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Abstract

The Poisson-Boltzmann equation (PBE) gives a mean field description of the electrostatic

potential in a system of molecules in ionic solution. It is a commonly accepted and widely

used approach to the modelling of the electrostatic fields in and around biological macro-

molecules such as proteins, RNA or DNA. The PBE is a semilinear elliptic equation with a

nonlinearity of exponential type, a measure right hand-side, and jump discontinuities of its

coefficients across complex surfaces that represent the molecular structures under study. These

features of the PBE pose a number of challenges to its rigorous analysis and numerical solution.

This thesis is devoted to the existence and uniqueness analysis of the PBE and the derivation

of a posteriori error estimates for the distance between its exact solution and any admissible

approximation of it, measured either in global energy norms or in terms of a specific goal

quantity represented in terms of a linear functional. These error estimates allow for the

construction of adaptive finite element methods for the fully reliable and computationally

efficient solution of the PBE in large systems with complicated molecular geometries and

distribution of charges.

One of the main focuses of this work is the rigorous analysis of the Poisson-Boltzmann equa-

tion and its linearized version, the LPBE. The starting point is to give a weak formulation

which is appropriate for elliptic equations with measure data, such as the delta distributions

due to fixed point charges in the molecular regions. For this weak formulation we are able to

show existence of a solution by means of 2-term and 3-term splittings, where the full potential

is decomposed into a singular Coulomb potential and a more regular part, a particular

representative of which can be defined by a weak formulation involving H1 Sobolev spaces. In

the case of the LPBE we are also able to show the uniqueness of the full electrostatic potential.

Another main goal of this thesis is the derivation of a posteriori error estimates for the

linearized and fully nonlinear Poisson-Boltzmann equation. More precisely, we derive two

types of a posteriori error estimates: global estimates for the error in the electrostatic

potential, measured in the so-called energy norm, and goal-oriented error estimates for the

electrostatic interaction between molecules. We apply the first type of error estimates to the

study of the electrostatic potential in and around the insulin protein with PDB ID 1RWE, the

Alexa 488 and 594 dyes, as well as the membrane protein-conducting channel SecYEG. In all

these applications we obtain guaranteed and fully computable bounds on the relative errors

in global energy norms. Moreover, we are able to establish a near best approximation result

for the regular part of the electrostatic potential which is the basis for deriving a priori error

estimates in energy norm for the finite element method. The second type of error estimates,

also called goal-oriented a posteriori error estimates, are employed in the computation of

the electrostatic interaction between the dyes Alexa 488 and Alexa 594 being either in their

ground state or transition state. The latter configuration is related to the calculation of the

efficiency of the Fröster resonance energy transfer (FRET) between the two dyes.
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Abstract

Die Poisson-Boltzmann-Gleichung (PBE) dient der Beschreibung des gemittelten elektro-

statischen Potentials in einem System von Molekülen in ionischer Lösung. Sie stellt einen

allgemein anerkannten und weit verbreiteten Ansatz zur Modellierung der elektrostatischen

Felder innerhalb und in der Umgebung von biologischen Makromolekülen, wie Proteinen,

RNA oder DNA, dar. Die PBE ist eine semilineare elliptische partielle Differentialgleichung

mit einer Nichtlinearität des exponentiellen Typs, einem über Delta-Distributionen definierten

Quellterm und einer Koeffizientenfunktion, die im Allgemeinen an der die molekulare Struktur

begrenzenden Fläche Diskontinuitäten aufweist. Diese Merkmale machen die mathematische

Analyse und die numerische Lösung der PBE zu anspruchsvollen Aufgaben.

Die vorliegende Dissertation befasst sich mit der Analyse der Existenz- und Eindeutigkeit der

Lösung des PBE und der a posteriori Fehlerabschätzung für deren zulässige Approximationen,

gemessen entweder in globalen Energienormen oder bezüglich bestimmter linearer Zielfunk-

tionale. Die gewonnenen Fehlerschätzer bilden die Basis für die Konstruktion adaptiver

Finite-Elemente-Methoden und für die absolut zuverlässige und rechnerisch effiziente Lösung

der PBE im Falle großer biologischer Makromoleküle mit komplizierten Geometrien und

Ladungsverteilungen.

Ein Schwerpunkt dieser Arbeit ist die sorgfältige Analyse der Poisson-Boltzmann-Gleichung

und ihrer linearisierten Version, der LPBE. Ausgangspunkt dafür ist eine spezielle variationelle

Formulierung, die sich für elliptische Gleichungen mit Daten (Quelltermen) in distributioneller

Form eignet, wie dies zum Beispiel bei der Modellierung von Punktladungen in Molekülen

durch Delta-Distributionen der Fall ist. Für diese schwache Formulierung wird dann die

Existenz einer Lösung mit Hilfe von 2- und 3-Term-Zerlegungen nachgewiesen, bei denen das

Gesamtpotential in ein singuläres Coulomb-Potential und in eine reguläre Komponente zerlegt

wird. Letztere kann als Lösung ein spezielles Variationsproblems in H1 Sobolev-Räumen

definiert und gefunden werden kann. Im Falle der LPBE wird überdies die Eindeutigkeit des

elektrostatischen (Gesamt-) Potentials nachgewiesen.

Ein weiteres Hauptziel dieser Arbeit ist die Herleitung von a posteriori Fehlerabschätzungen

für die linearisierte sowie für die nichtlineare Poisson-Boltzmann-Gleichung. Genauer gesagt

werden zwei Arten von a posteriori Fehlerabschätzungen vorgestellt: einerseits globale Schätzer

für den Fehler im elektrostatischen Potential, gemessen in der sogenannten Energienorm und

andererseits zielorientierte Fehlerschätzer für die elektrostatische Wechselwirkung zwischen

Molekülen. Die erste Art von Fehlerabschätzungen wird im Zuge der Untersuchung des

elektrostatischen Potentials des Insulinproteins mit PDB ID 1RWE, der Chromophore Alexa

488 und 594, sowie des Membranproteins SecYEG angewandt. In all diesen Fällen erhalten wir

garantierte und vollständig berechenbare Schranken für den relativen Fehler in der globalen

Energienorm. Darüber hinaus wird für die reguläre Komponente des elektrostatischen Poten-

tials ein “Near-Best-Approximationsergebnis” gezeigt, das die Grundlage für die Herleitung
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von a priori Fehlerabschätzungen in der Energienorm von Finite-Elemente-Näherungen bildet.

