 6.34
10−3 129 1.0 · 106 27 3.8 · 101 21 6.34
10−2 100 1.0 · 104 27 1.6 · 101 21 6.34
10−1 50 1.0 · 102 26 1.3 · 101 20 6.34

1 25 1.5 · 101 18 6.3 · 100 18 6.34
10+1 26 1.5 · 101 24 1.1 · 101 21 6.34
10+2 28 1.5 · 101 27 1.4 · 101 21 6.34
10+3 28 3.8 · 101 27 3.8 · 101 21 6.34
10+4 26 3.2 · 102 27 3.2 · 102 20 6.34
10+5 24 3.2 · 103 25 3.2 · 103 20 6.34

Table 5.6: Example 5.3 (with H/h = 64). Iteration numbers and estimated condition
numbers for different weightings: max – global maximum over whole subdomain, layer max
– maximum over boundary layer (excluding αI = 10+7), pw max – pointwise weights α̂max

i

defined in (5.9). Left: α3 = α2. Right: α3 = (α2)−1.

Example 5.4 In this example we study the behavior of our FETI preconditioner with
the pointwise weights for an “edge” and a “crosspoint” island, see Figure 5.7. Here we
have chosen 4 × 4 subdomains. The coefficients α1 = 1, α2 = 105 are fixed but we vary
the characteristic distance η. Figure 5.8 shows the estimated condition numbers for various
discretizations (various levels of refined meshes) and different values of η, varying from O(h)
to O(H). Again, these results are very encouraging. We conjecture the condition number
bound C (H/η)β (1 + log(H/h))2, with β = 1 for this two-dimensional setting. This would
be a generalization of Theorem 5.12. However, this issue should be the subject of future
investigations; see also Pechstein and Scheichl [148]. Note that numerical experiments
on a similar similar three-dimensional problem using FETI-DP methods with α-weighted
edge averages can be found in Klawonn and Rheinbach [104].
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Figure 5.7: Example 5.4: Coefficient configurations. Left: “Edge” island. Right: “Cross-
point” island.
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Figure 5.8: Example 5.4: Condition numbers for various values of η and levels of refined
meshes (H/h = 2ref). Left: “Edge” island. Right: “Crosspoint” island.

Nonlinear magnetic field computations

Example 5.5 We test two coefficient distributions coming from nonlinear magnetic field
computations, similar to the ones in Langer and Pechstein [116]. In the computations
we use the piecewise weights α̂max

i in (5.9). Figure 5.9 displays the coefficient distribution,
the subdomain partition, and the coefficient variation along one of the relevant subdomain
boundaries for two cases. In both cases the global coefficient variation in the nonlinear ma-
terial is approximately 7 · 103. However, in the first case we have a mild variation along
subdomain boundaries of magnitude ' 10. In the second case the variation along the subdo-
main boundary is 7 · 103. For a fixed discretization with H/h = 128 the estimated condition
numbers are 8.5 and 13.7, respectively. The numbers of PCG iterations are 19 and 16. Since
the variation in the boundary layer is mild in the first case, the good behavior in this case
is explained by our theory. The robustness in the second case is more surprising. Note also
that in contrast to the usual suggestions in the literature it seems to be of benefit not to
resolve the material interfaces with the subdomain partition, but rather to put the areas of
largest coefficient variation into the center of the subdomains.
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Figure 5.9: Example 5.5. Left: Coefficient distribution and subdomain partition. Right:
Coefficient plotted along a subdomain boundary. Upper: Mild boundary layer variation.
Lower: Strong boundary layer variation.



Chapter 6

Applications to nonlinear magnetic
field problems

In this chapter we are treating nonlinear stationary magnetic field problems in two dimen-
sions. In Section 6.1 we describe our nonlinear model problem which can be derived from
Maxwell’s equations under suitable assumptions. We briefly discuss constitutive laws and
the approximation of the underlying B-H-curve. The variational formulation is similar to
the problems discussed in previous chapters, but now the coefficient depends nonlinearly on
the solution. We briefly discuss the existence of a unique solution and a Newton type method
in order to solve the nonlinear equation. Section 6.2 discusses FETI/BETI methods for the
solution of the linearized problems. Finally we provide numerical results in Section 6.3.

6.1 Problem formulation

In many industrial applications one is interested in direct electromagnetic field problems, e. g.,
in the simulation of electrical motors or electromagnetic valves. Under certain conditions, in
particular in the low frequency case, the stationary magnetic formulation has indeed some
relevance to such problems.

