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Assumptions

Let Ω ⊂ R2 be a bounded, convex and polygonal domain with
boundary Γ

Let κ ∈ L∞(Ω) and γ ∈ L∞(Ω) be smooth functions Ω→ R with
κ(x) ≥ κ0 > 0 for all x ∈ Ω

Let b : Ω→ R2 be a smooth vector-valued function, b ∈ [L∞(Ω)]2

The problem

Lp := div(−κ∇p + bp) + γp = f in H−1(Ω),

p = 0 on Γ
(1)

is solvable for any f ∈ H−1(Ω) and the estimates

‖p‖1,Ω ≤ C‖f ‖−1,Ω

and

‖p‖2,Ω ≤ C‖f ‖0,Ω

hold with a constant C independent of f .
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Remarks

Existence and uniqueness is assumed!

Also existence and uniqueness for the adjoint operator equation

The following analysis do also hold for κ being a tensor
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Variational Formulation

Definition

Define

a(p, q) :=

∫
Ω
κ∇p∇q dx ,

b(p, q) := −
∫

Ω
p(b · ∇q) dx ,

c(p, q) :=

∫
Ω
γpq dx ,

B(p, q) := a(p, q) + b(p, q) + c(p, q).

Variational formulation

Find p ∈ H1
0 (Ω) such that

B(p, q) = (f , q)0 ∀q ∈ H1
0 (Ω). (2)
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Variational Formulation

The assumptions above imply that B(·, ·) fulfills

|B(p, q)| ≤ M‖p‖1‖q‖1 for p, q ∈ H1(Ω)

and

sup
q∈H1

0

B(p, q)

‖q‖1
≥ CB‖p‖1 for p ∈ H1

0 (Ω)

for some CB > 0 independent of p.

( JKU Linz ) Anisotropic Polytopal Meshes January 08, 2019 8 / 31



Outline

1 The Problem

2 Variational Formulation

3 VEM Approximation

4 Error Estimates

5 Numerical Experiments

( JKU Linz ) Anisotropic Polytopal Meshes January 08, 2019 9 / 31



The Virtual Element Space

Let Th be a decomposition of Ω into star-shaped polygons E , s.t.,
1 every E is star-shaped w.r.t. every point of a disk with radius ρEhE

2 every edge e of E has length |e| ≥ ρEhE

Let Eh denote the set of edges e of Th
hE = diam(E ), h = max

E∈Th
hE
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The Virtual Element Space

Definition (Preliminary local space)

For any integer k ≥ 1 and any element E we define the preliminary local
space by

Q̃k
h(E ) := {q ∈ H1(E ) : q|e ∈ Pk(e)∀e ∈ ∂E ,∆q ∈ Pk−2(E )}

Definition

For all qh ∈ Q̃k
h(E ) we define the linear operators

(D1) the values qh(Vi ) at the vertices Vi of E

and for k ≥ 2

(D2) the edge moments
∫
e qhpk−2 ds, pk−2 ∈ Pk−2(e), on each e of

E ,

(D3) the internal moments
∫
E qhpk−2 dx , pk−2 ∈ Pk−2(E ).
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The Virtual Element Space

For each E and all k the operators D1 − D3 satisfy

{q ∈ Pk(E )} ∧ {Di (q) = 0, i = 1, 2, 3} ⇒ {q = 0}

These properties allow to construct a projection Q̃k
h(E )→ Pk

Set Dqh := (D1 − D3)(qh) and choose suitable symmetric, positive
bilinear form G
For qh ∈ Q̃k

h(E ) we define ΠGk qh as the unique solution of

G(Dqh − DΠGk qh,Dz) = 0 ∀z ∈ Pk .
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The Virtual Element Space

Recall Π∇k from the last 2 Seminars:
For any q ∈ H1

0 (Ω) the function Π∇k q on each E is in Pk(E ) and is
defined by

(∇(Π∇k q − q),∇pk)0,E = 0

and ∫
∂E

(Π∇k q − q) ds = 0

for all pk ∈ Pk .

For all qh ∈ Q̃k
h(E ) the polynomial Π∇k qh can be computed using

only the values of D calculated on qh
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The Virtual Element Space

Definition (Virtual element space)

The local virtual element space is defined by

Qk
h(E ) :=

{
q ∈ Q̃k

h(E ) :

∫
E

qpk dx =

∫
E

(Π∇k q)pk dx

∀pk ∈ (Pk\Pk−2(E ))

}
where (Pk\Pk−2(E )) denotes the polynomials in Pk(E ) that are L2(E )
orthogonal to Pk−2(E ).

The global virtual element space is

Qk
h :=

{
q ∈ H1

0 (Ω) : q|E ∈ Qk
h(E ) ∀E ∈ Th

}
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The Virtual Elemnt Space

Also recall Π0
k the L2 projection onto Pk defined by

(q −Π0
kq, pk)0,E = 0 ∀pk ∈ Pk

The set of operators (D) is a set of dofs for Qk
h(E )

The dofs (D) define an interpolation operator

The local virtual element space Qk
h(E ) satisfies

1 Pk(E ) ⊆ Qk
h(E )

2 for all qh ∈ Qk
h(E )

the function Π∇k qh,
the function Π0

kqh and
the vector function Π0

k−1∇qh

can be computed from the dofs (D) of qh

The proofs can be found in [1, 2, 3].
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The Discrete Problem

Denote by aE (·, ·), bE (·, ·), cE (·, ·) and BE (·, ·) the restrictions of the
previously defined bilinear forms to E