Der zweite Typ von Fehlerschätzern, auch zielorientierte a posteriori Fehlerschätzer genannt,

wird bei der Berechnung der elektrostatischen Wechselwirkung zwischen den Chromophoren

Alexa 488 und Alexa 594 verwendet, die sich dabei entweder im Grundzustand oder im

Übergangszustand befinden. Letztere Konfiguration wird auch zur Berechnung (bzw. Simula-

tion) der Effizienz des sogenannten Förster-Resonanz-Energie-Transfers (FRET) zwischen

den beiden Farbträgern herangezogen.
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Chapter 1

Introduction

Biomolecular electrostatic models play an important role in the quantitative analysis of bio-

logical macromolecules such as proteins, RNA or DNA in solution [124,126,176]. A commonly

accepted and widely used approach is based on solving the nonlinear Poisson-Boltzmann

equation (PBE) which was described independently by Gouy [93] and Chapman [46] and

later generalized by Debye and Hückel [60]. The PBE gives a mean field description of the

electrostatic potential in a system of biomolecules. The molecules are modeled as fixed partial

charges in a low dielectric cavity and ions are treated as continuous fluid-like particles moving

independently in the high dielectric region, outside the molecular domain, under the influence

of a mean electric potential. Applications include computations of the electrostatic potential

at the solvent-accessible molecular surface, pKa values of biomolecules, the encounter rates

between molecules in solution, or the free energy of association in conjunction with its salt

dependence (see, e.g. [81]). Biomolecular association (e.g. the association of ligand and pro-

teins) depends on the shape of the molecules and their electrostatic field. Therefore, adequate

mathematical models must properly account for the effects induced by both geometrical

properties and by the distribution of charges.

State of the art

Existence and uniqueness of a solution to the PBE

The Poisson-Boltzmann equation is a semilinear interface elliptic problem with exponential

nonlinearity and a measure right-hand side. These features make it very challenging to

analyze and approximate numerically the PBE. Despite its extensive use in the biophysics

community, there are very few works discussing the existence and uniqueness analysis of

this equation. Efforts on providing a solution theory for the PBE are made for example

in [48,101,103,123,188] and for the modified PBE with finite size ions in [47].

1



2 CHAPTER 1. INTRODUCTION

Numerical solution of the PBE

Simple-shape molecular models, e.g., electrostatic models for globular proteins as used in [113],

had been replaced in the early 1980s by models based on more complex geometries. This

development was driven by the progress of finite element (FE), boundary element (BE), and

finite difference (FD) methods for solving nonlinear partial differential equations (PDE), see

e.g. [133]. Numerous software packages for the simulation of biomolecular electrostatic effects

that are presently available, such as APBS, CHARMM, DelPhi, UHBD, MEAD, and mFES,

reflect the popularity and success of the PBE model.

Finite difference methods

The most popular method for solving the PBE has been the FD method based on a regular

3D lattice. Its popularity in the PBE community is thanks to its simpler implementation

compared to the FE and BE methods. This is reflected by the large number of solvers based

on this method, such as DelPhi [114], GRASP [140], MEAD [11], UHBD [134], CHARMM [37],

the PMG solver in the APBS software suite [102].

The FD method was first adapted to biological macromolecules in the early 1980s in [185]

and then utilized and modified in numerous works (see, e.g. [91,92,114,141,163,168,175,185]).

In the FD method, the PBE is discretized on a cubic lattice (grid) by approximating the

differential equation with a difference equation at every grid point. Here, the derivatives

at a grid point are approximated as finite differences between function values sampled at

surrounding lattice points. The resulting set of simultaneous linear/nonlinear equations, with

unknowns the electrostatic potential at the grid points, is usually solved by means of some

iterative method.

Regular lattices allow for a simple discretization of the differential operators and the use of

highly efficient multigrid solvers for the resulting system of algebraic equations. However,

the lack of adaptivity results in a noticeable trade-off between the grid spacing (resolution)

and the accuracy of the boundary condition. More precisely, the number of grid points in a

regular cubic lattice is n3, where n is the number of grid points in each coordinate direction.

By taking into account that the usual grid spacing in electrostatic computations ranges

between 0.2 Å and 1 Å, it is clear that the problem size can easily approach 10003 unknowns

for relatively small systems of several hundred atoms. This is highly prohibitive in terms

of memory and computational costs. To speed up the convergence and reduce the memory

requirements, a so-called focusing technique was proposed in [92,114]. This involves solving

the equation on a coarse grid, covering a large region, followed by a solution on a finer grid,

covering a smaller region, with a boundary condition, interpolated from the values of the

coarse grid solution. This approach was further improved in [7] by implementing it in parallel
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and then applied to the electrostatics of microtubules and ribosoms. Due to the noticeably

improved performance, focusing schemes are implemented in most of the FD based solvers

for the PBE in which regular cubic lattices are used.

Unlike in FE and BE methods, in FD methods, the molecular surface is implicitly defined

which causes difficulties handling sharp interfaces between regions with a relatively high jump

in the dielectric coefficient. More precisely, for each integer or half-integer grid point the di-

electric coefficient is defined by means of some averaging of its values at the neighboring points

which have assigned values based on which region they belong to (see [92, 141]). The inverse

Debye-Hückel parameter is defined in a similar fashion. Due to this averaging there is a region

around the true interface in which these coefficients vary between their respective values on

both sides of the interface. The thickness of this region depends on the grid spacing h and this

is where the discretization error is typically much higher compared to the FE and BE methods.

Finite difference methods also exhibit problems caused by nonsmooth source terms, such

as the delta distributions, introduced to model fixed point charges. A redistribution of the

charges around their closest grid points is necessary in order to minimize the errors occurring

in the short range potential, i.e., the errors close to the charges (see [92, 141] for different

approaches to the redistribution). However, redistribution techniques in general lead to a

so-called grid artifact (see [12, 164]). The latter can be easily avoided by using Galerkin type

FE approximations and combining them with proper splitting techniques for the full potential.

By applying such decompositions of the full potential, the delta distributions describing the

discrete charge density due to the point charges in the solute are transformed to a more

regular distribution, which is interpreted as a certain surface charge density concentrated on

the molecular surface. We note that these splitting techniques can also be used in conjunction

with FD methods (see, e.g. [141,195]). However, the surface charge density, supported on the

interface between the molecular region and the solution region, remains hard to handle with

FD methods.

Another disadvantage of the FD method is that the errors, caused by the specific way of

handling interfaces and partial charge distribution in the solute, strongly depend on the

particular position and orientation of the molecular system relative to the used FD grid. One

approach to cope with this problem is to use finer grids, which naturally leads to a larger

number of grid points. Another approach is to use a rotational averaging scheme. The idea is

to make a number of calculations with a slightly different relative position and orientation

between the molecular system and the FD grid, and finally take some average (see [92, 141]).

A third approach that could cope better with curved interfaces and regions where the solution

is sharply varying (mainly around the fixed partial charges and across interfaces) is to involve

some kind of adaptivity in the FD method in conjunction with splitting techniques for the

full potential. Finite difference methods, based on adaptive Cartesian grids (ACG), have
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been developed for solving nonlinear equations in domains with curved boundaries (see,

e.g [83, 136, 142]). Here, the grid representation is based on quadtrees in two dimensions

and octrees in three dimensions. The ACG is recursively adapted by identifying mesh cells,

which intersect the molecular surface, and test them whether they satisfy one of the following

criteria: finest grid-spacing is reached or intersected cell lies more than a prescribed distance

from the nearest atomic charge site. The cell, which does not meet either of these criteria is

uniformly subdivided into four (in 2D) or eight (in 3D) smaller cells. Using a coarser mesh

away from the surface reduces the total number of grid points, which for ACG often is several

orders of magnitudes less than that required in a conventional lattice grid. However, the

underlying mesh still does not conform to the solute surface and thus the accurate evaluation

of the electrostatic potential near the interface remains problematic. A method that can

reduce the error in the potential near the interface for FD methods based on ACG is proposed

in [97]. Recently, an FD method based on ACG, was implemented in the finite difference

solver CPB, particularly aimed at the approximation of the PBE for complex biomolecular

structures [27]. This solver also utilizes a splitting technique for the full potential to eliminate

the singular behavior at charge sites.

