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Abstract

The Helmholtz eigenvalue problem on infinite domains appear in many fields such as acous-
tics, geophysics, electromagnetics, aerodynamics, meteorology and so on. Therefore it is
very important to provide methods or boundary conditions that terminate the infinite do-
main and absorb the waves totally without any reflection.

One method is the PML method by Bérenger, the other is called wavefactorization. The
first absorbs all waves independent from their direction or frequency by analytic continua-
tion of the governing equations into the complex domain. The latter splits up the wave into
an exponential term and a smooth amplitude. The exponential term is responsible for the
oscillation raising with distance to the origin.

This thesis introduces and discusses both methods and their combination in the one- and
two-dimensional case.

Starting from the Helmholtz eigenvalue problem the mathematical model is derived,
which is the variational formulation of the eigenvalue problem with absorbing boundary
condition.

For picking out artificial eigenvalues of the set of computed eigenvalues a special strat-
egy has been developed and successfully tested.

The matrices obtained from the Finite Element discretisation are large and sparse and so
the Arnoldi method solves the eigenvalue problem.



Zusammenfassung

Das Eigenwert Problem abgeleitet von der Helmholtzgleichung in unbeschrankten Gebieten
betrifft viele Fachbereiche: Akkustik, Geophysik, Elektromagnetic, Aerodynamik, Meteo-
rologie usw. Deshalb ist es sehr wichtig, Methoden die das unendliche Gebiet beschranken
und Randbedingungen, welche die ausstrahlenden Wellen ohne jedwegliche Reflektion ab-
sorbieren, zur Verfugung zu stellen.

Ein solches Verfahren ist die Perfectly Matched Layer Methode”, das andere heif3t ”Wave-
factorization”. Erstere absorbiert alle Wellen egal welcher Richtung oder Frequenz indem
die Helmholtzgleichung in den komplexen Raum analytisch fortgesetzt wird. Letztere fak-
torisiert die Welle in einen exponentiellen Term und einer stetigen Amplitude, wobei der
exponentielle Faktor verantwortlich ist fur die Oszillation, welche mit Abstand zum Ur-
sprung zunimmt.

Diese Diplomarbeit stellt beide Methoden und deren Kombination vor und behandelt
jeweils den ein- und zwei-dimensionalen Fall.

Ausgehend von der Helmholtzgleichung wird das mathematische Model, also die Varia-
tionsformulierung des Eigenwert Problems mit absorbierender Randbedingung, abgeleitet.

Eine spezielle, vielversprechende Strategie zur Auslese kunstlicher Eigenwerte aus der
Menge der berechneten Eigenwerte wurde entwickelt und erfolgreich getestet.

Die aus der Finite Element Diskretisierung erhaltenen Matrizen sind grof und diinnbe-
setzt, deshalb wird als Eigenwertldser die Arnoldi Methode herangezogen.
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Chapter 1

Introduction

In industry acoustic waves are interesting phenomena with important application. Engi-
neers are interested in the reliable simulation of scattering problems. Such problems appear
everywhere but its mathematical description or solution is highly untrivial.

Just consider the pipe of an organ. The air stream comes into the pipe through a narrow
gap. In the interior this air stream forms a longitudinal wave. The length of the wave
and thus the frequency depends on the length of the organ pipe. Large pipes produce low
frequency and small pipes high frequency tones.

This problem is an wave eigenvalue problem. The organ pipe whistles if the air stream
oscillates with its resonance. So the governing equations (wave) and the type (eigenvalue)
of the problem are known. Nevertheless one huge problem remains: the extent of the com-
putational domain.

The pipe is not closed so the computational domain is not only the interior of the pipe
but its surroundings. Thus the domain is infinite/unbounded or at least too large for com-
putation.

Reducing an infinite domain to a finite extent might cause troubles if the bounded do-
main is to small. Then events that should happen inside the domain are outside and neither
considered not computed.

If the bounded domain is too large unnecessary computational work arises.

Assuming an optimal bounded domain, that means it is not too large or too small, the
next question arising handles with the boundary conditions. Waves coming through the
boundary should not be reflected but absorbed.

With Dirichlet boundary conditions the air pressure at the boundary is fixed. Neumann con-
ditions state that the pressure changes in normal direction as a certain function and Robin
conditions fix the exchange of pressure. So no boundary condition is able to absorb waves.

In this thesis two methods that absorb waves are presented. The first is the Perfectly
Matched Layer method introduced by Bérenger [5],[6]. The second is the newly developed
Wavefactorization.

After terminating the unbounded domain and inclining methods that absorb waves the
problem can be numerically solved.

Another example as simple as the organ pipe is a bottle where you blow over its open-



ing. If you blow in a certain direction you create some sound, an eigenfrequency. This is
also an unbounded resonance problem.

Here a problem of aeronautics is considered:the box of the landing gear of an aeroplane,
see Figure 1.1. The air streaming over this part creates oscillations that express in sound (as
a blow over a bottle) or maybe even in destruction of the box, which has fatal consequences
for the passenger.

Figure 1.1: The landing gear of an aeroplane

Task of this thesis:

The task of this thesis is to model the acoustic scattering of the landing gear of an aeroplane,
to compute dangerous eigenvalues near reality, to find a mathematical strategy to pick out
the artificial from the interesting, dangerous eigenvalues and finally to improve the eigen-
value solver so that the artificial eigenvalues are already picked out during computation.
This thesis examines two types of approaches of modelling infinite domains. One is the Per-
fectly Matched Layer (PML) method, the other is called Wavefactorization. In the end both
are combined and tested.

In fact there are four major components involved:

1. The Finite Element method (FEM) is used to discretize the eigenvalue problem. For
an introduction [4] and [7] is recommended. Appendix B will outline the methods
needed here.

2. The Perfectly Matched Layer (PML) terminates the infinite domain to a finite one.
It can be seen as a sponge layer that totally absorb all waves, independent of their



frequency and direction. The PML method was first introduced by Bérenger [5],[6]
in 1994 and is usually used for Maxwell equations. Here it is adapted to acoustic
scattering. Promising results have been obtained with Reduced Integration.

3. Wavefactorization is a method to factorize the wave into two components: the smooth
amplitude and a spherical wave. The arising variational formulation depends only on
the amplitude and the exponential term vanishes. Wavefactorization also terminates
the computational domain. With this method the wave will not decay as in the PML
method.

4. The Arnoldi method is an eigenvalue solver method, that is recommended for large
and sparse matrices. It is an orthogonal projection method onto a Krylov subspace,
see [32].

Organization of this thesis:

Chapter 2: Problem Formulation

Deriving the physical model for acoustics results in the Helmholtz eigenvalue problem on
an unbounded domain. Although the domain is infinite some “boundary condition” at in-
finity has to be provided (Sommerfeld condition). Finally the wave equations are presented
for the one dimensional case and plane waves are explained.

Chapter 3: Source and Eigenvalue Problems on Bounded and Unbounded Domains
The essential difference between source and eigenvalue problems and eigenvalue problems
on bounded and unbounded domains are outlined in this chapter.

Chapter 4: Analytical Solutions of the Helmholtz Problem
With the method of separation of variables exact solutions of several cases of geometry are
computed. A major problem in variational form is described as well.

Chapter 5: The Perfectly Matched Layer (PML)

This chapter is an introduction into the use and handling of Perfectly Matched Layers. It
is described how to terminate the infinite domain with the help of PML. Three examples
where and how to use PML are described. In addition the qualities of complex symmetric
matrices are listed.

Chapter 6: Methods of Discretization/Modelling

This is the main part of the thesis. Here the PML method, Wavefactorization and a com-
bination of both is formulated, tested and discussed. In addition a method to distinguish
between artificial and interesting eigenvalues is developed.

Chapter 7: Example: Slat Cove of an Aeroplane
A special geometry, that is the wing of an aeroplane, is considered and the eigenvalue prob-
lem is computed with the various methods.



Chapter 8: The Eigenvalue Solver

The Arnoldi method is used to get the eigenvalues and -vectors. The algorithm and its ad-
vantages are described in this Chapter. For future work some deflation strategies and some
special algorithms,like the Jacobi Davidson for complex symmetric matrices and the Block
Arnoldi algorithm are recommended.

The conclusion can be found at the end.



Chapter 2

Problem Formulation

In this Chapter the basic relations of linear wave physics are outlined. Acoustic waves and
the time-harmonic case are of special interest. We follow the construction of [17].

2.1 Physical Model and Governing Equations
Acoustic waves (sound) are small oscillations of pressure in a compressible ideal fluid (acous-
tic medium). These oscillations interact in a way that energy is propagated through the

medium. The governing equations are obtained from fundamental laws of compressible
fluids.

2.1.1 Conservation of Mass

__fn

V, p

Figure 2.1: A volume element V with definition of normal direction n

The flow of fluid material with the air pressure p, the density p and the particle velocity v
(vector field) is considered. Let V' be a volume element with boundary 0V and let n (= n(z)
with z € 9V') be the normal unit vector directed into the exterior of V, see Figure 2.1. The
conservation of mass in a unit time interval through some volume element V' is expressed

by the relation
0

_&/Vpdvz évp(vn)ds, (2.1)



with (vn) the normal flux through V. Using the Gauss theorem §,..(pv)ndS = [, div(pv)dV
onto the surface integral, we obtain the equation

dp . _
/V (a + dw(pv)) dv =0. (2.2)

This leads to the continuity equation in differential form

ap . B
o + div(pv) = 0. (2.3)

2.1.2 Equation of Motion

Now assume the volume element V' is subject to some pressure p. The total force along the
boundary of V equals F' = — § pndS, with n as above. Applying the second Newtonian law

leads to
ov
p—dV = —]{ pndS. (2.4)
1% v

ot
Generally the differential on the left in equation (2.4) should be the total differential % =
% +(v-V)v. Here small oscillations are assumed and therefore this relation can be linearized
as above.
From the Gauss theorem it follows that — fav pndS = — fV VpdV and so the equation of
motion which is also called Euler equation is

ov
Por = —Vp. (2.5)
Recall that sound is a small perpetuation (p, p) of a constant state (pg, po) of an com-
pressible, ideal fluid. At any point z the functions p and p represent vibrations with a small
amplitude. Therefore the velocities are also small (Euler equation). That’s why a linear ma-
terial law p = ¢?p with ¢ the speed of sound can be assumed. Derivation of the continuity
equation (2.3) by ¢ and then inserting the Euler equation (2.5) gives
9’p 232/0 2 g 2 4 2 >p 2
2 = Cap = ¢ div(pow) = c*div(Vp) = c"Ap & 52 ¢ Ap = 0. (2.6)
For the time harmonic case p(x,t) = p(X)exp(—iwt) the above equation (2.6) changes to
the Helmholtz equation
—Ap—k’p=0, (2.7)

with

k=, (2.8)
C

the wavenumber. This physical parameter & is of dimension m ! and it counts the number
of waves per unit (27) length. In the one dimensional case the wavelength \ = 27” of a wave
p is the length where p(z + \) = p(z) for all .



2.2 The Sommerfeld Condition

Consider wave propagation in free space (unbounded acoustic domain). Sommerfeld pos-
tulated that at infinity all waves are outgoing. For the mathematical and physical derivation
see [17]. The Sommerfeld condition in spaces with dimension d is

w= O /) for r — oo, (2.9
(Opu — iwu) = o(r~ 4 1/2) for r — oo, (2.10)

with r = |z = /27 + 23 + -+ 22,

for real w. Without the o- and O-notation the condition looks like

JeeR: u<c(r~/2) forr — o, (2.11)
) (Opu —iwu)\
Az, (W =0 (@12)

Strictly speaking the Sommerfeld condition consists of the two conditions (2.9) and (2.10).
But it can be shown (see [31] and also [10], p. 18) that any function « that fulfills (2.10) and
the Helmholtz equation (2.7) automatically satisfies (2.9). So condition (2.9) can be neglected.
From now on, if it is referred to the Sommerfeld condition, only (2.10) respectively (2.12) is
meant.

In 1D the Sommerfeld condition equals

lim (v —iwu) = 0. (2.13)
|x]—00
Unlike the higher-dimensional case this condition can be imposed for finite z as a usual
mixed boundary condition g—g = iwu (Robin condition) that selects the outgoing wave e’**
from the set of solutions {e?**, ¢~} as will be shown in the following chapter.

Remark:
Sommerfeld holds only for real w. If w is complex the Pole condition [28],[29] is recom-
mended.

2.3 Wave Equation and Absorbing Boundary Conditions in 1D

All functions of the form p(z,t) = f(kx — wt) are solutions of the one-dimensional wave
equation —p” — k*>p = 0. The value of the function f does not change if ffi—f = 2. This
expression vppgse = ffi—f is called phase velocity of f. The phase velocity v, Of the one-
dimensional solution f is equal to the speed of sound ¢ in the acoustic medium and hence
depend on material properties only.

Now consider steady-state solutions p(z,t) = p(z)e~™!. The stationary part satisfies the
Helmbholtz equation (2.7) with the general solution p(z) = ae** 4 be~** (a and b scalars).
The solution is periodic, which means that there exists a wavelength X of the stationary wave
psothat p(z + A) = p(z) for all z with A = 2Z. The corresponding time-dependent solution

is p(z,t) = aek?=wt) 4 pe~ilka+wt) - Computing the phase velocities v,pqs. it is clearly to



see, that e/(k*=) js an outgoing wave, traveling from the right boundary to the right with
Uphase = 2 = ¢, whereas e~ “(k7+¢) js an incoming wave traveling from the right boundary
to the left with vy45 = —c.

If at any point z = zy the boundary condition % —ikp = 0 is applied, all incoming waves
are eliminated.

The following table gives a short summary.

p(z,t) = p(z)e ™!
solution (time-dep.) pi(z,t) = elbr—wt)  po (5, ¢t) = e ilkatwr)
wavedirection o —w = s _©— ¢
_) (_
outgoing incoming
non reflecting b W _ jlep = M 4 i
g boundary 5 —tkp =0 5, +1kp =0
condition

2.4 Plane Waves
Important particular solutions of the Helmholtz equation are the plane waves

u(@) = eiFe, (2.14)
with | k| equal to the wave number k.
Y

]

wavefront

x
Figure 2.2: Plane wave in 2D

In 2D where k = (k cos o, k sin @) the plane wave u(z,y) = exp (ik(z cos a + ysina)) de-
scribes a wave with wave number £ moving in direction «, which is shown in Figure 2.2.
The wave front is a plane (a line in 2D) through the point (z,y) with normal 7 = E/k =
(cos a, sin ). Along an axis a in direction k, plane waves are one dimensional waves et

A non reflecting boundary condition for a plane wave can be prescribed if its direction 7
is known. Just take the Robin boundary condition

ou

i wu, (2.15)



with a known 7i. This condition absorbs the waves coming from direction 7. All other waves
are reflected. Thus with non reflecting boundary conditions as in (2.15) it is not possible to
absorb all waves (except in the one dimensional case).

Therefore absorbing boundary conditions as an alternative to non reflecting conditions
have to be prescribed.

Here and in future, w alone instead of k& = % is taken. It can easily be rescaled to the
original problem.



Chapter 3

Source and Eigenvalue Problems on
Bounded and Unbounded Domains

This Chapter shows the essential differences between source and eigenvalue problems and
between eigenvalue problems on bounded and on unbounded domains.

