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Summary. Fluid-structure interaction problems arise in many application fields
such as flows around elastic structures or blood flow problems in arteries. One
method for solving such a problem is based on a reduction to an equation on the
interface, involving the so-called Steklov-Poincaré operators. This interface equation
is solved by a Newton iteration for which directional derivatives with respect to the
interface perturbation have to be evaluated appropriately. One step of the Newton
iteration requires the solution of several decoupled linear sub-problems in the struc-
ture and the fluid domains. These sub-problems are spatially discretized by a finite
element method on hybrid meshes containing different types of elements. For the
time discretization implicit first-order methods are used for both sub-problems. The
discretized equations are solved by algebraic multigrid methods.

1 Problem Setting of the Fluid-Structure interaction

1.1 Geometrical Description

Let Ω0 denote the initial domain at time t = 0 consisting of the structure
and the fluid domains Ωs

0 and Ωf
0, respectively. The domain Ω(t) at time t

is composed of the deformable structure domain Ωs(t) and the fluid domain
Ωf(t). The corresponding interface Γ (t) is evolving from the initial interface
Γ0.

The evolution of Ω(t) is obtained by two families of mappings:

Lt : Ωs
0 × R+ → Ωs(t) and At : Ωf

0 × R+ → Ωf(t).

The maps Lt = L(·, t) and At = A(·, t) track the structure and the fluid
domains in time (see Fig. 1 for an illustration). They satisfy the continuity
condition of the velocity on the interface Γ (t), i.e.
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Lt = At on Γ (t). (1)
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Fig. 1. Two families of mappings

The structure problem is described in a Lagrangian framework. Therefore,
the position of a point x0 ∈ Ωs

0 at time t is given by

x(x0, t) ≡ L(x0, t) = x0 + ds(x0, t),

where ds(x0, t) denotes the displacement ds(x0, t) of the structure domain.
Correspondingly, the position of any point x0 ∈ Ωf

0 at time t is given by

x(x0, t) ≡ A(x0, t) = x0 + df(x0, t),

where df(x0, t) denotes the displacement of the fluid domain. The fluid prob-
lem is stated in an Arbitrary-Lagrangian-Eulerian (ALE) framework. Using
the continuity condition (1), df(x0, t) is determined by an arbitrary extension
of its value on the interface df = Ext(ds|Γ0

), e.g. the harmonic extension:

−∆df = 0 in Ωf
0, df = ds on Γ0, and df = 0 on Γin(t) ∪ Γout(t). (2)

Furthermore, we introduce the domain velocities by

ws(x0, t) :=
∂ds

∂t
(x0, t) and ŵf(x0, t) :=

∂df

∂t
(x0, t)

for the structure and the fluid domains, respectively.

1.2 The Physical Model

The Lagrange formulation of the pure displacement model of linearized elas-
ticity is defined in the reference material configuration Ωs

0. The state variable
ds satisfies the momentum balance law
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ρs
∂2ds

∂t2
− div(σs(d

s)) = fs in Ωs
0, (3)

and the boundary conditions

σs(d
s)ns = 0 on Γ n

0 and ds = 0 on Γ d
0 , (4)

where ρs is the density, σs the first Piola-Kirchoff stress tensor, fs is the
external force density, and ns is the outward normal of Ωs

0. We use the lin-
ear Saint-Venant Kirchoff elastic model: σs(d

s) = 2µlε(ds) + λldiv(ds)I with
ε(ds) = (∇ds + (∇ds)T )/2, and the Lamé constants λl and µl.