Starting from the full system of Maxwell’s equations (see, e. g., one of the monographs by
Ida and Bastos [92], Kaltenbacher [93], and Monk [136]) we can derive the stationary
magnetic equations

curlH = J (Ampère’s law), (6.1)
div B = 0 (Gauss’ law), (6.2)

B = µ(H) (constitutive law). (6.3)

Here, H denotes the magnetic field intensity, J the current density, and B the magnetic flux
density, which are all vector fields mapping to R3 and depending on the position x in space.
The magnetic permeability µ is in general a nonlinear map. Usually, J and the permeability
are given (at least in form of some measurements), and one wishes to find B and H. Note
that from (6.1) we obtain the compatibility condition div J = 0.

165
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Figure 6.1: Typical material curves for a ferromagnetic material. Left: B-H-curve. Right:
Permeability curve.

6.1.1 Constitutive laws

In what follows we do neither consider hysteresis, nor any material dependency on the
temperature (cf. [92, 93]), nor anisotropic materials. In that case, the magnetic permeability
µ can be represented by means of a scalar function µ depending only on |H| and the position
x in space such that

B = µ(|H|) H + B0 , (6.4)

where B0 is termed (permanent) magnetization or remanent flux density. We introduce a
derived quantity, the magnetic reluctivity ν(|B|) = 1/µ(|H|) such that

H = ν(|B|) B −H0 , (6.5)

where H0 = ν(|B|)B0 corresponds to the permanent magnetization.

Linear materials In vacuum (and also air) we have

µ = µ0 := 4π · 10−7 , ν = ν0 :=
1
µ0

. (6.6)

For other linear materials,

µ = µ0 µr , ν =
1

µ0 µr
, (6.7)

with the constant relative permeability µr ≥ 1.

Nonlinear materials If no permanent magnetization is present, we have in general a
nonlinear relation of the form

|B| = g(|H|) , (6.8)

with a bijective mapping g : [0, ∞) → [0, ∞) termed the B-H-curve, cf. Figure 6.1. Due to
the physical background the following assumptions hold.
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Assumption 6.1. Every B-H-curve g fulfills the following conditions:

(i) g is continuously differentiable on [0,∞),

(ii) g(0) = 0,

(iii) g′(s) ≥ µ0 for all s ≥ 0,

(iv) g′(s) → µ0 for s→∞.

Part (iii) states that the amplification of |B| in case of vacuum is a lower bound for
general materials. Part (iv) states that for |H| → ∞, the material gets saturated and its
behavior tends to that of vacuum. Such behavior is typical for ferromagnetic materials.

We will see in Section 6.1.6 that under Assumption 6.1 the functions µ and ν are unique
and well-defined by

µ(s) =
g(s)
s

, ν(s) =
g−1(s)
s

, for s > 0 ,

µ(0) = g′(0) , ν(0) = (g−1)′(0) .

Permanent magnetic materials are modeled by relation (6.5), where in many cases
ν(|B|) can be assumed constant.

6.1.2 Interface and boundary conditions

In general, ν(|B|) depends also on the position x in space. In the following we assume that
there exists a partition of the computational domain Ω into finitely many subregions Ωj ,
which we call materials, such that within a single material the function ν is independent of
x. We write νj , µj , and gj for the corresponding restrictions of ν, µ, and the B-H-curve g to
Ωj . Suitable boundary and interface conditions can be found, e. g., in Kaltenbacher [93],
Monk [136]. In the following we assume that the boundary ∂Ω is Lipschitz and consists
of only one connected component. Furthermore, let ΓB and ΓH be two disjoint parts that
together form ∂Ω. We denote the material interface system by Γ and choose n to be an
oriented unit normal vector to ∂Ω∪Γ. Then, we impose the following boundary and interface
conditions,

B · n = 0 on ΓB , (6.9)
H × n = 0 on ΓH , (6.10)

[[B · n]] = 0 , [[H × n]] = 0 , [[J · n]] = 0 on Γ , (6.11)

where [[·]] indicates the jump across Γ.

6.1.3 Vector potential formulation

Due to Gauss’ law for magnetism (6.2), the magnetic flux density B is solenoidal. Since
∂Ω consists of only one connected component (cf. Monk [136]), we may introduce a vector
potential A, such that

curlA = B . (6.12)
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Using the constitutive law (6.5), the system (6.1)–(6.3) can be rewritten as

curl
[
ν(|curlA|) curlA

]
= J + curlH0 . (6.13)

In order to make A unique one can use gauging conditions or other regularization techniques.
Often, the conditions on B in (6.9)–(6.11) are replaced by the stronger conditions

A× n = 0 on ΓB and [[A× n]] = 0 on Γ , (6.14)

in order to exclude surfaces flows in A, cf. Kaltenbacher [93], Monk [136].