3.1 Source Problem on Bounded Domain

Assume a bounded domain Q with boundary 9Q) = T', U T'y U 'y where the solution u
satisfies the Helmholtz equation on 2 with the various boundary conditions, a source f and
a given frequency w. The problem is as follows

Findue X: —Au—w?u = f  forze, (3.1)
u = q forz € T'p, 3.2)
Ohu = g9 forz € 'y, (3.3)
Ohu+au = g3 for z € T, (3.4)
with X :=C*(Q)NCYQUTN UTR)NCQ). (3.5)
The variational form is
aw (1,0)

A

Findu €V : / VuVudr — w2/ uvdx +/ auvdr =
Q Q I'r

= / fvda:+/ govdz +/ gsvdx  forallv € Vj (3.6)
Ja I'n 'r .
1)
Vo ={ve H' (Q):vlr, =g}, 3.7)
Vo={veH(Q) :v|r, =0}. (3.8)

This is a boundary value problem

FindueV,: ay(u,v) = f(v) forall v € V), (3.9

10



with a bilinearform a,(u,v) and a linearform f(v). Fredholm Theory provides existence,
uniqueness and stability of the solution u for given frequencies w that are no singular values
of a(u,v), i.e. for all w that fulfill Vu # 0 3v : ay(u,v) # 0.

3.2 Bounded Eigenvalue Problem

The domain €2 is bounded and the solution « satisfies the Helmholtz eigenvalue problem
on Q. Let " denote the Dirichlet boundary, Ty the Neumann boundary and T'; the Robin
boundary with 9Q =T =T'p UT'y UT'g. Assume homogeneous boundary conditions v = 0
onTp, d,u=00nTy and d,u+ au = 0 on I'g. The frequency w is not known. The problem
is

Findue X,weC: —-Au—w?u = 0 fOI’:I?EQ, (3.10)

u = 0 forz € I'p, (3.11)

Opu = 0 forz € 'y, (3.12)

Ohwu+au = 0 forz € g, (3.13)

with X :=C*(Q)NCYQUTy UTR)NCQ). (3.14)

The variational form is

Find v € Vp,w € C: / VuVudx ~l—/ auvdr = wQ/ uvdr forallv € V,, (3.15)
Q r Q

R

Vo={veH Q) :v|r, =0}. (3.16)

The eigenvalue is A = w? and the frequency w is searched for. Unlike as in source prob-
lems the boundary conditions should be homogeneous otherwise no eigenvalue problem
is obtained. Just take any eigenfunction « fulfilling Lu = w?pu (L the Laplacian operator,
Lu := Au). This eigenfunction satisfies L(cu) = cLu = cw?pu = w?p(cu) for any constant ¢
only if homogeneous boundary conditions are assumed.

Before investigating the unbounded eigenvalue problem some relations between bounded
and unbounded eigenvalue problems are listed.
Consider a bounded square domain as in Figure 3.1 on the left. If the bounded domain

t

Figure 3.1: Bounded (left) and unbounded (right) domain

is slightly changed, e.g. cut in at one edge then it is not bounded any more, see right picture
in Figure 3.1. The computational domain is not a square any more but the whole domain
except the border area.

11



Assume a hole of small diameter d as in Figure 3.1. The eigenfunctions and -values of the
unbounded problem should intuitively converge to those of the bounded problem if the di-
ameter d goes to zero.

Bounded eigenvalue problem have a discrete spectrum, whereas the unbounded problem
has continuous eigenvalues (a continuous spectrum).

Computing the eigenvalues and -functions of the unbounded problem involves a lot of prob-
lems. First the computational domain has to be terminated to finite extent. Then absorbing
boundary conditions have to be prescribed. Finally the solution should be a good approxi-
mation of the infinite case.

3.3 Unbounded Eigenvalue Problem

An eigenvalue problem with the Sommerfeld condition as a ’boundary” condition has to be
solved. An eigenpair (w € C,u € C?(Q)) is searched so that the following equations hold in
an unbounded (or at least semi-unbounded) domain 2 € R?.

—Au—w?u=0forzeQ, (3.17)
lim <|x|(d_1)/2 (Ot — iwu)) —0,

|z]—o00

with « the air pressure and w acoustic resonances.
In the variational setting of problem (3.17), a solution pair (w,u) with w € C and « in the
Sobolev space H}. (€2) with  as above is searched for, which fulfills

/ VuVoudz —/ @Udsm = w? / uvdz forall v € V., (3.18)
Q an On Q

lim <|x|(d*1)/2 (Opu — zwu)) =0,

|z]—o00

with the test spave V. = {v € H(Q2) : supp(v) compact }. The term loc on the above Sobolev
space means that if v is in H. (Q) with £ an unbounded domain, then u restricted to Q  is
a local member of H'!(Qr) with Qr any compact subdomain of €.

Since Q is infinite the boundary 0% in the variational form (3.18) does not exist but is needed
for the exact mathematical formulation. Soon Q will be terminated with the PML or the
wavefactorization. So problem (3.18) is not the final model, but an intermediate result (for
comparison) where the Sommerfeld condition is not yet inclined into the variational equa-
tion.

Instead of the Sommerfeld condition at infinity it is sometimes useful to incline a non con-

tinuous material parameter p into the Helmholtz equation. For better understanding a one
dimensional example:

12



3.3.1 The Oscillating String

The bounded string eigenvalue problem on Q = [z, z1] with zyp = 1/3 and z; = 2/3 reads
as:

Findu € C*[zg, z1],w € R:  u"(z) + w?u(z) = 0in [zg, 2], (3.19)
u(zo) =0 =u(zry). (3.20)

It is easy to verify that the solution pair (u,w) is u(z) = ¢sin(wz) and w = 3nm,n = 1,2,...
with ¢ any constant value. Four solutions u with ¢ = 1 are shown in Figure 3.2.

u(zg) =0 u(z1) =0

Figure 3.2: Solutions v withn = 1,2, 3,4 of the bounded eigenvalue problem

Now take the unbounded string eigenvalue problem with p = pg in the interior [z, 1]
and p = p; elsewhere. The interface points z, z; are the same as above. The unbounded
string eigenvalue problem is:

Findue X,weR: u'(z)+w?pou(z) = 0 in(zg,z1), (3.21)
% = wy/pu  atz =0,1, (3.22)

n
u(zo_) = u(zoy) and u(zi—) = u(zriy), (3.23)
Opu(zo_) = Opu(zoy) and  Opu(zi_) = Opu(ziy), (3.24)
with X = C?(zg,z1) N C*0,1] N C[0,1]. (3.25)

Condition (3.22) is the Sommerfeld condition. If it is fulfilled at the boundary z = 0 and at
xz = 1 then it is fulfilled at the exterior [0, z() and (z1,1]. The final analytical solution pair
(u,w) is

—i(co sin(w,/po/3) + cos(wy/po/3)) exp (iw\/pi(1/3 —z)) =z € [0, o)
u(z) =c (—1)co sin(wy/pox) — i cos(w/pox) x € [zo,z1] (3.26)
—i(co sin(2wy/po/3) + cos(2wy/po/3)) exp (iw\/pi(z — 2/3)) = € (z1,1]

sin(w,/po/3) — i % cos(wy/po/3)

with co) =
i\/ 2 sin(wy/po/3) + cos(wy/po/3)
and w = " _omi. (3.27)
N

with c any real constant valueandn =1, 2,....
The solution obtained with py = 0.1 and p; = 1 is shown in Figure 3.3. This solution oscil-

13
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Figure 3.3: Solution Re(u) and 7m.(u) with n = 1 (left top),n = 2 (right top) and n = 3
(bottom) of the unbounded eigenvalue problem with pg = 0.1 and p; =1

lates regularly until plus or minus infinity, which is the essential difference to the bounded
problem. The eigenfunctions oscillate the more the farer from the origin. In the interior
[z0, z1] this solution is approximately the analytical solutions sin(3nrz),n = 1,2, 3.

Thus inserting a non continuous material parameter p avoids the use of absorbing bound-
ary conditions for analytical computation. All solutions converge to the solution of the
bounded string problem in the interior [z, z1]. The solutions in the exterior (0,z,) and
(xz1,1) oscillate until infinity, which makes a lot of troubles. Just think of computing the
solution numerically. No boundary condition fits in a way to terminate the domain.
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Chapter 4

Analytical Solutions of the Helmholtz
Problem

The aim of this Chapter is to analyse the behaviour of the solutions of the unbounded
Helmholtz problem. We are especially interested in the solution behaviour in the exterior
region where the Finite Element solution must be modeled.

At the end of this Chapter the problems of the variational formulation of the exterior
Helmholtz model are described.

On simple domains, solutions of partial differential problem can be found by separation
of variables.

4.1 Separation of Variables

This technique is illustrated on Helmholtz problems in cartesian, spherical and cylindrical
coordinates.

411 Cartesian Coordinates

The usual Helmholtz equation Au + w?u = 0 in R? is considered. Inserting the Ansatz
u(z,y,z) = X(z)Y (y)Z(z) into the Helmholtz equation gives

X"YZ+XY"Z+ XYZ" +w?XYZ = 0, (4.1)
which is the same as
XII Y” ZII 9
X Y ' Z

The term on the left is independent of y and z and the term on the right is independent of .
Therefore the equality can only hold if both sides are equal to a constant v.

(4.2)

XII Y” ZII 9

15



Repeating the above argument for the second part, the functions X, Y and Z have to satisfy

X"+ vX =0, (4.4)
Y" +puY =0, (4.5)
Z" + (w? —v—p)Z =0, (4.6)

for independent constants v and p € C. Since only propagating waves are interesting, only
positive values v = o and i = 32 have to be considered. The equations can be rewritten as

X"+a’X = 0, 4.7
YY"+ 5%y = 0, (4.8)
7"+ 427 = 0 with 4* =w? —a? — 3%, (4.9)

with solutions X () = exp(+iaz),Y (y) = exp(+ify) and Z(z) = exp(+iyz) Now the solu-
tion « has to be of the form _
w(z,y, z) = cetForthytyz) (4.10)

with the only restriction that w? = o? + 2 + 42, but this does not matter since for the
eigenvalue problem w? is also searched for. Here only plane waves (see Section 2.4) are
considered

u(z,y,z) = eHlowtBy+2), (4.12)

If either o, 8 or «y is complex and the other constants real, the solution decays in either
z,y or z-direction. Such solutions are called evanescent waves.
Finally u has the following form depending of the eigenvalue w

u(z,y, 2) = (0w TAvEVLiza® =) (4.12)

witha and g € C.

4.1.2 Spherical Coordinates

The Neumann problem in the exterior of a sphere with radius «a is considered.

Figure 4.1: Exterior Neumann problem with sphere S of radius a in 2D

It is searched for a function u(r, ¢, #) and for an eigenvalue w € C that hold:

Au+w?u=0 forr > a, (4.13)
@ =c forr =a, (4.14)
or
ou _ wu = o (1> forr — oo, (4.15)
or r
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with some constant c and r? = 2% + y? + 2%, ¢ = arctan £ and § = arctan 7":”2;’”2 the spher-
ical coordinates. Solutions of the exterior Helmholtz problem that satisfy the Sommerfeld
condition are called radiating solutions.

The Laplacian operator in spherical coordinates has the form

1[0 [ ,0u 1 0 (. ,0u 1 &%u
Au(r,¢,0) = 2 {5 (7" E) + <inf 50 (mnO%) + —sinQHW'} (4.16)

Again separation of variables u(r, ¢,8) = R(r)®(¢)O(6) is applied and

R L,R" 1 1 0 ®

0=2r— — + — [ ——= = (sin(9)®’ — 4.17
"R R+®<sin(0)89(sm() )>+sin29<1>+7"°"’ (4-17)
is the result. With the same argument as in the cartesian case, the following system of sepa-
rated ordinary differential equation is obtained

0 = r’R"+2rR + R(r’w? + v), (4.18)
0 = sin(O)% (sin(9)©’) — (vsin® 6 + 1)©, (4.19)
0 = "+ ud, (4.20)

with v and p constants. The function R(r) is defined on » > a, whereas ®(¢) and O(0) are
defined on [0, 2] respectivly on [—, w|. Furthermore R satisfies the Sommerfeld condition.
Since the sphere S is a closed surface, the function ®(¢) is periodic, that is ®(0) = ®(2x).
Therefore equation (4.20) has the solutions sin m¢ and cos m¢ with . = m?,m =0,1,2,....
To solve equation (4.19) it is divided by sin? § = 1 — cos? # and then transformed with ¢ :=

cos 6 to ,
0’0 00 1

=(1 -2 9= _

0=0-)Gz 25 T |V 1_p

o. (4.21)

Forv =n(n+1),n = 0,1,... this is a Legendre’s equation. Its solutions are the so-called
Legendre functions P* that are defined with the Legendre polynomials P,

Omn(0) = P (cos 0) for0 <m <mn, (4.22)
P™(t) := (1 — tQ)m/Qaa%gft), (4.23)

and these Legendre polynomials P, are defined by the following recurrence relation

Py(t) = 1,
Pi(t) = t, (4.24)
2n+1 n
P, = P,(t) — ——Pp_1(1).
n+1(t) n+1 t n(t) n+1 n 1(t)
At last equation (4.18) is a Bessel’s differential equation for v = n(n + 1),n = 0,1,.... For

17



each n it has the independent solutions

1 er & . (n+9)!

h(wr) = P ]Zo(—%wr)‘f AICEiE (4.25)
1€ S o g ()
h2(wr) = i +1szo(2zwr) J A=) (4.26)

that are called the spherical Hankel functions, see [20] In the far field, where » is large, the
Hankel functions depend on the r as k. (wr) ~ &= respectively h2(wr) ~ <= and thus the
Hankel functions of the second kind represent the incoming waves, WhICh are eliminated
by the Sommerfeld condition. So only the Hankel functions of the first kind are taken. To
summarize the results » now looks the following

u(r, $,0) = Z Z hl (wr) P (cos 0) (Apm cos me + Bpm sinmd), (4.27)

n=0m=0

dependent on the eigenvalue w. The series (4.27) converges absolutely and uniformly in
every closed and bounded domain that is contained in |Z| > a, if u is a radiation solution of
the Helmholtz equation in the domain exterior to the spherical surface |Z| = a.

This can be written more compactly by use of the de Moivre identity ( (cos ¢ + isin¢)"™ =
cos n¢ + i sinng)

n

u(r, ¢,0) Zhl wr) > ConYmn (0, 6), (4.28)

m=—n

with ¢,,,,, complex coefficients and the spherical harmonics 4.,
Ymn (0, ) = PI™l(cos )™ with —n < m < n. (4.29)

These spherical harmonics are the eigenfunctions of the Laplace operator A for constant r.
The harmonics g, are not dependent of ¢ and represent the axisymmetric modes (axisym-
metric in regard to the z-axis).

The spherical harmonics have three special properties:

1. Foreach n there are 2n+1 linearly independent spherical harmonics y,,,, m = —n, ..., n.

2. The spherical harmonics are orthogonal with respect to the inner L, product over the
surface S of the unit sphere,i.e. (u,v)r, = fs uvdS. They can be orthonormalized.

