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A Robust Multigrid Method for Isogeometric Analysis
using Boundary Correction

Clemens Hofreither · Stefan Takacs ·
Walter Zulehner

July 1, 2015

Abstract The fast solution of linear systems arising from an isogeometric dis-
cretization of a partial differential equation is of great importance for the practical
use of Isogeometric Analysis. For classical finite element discretizations, multigrid
methods are well known to be fast solvers showing optimal convergence behavior.
However, if a geometric multigrid solver is naively applied to a linear system arising
from an isogeometric discretization, the convergence rates deteriorate significantly
if the spline degree is increased. Recently, a robust approximation error estimate
and a corresponding inverse inequality for B-splines of maximum smoothness have
been shown, both with constants independent of the spline degree. In the present
paper, we use these results to construct a multigrid solver for discretizations based
on B-splines with maximum smoothness which exhibits robust convergence rates.

1 Introduction

Isogeometric Analysis (IGA), introduced by Hughes et al. [14], is an approach
to the discretization of boundary value problems for partial differential equations
(PDEs) which aims to bring geometrical modeling and numerical simulation closer
together. The fundamental idea is to use the spaces of B-splines or non-uniform
rational B-splines (NURBS) which are commonly used to describe geometries in
CAD systems also as discretization spaces for the numerical solution of PDEs. As
for classical finite element methods (FEM), this leads to large, sparse matrices with
condition number that grows as the discretization is refined. A good approximation
of the solution of the PDE requires sufficient refinement, which causes both the
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dimension and the condition number of the stiffness matrix to grow. At least
for problems on three-dimensional domains or the space-time cylinder, the use of
direct solvers does not seem feasible. The development of efficient linear solvers or
preconditioners for such linear systems is therefore essential.

For classical FEM, it is well-known that hierarchical methods, like multigrid
methods or multilevel methods, are very efficient and show optimal complexity,
that is, the required number of iterations for reaching a fixed accuracy goal is
independent of the grid size. In this case, the overall computational complexity of
the method grows only linearly with the number of unknowns.

It therefore seems natural to extend these methods to IGA, and several re-
sults in this direction can be found in the literature; cf. [9,12,11,13] for classical
geometric multigrid approaches, [7,6,8] for a symbol-based approach to multigrid
and [1] for multilevel methods. However, the question how exactly multigrid (or
multilevel) methods for IGA should be realized has not been fully answered yet.

While it has been shown early on that a standard approach to constructing
geometric multigrid solvers for IGA leads to methods which are robust in the
grid size [9], it has been equally observed that the resulting convergence rates
deteriorate significantly when the spline degree is increased. Even for moderate
choices like spline degree 4, the methods typically require too many iterations for
practical purposes.

In recent works [11], some progress has been made by using a Richardson
method preconditioned with the mass matrix as a smoother (mass-Richardson
smoother). The idea behind this kind of smoothers is to carry over the concept of
operator preconditioning to multigrid smoothing: here the (inverse of) the mass
matrix can be understood as a Riesz isomorphism representing the standard L2-
norm, the Hilbert space where the classical multigrid convergence analysis is de-
veloped. Local Fourier analysis (and similar concepts) indicate that a multigrid
method equipped with such a smoother should show convergence rates that are
independent of both the grid size and the spline degree. However, numerical results
indicate that the proposed method is not robust in the spline degree in practice.
This is due to boundary effects, which cannot be captured by local Fourier analysis.

In the present paper, we take a closer look at the origin of these boundary
effects and introduce a boundary correction that deals with these effects. We prove
that the multigrid method equipped with a properly corrected mass-Richardson
smoother converges robustly both in the grid size and the spline degree for one-
and two-dimensional problems. We give numerical results indicating the same.
For the proof, we make use of the results of the recent paper [15], where robust
approximation error estimates and robust inverse estimates for splines of maximum
smoothness have been shown. Throughout we restrict ourselves to the case of
splines with maximum continuity, which is of particular interest in IGA.

The bulk of our analysis is first carried out in the one-dimensional setting.
While multigrid solvers are typically not interesting in this setting from a practical
point of view, the tensor product structure of the spline spaces commonly used
in IGA lends itself very well to first analyzing the one-dimensional case and then
extending the results into higher dimensions. In the present work, we extend the
ideas from the one-dimensional to the two-dimensional case and obtain a robust
and efficiently realizable smoother also in that case.

The paper is organized as follows. In Section 2, we introduce the spline spaces
used for the discretization and the Poisson model problem. A general multigrid
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framework and the concept of basis-independent Richardson smoothers are intro-
duced in Section 3. This concept of smoothers requires a proper choice of the
Hilbert space, which will be discussed in detail for one-dimensional domains in
Section 4. In Section 5, we will make use of the tensor product structure to ex-
tend these results to the case of two-dimensional domains. Some details on the
numerical realization of the proposed smoother as well as numerical experiments
illustrating the theory are given in Section 6. In Section 7, we close with some
concluding remarks.

2 Preliminaries

2.1 B-splines and tensor product B-splines

Let first Ω = (0, 1). We introduce for any ` ∈ N0 a uniform subdivision (grid)M`

by splitting Ω into n` = n02` subintervals (elements) of length h` := 1
n`

= 1
n0

2−`

by uniform dyadic refinement. On these grids we introduce spaces of spline func-
tions as follows. Note that we restrict ourselves to splines of maximum continuity.

Definition 1 Sp,`(Ω) is the space of all functions in Cp−1(Ω) which are polyno-
mials of degree p (spline degree) on each element of the subdivision M`.

As usual, for m ≥ 0, Cm(Ω) is the space of all continuous functions mapping
Ω → R that are m times continuously differentiable. Note that, by construction,
the spaces are nested for fixed spline degree p, that is, Sp,`−1 ⊂ Sp,`, and the num-
ber of degrees of freedom roughly doubles in each refinement step. The parameter
` will play the role of the grid level in the construction of our multigrid algorithm.

As a basis for Sp,`(Ω), we choose the normalized B-splines as described by,
e.g., de Boor [5]. To this end, we introduce an open knot vector

( 0, . . . , 0︸ ︷︷ ︸
p+1 times

, h`, 2h`, . . . , (n` − 1)h`, 1, . . . , 1︸ ︷︷ ︸
p+1 times

)

and define the B-spline basis over this knot vector in the standard way. We denote
the B-spline basis functions by

{ϕ(1)
p,`, . . . , ϕ

(m`)
p,` }, (1)

where m` = dimSp,`(Ω) = n` + p. Note that they satisfy the partition of unity

property
∑m`

j=1 ϕ
(j)
p,`(x) = 1 for all x ∈ Ω.

In higher dimensions, we will assume Ω = (0, 1)d with d > 1 and introduce

tensor product B-spline basis functions of the form (x, y) 7→ ϕ
(j1)
p,` (x)ϕ

(j2)
p,` (y). The

space spanned by them will again be denoted by Sp,`(Ω). The extension to the
case where Ω ⊂ Rd is the tensor product of d arbitrary bounded and open intervals
is straightforward. Similarly, it is no problem to have different spline degrees, grid
sizes, and/or number of subintervals for each dimension, as long as the grid sizes
are approximately equal in all directions. However, for the sake of simplicity of
the notation, we will always assume that the discretization is identical in each
coordinate direction.
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2.2 Model problem

For the sake of simplicity, we restrict ourselves to the following model problem.
Let Ω = (0, 1)d and assume f ∈ L2(Ω) to be a given function. Find a function
u : Ω → R such that

−∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω.

