Virtual Element Method for general second-order elliptic problems on polygonal meshes

Rainer Schneckenleitner
JKU Linz
January 08, 2019

Overview

(1) The Problem
(2) Variational Formulation
(3) VEM Approximation
(4) Error Estimates
(5) Numerical Experiments

Outline

(1) The Problem

(2) Variational Formulation

(3) VEM Approximation

4 Error Estimates
(5) Numerical Experiments

Assumptions

- Let $\Omega \subset \mathbb{R}^{2}$ be a bounded, convex and polygonal domain with boundary Γ
- Let $\kappa \in L^{\infty}(\Omega)$ and $\gamma \in L^{\infty}(\Omega)$ be smooth functions $\Omega \rightarrow \mathbb{R}$ with $\kappa(x) \geq \kappa_{0}>0$ for all $x \in \Omega$
- Let $b: \Omega \rightarrow \mathbb{R}^{2}$ be a smooth vector-valued function, $b \in\left[L^{\infty}(\Omega)\right]^{2}$
- The problem

$$
\begin{array}{rrr}
\mathcal{L} p:=\operatorname{div}(-\kappa \nabla p+b p)+\gamma p=f & \text { in } H^{-1}(\Omega), \tag{1}\\
p=0 & \text { on } \Gamma
\end{array}
$$

is solvable for any $f \in H^{-1}(\Omega)$ and the estimates

$$
\|p\|_{1, \Omega} \leq C\|f\|_{-1, \Omega}
$$

and

$$
\|p\|_{2, \Omega} \leq C\|f\|_{0, \Omega}
$$

hold with a constant C independent of f.

Remarks

- Existence and uniqueness is assumed!
- Also existence and uniqueness for the adjoint operator equation
- The following analysis do also hold for κ being a tensor

Outline

(1) The Problem

(2) Variational Formulation
(3) VEM Approximation
(4) Error Estimates
(5) Numerical Experiments

Variational Formulation

Definition

Define

$$
\begin{aligned}
a(p, q) & :=\int_{\Omega} \kappa \nabla p \nabla q d x \\
b(p, q) & :=-\int_{\Omega} p(b \cdot \nabla q) d x \\
c(p, q) & :=\int_{\Omega} \gamma p q d x \\
B(p, q) & :=a(p, q)+b(p, q)+c(p, q)
\end{aligned}
$$

Variational formulation

Find $p \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
B(p, q)=(f, q)_{0} \quad \forall q \in H_{0}^{1}(\Omega) \tag{2}
\end{equation*}
$$

Variational Formulation

- The assumptions above imply that $B(\cdot, \cdot)$ fulfills

$$
|B(p, q)| \leq M\|p\|_{1}\|q\|_{1} \text { for } p, q \in H^{1}(\Omega)
$$

and

$$
\sup _{q \in H_{0}^{1}} \frac{B(p, q)}{\|q\|_{1}} \geq C_{B}\|p\|_{1} \text { for } p \in H_{0}^{1}(\Omega)
$$

for some $C_{B}>0$ independent of p .

Outline

(1) The Problem

(2) Variational Formulation

(3) VEM Approximation
(4) Error Estimates
(5) Numerical Experiments

The Virtual Element Space

- Let \mathcal{T}_{h} be a decomposition of Ω into star-shaped polygons E, s.t.,
(1) every E is star-shaped w.r.t. every point of a disk with radius $\rho^{E} h_{E}$
(2) every edge e of E has length $|e| \geq \rho^{E} h_{E}$
- Let \mathcal{E}_{h} denote the set of edges e of \mathcal{T}_{h}
- $h_{E}=\operatorname{diam}(E), h=\max _{E \in \mathcal{T}_{h}} h_{E}$

The Virtual Element Space

Definition (Preliminary local space)

For any integer $k \geq 1$ and any element E we define the preliminary local space by

$$
\tilde{\mathcal{Q}}_{h}^{k}(E):=\left\{q \in H^{1}(E):\left.q\right|_{e} \in \mathbb{P}_{k}(e) \forall e \in \partial E, \Delta q \in \mathbb{P}_{k-2}(E)\right\}
$$

Definition

For all $q_{h} \in \tilde{\mathcal{Q}}_{h}^{k}(E)$ we define the linear operators

- $\left(D_{1}\right)$ the values $q_{h}\left(V_{i}\right)$ at the vertices V_{i} of E and for $k \geq 2$
- $\left(D_{2}\right)$ the edge moments $\int_{e} q_{h} p_{k-2} d s, p_{k-2} \in \mathbb{P}_{k-2}(e)$, on each e of E,
- $\left(D_{3}\right)$ the internal moments $\int_{E} q_{h} p_{k-2} d x, p_{k-2} \in \mathbb{P}_{k-2}(E)$.