Boundary element methods

Another quite popular approach to the numerical solution of the linearized and nonlinear

PBE is the boundary element method (BEM). It was first adapted to the computation of the

electrostatic potential of macromolecules in [193] and later different algorithmic improvements

were proposed in [154,194]. Here, the PBE is reformulated into boundary integral equations,

living on the boundary of the solute domain, by employing Green’s theorem. Therefore, only

the two-dimensional molecular surface needs to be discretized. The resulting boundary integral

equations are solved by using collocation, Galerkin, or least squares methods. The first one

is the most commonly used by the PBE community since it is the simplest to apply in practice.

The BE method has some advantages over other numerical methods like the FE and FD

methods, which involve volume-domain discretization. Since only the molecular surface is

discretized, the number of unknowns is greatly reduced. Moreover, boundary conditions at

infinity are exactly treated as opposed to the FE and FD methods. In contrast to the FDM,

the jump in the normal component of the electrostatic field across the molecular surface

(interface) is explicitly accounted for, which results in a more accurate solution near the

solute surface.

However, the BE method also has some disadvantages that make it not so flexible compared

to the FE method. Although the number of unknowns is considerably smaller than in FE

or FD methods, the arising linear systems from the discretization of the boundary integral

equations have dense matrices which results in high memory and solution costs in direct

solution approaches. Furthermore, when dealing with the nonlinear PBE, volume integrals
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appear in the boundary integral equations, which additionally reduces the efficiency of this

method. The computation of the coefficient matrices of the discretized boundary integral

equations involves integration of singular functions which causes problems related to accuracy

and/or stability. Different modifications, aimed at improving the efficiency of the BEM for

the numerical solution of the linearized or nonlinear PBE, have been considered for example

in [80,130–132,183]. Another approach to enhance the efficiency of the BEM is to use adaptive

mesh refinement based on reliable and efficient error indicators. General convergence theory

for BEM, not necessarily tailored towards the PBE, is presented for example in [74–77,79,88].

A comprehensive review of convergence theory for adaptive BEM can be found in [73].

Finite element methods

The FE methods are the most successful for elliptic PDE, since they combine geometrical

flexibility and satisfactory convergence analysis with the ability to handle nonlinear problems

involving interface jump conditions and nonsmooth source terms. Moreover, they enjoy a

wide range of efficient iterative solvers for the resulting sparse linear systems. One of the

first applications of the FE method to continuum electrostatics of biomolecules in solution

appears in [147]. Since then, the popularity of this approach has increased synchronically

with the increase of computational power and advancement of FE mesh generation tech-

niques [8,54,101,102,109]. As representatives of the solvers, implementing the FE method for

the numerical approximation of the PBE and the linearized PBE, we mention APBS [102]

(utilizing adaptive mesh refinement based on a residual type error indicator) and mFES [164],

respectively.

The FE method is based on the so-called weak formulation of the problem, which is the

natural setting for the theoretical analysis and numerical solution of problems involving

discontinuous coefficients and right hand sides which are not classical functions, but rather

functionals. This is the case with the PBE, where the dielectric coefficient undergoes a jump

discontinuity across the interface between the solute and solvent regions and the right-hand

side is a linear combination of delta functions representing the fixed partial charges in the

solute region. In FE methods, the approximate solution uh is sought in a finite dimensional

space Vh associated with a partition Th into finite elements of the computational domain Ω,

where the subscript h refers to the maximum size of the elements. In the so called conforming

finite element method, the finite dimensional space Vh in which the approximate solution is

defined is a subspace of the infinite dimensional functional space V to which the exact solution

belongs. Moreover, as h→ 0 the resulting finite dimensional subspaces Vh approximate better

and better the infinite dimensional space V and uh converges to the exact solution u. The

most popular FE spaces Vh used for the approximation of the PBE consist of continuous

piecewise polynomial functions associated with a partition of Ω into triangles in 2D and

tetrahedrons in 3D.
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In contrast to the FD methods, based on uniform cubic grids, the FE methods allow for

local refinement of the underlying mesh and a better resolution of extremely fine features

in the protein geometry, while solving the PBE on large computational domains, spanning

millions of angstroms. At the same time, the number of mesh points can be orders of

magnitude smaller than the one for comparable in size FD uniform cubic lattices, even

for moderate lattice spacing h. This is achieved by using extremely graded meshes to-

wards the boundary of the computational domain. Clearly, this feature of the FE method

eliminates the exceedingly restrictive trade-off, typical for FD methods with uniform cubic

lattices, between fines of the grid in regions of interest and accuracy of the boundary condition.

Another advantage of the FE methods is that the underlying mesh can be constructed in

such a way that it conforms to the solute-solvent interface. Therefore, unlike FD methods,

based on either uniform or adaptive Cartesian grids, the complex solute-solvent interface

can be explicitly defined. This allows for accurate approximation of the electrostatic po-

tential near the interface even in the presence of large jump in the dielectric coefficient.

However, the generation of molecular surface meshes which are also suitable for FE and

BE calculations is not a trivial task. Among the more popular surface mesh generators

are MSMS [165], LSMS [43], TDTSurf [191], TMS [49], NanoShaper [61], GAMer [192]

(also performs volumetric mesh generation). Once, the surface mesh is generated, a volume

tetrahedral mesh can be obtained, for example, by using Netgen [166], TetGen [170], Gmsh [89].

Major advances in the quality of the numerical solution of the PBE regarding accuracy and

efficiency are due to proper mesh adaptation techniques, see, e.g., [48, 103]. Adaptive FE

methods exploit error indicators, which must be reliable and efficient in that upon multiplica-

tion by constants of the same order they provide bounds for the actual error from above and

below. Efficient error indicators can be constructed by different methods closely related to

different approaches to the a posteriori error estimation problem. In this context, we mention

goal-oriented methods for the error measured in terms of a specific goal functional, residual

based methods and functional type methods for the error in global energy norms.

The goal oriented error estimates are useful when one is interested in a specific quantity

that depends on the solution (goal quantity) rather than the solution itself over the whole

computational domain. Such error estimates for linear and nonlinear problems are considered

in numerous publications, see e.g. [13,78,104,105,115,138,144]. Nonetheless, it seems difficult

to find works which consider applications to the PBE equation.

In residual based approaches to the a posteriori error estimation of the global error in en-

ergy norm, the error is bounded from above and below by multiples of the residual norm.