6.1.4 Reduction to two dimensions

In the following we assume that the domain Ω is of the tensor-product structure Ω = Ω̃×R,
with ΓB = ΓD×R, ΓH = ΓN×R, and Γ = Γ̃×R. Under the assumptions thatB3 = 0, H3 = 0,
H0,3 = 0, J1 = J2 = 0 (transverse magnetic mode), and that all fields are independent of
x3, equation (6.13) can be reduced to

−div
[
ν(|∇u|)∇u

]
= J3 +

∂H0,1

∂x2
− ∂H0,2

∂x1
, (6.15)

where u = A3. Since all the quantities are independent of x3 we can read (6.15) as an
equation in Ω̃. Note that here, the compatibility condition div J = 0 is fulfilled, and moreover
A = (0, 0, u)> fulfills the Colomb gauge condition div A = 0. The original fields B and H
can be recovered by the relations

B =

 ∂u
∂x2

− ∂u
∂x1

0

 , H = ν(|∇u|)

 ∂u
∂x2

− ∂u
∂x1

0

−H0 . (6.16)

The boundary and interface conditions including (6.14) transform to

u = 0 on ΓD , (6.17)
ν(|∇u|)∇u · n = H0,1n2 −H0,2n1 on ΓN , (6.18)

[[u]] = 0 , [[ν(|∇u|)∇u · n−H0,1n2 +H0,2n1]] = 0 on Γ̃ . (6.19)

In the sequel we assume that ΓD is of positive surface measure, and for simplicity we write Ω
instead of Ω̃. Using the above conditions, one derives the following variational formulation.

Find u ∈ H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD

= 0} such that∫
Ω
ν(|∇u|)∇u · ∇v dx = 〈F, v〉 ∀v ∈ H1

D(Ω) , (6.20)

with the linear form

〈F, v〉 =
∫

Ω
J3 v −H0,2

∂v

∂x1
+H0,1

∂v

∂x2
dx+

∫
ΓN

(
H0,1n2 −H0,2n1

)
v dsx . (6.21)

Note that this formulation can be treated in the framework of Theorem 1.17 (Zaranthonello)
because the underlying bi-form is linear in v. Clearly, under suitable assumptions, e. g.,
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J3 ∈ L2(Ω) and H0,1, H0,2 piecewise smooth in L2(Ω) and L2(ΓN ), we have F ∈ H1
D(Ω)∗.

We define the operator A : H1
D(Ω) → H1

D(Ω)∗ by

〈A(u), v〉 =
∫

Ω
ν(|∇u|)∇u · ∇v dx for v ∈ H1

D(Ω) . (6.22)

In the following section we show properties of A, in particular that A(u) is really in the dual
space H1

D(Ω)∗.

6.1.5 Existence and uniqueness of solutions

Assume that for each material Ωj , the underlying B-H-curve gj satisfies Assumption 6.1.
Then the following statements hold.

1. Each gj is strongly monotonically increasing with monotonicity constant µ0, i. e.,(
gj(s)− gj(t)

)
(s− t) ≥ µ0(s− t)2 ∀s, t ≥ 0 .

2. Since g′j is continuous on [0,∞), g′j(s) ≥ µ0, and g′j(s) tends to µ0 as s→∞, we have
that g′j ∈ L∞(0,∞) and

0 < µ0 ≤ g′j(s) ≤ Lj := sup
s≥0

g′j(s) < ∞ ∀s ≥ 0 .

Hence, the B-H-curve gj is Lipschitz continuous with Lipschitz constant Lj .

3. The inverse function g−1
j : [0,∞) → [0,∞) exists. It is strongly monotonically increas-

ing with monotonicity constant 1/Lj , Lipschitz continuous with Lipschitz constant
ν0 = 1/µ0, and continuously differentiable where

1/Lj ≤ (g−1
j )′(s) ≤ ν0 ∀s ≥ 0 .

4. In case of B0 = H0 = 0, the magnetic permeability and reluctivity are given by

µj(s) =
gj(s)
s

, νj(s) =
g−1
j (s)
s

∀s > 0 . (6.23)

The functions may be continuously extended to µj(0) = g′j(0) and νj(0) = (g−1
j )′(0).

5. We have

µ0 ≤ µj(s) ≤ Lj ∀s ≥ 0 , µj(s) → µ0 for s→∞ ,

1/Lj ≤ νj(s) ≤ ν0 ∀s ≥ 0 , νj(s) → ν0 for s→∞ .