In variational form, this problem reads: find u ∈ H1(Ω) such that

(∇u,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1(Ω). (2)

To guarantee existence and uniqueness of the solution, we have to assume
∫
Ω
f dx =∫

Ω
u dx = 0. Here and in what follows, L2(Ω) is the standard Lebesgue space of

square integrable functions and H1(Ω) denotes the standard Sobolev space of
weakly differentiable functions with derivatives in L2(Ω).

Applying a Galerkin discretization using spline spaces, we obtain the following
discrete problem: find u` ∈ Sp,`(Ω) such that

(∇u`,∇v`)L2(Ω) = (f, v`)L2(Ω) ∀v` ∈ Sp,`(Ω).

Still, we have to guarantee that
∫
Ω
u` dx = 0, which can be handled as in classical

FEM, cf. Remark 21.1.5 in [10].

Using the B-spline basis, the discretized problem can be rewritten in matrix-
vector notation,

K`u` = f`, (3)

where K` is the B-spline stiffness matrix. Underlined quantities like u` will always
denote the coefficient vector representing the function u` with respect to the B-
spline basis. Overlined quantities, like f`, denote the vector of L2 scalar products
of the function f` and the basis functions of the chosen basis. With M` being the
B-spline mass matrix, the identity M`f` = f` holds.

Remark 1 Our model problem may seem rather restrictive in the sense that we
only allow for tensor product domains. In practical IGA problems, one often uses
such domains as parameter domains and introduces a geometry mapping, usually
given in the same basis as used for the discretization, which maps the parameter
domain to the actual physical domain of interest. As long as the geometry mapping
is well-behaved, a good solver on the parameter domain can be used as a precon-
ditioner for the problem on the physical domain, and our model problem therefore
captures all essential difficulties that arise in the construction of multigrid meth-
ods in this more general setting. Alternatively, our construction can be directly
applied in a straightforward way to the discretization on the physical domain,
although we do not perform the analysis for this case. Geometry mappings with
singularities as well as multi-patch domains are beyond the scope of the present
paper.
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3 A multigrid solver framework

3.1 Description of the multigrid algorithm

The multigrid algorithm for solving the discretized equation (3) on grid level `

reads as follows. Starting from an initial approximation u
(0)
` , one iteration of the

multigrid method to obtain the next iterate u
(1)
` is given by the following two

steps:

– Smoothing procedure: For some fixed number ν of smoothing steps, compute

u
(0,m)
` := u

(0,m−1)
` + τK̂−1

`

(
f` −K` u

(0,m−1)
`

)
for m = 1, . . . , ν, (4)

where u
(0,0)
` := u

(0)
` . The choice of the matrix K̂−1

` and the damping parameter
τ > 0 will be discussed below.

– Coarse-grid correction:
– Compute the defect and restrict it to grid level ` − 1 using a restriction

matrix I`−1
` :

r
(1)
`−1 := I`−1

`

(
f` −K` u

(0,ν)
`

)
.

– Compute the update p(1)

`−1
by solving the coarse-grid problem

K`−1 p
(1)

`−1
= r

(1)
`−1 (5)

approximately.
– Prolongate p(1)

`−1
to the grid level ` using a prolongation matrix I``−1 and

add the result to the previous iterate:

u
(1)
` := u

(0,ν)
` + I``−1 p

(1)

`−1
.

As we have assumed nested spaces, the intergrid transfer matrices I``−1 and I`−1
`

can be chosen in a canonical way: I``−1 is the canonical embedding and the restric-

tion I`−1
` is its transpose. In the IGA setting, the prolongation matrix I``−1 can

be computed by means of knot insertion algorithms.
If the problem on the coarser grid is solved exactly (two-grid method), the

coarse-grid correction is given by

u
(1)
` := u

(0,ν)
` + I``−1K

−1
`−1 I

`−1
`

(
f` −K` u

(0,ν)
`

)
. (6)

In practice the problem (5) is approximately solved by recursively applying one
step (V-cycle) or two steps (W-cycle) of the multigrid method. On the coarsest
grid level (` = 0) the problem (5) is solved exactly by means of a direct method.

The only remaining step is the choice of the smoother, i.e., of the matrix K̂`. For
multigrid methods for elliptic problems with a FEM discretization, it is typically
sufficient to use a damped Jacobi iteration or a Gauss-Seidel iteration as the
smoother. This is also possible if an isogeometric discretization is used. However,
numerical results show that the convergence rates deteriorate significantly if p is
increased ([9,13]).
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It is therefore necessary to have a closer look at the convergence analysis and
possible smoothers. In Subsection 3.2, we will introduce the general framework for
the multigrid convergence analysis as introduced by Hackbusch. In Subsection 3.3,
we will discuss the concept of basis-independent Richardson smoothers. This kind
of smoothers requires a proper choice of the Hilbert space. We will discuss this
first in Section 4 for one-dimensional domains. In Section 5 we will see how this
can be extended to two-dimensional domains using the tensor product structure
of the discretization.

3.2 Multigrid convergence theory

As the two-grid method is a linear iteration scheme, its action on the error is easily
described by the iteration matrix. Let u∗` denote the exact solution of (3), then the

initial error u∗` − u
(0)
` and the error after one two-grid cycle u∗` − u

(1)
` are related

by the equation

u∗` − u
(1)
` = T`S

ν
` (u∗` − u

(0)
` ),

where
S` = I − τK̂−1

` K`

is the iteration matrix of the smoother and

T` = I − I``−1K
−1
`−1 I

`−1
` K`

is the iteration matrix of the coarse-grid correction.
For showing convergence in a certain norm ‖ · ‖L` , where the matrix L` is to

be specified, it is sufficient to show that

q := ‖T`Sν` ‖L` < 1, (7)

which obviously implies the q-linear convergence property

‖u∗` − u
(1)
` ‖L` ≤ q‖u

∗
` − u

(0)
` ‖L` .

The discrete norms are defined as follows. For a symmetric and positive definite
matrix A and a vector x`, we define ‖x`‖

2
A := (Ax`, x`) = ‖A1/2x`‖

2, where
‖ · ‖ and (·, ·) are the Euclidean norm and scalar product, respectively. Applied to
matrices, the norms ‖ · ‖A and ‖ · ‖ are the corresponding operator norms.

To analyze ‖T`Sν` ‖L` , we use semi-multiplicity of norms and obtain

‖T`Sν` ‖L` = ‖L1/2
` T`S

ν
` L
−1/2
` ‖ ≤ ‖L1/2

` T`K
−1
` L

1/2
` ‖ ‖L

−1/2
` K`S

ν
` L
−1/2
` ‖.