Depending on the way the residual norm is estimated one has explicit or implicit residual

methods, see, e.g. [3, 4, 6, 45, 181] and [69, 152,180,182] for nonlinear problems. A residual
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based error indicator is used to drive the adaptive mesh refinement in the FE solution of

the nonlinear PBE in [48,103], where also the convergence of the method is proven. A more

general convergence theory for adaptive FE methods is developed, for example, in [44,87,171].

Some popular softwares for adaptive mesh refinement in 3D are, for example, TetGen [170],

Netgen [166], mmg3d [62].

Functional type error estimates have been developed in the framework of duality theory

for convex variational problems [65, 139, 155–157]. They provide estimates that generate

guaranteed bounds on the distance to the exact solution valid for the whole class of energy

admissible functions. In contrast to the residual based, these functional type estimates contain

neither mesh dependent constants nor do they rely on any special conditions or assumptions on

the exact solution (e.g., higher regularity) or its approximation (e.g., Galerkin orthogonality),

which means that they are fully computable. However, this type of error estimates has not

been applied to continuum electrostatics computations until recently in [116,117].

On this work

This thesis is concerned with the solution theory and a posteriori error estimation for the

Poisson-Boltzmann equation, as well as with the numerical solution of a series of practical

problems which demonstrate and substantiate the developments in the presented work.

More precisely, existence and uniqueness results are proved by using different decomposition

techniques, along with a priori L∞ estimates for the regular components of this solution. It

is shown that a particular representative of these regular components can be defined by a

weak formulation involving H1 spaces and that they can be approximated numerically in a

standard way by using, for example, the finite element method. Further, a posteriori error

estimates, leading to guaranteed and fully computable bounds on the global energy norm of

the error, are derived for these regular components of the solution to the PBE. In addition to

this type of estimates, also goal oriented error estimates are presented for the electrostatic

interaction between molecules, where the potential in the system is governed by the linearized

PBE.

Structure of the thesis

The thesis is organized as follows. In Chapter 2, we fix the notation and recall some well

known results on Lebesgue and Sobolev spaces, convex analysis and regularity theory for

linear elliptic interface problems.

In Chapter 3, we consider the solution theory for the linearized and fully nonlinear Poisson-

Boltzmann equation.

• In Section 3.1, we introduce the Poisson-Boltzmann equation, describing the physical
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problem of continuum electrostatics, and all relevant geometrical regions, involved in

the description of a general system of molecules immersed in solution.

• In Section 3.2, we start with the solution theory for the LPBE, the right hand side

of which is a measure, given by a linear combination of delta functions. The first

step here is to give a meaningful notion of a solution to this equation, which also

ensures uniqueness. This is done by following [21, 63, 86]. Once the weak formulation is

defined, we prove existence by means of either 2- or 3-term splitting of the solution.

The uniqueness of the solution is proved by involving a duality argument together with

a regularity result for linear elliptic interface problems [66]. This section ends with a

discussion of the regularity properties of the regular components of the solution in the

2- and 3-term splittings.

• Section 3.3 deals with the analysis of the nonlinear PBE and has a similar structure

to Section 3.2. First, the weak formulation for the LPBE is naturally extended to the

nonlinear case and then existence of a solution is shown by utilizing the 2- and 3-term

splittings mentioned above. We show that a particular representative of the regular

components of the solution in both 2- and 3-term splittings can be defined by means of

weak formulations involving H1 spaces. The existence theorems based on the 2- and

3-term splittings are stated in Section 3.3.1 and Section 3.3.2, respectively. Moreover,

in Section 3.3.4 we summarize some regularity results for the well behaved component

of the solution in these splittings and give the respective conditions under which they

hold.

• Section 3.4 concludes this chapter with an L∞ a priori estimate for the solution of a

more general semilinear elliptic problem with neither sign nor growth conditions on the

nonlinearity.

In Chapter 4, we derive functional type a posteriori error estimates which provide guaranteed

and fully computable bounds on the global energy norm of the error for the nonlinear PBE.

In addition, a series of numerical examples are presented.

• In Section 4.1, we consider a more general semilinear elliptic interface problem with

the same type of nonlinearity as in the PBE. First we present an abstract framework,

based on duality theory for convex variational problems, for the derivation of functional

type a posteriori error estimates by following [65,139,155]. We establish an abstract

error identity for which an explicit form is given for the considered problem. First we

consider the case of homogeneous Dirichlet boundary condition. In this situation, we

present in detail the computation of all terms in the abstract error identity; obtain a

near best approximation result for conforming, not necessarily finite element, spaces;

show how to explicitly compute the respective error terms for the case of a more general

nonlinearity; discuss the effect of data oscillation related to the approximation of the

equilibration condition on the dual variable; and present academic numerical examples
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in the case of homogeneous interface jump condition. Next, we show that all the results

obtained in the case of homogeneous Dirichlet boundary condition remain valid also in

the case of nonhomogeneous one.

• In Section 4.2 we describe a procedure, based on the patchwise equilibrated flux

reconstruction in [30], to obtain a good conforming approximation of the dual variable.

This method allows for an efficient evaluation of the error indicator in the adaptive

algorithm and can be easily realized in parallel.

• In Section 4.3, we apply the obtained results for the more general semilinear elliptic

interface problem to the a posteriori error estimation of the nonlinear PBE. To be more

precise, we derive error estimates for the regular component of the solution in the 2-

and 3-term splittings.

In certain situations it might be beneficial to make one more additional splitting of the

regular component in both 2- and 3-term splittings. Section 4.3.1 and Section 4.3.2 focus

on the derivation of error majorants and minorants for the individual components of

the solution that appear in the different splittings. Since each subproblem that defines

a particular component of the solution depends on the the solution of the previous one,

this causes a certain perturbation error additionally to the approximation error. Thus,

in Section 4.3.1 and Section 4.3.2, we also derive overall estimates for the error, which

take into account both the perturbation and approximation error.

• Section 4.3.3 is devoted to the application of the described in this chapter methodology

to realistic systems consisting of macromolecules immersed in ionic solution. We solve

adaptively the PBE to find the electrostatic potential in and around the insulin protein

with PDB ID 1RWE, the Alexa 488 and 594 dyes, as well as the membrane channel

SecYEG.

In Chapter 5, we present goal oriented error estimates for the electrostatic interaction between

molecules in ionic solution.

• Section 5.1 introduces the physical problem and introduces the goal functional describing

the electrostatic interaction between molecules. Next, in Section 5.2, we recall some

known results on goal oriented a posteriori error estimates, based on the dual weighted

residual (DWR) method, for elliptic problems with L2 right-hand side and a regular

goal functional, defined by an L2 function.

• Since the goal functional defining the electrostatic interaction is composed of point

evaluations and the exact solution of the primal problem is a harmonic function at

these point evaluations, we can apply an equivalent goal functional defined by averaging

over balls centered at the points of interest. In Section 5.3, we derive four different

representations for the error that involve the solution of an adjoint problem. In two of
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the estimates, we use the equivalent goal functional, defined by averaging over balls,

and in the other two we employ the original goal functional composed of delta functions.