The Virtual Element Space

- For each E and all k the operators $D_{1}-D_{3}$ satisfy

$$
\left\{q \in \mathbb{P}_{k}(E)\right\} \wedge\left\{D_{i}(q)=0, i=1,2,3\right\} \Rightarrow\{q=0\}
$$

- These properties allow to construct a projection $\tilde{\mathcal{Q}}_{h}^{k}(E) \rightarrow \mathbb{P}_{k}$
- Set $D q_{h}:=\left(D_{1}-D_{3}\right)\left(q_{h}\right)$ and choose suitable symmetric, positive bilinear form \mathcal{G}
- For $q_{h} \in \tilde{\mathcal{Q}}_{h}^{k}(E)$ we define $\Pi_{k}^{\mathcal{G}} q_{h}$ as the unique solution of

$$
\mathcal{G}\left(D q_{h}-D \Pi_{k}^{\mathcal{G}} q_{h}, D z\right)=0 \quad \forall z \in \mathbb{P}_{k}
$$

The Virtual Element Space

- Recall Π_{k}^{∇} from the last 2 Seminars:

For any $q \in H_{0}^{1}(\Omega)$ the function $\Pi_{k}^{\nabla} q$ on each E is in $\mathbb{P}_{k}(E)$ and is defined by

$$
\left(\nabla\left(\Pi_{k}^{\nabla} q-q\right), \nabla p_{k}\right)_{0, E}=0
$$

and

$$
\int_{\partial E}\left(\Pi_{k}^{\nabla} q-q\right) d s=0
$$

for all $p_{k} \in \mathbb{P}_{k}$.

- For all $q_{h} \in \tilde{\mathcal{Q}}_{h}^{k}(E)$ the polynomial $\Pi_{k}^{\nabla} q_{h}$ can be computed using only the values of D calculated on q_{h}

The Virtual Element Space

Definition (Virtual element space)

The local virtual element space is defined by

$$
\begin{aligned}
\mathcal{Q}_{h}^{k}(E):=\left\{q \in \tilde{\mathcal{Q}}_{h}^{k}(E): \int_{E} q p_{k} d x=\int_{E}\left(\Pi_{k}^{\nabla} q\right) p_{k} d x\right. & \\
\forall & \left.\forall p_{k} \in\left(\mathbb{P}_{k} \backslash \mathbb{P}_{k-2}(E)\right)\right\}
\end{aligned}
$$

where $\left(\mathbb{P}_{k} \backslash \mathbb{P}_{k-2}(E)\right)$ denotes the polynomials in $\mathbb{P}_{k}(E)$ that are $L^{2}(E)$ orthogonal to $P_{k-2}(E)$.

The global virtual element space is

$$
\mathcal{Q}_{h}^{k}:=\left\{q \in H_{0}^{1}(\Omega):\left.q\right|_{E} \in \mathcal{Q}_{h}^{k}(E) \forall E \in \mathcal{T}_{h}\right\}
$$

The Virtual Elemnt Space

- Also recall Π_{k}^{0} the L^{2} projection onto \mathbb{P}_{k} defined by

$$
\left(q-\Pi_{k}^{0} q, p_{k}\right)_{0, E}=0 \quad \forall p_{k} \in \mathbb{P}_{k}
$$

- The set of operators (D) is a set of dofs for $\mathcal{Q}_{h}^{k}(E)$
- The dofs (D) define an interpolation operator
- The local virtual element space $\mathcal{Q}_{h}^{k}(E)$ satisfies
(1) $\mathbb{P}_{k}(E) \subseteq \mathcal{Q}_{h}^{k}(E)$
(2) for all $q_{h} \in \mathcal{Q}_{h}^{k}(E)$
- the function $\Pi_{k}^{\nabla} q_{h}$,
- the function $\Pi_{k}^{0} q_{h}$ and
- the vector function $\Pi_{k-1}^{0} \nabla q_{h}$
can be computed from the dofs (D) of q_{h}
The proofs can be found in $[1,2,3]$.