For showing (7), it therefore suffices to prove the two conditions

‖L1/2
` T`K

−1
` L

1/2
` ‖ ≤ CA, (approximation property) (8)

‖L−1/2
` K`S

ν
` L
−1/2
` ‖ ≤ CSν−1, (smoothing property) (9)

cf. equation (6.1.5) in [10] for this splitting. With these, (7) follows immediately
for ν > CACS , that is, if sufficiently many smoothing steps are applied. As we are
interested in robust convergence, the constants CA and CS should be independent
of both the grid size and the spline degree.
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In classical proofs by Hackbusch [10], convergence is shown in the L2-norm (or
in a properly scaled L2-like norm). This suggests the choice of the mass matrix
for L`, or more precisely, the properly scaled version L` := h−2

` M` of the mass
matrix.

Classical proofs for showing the convergence of multigrid solvers, equipped with
damped Jacobi iteration or Gauss-Seidel iteration as smoothers, use the assump-
tion that the mass matrix M`, which is taken to define the matrix L`, is spectrally
equivalent to its diagonal. This is true not only for the Courant element, but also
for B-splines. However, in the spline case, the equivalence deteriorates if the de-
gree p is increased. We point out that this issue is closely related to the so-called
condition number of the B-spline basis (see, e.g., [3]). The growth of the condition
number with p explains why standard Jacobi iteration and Gauss-Seidel iteration
do not work well for B-splines.

Having this in mind, the idea arises to develop a smoother that does not require
the spectral equivalence of the mass matrix M` and its diagonal. One possibility
to do so is to set up a basis-independent smoother, i.e., a smoother which is based
on the continuous setting.

3.3 Basis-independent Richardson smoother

The simplest choice of a smoother is the Richardson iteration (gradient method).

Here, we compute at each smoothing step the residual (gradient) r
(0,m−1)
` :=

f`−K`u
(0,m−1)
` and use it to compute the update p(0,m−1)

`
used to construct the

next iterate u
(0,m)
` := u

(0,m−1)
` + p(0,m−1)

`
.

The idea of Richardson iteration is to use the residual as update. However,

having the continuous setting in mind, one observes that the residual r
(0,m−1)
` is a

dual variable, while the update p(0,m−1)

`
is a primal variable. So, by choosing these

two vectors to be equal, we would obtain a basis-dependent smoother. To avoid
this, we can require update and residual to be equal in a continuous setting. To

do so, we use the Riesz mapping to transform the residual r
(0,m−1)
` into a primal

variable, which is then used as the update p(0,m−1)

`
.

In the Hilbert space (Rm` , (·, ·)L`), the Riesz mapping is L−1
` , the inverse of the

matrix defining the inner product. The Richardson smoother based on this Hilbert
space is then given by (4) with K̂` := L`. We now show that for this choice, the
smoothing property is always satisfied when τ is chosen properly.

Lemma 1 Let K` and L` be symmetric and positive definite matrices. Assume
that K̂` = L` and that τ is chosen such that

0 < τ ≤ 1

‖L−1/2
` K`L

−1/2
` ‖

. (10)

Then the smoothing property (9) is satisfied for CS = τ−1. Moreover, the smoother
satisfies the non-expansivity results ‖S`‖L` ≤ 1 and ‖S`‖K` ≤ 1.

Proof The proof is based on Lemma 6.2.1 in [10]. To keep the paper self-contained,
we give the full proof.
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Observe that

L
−1/2
` K`(I−τK̂−1

` K`)
νL
−1/2
` = K̂

−1/2
` K`(I−τK̂−1

` K`)
νK̂
−1/2
` = K̄`(I−τK̄`)ν

with K̄` := K̂
−1/2
` K`K̂

−1/2
` and that K̄`(I − τK̄`)ν is symmetric. Furthermore,

the spectral radius bound ρ(τK̄`) ≤ 1 holds by construction. Thus we obtain

‖L−1/2
` K`(I − τK̂−1

` K`)
νL
−1/2
` ‖

= ρ(K̄`(I − τK̄`)ν) = sup
λ∈σ(K̄`)

λ(1− τλ)ν ≤ τ−1 sup
µ∈[0,1]

µ(1− µ)ν

= τ−1

(
ν

1 + ν

)ν
1

1 + ν
≤ τ−1

ν
,

which finishes the proof of the smoothing property. The estimates ‖S`‖L` ≤ 1 and
‖S`‖K` ≤ 1 follow by similar arguments. ut

In view of this lemma, it is required to choose a proper Hilbert space or, in
other words, a proper matrix L`. Specifically, we should choose L` such that

– L` can be inverted efficiently,
– τ can be chosen independently of the grid size and the spline degree such

that (10) holds, and
– the approximation property (8) can be shown with a constant independent of

the grid size and the spline degree.

Remark 2 A robust convergence result could also be obtained if we could only
show that q = CSCA = τ−1CA can be bounded robustly from above. However, if
this is possible, we can always achieve that τ and CA are independent of the grid
size and the spline degree by scaling the matrix L` properly. Allowing CA or τ to
depend on the grid size or the spline degree does therefore not yield any additional
insight.

The next two sections are mainly dedicated to the construction of the matrix
L` for one- and two-dimensional domains. In both sections, the construction of
the matrix L` is followed by convergence proofs.

4 Robust multigrid for one-dimensional domains

4.1 Motivation and construction of the Hilbert space setting

In this subsection, we will discuss the introduction of a proper Hilbert space set-
ting such that the above-mentioned conditions are satisfied. The standard con-
vergence analysis for the multigrid method, as introduced by Hackbusch [10],
gives convergence in a (properly scaled) L2-norm, which corresponds to the choice
L` := h−2

` M`. Following the idea of basis-independent Richardson smoothers,

this would suggest the choice K̂` := L` = h−2
` M` for the smoother. This is the

aforementioned mass-Richardson smoother already studied in [11]. Local Fourier
analysis indicates that such an approach should lead to robust convergence of the
overall multigrid solver. However, the numerical experiments given in [11] show
that this is not the case.
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With the choice K̂` := L` := h−2
` M`, condition (10) reads

τ ≤ 1

h2
`‖M

−1/2
` K`M

−1/2
` ‖

or equivalently

sup
u`∈Rm`\{0}

‖u`‖K`
h−1
` ‖u`‖M`

= sup
u`∈Sp,`(Ω)\{0}

|u`|H1(Ω)

h−1
` ‖u`‖L2(Ω)

≤ τ−1/2.

In other words, it is required that the spline space satisfies an inverse inequality
with a constant that is independent of the grid size and the spline degree. However,
such a robust inverse inequality does not hold, cf. the counterexample given in [15]:
for all p ∈ N and all ` ∈ N0, there exists a function u` ∈ Sp,`(Ω) with

|u`|H1(Ω)

h−1
` ‖u`‖L2(Ω)

≥ p. (11)

The functions u` in this counterexample are non-periodic and have support which
is localized close to the boundary. Therefore, they and their effect on the spectrum
of the stiffness matrix cannot be captured by local Fourier analysis (and similar
tools) which considers only the periodic setting.