6. The functions µj and νj are continuously differentiable on (0,∞). If g′′j (0), or equally
(g−1
j )′′(0), exists, we have

µ′j(0) =
1
2
g′′j (0) ν ′j(0) =

1
2

(g−1
j )′′(0) = −

g′′j (0)
2 g′j(0)2

.

In short, the functions g−1
j (s) = νj(s)s are strongly monotone and Lipschitz continuous,

and the functions νj(s) are uniformly bounded from above. Therefore, A(u) ∈ H1
D(Ω)∗ for

each u ∈ H1
D(Ω). Using that minj 1/Lj is bounded away from zero and ν0 < ∞, it can be

shown that A(·) is strongly monotone and Lipschitz continuous as well. Thus, Theorem 1.17
guarantees the existence of a unique solution to (6.20). For a detailed discussion we refer to
Pechstein [142].
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6.1.6 Approximation of B-H-curves

In practice, B-H-curves are not available analytically, but must be approximated from mea-
surements. Let g = gj be one of the B-H-curves and let

(Hk, Bk), k = 0, . . . , N (6.24)

denote a set of measurements corresponding to absolute values |H| and |B| in the material
for different settings of the current density J . Here, H0 = B0 = 0. Our aim is to construct
an approximation g̃ to the unknown curve g. A possible way to achieve this goal is to use
spline interpolation. However, we can run into problems since

(i) the resulting curve must be monotonically increasing, and

(ii) measurement errors can lead to unphysical, oscillating approximations.

The measurement errors are modeled by the condition

|g(Hk)−Bk| ≤ δk ∀k = 0, . . . , N . (6.25)

Due to (i) we impose the conditions

0 = H0 < H1 < H2 < . . . < HN <∞ ,

0 = B0 < B1 < B2 < . . . < BN <∞
(6.26)

on the data. In view of Assumption 6.1(iii) we can additionally use

Hk −Hk−1

Bk −Bk−1
≥ (1− ε)µ0 ∀k = 1, . . . , N , (6.27)

for some tolerance parameter ε, in order to check consistency of the data. A method of
monotonicity-preserving cubic spline interpolation has been introduced by Fritsch and
Carlson [67] and was used by Heise [84] to reconstruct B-H-curves. Concerning mea-
surement errors, one can approximate the data in the least square sense, minimizing the
error ∑

k=0

|g̃(Hk)−Bk|2 . (6.28)

Note that optionally, each term in the above sum can be weighted differently. It is well-known
that the cubic interpolating spline minimizes the linearized strain energy∫ HN

H0

(
g̃′′(x)

)2
dx . (6.29)

Hence, one can add this energy as a regularization term to the cost functional (6.28), multi-
plied by a regularization parameter. The larger this parameter, the smoother the optimizing
function g̃ will be. Therefore we call (6.29) a smoothing functional. Such an approach is
well described in the article by Reinsch [151]. The ideas of monotonicity preserving and
cubic smoothing spline approximation were used by Reitzinger, Kaltenbacher, and
Kaltenbacher [152] to approximate B-H-curves. In that article, the authors obtain the
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Figure 6.2: Interproximation results for the data set Su7a2 (Courtesy of Robert Bosch
GmbH, Stuttgart). Left: Approximated B-H-curve and data. Right: Derivative of the
approximation, double-logarithmic scale.

regularization parameter iteratively according to the discrepancy principle. During this it-
eration, monotonicity is checked and the update for the regularization parameter can be
adjusted accordingly.

Two key problems of that approach are the following. First, the uniqueness of the solution
to the corresponding optimization problem is achieved only by imposing boundary conditions
on g̃′(H0) and g̃′(HN ). However, the values of these boundary constraints (e. g., chosen as
the first difference quotient of the data points) have a non-negligible influence on the shape
of the curve. Second, the authors do not make clear if the method leads to a solution for any
data set in the sense that the error (6.28) is in the order of the noise level and the curve is
monotone. It is also not clear whether the choice of the boundary conditions can have bad
influence on the monotonicity.

This was the motivation to use an approach called interproximation (cf. Cheng and
Barsky [32]) for the reconstruction of B-H-curves. In Pechstein and Jüttler [146] we
minimize a smoothing functional similar to (6.29) under the side conditions of monotonicity
and the approximation conditions

|g̃(Hk)−Bk| ≤ c δk ∀k = 0, . . . , N ,

for some constant c. In other words, we look for an approximation g̃ such that the point-
wise error lies in the range of the assumed noise. This results in a quadratic programming
problem which can be solved using standard techniques. By using a special B-spline basis,
the monotonicity constraints can even be incorporated rather easily. As an advantage of
this approach, no artificial boundary conditions have to be used. Since typical B-H-curves
start with very steep gradients which get then more and more flat, cf. Figure 6.1(left), we
propose to use a data-dependent smoothing functional which introduces suitable weights to
the strain energy in each spline interval. In order to ensure a unique solution the smooth-
ing functional is regularized by some additional terms. The existence of solution is then
guaranteed automatically unless condition (6.26) is violated. For details see [146].

