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On subspaces contained in generalized derivatives and strong
metric (sub)regularity

Helmut Gfrerer∗ Jiřı́ V. Outrata†

Abstract.The paper deals with a comprehensive theory of mappings, whose local behavior can be described by means
of linear subspaces, contained in the graphs of two (primal and dual) generalized derivatives. This class of mappings
includes the graphically Lipschitzian mappings and thus a number of multifunctions, frequently arising in optimization and
equilibrium problems. The developed theory makes use of own generalized derivatives, provides us with some calculus rules
and reveals a number of interesting connections. In particular, it enables us to construct a modification of the semismooth*
Newton method with improved convergence properties and to derive a generalization of Clarke’s Inverse Function Theorem
to multifunctions together with new efficient characterizations of strong metric (sub)regularity and tilt stability.

Key words. generalized derivatives, second-order theory, strong metric (sub)regularity, semismoothness∗.

AMS Subject classification. 65K10, 65K15, 90C33.

1 Introduction

When implementing the semismooth∗ Newton method [14] for solving an inclusion of the form

0 ∈ F(x)

with some set-valued mapping F : Rn ⇒ Rn, we observed that it is advantageous to work with linear
subspaces L⊆Rn×Rn having dimension n and are contained in the graph of the limiting coderivative,
i.e.,

L⊆ gphD∗F(x,y)

at points (x,y) ∈ gphF .
However, this paper goes far beyond the analysis of the above issue and presents a comprehensive

study of a class of mappings, whose local behavior can be described by appropriately constructed
linear subspaces. This class turns out to be rather broad and the developed theory helps us both to
suggest an efficient modification of the semismooth∗ Newton method as well as to derive a number
of new results concerning strong metric subregularity, strong metric regularity and tilt stability. More
precisely, for the mentioned mapping F , primal and dual generalized derivatives are introduced, whose
elements are subspaces of dimension n. In order to define these derivatives, we consider points in the
graph of the mapping where the tangent cone amounts to a subspace and then perform an outer limiting
operation in a certain compact metric space.

Our construction is motivated by the definition of the B-subdifferential (Bouligand-subdifferential)
for single-valued mappings, whose elements are given as limit of Jacobians at points where the map-
ping is Fréchet differentiable. Note that the tangent cone to the graph of a map is a subspace whenever
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the mapping is differentiable at the point under consideration. Instead of computing limits of matrices,
we consider the limit of subspaces given by the graph of the linear mappings induced by the matri-
ces. When the mapping is Lipschitzian, then we obtain a one-to-one correspondence between the new
primal generalized derivative and the B-subdifferential. However, for non-Lipschitzian single-valued
mappings there will be a difference because we are considering limits of subspaces in a compact
metric space whereas the underlying matrices can be unbounded.

There are some relations between our generalized derivatives and existing ones. The dual deriva-
tive consists of subspaces contained in the limiting coderivative and the elements of the primal deriva-
tive are subspaces contained in the so-called outer limiting graphical derivative. To the best of our
knowledge, the latter has not yet been considered in the literature and is contained in the so-called
strict graphical derivative.

Our theory is not applicable to arbitrary mappings F . However, as already mentioned, the class
of mappings which are suited for our approach, is rather broad and important for applications. In par-
ticular, every mapping which is graphically Lipschitzian, i.e., its graph coincides under some change
of coordinates with the graph of a locally Lipschitzian mapping, belongs to this class. Graphically
Lipschitzian mappings have been already considered by Rockafellar [32]. E.g., locally maximally hy-
pomonotone mappings like the subdifferential mapping of prox-regular and subdifferentially continu-
ous functions possess this property [26]. Thus, our approach is particularly suitable for second-order
theory. Note that in [32] also a limit of tangent spaces has been considered. However, in [32] an inner
limit with respect to the usual set-convergence has been used yielding a different sort of results.

Within the framework of the new theory one can introduce a new regularity notion leading to
an adaptation of the semismooth∗ Newton method. This notion is weaker than metric regularity and
enables us to streamline the algorithm and to relax the assumptions, ensuring its locally superlinear
convergence. Under the respective regularity condition it is also possible to show that a semismooth∗

mapping is strongly metrically subregular, not only at the reference point itself but also on a neigh-
borhood of it. It seems that this somewhat extended property of strong metric subregularity around
the reference point has not been considered yet. As a byproduct, we present a characterization of this
property by means of the outer limiting graphical derivative.

Finally we turn our attention to the property of strong metric regularity. Since strongly regular
mappings are graphically Lipschitzian by the definition, the preceding theory enables us to reveal
some interesting new connections. In particular, one obtains a generalization of Clarke’s Inverse
Function Theorem to set-valued mappings and, when applied to specific problem classes, these results
lead to new characterizations of strong metric regularity for locally maximally monotone operators
and to a new characterization of tilt-stability. Compared with existing characterizations, the new ones
have the advantage, that not the whole strict graphical derivative or limiting coderivative must be
checked (as, e.g., in [8, 27]) but only a condition on the subspaces contained in its graph. In this way
the arsenal of available criteria for strong metric regularity (cf. [30, 9, 15, 8, 10]) and tilt stability (cf.
[27, 11, 23]) is enriched.

The plan of the paper is as follows. After the Preliminaries, devoted to relevant notions from vari-
ational analysis, in Section 3 we introduce and analyze the crucial class of SCD (subspace containing
derivative) mappings. In their analysis we make use of the mentioned generalized derivatives, for
which some basic calculus rules are developed and exact formulas in case of graphically Lipschitzian
mappings are provided. Section 4 deals with the adaptation of the semismooth∗ Newton method to
SCD mappings. The convergence analysis leads in this context to the notion of SCD regularity, whose
relationship with the strong metric subregularity around a point is established in Section 5. Finally, in
Section 6 we present a generalization of Clarke’s Inverse Function Theorem and new characterizations
of strong metric regularity and tilt stability for various classes of SCD mappings.
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The following notation is employed. Given a linear subspace L ⊆ Rn, L⊥ denotes its orthogonal
complement and, for a closed cone K with vertex at the origin, K◦ signifies its (negative) polar. Further,
given a multifunction F , gphF := {(x,y) | y ∈ F(x)} stands for its graph. For an element u ∈Rn, ‖u‖
denotes its Euclidean norm and Bδ (u) denotes the closed ball around u with radius δ . In a product
space we use the norm ‖(u,v)‖ :=

√
‖u‖2 +‖v‖2. Given an m×n matrix A, we employ the operator

norm ‖A‖ with respect to the Euclidean norm and we denote the range of A by rge A. Given a set
Ω ⊂ Rs, we define the distance of a point x to Ω by dΩ(x) := dist(x,Ω) := inf{‖y− x‖ | y ∈ Ω} and
the indicator function is denoted by δΩ. When a mapping F : Rn → Rm is differentiable at x, we
denote by ∇F(x) its Jacobian.

2 Preliminaries

Throughout the whole paper, we will frequently use the following basic notions of modern variational
analysis. All the sets under consideration are supposed to be locally closed around the points in
question without further mentioning.

Definition 2.1. Let A be a set in Rs and let x̄ ∈ A. Then

(i) The tangent (contingent, Bouligand) cone to A at x̄ is given by

TA(x̄) := Limsup
t↓0

A− x̄
t

and the paratingent cone to A at x̄ is given by

T P
A (x̄) := Limsup

x A→ x̄
t↓0

A− x
t

(ii) The set
N̂A(x̄) := (TA(x̄))◦

is the regular (Fréchet) normal cone to A at x̄, and

NA(x̄) := Limsup
A

x→x̄

N̂A(x)

is the limiting (Mordukhovich) normal cone to A at x̄. Given a direction d ∈ Rs,

NA(x̄;d) := Limsup
t↓0

d′→d

N̂A(x̄+ td′)

is the directional limiting normal cone to A at x̄ in direction d.

In this definition ”Limsup” stands for the Painlevé-Kuratowski outer (upper) set limit, see, e.g.,[1].
If A is convex, then N̂A(x̄)=NA(x̄) amounts to the classical normal cone in the sense of convex analysis
and we will write NA(x̄). By the definition, the limiting normal cone coincides with the directional
limiting normal cone in direction 0, i.e., NA(x̄) = NA(x̄;0), and NA(x̄;d) = /0 whenever d 6∈ TA(x̄).

The above listed cones enable us to describe the local behavior of set-valued maps via various
generalized derivatives. All the set-valued mappings under consideration are supposed to have locally
closed graph around the points in question.
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Definition 2.2. Consider a multifunction F : Rn ⇒ Rm and let (x̄, ȳ) ∈ gphF.

(i) The multifunction DF(x̄, ȳ) : Rn ⇒Rm given by gphDF(x̄, ȳ) = TgphF(x̄, ȳ) is called the graphi-
cal derivative of F at (x̄, ȳ).

(ii) The multifunction D∗F(x̄, ȳ) : Rn ⇒ Rm given by gphD∗F(x̄, ȳ) = T P
gphF(x̄, ȳ) is called the strict

(paratingent) derivative of F at (x̄, ȳ).

(iii) The multifunction D̂∗F(x̄, ȳ) : Rm ⇒ Rn defined by

gph D̂∗F(x̄, ȳ) = {(y∗,x∗) | (x∗,−y∗) ∈ N̂gphF(x̄, ȳ)}

is called the regular (Fréchet) coderivative of F at (x̄, ȳ).

(iv) The multifunction D∗F(x̄, ȳ) : Rm ⇒ Rn, defined by

gphD∗F(x̄, ȳ) = {(y∗,x∗) | (x∗,−y∗) ∈ NgphF(x̄, ȳ)}

is called the limiting (Mordukhovich) coderivative of F at (x̄, ȳ).

(v) Given a pair of directions (u,v) ∈ Rn×Rm, the multifunction D∗F((x̄, ȳ);(u,v)) : Rm ⇒ Rn,
defined by

gphD∗F((x̄, ȳ);(u,v)) = {(y∗,x∗) | (x∗,−y∗) ∈ NgphF((x̄, ȳ);(u,v))}

is called the directional limiting coderivative of F at (x̄, ȳ) in direction (u,v).

The directional limiting normal cone and coderivative were introduced by the first author in [12]
and various properties of these objects can be found also in [13] and in the references therein. Note
that D∗F(x̄, ȳ) = D∗F((x̄, ȳ);(0,0)) and that domD∗F((x̄, ȳ);(u,v)) = /0 whenever v 6∈ DF(x̄, ȳ)(u).

Note that by [33, Proposition 6.6] and the definition of the limiting coderivative we have

gphD∗F(x̄, ȳ) = Limsup
(x,y)

gphF−→(x̄,ȳ)

gphD∗F(x,y). (2.1)

If F is single-valued, we can omit the second argument and write DF(x), D̂∗F(x), . . . instead of
DF(x,F(x)), D̂∗F(x,F(x)), . . .. However, be aware that when considering limiting objects at x where
F is not continuous, it is not enough to consider only sequences xk → x but we must work with
sequences (xk,F(xk))→ (x,F(x)).

Definition 2.3. Let U ⊂ Rn be open and let F : U → Rm be a mapping. The B-subdifferential of F at
x ∈U is defined as

∇F(x) := {A | ∃xk→ x : F is Fréchet differentiable at xk and A = lim
k→∞

∇F(xk)} (2.2)

Recall that the Clarke Generalized Jacobian is given by conv∇F(x), i.e., the convex hull of the
B-subdifferential.

There exists the following relation between the B-subdifferential and the coderivative of F , which
states that every element from the B-subdifferential defines a certain subspace contained in the graph
of the coderivative.
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Proposition 2.4. Let U ⊂Rn be open and let F : U→Rm be a mapping. Let F be continuous at x∈U
and let A ∈ ∇F(x). Then

(y∗,AT y∗) ∈ gphD∗F(x) ∀y∗ ∈ Rm.

Proof. Consider A ∈ ∇F(x) together with some sequence xk → x such that ∇F(xk) → A as k →
∞. By [33, Example 9.25(b)] we have TgphF(xk,F(xk)) = {(u,∇F(xk)u) | u ∈ Rn} and therefore
(y∗,∇F(xk)

T y∗) ∈ gph D̂∗F(xk), ∀y∗ ∈ Rm. By passing to the limit, the assertion follows from the
definition of the limiting coderivative.

If the mapping F : U→Rm is Lipschitz continuous, by Rademacher’s Theorem F is differentiable
almost everywhere in U and ‖∇F(x)‖ is bounded there by the Lipschitz constant of F . Thus ∇F(x̄) 6=
/0 for Lipschitz continuous mappings F .

Let q : Rn→ R̄ be an extended-real-valued function with the domain and the epigraph

domq := {x ∈ Rn | q(x)< ∞}, epiq := {(x,α) ∈ Rn×R | α ≥ q(x)}.

The (limiting/Mordukhovich) subdifferential of q at x̄ ∈ domq is defined geometrically by

∂q(x̄) := {x∗ ∈ Rn | (x∗,−1) ∈ Nepiq(x̄,q(x̄))}.

This subdifferential is a general extension of the classical gradient for smooth functions and of the
classical subdifferential of convex ones.

Let us now recall the following regularity notions.

Definition 2.5. Let F : Rn ⇒ Rm be a mapping and let (x̄, ȳ) ∈ gphF.

1. F is said to be metrically subregular at (x̄, ȳ) if there exists κ ≥ 0 along with some neighborhood
X of x̄ such that

dist(x,F−1(ȳ))≤ κ dist(ȳ,F(x)) ∀x ∈ X . (2.3)

The infimum over all κ ≥ 0 such that (2.3) holds for some neighborhood X is denoted by
subregF(x̄, ȳ).

2. F is said to be strongly metrically subregular at (x̄, ȳ) if it is metrically subregular at (x̄, ȳ) and
there exists a neighborhood X ′ of x̄ such that F−1(ȳ)∩X ′ = {x̄}.

3. F is said to be metrically regular around (x̄, ȳ) if there is κ ≥ 0 together with neighborhoods X
of x̄ and Y of ȳ such that

dist(x,F−1(y))≤ κ dist(y,F(x)) ∀(x,y) ∈ X×Y. (2.4)

The infimum over all κ ≥ 0 such that (2.4) holds for some neighborhoods X ,Y is denoted by
regF(x̄, ȳ).

4. F is said to be strongly metrically regular around (x̄, ȳ) if it is metrically regular around (x̄, ȳ)
and F−1 has a single-valued localization around (ȳ, ȳ), i.e., there are open neighborhoods Y ′

of ȳ, X ′ of x̄ and a mapping h : Y ′→ Rn with h(ȳ) = x̄ such that gphF ∩ (X ′×Y ′) = {(h(y),y) |
y ∈ Y ′}.