The Discrete Problem

- Denote by $a^{E}(\cdot, \cdot), b^{E}(\cdot, \cdot), c^{E}(\cdot, \cdot)$ and $B^{E}(\cdot, \cdot)$ the restrictions of the previously defined bilinear forms to E
- Let $S^{E}\left(p_{h}, q_{h}\right)$ be a symmetric bilinear form on $\mathcal{Q}_{h}^{k}(E) \times \mathcal{Q}_{h}^{k}(E)$
- $S^{E}(\cdot, \cdot)$ scales like $a^{E}(\cdot, \cdot)$ on the kernel of Π_{k}^{∇}, i.e., there exist $0<\alpha_{*} \leq \alpha^{*}$ independent of h such that

$$
\alpha_{*} a^{E}\left(q_{h}, q_{h}\right) \leq S^{E}\left(q_{h}, q_{h}\right) \leq \alpha^{*} a^{E}\left(q_{h}, q_{h}\right)
$$

for all $q_{h} \in \mathcal{Q}_{h}^{k}(E)$ with $\Pi_{k}^{\nabla} q_{h}=0$.

The Discrete Problem

Definition

Define on each $E \in \mathcal{T}_{h}$ and for every $p_{h}, q_{h} \in \mathcal{Q}_{h}^{k}(E)$ the local forms

$$
\begin{aligned}
& a_{h}^{E}\left(p_{h}, q_{h}\right):=\int_{E} \kappa\left[\Pi_{k-1}^{0} \nabla p_{h}\right] \cdot\left[\Pi_{k-1}^{0} \nabla q_{h}\right] d x+ \\
& S^{E}\left(\left(\mathcal{I}-\Pi_{k}^{\nabla}\right) p_{h},\left(\mathcal{I}-\Pi_{k}^{\nabla}\right) q_{h}\right), \\
& b_{h}^{E}\left(p_{h}, q_{h}\right):=-\int_{E}\left[\Pi_{k-1}^{0} p_{h}\right]\left[b \cdot \Pi_{k-1}^{0} \nabla q_{h}\right] d x, \\
& c_{h}^{E}\left(p_{h}, q_{h}\right):=\int_{E} \gamma\left[\Pi_{k-1}^{0} p_{h}\right]\left[\Pi_{k-1}^{0} q_{h}\right] d x, \\
&\left(f_{h}, q_{h}\right)_{E}:=\int_{E} f \Pi_{k-1}^{0} q_{h} d x, \\
& B_{h}^{E}\left(p_{h}, q_{h}\right):=a_{h}^{E}\left(p_{h}, q_{h}\right)+b_{h}^{E}\left(p_{h}, q_{h}\right)+c_{h}^{E}\left(p_{h}, q_{h}\right) .
\end{aligned}
$$

The Discrete Problem

- For $p_{h}, q_{h} \in \mathcal{Q}_{h}^{k}$ the local forms are summed up

Approximate Problem

Find $p_{h} \in \mathcal{Q}_{h}^{k}$ such that

$$
\begin{equation*}
B_{h}\left(p_{h}, q_{h}\right)=\left(f_{h}, q_{h}\right) \quad \forall q_{h} \in \mathcal{Q}_{h}^{k} . \tag{3}
\end{equation*}
$$

The Discrete Problem

Remarks

(1) Since Π_{k}^{∇} is a projection

$$
S^{E}\left(\left(\mathcal{I}-\Pi_{k}^{\nabla}\right) p_{k},\left(\mathcal{I}-\Pi_{k}^{\nabla}\right) q_{h}\right)=0 \quad \forall p_{k} \in \mathbb{P}_{k}, \quad \forall q_{h} \in \mathcal{Q}_{h}^{k}(E)
$$

(2) The choice

$$
\begin{aligned}
& a_{h}^{E}\left(p_{h}, q_{h}\right):=\int_{E} \kappa\left[\nabla \Pi_{k}^{\nabla} p_{h}\right] \cdot\left[\nabla \Pi_{k}^{\nabla} q_{h}\right] d x+ \\
& S^{E}\left(\left(\mathcal{I}-\Pi_{k}^{\nabla}\right) p_{h},\left(\mathcal{I}-\Pi_{k}^{\nabla}\right) q_{h}\right)
\end{aligned}
$$

as supposed in [2] yiels heavy losses in the order of convergence for $k \geq 3$, if $\kappa \nabla p$ is a gradient this choice does work.

Outline

(1) The Problem

(2) Variational Formulation

(3) VEM Approximation

4 Error Estimates

(5) Numerical Experiments

Preliminary Results

Lemma (Continuity)

The bilinear form $B_{h}(\cdot, \cdot)$ is continuous in $\mathcal{Q}_{h}^{k} \times \mathcal{Q}_{h}^{k}$, that is,

$$
\left|B_{h}\left(p_{h}, q_{h}\right)\right| \leq C_{\kappa, b, \gamma}\left\|p_{h}\right\|_{1}\left\|q_{h}\right\|_{1} \quad p_{h}, q_{h} \in \mathcal{Q}_{h}^{k}
$$

where $C_{\kappa, b, \gamma}>0$ does not depend on h.

Proof.

Whiteboard.