The estimate (11) indicates that we have to choose τ ≤ Cp−2, and because of
ν > CSCA = τ−1CA, we have to increase the number of smoothing steps with the
order p2 in order to guarantee q < 1. This reduces the efficiency of the method.
The numerical experiments in [11] confirm that it is required to decrease τ and
increase ν for robust convergence if p is increased.

We remark that with a choice τ > 2‖L−1/2
` K`L

−1/2
` ‖1/2, the smoother is a

divergent iteration scheme. In this case it has to be expected that also the multigrid
method diverges, and indeed this can be observed experimentally.

In [15] it was shown that a robust inverse estimate does hold for a large subspace
of Sp,`(Ω). This makes it clear that the above-mentioned counterexample only
describes the effect of a few outliers (cf. also [2] on the topic of spectral outliers in
IGA). Thus it seems that if we could eliminate these outliers, it should be possible
to choose τ independently of p and obtain robust convergence. The mentioned
robust inverse estimate reads as follows.

Theorem 1 ([15]) Let ` ∈ N0 and p ∈ N. Then

|u`|H1(0,1) ≤ 2
√

3h−1
` ‖u`‖L2(0,1)

is satisfied for all u` ∈ S̃p,`(0, 1), where S̃p,`(0, 1) is the space of all u` ∈ Sp,`(0, 1)
whose odd derivatives vanish at the boundary,

∂2l+1

∂x2l+1
u`(0) =

∂2l+1

∂x2l+1
u`(1) = 0 for all l ∈ N0 with 2l + 1 < p.

In [15] it was discussed that the space S̃p,`(Ω) is almost as large as the space
Sp,`(Ω): their sizes differ by p (for p even) or p−1 (for p odd) dimensions. Using a
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standard B-spline basis, it is not easy to characterize the space S̃p,`(Ω) succinctly.
However, this is not necessary. It suffices to decompose

Sp,`(Ω) = S
(Γ )
p,` (Ω) + S

(I)
p,` (Ω),

where S
(Γ )
p,` (Ω) is spanned by the first p basis functions ϕ

(1)
p,`, . . . , ϕ

(p)
p,` and the

last p basis functions ϕ
(m`−p+1)
p,` , . . . , ϕ

(m`)
p,` . The space S

(I)
p,` (Ω) is spanned by all

the remaining basis functions. By construction, the space S
(I)
p,` (Ω) consists of all

functions that vanish on the boundary together with all derivatives up to order

p − 1. It is clear then that S
(I)
p,` (Ω) ⊆ S̃p,`(Ω). Based on this separation of the

degrees of freedom, we can prove the following generalized inverse inequality.

Lemma 2 For any u` ∈ Sp,`(Ω) with u` = uΓ,`+uI,`, where uΓ,` ∈ S(Γ )
p,` (Ω) and

uI,` ∈ S(I)
p,` (Ω), the generalized inverse inequality

|u`|H1(Ω) ≤
√

2(1 + 4
√

6)(h−2
` ‖u`‖

2
L2(Ω) + |HΓ,`uΓ,`|2H1(Ω))

1/2

holds. Here, HΓ,` : S
(Γ )
p,` (Ω) → Sp,`(Ω) is the discrete harmonic extension, i.e.,

HΓ,`uΓ,` = uΓ,` + sI,` where sI,` ∈ S
(I)
p,` (Ω) is chosen such that the energy

|HΓ,`uΓ,`|H1(Ω) is minimized.

As we need some preliminary results first, we postpone the proof of this lemma
to Subsection 4.3.

Based on the splitting Sp,` = S
(Γ )
p,` +S

(I)
p,` , we can reorder the degrees of freedom

accordingly and write the matrix K` and the vector u` in block structure as follows:

K` =

(
KΓΓ,` K

T
IΓ,`

KIΓ,` KII,`

)
, u` =

(
uΓ,`
uI,`

)
. (12)

Using this decomposition, the discrete harmonic extension and its energy norm
can be determined explicitly by the use of the Schur complement,

|HΓ,`uΓ,`|H1(Ω) =

∥∥∥∥( uΓ,`
−K−1

II,`KIΓ,`uΓ,`

)∥∥∥∥
K`

= ‖uΓ,`‖KΓΓ,`−KT
IΓ,`K

−1
II,`KIΓ,`

. (13)

Using this equality, the statement of Lemma 2 in matrix-vector notation reads

‖u`‖K` ≤
√

2(1 + 4
√

6)‖u`‖L`
with

K̂` := L` := h−2
` M` +

(
KΓΓ,` −KT

IΓ,`K
−1
II,`KIΓ,` 0

0 0

)
︸ ︷︷ ︸

K̃` :=

. (14)

Hence we obtain ‖L−1/2
` K`L

−1/2
` ‖ ≤ 2(1 + 4

√
6)2 ≤ 234, which guarantees that

the choice τ = 1/234 satisfies (10) for all grid levels and all choices of p. We note
that in practice, larger choices for τ are admissible, as we will see in the numerical
experiments given in Subsection 6.2. Having shown (10), Lemma 1 implies the
following result.

Lemma 3 With K̂` := L` defined as in (14), there is a τ > 0 which does not
depend on the grid size h` and the spline degree p such that the smoothing prop-
erty (9) is satisfied with CS = τ−1.
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4.2 Proof of approximation property

The next step is to show the approximation property. To this end we first prove an
error estimate for the Ĥ1-orthogonal projection Π̃` : H1(Ω) → S̃p,`(Ω), which is

given as follows. For any function u ∈ H1(Ω), the Ĥ1-orthogonal projection Π̃`u

is the solution of the following problem: find ũ` ∈ S̃p,`(Ω) such that

(ũ`, s̃`)Ĥ1(Ω) = (u, s̃`)Ĥ1(Ω) ∀s̃` ∈ S̃p,`(Ω), (15)

where

(u, v)Ĥ1(Ω) := (∇u,∇v)L2(Ω) +
1

|Ω|

(∫
Ω

u(x)dx

)(∫
Ω

v(x)dx

)
.

The following error estimate for this projector is a slightly improved version of
Theorem 1 in [15].

Theorem 2 Let ` ∈ N0 and p ∈ N. Then

‖u− Π̃`u‖L2(0,1) ≤ 2
√

2h`|u|H1(0,1)

is satisfied for all u ∈ H1(0, 1).

Proof We let u ∈ H1(0, 1) be fixed and extend it to a periodic function w ∈
H1,per(−1, 1) by setting w(x) := u(|x|). Let Sperp,` (−1, 1) denote the subspace of

Sp,`(−1, 1) whose members are in Cp−1 when extended periodically to the real
line. Using Lemma 6 in [15], we obtain

‖w −Πper
` w‖L2(−1,1) ≤ 2

√
2 h`|w|H1(−1,1), (16)

where Πper
` is the Ĥ1-orthogonal projector to Sperp,` (−1, 1).

The function w` := Πper
` w is symmetric, i.e., w`(x) = w`(−x), as can be seen

by the following argument. Let ŵ`(x) := w`(−x). As w is symmetric, we have

‖w − w`‖Ĥ1(−1,1) = ‖w − ŵ`‖Ĥ1(−1,1).