3. Each function f(0, ¢) € Lo can be expanded into a series of spherical harmonics

= > fonymn(#,0). (4.30)

n=0m=-—n

with coefficients fo, =[5 [ f(#,0)Tmn (¢, 0")dOd¢.

The properties 2. and 3. can be used to determine the unknown coefficients ¢,,, from the
boundary condition 4.14. Just expand ¢ into such a series as in 3. and compare left side with
the right side (after derivation).
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4.1.3 Cylindrical Coordinates

Problems of scattering from infinite cylinder can be reduced to two-dimensional scattering
from a circle”. Then radiating solutions of the Helmholtz equation in polar coordinates
r? = 22 4+ y? and ¢ = arctan £ are looked for. The Laplacian operator in polar [cylindrical]
coordinates is

10 ou 1 0%u [ 0%u
A== r— |+ |+=| - 4.31
Y or <T8r>+r28¢2 [+8z2] (4-31)
Separation of variables for the cylindrical case leads to the following two equations
rR' +rR" + (W*r? —v)R = 0, (4.32)
" +v®d = 0. (4.33)

The first of these two is a Bessel differential equation, if v = n? and its solution is the Bessel
function of third kind, also called Hankel function of first kind, see [20]. These functions are
defined the following way

H(2) := Jo(2) + iV (2), (4.34)

with J,, the cylindrical Bessel functions of the first kind and Y,, those of the second kind.
Both kind of Bessel functions in comparison to either the real or the imaginary part of e**/~
are shown in Figure 4.2.

Figure 4.2: The Bessel functions J,,(z),n = 0,1 compared with Re(exp(iz)/z) (left picture)
and Y, (z),n = 0,1 compared with I'm(exp(iz)/z) (right picture)

The solution of the second equation is the same as with spherical coordinates, therefore
the whole solution is

u(r, @) = i H) (wr)(A, cosng + B, sinng). (4.35)

n=0
Since H} = H!,, forall n = 1,2,... the solution u can be written as

oo

u(r, @) = Z unH,IL(wr)em‘b, (4.36)

n=—0oo

with u dependent from w and u,, unknown coefficients. For inserting the Neumann bound-
ary condition 0,u = c at r = a, the same procedure as before applies, but the spherical
harmonics are replaced by Fourier expansion around a unit circle. Hence

1 2 .
u(p)e” " dg, (4.37)

Up = —
" 27'(0
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and comparison will give u,, dependent from w.

More about new methods (with Laplace transformation and Pole condition instead of Som-
merfeld condition) to get analytical and numerical solutions is described in [28],[29],[30] and
[23].

4.2 Problems in Variational Formulation

The variational formulation of the exterior Helmholtz problem is more complicated, espe-
cially the choice of the test and trial spaces. This is because it is integrated over an un-
bounded, infinite domain Q.. From the analysis before it is expected that the solution «
depends asymptotically on r as

(4.38)
The Lo product

wr o iwr wr ,—iwr © 1
(e - > _ / R [ / ~r2dr = oo, (4.39)
T r ), LT T o T

is not finite (with a the radius, where the exterior 2, begins). Thus the solution « is not
in Ly or any other Sobolev space and the trial space must not be Ly. One way out of this
dilemma is to work with weighted products that terminate these integrals. The other is to
find methods that terminate the domain Q.

Here the latter approach is pursued.
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Chapter 5

The Perfectly Matched Layer

The Perfectly Matched Layer (PML) was first introduced by Jean Pierre Bérenger in 1994
(see [5], improvements in [6]). He showed how to modify a Maxwell system to provide a
perfectly matched absorbing layer for an electromagnetic scattering problem. His approach
constructs an absorbing half-space such that any waves from the standard Maxwell medium
are not reflected independent of their frequency and direction of propagation. In the PML,
the wave is absorbed and decays exponentially with distance into the layer. The perfectly
matched layer can be seen as a sponge layer to terminate Finite Element approximations of
scattering problems.
There are two methods to construct the PML: One is the classical approach of Bérenger (see
[5]) and the other is complex variable transformation described in [9]. For optimization
see [8]. For more information about PML, see [12], [14], [13] and for analysis see [1], [3].
Applications of PML in aeronautics are described in [18] and [24].

Here, the PML absorbing boundary conditions are derived for the 1D Helmholtz case by
a complex change of variables. Furthermore the same is done in variational form for the two
or three dimensional case.

5.1 Sketch of the PML Method in 1D

Consider the one-dimensional Helmholtz equation on the semi-infinite interval [—1, o0):

—Oppt —wWu =0 z€[-1,00], (5.1)
u(—1) =0, (5.2)
Opu = twu for z — oo, (5.3

The ”boundary” condition at infinity is the Sommerfeld condition (5.3) , which states that
all waves are outgoing. See Chapter 2.2 for more.

The aim is to restrict the Helmholtz equation (5.1) to the interval [—1, 0]. Thus the exterior is
(0,00). The idea of the PML-method is to bend the wave into the complex domain. This is
done by complex coordinate transformation z — z = ~y(x) on the exterior.

For example « is defined as follows: v(z) := (1 + ia)z in the exterior (0,00) and y(z) := =
in the interior [—1,0]. Since v(0) = 0 and 7/(0) = (1 + 4«) the solution of the transformed
equation apyr(z) := u(y(x)) coincides with « at 0. Assuming that w is constant, the solution
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of the Helmholtz equation (5.1) can be extended analytically to the complex plane, since the
normal derivative at 0 is 9,u(0)(1 + i) = O, uprrr.(0) and the solution @py, g, is given by

—Optiprr, — (14 i0)?w?ipyy, = 0, (5.4)
apnvrn(0) = u(0), (5.5)

Oupmr(0) = Opu(0)(1 +ia), (5.6)

Optipyr = iw(l +ia)iparr. (5.7)

Equation (5.5) and (5.6) are interface conditions to get continuous solutions.

There are two fundamental solutions of the partial differential equation 5.4:
1. 2 — exp(iw(1 + ia)x), decreasing and
2.  — exp(—iw(l + ia)x), increasing.

Only the first obeys the radiation condition 0,,u = iw(1 + ia)u and is exponentially decreas-
ing, so at infinity this solution is 0. Replacing condition (5.7) by upy.(6) = 0 leads to the
following equations

—ppupmr — (1 +ic)w’upyr = 0, (5.8)
upmrn(0) = u(0), (5.9)
Onurnin(0) = Ohu(0)(1 +ia), (5.10)
wpnin(8) = 0. (5.11)

The error by replacing @ pysr, With upj,r, decreases exponentially with the thickness § of
the PML. The final solution « should fulfill equation (5.1) on the interior, equation (5.8) on
u(d) =0

o\ A Ao
NNLAKARSS

Figure 5.1: Model of the behavior of the final solution

the exterior, the interface conditions (5.5) and (5.6), and the boundary conditions (5.2) and
(5.11), as can be seen in Figure 5.1.

In the PML the oscillations decays very fast (exponentially). So the PML need not to be
very thick.
All steps above can be done similar in the weak formulation, see the next Section.

The variable transformation is easy to perform and gives the same result as the originally
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proposed way. In the two- or three-dimensional case the coordinate transformation can be
applied on rectilinear or curvilinear coordinates, see Figure 5.2. Here all numerical examples

use curvilinear coordinates.
Yi r

V(T y) ‘ o

Vy(x,y)

[opnL

Figure 5.2: Rectilinear and curvilinear coordinates with PML of thickness d pasr,

Here the following formula for «y (curvilinear) with the PML parameter « is used.

(@) = (5.12)

—

Z(1 +ia) —ia rpm”% in the PML,
z else.
In curvilinear coordinates the radius from the origin to the PML is called r,,;. In rectilinear
this reads as

T .z
L) #1tia) —ia | PN )i the PMIL,
v(Z) = Ypmlmaz{|a] Jyl}
7 else,

(5.13)

with Z = (z,y) and z,,,, the length from the boundary to the PML in z-direction and v,
the length from the boundary to the PML in y-direction. The function ~ can easily be ex-
tended to the R3.

Remark:
If low frequencies w are of interest it is preferred to work with a large PML parameter «.. A
small « gives better results for high frequencies.

Bérenger’s PML formulation is equivalent to complex variable transformation, which can
be interpreted as an analytic continuation of the governing equations into the complex do-
main. Therefore this formulation can easily be implemented into existing finite element
codes. For all examples the high order finite element code NGSolve and its mesh generator
NETGEN of Joachim Schoberl [25] is used.

If PML is applied on symmetric bilinearforms, the resulting matrices become complex sym-

metric after FEM-discretization. This property has no advantages except memory saving as
can be seen in Chapter 5.4.
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5.2 Variational Derivation

Here the PML method is derived for the variational formulation in general and afterwards
tested on examples in the one and two dimensional case.

Lype = 02/Tpry,

Figure 5.3: A semi-infinite domain Q ¢ R? R? analogous

Consider a semi-infinite domain €2 as seen in Figure 5.3 (it need not be rectangular, just
any (semi-)infinite domain can be taken). The initial Problem (3.17) is an eigenvalue problem
on  with the Sommerfeld condition at infinity and a usual boundary condition at I'y. =
8Q/FPML.

—Au(z) — w?u(x) = 0 for z € Q, (5.14)
|2|{@=D/2 (9,u(x) —iwu) — 0 for |z — oo, (5.15)
homogeneous Dirichlet-, Neumann- or Robin-b.c. at T'y. = 0Q/T'parr, (5.16)

with w the acoustic resonance. Multiplication with a test function v, integration over €2 and
integration by parts gives

Findu € HL.(Q) : / VuVv — / —U =W / wo  forv e V. (Q), (5.17)
= {v e H(Q) : supp(v) compact} . (5.18)

Here the Neumann or Robin-boundary condition on I'. can be inserted. The homogeneous
Neumann boundary condition g—g =0onTy. =Ty = 99Q/T pyy is taken, since it means that
at 'y there is no change of air pressure « in normal direction. To eliminate the boundary
integral on I'p/ 1, the test functions v are members of the space V) = {v € H}OC(Q) v =00n
I'parr}. This leads to the following problem:

FindueV =H. (Q),weC: / VuVv = wZ/ uv forv € W, (5.19)
Q Q
2|2 (8, u(z) — iwu) — 0 for |z| — oco. (5.20)

Still the Sommerfeld condition is not yet inclined into (5.19). For this PML is used. The
semi-infinite Domain € is terminated to a finite domain Qx and the sponge layer Qpy;y, as
seen in Figure 5.4.

To get to the PML formulation variable transformation (u(z) — u(y(z)), Vu — J~tVu, with
J the Jacobi-Matrix of v) is applied.

24



Qpur, INSYIS

I'n =09Q/Tpmr

Figure 5.4: The finite domain Qx and its PML Qpap,

If a rectangular domain in R? as in Figure 5.4 is considered then «y as in (5.13) is taken. The
measures x,,,; and y,,,; are the lengths from the boundary I iy to the PML (to 2p/7, and not
to I'pasr) in z- and y-direction.

Otherwise curvilinear coordinates with a -y as in (5.12) are the choice.

In the Perfectly Matched Layer u decreases exponentially, so at the boundary I p;;, the so-
lution » should be very small. Therefore a Dirichlet boundary u = 0 on T'p,;, can be used
without getting high errors.

Finally (after variable transformation and termination of the infinite domain ) v € V5 and
w € C are searched so that

/ VuJ LT 'V det(J) = w? / uv det(J) for v € V, (5.21)
Q Q

holds with
Vo={ue H(Q):u=00nTpy}. (5.22)

This problem is a general eigenvalue problem with A = w? the eigenvalue and u the
eigenfunctions. In short it can be written as
Findu € Vy, A € C:
a(u,v) = A b(u,v) forov eV, (5.23)

with a(u,v) = [, VuJ 1T 'Vodet(J) and b(u,v) = [, uv det(J) bilinearforms, A = w? and
Vi as above.

Discretization with the Finite Element Method gives a generalized Eigenvalues Problem
Au = ABu where the matrices A , B are complex symmetric but not hermite. Complex sym-
metric matrices have the single advantage that right eigenvectors are also left eigenvectors.
They may not even be diagonalizable, so complex symmetry is a purely algebraic property
(see Chapter 5.4).
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5.3 Examples

This Chapter presents three examples where and how to use PML. The first in analogous
to the String eigenvalue problem from Section 3.3, but PML is applied. The second is a
similar one dimensional problem with the difference that the PML and the domain where the
material parameter is not one, have distinct intervals. Finally a two dimensional eigenvalue
problem is computed.

5.3.1 The Oscillating String Problem with PML

Take the unbounded string problem as in Section 3.3 and apply the PML method. Notice
that the Dirichlet boundary condition is not yet inclined. The interface points are zy = 1/3
and z; = 2/3. The computational domain is the interval [0, 1].

Findu e X,weR: "(z) 4+ pPu(z) = 0 in(zg,x1), (5.24)
u"(z) + (v)?w?u(z) = 0 in(0,z0)U(x,1), (5.25)

% = iwy(zr)u atz=0,1, (5.26)

u(zo_) = u(zoy) and u(zr_) = u(ziy), (5.27)
Onu(zo_) = Opu(zoL )y (o) and  Opu(zi_ )Y (z1) = Ohulziy), (5.28)
with X = C? ((0,z0) U (zp, 1) U (z1,1)) nC[0,1]. (5.29)

The complex Helmholtz equation (5.25) represents the analytic continuation of the Helmholtz
equation (5.24) into the complex (v' = (1 + i«)) domain. Solutions of (5.25) are {exp(iwy'z),
exp(—iwy'z)}. The Sommerfeld conditions (5.26) limit this set of solutions to one each.

The material parameter
[0l forze[L 2],
plz) = { ) else. (5.30)

is inclined because in the one dimensional case there are only simply connected domains.
This would give only trivial solutions, therefore a material parameter p is used. The PML
function is

z for ze€ 3,
v(z) = { (1 +ic)z —ia/3 for z €0,
(

2],
§], (5.31)
1+ia)z — 2ie/3 for z€[3,1

wlw Ooal»—

with a positive PML parameter «. Thus the solution pair (u,w) is

—i(c1 sin(wy/p/3) + cos(w/p/3)) expiw(l +ia)(1/3 —z)) =z €[0,1),
u(z) =c —icy sin(y/pwz) — i cos(y/pwzx) z €[t 3] (5.32)
—i(c1 sin(2w/p/3) + cos(2w,/p/3)) exp (iw(l + ia)(z — 2/3)) =z € (3,1],
sin(w 1+m cos(w
with with ¢; = Lvpl®) - 1+m LovP/3) (5.33)
cos(wy/p/3) + sm(w\/_/?))
and w = " _oni. (5.34)
NG
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0.2 Y 0.4 o.s\f 0.8 1
-0.5

Figure 5.5 Re(u) and 7/m(u) withn = 1,2,3 and o =
problem and p = 0.1.

1 of the unbounded eigenvalue

with ¢ any real constant value and n = 1,2,.... This solution decays exponentially as can
be seen in Figure 5.5.

The material parameter p is 0.1 in this example. The solution v with n = 1,2 and the
PML parameter a = 1 satisfies the homogeneous Dirichlet boundary conditionsat z = 0,1
(see the both pictures in Figure 5.5). Thus replacing the Neumann condition d,u = iwy'u by

the Dirichlet boundary condition results only in small error if « is large enough or the PML
is thick enough. In any case absorption of all waves is achieved.