Preliminary Results

Lemma (Consistency)

For all p sufficiently regular and for all $q_{h} \in \mathcal{Q}_{h}^{k}$ it holds

$$
\left|B^{E}\left(\Pi_{k}^{0} p, q_{h}\right)-B_{h}^{E}\left(\Pi_{k}^{0} p, q_{h}\right)\right| \leq C_{\kappa, b, \gamma} h_{E}^{k}\|p\|_{k+1, E}\left\|q_{h}\right\|_{1, E} \quad \forall E \in \mathcal{T}_{h} .
$$

Proof.

For a proof see [3].

Preliminary Results

Lemma (Discrete inf-sup condition)

The bilinear form $B_{h}(\cdot, \cdot)$ satisfies the following condition: there exists an $h_{0}>0$ and a constant \bar{C}_{B} such that, for all $h<h_{0}$ it holds

$$
\sup _{q_{h} \in \mathcal{Q}_{h}^{k}} \frac{B_{h}\left(p_{h}, q_{h}\right)}{\left\|q_{h}\right\|_{1}} \geq \bar{C}_{B}\left\|p_{h}\right\|_{1} \quad \forall p_{h} \in \mathcal{Q}_{h}^{k} .
$$

Proof.

For a proof see [3].

H^{1} - estimate

Theorem (H^{1}-estimate)

For h sufficiently small, the discrete problem (3) has a unique solution $p_{h} \in \mathcal{Q}_{h}^{k}$ and the error estimate

$$
\left\|p-p_{h}\right\|_{1} \leq C h^{k}\left(\|p\|_{k+1}+|f|_{k}\right)
$$

holds with a constant C depending on κ, b and γ but independent of h.

Proof.

$\left\|p-p_{h}\right\|_{1} \leq \underbrace{\left\|p-p_{\mathrm{I}}\right\|_{1}}_{\checkmark}+\underbrace{\left\|p_{\mathrm{I}}-p_{h}\right\|_{1}}_{\text {Whiteboard }}$.

L^{2} - estimate

Theorem (L^{2}-estimate)

For h sufficiently small, the discrete problem (3) has a unique solution $p_{h} \in \mathcal{Q}_{h}^{k}$ and the error estimate

$$
\left\|p-p_{h}\right\|_{0} \leq C h^{k+1}\left(\|p\|_{k+1}+|f|_{k}\right)
$$

holds with a constant C depending on κ, b and γ but independent of h.

Proof.

For a proof see [3].

Outline

(1) The Problem

(2) Variational Formulation

(3) VEM Approximation
(4) Error Estimates
(5) Numerical Experiments

Numerical Experiments

- Consider problem (1) with the choice $\Omega=(0,1)^{2}$ and

$$
\kappa=\left(\begin{array}{cc}
y^{2}+1 & -x y \\
-x y & x^{2}+1
\end{array}\right), b=(x, y), \gamma=x^{2}+y^{3}
$$

and with $B C$ and rhs such that the exact solution is

$$
p_{e x}(x, y)=x^{2} y+\sin (2 \pi x) \sin (2 \pi y)+2
$$

- Comparison of $p_{\text {ex }}$ with the L^{2}-projection of p_{h} to \mathbb{P}_{k}
- Comparison of $\left|p_{e x}-\Pi_{k}^{0} p_{h}\right|$ at the maximum of $p_{\text {ex }}$ which is approx. at $(0.781,0.766)$

Numerical Experiments

- Four sequences of meshes with $25,100,400,1600$ polygons for each different mesh

Figure: Considered meshes Lloyd-0, Lloyd-100, square, concave

Numerical Experiments

- Convergence results for $k=1$

Figure: Convergence rates for the current and the previous choice of $a_{h}^{E}(\cdot, \cdot)$, L^{2} rate for previous $a_{h}^{E}(\cdot, \cdot)$ at bottom right

Numerical Experiments

- Convergence results for $k=4$

Figure: Convergence rates for the current and the previous choice of $a_{h}^{E}(\cdot, \cdot)$, L^{2} rate for previous $a_{h}^{E}(\cdot, \cdot)$ at bottom right

References

[1] A. Ahmad, A. Alsaedi, F. Brezzi, L. Marini, and A. Russo. Equivalent projectors for virtual element methods. Computers \& Mathematics with Applications, 66(03):376-391, 2013.
[2] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, and A. Russo. Basic Principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(01):199-214, 2013.
[3] L. Beirão da Veiga, F. Brezzi, L. Marini, and A. Russo. Virtual Element Method for general second-order elliptic problems on polygonal meshes. Mathematical Models and Methods in Applied Sciences, 26(04):729-750, 2016.