Another problem is the modeling of the behavior for |H| → ∞. Suitable extrapolation
techniques are discussed, e. g., in Heise [84] and Reitzinger et al. [152]. In Pechstein
and Jüttler [146], we use a suitable nonlinear transformation from the infinite interval
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[HN ,∞) to a finite interval, so that we can incorporate the conditions at infinity simply as
boundary conditions.

The resulting B-H-curves are physically plausible and visually pleasing. Figure 6.2 shows
an approximation of a data sample. We mention that the underlying code was developed by
the author of this thesis, using a quadratic programming solver by Helmut Gfrerer (University
of Linz).

6.2 Newton-FETI/BETI methods

This section deals with the discretization and iterative solution of our nonlinear model prob-
lem (6.20) by means of Newton’s method and the FETI/BETI methods discussed in pre-
vious chapters. To this end we consider a shape-regular partitioning of Ω into subdomains
{Ωi}i∈I . Here, we assume that the partitioning resolves the material interfaces, i. e., to each
subdomain Ωi we can associate a function νi(·) which is independent of the position x. If
Ωi corresponds to a linear material (νi = const) with no permanent magnetization and if
(J3)|Ωi

= 0, the subdomain may be discretized by means of BEM; for the remaining sub-
domains we use FEM. Note, that the partition into subdomains may (and usually will) be
finer than the partition into homogeneous materials. Let IBEM and IFEM = I \IBEM denote
the corresponding index sets. On each BEM subdomain we make use of the approximation
Sint
i,BEM of the interior Steklov-Poincaré operator Sint

i on ∂Ωi. For this purpose, we introduce
the space

ṼD :=
{
u ∈ H1

D(Ω) :
∫

Ωi

∇u · ∇v dx = 0 ∀v ∈ H1
0 (Ωi) ∀i ∈ IBEM

}
, (6.30)

i. e., the functions in H1
D(Ω) which are weakly harmonic in the BEM subdomains. In the

next step we approximate the nonlinear variational equation (6.20) by the equation

Ã(u) = F in Ṽ ∗
D , (6.31)

with

〈Ã(u), v〉 =
∑

i∈IFEM

∫
Ωi

νi(|∇u|)∇u · ∇v dx︸ ︷︷ ︸
=:〈Ai(u),v〉Ωi

+
∑

i∈IBEM

νi〈Sint
i,BEM u, v〉∂Ωi

, (6.32)

〈F, v〉 =
∑

i∈IFEM

∫
Ωi

J3 v −H0,2
∂v

∂x1
+H0,1

∂v

∂x2
dx+

∫
∂Ωi∩ΓN

H0,1n2 −H0,2n1 ds︸ ︷︷ ︸
=:〈fi,v〉

, (6.33)

for u, v ∈ ṼD.
For a discretization we consider a shape-regular and geometrically conforming triangu-

lation of the skeleton ΓS and expand it to quasi-uniform triangulations on the subdomains
Ωi for i ∈ IFEM. We define V h

D(Ωi) and V h
D(∂Ωi) as the corresponding spaces of continuous

piecewise affine linear functions with respect to the triangulation which fulfill the essential
boundary conditions. The discrete analogon to ṼD is the space

Ṽ h
D :=

{
u ∈ ṼD : u|Ωi

∈ V h
D(Ωi) ∀i ∈ IFEM , u|∂Ωi

∈ V h
D(∂Ωi) ∀i ∈ IBEM} . (6.34)
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6.2.1 Newton’s method

Usually, one discretizes problem (6.20) first and derives a Newton type method in a second
step. It turns out, however, that the Jacobian is closely related to the one of the continuous
Newton method. For a detailed discussions see, e. g., Heise [84] or Pechstein [142]. The
Fréchet derivative Ã′(u) : ṼD → Ṽ ∗

D of the operator Ã at u is given by

〈Ã′(u)w, v〉 =
∑

i∈IFEM

〈A′i(u)w, v〉Ωi +
∑

i∈IBEM

νi 〈Sint
i,BEMw, v〉∂Ωi

for w, v ∈ ṼD , (6.35)

with A′i(u) : H1
D(Ωi) → H1

D(Ωi)∗ and ζi : R2 → R2×2 defined by

〈A′i(u)w, v〉Ωi =
∫

Ωi

[
ζi(∇u)∇w

]
· ∇v dx for w, v ∈ H1

D(Ωi) , (6.36)

ζi(p) =

{
νi(|p|)I + ν′i(|p|)

|p| pp> for p ∈ R2 \ {0} ,
νi(0)I for p = 0 .