It is well-known, see, e.g. [10], that the property of (strong) metric subregularity for F at (x̄, ȳ) is
equivalent with the property of (isolated) calmness for F−1 at (ȳ, x̄). Further, F is metrically regular
around (x̄, ȳ) if the inverse mapping F−1 has the so-called Aubin property around (ȳ, x̄). In this paper
we will frequently use the following characterization of strong metric regularity.
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Theorem 2.6 ( cf. [10, Proposition 3G.1]). F : Rn ⇒ Rm is strongly metrically regular around (x̄, ȳ)
if and only if F−1 has a Lipschitz continuous localization h around (ȳ, x̄). In this case there holds

regF(x̄, ȳ) = limsup
y,y′→ȳ
y 6=y′

‖h(y)−h(y′)‖
‖y− y′‖

.

In this paper we will also use the following point-based characterizations of the above regularity
properties.

Theorem 2.7. Let F : Rn ⇒ Rm be a mapping and let (x̄, ȳ) ∈ gphF.

(i) (Levy-Rockafellar criterion) F is strongly metrically subregular at (x̄, ȳ) if and only if

0 ∈ DF(x̄, ȳ)(u) ⇒ u = 0. (2.5)

and in this case one has

subregF(x̄, ȳ) = sup{‖u‖ | ∃v : (u,v) ∈ gphDF(x̄, ȳ), ‖v‖ ≤ 1}.

(ii) (Mordukhovich criterion) F is metrically regular around (x̄, ȳ) if and only if

0 ∈ D∗F(x̄, ȳ)(y∗) ⇒ y∗ = 0. (2.6)

Further, in this case one has

reg F(x̄, ȳ) = sup{‖y∗‖ | ∃x∗ : (y∗,x∗) ∈ gphD∗F(x̄, ȳ), ‖x∗‖ ≤ 1}. (2.7)

(iii) F is strongly metrically regular around (x̄, ȳ) if and only if

0 ∈ D∗F(x̄, ȳ)(u) ⇒ u = 0 (2.8)

and (2.6) holds. In this case one also has

reg F(x̄, ȳ) = sup{‖u‖ | ∃v : (u,v) ∈ gphD∗F(x̄, ȳ), ‖v‖ ≤ 1}. (2.9)

Proof. Statement (i) follows from [10, Theorem 4E.1]. Statement (ii) can be found in [21, Theorem
3.3]. The criterion for strong metric regularity follows from Dontchev and Frankowska [8, Theorem
16.2] by taking into account that the condition x̄ ∈ liminfy→ȳ F−1(y) appearing in [8, Theorem 16.2]
can be ensured by the requirement that F is metrically regular which in turn can be characterized by
the Mordukhovich criterion.

For a sufficient condition for metric subregularity based on directional limiting coderivatives we
refer to [13].

The properties of (strong) metric regularity and strong metric subregularity are stable under Lips-
chitzian and calm perturbations, respectively, cf. [10]. Further note that the property of (strong) metric
regularity hold around all points belonging to the graph of F sufficiently close to the reference point,
whereas the property of (strong) metric subregularity is guaranteed to hold only at the reference point.
This leads to the following definition.
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Definition 2.8. We say that the mapping F : Rn ⇒ Rm is (strongly) metrically subregular around
(x̄, ȳ) ∈ gphF if there is a neighborhood W of (x̄, ȳ) such that F is (strongly) metrically subregular at
every point (x,y) ∈ gphF ∩W and we define

l-subregF(x̄, ȳ) := limsup
(x,y)

gphF−→(x̄,ȳ)

subregF(x,y)< ∞.

In this case we will also speak about (strong) metric subregularity on a neighborhood.

Note that every polyhedral multifunction, i.e., a mapping whose graph is the union of finitely
many convex polyhedral sets, is metrically subregular around every point of its graph by Robinson’s
result [31]. In Section 5, characterizations of strong metric subregularity on a neighborhood will be
investigated.

Next we introduce the semismooth∗ sets and mappings.

Definition 2.9. (cf. [14].)

1. A set A⊆ Rs is called semismooth∗ at a point x̄ ∈ A if for all u ∈ Rs it holds

〈x∗,u〉= 0 ∀x∗ ∈ NA(x̄;u). (2.10)

2. A set-valued mapping F : Rn ⇒ Rm is called semismooth∗ at a point (x̄, ȳ) ∈ gphF, if gphF is
semismooth∗ at (x̄, ȳ), i.e., for all (u,v) ∈ Rn×Rm we have

〈u∗,u〉= 〈v∗,v〉 ∀(v∗,u∗) ∈ gphD∗F((x̄, ȳ);(u,v)). (2.11)

The class of semismooth* mappings is rather broad. We list here two important classes of multi-
functions having this property.

Proposition 2.10. (i) Every mapping whose graph is the union of finitely many closed convex sets
is semismooth∗ at every point of its graph.

(ii) Every mapping with closed subanalytic graph is semismooth∗ at every point of its graph.

Proof. The first assertion was already shown in [14, Proposition 3.4, 3.5]. As mentioned in [14,
Remark 3.10], the semismooth∗ property of sets amounts to the notion of semismoothness intro-
duced in [16]. It follows thus from [19, Theorem 2], that all closed subanalytic sets are automatically
semismooth∗ and the second statement holds by the definition of semismooth∗ mappings.

The statement of Proposition 2.10(ii) can be considered as the counterpart to [4], where it is shown
that locally Lipschitz tame mappings F : U ⊆ Rn→ Rm are semismooth in the sense of Qi and Sun
[29]. In case of single-valued Lipschitzian mappings the semismooth∗ property is equivalent with the
semismooth property introduced by Gowda [15], which is weaker than the one in [29].

In the above definition the semismooth∗ sets and mappings have been defined via directional lim-
iting normal cones and coderivatives. For our purpose it is convenient to make use of equivalent
characterizations in terms of standard (regular and limiting) normal cones and coderivatives, respec-
tively.

Proposition 2.11 (cf.[14, Corollary 3.3]). Let F : Rn ⇒ Rm and (x̄, ȳ) ∈ gphF be given. Then the
following three statements are equivalent
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(i) F is semismooth∗ at (x̄, ȳ).

(ii) For every ε > 0 there is some δ > 0 such that

|〈x∗,x− x̄〉−〈y∗,y− ȳ〉| ≤ ε‖(x,y)− (x̄, ȳ)‖‖(x∗,y∗)‖ ∀(x,y) ∈Bδ (x̄, ȳ) ∀(y∗,x∗) ∈ gph D̂∗F(x,y).
(2.12)

(iii) For every ε > 0 there is some δ > 0 such that

|〈x∗,x− x̄〉−〈y∗,y− ȳ〉| ≤ ε‖(x,y)− (x̄, ȳ)‖‖(x∗,y∗)‖ ∀(x,y) ∈Bδ (x̄, ȳ) ∀(y∗,x∗) ∈ gphD∗F(x,y).
(2.13)

3 SCD mappings

In what follows we denote by Zn the metric space of all n-dimensional subspaces of R2n equipped
with the metric

dZ (L1,L2) := ‖P1−P2‖
where Pi is the symmetric 2n×2n matrix representing the orthogonal projection on Li, i = 1,2.

Sometimes we will also work with bases for the subspaces L ∈Zn. Let Mn denote the collection
of all 2n×n matrices with full rank n and for L ∈Zn we define

M (L) := {Z ∈Mn | rge Z = L},

i.e., the columns of Z ∈M (L) are a basis for L. Further we denote by M orth(L) the set of all matrices
Z ∈M (L) with ZT Z = I, i.e., the columns of Z are an orthogonal basis for L. Recall that, given any
matrix Z̄ ∈M (L) ( or Z̄ ∈M orth(L)) there holds

M (L) = {Z̄B | B nonsingular n×n matrix} (M orth(L) = {Z̄B | B orthogonal n×n matrix}).

Further recall that the 2n× 2n matrix P, representing the orthogonal projection on some L ∈ Zn,
admits the representations

P = Z(ZT Z)−1ZT , Z ∈M (L) and P = ZZT , Z ∈M orth(L). (3.14)

Lemma 3.1. (i) Let Zk ∈Mn be a sequence converging to some Z ∈Mn. Then rge Zk converges
in Zn to rge Z ∈Zn.

(ii) Let Lk ∈ Zn be a sequence converging to L ∈ Zn. Then there is a sequence Zk ∈M (Lk)
converging to some Z ∈M (L).

(iii) Let Ak be a sequence of nonsingular 2n× 2n matrices converging to a nonsingular matrix A
and let Lk ∈Zn be a sequence converging to L ∈Zn. Then limk→∞ dZ (AkLk,AL) = 0.

(iv) The metric space Zn is compact.

Proof. The first statement follows immediately from Z(ZT Z)−1ZT = limk→∞ Zk(ZT
k Zk)

−1ZT
k together

with (3.14). In order to prove (ii), choose Zk ∈M orth(Lk) and Z ∈M orth(L). Then ZZT = limk→∞ ZkZT
k

due to Lk
Zn−→L and consequently Z = ZZT Z = limk→∞ Z̃k with Z̃k := Zk(ZT

k Z). Hence, for sufficiently
large k we have Z̃k ∈Mn and Z̃k ∈M (Lk) follows. This proves (ii) and (iii) follows from (ii) and (i).
In order to prove the compactness of Zn, consider a sequence Lk ∈ Zn together with basis matrices
Zk ∈M orth(Lk). By possibly passing to a subsequence we may assume that Zk converges to some Z.
Since ZT Z = limk→∞ ZT

k Zk = I, we conclude Z ∈Mn and rge Z = limk→∞ Lk ∈Zn by (i). Hence the
metric space Zn is (sequentially) compact.
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We treat every element of R2n as a column vector. In order to keep our notation simple we write

(u,v) instead of
(

u
v

)
∈R2n when this does not lead to confusion. In order to refer to the components

of the vector z =
(

u
v

)
we set π1(z) := u, π2(z) = v.

Let L ∈Zn and consider Z ∈M (L), which can be written in the form Z =

(
A
B

)
. But we will

rather write it as Z = (A,B); thus rge (A,B) := {(Au,Bu) | u ∈ Rn} .
=
{( Au

Bu

)
| u ∈ Rn

}
= L.

Similarly as before, we will also use π1(Z) := A, π2(Z) = B for referring to the two n×n parts of Z.
Further, for every L ∈Zn we define

L∗ := {(−v∗,u∗) | (u∗,v∗) ∈ L⊥}, (3.15)

where L⊥ denotes as usual the orthogonal complement of L. Note that

(L∗)⊥ = {(v,u) | 〈v,−v∗〉+ 〈u,u∗〉= 0 ∀(u∗,v∗) ∈ L⊥}= {(v,u) | (u,−v) ∈ (L⊥)⊥}

and therefore

(L∗)∗ = {(u,v) | (v,−u) ∈ (L∗)⊥}= {(u,v) | (−u,−v) ∈ L}= L.

We denote by Sn the 2n×2n orthogonal matrix

Sn :=
(

0 −I
I 0

)
,

so that L∗= SnL⊥. If P represents the orthogonal projection on L then I−P is the orthogonal projection
on L⊥ and Sn(I − P)ST

n is the orthogonal projection on L∗. Given 2 subspaces L1,L2 ∈ Zn with
orthogonal projections P1,P2, we obtain

dZ (L∗1,L
∗
2) = ‖Sn(I−P1)ST

n −Sn(I−P2)ST
n ‖= ‖Sn(I−P1− (I−P2))ST

n ‖= ‖P1−P2‖= dZ (L1,L2).

Thus the mapping L 7→ L∗ defines an isometry on Zn and a sequence (Lk) converges in Zn to some L
if and only if the sequence (L∗k) converges to L∗.

Consider the following relation between the graphical derivative and differentiability in case of
single-valued mappings.

Lemma 3.2. Consider f : U → Rn with U ⊆ Rn open and a point x ∈U.

(i) If f is Fréchet differentiable at x, then DF(x) is a single-valued linear mapping, DF(x)(u) =
∇ f (x)u, u ∈ Rn, and consequently Tgph f (x, f (x)) = rge (I,∇ f (x)) ∈Zn.

(ii) Conversely, if Tgph f (x, f (x)) ∈ Zn and f is calm at x, i.e., there is some κ ≥ 0 such that the
estimate ‖ f (x′)− f (x)‖ ≤ κ‖x′− x‖ holds for all x′ sufficiently close to x, then f is Fréchet
differentiable at x.

Proof. The statement (i) follows immediately from [33, Exercise 9.25]. In order to show (ii), we
first prove that there is an n× n matrix A such that Tgph f (x, f (x)) = rge (I,A). Considering any Z ∈
M (Tgph f (x, f (x))), we will show that B := π1(Z) is nonsingular. Assuming on the contrary that B
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is singular, there is some p 6= 0 with Bp = 0. Then v := π2(Z)p 6= 0 because otherwise Zp = 0
which is not possible. Hence (0,v) = Zp ∈ Tgph f and there exists sequences tk ↓ 0 and (uk,vk)→
(u,v) such that f (x)+ tkvk = f (x+ tkuk) ∀k implying tk‖vk‖ = ‖ f (x+ tkuk)− f (x)‖ ≤ κtk‖uk‖ and
‖v‖ = limk→∞ ‖uk‖ = 0, a contradiction. Hence B is nonsingular and we obtain Tgph f (x, f (x)) =
rge (B,π2(Z))= rge (I,π2(Z)B−1) proving our claim with A= π2(Z)B−1. Hence D f (x)u=Au, u∈Rn

and the assertion follows once more from [33, Exercise 9.25].

Note that, when f : U → Rn, U ⊆ Rn open, is Fréchet differentiable at u ∈U , then we even have
Tgph f (u, f (u)) = Limt↓0

gph f−(u, f (u))
t .

We now introduce new generalized derivatives for set-valued mappings. To the majority of appli-
cations we confine ourselves with the particular case F : Rn ⇒ Rn.

Definition 3.3. Consider a mapping F : Rn ⇒ Rn.

1. We say that F is graphically smooth of dimension n at (x,y)∈ gphF, if TgphF(x,y)= gphDF(x,y)∈
Zn. Further we denote by OF the set of all points where F is graphically smooth of dimension
n.

2. Associate with F the four mappings Ŝ F, Ŝ ∗F, S F, S F∗, all of which map gphF ⇒ Zn and
are given by

Ŝ F(x,y) :=

{
{gphDF(x,y)} if (x,y) ∈ OF ,
/0 else,

Ŝ ∗F(x,y) :=

{
{gphDF(x,y)∗} if (x,y) ∈ OF ,
/0 else,

S F(x,y) := Limsup
(u,v)

gphF−→(x,y)

Ŝ F(u,v)

= {L ∈Zn | ∃(xk,yk)
OF−→(x,y) : lim

k→∞

dZ (L,gphDF(xk,yk)) = 0},

S ∗F(x,y) = Limsup
(u,v)

gphF−→(x,y)

Ŝ ∗F(u,v)

= {L ∈Zn | ∃(xk,yk)
OF−→(x,y) : lim

k→∞

dZ (L,gphDF(xk,yk)
∗) = 0}.