We end this section with a summary of all four error estimates and the respective error

indicators.

• In Section 5.4, we present numerous tests performed on problems with analytically

known solutions and demonstrate the efficiency of the adaptive FE solvers, based on

the proposed goal oriented error estimates. In addition, we also make a comparison of

our adaptive solvers with the results obtained with the software package MEAD version

2.2.8a [11].

• Section 5.5 ends this chapter with two practical biophysical applications related to

the computation of Fröster resonance energy transfer (FRET) and the electrostatic

interaction between chromophores in their ground state. Again, a thorough comparison

with MEAD is carried out.

Finally, in Chapter 6 we draw some conclusions and discuss possible future developments.

Main achievements

The main achievements of this work can be organized into three groups, corresponding to

Chapter 3, Chapter 4, and Chapter 5.

• Existence and uniqueness analysis

− Posing appropriate weak formulation for the LPBE and PBE (Definition 3.2 and

Definition 3.12);

− Existence and uniqueness for the LPBE with both 2- and 3-term splittings (Theorem 3.4

and Remark 3.8);

− Existence and uniqueness for the regular component u in both 2- and 3-term splittings

(Section 3.3.3, Theorem 3.21);

− Existence for the PBE with both 2- and 3-term splittings (Theorem 3.13 and Theo-

rem 3.15);

− A priori L∞ estimates for the regular component in both 2- and 3-term splittings

(Proposition 3.18 and the discussion on p. 53);

− A priori L∞ estimate for a more general semilinear elliptic problem (Theorem 3.29).
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• Functional a posteriori error estimates

− Guaranteed and fully computable a posteriori error estimates for a more general

semilinear elliptic problem with a nonhomogeneous interface jump condition on the

normal flux (Proposition 4.5, equation (4.51));

− Near best approximation result without assumptions on the mesh regularity (Proposi-

tion 4.12 and Proposition 4.16);

− Effect of data oscillation related to the approximation of the equilibration condition on

the dual variable (estimate (4.81));

− Equilibrated flux reconstruction adapted to nonhomogeneous interface problems and

implemented in parallel in 2D and 3D using lowest order Raviart-Thomas space (Sec-

tion 4.2);

− Overall error estimation for the PBE with the 2- and 3-term splittings (Proposition 4.18,

Proposition 4.23, Proposition 4.27);

− Implementation in FreeFem++ [98] of an adaptive FE solver based on the derived

functional a posteriori error estimates and application to realistic systems, including

insulin protein with PDB code 1IRW and the protein-conducting channel SecYEG

(pages 154–176).

• Goal oriented error estimates

− Four error representations in terms of the solution of an adjoint problem with both

bounded and unbounded in H1 goal functionals (Proposition 5.6, Proposition 5.10,

Proposition 5.12);

− Implementation in FreeFem++ of adaptive FE solvers based on the four error represen-

tations;

− Verification of the implemented solvers on hundreds of configurations with analytically

known solutions (Section 5.4);

− Application of the implemented solvers to the calculation of the electrostatic interaction

between molecules in ionic solution for hundreds of molecular dynamics frames and

comparison with MEAD (Section 5.5).

Some parts of this thesis have already been accepted for publication in a peer-reviewed

journal or have been made available online in the repository arXiv. More precisely, parts of

Chapter 3 and Chapter 4 are presented in

• [117] J. Kraus, S. Nakov, and S. Repin. Reliable numerical solution of a class of nonlinear

elliptic problems generated by the Poisson-Boltzmann equation. Computational Methods

in Applied Mathematics, forthcoming.
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• [116] J. Kraus, S. Nakov, and S. Repin. Reliable computer simulation methods for

electrostatic biomolecular models based on the Poisson-Boltzmann equation. Preprint

on arXiv:1805.11441, 2018.



Chapter 2

Preliminaries

In this chapter we fix the notation and give some relevant definitions and theorems that will

be used throughout the thesis. We start with a brief discussion of some classes of continuous

functions. Next we recall the spaces of Lebesgue measurable functions with summability

index p. We continue with the definition and some relevant properties of the Sobolev spaces

Wm,p(Ω). Finally, we recall some facts from functional analysis that will be of use in our

considerations.

2.1 Classes of continuous functions

Let Ω be a domain in Rd, d ∈ N, i.e., an open subset of Rd. Let α = (α1, α2, . . . , αd) ∈ N0 be

a multiindex of order |α| = α1 + . . . αd. For any nonnegative integer m, let Cm(Ω) be the

space of continuous functions v in Ω for which all their partial derivatives

Dαv =
∂α1

∂xα1
1

. . .
∂αd

∂xαdd
v

of orders |α| ≤ m are continuous in Ω. For m = 0, we denote C0(Ω) ≡ C(Ω) the space of

continuous functions in Ω and by C∞(Ω) the space of infinitely differentiable functions in

Ω. The space C∞0 (Ω) consists of those functions v in C∞(Ω) that have compact support

in Ω. Further, the space Cm(Ω) consists of all functions v in Cm(Ω) for which all their

derivatives Dαv of orders 0 ≤ |α| ≤ m are uniformly continuous and bounded in Ω. As such,

every function v in Cm(Ω) and all its derivatives Dαv with |α| ≤ m possess unique, bounded,

continuous extensions up to the boundary ∂Ω of Ω. By C∞(Ω) we denote the space defined

by C∞(Ω) :=
∞⋂
m=0

Cm(Ω). In particular the space of restrictions of functions in C∞0 (Rn) to

the domain Ω is a subspace of C∞(Ω).

If 0 < λ ≤ 1, the space Cm,λ(Ω) is defined as the subspace of Cm(Ω) for which every function

v and its partial derivatives Dαv of orders |α| ≤ m satisfy a Hölder condition with exponent

13



14 CHAPTER 2. PRELIMINARIES

λ, i.e., there exists a constant K such that

|Dαv(x)−Dαv(y)| ≤ K |x− y|λ for all x, y ∈ Ω.

We say that f : Ω→ R is Lipschitz continuous in Ω if f is Hölder continuous with exponent

λ = 1 and we write f ∈ C0,1(Ω).

2.2 Lebesgue and Sobolev spaces

Let A ⊂ Rd. By χA we denote the characteristic function of A and it is given by

χA(x) =

{
1, x ∈ A,
0, x /∈ A.

(2.1)

If the set A is measurable, we denote its Lebesgue measure by |Ω|. For a function f : Rd → R,

by f�A we denote its restriction to the set A.

Lebesgue integral

We will need two important properties of the Lebesgue integral, namely Fatou’s Lemma and

the dominated convergence theorem, which we formulate here.

Theorem 2.1 (Fatou’s Lemma, see, e.g., [2, 71,177])

Let Ω ⊂ Rd be a measurable set and let fn : Ω → [0,∞] , n = 1, 2, . . . be a sequence of

measurable functions. Then ∫
Ω

lim inf
n→∞

fndx ≤ lim inf
n→∞

∫
Ω

fndx.