(6.37)

The Jacobian in the k-th step of a discrete Newton method will then be associated to the
bilinear form

〈Ã′(u(k)
h )wh, vh〉 , for wh, vh ∈ Ṽ h

D .

Under Assumption 6.1 it can be shown that the Fréchet derivative Ã′(u) is elliptic and
bounded, uniformly in u, which essentially means that the Jacobian matrix is always regular.
Finally, the (damped) Newton method reads as follows.

1. Fix a continuous initial guess u(0)
h ∈ Ṽ h

D.

2. Set k = 0.

3. Compute the update w(k)
h ∈ Ṽ h

D by solving

〈Ã′(u(k)
h )w(k)

h , vh〉 =
∑

i∈IFEM

〈r(k)i , vh〉Ωi +
∑

i∈IBEM

〈r(k)i , vh〉∂Ωi
∀vh ∈ Ṽ h

D , (6.38)

with

r
(k)
i = fi − Ãi(u

(k)
h ) ∈ V h

D(Ωi)∗ for i ∈ IFEM ,

r
(k)
i = −Sint

i,BEM u
(k)
h ∈ V h

D(∂Ωi)∗ for i ∈ IBEM .
(6.39)

4. Set u(k+1)
h = u

(k)
h + ρk w

(k)
h where the relaxation parameter ρk is chosen using a line

search algorithm in order to get a reduction in the residual.

5. Check the convergence of the residual in a suitable norm, e. g., use the stopping criterion∑
i∈I
〈r(k)i , w

(k)
h 〉 ≤ ε

∑
i∈I
〈r(1)i , w

(1)
h 〉 , (6.40)

for some relative tolerance ε. It can be shown that the expression on the left hand side
is a norm of the residual, spectrally equivalent to the energy-norm of the global error.
If the stopping criterion fails, increase k by one and continue with step 3.
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A convergence analysis of this Newton method can be found in Pechstein [142]. Under
suitable smoothness assumptions on ν ′ one can show that the above Newton method con-
verges locally quadratic. In order to obtain a good initial guess, we can use a sequence of
refined meshes and use the approximation on each level as initial guess for the next level.

Note that in the case of non-homogeneous boundary conditions, the initial guess u(0)
h is

chosen such that it satisfies the correct Dirichlet boundary conditions. Therefore, the update
w

(k)
h must satisfy homogeneous Dirichlet boundary conditions in any case.

6.2.2 The linearized problem

From the previous considerations we see that equation (6.38) is a potential equation with
a tensor-valued coefficient ζi(∇u(k)

h ). We are faced with the following two different kinds of
phenomena.

1. Anisotropy: For a fixed vector p ∈ R2, the matrix ζi(p) has two eigenvalues, νi(|p|) and
νi(|p|) + ν ′i(|p|)|p|. Depending on the derivative ν ′i(|p|), the ratio of these eigenvalues
may become large. In terms of the B-H-curve gi, the ratio is given by

max
{ g−1

i (|p|)
(g−1
i )′(|p|)|p|

,
(g−1
i )′(|p|)|p|
g−1
i (|p|)

}
.

For details see, e. g., Pechstein [142]. Fortunately, for many practically relevant B-
H-curves, this ratio stays small, e. g., O(101).

2. Variation: Since the approximations∇u(k)
h of∇u are substituted for p, a subdomain Ωi

may show large variation in ζi(·), since ∇u(k)
h may vary significantly. In the presence of

singularities at corners etc., ∇u can grow arbitrarily large, whereas ∇u is usually small
in the interior of a subdomain . This results in the fact that the ration between the
largest and the smallest occurring eigenvalue of ζi(|∇u(k)

h |) on one subdomain may be
O(103) and more, which is not anymore negligible. Iterative solvers for the linearized
problems (6.38) should be robust with respect to the variation of ζi(∇u(k)

h ). This shows
indeed the relevance and importance of the theory presented in Chapter 5.

6.2.3 Error control

We use FETI/BETI methods to solve the linearized problem in every step of Newton’s
iteration. In order not to complicate notation, assume that the FETI/BETI saddle point
system in step k reads as(

S(k) B>

B 0

) (
w(k)

λ(k)

)
=
(
r(k)

0

)
.

Since we do not have exact arithmetics, the update w(k) is discontinuous. We give the
following two suggestions to proceed.