Now all above is computed numerically with the Finite Element method. The eigenfre-
guencies obtained with order p = 5 and « = 1 are shown in Figure 5.6.
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Figure 5.6: Eigenfrequencies obtained with Finite Element method
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These eigenvalues w have imaginary part —27 and their real part is approximately the
analytical eigenvalue 3nw/,/p = 3n7/v0.1~30n, n=1,2... .

Figure 5.7: Eigenfunctions (real part in black, imaginary in red) belonging to the above
eigenfrequencies

The eigenfunctions to the first two eigenvalues in Figure 5.6 are shown in Figure 5.7.
Their scaling is different to those of the analytical solution but that does not matter, since
the solution is unique up to a constant factor.

Minimizing the thickness of the PML results in a more complicated problem.

5.3.2 Unbounded Eigenvalue Problem

Take the following problem.
Findu € Vy,w € C:

1.,
/ngcg)’y’) = wQ/quv det(v') forv € Vj, (5.35)
x forz € [1/6,5/6]
with y(z) = { (1+ia)x —ia/6 forz €[0,1/6] (5.36)
(1+ia)z —iba/6  forz € [5/6,1]

with the Hilbert space Vo = {v € HY(Q) : v = 0 at T'p}, the domain Q the interval [0, 1],
I'yv =0and T'pyr, = {0,1}. Note that the thickness of the PML is reduced by half compared
with the last example.

Yr Vi

Figure 5.8: The PML function v(z) = v, (x) + iy;(z)

Inserting both  as in (5.36) and p as defined in (5.30) gives the following problem.
Findu € Vo = {u € H'([0,1]) : u(0) =0 =wu(1)} and w € C:

IMx—w2 1 z)u(z)v(z) det (v )dz v
/0 det(y) 0= /Op( Ju(z)v(z) det(y')dz  forv € Vp. (5.37)
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After discretization the problem is solved with an Arnoldi-algorithm (see Section 8.1).
Figure 5.9 shows all frequencies w computed with order p = 5 and a = 1. The frequencies
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Figure 5.9: Frequencies obtained with PML parameter « = 1 and orderp =5

with imaginary part ~ —6 lying at the horizontal line at top of the picture with distance
~ 30 to each other are the desired eigenvalues. Those on the left nearly vertical line are
dependent of the PML. To be more precisely if the PML parameter o changes the gradient of
the line with those frequencies change as well. All other eigenvalues depend on the Finite
Element (FE) approximation respectivly on the material parameter p. As already mentioned
the PML and the domain where p = p; are only overlapping, but not equal.

With the PML method there are still eigenvalues coming from the FE noise (see Figure
5.9). This can be avoided if Reduced Integration (see Section 6.1.1) is used.

For the eigenfunctions belonging to the first four eigenvalues (pointed at with arrows in

Figure 5.9) see Figure 5.10. In the middle [1/3,2/3] the eigenfunctions behave the same as in
the example before.

The PML method gives good results in the one dimensional case. Consider now a two
dimensional problem.

29



e & 5 <
meﬂu‘ﬂ?%m X xxx
EEN

Figure 5.10: Eigenfunctions (real part in black, imaginary in red) belonging to the above
eigenfrequencies

5.3.3 Unbounded two dimensional Eigenvalue Problem

The domain is partitioned in the PML, that is called Q2 pj);;, and the interior, that is Qp, see
Figure 5.11. Assume homogeneous Neumann boundary conditions at I' y and homogeneous

Dirichlet boundary conditions at ' .

I'pmr

Qpmr

Qp

ol

Figure 5.11: Computational domain in 2D

The PML function «(z) is chosen for curvilinear coordinates, see declaration (5.12). Dis-
cretization of the problem (5.21) and solving the discrete problem with the Arnoldi method,
see Section 8.1, gives eigenfrequencies w that are all shown in Figure 5.12,

Again the desired eigenfrequencies w are those with similar imaginary part and those
that lie with the same distance to each other, see top of Figure 5.12. In the one dimensional
case the desired eigenfrequencies had all the same imaginary part. In 2D, there are three
groups of w’s with similar imaginary part, that lie in the same distance to each other.

The eigenvalues dependent of the PML are those on the left nearly vertical line. Those not

30



7L +p i
#
+

-8, I I I I I I 1
0 10 20 30 40 50 60

Figure 5.12: Frequencies obtained with PML parameter « = 1 and order p = 4

mentioned yet depend on the Finite Element approximation.
In general the PML method is a very good method to approximate absorbing boundary

conditions. Nevertheless trouble happens when using them on eigenvalue problems, see
Chapter 6.
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5.4 Properties of Complex Symmetric Matrices

Complex symmetry is a purely algebraic property and has no effect on the spectrum of a
matrix, unlike hermite matrices. A complex symmetric matrix may not even be diagoniz-
able and if it is, then it has an eigendecomposition that reflects the complex symmetry.

Definition:
A matrix Z € R that satisfies Z Z = I,, is called complex orthogonal.

Lemma:

A complex symmetric matrix A € R} is diagonizable if and only if its eigenvector matrix Z € R}
can be chosen such that Z7 AZ = diag(\i, A2, A3,...,\,) and ZTZ = I,, (Z is complex orthogo-
nal).

For the proof see [32].

The complex orthogonality of Z reflects the complex symmetry.

In the hermitian case (if A is hermite, A = A*) the eigenvector matrix Z can always be chosen
to be the unitary Z*AZ = diag(A1, Mg, ..., A\p) and Z*Z = I,,. The unitariness of Z reflects
the fact that A is hermite.

The reason why an eigendecomposition for complex symmetric matrices does not always
exist is that there are complex vectors z with

22 =0butz #0. (5.38)

Suppose A has an eigenvalue with a one-dimensional eigenspace and the vector z spanning
the space satisfies condition (5.38). Then one of the columns of any eigenmatrix Z of A
would be of the form z; = vz, where v # 0 is a scalar. Then zz, = v2272 = 0, while the
complex orthogonality condition (27 Z = I,,) would imply 2] z; = 1.
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Chapter 6

Methods of Discretization/Modelling

We want to solve equations the unbounded Helmholtz problem (3.17) respectively its vari-
ational forulation (3.18). Since (except in the one-dimensional case) the Sommerfeld condi-
tion can’t be applied as a Dirichlet-, Neumann- or Robin-boundary condition, it is necessary
to apply some method that changes the Sommerfeld condition into a boundary condition
which is easier to handle and that terminates the infinite domain.

One approach to do so is the PML Method, that was first introduced be Berénger in 1994
[5]. The other is a newly developed method called wavefactorization. Both methods and their
combination are discussed and tested in this chapter.

6.1 PML: Problems and Fixes

The same problem as in 5.37 investigated. Solving it with order p = 5 gives very good
results, as was already seen in Figure 5.9. Now a lower order p = 1 is chosen.

Figure 6.1 shows all frequencies w computed with order p = 1 and a = 1. The frequencies

w that are on a nearly vertical line starting from zero depend on the Perfectly Matched Layer
(on «) and are artificial. The above w ’s are better, but still not the best. The physically
interesting eigenvalues should have zero imaginary part, a positive real part and nearly the
same distance to one other. In Figure 6.1 only those with real part > 350 fulfill this, but more
eigenvalues (with smaller real part) are needed!!
In fact four w’s (arrows above) are good to distinguish, one has a red circle around and the
other three lie with the same distance next to each other. Their imaginary part is around —6.
The eigenvectors to one interesting and one artificial w (red circled in Figure 6.1) are shown
in Figure 6.2.

The Eigenvector which belongs to the interesting (good) eigenvalue oscillates regularly
in the middle (the interval [1/3,2/3] where p = py = 0.1), decreases exponentially in the
PML (the intervals [0,1/6] and [5/6, 1]) and goes to zero at the boundary. But the eigenvector
belonging to the PML-dependent eigenvalue has no oscillation in the middle but high one
in the left PML, where it should already decrease.

Figure 6.3 shows a comparison of different orders p of this 1D PML-example. The higher
the order the better the distinction between good and bad eigenvalues. With order p = 1
only 4 good eigenfrequencies can be seen, with order 2 even 9 and with order 5 already 20
good eigenvalues. So increasing the order gives better results. If the order is p, the number
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Figure 6.1: Eigenfrequencies w of the eigenvalue problem in 1D (x-axes: Re(w), y-axes:
Im(w))

of eigenvalues should be around 4 x p.

Although this is an acceptable result, the imaginary part of the first eigenvalues is not
even close to zero, as it is in physics. Another disadvantage is that the higher the finite
element order p the more computational work. Therefore some changes in discretization are
suggested.

6.1.1 Reduced Integration

In the eigenvalue problem (5.37) w and v were discretized with polynomials of order p. The
mass integral [ uv is computed with an integration rule of order 2p while the stiffness inte-
gral [ «'v' is computed with a rule of order 2p — 2.

This might cause some problems, e.g. assume w to be a linear, continuous polynomial on
each interval, then ' is constant on each interval, but not continuous. Therefore the Som-
merfeld condition v’ = iwu can never be fulfilled, unless « is zero.

With reduced integration or L, projections this problem can be avoided.

Assuming polynomial order p = 1 for « and the test functions v gives a stiffness integral
with a function (= «'v") of polynomial order 0 and a mass integral with a function (= uv) of
order 2. Instead of full assembling with an exact integration rule of order 2 an integration
rule of order 1, as in

middle point rule: /b f(z)dz ~ (b—a)f (b ; a) , (6.1)

(b—a)
2

b
trapeze rule: / f(z)dz ~ (f(a) + f(b)), (6.2)

is taken.
In general an integration rule of order p computes the integral of polynomials up to order p

34



1
0.8 E 0.8F
*+
-
-
0.6 E 061 S5
+ * + *
0.4t * o B 0.4 + * e
*+*+** + . fﬁ%& + + +$*
+
020 4 0.2+ * g F * et %+ i R
I + N * %
e+ ¥ % " I
or * o Opeaest * b * * > i
* o * % " N 3
* ¥
- * o+ + * o+
024+ * B 02 + o X Tk x
+ + + % g *
ot b Fat R R .
-04F * g —0.4f £+ + +
+ + ¥
* P *
-0.6f N E -0.6f a_—
it
-08F E -0.8f
1 . . . . . . . . . o . . . .
0 0.1 0.2 03 0.4 05 0.6 07 0.8 0.9 1 0 0.1 02 03 0.4 05 0.6 0.7 038 0.9 1

Figure 6.2: Eigenvectors of PML-dependent (left) and interesting (right) eigenvalue, real

part ...x, imaginary part ...+
0% OOOOOOOOO EW&&@QOO@*******&%*’*
p M #
* T
O *g*%% + 4"“H“* T
-518 OQ%&** Lt ++ * ++++
* §ﬁ++++++++
§ * " I++ +Tr
-3 + 7+ T
-10F ﬁ@ ;;&éﬁ + +#+trtf’#++
g 4 !
sy "
Ey ol
+:+
20| % o
++
F A o1
¢4 T+ * 2
“25r ++ + 5
+ et
+ +I+++
-80 R
** =
+
-351 O+ ++
+ +
i
+ +
-40F  + t
+ 4+
Lo
¥
45 o+ +
St
5
50 + I I |
500 1000 1500

Figure 6.3: comparison of different ordersp =1,2,5

exact. For higher polynomials a local error is introduced. In the one dimensional case this is

defined the following way:

Let Q,,(f) be a formula for numerical integration of the form

Qn(f)

with n points z; € [a, b] and weights w; satisfying 7" | w; = 1.
Q. (f) is of order p if it is exact for polynomials ¢ of order p:

b
/ d(z) dz = Q, () for ¢ € PP.

35

n b
b)Y wif @)~ [ (@) da,
i=1 a

(6.3)

(6.4)



Q.. is then called Q4. If a polynomial of any order is computed with an integration rule the local error
is
b
B(@) = [ (o) dz = Qu() = O™, (65)

with b = max;(z; — z;—1).

Both integration rules (trapeze and middle point rule) are of order 1, but the middle point
integration rule has better approximation property as the trapeze rule.

The different integration rules are applied only at the mass matrices and Figure 6.4 shows
the eigenvalues belonging to the different approximations.
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Figure 6.4: x ... middle point rule, o ...trapeze rule, + ... full assembling

Here the middle point integration rule applied onto the mass integrals gives the better
results. The eigenvalues lie with the same distance to each other and are easy to distinguish.
The artificial eigenvalues are those on the nearly vertical line and the interesting eigenvalues
are situated on this horizontal arc in Figure 6.4.

One reason why the middle point rule gives better results than the trapeze rule although
they are both of the same order might be that its approximation error is half of the error of
the trapeze rule. The other reason is that the middle point rule can be seen as a L, projection
of u from P! to P°.

pLI):P =P (6.6)
m.p.r. (/uv dx) = / (PLIQu) vdr (6.7)
I [—~—
€Po
——
ePl

with I an interval C R. This projection P} is a self adjoint projection (( P}, u,v) = (u, P} v))
with (P} )* = P} .
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The same results are obtained if w and v are of order p and the mass integral [uwv is as-
sembled with an integration rule of order 2p — 1 or 2p — 2 instead of 2p. Figure 6.5 shows

the result with » and v of order p = 5 respectively p = 10 and some lower integration rules
applied onto the mass integral.
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Figure 6.5: » and v of order p = 5 (left) and p = 10 (right); o ... full assembling with an

integration rule of order 2p, x ...assembling with a rule of order 2p — 1, + ...assembling
with a rule of order 2p — 2

What is interesting about Figure 6.5 is that the lower integration rules of order 2p — 1 and
2p — 2 onto the mass integral give exactly the same result, although uwv is a polynomial of
order 2p and an exact integration rule (of order 2p) should be the best choice.

In Figure 6.5 the first 20 eigenvalues of the PML-method with full assembling correspond
with the eigenvalues of the PML-method with lower integration rule. The lower order ap-
proaches give even more eigenvalues, which are better to distinguish and the finite element
order p need not to be as high as with full assembling to get enough good eigenvalues. Fur-
thermore no mathematical computation is needed to select the interesting from the artificial
eigenvalues, it can be seen.

So less computational work and easy distinction are the advantages of applying lower
integration rules onto the mass integrals.

Integration rules with order 2p — 3 or lower give different (worse) results. Only if » and
v are of order p, if [u'v' is integrated with an exact integration rule of order 2p — 2 and [ uv
with a lower integration rule of order 2p — 1 or 2p — 2 the best results are obtained.

But why does this approach work that good???
One reason as above mentioned is that the integration rules are Lo projections. For general
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p the Ly-projections for an interval I C R look the following way:

PpP(I) : PP — PP (6.8)
PPP(I) : PP — PP72, (6.9)
<PL1’pu,v> = (PLl’pu> v dr = QP (uw), (6.10)
2 L2 I 2
epr-1
<P£;pu,v>L2 = /I(PLl;pu> (Pi;%) dr = Q%”*Q(uv), (6.11)
P2

with Q% a formula for numerical integration as defined in (6.3) and (6.4).

Another reason might be that if the integration rules onto the mass integral and the stiffness
integral are both of the same order, there is no further approximation error.