The system of equations for the incompressible fluid problem in the ALE
framework is obtained from the balance law of momentum

ρf
∂u

∂t

∣

∣

∣

∣

x0

+ ρf

(

(u − wf) · ∇
)

u − 2µdivε(u) + ∇p = 0 in Ωf(t), (5)

mass conservation
divu = 0 in Ωf(t), (6)

and properly chosen boundary conditions

σf(u, p)nf = gin on Γin(t) and σf(u, p)nf = 0 on Γout(t), (7)

where ρf is the fluid density, µ is the dynamic viscosity, σf(u, p) = −pI+2µε(u)
and ε(u) = (∇u+(∇u)T)/2 are the Cauchy stress tensor σf and the strain rate
tensor ε, respectively. Here the ALE time derivative of u(x, t) is introduced:

∂u

∂t

∣

∣

∣

∣

x0

:=
∂

∂t
(u ◦ At) ◦ (At)

−1
=

∂u

∂t
+ (wf · ∇)u

for x ∈ Ωf(t), where wf(x, t) = ŵf ◦ (At)
−1

(x).
When coupling the two sub-problems together, interface conditions are

needed. In particular, no-slip conditions on the interface Γ0 are explicitly
imposed at time t on Γ0 between the structure and the fluid domains:

u ◦ At|Γ0
=

∂ds

∂t

∣

∣

∣

∣

Γ0

. (8)

The second interface condition is the equilibrium of normal stresses:

(σf(u, p)nf) ◦ At + σs(d
s)ns = 0. (9)

To summarize, the complete model consists of problem (2), equations (3), (5),
(6), boundary conditions (4), (7), and interface conditions (8), (9) for the state
variables ds, u, p, df.
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1.3 Reformulation of the Model

As in [1], we express the interface conditions in terms of the so-called Steklov-
Poincaré operators for which we introduce the interface variable λ(t) by ds =
df = λ for time t at Γ0. Then the no-slip interface condition is automatically
satisfied.

Let Ss(λ) denote the Neumann data σs(d
s)ns of the structure problem,

where the displacement ds := ds(x0, t) satisfies the equations (3), (4) with
presribed Dirichlet data ds = λ on the interface Γ0.

Let Sf(λ) denote the Neumann data σf(u, p)nf ◦ At of the fluid problem,
where u and p are determined in the following way: We first compute the
harmonic extension df := df(x0, t) by solving (2) with Dirichlet condition df =
λ on Γ0. Then the fluid domain is given by Ωf(t) = df + Ωf

0 and we compute
u and p by solving (5), (6), (7) with presribed Dirichlet data u ◦ At = ∂λ/∂t
on the interface Γ0.

Then the coupled problem is reduced to the following equation

S(λ) := Ss(λ) + Sf(λ) = 0,

which is the so-called Steklov-Poincaré equation.

1.4 Time Semi-Discretized Weak Formulations

We need the following function spaces V s = [H1(Ωs
0)]

3, V s
0 = {vs ∈ V s|vs =

0 on Γ d
0

⋃

Γ0}, and V s
g (t) = {vs ∈ V s|vs = λ(t) on Γ0} for the structure. For

the fluid, we define Df = [H1(Ωf
0)]

3, Df
0 = {d ∈ Df|d = 0 on Γ0}, Df

g(t) =

{d ∈ Df|d = λ(t) on Γ0}, V f(t) = {vf|vf ◦ xf
t ∈ [H1(Ωf

0)]
3}, V f

0 (t) = {vf ∈
V f(t)|vf ◦ xf

t = 0 on Γ0}, V f
g (t) = {vf ∈ V f

0 |v
f ◦ xf

t = wf ◦ xf
t on Γ0}, and

Qf(t) = {qf|qf ◦xf
t ∈ L2(Ωf

0)}, where H1(Ωs
0) and H1(Ωf

0) denote the standard
Sobolev spaces.

Time Semi-Discretized Structure Weak Formulation

We denote the time step size by δt and introduce the time level tn = nδt.
For the time discretization of the structure problem, we follow the strategy

in [1], where the Newmark method with γ = 2β = 1 was proposed:

∫

Ωs
0

ρs
∂2ds

∂t2
· vsdx0 ≈

2

δt2

∫

Ωs
0

ρsd
s,n+1vsdx0 −

2

δt2

∫

Ωs
0

ρs(d
s,n + δtws,n)vsdx0.