Note that the integrals in Theorem 2.1 may be finite or infinite.

Theorem 2.2 (Dominated convergence theorem (DCT), see, e.g., [2, 71,177])

Let Ω ⊂ Rd be a measurable set and let f, fn, n = 1, 2, . . . be measurable functions. Suppose

that

fn(x)→ f(x) a.e. x ∈ Ω

and that there exists a nonnegative function g ∈ L1(Ω), i.e.,
∫
Ω

gdx <∞ such that

|fn(x)| ≤ g(x) a.e. x ∈ Ω.

Then

lim
n→∞

∫
Ω

|fn − f | dx = 0.
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Lp spaces

Let Ω be a domain in Rd and let 1 ≤ p <∞. The vector space Lp(Ω) consists of all Lebesgue

measurable functions u : Ω→ R such that

‖u‖pLp(Ω):=

∫
Ω

|u|p dx <∞.

When p =∞, the space L∞(Ω) is defined as the space consisting of all measurable functions

u which are essentially bounded, i.e.,

‖u‖L∞(Ω):= inf {C > 0 such that |u(x)| ≤ C for almost each x ∈ Ω}.

Further, Lploc(Ω) denotes the space of all measurable functions which are in Lp(K) for

every compact set K in Ω. We identify in Lp(Ω), 1 ≤ p ≤ ∞ all functions that agree almost

everywhere with respect to the Lebesgue measure. Thus the elements of Lp(Ω) are equivalence

classes of measurable functions u for which the quantity ‖u‖Lp(Ω) is finite. With this in

mind, it is easy to verify that the functional ‖·‖Lp(Ω) is a norm in Lp(Ω) for all 1 ≤ p ≤ ∞.

Moreover, with this norm, the space Lp(Ω) is a complete vector space, and thus a Banach

space. In the special case p = 2, the space L2(Ω) becomes a Hilbert space for the inner

product (·, ·)Ω defined by

(u, v)Ω :=

∫
Ω

uvdx for all u, v ∈ L2(Ω).

If there is no ambiguity, we will denote the inner product in L2(Ω) just by (·, ·) and will skip

the subscript ′′Ω′′. If A is a subset of Ω we will denote the inner product in L2(A) by (·, ·)A
to distinguish it from (·, ·). Similarly to the scalar case, we can introduce the space [Lp(Ω)]d

of vector valued functions u = (u1, u2, . . . , ud) : Ω→ Rd with the norm

‖u‖p
[Lp(Ω)]d

:=

∫
Ω

|u|pp dx,

where |u|p denotes the Euclidean norm in Rd given by |u|pp :=
d∑
i=1
|ui|p. When p = 2, this

space is also a Hilbert space. We will denote the inner product in the same way as for the

scalar case

(u,v)Ω :=

∫
Ω

u · vdx =

∫
Ω

(u1v1 + . . . udvd) dx for all u,v ∈
[
L2(Ω)

]d
,

where we will again skip the subscript ′′Ω′′ if there is no ambiguity. For a subset A of Ω we will

keep the subscript ′′A′′ to distinguish the inner product in
[
L2(A)

]d
from that in

[
L2(Ω)

]d
.

If p = 2, we will skip the index in the notation for the Euclidean norm in Rn, n ∈ N, i.e., we

will write |ξ| instead of |ξ|2.
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Remark 2.3

Everywhere in this work we denote scalar functions and position vectors (points in Rd)
in standard italic font, e.g., x = (x1, x2, . . . , xd) ∈ Rd, u(x), u : Ω ⊂ Rd → R. On the

other hand, vector or matrix valued functions we denote by letters in bold italic font, e.g.,

f(x) = (f1(x), f2(x), . . . , fn(x)), f : Rd → Rn.

Theorem 2.4 (Hölder’s inequality)

Let 1 ≤ p ≤ ∞ and let q denote the Hölder conjugate of p defined by 1
p + 1

q = 1. If u ∈ Lp(Ω),

v ∈ Lq(Ω), then uv ∈ L1(Ω) and it is satisfied

‖uv‖L1(Ω)≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Theorem 2.5 (Minkowski’s inequality, i.e., triangle inequality)

Let 1 ≤ p ≤ ∞. Then

‖u+ v‖Lp(Ω)≤ ‖u‖Lp(Ω)+‖v‖Lp(Ω).

Theorem 2.6 (Lemma 3.31 in [2])

Let u ∈ L1
loc(Ω) satisfy

∫
Ω

uϕdx = 0 for all ϕ ∈ C∞0 (Ω). Then u(x) = 0 a.e. in Ω.

Theorem 2.7 (Approximation by compactly supported smooth functions)

C∞0 (Ω) is dense in Lp(Ω) for all 1 ≤ p <∞.

Weak derivatives

We can generalize the notion of a classical derivative for functions in L1
loc(Ω). Let u, v ∈ L1

loc(Ω)

and let α be a multiindex. We say that v is the αth weak partial derivative of u and write

Dαu = v provided that ∫
Ω

uDαϕdx = (−1)|α|
∫
Ω

vϕdx

for all test functions ϕ ∈ C∞0 (Ω).

Sobolev Wm,p spaces

Now, for an open set Ω in Rd, we can define the Sobolev space Wm,p(Ω) for all 1 ≤ p ≤ ∞
and for all integers m ≥ 0 by

Wm,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all multiindices α with |α| ≤ m} ,

where Dαu denotes the αth weak partial derivative of u and we set W 0,p(Ω) := Lp(Ω). We

can introduce a norm in Wm,p(Ω) by the function ‖·‖Wm,p(Ω) given by

‖u‖pWm,p(Ω): =
∑

0≤|α|≤m

‖Dαu‖pLp(Ω), if p <∞,

‖u‖Wm,∞(Ω): = max
0≤|α|≤m

‖Dαu‖L∞(Ω).
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With this norm, Wm,p(Ω) is a complete space and thus a Banach space. In the special case

p = 2, Wm,2(Ω) becomes a Hilbert space and we denote it by Hm(Ω). Further, by Wm,p
0 (Ω)

we denote the closure of C∞0 (Ω) in Wm,p(Ω) and by such it is also a Banach space. When

p = 2, we write Hm
0 (Ω) = Wm,2

0 (Ω).

Theorem 2.8 (see Proposition 9.4 in [96])

Let Ω ⊂ Rd be an open set, u, v ∈ W 1,p(Ω) ∩ L∞(Ω) with 1 ≤ p ≤ ∞. Then uv ∈
W 1,p(Ω) ∩ L∞(Ω) and

∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
, i = 1, 2, . . . , d.

Theorem 2.9 (see Theorem 1 in Section 5.2.3 in [70])

Let Ω ⊂ Rd be an open set, ξ ∈ C∞0 (Ω), and u ∈Wm,p(Ω). Then ξu ∈Wm,p(Ω) and Leibniz’

formula applies

Dα(ξu) =
∑
β≤α

(
α

β

)
DβξDα−βu,

where
(
α
β

)
= α!

β!(α−β)! .