Now we recall that the Ĥ1-orthogonal projection minimizes the Ĥ1-norm of the
error w − w` or w − ŵ`, respectively. As the norm is equal for both of them and
the minimization problem has a unique solution, we obtain w` = ŵ`. This shows
that w` = Πper

` w is symmetric.

By restricting w` to (0, 1), we obtain a function u` ∈ S̃p,`(0, 1). Due to the
symmetry of w and w`, we have

|w|H1(−1,1) =
√

2|u|H1(0,1), ‖w − w`‖L2(−1,1) =
√

2‖u− u`‖L2(0,1).

Therefore, it follows from (16) that ul satisfies the desired error estimate

‖u− u`‖L2(0,1) ≤ 2
√

2h`|u|H1(0,1).

It only remains to show that u` = Π̃`u, i.e., that u` is the Ĥ1-orthogonal
projection of u to S̃p,`(0, 1). By definition, this means that we have to show that

(u− u`, ũ`)Ĥ1(0,1) = 0 ∀ũ` ∈ S̃p,`(0, 1). (17)
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Define w̃` ∈ Sperp,` (−1, 1) by w̃`(x) := ũ`(|x|) and observe

2(u− u`, ũ`)Ĥ1(0,1) = (w − w`, w̃`)Ĥ1(−1,1).

Because w` is the Ĥ1-orthogonal projection of w into Sperp,` (−1, 1), we know that

(w − w`, w̃`)Ĥ1(0,1) = 0. This shows (17) and therefore u` = Π̃`u. ut

A similar result is satisfied for Π`, the Ĥ1-orthogonal projection from H1(Ω)
to Sp,`(Ω).

Theorem 3 Let ` ∈ N0 and p ∈ N. Then

‖u−Π`u‖L2(0,1) ≤ 4
√

2h`|u|H1(0,1)

is satisfied for all u ∈ H1(0, 1).

Proof As S̃p,`(Ω) ⊆ Sp,`(Ω), the identity Π̃` = Π̃`Π` holds. Using the triangle

inequality, this identity, Theorem 2, and the stability of the Ĥ1-orthogonal pro-
jection, we obtain

‖u−Π`u‖L2(0,1) ≤ ‖(I − Π̃`)u‖L2(0,1) + ‖(I − Π̃`)Π`u‖L2(0,1)

≤ 2
√

2h`(|u|H1(0,1) + |Π`u|H1(0,1)) ≤ 4
√

2h`|u|L2(0,1).

ut

Using this result, we can now prove the approximation property for L` as
defined as in (14).

Lemma 4 With L` defined as in (14), the approximation property (8) is satisfied
with a constant CA which does not depend on the grid size h` and the spline degree
p.

Proof In matrix-vector notation, the application of Theorem 3 to u` ∈ Sp,`(Ω)
reads

‖(I − I``−1K
−1
`−1I

`−1
` K`)u`‖M`

≤ 4
√

2h`−1‖u`‖K` = 8
√

2h`‖u`‖K` ∀u` ∈ Rm` ,
(18)

which would be sufficient to show the approximation property for the choice L` :=
h−2
` M`. However, we want to show it for the stronger norm L` := h−2

` M` + K̃`.
Using (13) and the definition of the discrete harmonic extension, we obtain for

all u` = uΓ,` + uI,` ∈ Sp,`(Ω) :

‖u`‖K̃` = inf
sI,`∈S

(I)
p,`(Ω)

|uΓ,` + sI,`|H1(Ω) ≤ |u`|H1(Ω) = ‖u`‖K` . (19)

Together with the stability of the Galerkin projection,

‖(I − I``−1K
−1
`−1I

`−1
` K`)u`‖

2
K` ≤ ‖uh‖

2
K` ,

equation (19) yields the statement

‖(I − I``−1K
−1
`−1I

`−1
` K`)u`‖

2
K̃`
≤ ‖u`‖

2
K` . (20)
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The combination of (18) and (20) and the definition of L`, i.e., (14), yields

‖(I − I``−1K
−1
`−1I

`−1
` K`)u`‖

2
L` ≤ (1 + 128)‖u`‖

2
K` ,

which can be written in matrix notation as

‖X`‖ := ‖L1/2
` (I − I``−1K

−1
`−1I

`−1
` K`)K

−1/2
` ‖ ≤

√
129,

and therefore ‖X`XT
` ‖ ≤ 129. We have

X`X
T
` = L

1/2
` (I − I``−1K

−1
`−1I

`−1
` K`)K

−1
` (I −K`I``−1K

−1
`−1I

`−1
` )L

1/2
`

= L
1/2
` (I − I``−1K

−1
`−1I

`−1
` K`)

2K−1
` L

1/2
` ,

and using the fact that the matrix (I−I``−1K
−1
`−1I

`−1
` K`) is a projector, we obtain

‖L1/2
` (I − I``−1K

−1
`−1I

`−1
` K`)K

−1
` L

1/2
` ‖ ≤ 129,

i.e., the approximation property. This argument is variant of the Aubin-Nitsche
duality trick. ut

4.3 Proof of generalized inverse inequality

We will now prove Lemma 2, where Theorem 2 from the previous subsection will
again be used as a tool.

Proof (Proof of Lemma 2) Assume u` ∈ Sp,`(Ω) to be given. This function can be

decomposed as u` = uΓ,` + uI,` with uΓ,` ∈ S(Γ )
p,` (Ω) and uI,` ∈ S(I)

p,` (Ω).
Using the triangle inequality, we obtain

|u`|H1(Ω) ≤ inf
s̃`∈S̃p,`(Ω)

(|uI,` + s̃`|H1(Ω) + |uΓ,` − s̃`|H1(Ω)).

As uI,` + s̃` ∈ S̃p,`(Ω), Theorem 1 and the triangle inequality yield

|u`|H1(Ω) ≤ inf
s̃`∈S̃p,`(Ω)

(2
√

3h−1
` ‖uI,` + s̃`‖L2(Ω) + |uΓ,` − s̃`|H1(Ω))

≤ 2
√

3h−1
` ‖u`‖L2(Ω)

+ inf
s̃`∈S̃p,`(Ω)

(2
√

3h−1
` ‖uΓ,` − s̃`‖L2(Ω) + |uΓ,` − s̃`|H1(Ω)).

Theorem 2 implies

‖(I − Π̃`)uΓ,`‖L2(Ω) = ‖(I − Π̃`)2uΓ,`‖L2(Ω) ≤ 2
√

2h`|(I − Π̃`)uΓ,`|H1(Ω).

With the choice s̃` := Π̃`uΓ,`, we obtain

|u`|H1(Ω) ≤ 2
√

3h−1
` ‖u`‖L2(Ω) + (4

√
6 + 1)|(I − Π̃`)uΓ,`|H1(Ω)

≤ (4
√

6 + 1)(h−1
` ‖u`‖L2(Ω) + |(I − Π̃`)uΓ,`|H1(Ω))

≤
√

2(4
√

6 + 1)(h−2
` ‖u`‖

2
L2(Ω) + |(I − Π̃`)uΓ,`|2H1(Ω))

1/2.
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As Π̃` is the Ĥ1-orthogonal projection, we obtain

|(I − Π̃`)uΓ,`|H1(Ω) = inf
s̃`∈S̃p,`(Ω)

|uΓ,` + s̃`|H1(Ω)

≤ inf
sI,`∈S

(I)
p,`(Ω)

|uΓ,` + sI,`|H1(Ω) = |HΓ,`uΓ,`|H1(Ω),

which finishes the proof. ut

4.4 Two-grid convergence

Combining the approximation property (8) and the smoothing property (9), we
obtain the convergence of the two-grid method in the L`-norm.