3. (a) We say that F has the SCD (subspace containing derivative) property at (x,y) ∈ gphF, if
S ∗F(x,y) 6= /0.

(b) We say that F has the SCD property around (x,y) ∈ gphF, if there is a neighborhood W
of (x,y) such that F has the SCD property at every (x′,y′) ∈ gphF ∩W.

(c) Finally, we call F an SCD mapping if F has the SCD property at every point of its graph.

Remark 3.4. By definition of the regular coderivative there holds

gph D̂∗F(x,y) = gphDF(x,y)∗, (x,y) ∈ OF .

Remark 3.5. Since L 7→ L∗ is an isometry on Zn and (L∗)∗ = L, we have

S ∗F(x,y) = {L∗ | L ∈S F(x,y)}, S F(x,y) = {L∗ | L ∈S ∗F(x,y)}.

Hence, F has the SCD property at (x,y) ∈ gphF if and only if S F(x,y) 6= /0.
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Since we consider convergence in the compact metric space Zn, we obtain readily the following
result.

Lemma 3.6. The mapping F : Rn ⇒ Rn has the SCD property at (x,y) if and only if (x,y) ∈ clOF .
Further, F is an SCD mapping if and only if clOF = clgphF, i.e., F is graphically smooth of dimension
n at the points of a dense subset of its graph.

The name ”SCD property” is motivated by the following statement.

Lemma 3.7. Let F : Rn ⇒Rn and let (x,y) ∈ gphF. Then for every subspace L ∈S ∗F(x,y) we have
L⊆ gphD∗F(x,y).

Proof. Let L ∈ S ∗F(x,y) and consider a sequence (xk,yk,Lk) → (x,y,L) with (xk,yk) ∈ OF and
Lk := (gphDF(xk,yk))

∗ ∈ Ŝ ∗F(xk,yk). By Remark 3.4 we have Lk = gph D̂∗F(xk,yk). Consider
Zk ∈M orth(Lk). By possibly passing to a subsequence the matrices Zk converge to some Z and L =
rge Z by Lemma 3.2. Taking into account Zk p ∈ Lk = gph D̂∗F(xk,yk), we obtain Zp = limk→∞ Zk p ∈
gphD∗F(x,y) ∀p ∈ Rn by the Definitions 2.1, 2.2 showing that L⊆ gphD∗F(x,y).

We will now show that the primal subspaces L ∈ S F(x,y) also belong to the graph of some
suitable generalized derivative mapping. Consider the following definition.

Definition 3.8. 1. Let A⊂Rn and let x̄ ∈ A. The outer limiting tangent cone to A at x̄ is defined as

T ]
A(x̄) := Limsup

x A→ x̄

TA(x) = Limsup
x A→ x̄

(
Limsup

t↓0

A− x
t

)
(3.16)

2. Consider a multifunction F : Rn ⇒ Rm and let (x̄, ȳ) ∈ gphF. The outer limiting graphical
derivative of F at (x̄, ȳ) is the multifunction D]F(x̄, ȳ) : Rn ⇒ Rm given by

gphD]F(x̄, ȳ) = T ]
gphF(x̄, ȳ).

Remark 3.9. Comparing (3.16) with the definition of the paratingent cone T P
A (x̄) it follows that

T ]
A(x̄)⊆ T P

A (x̄) and therefore D]F(x̄, ȳ)(u)⊆ D∗F(x̄, ȳ)(u), u ∈ Rn.

Using similar arguments as in the proof of Lemma 3.7 one obtains the following result.

Lemma 3.10. Let F : Rn ⇒Rn and let (x,y) ∈ gphF. Then for every subspace L ∈S F(x,y) we have
L⊆ gphD]F(x,y).

For single-valued mappings the constructions of Definition 3.3 are related to the B-subdifferential.

Lemma 3.11. Let U ⊂ Rn be open and let f : U → Rn be continuous. Then for every x ∈U there
holds

S f (x) := S (x, f (x))⊇ {rge (I,A) | A ∈ ∇ f (x)}, (3.17)

S ∗ f (x) := S ∗(x, f (x))⊇ {rge (I,AT ) | A ∈ ∇ f (x)}. (3.18)

If f is Lipschitz continuous near x, these inclusions hold with equality and f has the SCD property
around x.
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Proof. Consider x∈U and A∈∇ f (x) together with sequences xk→ x and ∇ f (xk)→ A. Then for each
k we have Tgph f (xk, f (xk)) = rge (I,∇ f (xk)) =: Lk ∈Zn by Lemma 3.2 implying that (xk, f (xk))∈O f

and Ŝ f (xk) = {Lk}. Thus the subspaces Lk converge in Zn to rge (I,A) ∈S f (x) by Lemma 3.1(i).
This proves (3.17). By taking into account the identity rge (I,A)⊥ = rge (−AT , I), it follows that
rge (I,A)∗ = rge (I,AT ) verifying (3.18). Now assume that f is Lipschitzian near x and consider

L ∈ S f (x) together with a sequence (xk, f (xk))
O f−→(x, f (x)) such that Lk := Tgph f (xk, f (xk))

Zn−→L.
By Lemma 3.2 we conclude that f is differentiable at xk and Lk = rge (I,∇ f (xk)). By Lipschitz
continuity of f the derivatives ∇ f (xk) are bounded. Hence, by possibly passing to a subsequence,

we can assume that ∇ f (xk) converges to some A ∈ ∇ f (x) and Lk
Zn−→ rge (I,A) follows. This proves

equality in (3.17) and equality in (3.18) easily follows from the identity rge (I,A)∗= rge (I,AT ). Since
∇̄ f (x) 6= /0 for Lipschitz continuous mappings, the SCD property at x is established. This also holds
for every point sufficiently close to x and thus f has the SCD property even around x.

Remark 3.12. In particular, every Lipschitz continuous mapping f : U → Rn with U ⊆ Rn open is
an SCD mapping. However, the converse is not true: Consider the function f (x) =

√
|x| which is an

SCD mapping but not Lipschitz continuous.

Lemma 3.13. Consider a mapping F : Rn ⇒ Rn and let (x,y) ∈ gphF. Then

S F(x,y) = Limsup
(u,v)

gphF−→(x,y)

S F(u,v), S ∗F(x,y) = Limsup
(u,v)

gphF−→(x,y)

S ∗F(u,v).

Proof. We prove only the first equation. The inclusion S F(x,y)⊆ Limsup
(u,v)

gphF−→(x,y)
S F(u,v) =: S

follows easily from the definition of S F(x,y) together with Ŝ F(u,v)⊆S F(u,v), (u,v) ∈ gphF . In

order to show the reverse inclusion, consider L∈ S together with sequences (uk,vk)
gphF−→(x,y) and Lk ∈

S F(uk,vk) with Lk
Zn−→L. By definition, for every k we can find (u′k,y

′
k) ∈ OF and L′k ∈ Ŝ F(uk,vk))

such that ‖(uk,vk)− (u′k,v
′
k)‖ ≤

1
k and dZ (Lk,L′k)≤

1
k . Thus (u′k,v

′
k)

OF−→(x,y) and L′k
Zn−→L verifying

L ∈S F(x,y).

We now provide some calculus rules.

Proposition 3.14. Given a mapping G :Rn ⇒Rn and a mapping Φ :R2n→R2n, consider the mapping
F : Rn ⇒ Rn given by

gphF = {(x,y) | Φ(x,y) ∈ gphG}.

Then for every (x,y)∈ gphF such that Φ is continuously differentiable in some neighborhood of (x,y)
and ∇Φ(x,y) is nonsingular, there holds

S F(x,y) = ∇Φ(x,y)−1S G(Φ(x,y))(:= {∇Φ(x,y)−1L | L ∈S G(Φ(x,y))}), (3.19)

S ∗F(x,y) = Sn∇Φ(x,y)T ST
n S ∗G(Φ(x,y)). (3.20)

Proof. By the classical Inverse Function Theorem, there is some open neighborhood W of (x,y)
such that Φ is a one-to-one mapping from W to the open neighborhood W̃ := Φ(W ) of Φ(x,y)
and ∇Φ(x′,y′) is nonsingular for every (x′,y′) ∈W . By [33, Exercise 6.7] we have TgphF(x′,y′) =
∇Φ(x′,y′)−1TgphG(Φ(x′,y′)) for all (x′,y′)∈ gphF∩W and it follows that OG∩W̃ =Φ(OF∩W ). Con-

sider L ∈S F(x,y) together with sequences (xk,yk)
OF−→(x,y) and Lk ∈ Ŝ F(xk,yk) converging to L.

Then for all k sufficiently large we have TgphG(Φ(xk,yk)) = ∇Φ(xk,yk)TgphF(xk,yk) = ∇Φ(xk,yk)Lk ∈
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Ŝ G(Φ(xk,yk) showing ∇Φ(x,y)L = limk→∞ ∇Φ(xk,yk)Lk ∈ S G(Φ(x,y)) by Lemma 3.1(iii). This
proves that S F(x,y)⊆ ∇Φ(x,y)−1S G(Φ(x,y)).

To show the reverse inclusion, consider L ∈S G(Φ(x,y)) together with sequences zk
OG∩W̃−→ Φ(x,y)

and Lk ∈ Ŝ G(zk) with Lk → L. It follows that the sequence (xk,yk) := Φ−1(zk)∩W converges to
(x,y) and TgphF(xk,yk) = ∇Φ(xk,yk)

−1Lk ∈ Ŝ F(xk,yk) implying ∇Φ(x,y)−1L∈S F(x,y) by Lemma
3.2(iii). Hence ∇Φ(x,y)−1S G(Φ(x,y))⊆S F(x,y) and equation (3.19) follows. To prove the equa-
tion (3.20), just use Remark 3.5 together with the fact that for any L ∈Zn we have (∇Φ(x,y)−1L)⊥ =
∇Φ(x,y)T L⊥ implying

(∇Φ(x,y)−1L)∗ = Sn∇Φ(x,y)T L⊥ = Sn∇Φ(x,y)T ST
n L∗.

Proposition 3.15. Let F : Rn ⇒ Rn have the SCD property at (x,y) ∈ gphF and let h : U → Rn be
continuously differentiable at x ∈ U where U ⊆ Rn is open. Then F + h has the SCD property at
(x,y+h(x)) and

S (F +h)(x,y+h(x)) =
{( I 0

∇h(x) I

)
L | L ∈S F(x,y)

}
(3.21)

S ∗(F +h)(x,y+h(x)) =
{( I 0

∇h(x)T I

)
L | L ∈S ∗F(x,y)

}
(3.22)

Proof. We have gph(F +h) = {(u,v+h(u)) | (u,v) ∈ gphF} = {(x,y) | (x,y−h(x)) ∈ gphF} and
the assertion follows from Proposition 3.14 with Φ(x,y) = (x,y−h(x)).

Next, let us proceed to the large class of graphically Lipschitzian mappings.

Definition 3.16 (cf.[33, Definition 9.66]). A mapping F : Rn ⇒ Rm is graphically Lipschitzian of
dimension d at (x̄, ȳ)∈ gphF if there is an open neighborhood W of (x̄, ȳ) and a one-to-one mapping Φ

from W onto an open subset of Rn+m with Φ and Φ−1 continuously differentiable, such that Φ(gphF∩
W ) is the graph of a Lipschitz continuous mapping f : U → Rn+m−d , where U is an open set in Rd .

Proposition 3.17. Assume that F : Rn ⇒ Rn is graphically Lipschitzian of dimension n at (x̄, ȳ) ∈
gphF. Then F has the SCD property around (x̄, ȳ) and for every (x,y) ∈ gphF, sufficiently close to
(x̄, ȳ), one has

S F(x,y) = ∇Φ(x,y)−1S f (u) =
{

rge
[

∇Φ(x,y)−1
(

I
B

)]
| B ∈ ∇̄ f (u)

}
, (3.23a)

S ∗F(x,y) = Sn∇Φ(x,y)T ST
n S ∗ f (u) =

{
rge

[
Sn∇Φ(x,y)T ST

n

(
I

BT

)]
| B ∈ ∇̄ f (u)

}
, (3.23b)

where Φ and f are as in Definition 3.16 and u := π1(Φ(x,y)).

Proof. Follows from Proposition 3.14 together with Lemma 3.11.

Remark 3.18. Note that for a graphically Lipschitizian mapping F we have Φ(OF ∩W ) = O f by
the proof of Proposition 3.14, where W, Φ and f are as in Definition 3.16. At points (u, f (u)) ∈
O f the mapping f is Fréchet differentiable at u by Lemma 3.2(ii) and therefore Tgph f (u, f (u)) =
Limt↓0

gph f−(u, f (u))
t . Since the graphs of F and f coincide locally up to a change of coordinates, we

may conclude that TgphF(x,y) = Limt↓0
gphF−(x,y)

t , (x,y) ∈ OF ∩W, i.e., F is proto-differentiable at
these points, cf. [33, Section 8.H].
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Corollary 3.19. Let F : Rn ⇒ Rn and let (x̄, ȳ) ∈ gphF be given. Suppose that there is an open
neighborhood V of x̄ and a continuously differentiable mapping h : V →Rn such that F +h is strongly
metrically regular around (x̄, ȳ+h(x̄)). Then F is graphically Lipschitzian of dimension n with trans-
formation mapping Φ(x,y) = (y+ h(x),x). Therefore F has the SCD property around (x̄, ȳ) and for
every (x,y) ∈ gphF sufficiently close to (x̄, ȳ) one has

S F(x,y) = {rge (B, I−∇h(x)B) | B ∈ ∇̄(F +h)−1(y+h(x))} (3.24a)

=

(
0 I
I −∇h(x̄)

)
S (F +h)−1(ȳ+h(x̄), x̄),

S ∗F(x,y) = {rge (BT , I−∇h(x)T BT ) | B ∈ ∇̄(F +h)−1(y+h(x))} (3.24b)

=

(
0 I
I −∇h(x)T

)
S ∗(F +h)−1(y+h(x),x).

Proof. By Theorem 2.6 there are open neighborhoods U of ȳ+h(x̄), W ′ of (ȳ+h(x̄), x̄) and a Lipschitz
continuous mapping f : U → Rn such that gph f = gph(F +h)−1∩W ′. Since gph(F +h)−1 = {(y+
h(x),x) | (x,y) ∈ gphF, x ∈V}, F is graphically Lipschitzian of dimension n and (3.24) follows from
Proposition 3.17 by taking into account that

∇Φ(x,y) =
(

∇h(x) I
I 0

)
, ∇Φ(x,y)−1 =

(
0 I
I −∇h(x)

)
, Sn∇Φ(x,y)T ST

n =−
(

0 I
I −∇h(x)T

)
.