Theorem 2.10 (see Theorem 2.2.4 in [111] or Lemma 9.5 in [96])

Let Ω ⊂ Rd be an open set, u ∈W 1,p(Ω) with 1 ≤ p <∞, and assume that the support of u

is a compact subset of Ω. Then u ∈W 1,p
0 (Ω).

In this thesis, we will work only with bounded sets in Rd. Thus, let Ω be a bounded and

open set in Rd. We say that Ω has Lipschitz boundary ∂Ω if each point x on ∂Ω has a

neighborhood Ux whose intersection with ∂Ω is the graph of a Lipschitz continuous function

(see [2]). We will also say that Ω is a bounded Lipschitz domain.

Theorem 2.11 (see Theorem 3.22 in [2])

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary. Then the set of restrictions to Ω

of functions in C∞0 (Rd) is dense in Wm,p(Ω) for 1 ≤ p <∞.

Theorem 2.12 (Poincaré’s inequality, see, e.g., Theorem 12.17 in [122], Theorem 1.4.3.4

in [95], Corollary 9.19 in [96])

Suppose that 1 ≤ p <∞ and that Ω is a bounded domain in Rd. Then there exists a constant

C = C(p,Ω) such that

‖u‖Lp(Ω)≤ C‖∇u‖Lp(Ω) for all u ∈W 1,p
0 (Ω). (2.2)

Traces in W 1,p(Ω)

In general, functions in Sobolev spaces do not have well defined values on sets with measure

zero. However, for bounded Lipschitz domains one can extend the notion of restriction of a

continuous function to the boundary of Ω by introducing the trace operator. We have the

following theorem.
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Theorem 2.13 (Trace Theorem, see Theorems 15.10 and 15.23 in [122])

Let Ω ⊂ Rd, d ≥ 2 be a bounded domain with Lipschitz boundary ∂Ω and let 1 ≤ p < ∞.

Then there exists a continuous linear operator

γp : W 1,p(Ω)→ Lp(∂Ω)

such that

(i) γp(u) = u on ∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω),

(ii) for all ϕ ∈ C1
0(Rn), u ∈ W 1,p(Ω), and i = 1, 2, . . . , d, the following integration by parts

formula holds ∫
Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

ϕ
∂u

∂xi
dx+

∫
∂Ω

ϕγp(u)nids, (2.3)

where ni is the i-th component of the outward unit normal vector to the boundary ∂Ω.

As a consequence of the integration by parts formula (2.3) we can obtain the following form

of the Gauss-Ostrogradsky Theorem.

Theorem 2.14

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω and a unit outward normal

vector n∂Ω. Let ψ = (ψ1, . . . , ψd) ∈
[
W 1,p(Ω)

]d
, ϕ ∈ C1

0(Rd), and 1 ≤ p < ∞. Then the

following integration by parts formula holds∫
Ω

ψ · ∇ϕdx = −
∫
Ω

ϕdivψdx+

∫
∂Ω

γp(ψ) · n∂Ωϕds, (2.4)

where divψ = ∂ψ1

∂x1
+ . . .+ ∂ψd

∂xd
and γp(ψ) := (γp(ψ1), . . . , γp(ψd)).

By a standard density argument, i.e., by applying Theorem 2.11 and the trace theorem,

Theorem 2.13, we obtain a more general form of (2.4) which is valid for functions ϕ ∈W 1,q(Ω)

with 1
p + 1

q = 1.

Theorem 2.15

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω and a unit outward normal

vector n∂Ω. Let 1 < p < ∞ and let q be its Hölder conjugate defined by 1
p + 1

q = 1. If

ψ = (ψ1, . . . , ψd) ∈
[
W 1,p(Ω)

]d
and v ∈ W 1,q(Ω), then the following integration by parts

formula holds ∫
Ω

ψ · ∇vdx = −
∫
Ω

v divψdx+

∫
∂Ω

γp(ψ) · n∂Ωγq(v)ds. (2.5)

The next theorem characterizes the space W 1,p
0 (Ω) as the subspace of functions in W 1,p(Ω)

with zero trace.
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Theorem 2.16 (Theorem 15.29 in [122])

Let Ω ⊂ Rd be a bounded Lipschitz domain whose boundary is ∂Ω, let 1 ≤ p < ∞, and let

u ∈W 1,p(Ω). Then γp(u) = 0 if and only if u ∈W 1,p
0 (Ω).

The next theorem is a refined version of Theorem 2.16 and it is due to Gagliardo [84].

Theorem 2.17 (Refined version of Theorem 2.13, see, e.g., Theorem 1.5.1.3 in [95])

Let Ω ⊂ Rd be a bounded Lipschitz domain whose boundary is ∂Ω and let 1 < p <∞. Then

the mapping u 7→ γp(u) which is defined for u ∈ C0,1(Ω), has a unique continuous extension as

an operator from W 1,p(Ω) onto W 1−1/p,p(∂Ω). This operator has a right continuous inverse

independent of p.

We will use this theorem for p = 2. In particular, there exists a constant Ctr = Ctr(p, d,Ω) > 0

such that γ2(u) ∈ H1/2(∂Ω) for all u ∈W 1,2(Ω) ≡ H1(Ω) and

‖γ2(u)‖H1/2(∂Ω)≤ Ctr‖u‖H1(Ω).

Conversely, there exists a constant Cinv = Cinv(p, d,Ω) > 0 such that for any given function

w ∈ H1/2(∂Ω) there is an extension u ∈ H1(Ω) such that

‖u‖H1(Ω)≤ Cinv‖w‖H1/2(∂Ω).

The dual of H1/2(∂Ω) is denoted by H−1/2(∂Ω) and the duality product in H−1/2(∂Ω) ×
H1/2(∂Ω) is denoted by 〈·, ·〉H−1/2(∂Ω)×H1/2(∂Ω).

For s ∈ (0, 1), the space W s,p(∂Ω) above consists of all functions g ∈ Lp(∂Ω) such that

‖g‖W s,p(∂Ω):=

‖g‖pLp(∂Ω)+

∫
∂Ω

∫
∂Ω

|g(x)− g(y)|p

|x− y|d−1+sp
ds(x)ds(y)

 1
p

<∞

The space W s,p(∂Ω) equipped with the norm ‖·‖W s,p(∂Ω) is a Banach space. For more

information on Sobolev spaces of fractional order, we refer to [2, 95, 122, 125]. Next, for a

bounded Lipschitz domain Ω, a function g ∈ C0,1(∂Ω), and 1 < p < ∞, by W 1,p
g (Ω) we

denote the functional space defined by

W 1,p
g (Ω) := {v ∈W 1,p(Ω), such that γp(v) = g on ∂Ω}.

The dual of W 1,p
0 (Ω)

The space of bounded linear functionals over W 1,p
0 (Ω) is denoted by W−1,p′(Ω) where

1 ≤ p <∞ and p′ is the Hölder conjugate of p. By H−1(Ω) we denote the dual of H1
0 (Ω) and

the duality pairing between H−1(Ω) and H1
0 (Ω) we denote by 〈·, ·〉.