• We can enforce continuity of w(k) by averaging, e. g., using the weighted average op-
erator ED. From Remark 2.47 (page 91) and the preceding discussion, we know that
the FETI/BETI PCG iteration controls the residual

|PD w(k)|S(k) = |w(k) − ED w
(k)|S(k) .
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Consequently, the global error

E>(S(k)ED w
(k) − r(k)) = E>(S(k) u(k) − r(k) −B>λ(k))︸ ︷︷ ︸

=0

−E>S(k) PD w
(k)

will be of the same order as that residual.

• Alternatively, we can incorporate the discontinuity in u(k) into the right hand side of
the FETI/BETI system for the update w(k),(

S(k) B>

B 0

) (
w(k)

λ(k)

)
=
(

r(k)

−B u(k)

)
,

i. e., we enforce a jump of −B u(k) to w(k), such that the jump in the new iterate u(k+1)

is reduced. However, this strategy works only if the relaxation parameter ρk can be
chosen to be 1 (or if it is known a priori).

For more details and numerical studies see Langer and Pechstein [116, Sect. 4].

6.3 Numerical results

In this section we consider two kinds of problems, an electromagnetic valve and an electri-
cal motor. We show the application of one-level FETI, FETI/BETI, and IC-FETI/BETI
methods including the incorporation of an exterior domain to the nonlinear problems.

Example 6.1: Electromagnetic valve In our first example we choose the model valve
problem from Section 2.3.3 on the square [0, 0.1]2, cf. Figure 6.3, left. The armature and the
iron core are considered as nonlinear materials with the B-H-curve according to Figure 6.2.
The source term J3 is chosen as 2.3 · 106 in the coil and zero elsewhere. Furthermore, we
have no permanent magnetization, i. e., H0 = 0. For all the computations in Example 6.1
we have used a globally quasi-uniform triangular mesh.

First, we impose Dirichlet boundary conditions on the whole boundary. The absolute
value of the magnetic flux density |B| is displayed in Figure 6.3, right. The magnetic field
intensity |H| and the values of the reluctivity ν(|B|) are shown in Figure 6.3. We see that we
get large values of ν(|B|) near the material corners. In order to get an idea on the amount
of variation of the reluctivity in the nonlinear materials, we have plotted all the occurring
values of ν(|B|) in the iron core against |B| in Figure 6.5, left. In the same figure, we
display the residual of the global nonlinear equation. The different branches of the graph
correspond to different levels of refinement. On the finest level in that graph the number of
global DOFs equals 263 169. Here we have chosen a relative accuracy of ε = 10−6 for the
reduction of the residual on the coarsest level (0) and on the finest level (5), whereas we stop
after two Newton steps on the levels in between. The linearized problems are controlled by
a reduction of the residual by a factor of εlin = 10−8 in the energy norm, cf. Algorithm 1
(page 65). For this particular example, the nonlinearity seems to be extremely high, and we
need seven Newton steps on the finest level, some of them damped. Nevertheless, we can see
the quadratic convergence in the last steps.
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Figure 6.3: Example 6.3: Left: Model valve problem. Right: Visualization of |B|.

Figure 6.4: Example 6.3: Left: Visualization of |B|. Right: Visualization of ν(|B).
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Figure 6.5: Example 6.3: Left: Occurring values of ν(|B|) plotted against |B|, logarithmic
scale. Right: Reduction of the global residual, values of the relaxation parameter ρk.



6.3. NUMERICAL RESULTS 177

Next we would like to focus on the linearized problems. Since the coefficient ζ(·) is tensor
valued, we choose the largest eigenvalue per element for the pointwise scalings in Di and Q.
In order not to complicate notation, we fix the Newton iteration index k and denote by ζi |τ
the (matrix) value of ζi(∇uk |τ ) for an element τ , and by λmax(ζi |τ ), λmin(ζi |τ ) the largest,
respectively, smallest eigenvalue of that matrix. The weights for the scaling operators (cf.
Section 5.2.1) are then chosen as

α̂max
i (xh) = max

τ⊂ωi(xh)
λmax(ζi |τ ) for xh ∈ ∂Ωh

i .

In order to compare the efficiency of that scaling we introduce the weights

αi = max
τ∈T h(Ωi)

λmax(ζi |τ ) .