Some examples for graphically Lipschitzian mappings F : Rn ⇒ Rn of dimension n were already
given in [32, 26]. Next, we extend these examples and give an explicit description of the subspaces
contained in S F(x,y) and S ∗F(x,y), respectively. Recall that a mapping F : Rn ⇒ Rn is said to be
monotone if

〈y1− y2,x1− x2〉 ≥ 0 for all (xi,yi) ∈ gphF, i = 1,2.

It is maximally monotone if, in addition, there holds gphF = gphT for every monotone mapping
T : Rn ⇒ Rn with gphF ⊂ gphT . Next we define several types of local monotonicity.

Definition 3.20. Let F : Rn ⇒ Rn and let (x,y) ∈ gphF. We say the following:

1. F is locally monotone at (x,y) if there is an open neighborhood X×Y of (x,y) such that

〈y1− y2,x1− x2〉 ≥ 0 for all (xi,yi) ∈ gphF ∩ (X×Y ), i = 1,2. (3.25)

It is locally maximally monotone if, in addition, there holds gphF ∩ (X×Y ) = gphT ∩ (X×Y )
for every monotone mapping T : Rn ⇒ Rn with gphF ∩ (X×Y )⊆ gphT .

2. F is locally (maximally) hypomonotone at (x,y) if γI +F is locally (maximally) monotone at
(x,γx+ y) for some γ ≥ 0.

Related with maximally monotone operators are the so-called firmly nonexpansive mappings.

Definition 3.21. 1. A mapping f : Rn→ Rn is called firmly nonexpansive if 〈 f (u1)− f (u2),u1−
u2〉 ≥ ‖ f (u1)− f (u2)‖2, u1,u2 ∈ Rn.

2. An n×n matrix B is called firmly nonexpansive, if the linear mapping u→ Bu is firmly nonex-
pansive, i.e., 〈Bv,v〉 ≥ ‖Bv‖2, v ∈ Rn.
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Note that an n×n matrix B is firmly nonexpansive if and only if ‖2B− I‖ ≤ 1, see, e.g., [3, Fact
1.1]. Further, a firmly nonexpansive matrix B is positive semidefinite and satisfies ‖B‖ ≤ 1 and, when
B is symmetric, these conditions are also sufficient for B being firmly nonexpansive.

Proposition 3.22. Let F : Rn ⇒ Rn be locally maximally monotone at (x̄, ȳ). Then F is graphically
Lipschtzian of dimension n at (x̄, ȳ) with transformation mapping Φ(x,y) = (x+y,x) and consequently
F has the SCD property around (x̄, ȳ). Further, for every (x,y) ∈ gphF sufficiently close to (x̄, ȳ)
and for every subspace L ∈ S F(x,y) there is a firmly nonexpansive n× n matrix B such that L =
rge (B, I−B) and L∗ = rge (BT , I−BT ).

Proof. Let Floc : Rn ⇒ Rn be given by gphFloc = gphF ∩ (X ×Y ), where (X ×Y ) is as in Definition
3.20. Then Floc is monotone, has a maximally monotone extension F̃ , cf. [33, Proposition 12.6]
and gphF ∩ (X ×Y ) = gph F̃ ∩ (X ×Y ). By [2, Corollary 23.8], rge (I + F̃) = Rn and the resolvent
f := (I + F̃)−1 is a single-valued, firmly nonexpansive mapping on Rn. Since f (x̄ + ȳ) = x̄, we
can find an open neighborhood U of x̄+ ȳ such that f (u) ∈ X and u− f (u) ∈ Y for all u ∈ U . It
follows that (I +F)−1(u) = (I + F̃)−1(u) and therefore I +F is strongly metrically regular around
(x̄, x̄+ ȳ). Thus F is graphically Lipschitzian at (x̄, ȳ) and has the SCD property around (x̄, ȳ) by
Corollary 3.19. Now consider a subspace L ∈ S F(x,y), where (x,y) is close to (x̄, ȳ). By (3.24a)
there is a matrix B ∈ ∇̄ f (x+ y) such that L = rge (B, I −B). Since f is firmly nonexpansive, for
every (u′, f (u′)) ∈ O f we have 〈∇ f (u′)v,v〉 ≥ ‖∇ f (u′)v‖2 and ‖Bv‖2 ≤ 〈Bv,v〉, v ∈ Rn follows. This
completes the proof.

If F is only locally maximally hypomonotone at (x̄, ȳ), it follows that (1+ γ)I +F is strongly
metrically regular around (x̄,(1+ γ)x̄+ ȳ) for some γ ≥ 0. Hence we obtain the following corollary.

Corollary 3.23. Let F : Rn ⇒ Rn be locally maximally hypomonotone at (x̄, ȳ). Then there is some
γ ≥ 0 such that F is graphically Lipschitzian at (x̄, ȳ) of dimension n with transformation mapping
Φ(x,y) = ((1+γ)x+y,x) and therefore F has the SCD property around (x̄, ȳ). For every (x,y)∈ gphF
sufficiently close to (x̄, ȳ) and every subspace L∈S F(x,y) there is a firmly nonexpansive n×n matrix
B such that L = rge (B, I− (1+ γ)B) and L∗ = rge (BT , I− (1+ γ)BT ).

Corollary 3.24. A mapping F : Rn ⇒Rn which is locally maximally hypomonotone on a dense subset
of its graph is an SCD mapping.

We now consider the subdifferential mapping ∂q of some lsc function q : Rn→ R̄.

Definition 3.25. 1. A function q : Rn→ R̄ is prox-regular at x̄∈ domq for x̄∗ ∈ ∂q(x̄) if q is locally
lsc around x̄ and there exist ε > 0 and ρ ≥ 0 such that for all x′,x∈Bε(x̄) with |q(x)−q(x̄)| ≤ ε

one has

q(x′)≥ q(x)+ 〈x∗,x′− x〉− ρ

2
‖x′− x‖2 whenever x∗ ∈ ∂q(x)∩Bε(x̄∗).

When this holds for all x̄∗ ∈ ∂q(x̄), q is said to be prox-regular at x̄.

2. A function q :Rn→ R̄ is called subdifferentially continuous at x̄∈ domq for x̄∗ ∈ ∂q(x̄) if for any

sequence (xk,x∗k)
gph∂q−→ (x̄, x̄∗) we have limk→∞ q(xk) = q(x̄). When this holds for all x̄∗ ∈ ∂q(x̄),

q is said to be subdifferentially continuous at x̄.

Proposition 3.26. Suppose that q : Rn→ R̄ is prox-regular and subdifferentially continuous at x̄ for
x̄∗ ∈ ∂q(x̄). Then ∂q is locally maximally hypomonotone at (x̄, x̄∗) and there is some λ > 0 such that ∂q
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is graphically Lipschitzian at (x̄, ȳ) with transformation mapping Φ(x,x∗) = (x+λx∗,x). Thus ∂q has
the SCD property around (x̄, x̄∗). Further, for every (x,x∗)∈ gph∂q sufficiently close to (x̄, x̄∗) one has
S ∗∂q(x,x∗) = S ∂q(x,x∗) and for every L ∈S ∂q(x,x∗) there is a symmetric positive semidefinite
n×n matrix B such that L = L∗ = rge (B, 1

λ
(I−B)).

Proof. Let q̃(x) := q(x)−〈x̄∗,x〉. Then ∂ q̃(·) = ∂q(·)− x̄∗ and q̃ is prox-regular at x̄ for 0. By the
definition of prox-regularity we have

q̃(x′)≥ q̃(x̄)− ρ

2
‖x′− x̄‖2 ∀x′ ∈Bε(x̄)

for some ε > 0 and some ρ ≥ 0. Hence the function q̂ := q̃+ δBε
fulfills the baseline assumption

of [26, Section 4]. By [26, Proposition 4.8] the subdifferential mapping ∂ q̂ is locally maximally
hypomonotone around (x̄,0) and, by the proof of [26, Theorem 4.7], there is some λ > 0 such ∂ q̂
is graphically Lipschitzian with transformation mapping Φ(x,x∗) = (x+λx∗,x). Moreover, by [26,
Theorem 4.4], (I +λ∂ q̂)−1 is locally monotone at (x̄, x̄) and there holds

∇eλ q̂(u) =
1
λ

(
I− (I +λ∂ q̂)−1)(u) (3.26)

for all u sufficiently close to x̄, where

eλ q̂(y) := inf
x
{ 1

2λ
‖x− y‖2 + q̂(x)},

denotes the Moreau envelope of q̂. Consider a pair (x, x̂∗) close to (x̄,0) and a subspace L∈S ∂ q̂(x, x̂∗).
According to Corollary 3.23, there is a matrix B∈∇(I+λ∂ q̂)−1(x+λ x̂∗) with L=∇Φ(x, x̂∗)−1rge (I,B)=
rge (B, 1

λ
(I−B)), where we have taken into account

∇Φ(x, x̂∗) =
(

I λ I
I 0

)
, ∇Φ(x, x̂∗)−1 =

(
0 I
1
λ

I − 1
λ

I

)
.

Since (I +λ∂ q̂)−1 is locally monotone at (x̄, x̄), it follows that B is positive semidefinite. Further, by
(3.26) we have 1

λ
(I−B) ∈ ∇(∇eλ q̂)(x+λ x̂∗). By [33, Theorem 13.52], ∇(∇eλ q̂)(x+λ x̂∗) consists

of symmetric matrices and consequently B is symmetric. Since L⊥ = rge ( 1
λ
(I−B),−B), we obtain

L∗ = L and S ∗∂ q̂(x, x̂∗) = S ∂ q̂(x, x̂∗) follows. Now, by taking into account that ∂ q̃ and ∂ q̂ coincide
near x̄ and ∂q differs from ∂ q̃ only by the constant x̄∗, it follows that all the shown properties do not
hold only for ∂ q̂ but also for ∂q.

Corollary 3.27. For every lsc function q : Rn→ R̄ which is prox-regular and subdifferentially contin-
uous at x for x∗ on a dense subset of gph∂q, its subdifferential mapping ∂q is an SCD mapping.

Clearly, every lsc convex function is prox-regular and subdifferentially continuous at all points
of its domain. Further, the proof of Proposition 3.26 holds true with λ = 1 and (I + ∂q)−1 is firmly
nonexpansive and therefore ‖B‖ ≤ 1 ∀B ∈ ∇(I +∂ q̂)−1(x̄). Thus we obtain the following corollary.

Corollary 3.28. For every lsc proper convex function q : Rn → R̄ the subdifferential mapping ∂q
is graphically Lipschitzian of dimension n at every point (x,x∗) of its graph. Hence ∂q is an SCD
mapping and for every (x,x∗)∈ gph∂q and every L∈S ∗∂q(x,x∗) =S ∂q(x,x∗) there is a symmetric
positive semidefinite n×n matrix B with ‖B‖ ≤ 1 such that L = rge (B, I−B).
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Example 3.29. Let C ⊂ Rn be a convex polyhedral set and consider q = δC so that ∂q = NC. By
the well-known reduction Lemma, see, e.g., [10, Lemma 2E.4], we have TgphNC(x,x

∗) = gphNKC(x,x∗),
where KC(x,x∗) := TC(x)∩ [x∗]⊥ denotes the critical cone to C at x for x∗. Thus NC is graphically
smooth of dimension n at (x,x∗) if and only if KC(x,x∗) is a subspace and in this case we have
Ŝ NC(x,x∗) = KC(x,x∗)×KC(x,x∗)⊥ = Ŝ ∗NC(x,x∗). Given (x̄, x̄∗) ∈ gphNC, by [10, Lemma 4H.2],
for every sufficiently small neighborhood W of (x̄, x̄∗), the collection of all critical cones KC(x,x∗),
(x,x∗) ∈W coincides with the collection of all sets of the form F1−F2, where F1,F2 are faces of
KC(x̄, x̄∗) with F2 ⊆F1. Since F1−F2 is a subspace if and only if F1 = F2 and KC(x̄, x̄∗) has
only finitely many faces, we obtain

S NC(x̄, x̄∗) = S ∗NC(x̄, x̄∗) = {(F −F )× (F −F )⊥ | F is face of KC(x̄, x̄∗)}. (3.27)

Of course, for every face F of KC(x̄, x̄∗) we have

(F −F )× (F −F )⊥ = rge (B, I−B),

where B represents the orthogonal projection on F −F .
Let us compare the representation (3.27) with the limiting coderivative D∗NC(x̄, x̄∗). It was shown

in [9, Proof of Theorem 2] that NgphNC(x̄, x̄
∗) is the union of all product sets K◦×K associated with

cones K of the form F1 −F2, where F1 and F2 are closed faces of the critical cone KC(x̄, x̄∗)
satisfying F2 ⊂F1. Thus, gphD∗NC(x̄, x̄∗) is the union of all respective sets of the form (F2−F1)×
(F1−F2)

◦ and we see that S ∗NC(x̄, x̄∗) has a less wicked structure than the limiting coderivative
D∗NC(x̄, x̄∗) whenever the critical cone KC(x̄, x̄∗) is not a subspace.

4 On semismooth* Newton methods for SCD mappings

Consider the inclusion
0 ∈ F(x), (4.28)

where F : Rn ⇒Rn. Assume that x̄ is a reference solution of (4.28). The idea behind the semismooth∗

Newton method [14] for solving (4.28) is as follows. If F is semismooth∗ at (x̄,0) and we are given
some point (x,y) ∈ gphF close to (x̄,0), then for every (y∗,x∗) ∈ gphD∗F(x,y) there holds

〈x∗,x− x̄〉= 〈y∗,y−0〉+o(‖(x,y)− (x̄,0)‖‖(x∗,y∗)‖)

by the definition of the semismoothness* property. We choose now n pairs (y∗i ,x
∗
i ) ∈ gphD∗F(x,y),

i = 1, . . . ,n, compute a solution ∆x of the system

〈x∗i ,∆x〉=−〈y∗i ,y〉, i = 1, . . . ,n (4.29)

and expect that ‖(x+∆x)− x̄‖ = o(‖(x,y)− (x̄,0)‖. When dealing with SCD mappings F we can
simplify this procedure by choosing the pairs (y∗i ,x

∗
i ) as a basis of some subspace L ∈ S ∗F(x,y),

which allows us to weaken the notion of semismoothness* along the lines of Proposition 2.11.