Here ws,n is the structure domain velocity at time tn. Using the calculated
displacement ds,n+1 at time tn+1, we update the structure domain velocity
ws,n+1 = 2(ds,n+1 − ds,n)/δt − ws,n. This leads to the following variational
problem, which must be solved in each time step:

Find ds,n+1 = ds(tn+1) ∈ V s
g (tn+1) such that for all vs ∈ V s

0 :
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2

δt2

∫

Ωs
0

ρsd
s,n+1vsdx0 +

∫

Ωs
0

[λldivds,n+1divvs + 2µlǫ(ds,n+1) : ǫ(vs)]dx0

=
2

δt2

∫

Ωs
0

ρs(d
s,n + δtws,n)vsdx0.

Time Semi-Discretized Fluid Weak Formulation

Firstly, we compute the harmonic extension of the fluid domain:
Find df,n+1 ∈ Df

g(t
n+1) such that for all φ ∈ Df

0:

∫

Ωf
0

∇df,n+1 : ∇φdx0 = 0.

Then the computational fluid domain is given by Ωf(tn+1) = df,n+1 +Ωf
0, and

we set wf,n+1 = ((df,n+1 − df,n)/δt) ◦ (Atn+1)
−1

for the fluid domain velocity.
For the fluid problem an implicit Euler scheme is used:

d

dt

∫

Ωf(t)

ρfu · vfdx

∣

∣

∣

∣

∣

tn+1

≈

∫

Ωf(tn+1)
ρfu

n+1 · vf,n+1dx −
∫

Ωf(tn)
ρfu

n · vf,ndx

δt
,

where vf = v̂f ◦ (At)
−1

, in particular, vf,k = v̂f ◦ (Atk)
−1

. The non-linear
convective term is treated in a semi-implicit way (see [2]). Then we obtain the
following time semi-implicit fluid weak formulation:

Find (un+1, pn+1) = (u(tn+1), p(tn+1)) ∈ V f
g (tn+1) × Qf(tn+1) such that

for all (vf,n+1, qf,n+1) ∈ V f
0 (tn+1) × Qf(tn+1):

1

δt

∫

Ωf(tn+1)

ρfu
n+1 · vf,n+1dx −

∫

Ωf(tn+1)

ρf

(

divwf,n+1
)

un+1 · vf,n+1dx

+

∫

Ωf(tn+1)

ρf

((

ûn − wf,n+1
)

· ∇
)

un+1 · vf,n+1dx

+ 2µ

∫

Ωf(tn+1)

ε(un+1) : ε(vf,n+1)dx −

∫

Ωf(tn+1)

pn+1 divvf,n+1dx

=
1

δt

∫

Ωf(tn)

ρfu
n · vf,ndx +

∫

Γin(tn+1)

gin · vf,n+1ds,

−

∫

Ωf(tn+1)

qn+1 divuf,n+1dx = 0,

where ûn = un ◦ Atn ◦ (Atn+1)
−1

.

The variational form of the interface equation

In the weak form, the previously introduced Steklov-Poincaré operators be-
come operators from the Sobolev space H1/2(Γ0) (which is the space of traces
of H1-functions on Γ0) to its dual H−1/2(Γ0):
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Ss : H1/2(Γ0) → H−1/2(Γ0), Sf : H1/2(Γ0) → H−1/2(Γ0).

Then we end up with the following problem:
Find λ ∈ H1/2(Γ0) such that for all µ ∈ H1/2(Γ0):

〈Sf(λ), µ〉Γ0
+ 〈Ss(λ), µ〉Γ0

= 0. (10)

2 Newton’s method for the interface equation

The problem (10) has to be solved at each time level t = tn+1 = tn + δt. For
simplicity, we will drop the time variables in the following.

Newton’s method applied to the interface equation is given by

λk+1 = λk + δλk

with
(

S
′

s(λ
k) + S

′

f (λ
k)

)

δλk = −
(

Ss(λ
k) + Sf(λ

k)
)

.

After spatial discretization this linear problem is solved by the GMRES
method.

The method requires the evaluation of Ss(λ), Sf(λ), S′

s(λ)δλ and S′

f(λ)δλ,
see [9] for details how to compute these quantities.