Theorem 4 Using K̂` := L` as defined in (14), we obtain

‖u∗` − u
(1)
` ‖L` ≤

CACS
ν
‖u∗` − u

(0)
` ‖L`

with constants CA and CS which do not depend on the grid size h` and the spline
degree p. Thus, the two-grid method converges in the norm ‖ · ‖L` if ν > CACS
smoothing steps are applied.

Proof Follows directly from the combination of Lemma 3 and Lemma 4. ut

Lemma 1 states that the proposed smoother is non-expansive, therefore also
the two-grid method with ν pre- and ν post-smoothing steps converges, i.e.,

‖Sν` T`Sν` ‖L` ≤
CACS
ν

holds. As Sν` T`S
ν
` is self-adjoint in the scalar product (·, ·)K` , this implies

‖Sν` T`Sν` ‖K` ≤
CACS
ν

. (21)

Thus we have shown the following corollary.

Corollary 1 Using K̂` := L` as defined in (14), the two-grid method with ν pre-
and ν post-smoothing steps converges in the energy norm ‖ · ‖K` if ν > CACS.

4.5 Multigrid W-cycle convergence

The analysis can be easily carried over to W-cycle multigrid methods, following
the classical path of the analysis, cf. [10]. Note that there the analysis is shown
in the L2-norm. This would mean that in our case, the analysis shall be shown in
the norm ‖ · ‖L` . However, it is not obvious how to show the convergence of the
multigrid method for this case as the relation between the matrices L` and L`−1 is
non-trivial, since the “boundary layer” affected by the boundary correction grows
with the grid size.

However, we can show convergence in the energy norm (which is, as always,
weaker than convergence in any other norm).
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Theorem 5 Using K̂` := L` as defined in (14), the W-cycle multigrid method
with ν pre- and ν post-smoothing steps converges in the energy norm ‖ · ‖K` if
ν > 4CACS.

Proof The iteration matrix of the multigrid method is given by

W` = Sν` (I − I``−1(I −W 2
`−1)K−1

`−1I
`−1
` K`)S

ν
` ,

for ` > 0 and W0 = 0 (because we solve the problem exactly on the coarsest grid
level). Using triangular inequality and semi-multiplicativity of norms, we obtain
the following bound for the convergence rate q`:

q` = ‖W`‖K` = ‖Sν` (I − I``−1(I −W 2
`−1)K−1

`−1I
`−1
` K`)S

ν
` ‖K`

≤ ‖Sν` T`Sν` ‖K` + ‖Sν` I``−1W
2
`−1K

−1
`−1I

`−1
` K`S

ν
` ‖K`

≤ ‖Sν` T`Sν` ‖K` + ‖S`‖2νK`‖K
1/2
` I``−1K

−1/2
`−1 ‖

2‖W`−1‖2K`−1
.

Observe that using the Galerkin principle, we obtain K`−1 = I`−1
` K`I

`
`−1 and thus

‖K1/2
` I``−1K

−1/2
`−1 ‖

2 = ρ(I`−1
` K`I

`
`−1K

−1
`−1) = 1. Lemma 1 states that ‖S`‖K` ≤ 1.

Using these two statements, (21) and q`−1 = ‖W`−1‖K`−1
, we obtain that

q` ≤
CACS
ν

+ q2
`−1

holds. By choosing ν ≥ 4CACS , we obtain q` ≤ 1
4 + q2

`−1. Using q0 = 0 we obtain
by induction that q` ≤ 1

2 , which finishes the proof. ut

Note that this proof is similar to the analysis presented in [10], however the
proof here is easier, as we only show the convergence in the energy norm.

5 Robust multigrid for two-dimensional domains

In this section, we extend the theory presented in the previous section to the (more
relevant) case of two-dimensional domains. As outlined in Remark 1, we restrict
ourselves to problems without geometry mapping, i.e., problems on the unit square
only. However, these approaches can be used as preconditioners for problems on
general geometries if there is a regular geometry mapping. In the following, we are
interested in solving the problem (3) with d = 2, which we now write as

K`u` = f`, (22)

where calligraphic letters will refer to matrices for the two-dimensional domain,
whereas standard letters refer to matrices for the one-dimensional domain. The
multigrid framework from Section 3 applies unchanged, only replacing standard
letters by calligraphic letters.

Using the tensor product structure of the problem and the discretization, the
mass matrix has the tensor product structure

M` = M` ⊗M`,
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where ⊗ denotes the Kronecker product. To keep the notation simple, we assume
that we have the same matrix M` for both directions of the two-dimensional do-
main. However, this is not needed for the analysis.

The stiffness matrix for two dimensions is the sum of two Kronecker products,

K` = K` ⊗M` +M` ⊗K`, (23)

which reflects (∇·,∇·)L2(Ω) = (∂x·, ∂x·)L2(Ω) + (∂y·, ∂y·)L2(Ω).
Based on the structure K`, the idea of setting up the smoother is as follows.

Choose
u

(0,m)
` = u

(0,m−1)
` + τK̂−1

`,orig(f
`
−K`u(0,m−1)

` ),

where the matrix K̂`,orig is constructed by taking the matrix K` and replacing K`
by K̂`. Thus, we have

K̂`,orig := K̂` ⊗M` +M` ⊗ K̂`.

The problem is, of course, that the inversion of K̂`,orig is as complicated as the
inversion of the stiffness matrix K` itself.

However, we can make use of the particular structure of K̂`, being the mass
matrix plus some correction term K̃` and obtain

K̂`,orig = (h−2
` M` + K̃`)⊗M` +M` ⊗ (h−2

` M` + K̃`)

= 2h−2
` M` ⊗M` + K̃` ⊗M` +M` ⊗ K̃`.

Here, the formula can be simplified further if the factor 2 is dropped. Doing so,
we obtain a spectrally equivalent matrix, i.e., σ(K̂−1

` K̂`,orig) ⊆ [1, 2], where σ is
the spectrum and

K̂` := L` := h−2
` M` ⊗M` + K̃` ⊗M` +M` ⊗ K̃` = h2

`K̂` ⊗ K̂` − h2
`K̃` ⊗ K̃`.