Definition 4.1. We say that F : Rn ⇒ Rn is SCD semismooth∗ at (x̄, ȳ) ∈ gphF if F has the SCD
property around (x̄, ȳ) and for every ε > 0 there is some δ > 0 such that

|〈x∗,x− x̄〉−〈y∗,y− ȳ〉| ≤ ε‖(x,y)− (x̄, ȳ)‖‖(x∗,y∗)‖ (4.30)

holds for all (x,y) ∈ gphF ∩Bδ (x̄, ȳ) and all (y∗,x∗) belonging to any L ∈S ∗F(x,y).
We say that F : Rn ⇒Rn is SCD semismooth∗ around (x̄, ȳ) ∈ gphF if there is some neighborhood W
of (x̄, ȳ) such that F is SCD semismooth∗ at every (x,y) ∈ gphF ∩W.
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The chosen subspace L ∈S ∗F(x,y) should have the property that the resulting system (4.29) has
a unique solution. This yields the following definition.

Definition 4.2. We denote by Z reg
n the collection of all subspaces L ∈Zn such that

(y∗,0) ∈ L ⇒ y∗ = 0. (4.31)

Proposition 4.3. Given a 2n×n matrix Z, there holds rge Z ∈Z reg
n if and only if the n×n matrix π2(Z)

is nonsingular. Thus, for every L ∈Z reg
n there is a unique n× n matrix CL such that L = rge (CL, I).

Further, L∗ = rge (CT
L , I) ∈Z reg

n ,

〈x∗,CT
L v〉= 〈y∗,v〉 ∀(y∗,x∗) ∈ L∀v ∈ Rn. (4.32)

and
‖y∗‖ ≤ ‖CL‖‖x∗‖ ∀(y∗,x∗) ∈ L. (4.33)

Proof. Clearly, if π2(Z) is nonsingular then rge Z ∈Zn. Further, given (y∗,0)∈ rge Z, there is some p
with y∗ = π1(Z)p, 0 = π2(Z)p implying p = y∗ = 0 and therefore rge Z ∈Z reg

n . Conversely, consider
L ∈ Z reg

n and Z ∈M (L). Because L ∈ Zn, the matrix Z has full column rank n and therefore there
cannot exist p 6= 0 with Zp = 0. Thus, if A := π2(Z) were singular, there is some 0 6= p ∈ Rn with
Ap= 0 and Bp 6= 0 with B := π1(Z), implying (Bp,0)∈ L and Bp 6= 0 which is not possible because of
L ∈Z reg

n . This proves that A is nonsingular and L = rge ZA−1 = rge (CL, I) with CL = BA−1 follows.
Clearly, CL is uniquely given by L and does not depend on the particular choice of A and B. From
L = rge (CL, I) we deduce L⊥ = rge (I,−CT

L ) and L∗ = SnL⊥ = rge (CT
L , I). Further, for every p ∈ Rn

we have (p,−CT
L p) ∈ L⊥, implying

〈p,y∗〉−〈CT
L p,x∗〉= 〈p,y∗−CLx∗〉= 0 ∀(y∗,x∗) ∈ L

and (4.32) follows. Finally, for every (y∗,x∗)∈ L there is some p∈Rn with y∗ =CL p, x∗ = p implying
(4.33)

Remark 4.4. Note that for every L ∈Z reg
n there holds CL = π1(Z)π2(Z)−1 for every Z ∈M (L).

Comparing (4.32) with (4.29), we see that ∆x =−CT
L y is a solution to (4.29).

We are now in the position to describe the iteration step of the SCD variant of the semismooth∗

Newton method introduced in [14]. Assume we are given some iterate x(k). Since we cannot expect in
general that F(x(k)) 6= /0 or that 0 is close to F(x(k)), even if x(k) is close to a solution x̄, we first perform
some preparatory step which yields (x̂(k), ŷ(k)) ∈ gphF as an approximate projection of (x(k),0) onto
gphF . We require that

‖(x̂(k), ŷ(k))− (x̄,0)‖ ≤ η‖x(k)− x̄‖ (4.34)

for some constant η > 0. E.g., if

‖(x̂(k), ŷ(k))− (x(k),0)‖ ≤ β dist((x(k),0),gphF)

holds with some β ≥ 1, then

‖(x̂(k), ŷ(k))− (x̄,0)‖ ≤ ‖(x̂(k), ŷ(k))− (x(k),0)‖+‖(x(k),0)− (x̄,0)‖
≤ β dist((x(k),0),gphF)+‖(x(k),0)− (x̄,0)‖ ≤ (β +1)‖(x(k),0)− (x̄,0)‖

and (4.34) holds with η = β +1. Further we require that S ∗F(x̂(k), ŷ(k))∩Z reg
n 6= /0 and compute the

new iterate as x(k+1) = x̂(k)−CT
L ŷ(k) for some L∈S ∗F(x̂(k), ŷ(k))∩Z reg

n . In fact, in a numerical imple-
mentation we will not calculate the matrix CL, but two n×n matrices A,B such that L = rge (BT ,AT ),
compute ∆x(k) as a solution of the system A∆x =−Bŷ(k) and set x(k+1) = x̂(k)+∆x(k).

This leads to the following conceptual algorithm.

18



Algorithm 1 (SCD semismooth∗ Newton-type method for inclusions).
1. Choose a starting point x(0), set the iteration counter k := 0.
2. If 0 ∈ F(x(k)), stop the algorithm.
3. Approximation step: Compute

(x̂(k), ŷ(k)) ∈ gphF

satisfying (4.34) such that S ∗F(x̂(k), ŷ(k))∩Z reg
n 6= /0.

4. Newton step: Select n× n matrices A(k),B(k) with L(k) := rge
(
B(k)T

,A(k)T
) ∈S ∗F(x̂(k), ŷ(k))∩

Z reg
n , calculate the Newton direction ∆x(k) as a solution of the linear system A(k)∆x = −B(k)ŷ(k)

and obtain the new iterate via x(k+1) = x̂(k)+∆x(k).
5. Set k := k+1 and go to 2.

We have ∆x(k) = −CT
L(k) ŷ(k) and therefore (∆x(k),−ŷ(k)) ∈ −L(k)∗ = L(k)∗ ∈ S F(x̂(k), ŷ(k)) by

Proposition 4.3. Thus, alternatively we can perform the Newton step also in the following way:
4. Newton step: Select n×n matrices A(k),B(k) with rge

(
B(k),A(k)) ∈S F(x̂(k), ŷ(k))∩Z reg

n , com-
pute a solution p of the linear system A(k)p = −ŷ(k) and compute the new iterate x(k+1) =
x̂(k)+∆x(k) with Newton direction ∆x(k) = B(k)p.

Remark 4.5. Note that−ŷ(k) ∈D]F(x̂(k), ŷ(k))(∆x(k)) but we do not necessarily have−ŷ(k) ∈DF(x̂(k), ŷ(k))(∆x(k))
as it is the case in Newton methods based on the graphical derivative, cf. [7, 17, 24].

Which possibility for calculating the Newton direction is actually chosen, depends on the avail-
ability of the respective derivative. Let us analyze the two alternatives for the special case when
F is single-valued and continuously differentiable at x(k). In Algorithm 1, the matrices A(k),B(k)

with rge
(
B(k)T

,A(k)T
) ∈ S ∗F(x̂(k), ŷ(k)) fulfill A(k)T

= ∇F(x̂(k))T B(k)T
and thus the Newton direc-

tion is computed by solving the linear system
(
B(k)∇F(x̂(k))

)
∆x = −B(k)ŷ(k). On the other hand,

given A(k),B(k) with rge
(
B(k),A(k)) ∈ S F(x̂(k), ŷ(k)), we have A(k) = ∇F(x̂(k))B(k) and in this case

the Newton direction is computed via ∆x(k) = B(k)p = −B(k)
(
∇F(x̂(k))B(k)

)−1ŷ(k). The structure of
the second approach resembles the adjoint system method known from PDE-constrained optimization
and optimal control.

We now consider convergence of Algorithm 1.

Proposition 4.6. Assume that F : Rn ⇒ Rn is SCD semismooth∗ at (x̄, ȳ) ∈ gphF. Then for every
ε > 0 there is is some δ > 0 such that the inequality

‖x−CT
L (y− ȳ)− x̄‖ ≤ ε

√
n(1+‖CL‖2)‖(x,y)− (x̄, ȳ)‖ (4.35)

holds for every (x,y) ∈ gphF ∩Bδ (x̄, ȳ) and every L ∈S ∗F(x,y)∩Z reg
n .

Proof. Pick ε > 0 and choose δ > 0 such that (4.30) holds. Now consider any (x,y)∈ gphF∩Bδ (x̄, ȳ)
and any L∈S ∗F(x,y)∩Z reg

n . By Proposition 4.3 we have L= rge (CL, I) and therefore (CLei,ei)∈ L,
i = 1, . . . ,n, where ei denotes the i-th unit vector. From (4.30) we obtain

|〈ei, x̄− x〉−〈CLei, ȳ− y〉|= |〈ei,x−CT
L (y− ȳ)− x̄〉| ≤ ε‖(ei,CLei)‖‖(x,y)− (x̄, ȳ)‖

≤ ε

√
1+‖CL‖2‖(x,y)− (x̄, ȳ)‖

and
‖x−CT

L (y− ȳ)− x̄‖ ≤ ε

√
n(1+‖CL‖2)‖(x,y)− (x̄, ȳ)‖

follows.
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Given η ,κ > 0, we now define for x ∈ Rn the set

G η ,κ
F,x̄ (x) := {(x̂, ŷ,L) | (x̂, ŷ) ∈ gphF, ‖(x̂, ŷ)− (x̄,0)‖ ≤ η‖x− x̄‖,L ∈S ∗F(x̂, ŷ)∩Z reg

n ,‖CL‖ ≤ κ}.

Theorem 4.7. Assume that F is SCD semismooth∗ at (x̄,0)∈ gphF and assume that there are η ,κ > 0
such that for every x 6∈F−1(0) sufficiently close to x̄ we have G L,κ

F,x̄ (x) 6= /0. Then there exists some δ > 0
such that for every starting point x(0) ∈Bδ (x̄) Algorithm 1 either stops after finitely many iterations
at a solution or produces a sequence x(k) which converges superlinearly to x̄, provided we choose in
every iteration (x̂(k), ŷ(k),L(k)) ∈ G η ,κ

F,x̄ (x(k)).

Proof. Using Proposition 4.6 with ȳ = 0, we can find some δ̄ > 0 such that (4.35) holds with ε =
1

2η

√
n(1+κ2)

for all (x,y) ∈ gphF ∩B
δ̄
(x̄,0) and all L ∈S ∗F(x,y)∩Z reg

n . Set δ := δ̄/η and consider

an iterate x(k) ∈Bδ (x̄) 6∈ F−1(0). Then

‖(x̂(k), ŷ(k))− (x̄,0)‖ ≤ η‖x(k)− x̄‖ ≤ δ̄

and consequently

‖x(k+1)− x̄‖ ≤ 1

2η
√

n(1+κ2)

√
n(1+κ2)‖(x̂(k), ŷ(k))− (x̄,0)‖ ≤ 1

2
‖x(k)− x̄‖

by Proposition 4.6. It follows that for every starting point x(0) ∈Bδ (x̄) Algorithm 1 either stops after
finitely many iterations with a solution or produces a sequence x(k) converging to x̄. The superlinear
convergence of the sequence x(k) is now an easy consequence of Proposition 4.6.

So far Algorithm 1 is only a straightforward adaption of the semismooth∗ Newton method from
[14] to SCD mappings. However, in [14] the semismooth∗ Newton method was only guaranteed to
converge under the assumption of strong metric regularity, whereas we will now prove that for its
SCD variant a less restrictive condition is sufficient.

Definition 4.8. A mapping F : Rn ⇒Rn is called SCD regular around (x,y)∈ gphF, if F has the SCD
property around (x,y) and

(y∗,0) ∈ L ⇒ y∗ = 0, ∀L ∈S ∗F(x,y), (4.36)

i.e., S ∗F(x,y) = S ∗F(x,y)∩Z reg
n . Further, we will denote by

scdreg F(x,y) := sup{‖CL‖ | L ∈S ∗F(x,y)}

the modulus of SCD regularity of F around (x,y).

By isometry of the mapping L 7→ L∗ and Proposition 4.3 we obtain readily the following lemma.

Lemma 4.9. The mapping F : Rn ⇒ Rn is SCD regular around (x̄, ȳ) ∈ gphF if and only if

(u,0) ∈ L ⇒ u = 0, ∀L ∈S F(x,y). (4.37)

Further, scdreg F(x,y) = sup{‖CL‖ | L ∈S F(x,y)}.

Remark 4.10. In case of a single-valued, locally Lipschitzian mapping F : Rn → Rn, by virtue of
Lemma 3.11, SCD regularity of F around x̄ means that all matrices belonging to the B-subdifferential
are nonsingular. This is exactly the so-called BD-regularity property from [28].
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Note that SCD regularity is weaker than the metric regularity of F around (x,y). Indeed, condition
(2.6) for metric regularity of F near (x,y) can be equivalently written as

(y∗,0) ∈ gphD∗F(x,y) ⇒ y∗ = 0.

and every subspace L ∈S ∗F(x,y) is contained in gphD∗F(x,y) by Lemma 3.7. The next example
shows that SCD regularity is even strictly weaker than metric regularity, see also Example 5.5 below.

Example 4.11. Consider the SCD mapping

F(x) :=−x+NR−(x) = ∂q(x) with q(x) =−1
2

x2 +δR−(x)

at (0,0). Then

D∗F(0,0)(y∗) =−y∗+


{0} if y∗ < 0
R if y∗ = 0
R+ if y∗ > 0

and therefore the only subspaces contained in gphD∗F(0,0) are {(y∗,−y∗) | y∗ ∈ R} and {0}×
R. Hence F is SCD regular at (0,0), but F is not metrically regular near (0,0) because of 0 ∈
D∗F(0,0)(1).

Lemma 4.12. Let F : Rn ⇒ Rn be SCD regular around (x,y) ∈ gphF. Then scdreg F(x,y)< ∞.

Proof. Assume on the contrary that there is a sequence Lk ∈S ∗F(x,y) with ‖CLk‖> k. Then we can
find (y∗k ,x

∗
k) ∈ Lk such that ‖y∗k‖= 1 and ‖x∗k‖<

1
k . By possibly passing to some subsequence we can

assume that y∗k converges to some y∗ with ‖y∗‖ = 1 and Lk converges in the compact metric space
Zn to some L. Then (y∗,0) = limk→∞(y∗k ,x

∗
k) ∈ L and L ∈ S ∗F(x,y) by Lemma 3.13. Therefore,

L ∈S ∗F(x,y)\Z reg
n contradicting the assumption of SCD regularity.