The integral [ /v’ can only be computed with an integration rule of order 2p —2 (with « and
v of order p), whereas the integral [ uv can be computed more exactly. This leads to some
discrepancy of the approximation precision. Weather this is the reason for worse results
with exact integration rules is left open.

In order to avoid this discrepancy the mass integral is computed with lower integration
rules of order 2p — 1 and 2p — 2 instead of 2p. Indeed this approach gives better results as
Figure 6.5 suggests.

In the one dimensional case the L, projection is easy to choose (it’s a lower integration
rule), but there are problems in the higher dimensional case. Already in R? an appropriate
mesh has to be chosen. In this case a lower order integration rule on triangles gives no L
projection but applied on squares a L projection is obtained.

Therefore Reduced Integration is a good approach in the one-dimensional case but it’s
no longer pursued for higher dimensions.

6.1.2 Dispersion Analysis for the FE-Solution

Reduced integration gives interesting results in 1D. Why this is the case is investigated by
methods of spectral analysis.

Assume equidistant partition of the interval [0, 1], with n the number of partitions and
h= % the distance between neighbour points. The stiffness matrix K and the mass matrices
Mpnia, My and My, that are obtained by using the middle point rule (mid), the trapeze rule
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(t.r.) and full assembling (f.a.) look the following way (outside the PML, with order p = 1):

2 -1
1 —
K = 4 b2 , (6.12)
2 -1
-1 2
4 1
h
4 1
1 4
2 1
h{1 2
Mpia = 7 , (614
2 1
1 2
My, = hlp, (615)

with I,,, the identity matrix € C™*™ and m the number of knots in the interior (all knots
that are not in the PML).

Except for the first and last lines and those with complex entries (inside the PML), each
line of these matrices (the stiffness matrix plus one of the mass matrices) corresponds to the
homogeneous difference equation

% (w(zj—1) +4u(z;) +u(zjtr)), fa
7 (uw(zj_1) +2u(zj) + u(z;y1)), mid (6.16)
u(x;). t.r.

—u(zj-1) + 2u(zj) — u(zj11) = Ab?

Since a solution of the form u(z;) = exp (inkz;) is looked for with a discrete wave number
k € C and an eigenvalue ), equation (6.16) transforms (with z; = jh and some trigono-
metric sum rules) into:

(4 + 2coskh)), fa.
(24 2cosmkh)), mid (6.17)
1. tr.

B[Oy =

2 — 2cos mkh = \(k, h)h?

Now it is possible to compute the eigenvalues A(k, h) for the various mass matrices

12 sin? k20

Malb k) = r oy cos kah (618)
4 o kmh

)\mid(k', h) = ﬁ tan T, (619)
4 o kmh

)\t.r.(k', h) = ﬁ Sin T (620)

As is easy to verify the orthogonal eigenfunctions u(z) = u(z) of (6.16) are the same for the
different mass matrices, namely

p(z) = V2sin kra. (6.21)
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These eigenfunctions are orthogonal with respect to the usual L, product (-,-)r,. The eigen-
values )\ depend on £ and h. For a fixed h and £k — % the eigenvalues \ behave the following
way

12 sin? kzh 12
Molk,h) = =——2 ¢ —=0,1], 6.22
sl ) = ok © 12 01 (622)
4 kmh
lim Apia(k, k) = lim — tan? =~ = oo, (6.23)
k=4 k— h 2
4  ,krh _ 4
)\t_y-_(k, h) = ﬁ Sin —2 € ﬁ [0, 1] . (624)

Their behaviour is plotted in Figure 6.6 for h = 0.1 and & — 1/h. The inverse eigenvalues of

the middle point rule ﬁ accumulate in zero, while the others have no limit at all.

2000¢
15007
1000

500+

Figure 6.6: A\iq, Af.q. and Ag,. and their behavior for h = 0.1 and kh — 1

If the middle point rule is seen as an operator M onto u, the eigenvalue problem has the
structure Ku = AMu (K the stiffness operator), then the inverse problem is

1
Tu= K~'Mu. (6.25)

Note that this is the problem that the Arnoldi method 8.1 solves!! The operator K := K ~' M
is a compact operator, since these operators have the special quality that their eigenvalues
accumulate in zero as 3. of the next theorem shows.

Theorem:
Let K be a compact operator in a normed space X . Then the following characteristics hold:
1. Ifdim(X') = oo, then zero is an eigenvalue of K,i.e. 0 € o(K).
2. If X € o(K)/{0}, then X is an eigenvalue of K with finite geometric manifold, that is:
dimN (A — K) < oo, with N (M — K) the null space of the operator AT — K.
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3. The spectrum o(K) of K is at best countable with zero the only possible accumulation point in
(C) U {oo}.

For the proof of this theorem see [15].

In 1D with order p = 1 applying the middle point rule results in a compact operator. This is
also the case for higher orders p, if the mass operator M is a projection PLI;” or Pf;” and the

stiffness operator K also the Pz;” projection.
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6.1.3 Derivatives and Sensitives

Consider a two-dimensional domain €2 := QrUQp, which models the cove of the landing
gear and its surrounding of an aeroplane. For details of modelling see Figure 6.7. On this
domainu € Vy:={v € H' :v =00nTpy} and w € C are searched so that equation (5.21)
with V' = Vj holds on Q.

) Upumr
cove for landing gear
Qpm
air / m

aeroplane u Iy |_|
Figure 6.7: model, geometry and mesh

For the finite element discretization and its solution NETGEN/NGSolve [25] is used.
The discretized equation Au = ABu is solved with an Arnoldi solver on the eigenvalue
Problem A~'Bu = }u, see Section 8.1.
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Figure 6.8: Eigenfrequencies of the 2D problem and some T modes

Figure 6.8 shows all the eigenvalues, and obviously all along the PML line are artifi-
cial and therefore useless. Some physically interesting eigenvalues and their eigenfunctions
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(T-modes) are on top of Figure 6.8. The redcircled eigenfunctions are the

T-modes with

T(i,0),7 = 1,2,3. The interesting eigenvalues are those pointed to with an arrow and those

on the diagonal lines below them.

What is needed is a method to distinguish between artificial and important eigenvalues in
some mathematical respectively computational way. To get such a strategy « is changed

slightly, see Figure 6.9.
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Figure 6.9: eigenvalues with different o ’s

50

Obviously the important eigenvalues stay the same, even with different « ’s and the
artificial eigenvalues change. So the approach to get a-independent eigenvalues is to derive

them. With

(A= AB)u = 0,

w'Bu = 1,
and the Theorem of Implicit Functions
fl(uaaa)‘): ut(A_AB)UZO = 0= %Q+%Jj\lgé+3flgg
folu,a0) = u'Bu—1=0 0= G2+ 95+ oeon
the following equations are obtained:
0A 0B iy OX ou
= — ) u—u'Bu== +2(A — AB)u—
0 u(@a >\8> u'Buz- + 2( )x)uaa
, 0B o\ ou
0 = —_— 0- + 2Bu—
Wt g T 2B,
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In equation (6.29) the last part (A — AB)w is zero, if A is an eigenvalue. Thus 2—3 is computed

as
ON  —u'(0nA — X0uB)u

— = 6.31
Ox utBu (6:31)
At first numerical differentiation of the matrices A and B
o, —ul(z(A a,Aa) — Xz (B, a, Aa))u
I 2 2 2 2 . 2
o u!Bu ’ (6:32)
with the central differential quotient
M Aa) — M (a— A
(M, 0, A) = M@+ 80) = M(a = Aa) (6.33)

2Ax ’

is used. Similar results are obtained if z(M, «, A« is the backward or forward differential
quotient.
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Figure 6.10: parameters: a = 1 and Aa = 0.01

Figure 6.10 shows those w ’s which 2= is small in comparison to A« in black o and the
othersin blue x. There are still some artificial w ’s that fulfill this condition and so it might be
better to compute the exact derivatives 9, A,0, B instead of only the central differential quo-
tient. With exact differentiation more artificial eigenvalues, see Figure 6.11, can be picked
out, nevertheless there are enough artificial left.

As a condition |g—3| < cwith g—g computed as in (6.31) and ¢ a the value ¢ = 8 is taken.

If shifts are used, even better results are obtained, see Figure 6.12. The right picture in
Figure 6.12 shows the eigenfrequencies w obtained with a shift that is 900. This shift gives
interesting w’s around 30, whereas the shift 400 (left picture in Figure 6.12) gives interesting
eigenfrequencies near 20. As above the same condition |%| < 8 has been taken.

Finally automatic differentiation combined with shifting of the eigenvalues is a good

method to get some interesting eigenvalues around the special shifts.

44



o 1
L x x
0 X o, <><>X x <
& x
o x x X
o
o o X
-1 g * O X ok x * x
S o « . *
% x
%
X x X X
Ll x xxxxxxxxxxxxx
x
o %00
] k3
E oo
3l X
8 %
><
2%
Xx
%
-4t %
X x
X x
¥
51 %
R
%
X%
-6 , , \ \ \ )
0 10 20 30 40 50 60

real

Figure 6.11: Exact differentiation, x .. .artificial, ... good

Shifting alone is not enough for the distinction of artificial and interesting eigenvalues, as
can be seen in Figure 6.13. Using shifts computes only the eigenvalues near those shift more
exact, but no further distinction is obtained.

Therefore a totally different approach, which is called wavefactorization is discussed and
tested in the next section.
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Figure 6.12: Exact differentiation with different shifts (left: shift = 400, right: shift = 900) and

the obtained interesting w’s (¢)
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Figure 6.13: Computation of the eigenvalues without shift (x) and with different shifts (+. . .
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6.2 Wavefactorization

The Sommerfeld condition (2.10) states that at infinity the waves are outgoing, but consider
all waves are outgoing (not only at infinity), which means « is set as u(z) = @exp (iw |z]).
The wave is factorized into an exponential-term and a wave 4. So v fulfills the Sommerfeld
condition and the spherical wave is built in. As test functions all incoming waves are taken
and so the exp-term vanishes. Only @ has to be computed.

FSom
'y

Figure 6.14: The domain Q and its division of its boundary T' = ', UT
The approach

w(@) = e = Vu = (Vi + iwni)e™ 7, (6.34)
0(Z) = ve 7 = Vo = (Vo — iwno)e 1, (6.35)

is inserted in equation (5.17) and results into

0
/ (VaVi — iw(Viin & — Vin i) + w’n" i) — [ 5= v = w’ / b (6.36)
Q r on Q
The integral fF %v vanishes at I' y (homogeneous Neumann boundary condition) and trans-
forms into fFSOm(%ﬁ + iwn”nav) elsewhere. Its right part stays (with n”n = 1) and its left
vanishes because of the Sommerfeld condition (2.10) at I's,,,, which is (without limes)

T ezw\x| —

(Bpu — iwu) = (Opt + iwn” nt — iwa) O 17l = 0. (6.37)

So if the normal derivative % = Opu = Vuii is zero at I'g,,, the Sommerfeld condition is
fulfilled.
Finally the integral w? [, n” nio vanishes with the right hand side of (6.36).

Thus the final problem is

Finda e Vo= H'(Q)andw € C :
/ ViV = iw (/ (5@ - a@> + / uv> foro eV =H' Q). (6.38)
0 0 8’/7, 3n r

In this formulation two natural and no essential boundary condition are included. Never-
theless 4 is uniquely determined in H'(92), because equation (6.38) compels i to be unique.

Because of 9,4 = 0, the spherical wave # is constant at the boundary I' g,,,,, respectively at
infinity. This fits well to the approach u = @e™!¥! of the wavefactorization. The exponential
term prevents reflection and is responsible for the oscillation whereas the spherical wave @
depends on material properties and is constant at infinity.
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Instead of || a potential (%) can be taken. For example this can look like a(x) = /p |z — o,
with p a material parameter and z, the origin (in 1D). If a(Z) = |Z|, then Va = \% = 11 and
therefore VaVa = Var = %. Generally the potential a(Z) should fulfill two conditions:

Va'Va=p at Q, (6.39)
(Va)'n=\/p at T, (6.40)

depending on the material parameter p, whose default value is 1. A material parameter
p # 1 is only used if there are (at least two) different materials/fluids. The first condi-
tion erases the integral w? [ Va?'Va 4o with w? [ pad, the second turns iw [ Valnad into
iw [ \/puv. These conditions can be summed up into one: Va = ,/p 7i at . The parameter
p is continuous or constant in the material/fluid but jumps if two materials/fluids come to-
gether. With this condition the potential « is nearly fully determined. It has to be a positive,
linear and continuous function of an absolute value of a linear function of Z. This makes
a(Z) = c1 [eoZ + ez + ey With ¢y - ¢ = \/p and ¢y, ¢, c3,¢c4 € R. Only three degrees of free-
dom are left.

Discretization gives a generalized eigenvalue problem Au = iwBwu but with real matrices
instead of complex ones. B is not symmetric but A.

For better understanding an example.

6.2.1 Wavefactorization: one-dimensional case

Assume the potential a(z) with p as defined in equation (5.30). Both « and p are shown
1

\,0
0.38 1 2
< az) = V0 \35—5\ 7 € 3, 3]
\x—Q\ T, €lse
0.1
07 | | | | o = Y01 ~ 0,114
1 1 2
0 3 3 3 1

Figure 6.15: The material parameter p(x) and the potential a(z)

in Figure 6.15. The potential ¢ has to be continuous (thus the z,,), but not differentiable
although Va = ,/p ii is known. The jumping p prevents the continuity of Va.
With the above definition of a and p the eigenvalue problem has the following structure:

Findu e H'(Q)andw € C :

/ VaVi = iw </ N (v% — a—> / \/_m)) Vi e HY(Q), (6.41)

with Q the interval [0, 1], T" the boundary points {0, 1} and I"s,,,, = I. To be more precise this
equals

/01 ViV = iw (/01 VP (v% — uZ—Z) +a(1)5(1) + a(0)5(0)> : (6.42)
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Finite-Element-discretization with an equidistant partition of the interval [0, 1] gives a gen-
eralized eigenvalue problem Au = iwBwu with A, B real matrices. Again it is solved with the
Arnoldi method 8.1.

+ + o+ + rFFrrrF et s+ o+ o+ 4 4]
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-300(

-400}

Figure 6.16: Eigenvalues w of the on dimensional problem

Figure 6.17:; u (left) and @ (right) belonging to the bluecircled eigenvalue of Figure 6.16

In Figure 6.16 all eigenfrequencies w are shown. All interesting eigenvalues are those
which don’t belong to the circle but to the line. So in 1D it’s easy to distinguish. In Figure
6.17 u = u exp(iwa(xz)) and @ belonging to the bluecircled w (of Figure 6.16) is shown. It
is seen very clearly that @ is constant in the outer domain, as the Sommerfeld condition
demands. In the interior [1/3,2/3] the real part of the wave w is the sine curve sin(97z).

The eigenvectors @ from artificial w ’s (i.e. from eigenvalues in the circle) are not so
regularly respectively continuous. The u belonging to them have higher amplitude and fre-
quency.

Remark:
Recall that © = @ exp(iwa(z)) decays not, but increases the more, the farer from the origin.

The above problem is discretized with an equidistant mesh respectively an equidistant par-
tition h = L of the interval [0, 1]. A slight disturbance of this equidistant mesh gives different
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eigenvalues. The eigenvalue solver cannot solve it correctly since 0 respectively % (with nu-
merical computation) are multiple eigenvalues A with an infinite eigenspace.