Using the grouping of the degrees of freedom used in (12), we obtain further

K̂` = L` = h2
`K̂` ⊗ K̂` − h2

` [P
T
` ⊗ PT` ][Q` ⊗Q`][P` ⊗ P`], (24)

where

P` :=

(
I
0

)
and Q` := KΓΓ,` −KT

IΓ,`K
−1
II,`KIΓ,`. (25)

We point out that K̂` ⊗ K̂` can be efficiently inverted by exploiting its tensor
product structure using the ideas from [4]. The second summand, h2

` [P
T
` ⊗PT` ][Q`⊗

Q`][P` ⊗ P`], is a low-rank correction that lives only on the four corners of the
domain. We can thus invert the smoother using the Sherman-Morrison-Woodbury
formula and obtain

K̂−1
` = h−2

` (I + ([K̂−1
` P`]⊗ [K̂−1

` P`])R−1
` (PT` ⊗ PT` ))(K̂−1

` ⊗ K̂−1
` ),

where P` and Q` are defined as in (25),

R` := Q−1
` ⊗Q

−1
` −W

−1
` ⊗W−1

` , (26)

W` := Q` + h−2
` (MΓΓ,` −MT

IΓ,`M
−1
II,`MIΓ,`), (27)

and MII,`, MIΓ,` and MΓΓ,` are the blocks of the matrix M` if the degrees of
freedom are grouped as in (12). For this choice, we can carry over the results from
the previous section to the case of two-dimensional domains.
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Lemma 5 For K̂` = L` defined as in (24) there is a τ > 0, which does not depend
on the grid size h` and the spline degree p, such that the smoothing property

‖L−1/2
` K`(I − τK̂−1

` K`)L
−1/2
` ‖ ≤ CS

ν

is satisfied with CS = τ−1.

Proof Lemma 2 states that the matrices in the one-dimensional setting satisfy

‖w`‖K` ≤
√

2(1 + 4
√

6)‖w`‖K̂`

for all w` ∈ Rm` . Using the tensor product structure of both K` and K̂`,orig, this
implies that we have

‖u`‖K` ≤
√

2(1 + 4
√

6)‖u`‖K̂`,orig

for all u` ∈ Rm
2
` . As K̂`,orig ≤ 2K̂`, we obtain

‖u`‖K` ≤ 2(1 + 4
√

6)‖u`‖K̂` = 2(1 + 4
√

6)‖u`‖L`

for all u` ∈ Rm
2
` and finally

‖L−1/2
` K`L−1/2

` ‖ ≤ 4(1 + 4
√

6)2.

The smoothing property then immediately follows from Lemma 1. ut

The next step is to show the approximation property. The proof again relies
on results from the previous section.

Lemma 6 With L` defined as in (24), the approximation property

‖L1/2
` (I − I``−1K−1

`−1I
`−1
` K`)K−1

` L
1/2
` ‖ ≤ CA,

where I``−1 := I``−1 ⊗ I``−1 and I`−1
` := I`−1

` ⊗ I`−1
` , is satisfied with a constant

CA which does not depend on the grid size h` and the spline degree p.

Proof Equation (18) in the proof of Lemma 4 states

‖(I − P`)u`‖M`
≤ 8
√

2h`‖u`‖K` (28)

with P` := I``−1K
−1
`−1I

`−1
` K` for all u` ∈ Rm` . Moreover, as the coarse-grid cor-

rection is K`-orthogonal (Galerkin principle), we have stability, i.e.,

‖(I − P`)u`‖K` ≤ ‖u`‖K` (29)

holds for all u` ∈ Rm` . Combining (28) and (29), we obtain

‖(I − P` ⊗ P`)u`‖
2
M`⊗K` ≤ 128h2

`‖u`‖
2
K`⊗K` ,

‖(I − P` ⊗ P`)u`‖
2
K`⊗M`

≤ 128h2
`‖u`‖

2
K`⊗K`

and therefore also

‖(I − P` ⊗ P`)u`‖
2
K` ≤ 256h2

`‖u`‖
2
K`⊗K`



18 Clemens Hofreither et al.

for all u` ∈ Rm
2
` . As

K`M−1
` K` = K`M

−1
` K` ⊗M` + 2K` ⊗K` +M` ⊗K`M−1

` K` ≥ 2K` ⊗K`,

we obtain

‖(I − P` ⊗ P`)u`‖
2
K` ≤ 128h2

`‖u`‖
2
K`M−1

` K`

for all u` ∈ Rm
2
` . Using the Galerkin principle, we obtain

‖(I − I``−1K−1
`−1I

`−1
` K`)u`‖

2
K` ≤ 128h2

`‖u`‖
2
K`M−1

` K`

and further

‖(I − I``−1K−1
`−1I

`−1
` K`)u`‖

2
h−2
` M`

≤ 128‖u`‖
2
K` (30)

for all u` ∈ Rm
2
` . Moreover, we know that the Galerkin projection is stable. Thus,

‖(I − I``−1K−1
`−1I

`−1
` K`)u`‖

2
K` ≤ ‖u`‖

2
K` (31)

for all u` ∈ Rm
2
` . The combination of (30) and (31) yields

‖(I − I``−1K−1
`−1I

`−1
` K`)u`‖

2
h−2
` M`+K` ≤ 129‖u`‖

2
K` ,

and further

‖(I − I``−1K−1
`−1I

`−1
` K`)u`‖

2
K` ≤ 129‖u`‖

2
K`(h−2

` M`+K`)−1K` (32)

for all u` ∈ Rm
2
` . Using the definition of K̂`,orig and (19), we obtain

‖u`‖
2
K`(h−2

` M`+K`)−1K` ≤ 2‖u`‖
2
K`K̂−1

`,origK`
≤ 2‖u`‖

2
K`L−1

` K`
,

for all u` ∈ Rm
2
` , which implies in combination with (32) the estimate

‖K1/2
` (I − I``−1K−1

`−1I
`−1
` K`)K−1

` L
1/2
` ‖ ≤

√
258.

By squaring, the desired result follows using the Aubin-Nitsche duality trick anal-
ogously to the proof of Lemma 4. ut

Combining these results, we obtain the following theorem.

Theorem 6 Using K̂` = L` as defined in (24), we obtain

‖u∗` − u
(1)
` ‖L` ≤

CACS
ν
‖u∗` − u

(0)
` ‖L`

with constants CA and CS which do not depend on the grid size h` and the spline
degree p. Thus, the two-grid method for (22) converges if ν > CACS smoothing
steps are applied.

Proof Follows directly from the combination of Lemma 5 and Lemma 6. ut

The convergence of the two-grid method in the energy norm and of the multi-
grid W-cycle can be shown as in the one-dimensional case.
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Corollary 2 Using K̂` = L` as defined in (24), the two-grid method for (22)
with ν pre- and ν post-smoothing steps converges in the energy norm ‖ · ‖K` if
ν > CACS.

Theorem 7 Using K̂` = L` as defined in (24), the W-cycle multigrid method for
(22) with ν pre- and ν post-smoothing steps converges in the energy norm ‖ · ‖K`
if ν > 4CACS.

We omit the proofs for these two statements as they are completely analogous
to the corresponding proofs in Subsections 4.4 and 4.5.