Proposition 4.13. Assume that F : Rn ⇒ Rn is SCD regular around (x̄, ȳ) ∈ gphF. Then for every
κ > scdreg F(x̄, ȳ) there is a neighborhood W of (x̄, ȳ) such that for every (x,y) ∈ gphF ∩W the
mapping F is SCD regular around (x,y) with modulus

scdreg F(x,y)≤ κ.

Proof. By contraposition. Consider κ > scdreg F(x̄, ȳ) and assume that there are sequences (xk,yk)
gphF−→(x̄, ȳ)

and Lk ∈ S ∗F(xk,yk) with ‖CLk‖ > κ . Then for every k we can find (y∗k ,x
∗
k) ∈ Lk, ‖y∗k‖ = 1 and

‖x∗k‖ <
1
κ

. By possibly passing to some subsequence we can assume that (y∗k ,x
∗
k) converges to some

(y∗,x∗) and Lk converges to some L. Then ‖y∗‖ = 1, ‖x∗‖ ≤ 1
κ

, (y∗,x∗) ∈ L and L ∈ S ∗F(x̄, ȳ) by
Lemma 3.13 implying ‖CL‖ ≥ κ . This yields the contradiction scdreg F(x̄, ȳ)≥ κ .

Proposition 4.14. Let F : Rn ⇒ Rn be SCD regular around (x̄,0) ∈ gphF. Then for every η > 0 and
every κ > scdreg F(x̄,0) there is a neighborhood U of x̄ such that

G η ,κ
F,x̄ (x) = {(x̂, ŷ,L) | (x̂, ŷ) ∈ gphF, ‖(x̂, ŷ)− (x̄,0)‖ ≤ η‖x− x̄‖,L ∈S ∗F(x̂, ŷ)} 6= /0 ∀x ∈U.

Proof. By Proposition 4.13 we can find some positive radius ρ such that F is SCD regular around
(x,y) with modulus scdreg F(x,y)≤ κ for every (x,y) ∈ gphF ∩Bρ(x̄,0). By taking U := Bρ/η(x̄),
for every x ∈U and every (x̂, ŷ) ∈ gphF with ‖(x̂, ŷ)− (x̄,0)‖ ≤ η‖x− x̄‖ we have (x̂, ŷ) ∈Bρ(x̄,0)
and the assertion follows.
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Corollary 4.15. Assume that F is SCD semismooth∗ at (x̄,0) ∈ gphF and SCD regular around (x̄,0).
Then for every η > 0 there is a neighborhood U of x̄ such that for every starting point x(0) ∈ U
Algorithm 1 is well-defined and either stops after finitely many iterations at a solution of (4.28) or
produces a sequence x(k) converging superlinearly to x̄ for any choice of (x̂(k), ŷ(k)) satisfying (4.34)
and any L(k) ∈S ∗F(x̂(k), ŷ(k)).

Remark 4.16. Note that Corollary 4.15 guarantees not only locally superlinear convergence, but also
that the method is locally well-defined, which is an advantage in comparison with the Josephy-Newton
method from [18]. In Theorem 5.2 below we will show that, under the assumptions of Corollary 4.15,
the mapping F is strongly metrically subregular at (x̄,0). Hence, by [5, Theorem 6.1], the conver-
gence of the Josephy-Newton method is also locally superlinear, provided the method is well-defined.
This, however, need not be the case as illustrated in [14, Example 5.13], where the assumptions of
Corollary 4.15 are fulfilled, the semismooth∗ Newton method works well, but the Jospehy-Newton
method collapses.

5 Strong metric subregularity on a neighborhood

We first present a characterization of strong metric subregularity on a neighborhood, cf. Definition
2.8, by means of the outer limiting graphical derivative defined in Definition 3.8.

Theorem 5.1. Consider a mapping F : Rn ⇒Rn and let (x̄, ȳ) ∈ gphF. Then F is strongly metrically
subregular around (x̄, ȳ) if and only if the condition

0 ∈ D]F(x̄, ȳ)(u) ⇒ u = 0 (5.38)

holds and in this case one has

l-subregF(x̄, ȳ) = sup{‖u‖ | ∃v : (u,v) ∈ gphD]F(x̄, ȳ), ‖v‖ ≤ 1}. (5.39)

Proof. We prove the ”if”-part by contraposition. Assume that (5.38) holds but F is not strongly met-

rically subregular around (x̄, ȳ). Then we can find a sequence (xk,yk)
gphF−→(x̄, ȳ) such that either F is

not strongly metrically subregular at (xk,yk) for infinitely many k or limsupk→∞ subregF(xk,yk) = ∞.
After possibly passing to some subsequence, by taking into account Theorem 2.7, in both cases there
is a sequence κk → ∞ and (uk,vk) ∈ gphDF(xk,yk) with ‖vk‖ ≤ 1 such that ‖uk‖ > κk‖vk‖. Defin-
ing (ũk, ṽk) := (uk,vk)/‖uk‖ ∈ gphDF(xk,yk), we have ‖ṽk‖ ≤ 1/κk implying limk→∞ ṽk = 0. By
possibly passing to a subsequence once more, ũk converges to some u with ‖u‖ = 1 and from the
definition of D]F(x̄, ȳ) we obtain (u,0) ∈ gphD]F(x̄, ȳ) contradicting (5.38). This proves the ”if”-
part. In order to show the ”only if”-part assume that (5.38) does not hold, so that there is some

u 6= 0 with (u,0)∈ gphD]F(x̄, ȳ). By definition of D]F(x̄, ȳ) there are sequences (xk,yk)
gphF−→(x̄, ȳ) and

(uk,vk)→ (u,0) with (uk,vk)∈ gphDF(xk,yk). If F is not strongly metrically subregular at (xk,yk) for
infinitely many k, then it is not strongly metrically subregular around (x̄, ȳ) by definition. On the other
hand, if F is strongly metrically subregular at (xk,yk) then vk 6= 0 and subregF(xk,yk) ≥ ‖uk‖/‖vk‖
follows by Theorem 2.7. Hence, limsupk→∞ subregF(xk,yk) = ∞ and F is again not strongly met-
rically subregular around (x̄, ȳ). This proves the ”only if”-part. There remains to show (5.39). By
definition we have

l-subregF(x̄, ȳ) = limsup
(x,y)

gphF−→(x̄,ȳ)

sup{‖u‖ | ∃v : (u,v) ∈ gphDF(x,y),‖v‖ ≤ 1}

22



and therefore there are sequences (xk,yk)
gphF−→(x̄, ȳ) and (uk,vk) ∈ gphDF(xk,yk) with ‖vk‖ ≤ 1 and

‖uk‖ → l-subregF(x̄, ȳ)< ∞. By possibly passing to a subsequence, (uk,vk) converges to some (u,v)
with ‖v‖ ≤ 1. By definition of D]F we have (u,v) ∈ gphD]F(x̄, ȳ) and l-subregF(x̄, ȳ) = ‖u‖ ≤
ξ := sup{‖u‖ | ∃v : (u,v) ∈ gphD]F(x̄, ȳ), ‖v‖ ≤ 1} follows. Next consider a sequence (uk,vk) ∈
gphD]F(x̄, ȳ) with ‖vk‖ ≤ 1 and ‖uk‖ → ξ . Then for every k there are (xk,yk) ∈ gphF and (u′k,v

′
k) ∈

gphDF(xk,yk) such that ‖(xk,yk)− (x̄, ȳ)‖ ≤ 1
k and (‖u′k,v′k)− (uk,vk)‖ ≤ 1

k and

subregF(xk,yk)≥ ξk :=

{‖u′k‖
‖v′k‖

if ‖v′k‖> 1

‖u′k‖ if ‖v′k‖ ≤ 1

follows. In case when ‖v′k‖> 1 we have

|
‖u′k‖
‖v′k‖

−‖u′k‖|=
‖v′k‖−1
‖v′k‖

‖u′k‖ ≤
1

k+1
‖u′k‖

and limk→∞ ξk = ξ follows. Hence l-subregF(x̄, ȳ) ≥ limsupk→∞ ξk = ξ and relation (5.39) is estab-
lished.

From Lemma 3.10 together with Lemma 4.9, we may conclude that strong metric subregularity
around (x̄, ȳ) ∈ gphF implies SCD regularity around (x̄, ȳ) and that l-subregF(x̄, ȳ)≥ scdreg F(x̄, ȳ).
Next we show that SCD regularity in conjunction with SCD semismoothness* also provides a suffi-
cient condition for strong metric subregularity.

Theorem 5.2. Assume that F : Rn ⇒ Rn is SCD regular around (x̄, ȳ) ∈ gphF. Then for every κ >
scdreg F(x̄, ȳ) there is a neighborhood W of (x̄, ȳ) such that F is strongly metrically subregular with
modulus subregF(x,y)≤ κ at every point (x,y) ∈ gphF ∩W where F is SCD semismooth∗ .

Proof. Fixing κ > scdreg F(x̄, ȳ), by Proposition 4.13 there is an open neighborhood W of (x̄, ȳ)
such that for every (x,y) ∈ gphF ∩W the mapping F is SCD regular around (x,y) with modulus
scdreg F(x,y) ≤ κ . Consider (x̃, ỹ) ∈ gphF ∩W where F is SCD semismooth∗ . Assume now
that F is not metrically subregular at (x̃, ỹ) or that subregF(x̃, ỹ) > κ . Then there is some κ ′ > κ

and a sequence xk converging to x̃ such that dist(xk,F−1(ỹ)) > κ ′ dist(ỹ,F(xk)) ∀k. Consider yk ∈
F(xk) with dist(ỹ,F(xk)) = ‖yk− ỹ‖. Then yk converges to ỹ and for all k sufficiently large we have
(xk,yk) ∈ gphF ∩W . Pick Lk ∈S ∗F(xk,yk). Using Propositions 4.6, 4.13 and, by possibly passing
to a subsequence, we may assume that ‖CLk‖ ≤ κ ∀k and

‖xk−CT
Lk
(yk− ỹ)− x̃‖ ≤ 1

k

√
n(1+‖CLk‖2)‖(xk− x̃,yk− ỹ)‖ ≤ 1

k

√
n(1+κ2)(‖xk− x̃‖+‖yk− ỹ‖)

implying
(1−αk)‖xk− x̃‖ ≤ ‖CLk(yk− ỹ)‖+αk‖yk− ỹ‖ ≤ (κ +αk)‖yk− ỹ‖,

where αk := 1
k

√
n(1+κ2). Since αk → 0 as k→ ∞, we have (κ +αk)/(1−αk) < κ ′ for all k suffi-

ciently large and therefore ‖xk− x̃‖< κ ′‖yk− ỹ‖ in contrary to our assumption. This shows that F is
metrically subregular at (x̃, ỹ) and subregF(x̃, ỹ) ≤ κ . Further x̃ must be an isolated point in F−1(ỹ).
Assume on the contrary that there is a sequence xk ∈ F−1(ỹ) converging to x̃. Taking Lk ∈S ∗F(xk, ỹ)
and applying Proposition 4.6 with ε = 1/(2

√
n(1+κ2), we obtain for all k sufficiently large

‖xk− x̃‖= ‖xk−CT
Lk
(ỹ− ỹ)− x̃‖ ≤ 1

2
‖(xk− x̃, ỹ− ỹ)‖= 1

2
‖xk− x̃‖,

a contradiction. This shows that F is even strongly metrically subregular at (x̃, ỹ).
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Remark 5.3. In the special case of a single-valued locally Lipschitzian mapping F : Rn → Rn the
statement of Theorem 5.2 can be derived also from [15, Proposition 1].

For semismooth∗ mappings we arrive thus at the following equivalence.

Corollary 5.4. Assume that F : Rn ⇒ Rn is SCD semismooth∗ around (x̄, ȳ) ∈ gphF. Then F is
strongly metrically subregular around (x̄, ȳ) if and only if F is SCD regular around (x̄, ȳ) and in this
case one has l-subregF(x̄, ȳ) = scdreg F(x̄, ȳ).

Example 5.5. Consider the mapping F := R2 ⇒ R2 given by

F(x1,x2) :=
(

x1
−x2

)
+h(x)+NC(x1,x2),

where C := {(x1,x2) | −1
2 x1 ≤ x2 ≤ 1

2 x1} is a convex polyhedral cone and h : R2 → R2 is any con-
tinuously differentiable mapping satisfying h(0,0) = (0,0), ∇h(0,0) = 0. As the reference point we
take (x̄, ȳ) =

(
(0,0),(0,0)

)
. The mapping NC is a polyhedral mapping and therefore semismooth∗

at any point of its graph by [14]. Further, NC(x) = ∂δC(x) is an SCD mapping by Corollary 3.28.
Thus, F is both an SCD mapping around and semismooth∗ at any point of its graph, because it differs
from NC only by a continuously differentiable mapping. Now let us calculate S ∗F(x̄, ȳ). The critical
cone KC(x̄, ȳ) amounts to C and has therefore the 4 faces C, {(u, 1

2 u) | u ≥ 0}, {(u,−1
2 u) | u ≥ 0}

and {(0,0)}. By using Example 3.29 we conclude that S ∗NC(0,0) consists of the 4 subspaces
L1 :=R2×{(0,0)}, L2 := {((u, 1

2 u),(−1
2 v,v)) | (u,v)∈R2}, L3 := {((u,−1

2 u),(1
2 v,v)) | (u,v)∈R2}

and L4 := {(0,0)}×R2 and Proposition 3.15 tells us that S ∗F(x̄, ȳ) = {T L1,T L2,T L3,T L4} where

T =


1 0 0 0
0 1 0 0
1 0 1 0
0 −1 0 1

 .

Straightforward calculations yield

T L1 = {((u,v),(u,−v)) | (u,v) ∈ R2},T L2 = ((u,
1
2

u),(u− 1
2

v,−1
2

u+ v)) | (u,v) ∈ R2},

T L3 = {((u,−
1
2

u),(u+
1
2

v,
1
2

u+ v)) | (u,v) ∈ R2}, T L4 = {((0,0),(u,v)) | (u,v) ∈ R2}.