A different partition, e.g. a harmonic partition, near the boundary gives different artificial
eigenvalues, as can be seen in Figure 6.18 in black. Again those on the horizontal line are
interesting eigenvalues and those on the vertical line are artificial ones. The first eigenval-
ues in the center of the top stay exactly the same, but the farer from the center the wider the
distance between the eigenvalues computed with different partition.

imag
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Xx
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X
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-160
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Xx

-180 x x

-200 ! ! !
-200 -150 -100 -50 0 50 100 150 200

Figure 6.18: equidistant (x) and harmonic partition (+)

Here h is harmonic (h; = ?,j = 1,2,... with ¢ a constant depending on the last h; =
c/k =~ 1/n that is harmonic) only near the boundaries and not in the middle of the interval,
there equal h = % are taken. After the computation of ~ and the coordinates of the points
x; = xj—1 + h;_1, itis necessary to rescale the domain to the interval [0, 1].
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6.2.2 Wavefactorization in higher dimensions

The same domain as in the PML example in Section 6.1.3 is taken but now with radius
r = 0.6 and it’s searched an & € H' so that equation (6.38) holds. Here T' is the outer round
boundary. NETGEN gives the eigenvalues as shown in figure 6.19.

AT
RSN
T

real

Figure 6.19: On top the eigenvectors u: T(0,1), T'(2, 3), T'(3,5) and T5(1, 3) belonging to the
blackcircled eigenvalues down under

The eigenvalues which are circled in black belong to the eigenvectors on top of Figure

6.19, as the arrows show. The eigenvalue T5(1, 3) differs a little bit from the other mentioned
eigenvectors. It oscillates in the outer domain, where the others are already constant (here
zero). There exists a T'(1, 3) which has this desired behavior (no oscillation near the bound-
ary) and it’s circled in red.
The question is now: Is this T (1, 3) a physical interesting eigenvalue? In some mathematical
sense it is, because « is constant (zero) at I', but not even a little bit before. It just happened
that 75(1, 3) is zero at I, because @ completes a wavelength X: 4(r) = a(nA) = 0,n € N. If
there would be some disturbance of the radius » — r + ¢, the wavelength A would not be
complete i(r + €) = u(nA +€) # 0.
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To avoid such coincidences some change of radius is proposed. The idea is now that the
interesting eigenvalues do not change if the radius is changed, at least not as much as all the
other artificial eigenvalues.
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Figure 6.20: Change of radius from » = 0.6 to 0.7

Figure 6.20 shows what happens if the radius is changed slightly. Only the eigenvalues
on top stay the same, so these are really interesting ones. The artificial ones change a lot
(look for the eigenvalues arranged in arcs in the lower half of the picture) but some like
T5(1,3) not as much as the artificial ones.

At least we can suppose that the eigenvalues on top are those we are looking for. Neverthe-
less no mathematical strategy is obtained to pick out the artificial eigenvalues from those of
physical use.

In addition changing the radius disturbs the mesh a little and so the two situations are
to compare with each other carefully.
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6.3 Combination of Wavefactorization and PML method

Neither PML nor wavefactorization gives sufficient results so what happens if they are com-
bined?

First wavefactorization and then the coordinate transformation (a(z) — u(y(z)), with v as
defined in (5.12) is applied and the following problem is obtained.

Findae Vo =H'(Q)andw € C :
/ VaJ LTV det(J) = iw / (wt@ —ath—“> det(J)
Q Q

on n

+ iw/ avdet(J) Vo€V = HY(Q6.43)
IN3VS5

The domain © should be the same as in Figure 5.4, where the boundary T py, 7, equals T gy,.

Here the integral fFPML v det(J) has to stay and vanishes not by inclining the Dirichlet
boundary condition & = 0. In the latter case @ would get zero and is not a constant value at
infinity, which is demanded by the Sommerfeld condition.

With the finite element discretization a generalized eigenvalue problem Au = iwBu has
to be solved with A a complex symmetric and B a complex matrix. To be more precisely
B is a sum of a complex symmetric matrix (coming from the boundary integral) and an
antisymmetric matrix (coming from the domain integral). This structure is of no use.

So the advantages of both further approaches are lost: the matrices are not (complex)
symmetric (as with the PML approach) and not real (as with the wavefactorization) any
more.
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Figure 6.21: Wavefactorization alone (« = 0, 0) and wavefactorization with PML, o = 1 (%),
a=2(%
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6.3.1 The One Dimensional Case

The same problem as in (6.41) is taken, but now with an additional PML and a function ~y as
in (5.36). The problem is as follows:

FindaeVy=Vandwe C:

/Qvawdelt = iw (/ N7 (v% —ﬂ—) —i—/ﬁ&ﬁdety) Viev, (6.44)

with Vo = V = H'(Q), Q the interval [0, 1], the PML the intervals [0, ¢] and [2, 1] and p de-
fined as in (5.30). The PML function v(z) is (1 4+ i)z in the PML and z else.

In the one dimensional case without PML Figure 6.16 gives the result, now « is not zero
any more but 1 respectively 2, see Figure 6.21.

The circle moves away from the interesting w’s which are on the line on the right (Re(w) >
0, Im(w) < 0). Since in 1D there is already some good (clearly seen) distinction between
good and artificial eigenvalues the circle moving away gives no further information. If a
different partition is used, i.e. the harmonic partition as with wavefactorization alone, some
more information is received, see Figure 6.22. There the first two or three vertical eigenval-
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real

Figure 6.22: Wavefactorization (0 ...« = 0) and PML (x...a = 1; +...a = 2) combined
with a harmonic partition

ues move to the left, all the others stay the same. So here a combination of wavefactorization
and the PML method gives us a hint which eigenvalues are interesting, namely those that
do not move and are not dependent from the eigenvalue solver, which are those on the hor-
izontal line.

What is most interesting now is weather such behaviour (the artificial eigenvalues moving
away) can be achieved in higher dimensions. If this is the case is checked in the next Section.
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6.3.2 Higher Dimensions

The domain is the same as in Figure 6.7 and a @ € V, = V = H!(Q) is searched that holds
equation (6.43) forall v € V.
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Figure 6.23: Eigenvalue computation with different complex shifts

Figure 6.23 shows that it is necessary to work with complex shifts. So for the following
two figures 6.24 and 6.25 a shift of 30 is taken. The eigenvalue solver is an Arnoldi solver
onto (A — shift. B)~'Bu = iwu = Au. The Inverse matrix is computed with the sparse
solver PARDISO (see [22]). For Figure 6.23 the polynomial order of the Finite Element basis
functions is 8 and the dimension of the Krylov space (for the Arnoldi) is 200.

.

x 4
x o 8
3r + 12
x <o +
2F x
% x
1+ <o
3 x +

imag

60 70

Figure 6.24:; Different orders p of the FE basis functions

In Figure 6.24 the Finite Element basis functions of polynomial order p = 4, 8 and 12
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are compared. With lower order (here 4) there are artificial PML lines, which vanish with
higher order. Order 8 gives already good results, but if « increases while the order p stays
the same, these artificial eigenvalues appear again, see the left picture in Figure 6.25.
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Figure 6.25: Different o, s = 30:

Changing « a little bit , see second picture in Figure 6.25, gives a really good distinction
of artificial and physical relevant eigenvalues. All interesting eigenvalues do not change
with a varying «, the others do. So exact mathematical derivation seems be a good strategy
for the distinction between artificial and relevant eigenvalues.
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Figure 6.26: Exact differentiation with o = 1 and no shift

Unfortunately even exact differentiation does not work well here, see Figure 6.26. Here
very high values for

(29 ul (0g A — N0 M) u
da uT Mu ’

(6.45)
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distort the result.

The reason for these high values is that v Mu is very small ~ 10-2°, ™ A’u rather large
~ 1073 — 1075 and u” M'u is around ~ 10~2%, and therefore Au” M'u ~ 10720 — 10723, So 22
depends mainly on 9, A.

As a condition
oA

oo

with ¢ the huge value 4 - 10" is taken. Remember that with the PML method alone only
an ¢ = 8 has to be needed. The eigenvalues fulfilling this condition (¢) are not always the
interesting ones. But it helps a lot to apply shifts, see Figure 6.27. There are still some
artificial eigenvalues fulfilling this condition but less than before.

<€, (6.46)
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Figure 6.27: Exact differentiation with o = 1 and some shifts s = 10i(on the left top), s =
207(on the right top) and s = 30i(on bottom) and order p = 4

Finally it can be said that the above condition (6.46) combined with shifting results in
a rather good method to distinguish between artificial and interesting eigenvalues. In this
case (with this special geometry) nothing more can be attained, but see the next Chapter -
especially the last Section - for more interesting results.
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Chapter 7

Example: Slat Cove of an Aeroplane

In this Chapter a special geometry is regarded. The PML method, wavefactorization and its
combination are tested and discussed on this special geometry, which is provided by DLR,
see also [18], [24].

7.1 Geometry

Consider the wing of an aeroplane (cut lengthwise to make it two dimensional) with a slat
cove as shown on the left in Figure 7.1.

PML of thickness dpa/r,

{‘ PML boundary T'pa7,

Neumann boundary I' 5
Figure 7.1: Geometry of the wing and the surrounding PML

This object is inside a circle of the radius rpysr,, from where the PML begins. The thick-
ness of the PML is dppsz. All in all, the whole computational domain is a circle with radius
rpymr + dparr, Where the slat cove is arranged as shown in the right picture of Figure 7.1.

7.2 PML Method

For derivation of the method see Chapter 4 and the last chapter for the exact equations.
The only difference to the problem in Chapter 6 is now that the Neumann boundary is the
boundary of the slat cove and the PML Dirichlet boundary is placed at the circle with radius
remr + 0Py

Meshing with NETGEN and solving with NGSolve gives eigenfrequencies w as shown
in Figure 7.2. There are different PML parameters « used, and it is seen that a large o make
a better distinction between artificial and interesting eigenvalues possible. The interesting
ones are those on the horizontal line on top of the picture.
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Figure 7.2: Eigenvalues obtained with order p = 8 and various o = 1,5, 10

Shifting alone without changing « gives no distinction but more eigenvalues on top, see

Figure 7.3.
Finally exact differentiation is used. Those eigenvalues fulfilling g—g < e = 0.01 are

marked with a diamond (¢) in Figure 7.4. It is clearly seen that this condition works very

good here, unlike in Section 6.3.2.

59



imag

or x 0
+ 100
¢ 400
O 900
5L o
-10- ‘@x—g
;4
. +
O KD
-15 %
o) go o
+® o
+ +
20+ O X
20 § ”O«::
() X
®o
-251 . +
X (o}
o o
-30 1 1 1 1 1 1 |
0 10 20 30 40 50 60
real
Figure 7.3: Eigenvalues obtained with various shifts
x x x 0
o- 000OBEIO0OR s ¥ XX x . ’
xxXXXxXX
X
x
X
x
x
Xxx&x;§<)¢;§ X X x
&K
-5 X
X%
X
L
.
.
-10f »
X N
X
X
.
X
-15 1 1 1 1 1 1 1 1 1 |
0 5 10 15 20 25 30 35 40 45

real

Figure 7.4: Interesting eigenvalues (¢) with e = 0.01

60



7.3 Wavefactorization

The domain is the same as before, but T'ps;, = T'som @and no PML is needed. The following
Figure 7.5 shows the eigenfrequencies w obtained by wavefactorization and some interest-
ing eigen modes.
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Figure 7.5: w’s and some modes obtained by wavefactorization

The interesting eigenvalues are those pairs circled in green. They have positive real part
(Re(w) > 0) and negative imaginary part (Im(w) < 0). The first two pairs are shown in the
above modes. Clearly the connection between each mode of one pair is seen.

As seen in Chapter 6 changing the radius slightly gives some kind of distinction, so let’s
try this. Here only 6 pys;, is changed, not »p .. For the results see Figure 7.6.

Obviously the double eigenfrequencies on the curved lines are interesting, which is true.
Still there are some artificial eigenvalues that don’t change if the radius is changed, i.e. look
atw = 0 or w = —i or those on top with nearly zero imaginary part, near the origin. Thus
other approaches have to be tried.

At last the mesh is refined at an edge, see the right picture of Figure 7.7. Here the bound-
ary has been refined and thus the mesh touching this boundary part is also refined. The left
picture in 7.7 shows the computed w’s. The refined mesh has consequences on those eigen-
frequencies w with the absolute value of their real part bigger than 15 and their imaginary
part bigger than zero. In short only the w’s on the outside are affected.

So wavefactorization alone results in no mathematical strategy to distinguish between
important and artificial eigenvalues.Therefore it is combined with the PML method, see the
next Chapter.

61



x 1.5
+ 151
051
x *x ¥ ¥ ¥ x
+ x x % +‘§ % ** ﬁ** * 4&+ X x x +
N Xix + . 5 . + xix N
« x +X&+x * % X * % X * ¥ ><+XFX+ N x «
€ o5l . # o x K ¥ x
g -05 N * * % * +
£ + x + * + x +
+ ¥ox ¥ Ty +
X X
+ it Fex +
* * * * * <
+ *x ¥ +
-1r +x ¥ * o+
B « i
i* X
_15F
_2 1 1 1 1 1 1 1 |
-20 -15 -10 -5 0 5 10 15 20

Figure 7.6: w’s obtained with different radius »pys7, + dparr, = 1.5 and 1.51

1
+ +
05F R
+ +
+ +
+ +
or i o B R o 7
o+ o+t
+ +
L e
+ +
05 P G |
+ Foy 4ot +
L & T o4t
oy " i L tF
+ +
+ ++
-ir + + o+ + + t 4+ + ]
+ +
s + 4
-+ -+
+ +
-15F R
-2 Il Il L L L
30 -20 -10 0 10 20 30

Figure 7.7: Eigenvalues computed with a refined mesh (left) and the edge that is refined
(right)

62



7.4 \Wavefactorization and PML Method combined

The same domain as with the PML method is taken.
First various values for the PML parameter « are tested, see Figure 7.8. A large o moves

the PML dependent eigenvalues away from the interesting ones. So different «’s are respon-
sible for the distinction.
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Figure 7.8: Eigenfrequencies w computed with o = 1,10 (left) and oo = 1, 1.1 (right)

Evidently those eigenfrequencies on the horizontal line on top of the picture are the in-
teresting ones, see Figure 7.9 for the eigen modes. At the above pictures order p = 4 is used.
Increasing the order up to p = 8 affects the w’s not much, see Figure 7.9.

L# % *
ORf &+ % « »+ | IR +
ke, R +x
o,
* +
Frl o4k
%ﬁtt“ﬁ‘
g b +
E *
RS
I
X X+
&
"
+ +
-10f *
"
-15 Il L
-5 0 5 10 15 20 25

real

Figure 7.9: w’s computed with order p = 4 and p = 8 and some interesting eigen modes
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Since increasing the order gives no further interesting eigenvalues complex shifts are
suggested, for the result see Figure 7.10.
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Figure 7.10: Eigenfrequencies computed with various shifts s = 0,10s and s = 207 (« = 1.1)

Shifting increases the number of interesting w’s computed. Let’s see what happens if a
large « and shifting is applied. The first should affect onto the distinction quality, the latter
on the number of eigenvalues obtained, see Figure 7.11.
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Figure 7.11: Eigenfrequencies computed with various shifts s = 0,10; and s = 20i and
a=10

As above mentioned shifting combined with some large PML parameter « provides the
best results.
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Finally test if the condition
O
dax
for some ¢ is fulfilled. Here the eigenvalue X\ is the imaginary unit multiplied with the
eigenfrequency w, i.e A\ = iw.
At first no shift is applied and % is computed for the various « = 1 and @ = 10, see
Figure 7.12. Those eigenfrequencies that fulfill condition (7.1) with an ¢ = 5 are marked
with a diamond (o).