Let SE (ph, qh) be a symmetric bilinear form on Qk
h(E )×Qk

h(E )

SE (·, ·) scales like aE (·, ·) on the kernel of Π∇k , i.e., there exist
0 < α∗ ≤ α∗ independent of h such that

α∗a
E (qh, qh) ≤ SE (qh, qh) ≤ α∗aE (qh, qh)

for all qh ∈ Qk
h(E ) with Π∇k qh = 0.
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The Discrete Problem

Definition

Define on each E ∈ Th and for every ph, qh ∈ Qk
h(E ) the local forms

aEh (ph, qh) :=

∫
E
κ
[
Π0

k−1∇ph

]
·
[
Π0

k−1∇qh

]
dx+

SE ((I −Π∇k )ph, (I −Π∇k )qh),

bE
h (ph, qh) := −

∫
E

[
Π0

k−1ph

] [
b ·Π0

k−1∇qh

]
dx ,

cE
h (ph, qh) :=

∫
E
γ
[
Π0

k−1ph

] [
Π0

k−1qh

]
dx ,

(fh, qh)E :=

∫
E

fΠ0
k−1qh dx ,

BE
h (ph, qh) := aEh (ph, qh) + bE

h (ph, qh) + cE
h (ph, qh).
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The Discrete Problem

For ph, qh ∈ Qk
h the local forms are summed up

Approximate Problem

Find ph ∈ Qk
h such that

Bh(ph, qh) = (fh, qh) ∀qh ∈ Qk
h . (3)
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The Discrete Problem

Remarks

1 Since Π∇k is a projection

SE ((I −Π∇k )pk , (I −Π∇k )qh) = 0 ∀pk ∈ Pk , ∀qh ∈ Qk
h(E )

2 The choice

aEh (ph, qh) :=

∫
E
κ
[
∇Π∇k ph

]
·
[
∇Π∇k qh

]
dx+

SE ((I −Π∇k )ph, (I −Π∇k )qh),

as supposed in [2] yiels heavy losses in the order of convergence for
k ≥ 3, if κ∇p is a gradient this choice does work.

( JKU Linz ) Anisotropic Polytopal Meshes January 08, 2019 19 / 31



Outline

1 The Problem

2 Variational Formulation

3 VEM Approximation

4 Error Estimates

5 Numerical Experiments

( JKU Linz ) Anisotropic Polytopal Meshes January 08, 2019 20 / 31



Preliminary Results

Lemma (Continuity)

The bilinear form Bh(·, ·) is continuous in Qk
h ×Qk

h , that is,

|Bh(ph, qh)| ≤ Cκ,b,γ‖ph‖1‖qh‖1 ph, qh ∈ Qk
h

where Cκ,b,γ > 0 does not depend on h.

Proof.

Whiteboard.
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Preliminary Results

Lemma (Consistency)

For all p sufficiently regular and for all qh ∈ Qk
h it holds

|BE (Π0
kp, qh)− BE

h (Π0
kp, qh)| ≤ Cκ,b,γhk

E‖p‖k+1,E‖qh‖1,E ∀E ∈ Th.

Proof.

For a proof see [3].
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Preliminary Results

Lemma (Discrete inf-sup condition)

The bilinear form Bh(·, ·) satisfies the following condition: there exists an
h0 > 0 and a constant CB such that, for all h < h0 it holds

sup
qh∈Qk

h

Bh(ph, qh)

‖qh‖1
≥ CB‖ph‖1 ∀ph ∈ Qk

h .

Proof.

For a proof see [3].
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H1- estimate

Theorem (H1-estimate)

For h sufficiently small, the discrete problem (3) has a unique solution
ph ∈ Qk

h and the error estimate

‖p − ph‖1 ≤ Chk(‖p‖k+1 + |f |k)

holds with a constant C depending on κ, b and γ but independent of h.

Proof.

‖p − ph‖1 ≤ ‖p − pI‖1︸ ︷︷ ︸
X

+ ‖pI − ph‖1︸ ︷︷ ︸
Whiteboard

.
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L2- estimate

Theorem (L2-estimate)

For h sufficiently small, the discrete problem (3) has a unique solution
ph ∈ Qk

h and the error estimate

‖p − ph‖0 ≤ Chk+1(‖p‖k+1 + |f |k)

holds with a constant C depending on κ, b and γ but independent of h.

Proof.

For a proof see [3].
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Numerical Experiments

Consider problem (1) with the choice Ω = (0, 1)2 and

κ =

(
y 2 + 1 −xy
−xy x2 + 1

)
, b = (x , y), γ = x2 + y 3

and with BC and rhs such that the exact solution is

pex(x , y) = x2y + sin(2πx)sin(2πy) + 2.

Comparison of pex with the L2-projection of ph to Pk

Comparison of |pex −Π0
kph| at the maximum of pex

which is approx. at (0.781, 0.766)
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Numerical Experiments

Four sequences of meshes with 25, 100, 400, 1600 polygons for each
different mesh

Figure: Considered meshes Lloyd-0, Lloyd-100, square, concave
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Numerical Experiments

Convergence results for k = 1

Figure: Convergence rates for the current and the previous choice of aEh (·, ·),
L2 rate for previous aEh (·, ·) at bottom right
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Numerical Experiments

Convergence results for k = 4

Figure: Convergence rates for the current and the previous choice of aEh (·, ·),
L2 rate for previous aEh (·, ·) at bottom right
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