Now it easily follows that F is SCD regular around (x̄, ȳ) with

CT L1 =

(
1 0
0 −1

)
, CT L2 =

(4
3

2
3

2
3

1
3

)
, CT L3 =

( 4
3 −2

3
−2

3
1
3

)
, CT L4 =

(
0 0
0 0

)
and ‖CT L1‖ = 1, ‖CT L2‖ = ‖CT L3‖ = 5

3 , ‖CT L4‖ = 0. Hence, by virtue of Theorem 5.2, F is strongly
metrically subregular around (x̄, ȳ) with modulus l-subregF(x̄, ȳ) = 5

3 .
To illustrate this result, we explicitly compute F−1 in case h = 0. One obtains that

F−1(y) =



{
z1(y)

}
if −1

2 y1 + y2 > 0, 2y1 + y2 ≥ 0,{
z1(y),z2(y),z3(y)

}
if −1

2 y1 + y2 ≤ 0, −1
2 y1− y2 ≤ 0,{

z3(y)
}

if −1
2 y1− y2 > 0, 2y1− y2 ≥ 0,{

z4(y)
}

if 2y1 + y2 ≤ 0, 2y1− y2 ≤ 0
}

,

(5.40)
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with the mappings zi(y), i = 1, . . . ,4, in (5.40) specified via

z1(y) :=
(4

3
y1 +

2
3

y2,
2
3

y1 +
1
3

y2

)
, z2(y) := (y1,−y2),

z3(y) :=
(4

3
y1−

2
3

y2,−
2
3

y1 +
1
3

y2

)
, z4(y) := (0,0).

We see that F−1 has the isolated calmness property at every point of its graph close to (0,0), but it is
not single-valued.

6 On strong metric regularity

Our results on strong metric regularity are partly expressed in terms of certain bases for the subspaces
L ∈S F(x̄, ȳ).

Given a mapping F : Rn ⇒ Rn which is graphically Lipschitzian of dimension n at (x̄, ȳ) ∈ gphF
with transformation mapping Φ according to Definition 3.16, we denote by ∇̄ΦF(x̄, ȳ) the collection
of all 2n×n matrices Z such that rge Z ∈S F(x̄, ȳ) and π1(∇Φ(x̄, ȳ)Z) = I.

Note that by Proposition 3.17 for every L∈S F(x̄, ȳ) there exists a unique Z ∈ ∇̄ΦF(x̄, ȳ)∩M (L).
Since for every Lipschitzian mapping f : U → Rn, U ⊂ Rn open, the B-subdifferential ∇ f (u) is
compact for every u ∈U , we conclude from (3.23a) that ∇

Φ
F(x̄, ȳ) is compact as well.

The next statement provides us with an upper approximation of the graphs of the strict derivative
and the limiting coderivative, respectively.

Proposition 6.1. Let F : Rn ⇒ Rn be graphically Lipschitzian at (x̄, ȳ) ∈ gphF with transformation
mapping Φ. Then

gphD∗F(x̄, ȳ)⊆
⋃

Z∈conv∇
Φ

F(x̄,ȳ)

rge Z, (6.41)

gphD∗F(x̄, ȳ)⊆
⋃

Z∈conv∇
Φ

F(x̄,ȳ)

(rge Z)∗ (6.42)

Proof. According to Definition 3.16 consider the open neighborhoods W of (x̄, ȳ), U of w̄ and the
Lipschtitzian mapping f : U → Rn with Φ(gphF ∩W ) = gph f , where w̄ = π1(Φ(x̄, ȳ)). Consider

(u,v) ∈ gphD∗F(x̄, ȳ) together with sequences (x1
k ,y

1
k)

gphF−→(x̄, ȳ), (x2
k ,y

2
k)

gphF−→(x̄, ȳ) and tk ↓ 0 such that
(u,v) = limk→∞(x2

k− x1
k ,y

2
k− y1

k)/tk. For each k let wi
k, i = 1,2 be given by wi

k = π1(Φ(xi
k,y

i
k)). Then

(w2
k−w1

k , f (w2
k)− f (w1

k)) = Φ(x2
k ,y

2
k)−Φ(x1

k ,y
1
k) = ∇Φ(x̄, ȳ)(x2

k− x1
k ,y

2
k− y1

k)+o(‖(x2
k− x1

k ,y
2
k− y1

k)‖)
= ∇Φ(x̄, ȳ)(x2

k− x1
k ,y

2
k− y1

k)+o(tk)

implying that

lim
k→∞

(w2
k−w1

k , f (w2
k)− f (w1

k))

tk
= lim

k→∞

∇Φ(x̄, ȳ)
(x2

k− x1
k ,y

2
k− y1

k)

tk
= ∇Φ(x̄)(u,v) ∈ gphD∗ f (w̄).

Hence π2(∇Φ(x̄)(u,v)) ∈ D∗ f (w̄)(π1(∇Φ(x̄)(u,v))) and by [33, Theorem 9.62] there is some B ∈
conv∇ f (w̄) satisfying π2(∇Φ(x̄)(u,v))=Bπ1(∇Φ(x̄)(u,v)) which is the same as ∇Φ(x̄)(u,v)∈ rge (I,B).
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B can be expressed as a convex combination ∑
N
i=1 αiBi with Bi ∈∇ f (w̄), αi≥ 0, ∑

N
i=1 αi = 1 and there-

fore

(u,v) ∈ ∇Φ(x̄, ȳ)−1rge (I,B) = Φ(x̄, ȳ)−1rge
[ N

∑
i=1

αi

(
I
Bi

)]
= rge

[ N

∑
i=1

αiΦ(x̄, ȳ)−1
(

I
Bi

)]
.

Denoting Zi :=Φ(x̄, ȳ)−1
(

I
Bi

)
we have rge Zi ∈S F(x̄, ȳ) by (3.23a) and π1(Φ(x̄, ȳ)Zi)= I yielding

Zi ∈ ∇
Φ

F(x̄, ȳ). Thus (u,v) ∈ rge Z with Z = ∑
N
i=1 αiZi ∈ conv∇

Φ
F(x̄, ȳ) verifying (6.41).

Now consider (y∗,x∗) ∈ gphD∗F(x̄, ȳ) which is the same as

ST
n (y
∗,x∗) ∈ NgphF(x̄, ȳ) = ∇Φ(x̄, ȳ)T Ngph f (w̄, f (w̄),

where the second equality follows from [33, Exercise 6.7]. Hence z∗ := Sn∇Φ(x̄, ȳ)−T ST
n (y
∗,x∗) ∈

SnNgph f (w̄, f (w̄) = gphD∗ f (w̄) implying π2(z∗) ∈ D∗ f (w̄)(π1(z∗)). By [33, Theorem 9.62] there is
some B ∈ conv∇ f (w̄) such that π2(z∗) = BT π1(z∗) which is the same as z∗ ∈ rge (I,BT ) and

(y∗,x∗) ∈ rge
[
Sn∇Φ(x̄, ȳ)T ST

n

(
I

BT

)]
follows. Taking into account that

rge
[
Sn∇Φ(x̄, ȳ)T ST

n

(
I

BT

)]⊥
= rge

[
Sn∇Φ(x̄, ȳ)−1ST

n

(
B
−I

)]
= rge

[
−Sn∇Φ(x̄, ȳ)−1

(
I
B

)]
,

we obtain

rge
[
Sn∇Φ(x̄, ȳ)T ST

n

(
I

BT

)]∗
= Snrge

[
−Sn∇Φ(x̄, ȳ)−1

(
I
B

)]
= rge

[
∇Φ(x̄, ȳ)−1

(
I
B

)]
.

As we have shown above, the latter subspace equals to rge Z with Z ∈ conv∇
Φ

F(x̄, ȳ) and (y∗,x∗) ∈
(rge Z)∗ follows.

On the basis of Proposition 6.1 we can now establish the following characterization of strong
metric regularity.

Theorem 6.2. Consider a mapping F : Rn ⇒ Rn and let (x̄, ȳ) ∈ gphF.

(i) If F is strongly metrically regular around (x̄, ȳ) then it is graphically Lipschitzian of dimen-
sion n at (x̄, ȳ) with transformation mapping Φ(x,y) = (y,x) and one has that {rge Z | Z ∈
conv∇

Φ
F(x̄, ȳ)}⊆Z reg

n . Further, F is SCD regular around (x̄, ȳ) and regF(x̄, ȳ)= scdreg F(x̄, ȳ).

(ii) Conversely, if F is graphically Lipschitzian of dimension n at (x̄, ȳ) with some transformation
mapping Φ such that {rge Z | Z ∈ conv∇

Φ
F(x̄, ȳ)}⊆Z reg

n then F is strongly metrically regular
around (x̄, ȳ).

Proof. If F is strongly metrically regular around (x̄, ȳ), then by Theorem 2.6 it is clearly graphi-
cally Lipschitzian with the given transformation mapping Φ and from Proposition 3.17 we obtain
S F(x̄, ȳ) = {rge (B, I) | B ∈ ∇ f (ȳ)} where f denotes the Lipschitz continuous localization of F−1

around (ȳ, x̄). Thus

∇
Φ

F(x̄, ȳ) =
{( B

I

)
| B ∈ ∇ f (ȳ)

}
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and consequently every matrix Z ∈ conv∇
Φ

F(x̄, ȳ) is of the form Z =

(
B
I

)
with B ∈ conv∇ f (ȳ).

From this we can easily deduce that L := rge Z ∈Z reg
n and B =CL showing that F is SCD regular. In

order to verify the formula for the modulus of strong metric regularity we use (2.9). Let ε > 0 and
consider (u,v) ∈ gphD∗F(x̄, ȳ) with ‖v‖ ≤ 1 and ‖u‖ ≥ regF(x̄, ȳ)− ε . By Proposition 6.1 there is
some Z ∈ conv∇

Φ
F(x̄, ȳ) and some w ∈ Rn with (u,v) = Zw. Thus there is B̄ ∈ conv∇ f (ȳ) such that

u = B̄w and v = w yielding

regF(x̄, ȳ)− ε ≤ ‖u‖ ≤ ‖B̄‖‖v‖ ≤ ‖B̄‖ ≤ sup{‖B‖ | B ∈ conv∇ f (ȳ)}
= sup{‖B‖ | B ∈ ∇ f (ȳ)}= sup{‖CL‖ | L ∈S F(x̄, ȳ)}= scdreg F(x̄, ȳ).

Since ε > 0 can be chosen arbitrarily small, there holds regF(x̄, ȳ) ≤ scdreg F(x̄, ȳ). On the other
hand, for every L ∈S F(x̄, ȳ) we have L⊆ gphD]F(x̄, ȳ)⊆ gphD∗F(x̄, ȳ) implying

‖CL‖ ≤ sup{‖u‖ | (u,v) ∈ gphD∗F(x̄, ȳ), ‖v‖= 1}

and consequently scdreg F(x̄, ȳ)≤ regF(x̄, ȳ). This proves (i).
The statement (ii) follows from Theorem 2.7 together with Proposition 6.1. If 0∈ gphD∗F(x̄, ȳ)(u)

then there is some Z ∈ conv∇
Φ

F(x̄, ȳ) such that (u,0) ∈ rge Z and u = 0 follows from rge Z ∈Z reg
n .

Similarly, if 0 ∈ D∗F(x̄, ȳ)(y∗) then there is some Z ∈ conv∇
Φ

F(x̄, ȳ) such that (y∗,0) ∈ (rge Z)∗.
Since rge Z ∈ Z reg

n , we have (rge Z)∗ ∈ Z reg
n by Proposition 4.3 and y∗ = 0 follows. Hence, both

(2.8) and (2.6) are fulfilled and strong metric regularity of F has been established.

Consider the special case of a single-valued Lipschitzian mapping F : Rn→ Rn so that Φ(x,y) =
(x,y). Then ∇

Φ
F(x,F(x)) = {(I,B) | B ∈ ∇F(x)} by Lemma 3.11 and therefore

conv∇
Φ

F(x,F(x)) = {(I,B) | B ∈ conv∇F(x)}.

Thus the requirement in Theorem 6.2(ii) that {rge Z | Z ∈ conv∇
Φ

F(x̄, ȳ)}⊆Z reg
n is equivalent to the

condition that every matrix B belonging to Clarke’s generalized Jacobian conv∇F(x) is nonsingular.
Therefore we may consider Theorem 6.2(ii) as a generalization of Clarke’s Inverse Function Theorem,
see, e.g., [6, Theorem 7.1.1], to set-valued mappings.

Note that regF(x̄, ȳ) = scdreg F(x̄, ȳ) whenever F is strongly metrically regular around (x̄, ȳ). In
the following results, where we present sufficient conditions for strong metric regularity, this statement
will not be repeated.

The sufficient condition for strong metric regularity in Theorem 6.2(ii) depends on the particular
basis representation ∇ΦF(x̄, ȳ) of S F(x̄, ȳ). We now want to formulate sufficient conditions for strong
metric regularity in terms of the elements L ∈S F(x̄, ȳ) itself which do not depend on a basis.

Corollary 6.3. Given F : Rn ⇒ Rn and a point (x̄, ȳ) ∈ gphF, assume that S F(x̄, ȳ) = {L̄} is a sin-
gleton. Then F is strongly metrically regular around (x̄, ȳ) if and only if F is graphically Lipschitzian
of dimension n at (x̄, ȳ) and L̄ ∈Z reg

n .

When S F(x̄, ȳ) is a singleton and F is not graphically Lipschitzian at (x̄, ȳ) then F cannot be
strongly metrically regular by Theorem 6.2(i). However, if F is SCD semismooth∗ at (around) (x̄, ȳ),
then it is at least strongly metrically subregular at (around) (x̄, ȳ). Consider the following example.
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Example 6.4. Let q : R→ R be given by q(x) = 2
3 sign(x)|x| 32 . Then ∂q(x) = |x| 12 is not graphically

Lipschitzian of dimension 1 at (0,0) but it is an SCD mapping and SCD semismooth∗ . Further,
S ∂q(0,0) = {{0}×R} is a singleton and clearly {0}×R ∈Z reg

n . Thus we deduce from Corollary
5.4 that ∂q is strongly metrically subregular around (0,0). However ∂q is not strongly metrically
regular around (0,0) because ∂q−1(y) = /0 for every y < 0.

We will now present a basis-independent characterization of strong metric regularity for locally
maximally hypomonotone mappings.

Theorem 6.5. Assume that F : Rn ⇒ Rn is locally maximally hypomonotone at (x̄, ȳ) ∈ gphF. Then
the following two statements are equivalent:

(i) F is SCD regular around (x̄, ȳ) and for every L∈S F(x̄, ȳ) the matrix CL is positive semidefinite.

(ii) F is strongly metrically regular around (x̄, ȳ) and

liminf
(x1,y1),(x2,y2)

gphF−→(x̄,ȳ)

〈x1− x2,y1− y2〉
‖x1− x2‖‖y1− y2‖

≥ 0 (6.43)

with the convention 0/0 := 0.