<€, (7.1)
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Figure 7.12: Exact differentiation a = 1(left) and o = 10(right) without shifts

Remember that the limit € is far smaller than in Chapter 6, where € was huge.
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Figure 7.13: Exact differentiation o = 10, shift s = 10i(e = 5) and s = 20i(e = 20)

Picking out those eigenvalues that fulfill the above condition (6.46) might not be the best
idea. In Figure 7.13 and in Figure 7.12 is seems as if the interesting eigenvalues depend on
€, if shifts are used. Only those w’s with real part smaller than ¢ are declared as interesting
eigenvalues.
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Is it possible that for the interesting eigenvalues the derivative % is approximately w??
As the next Figure 7.14 shows the derivative is not w, but the absolute values of both are

similar. Now take the condition

o
oa

with m is the size of the Hessenberg matrix H,,

for the following pictures e = 0.01.
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imag
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j=1,...,m, (7.2)

. Finally the limit ¢ is a really small value,
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Figure 7.14: Eigenfrequencies satisfying condition (7.2) are marked o, shifts s = 0(left top),
s = 10i(right top), s = 20:(left bottom) and s = 30i(right bottom).

The second condition (7.2) works very good here with this special geometry. In Chapter
6 no connection between the derivative and w has been found. Thus condition (7.2) works
only with this special geometry and with the approach of using wavefactorization combined

with PML.

Finally a mathematical strategy, i. e. condition (7.2), to pick out the interesting eigenval-
ues has been found (for this special problem). This is very important for further work, as

can be seen in the next Chapter.

66



Chapter 8

The Eigenvalue Solver

This chapter gives a short summary over the Arnoldi eigenvalue solver, its advantages,
which other solvers work in the special cases and about some deflation strategies, where the
latter two topics are future work.

The start problem is a Generalized Eigenvalue Problem:
Findu € C™"and X € C:
Au = X\ Bu, (8.1)

with A, B matrices in C"*",
Since the Arnoldi procedure can only be applied on eigenvalue problems of the form
Mz = pz, the above generalized eigenvalue problem has to be transformed.
The Matrix A from 8.1 is the stiffness matrix and therefore diagonal dominant. The Inverse
of A should exist and can be applied on B. The problem is as follows.
Findu € C™"and X € C: .

A7'B u= U (8.2)

—
M

with A, B as above.

If the PML-method is used both matrices A and B are complex symmetric. In case of wave-
factorization those matrices are real and A is symmetric. Applying the combination of both
methods gives complex matrices with A complex symmetric.

The inverse A~! of a symmetric matrix A is symmetric but multiplied with another sym-
metric matrix B the result A—! B need not to be symmetric any more.

If some shift s is used then the following eigenvalue problem has to be solved

(A—sB)™'B u = pu, (8.3)
————
M

and the eigenvalues A are computed as A = % + s.

Now the use of PARDISO [22] and LAPACK [19] are described. The package PARDISO (Par-
allel Sparse Direct Linear Solver) is needed to compute the inverse matrices (A — sB) !, s #
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0, which is not symmetric if B is non symmetric. Otherwise the Linear Algebra Package
LAPACK is able to compute the inverse matrix. Furthermore LAPACK computes the eigen-
values of the Hessenberg matrix H,,, which is obtained by the Arnoldi algorithm. Two
routines in special are used: zhseqgr, which computes the eigenvalues and Schur factoriza-
tion of an upper Hessenberg matrix, using the multishift QR algorithm and zhsein, which
computes specified right and/or left eigenvectors of an upper Hessenberg matrix by inverse
iteration.

Both packages are provided by the Intel Math Kernel Library [21] for Windows. Here
the MKL evaluation version 8.0 is used.

8.1 The Arnoldi Method

The Arnoldi method was first introduced as a direct algorithm for reducing a general matrix
into upper Hessenberg form. It was later discovered that this algorithm leads to a good
iterative technique for approximating eigenvalues of large sparse matrices.

The algorithm works for non-Hermitian matrices. It is most useful for cases when the
matrix is large but matrix-vector products are relatively inexpensive to perform. This is the
situation, for example, when M of problem (8.2) or (8.3) is large and sparse.

8.1.1 The algorithm

The Arnoldi method is an orthogonal projection method onto a Krylov subspace. The pro-
cedure can be essentially viewed as a modified Gram-Schmidt process for building an or-
thogonal basis of the Krylov subspace K™ (M, v).
The Arnoldi procedure reduces M to a Hessenberg matrix H,, € C™*™ with m << n and
then the LAPACK [19] routines compute the eigenvalues and -vectors of H,,.

The Arnoldi algorithm is as follows:

vy = v/||vl]2 define start vector
forj=1,2,....m
w = Mwv;
fori=1,2,...,3
hij = w'v; compute j’th column of H,,
w = w — hj;v; orthogonalize against previous vectors
end for
hjt1,5=w
if hji1,; < ethenstop breakdown
vjt1 = w/hji1,j
end for

Table 8.1: The Arnoldi algorithm

The vectors v;,5 = 1,...,m that form (by construction) an orthonormal basis of the
Krylovsubspace £ (M, v) are called the Arnoldi vectors.
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After a look at the algorithm is it clearly seen that

j+1
MUjZZhijUi, j: 1,...,m. (84)
i=1
Therefore if V,,, denote the n x m matrix with the vectors vy, ..., v,, as columns and H,, the

Hessenberg matrix with entries h;;, the following relations hold

MVm = VmHm + h,erl’m’Uerle:n, (85)
VEMV,, = Hp, (8.6)

with V* the complex conjugated matrix of V' and e;, the m’th canonical basis vector e;, =
(0,...,0,1). Now only the eigenvalues of the simpler matrix H,, have to be computed. This
leads to the eigenvalue problem

Hpy =V MV,y = Ay. (8.7)

These eigenvalues \; are called the Ritz (eigen)values. The eigenvectors y; of H,, that belong
to the eigenvalues )\; are transformed to the so called Ritz approximate eigenvectors by

u; = Vinyi- (8.8)

The Ritz pairs (\;,u;),i = 1,...,m are approximations for eigenvalues X and eigenvectors «
of the original problem Mu = A\u.

If hy1, is smaller than e (= zero) then v, ; cannot be computed any more and the algorithm
breaks down. But this is desirable, because in this case the subspace K™ (M, v) is invariant
and the computed eigenvalues are exact. This does not happen often.

After reduction of M to a Hessenberg matrix H,, of size m x m, LAPACK [19] computes
all eigenvalues A\;,7 = 1,...,m and eigenvectors y;,7 = 1,...,m of H,,, transforms the
eigenvectors to the Ritz vectors u; = V,,,5; and these u; are the final eigenvectors, see Table
8.2.

This is different to the original Arnoldi eigenvalue solver, which computes the eigenpairs
successively, one eigenpair after the other.

choose v;

Arnoldi algorithm as in 8.1

store the arnoldi vectors in matrix V,,, = [v1, ..., vn]
Hy = Ny compute all eigenpairs (A\;,y;),7i = 1,...,m of H,,
u; = Vyi,t = 1,...,m transform the eigenvectors of H,, to those of M

Table 8.2: Computation of eigenvalues with Arnoldi algorithm

Now it is desirable that the interesting eigenvalues and their eigenvectors stay and the
artificial eigenvalues are already picked out of the Krylov space during computation. There-
fore some mathematical strategy is needed to distinguish between interesting and artificial
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eigenvalues. Such a strategy has already been developed and tested if the PML method is
used, see condition (7.1) or (7.2) . If
O\

Jo

holds for \; = iw;,j € A, then the eigenvalues of this set A of interesting eigenvalues and
their eigenvectors u;, j € A should not be computed any more. To avoid reconvergence to
any eigenvalue of the desired subset A deflation is used, which is future work and will be
described in the next Section.

<e (8.9)

8.2 Future Work on the Eigenvalue Solver

Here some suggestions how to improve the efficiency of the eigenvalue computation are
discussed.

8.2.1 Deflation

There exist a variety of ways how to implement deflation, see [32], here only those useful in
the above case are regarded.
Before any further explanation, some definitions have to be made.

Theorem
For any square Matrix A € C™*" there exists a Schur decomposition

)\1 * *
U*AU =T = , (8.10)
' *

0 ... 0 X\

with U a unitary matrix (U*U = I,, = UU*) and T an upper triangular matrix with the eigenvalues
of A as diagonal entries. If A is hermite in addition, 7" is a diagonal matrix.

This well-known decomposition asserts that every square matrix A is unitarily similar
to an upper triangular matrix 7.

The Schur vectors u;, j,. .. ,n are the columns of U. They are not the eigenvectors, because
n n n
Z A]’,ku]- = ZTj’kuj = \pup + Z Tk, juj, k=1,...,n. (8.11)
j=1 j=1 J>k

Although Schur vectors are no eigenvectors they are important because they span an invari-
ant subspace of A.

Definition: Invariant Subspace

X is a invariant subspace of the operator A if for all x € X holds that Az € X, i.e. AX isa subset
of X.

For example: eigenvalues or Schur vectors span an invariant subspace.
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If U represents the leading k& columns of U (the first & Schur vectors), T}, the leading, prin-
cipal k& x k submatrix of T, then
AUy = Ui Ty. (8.12)

holds, which is called a partial Schur decomposition. Since the eigenvalues of A appear on the
diagonal of T in any order, there exists always a partial Schur decomposition of A with the
diagonal elements of T}, consisting of any specified subset of eigenvalues of A. Moreover,
span(Uy) is an invariant subspace of A for these eigenvalues.

Supposing c eigenpairs (\;,v;),i € A with v; the corresponding Schur vectors have con-
verged (are Ritz values and Ritz vectors) and fulfill condition (8.9).

One implementation, which fits in well with the Arnoldi procedure, is to work with a
single basis v;,7 = 1,...,m whose first ¢ vectors are the above Schur vectors v;,i = 1,...,c.
Then choose a vector v.,1 which is orthogonal tov;,7 = 1,...,cand of norm 1. Nextm—c—1
steps of an Arnoldi procedure are performed in which orthogonality of the vectors v;,7 =
c+ 2,...,m against all previous vectors is enforced. This generates an orthogonal basis of
the subspace

Span(vy, vz, . .., Ve, Vo1, Aoy, ..., A" Ly ). (8.13)

Thus, the dimension of this modified Krylov subspace is constant and equal to m in general.
Note that the Schur vectors associated with the eigenvalues v;,i = 1,...,¢ will not be
touched in subsequent steps. They are sometimes referred to as locked vectors. Similarly,
the corresponding upper triangular matrix corresponding to these vectors is also locked.

Another implementation is as follows:
Let
A, =diag(M, ..., ), (8.14)

denote a quasi-diagonal matrix(a block diagonal matrix, whose blocks are of size 1 x 1 -
corresponding to a real eigenvalue and 2 x 2 - corresponding to complex conjugate pair of
eigenvalues) containing the converged eigenvalues and let

Ve=[v]...|v], (8.15)

be a matrix with the converged Schur vectors as columns. This deflation strategy requires
to work with the matrix
M, =M — VAV, (8.16)

with V. A .V} the partial schur decomposition of M. Note that if MU = UT is a Schur form
of M, then
MU = MU — VA VU =UT — V.AE* =U(T — E,AE}), (8.17)
~——

E‘*

with E. = [e1]...|e.] @ matrix whose columns are the first ¢ canonical basis vectors. From
this it is evident that the eigenvalues of the deflated matrix M, are related to those A\ of M

by
IS LD VIO WD VINNIND S U VIR ORI W 5 (8.18)
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Since the factor (T'— E.A.E?) is a Schur form for A., the Schur vectors of the deflated matrix
M, are identical to those of M.

In fact there are two types of deflation:

1. Locking
If an eigenvalue X is thought to be a member of the wanted set of eigenvalues, then
it is wished to declare it so, to decouple the eigenpair (A, ) and continue to compute
the remaining eigenvalues with no further alteration of A or ». This process is called
locking.

2. Purging
If an eigenvalue in no member of the wanted set of eigenvalues, then it is wished to
decouple and remove the eigenpair (\,») from the current subspace spanned by the
Arnoldi vectors. This process is called purging.

8.3 Other Eigenvalue Solver

The computation and selection of interesting eigenvalues will require further work. Inter-
esting methods are the Block Arnoldi Method described in [32], p. 185, or the Shift and Invert
Block Arnoldi method proposed by D. L. Harrar [16], which is similar to the Arnoldi method
with the difference that a block of Arnoldi vectors can be computed. This method is also
highly favorable if there are clustered or multiple eigenvalues.

In the special case where PML (alone) is used, the complex symmetry of the resulting FE ma-
trices can be exploited. Here the Jacobi Davidson for complex symmetric Matrices by P.Arbenz
[2] is recommended.
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Chapter 9

Conclusion and Future Work

In this thesis the Helmholtz eigenvalue problem on infinite domains has been discussed.
Starting from the governing equations, a mathematical formulation has been derived and
afterwards discretized with the Finite Element method.

Furthermore two methods (PML and wavefactorization) to terminate infinite domains,
on which the Helmholtz problem is solved, have been discussed.

The aim was to find a strategy to pick out the important eigenvalues from the artificial
ones.

Both PML and wavefactorization provide interesting results, although with the latter no
strategy for the distinction between interesting and artificial eigenvalues of the problem is
achieved. Additionally wavefactorization reacts sensitively onto the mesh partition (in the
one dimensional case).

Thus they are combined and by this combination a condition for such a distinction has
been found. This condition works good for the landing gear model, see Chapter 6 and per-
fectly well for the slat cove model, see Chapter 7.

Hence some future work is to incline this condition into the eigenvalue solver, as already
said in the last Chapter.

Another promising method is Reduced Integration (if PML is used), see Section 6.1.1. Here
only the one dimensional case has been considered, but this might be extended to higher

dimensions.