Furthermore we introduce the anisotropy measure

manis(ζ) := max
i∈IFEM

max
τ∈T h(Ωi)

λmax(ζi |τ )
λmin(ζi |τ )

, (6.41)

and the variation measure

mvar(ζ) := max
i∈IFEM

max
τ∈T h(Ωi)

λmax(ζi |τ )

min
τ ′∈T h(Ωi)

λmin(ζi |τ ′)
. (6.42)

Table 6.1 and Table 6.2 show the result for two different settings of J3 and different dis-
cretizations (using 4 up to 7 refinement levels). In Table 6.1, the choice of J3 = 1 · 106 leads
to a relatively low heterogeneity (mvar = O(102) for the finest discretization). The weights
αi still lead to a rather satisfactory number of PCG iterations. Changing the source term to
J3 = 2.3 · 106 results in a high heterogeneity. In Table 6.2, we see that the weights αi result
in a bad condition number of O(104) and an enormous number of PCG iterations. Contrary,
the more carefully chosen weights α̂max

i result in an acceptable number of PCG iterations.
For the finest discretization, however, the condition number is rather large which suggests
that a clustering effect has occurred.

global weights αi weights α̂max
i

DOFs H/h manis mvar PCG cond. PCG cond.
16 641 32 6.1 26.3 20.0 9.9 20.0 9.9
66 049 64 6.9 66.0 24.3 22.6 21.7 18.7

263 169 128 10.2 152.4 29.7 43.9 24.7 35.9
1 050 625 256 11.4 258.1 36.3 84.4 27.7 65.5

Table 6.1: Example 6.1: Comparison of two weights for the one-level FETI preconditioner.
Average number of PCG steps and iteration numbers during the Newton iteration on the
finest level for the sequence of linearized problems, J3 = 1 · 106.
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global weights αi weights α̂max
i

DOFs H/h manis mvar PCG cond. PCG cond.
16 641 32 11.7 413.3 29.5 34.9 22.8 11.5
66 049 64 12.0 652.0 68.8 189.5 26.6 19.2

263 169 128 14.2 2 905.7 223.9 3 079.0 32.1 30.3
1 050 625 256 17.9 7 429.7 346.3 7 429.7 40.2 560.7

Table 6.2: Example 6.1: Comparison of two weights for the one-level FETI preconditioner.
Average number of PCG steps and iteration numbers during the Newton iteration on the
finest level for the sequence of linearized problems, J3 = 2.3 · 106.

Finally, we would like to demonstrate the use of a Newton FETI/BETI method including
an exterior subdomain. Figure 6.6 displays the solution u and the field |B|. Here, the outer
layer of air subdomains has been replaced by an exterior subdomain, and the interior air
subdomains have been discretized by BEM. On the left of that figure we show the interfaces
between the BEM subdomains

Figure 6.6: Example 6.1: Computational result of a FETI/BETI method including an exte-
rior subdomain. Left: Solution u. Right: Magnetic flux density |B|.

Example 6.2: Electrical motor Our second example is a model electrical motor, where
the data is Courtesy of the ACCM1. Figure 6.7, left, shows the setup and the subdomain
partitioning. We model the surrounding air with an exterior BEM subdomain and the air gap
with one single BEM subdomain. The radius of the rotor, which is modeled as a permanent
magnet is 20 mm. In the rotor, H0,1 = 0, H0,2 = 1.2 ν0; elsewhere H0 = 0. Concerning
the source term, we set J3 = 107 in the subdomains marked with “+”, J3 = −107 in those
marked with “-”, and J3 = 0 elsewhere. The yoke is the only ferromagnetic material, where
we use the B-H-curve shown in Figure 6.7, right; in all the other materials we set ν = ν0.

1Austrian Center of Competence in Mechatronics – A K2-Center of the COMET/K2 program of the
Federal Ministry of Transport, Innovation, and Technology, and the Federal Ministry of Economics and
Labour, Austria
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In order to compute the solution we have used a Newton IC-FETI/BETI method. Fig-
ure 6.8 displays the solution, the field lines and the interface-concentrated mesh (visualized
by NetGen/NGSolve). In this example the nonlinearity is not very high because there are no
singularities present. However, the small width of the air gap badly influences the condition
number of the FETI/BETI system. Finding techniques for FETI/BETI type methods that
can cope with such kinds of problems seems to be still an open problem.

rotor

coils
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−

−

+

yoke

air

 0

 0.5
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 2

 0  2000  4000  6000  8000  10000

interproximated B−H−curve − v270.dat − monotonic cubic C^1−spline (rel tolerance 0.005)

data
interproximation

B

H

Figure 6.7: Example 6.2: Left: Model electric motor setup with subdomain partitioning.
Right: Approximation of the data set v270.dat, Courtesy of the ACCM.

Figure 6.8: Example 6.2: Left: Magnetic field lines. Right: Solution and interface-
concentrated mesh.
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