Proof. We first prove (i)⇒(ii). By Corollary 3.23 there is some λ ≥ 1 such that F is graphically
Lipschitzian at (x̄, ȳ) with transformation mapping Φ(x,y) = (λx+ y,x) and for every Z ∈ ∇

Φ
F(x̄, ȳ)

there is a firmly nonexpansive n× n matrix B, such that Z =

(
B

I−λB

)
. Since F is SCD regular

around (x̄, ȳ), π2(Z) = I − λB is nonsingular and Crge Z = B(I − λB)−1. Consider u ∈ Rn and set
v := (I−λB)u. By the posed assumption, B(I−λB)−1 is positive semidefinite and we obtain

0≤ λ 〈v,B(I−λB)−1v〉= λ 〈v,Bu〉= λ 〈(I−λB)u,Bu〉

implying 〈u,λBu〉 ≥ ‖λBu‖2. Thus λB is firmly nonexpansive and, consequently, ‖2λB− I‖ ≤ 1.
Since I− λB is nonsingular, we deduce from [3, Theorem 3.3] that ‖λB‖ < 1. Now consider Z̄ ∈

conv∇
Φ

F(x̄, ȳ). It follows that Z̄ =

(
B̄

I−λ B̄

)
, where B̄ is some convex combination of matrices Bi

with ‖λBi‖< 1 and ‖2λBi−I‖≤ 1. It follows that ‖λ B̄‖< 1 and ‖2λ B̄−I‖≤ 1. Thus π2(Z̄)= I−λ B̄
is nonsingular and from Proposition 4.3 we may deduce that rge Z̄ ∈Z reg

n . Now strong regularity of
F follows from Theorem 6.2(ii). Next we prove (6.43) by contraposition. Assume on the contrary

that there are sequences (xi
k,y

i
k)

gphF−→(x̄, ȳ), i = 1,2, and some η > 0 such that 〈x1
k − x2

k ,y
1
k − y2

k〉 <
−η‖x1

k − x2
k‖‖y1

k− y2
k‖ for all k. By local hypomonotonicity, 〈x1

k − x2
k ,y

1
k− y2

k〉 ≥ −(λ −1)‖x1
k − x2

k‖2

and therefore λ > 1 and ‖x1
k − x2

k‖ ≥
η

λ−1‖y
1
k − y2

k‖. On the other hand, by strong metric regularity,
choosing c > regF(x̄, ȳ), we have ‖x1

k − x2
k‖ ≤ c‖y1

k − y2
k‖ for all k sufficiently large. Let tk := ‖y1

k −
y2

k‖+‖x1
k−x2

k‖. By possibly passing to a subsequence, (x1
k−x2

k ,y
1
k−y2

k)/tk converges to some (u,v)∈
D∗F(x̄, ȳ) with ‖u‖+ ‖v‖ = 1, η

λ−1‖v‖ ≤ ‖u‖ ≤ c‖v‖ and 〈u,v〉 ≤ −η‖u‖‖v‖. We deduce that both

u and v are nonzero and thus 〈u,v〉 < 0. By Proposition 6.1 there is some Z̄ ∈ conv∇
Φ

F(x̄, ȳ) and

some p ∈ Rn with (u,v) = Z̄ p. As shown above, Z̄ =

(
B̄

I−λ B̄

)
for some n× n matrix B̄ with

‖2λ B̄− I‖ ≤ 1, i.e., λ B̄ is firmly nonexpansive. It follows that

0≤ 〈p,λ B̄p〉−‖λ B̄p‖2 = λ 〈B̄p, p−λ B̄p〉= λ 〈u,v〉,
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contradicting 〈u,v〉< 0. Hence the implication (i)⇒(ii) is verified.
To show the reverse implication note that strong metric regularity implies SCD regularity by The-

orem 6.2. We prove that CL is positive semidefinite for every L ∈ S F(x̄, ȳ) by contradiction. As-
sume that there exists some L ∈ S F(x̄, ȳ) and p ∈ Rn with 〈CL p, p〉 < 0. Since (CL p, p) ∈ L ⊆
D]F(x̄, ȳ) ⊆ D∗F(x̄, ȳ), there are sequences tk ↓ 0, (xk,yk)

gphF−→(x̄, ȳ) and (uk,vk) → (CL p, p) with
(x′k,y

′
k) := (xk,yk)+ tk(uk,vk). It follows that (x′k− xk)/‖x′k− xk‖ = uk/‖uk‖ →CL p, (y′k− yk)/‖y′k−

yk‖= vk/‖vk‖→ p/‖p‖ and therefore

lim
k→∞

〈x′k− xk,y′k− yk〉
‖x′k− xk‖‖y′k− yk‖

=
〈CL p, p〉
‖CL p‖‖p‖

< 0 (6.44)

contradicting (6.43).

Corollary 6.6. Let F : Rn ⇒ Rn be locally monotone around (x̄, ȳ) ∈ gphF. Then the following
statements are equivalent.

(i) F is strongly metrically regular around (x̄, ȳ).

(ii) F is metrically regular around (x̄, ȳ).

(iii) F is SCD regular around (x̄, ȳ) and locally maximally monotone at (x̄, ȳ).

In this case, the matrices CL, L ∈S F(x̄, ȳ), are positive semidefinite.

Proof. The equivalence between (i) and (ii) follows from the definitions of (strong) metric regularity
and [10, Theorem 3G.5]. In view of Theorem 6.5, in order to verify (i)⇒(iii), we only have to show
that F is locally maximally monotone. By taking into account that gphF−1 = {(y,x) | (x,y)∈ gphF},
it follows readily from the definition that F is locally maximally monotone at (x̄, ȳ) if and only if F−1

is locally maximally monotone at (ȳ, x̄). F−1 has a Lipschitz continuous monotone localization and is
therefore locally maximally monotone at (ȳ, x̄) by [22, Lemma 2.1]. This proves (i)⇒(iii). We now
claim that (iii) implies that CL is positive semidefinite for every L ∈S F(x̄, ȳ). Assuming that CL is
not positive semidefinite for some L ∈S F(x̄, ȳ), the same arguments as in the proof of Theorem 6.5
can be used to obtain (6.44) contradicting the local monotonicity of F . Hence our claim holds true
and the implication (iii)⇒(i) follows from Theorem 6.5.

Remark 6.7. Theorem 6.5 improves the sufficient conditions for strong metric regularity obtained by
Nghia et al [25]. E.g., in [25, Corollary 3.11] it is shown that F : Rn ⇒ Rn is strongly metrically
regular around (x̄, ȳ) if

(a) F is locally hypomonotone at (x̄, ȳ) and

(b) D∗F(x̄, ȳ) is positive definite in the sense that 〈u∗,v∗〉 > 0 holds for all u∗ ∈ D∗F(x̄, ȳ)(v∗),
v∗ 6= 0.

We now show that these assumptions imply the assumptions of Theorem 6.5(i). Indeed, by the def-
initeness of the coderivative D∗F(x̄, ȳ) together with the Mordukhovich criterion (2.6) we may de-
duce that F is metrically regular around (x̄, ȳ) and therefore SCD regular as well. Further, for
every L ∈ S F(x̄, ȳ) we have rge (CT

L , I) ⊆ gphD∗F(x̄, ȳ) by Proposition 4.3 and Remark 3.5 im-
plying 〈CT

L p, p〉 > 0 for all p with CT
L p 6= 0 by assumption (b). Hence, CL is positive semidefinite.

By assumption (a) there is some γ ≥ 0 such that γI + F is locally monotone at (x̄, ȳ) and, since
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D∗(γI+F)(x̄,γ x̄+ ȳ) = γI+D∗F(x̄, ȳ) is positive definite, we conclude from the Mordukhovich crite-
rion that γI +F is metrically regular around (x̄,γ x̄+ ȳ). Thus, by Corollary 6.6, the mapping γI +F
is locally maximally monotone at (x̄,γ x̄+ ȳ) and F is locally maximally hypomonotone at (x̄, ȳ) by
the definition. Hence, we have shown that the assumptions of Theorem 6.5(i) are weaker than those
of [25, Corollary 3.11]. When we now consider, e.g., the mapping F(x1,x2) = (−x2,x1) and an arbi-
trary reference point (x̄,F(x̄)), we observe that the positive definiteness assumption (b) is not fulfilled.
Nevertheless, Theorem 6.5 works well and so it in fact improves the mentioned statement in [25].

We now turn our attention to the characterization of tilt-stable minimizers by SCD regularity of
the subdifferential.

Definition 6.8 (tilt-stable minimizers). Let q : Rn→ R̄, and let x̄ ∈ domq. Then:

(i) x̄ is a tilt-stable local minimizer of q if there is a number γ > 0 such that the mapping

Mγ(x∗) := argmin
{

q(x)−〈x∗,x〉 | x ∈Bγ(x̄)
}
, x∗ ∈ Rn, (6.45)

is single-valued and Lipschitz continuous in some neighborhood of x̄∗ = 0 ∈ Rn with Mγ(0) =
{x̄}.

(ii) The exact bound of tilt stability of q at x̄ is defined by

tilt (q, x̄) := limsup
v∗,w∗→0

v∗ 6=w∗

‖Mγ(v∗)−Mγ(w∗)‖
‖v∗−w∗‖

. (6.46)

The theory developed in Section 4 enables us to provide a new characterization of tilt-stable local
minimizers.

Theorem 6.9. For a function q : Rn→ R̄ having 0 ∈ ∂q(x̄) and such that q is both prox-regular and
subdifferentially continuous at x̄ for x̄∗ = 0, the following statements are equivalent:

(i) x̄ is a tilt-stable local minimizer of q.

(ii) ∂q is SCD regular around (x̄,0) and CL is positive semidefinite for every L ∈S ∂q(x̄,0).

Further, if x̄ is a tilt-stable minimizer of q then tilt (q, x̄) = scdreg ∂q(x̄,0).

Proof. If x̄ is a tilt-stable minimizer, we may conclude from [27, Theorem 1.3] that the mapping Mγ

is a single-valued Lipschitzian localization of ∂q−1 around (0, x̄) so that ∂q is strongly metrically
regular around (x̄,0) and tilt (q, x̄) = reg∂q(x̄,0) = scdreg ∂q(x̄,0). By [27, Theorem 1.3], statement
(i) is equivalent to the condition

(iii) The coderivative D∗∂q(x̄,0) is positive definite in the sense that

〈v∗,u∗〉> 0 whenever u∗ ∈ D∗F(x̄, ȳ)(v∗), v∗ 6= 0. (6.47)

So it suffices to prove the equivalence (ii)⇔(iii).
Proof that (ii)⇒ (iii). By Proposition 3.26, there is some λ > 0 such that ∂q is graphically Lip-

schitzian with transformation mapping Φ(x,x∗) = (x+λx∗,x). Further, any Z ∈ ∇̄Φ∂q(x̄,0) satisfies
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rge Z = (rge Z)∗ and is of the form Z =

(
B

1
λ
(I−B)

)
, where B is some symmetric positive semidef-

inite n× n matrix. Consider Z ∈ ∇̄Φ∂q(x̄,0) and set B := π1(Z). Since ∂q is SCD regular around
(x̄,0), the matrix π2(Z) = 1

λ
(I−B) is nonsingular by Proposition 4.3 and Crge Z = λB(I−B)−1. If the

eigenvalues of B are denoted by µ1, . . . ,µn, the eigenvalues of CL are λ µi/(1−µi), i = 1, . . . ,n, and,
together with µi ≥ 0, we conclude that CL is positive semidefinite if and only if max µi = ‖B‖ < 1..
Since ∇

Φ
∂q(x̄;0) is compact, it follows that η :=max{‖π1(Z)‖ | Z ∈∇

Φ
∂q(x̄;0)}< 1. Now consider

(v∗,u∗) ∈ gphD∗F(x̄, ȳ). By Proposition 6.1 there is some Z̄ ∈ conv∇
Φ

∂q(x̄,0) such that (v∗,u∗) ∈
(rge Z̄)∗. The matrix B̄ := π1(Z̄) is a convex combination of symmetric positive semidefinite matrices
Bi satisfying ‖Bi‖ ≤ η . Thus B̄ is symmetric positive semidefinite and ‖B̄‖ ≤ η < 1. By taking into
account π2(Z̄) = 1

λ
(I− B̄), (rge Z̄)⊥ = rge ( 1

λ
(I− B̄,−B̄) and (rge Z̄)∗ = rge Z̄ follows. Thus we may

find some p ∈ Rn with (v∗,u∗) = (B̄p, 1
λ
(I− B̄)p to obtain

〈v∗,u∗〉= 1
λ

pT B̄(I− B̄)p.

The matrix B̄(I− B̄) is symmetric and has eigenvalues µi(1−µi), where µ1, . . . ,µn are the eigenvalues
of B̄. Since 0≤ µi≤η < 1, i= 1, . . . ,n, the matrix B̄(I−B̄) is positive semidefinite implying 〈v∗,u∗〉≥
0. Further, pT B̄(I− B̄)p vanishes if and only if p is a linear combination of eigenvectors associated
with the zero eigenvalues of B̄, i.e., B̄p = v∗ = 0 and (6.47) follows .

Proof that (iii)⇒ (ii). Condition (6.47) implies that the Mordukhovich criterion (2.6) is fulfilled
and we may conclude that ∂q is SCD regular around (x̄,0). Further, for every L ∈ S F(x̄,0) we
have L∗ = rge (CT

L , I) ⊆ gphD∗∂q(x̄,0) by Proposition 4.3 and Lemma 3.7 and therefore (CT
L p, p) ∈

gphD∗∂q(x̄,0) ∀p. From (6.47) we deduce 〈CT
L p, p〉 > 0 for all p with CT

L p 6= 0 and the positive
semidefiniteness of CT

L and CL follows.

Example 6.10. Consider again the mapping F : R2 → R2 from Example 5.5. If h = ∇φ for some
potential φ : Rn → R, we see that the inclusion 0 ∈ F(x) describes in fact the first-order optimality
condition for the optimization problem

min
x∈C

1
2

x2
1−

1
2

x2
2 +φ(x).

Since CT L1 is not positive semidefinite, we conclude from Theorem 6.9 that x̄ = 0 is not a tilt stable
local minimizer. This is also in accordance with [27, Theorem 4.5].

7 Conclusion

Subspaces contained in the graph of the limiting coderivative may definitely serve as a basis for
construction of suitable local approximations in the broad class of SCD multifunctions. It came to us,
however, as a surprise that these subspaces and their counterparts in case of the limiting outer graphical
derivative conceal a lot of information about stability behavior of the considered mappings. The
developed theory makes use of notions, mimicking the generalized derivatives and coderivatives in
the ”standard” generalized differential calculus. However, their structure is, in most cases, somewhat
simpler when compared with the standard notions and so the derived new characterization of strong
metric (sub)regularity and tilt stability are typically easier to work with. Finally, let us point out that
the property of strong metric subregularity around the reference point, characterized via the subspaces
contained in the limiting outer graphical derivative, seems to be a weak stability property ensuring the
locally superlinear convergence of the semismooth* Newton method.
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