3 Finite element discretization on hybrid meshes

The spatial discretization was done by a finite element method. Let Mh be the
original subdivision of the domain Ω ⊂ R

3 into tetrahedra, hexahedra, prisms
and pyramids, which is assumed to be admissible, i.e. any two elements from
Mh either have no intersection, or have a common face, or have a common
edge, or have a common vertex. Let Th be the admissible subdivision into
tetrahedra, obtained in the following way: we add points at the centers of
quadrilateral faces and subdivide each of them into four triangles, then add a
point at the center of the element, and finally connect this center point with
all the original vertices and the face center points.

As our finite element space on the hybrid mesh Mh we first take the stan-
dard P1 finite element space on the underlying tetrahedral mesh Th and then
replace the degrees of freedom associated to the added points by averaging
over neighboring vertices of the original mesh.

This extended P1 finite element is used for discretizing the structure
problem and the interface problem. For the fluid problem we also used the
same finite element complemented by a pressure stabilization Petrov-Galerkin
(PSPG) and a streamline upwind Petrov-Galerkin (SUPG) technique.
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4 AMG for the structure and the fluid sub-problems

After discretization in time and space, linear systems of the form

Ashdsh = f
sh

and

(

Afh BT
1,fh

B2,fh −Cfh

) (

uh

p
h

)

=

(

f
fh

g
fh

)

(11)

arise at each time step for the structure and the fluid sub-problems, respec-
tively.

The first problem in (11) is symmetric positive and definite, for which the
AMG solvers were studied in [3, 4], where a generalization of the classical
AMG approach (see [5]) for scalar problems to systems of partial differential
equations is discussed.

The system matrix of the second problem in (11) is a saddle point matrix.
The AMG approach applied to this type of problem, in particular, to the
Stokes or the linearized Navier-Stokes (Oseen) problem, stems from previous
contributions in [6, 7, 8]. We extended these results to the system arising from
the stabilized finite element discretization for the Oseen problem on hybrid
meshes. In particular, we constructed a stabilized P1-P1 hierarchy for the
AMG solver on these hybrid meshes, see [9].

5 Numerical results

We simulate a pressure wave in a cylinder of length 5 cm and radius 5 mm
at rest. The thickness of the structure is 0.5 mm. The structure is considered
linear and clamped at both the inlet and outlet. The fluid viscosity is set to
µ = 0.035, the Lamé constants to µl = 1.15 × 106 and λl = 1.73 × 106, the
density to ρf = 1.0 and ρs = 1.2. The fluid and structure are initially at rest
and a pressure of 1.332× 104 dyn/cm2 is set on the inlet for a time period of
3 ms. Two meshes3 (see surface meshes in Fig.5 as an illustration) are used
for simulations:

For all simulations, we use the same time step size δt = 1 ms and run the
simulation until the same end time t = 20 ms as in [1].

A relative error reduction by a factor of 10−5 is achieved in 2 to 3 outer
iterations. Each of these iterations requires 6 to 8 GMRES iterations for a rel-
ative error reduction by a factor of 10−5. For solving the structure problem,
about 10 preconditioned conjugate gradient iterations with AMG precondi-
tioning are needed for a relative error reduction by a factor of 10−8, for the
fluid problem about 5 AMG iterations for a relative error reduction by a factor
of 10−8. Almost the same numbers of iterations were observed for the coarse
and the fine mesh.

3 All meshes in our test examples were provided by Dipl.- Ing. Ferdinand Kickiger,
CAE Software Solutions Wolfkersbhelstr. 23, A-3730 Eggenburg, Austria. See
webpage: www.meshing.org.
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(a) coarse mesh (b) fine mesh

Fig. 2. Fine and coarse meshes for simulations.
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ods Appl. Mech. Engrg., 195:5797–5812, 2006.
[2] M. A. Fernández and M.Moubachir. A Newton method using exact Ja-

cobians for solving fluid-structure coupling. Comput. and Struct., 83(2-
3):127–142, 2005.

[3] M. Griebel, D. Oeltz, and M. A. Schweitzer. An algebraic multigrid method
for linear elasticity. SIAM. J. Sci. Comput., 25(2):385–407, 2003.

[4] S. Reitzinger. Algebraic Multigrid Methods for Large Scale Finite Element

Equations. PhD thesis, Johannes Kepler University Linz, 2001.
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