6 Numerical realization and results

6.1 Numerical realization

As the smoothing procedure seems to be rather complex, we give a pseudocode
describing how the two-dimensional smoother based on the matrix K̂` as defined
in (24) can be implemented efficiently such that the overall multigrid method
achieves optimal complexity.

function smoother()

– given matrices: one-dimensional mass matrix M` ∈ Rm`×m` , one-
dimensional stiffness matrix K` ∈ Rm`×m`

– input: function value u
(0,n)
` ∈ Rm

2
` , corresponding residual r

(0,n)
` ∈ Rm

2
`

– Preparatory steps, only done at first call:
1. Compute the Cholesky factorization of KII,`.
2. Determine Q` ∈ R2p×2p as defined in (25).
3. Compute the Cholesky factorization of MII,`.
4. Determine W` ∈ R2p×2p as defined in (27).

5. Determine R` ∈ R4p2×4p2 as defined in (26).
6. Compute the Cholesky factorization of R`.
7. Determine the sparse matrix K̂` ∈ Rm`×m` as defined in (14).

8. Compute the Cholesky factorization of K̂`.
– For each smoothing step do:

1. Determine q(0)

`
:= h−2

` (K̂−1
` ⊗ K̂−1

` )r`.

2. Determine q(1)

`
:= (PT` ⊗ PT` )q(0)

`
.

3. Determine q
(2)
` := R−1

` q(1)

`
using the Cholesky factorization of R`.

4. Determine q(3)

`
:= ([K̂−1

` P`]⊗ [K̂−1
` P`])q

(2)
` using the Cholesky factoriza-

tion of K̂`.
5. Set p

`
= q(0)

`
+ q(3)

`
.

6. Update the function u
(0,n+1)
` := u

(0,n)
` + τp

`
.

7. Update the residual r
(0,n+1)
` := r

(0,n)
` − τK`p`.

– output: function value u
(0,n+1)
` , corresponding residual r

(0,n+1)
`
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The overall costs of the preparatory steps are O(m`p
2 + p6) floating point

operations, where m` > p is the number of degrees of freedom in one dimension
and m2

` is the overall number of degrees of freedom.
Here, for the preparatory steps 1 and 3, O(m`p

2) operations are required,
as the dimension of the matrices KII,` and MII,` is m` − 2p = O(m`) and the
bandwidth is O(p). For the preparatory steps 2 and 4, it is required to solve
O(p) linear systems involving this factorization, which requires again O(m`p

2)
operations. The preparatory steps 5 and 6 just live on the vertices and require
O(p6) operations. The preparatory step 7 costs O(m`p) operations just for adding

K` and K̃`. The Cholesky factorization to be performed in the preparatory step 8
has – as in the steps 1 and 3 – a computational complexity of O(m`p

2) operations.
The steps 1 and 4 of the smoother itself require O(m2

`p) operations each if the

tensor product structure (K̂−1
` ⊗ K̂−1

` ) = (I ⊗ K̂−1
` )(K̂−1

` ⊗ I) is used (see [4]
for the algorithmic idea). Step 2 of the smoother requires O(m`p

2) operations. In
step 3, only O(p4) operations are required as R` is a dense 4p2× 4p2-matrix. The
steps 5 and 6, which are only adding up, can be completed with O(m2

`) operations.
Step 7 can be computed using the decomposition

K` = (I ⊗M`)(K` ⊗ I) + (M` ⊗ I)(I ⊗K`) (33)

with O(m2
`p) operations, while a naive approach would require O(m2

`p
2) opera-

tions, i.e., the order of complexity would be as large as the number of non-zero
entries of the matrix.

In summary, the preparatory steps require O(m`p
2 + p6) operations and the

smoother itself requiresO(m2
`p) operations. The overall costs are thereforeO(m2

`p+
p6) or, assuming p5 ≤ m2

` , O(m2
`p) operations. Note that the overall costs are

therefore on the same order as the costs for multiplication with the matrix K`.
Note that also the coarse-grid correction can be completed with O(m2

`p) opera-
tions if the tensor product structure of the intergrid transfer matrices I`−1

` and

I``−1 is used. The method can be called asymptotically optimal since the overall
multigrid solver requires O(m2

`p) operations, which is the same effort as for the
matrix-vector product with K`.

6.2 Experimental results

As a numerical example, we solve the Poisson equation

−∆u = f in Ω, u = g on ∂Ω

on the domain Ω = (0, 1)d, d = 1, 2, where the right-hand side and boundary
conditions are chosen in accordance with the exact solution

u(x) =
d∏
j=1

sin(πxj).

We perform a (tensor product) B-spline discretization using uniformly sized knot
spans and maximum-continuity splines for varying spline degrees p. We start from
a coarse discretization with only a single interval and perform ` uniform, dyadic
refinement steps to obtain a finer discretization.
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We then set up a two-grid method according to the framework established in
Section 3 and using the proposed smoother (14) for the one-dimensional domain
and (24) for the two dimensional domain. We always use one pre- and one post-
smoothing step. The damping parameter τ was chosen experimentally and has
the value τ = 0.14 for the one-dimensional domain and τ = 0.11 for the two-
dimensional domain, independently of p. For the two-dimensional domain, τ had
to be slightly decreased to 0.10 for the cases p ≤ 3.

We perform two-grid iteration until the Euclidean norm of the initial residual
is reduced by a factor of 10−8. The iteration numbers using different spline degrees
p as well as different refinement levels ` for the one-dimensional domain are given
in Table 1, and those for the two-dimensional domain in Table 2. As predicted by
the theory, the iteration numbers remain uniformly bounded with respect to the
spline degree p as well as the refinement level.

p 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
` = 10 22 20 20 21 21 20 20 20 20 20 20 18 18 17 17
` = 11 23 20 20 21 20 20 20 20 20 19 19 18 19 18 17
` = 12 23 20 20 20 20 20 20 20 20 20 19 18 18 18 18

Table 1 Two-grid iteration numbers in 1D.

p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
` = 5 82 80 75 76 76 73 72 72 70 71 70 68 69 69 66
` = 6 83 87 76 74 75 73 72 72 70 70 69 68 68 67 65

Table 2 Two-grid iteration numbers in 2D.

7 Conclusions and outlook

We have analyzed in detail the convergence properties of a geometric multigrid
method for a simple isogeometric model problem using B-splines. In a first step, we
discussed a one-dimensional domain. Based on the obtained insights, in particular
on the importance of boundary effects on the convergence rate, we have proposed
a boundary-corrected mass-Richardson smoother. We then proved that this new
smoother yields convergence rates which are robust with respect to the spline
degree, a result which was not obtainable with the use of classical [13] or purely
mass-based smoothers [11].

By exploiting the tensor product structure of spline spaces commonly used
in IGA, we extended the construction of the smoother to the two-dimensional
setting and again proved robust convergence for this case. We have shown how
the proposed smoother can be efficiently realized such that the overall multigrid
method has quasi-optimal complexity. Although we have restricted ourselves to
simple tensor product domains, our technique is easily extended to problems with
non-singular geometry mappings as discussed in Remark 1.
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The extension of this approach to three or more dimensions remains open. In
particular, the representation of the smoother as the Kronecker product of one-
dimensional smoothers plus some low-rank correction as in (24) encounters some
difficulties in this case. Therefore, the construction of robust smoothers for the
three- and higher-dimensional cases is left as future work.
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