Further more this work can be extended into solving the Helmholtz eigenvalue problem
on three dimensional domains.
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Appendix A

U = VUpe + 1Vim = Vre — Wim

i=v—1
I,

diag(M, ...y An)
O,

\Y

div

List of Notations

d
dot productin C%, v - w = Z VW;
i=1
transposed vector of vector z
transposed matrix of matrix A
hermite (complex conjugated) matrix of matrix A (a;; = aj; Vi, j)
complex conjugated number of v
complex unity
Identity matrix € R}

diagonal matrix € R} with entries Ay, ..., A, in the diagonal row

short hand for ﬁ
oxy,

oLu

gradient, Vu=

8du

d
divergence, divu = Z O =V - u
im1

d

Laplacian operator, Au = 5 =V-V
dz3
=1
d ou
normal derivative, 9,u = Vu -n = Z n;
— Ox;
=1
. T
normal unit vector, n = ﬂ
X

absolute value of z € C
euclidean norm of vector v
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faculty, n!=n-(n—1)----- 2.1

Lebesgue integral of a scalar field f(z) over the domain Q

line or surface integral of a scalar field f(z) over the manifold I'

interior of 2 without boundary I' = 992
Q with boundary I' = 9Q
O and big O notation, Landau symbols

=o(g(z _f(x) T 00
f(z)=o0(g(z)) < o) —~0 for —

— Ola( cer:- 1@ _ oy,
f(z)=0(g(z)) < JdceR: o) <c VY
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Appendix B

The Finite Element Method

A detailed introduction in Finite Element Methods can be found in[4] and [7] .
The Eigenvalue Problem
Find u € Vj:
a(u,v) = A b(u,v) forv eV, (B.1)

with a(u,v) and b(u,v) bilinearform, Vj the trial space (u the trial function) and V' the test
space (with test functions v) usually Hilbertspaces is considered.

If this problem is seen as a boundary value problem with fixed A and zero right hand
side, then the theory of Fredholm is needed to prove existence, uniqueness and stability of
solutions .

B.1 The Galerkin Ritz Method

Due to the Galerkin method, a sequence of finite dimensional subspaces V;, C V is assumed
and for each of it a discrete problem is associated:
Find u;, € Vi, A e C

a(un, vn) = Apb(un, vp). (B.2)

The index h stands for the discretization parameter and indicates that with 4 — 0 the dis-
crete solution pair (up, \,) converges against the exact solution pair (u, A).

The space V}, is of finite dimension and therefore has a finite basis. Let N}, denote the di-
mension of V}, and ¢; the basis functions, i.e. V}, = span{¢; : i = 1,..., N }. Consequently
the solution wy, is of the following form

Np,
un(z) = u'di(x), (B.3)
i=1
with coefficients v¢ € C. With some definitions
uy, == (w2 € CMr, (B.4)
Ah ij T a’(¢ia ¢])a Ah S CNhXNha (85)
Bh ij T b(¢la ¢])a Bh S CNhXNh, (86)
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the above variational eigenvalue problem transforms into a discrete eigenvalue problem of
the form
Find u, € C», )\, € C
Ap up, = A By uy,. (B.7)

This form is equivalent to the original discrete problem B.2. To get from B.2 to the Galerkin
system B.7 the so-called Ritz-Isomorphism

up € Vy +— Uy € CNh, (88)

is used. This isomorphism is a ono-to-one function between the discrete variational problem
and the Galerkin problem.

But how to construct these discrete spaces V), to be conforming subspaces of some Hilbert
spaces V. This will be discussed in the next Section.

B.2 Finite Elements - FE

Definition: Triangulation
Let © € R? be an open, bounded domain with Lipschitz continuous boundary. 75 is called a Trian-
gulation of €2, if it consists of subsets T" which satisfy the following conditions:

LQ=Uper, T

2. Each T € Ty, is a closed domain with a nonempty connected interior T.

3. Each T' € T}, has a Lipschitz continuous boundary o7

4. Distinct T;, T; € Ty, have intersection of zero measure, i.e. T; N T] = () for i # j.

The Finite Element method is a special case of Galerkin-Ritz with three major aspects:
1. A Triangulation 7}, in the above sense of the computational domain €2 is used.

2. The Finite Element space V}, is constructed such that for each T' € 7;, the restriction
vy, € Vj, is a polynomial, i.e. v, |p € PP(T) for some polynomial order p € N.

3. It exists a canonical basis of V}, that has small support and can be easily described.

Figure B.1: A simple triangulation of a square

The Finite Elements T € 7, should be simple. In the one dimensional case they are
intervals of length A, in 2D they are triangles (see Figure B.1) or squares on any polygonal
domain © and in 3D they are tetrahedrons and hexahedrons only.
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B.3 Courant Elements

First the Courant elements are discussed in the one dimensional case and afterwards this is
extended to higher dimensions.

B.3.1 Courant Elements on Intervals

Linear Courant Elements

Due to introduction of vertices (also called nodes) z;,7 = 0,1,..., N}, on the domain 2 =
0,1 with 0 = zp < z; < --- < zy, = 1 a triangulation or partition 7, of Q is received.
The subintervals Ty, = [z 1,2, for k = 1,..., N} are the elements. The precision & of the

partition 7}, is given by

h = h ith hy, = — Tp_1|. B.9
pmax hywith by |2k — zp—1] (B.9)

Let P* denote the set of one-dimensional polynomials of degree smaller or equal k. For the
conforming finite element space V}, only linear polynomials are taken, extension to higher
degrees will be discussed later. Now V}, is defined as

Vi={veCQ):vreP foral TeT,}. (B.10)

For conforming finite element spaces holds V;, ¢ V = H'(2). The next step is to find basis
functions that span V;, and have small support, e.g. the two surrounding elemnts element.
The nodal basis functions ¢; € V},,i =0, ..., Ny, are defined by

gb,(xy) = 5@']’ for 1,7 =0,..., Np. (B.ll)

Such a basis is called nodal basis. The functions ¢; are affine linear functions on elements
T;,T;v1 € Ty, (small support), they have the value 1 on the node z; and are zero on the other
nodes. They look like little hats, see Figure B.2 and are therefore also called hat functions.

bi

) | |
T T T

Ti—1 T4 Ti41

Figure B.2: Basis function ¢; of V},

The basis functions ¢; are linearly independent and every function v;, € V}, has the spe-

cial representation
Np,

vp(x) = szqbz(w) with v; = vp,(z;). (B.12)
i=0
Here the expression nodal basis explains itself: the unknowns v; are the function values on
the nodes v; = vy, (z;).
Since a(¢i, ¢j) = 0 = b(¢;, ¢;) if the basis functions ¢;, ¢; have disjoint support, the stiffness
matrix A and the mass matrix B are sparse. Both matrices are not computed by evaluating
a(i, ) or b(¢i, ;) (globally), but by assembling over the elements (locally). That means
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that the integral of the bilinearforms a and b is split into the sum of all elements T' of the
triangulation 7y,

a(di,pj) = | ViV, = E ViV, (B.13)
b(di, dj) = iPj = i B.14
(66, 84) /Qqsqs] TEGTL/TM] (B.14)

By iteration over all T' the single integrals are computed and then added.
These single integrals can be efficiently evaluated using the concept of reference element. In
the course of this a reference element A has to be defined: A = [0, 1].

Pr(§) =1-¢ >< Po(§) =¢

0 1

Figure B.3: Reference element A = [0, 1] with the local ansatz functions g, 11
Every Ty, k = 1,..., N, can be written as an affine linear transformation f; of A.

fr: A =Ty, fk(&) = zp—1 + &(zk — 1), (B.15)

for the one dimensional case. The single integrals over the element T, transform into

Voi(2)Vj(x) do = /AV¢i(fk(£))J_1V¢j(fk(i))J_Tdet(J) dg

Tk

- /A V(i o o) ()T V() 0 f1)(€)T T det(]) dé (B.16)
(@) by (z) do = /A Di(Fe(©) by ((€)) det () de

T,

/A (d 0 1) () (5 0 Fi)(€) det () de (8.17)

with J the Jacobi matrix of the function f;. Only two local Ansatz functions (¢ o fi) respec-
tivly (¢r—1 o fr) are not equal zero. Thus vy := (¢ o fr) and ¢; := (¢pg—1 o f). In 2D already
three and in 3D four linear ansatz functions are not equal zero.

Courant Elements of Order p

For Courant elements of higher degree only higher ansatz functions have to be provided
(see figure B.4). In fact, p + 1 ansatz functions have to be provided for Courant elements of
degreep: v;,1 = 0,1,2,...,p. Here hierarchic instead of standard reference elements are used,
for details for both elements see [11]. In short the standard finite element shape functions
are given by a set of Lagrange polynomials. For each degree p a separate set of polynomials
have to be defined. For higher degree of hierarchic shape functions only polynomials have
to be added.

79



The set of hierarchic one-dimensional shape functions on the reference element A = [—1, 1]
was first introduced by Szab6 and Babuska [27] and is given by

1
No(§) = —(1 -¢), (B.18)
Ni(§) = 1 (1+9), (B.19)
Ni(€) \/2“1 —_(P() ~ Pa(€)), i=2.p, (B20)
i = [ — Iy y L= 24,.4,D, .
~ VA2 2 b
where P; denote the Legendre polynomials that are defined by the following recurrence
Py(z) = 1, (B.21)
Pi(z) = =, (B.22)
2i—1 i—1
Pi(z) = —axP_1(z) — Pis(z). (B.23)
2

The integrated Legendre polynomials

3
Li€) = [ P ds, (B.24)
-1
are zero on the boundary {—1, 1} of the reference element, which makes the hierarchic nodal
shape functions N;, see B.20, also zero on the boundary. Because this quality NN; are also
called internal shape functions. The L, orthogonality of the Legendre polynomials P

/ P;(§)P; (&) dé = 0,5, (B.25)
forces the hierarchic basis function N; to be also orthogonal in H'!
L ON;(¢) ON;
/ 0 af) 0 afg(g) d¢ = 4,5, fori>1,5>3orforj>1,i>3. (B.26)
1

Figure B.4 shows some hierarchic one dimesional shape functions on the reference ele-
ment [—1, 1].

Figure B.4: Reference element [—1, 1] and internal shape functions Ny, Ny (left) and N;,i =
2,3,4,5,6 (right)

A big advantage of using hierarchic instead of standard (which are not further consid-
ered here) nodal basis functions is that the condition number of the stiffness matrix is highly
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improved. Furthermore the hierarchic basis has consequence on the structure of the stiffness
matrix.

With ansatz functions of higher degree the «; are not any longer wuy(z;) but uj(z;) =
Zf-V:hO u;$i(x;) has to be computed extra.

Everything above can be done in 2D or 3D, but some adaptations have to be made.

B.3.2 Linear Courant Elements on Triangles

The domain Q c R? is decomposed into N, triangles T, k = 1,..., N, that fulfill the con-
ditions of a Triangulation. The nodes #; = (z;,y;) € R? are enumerated by an index set wy,
and are referred to by Z;,7 € wy,. The precision h of T3 is now defined as

h= max_ by With b = |7 — 5] = \/(ei — ;)2 + (s — y;)? With 7,7 € Ty, (B.27)

kzl,...,Nh

The finite element space V}, is defined as in B.10 with the same nodal basis functions as in
B.11.

Assembling of the stiffness- or mass matrices works the same, but now integrals over some
reference triangle A have to be computed. This reference triangle is defined as:

A={En €01 ¢+ <1}, (B.28)

and can be seen in Figure B.5. There the ansatz functions are shown as well.

0

Figure B.5: Reference element A and local ansatz functions +;,7 = 0, 1, 2

For quadratic Courant elements (of order 2) on triangles there are 6 ansatz functions ;
needed. For cubic elements 10 ansatz functions and for elements of order p already

p+1

(p+ 1)2(]7 +2) _ Z i (B.29)
i=1

ansatz functions are needed. High order shape functions on triangles will be discussed later.

81



Figure B.6: Basis function (ansatz function) ¢; onto node z;

The next Figure (B.6) shows a linear Courant ansatz function ¢; on the node z;.
The support of ¢;

supp(;) = {Ty : z; € T, Vk = 1,..., Ny}, (B.30)

are those triangles the node Z; belongs to, see Figure B.6. The support is rather small and
therefore the assembled matrices are sparse for some (optimal) numbering of the nodes or
triangles.

B.3.3 High order ansatz functions in R?
Quadrilateral Elements

To construct high order shape functions on the quadrilateral T = [—1, 1]2 is rather easy, only
the tensor product of the one dimensional high order shape functions have to be formed

Those shape functions can be classified into three groups:

1. Nodal modes:
The four nodal Modes

NEm) = NN () = ;190 +0),  ij=01 (83

are the standard bilinear shape functions, see Figure B.7.
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. Edge Modes:
These edge modes are defined separately for each edge

PlEn) = SO ON(),  §=0Li=2..p, (8.39
B En) = SO EDN;©O,  i=015 =2 .p, (8.3

and they vanish at all the other edges, see Figure B.8. The edge z,bZEJ describes the
vertical and z/)f]h the horizontal edges, if it is looked from above onto the reference
element T

Figure B.8: Edge mode z/)éf;(g,n) = %(1 —¢)Ny(n) onedge {—1} x [—1,1]

. Internal Modes:
The internal modes

L&) = Ni(©)Nj(n),  i,j=2,...,p, (B.35)

are purely local and vanish at all the edges. They are the so-called bubble functions,
see Figure B.9.

Figure B.9: Internal mode z/)iQ(f,n) = Na(£)Na(n)

All in all with quadrilateral elements high order shape functions are as easy to obtain as

in the one-dimensional case. This can be extended analogous (adding face basis functions)
to three-dimensional cubes /7 hexahedral elements, see [11] for details.

Triangular Elements

For triangles the shape functions are not so easy to define. First of all a new coordinate
system has to be introduced: the barycentric coordinatesA;,A2 and A3 that are computed the
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following way

T1 T2 T3 A1 z
yi y2 yz || A =1 vy |, (B.36)
11 1 A3 1

with z, y the cartesian coordinates and (z;, y;),7 = 1, 2, 3 the coordinates of the three vertices
of the reference triangle. Here it is set as (z1,y1) = (0,0), (z2,y2) = (1,0) and (z3,y3) =
(0, 1), the same reference triangle as before with the barycentric coordinates

>\1(I7y) =, >‘2($7y) =Y, >\3($7y) = ]-_33_'!/ (837)

These coordinates are the linear shape functions v;,7 = 0, 1, 2.
In order to define high order basis functions for triangular elements, the scaled and scaled
integrated Legendre polynomials as

s _p (TN s — 7. (%
Pian =P (5)t, L@ =L (T) (B.38)
have to be defined (with the Legendre polynomials P; as in B.23 and the integrated Legendre
polynomials as in B.24), see [26] for details. Again there are three groups of basis functions:

1. Nodal basis functions:
The Nodal basis functions

PN (Aa) = Aas a=1,23, (B.39)

are exactly the barycentric coordinates and therefore the same as the linear shape func-
tions (on this special reference element).

2. Edge basis functions:
The p — 1 edge-based functions are defined as
B Aas Ag) = L5 A — Aas da + Aa)y  i=2,...,p, a,f=1,2,3.  (B.A0)

On each edge E, g there holds A, + A\g = 1, therefore the basis function equal L; on
this edge. On the other two edges the basis function vanish because

>\o¢ - >\a -
Ao + Ao
at the Edge E, 3 and L;(+1) = 0.

+1, Va,f=1,2,3, (B.41)

3. Internal basis functions:
The internal basis functions are defined as

DA A2, A3) = L7 (A=A, M+ 20) Py(2A3—1),  i>2; > 0; i4j <p—1, (B42)

with L? the scaled integrated Legendre polynomial and P; the Legendre polynomial
as in B.23. The first term of v,/;{’j vanishes at the edges with A\; = 0 and Ay = 0 whereas
the second term vanishes for the edge A3 = 0. So zpl{j is zero at all edges.

For the three dimensional case another barycentric coordinate A4 and basis functions for
the faces have to be added, everything else works analogous, see [26] for more.
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