In the proofs of uniqueness and a priori L∞ estimates for semilinear elliptic equations without

any growth conditions on the nonlinearity, we will need the following result due to H. Brézis

and F. Browder, 1978.
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Theorem 2.18 (A property of Sobolev spaces, H. Brézis and F. Browder, 1978, [35])

Let Ω be an open set in Rd, T ∈ H−1(Ω)∩L1
loc(Ω), and v ∈ H1

0 (Ω). If there exists a function

f ∈ L1(Ω) such that T (x)v(x) ≥ f(x), a.e in Ω, then Tv ∈ L1(Ω) and the duality product

〈T, v〉 in H−1(Ω)×H1
0 (Ω) coincides with

∫
Ω

Tvdx.

Remark 2.19

In other words, we have the following situation: a locally summable function b ∈ L1
loc(Ω)

defines a bounded linear functional Tb over the dense subspace D(Ω) ≡ C∞0 (Ω) of H1
0 (Ω)

through the integral formula 〈Tb, ϕ〉 =
∫

Ω bϕdx. It is clear that the functional Tb is uniquely

extendable by continuity to a bounded linear functional T b over the whole space H1
0 (Ω). Now

the question is whether this extension is still representable by the same integral formula

for any v ∈ H1
0 (Ω) (if the integral makes sense at all). If the function v ∈ H1

0 (Ω) is

fixed, then Theorem 2.18 gives a sufficient condition for bv to be summable and for the

extension T b evaluated at v to be representable with the same integral formula as above, i.e

〈T b, v〉 =
∫

Ω bvdx.

The space H(div; Ω)

Let Ω be a domain in Rd and let ψ ∈
[
L1
loc(Ω)

]d
. We say that ψ possesses a weak divergence

if there exists a locally integrable function w ∈ L1
loc(Ω) such that∫

Ω

ψ · ∇ϕdx = −
∫
Ω

wϕdx for all v ∈ C∞0 (Ω).

The function w is called a weak divergence of ψ, it is obviously unique, and we right divψ = w.

Now, let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω whose outward unit

normal vector is denoted by n∂Ω. The space of vector functions with square integrable weak

divergence is denoted by H(div; Ω) and is defined by

H(div; Ω) :=
{
ψ ∈

[
L2(Ω)

]d
: divψ ∈ L2(Ω)

}
with the graph norm

‖ψ‖H(div;Ω):=
(
‖ψ‖2L2(Ω)+‖divψ‖2L2(Ω)

) 1
2
.

With the obvious inner product, H(div; Ω) is a Hilbert space. An alternative characterization

of H(div; Ω) is as the closure of
[
C∞(Ω)

]d
in the norm ‖.‖H(div;Ω), see, e.g. [59,137]. For a

function ψ ∈
[
C∞(Ω)

]d
, the normal trace operator γn is defined almost everywhere on ∂Ω by

γn(ψ) := restriction of ψ · n∂Ω to ∂Ω. (2.6)
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Theorem 2.20 (Trace theorem for H(div; Ω), see, e.g., Theorem 2 in Section 1.3 in [59],

Theorem 3.24 in [137])

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω and a unit outward normal

vector n∂Ω. Then the mapping γn, defined by (2.6), can be extended by continuity to a

continuous linear operator from H(div; Ω) onto H−1/2(∂Ω). Moreover, the following divergence

formula holds for all functions ψ ∈ H(div; Ω) and v ∈ H1(Ω):∫
Ω

ψ · ∇vdx = −
∫
Ω

v divψdx+ 〈γn(ψ), γ2(v)〉H−1/2(∂Ω)×H1/2(∂Ω) (2.7)

Now we give a particular version of the Sobolev embeddings, summarized in the following

theorem. For a full version of the Sobolev embedding theorem, we refer to Theorem 4.12

in [2].

Theorem 2.21 (Sobolev embedding Theorem)

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary. Let j ≥ 0 and m ≥ 1 be integers

and let 1 ≤ p <∞.

Case A If mp > d > (m− 1)p, then

W j+m,p(Ω) ↪→ Cj,λ(Ω), for 0 < λ ≤ m− d

p
,

and if d = (m− 1)p, then

W j+m,p(Ω) ↪→ Cj,λ(Ω), for 0 < λ < 1.

In particular

Wm,p(Ω) ↪→ Lq(Ω), for p ≤ q ≤ ∞.

Case B If mp = d, then

W j+m,p(Ω) ↪→W j,q(Ω), for p ≤ q <∞,

and in particular

Wm,p(Ω) ↪→ Lq(Ω), for p ≤ q <∞.

Case C If mp < d, then

W j+m,p(Ω) ↪→W j,q(Ω), for p ≤ q ≤ p∗ =
dp

d−mp
.

In particular,

Wm,p(Ω) ↪→ Lq(Ω), for p ≤ q ≤ p∗ =
dp

d−mp
.

The embedding constants in the embeddings above depend only on d, m, p, q, j, and the domain

Ω.
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The next theorem specifies under what conditions the above embeddings are compact.

Theorem 2.22 (Rellich-Kondrachov Theorem, see Theorem 6.3 in [2])

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary. Let j ≥ 0 and m ≥ 1 be integers,

and let 1 ≤ p <∞.

Case A The following embeddings are compact:

W j+m,p(Ω) ↪→ Cj(Ω), if mp > m,

W j+m,p(Ω) ↪→ Cj,λ(Ω), if mp > d ≥ (m− 1)p, and 0 < λ < m− d

p
.

Case B If mp = d, then the following embeddings are compact:

W j+m,p(Ω) ↪→W j,q(Ω), if 1 ≤ q <∞.

Case C If mp < d, then the following embeddings are compact:

W j+m,p(Ω) ↪→W j,q(Ω), if 1 ≤ q < dp

d−mp
.

2.3 Variational problems and convex analysis

Theorem 2.23 (Lax-Milgram Theorem, see, e.g., Theorem 2.7.7 in [32])

Let H be a Hilbert space with the norm ‖·‖H and let the bilinear form a(·, ·) : H ×H → R
satisfies the following two conditions:

(i) Boundedness: ∃ c > 0 such that a(u, v) ≤ c‖u‖H‖v‖H , ∀u, v ∈ H,

(ii) Coercivity: ∃ c > 0 such that a(u, u) ≥ c‖u‖2H , ∀u ∈ H.

Then, for any F ∈ H∗, the variational problem

Find u ∈ H such that a(u, v) = 〈F, v〉, ∀v ∈ H

has a unique solution u which satisfies the a priori bound

‖u‖H≤
1

c
‖F‖H∗ .

Strong and weak convergence

Let V be a Banach space with a norm ‖·‖V and let {un}∞n=1 ⊂ V . We say that un converges

strongly or in norm to an element u ∈ V if ‖un − u‖V→ 0 as n → ∞. We say that un

converges weakly to u and we write un ⇀ u if 〈f, un〉 → 〈f, u〉 for all f ∈ V ∗, the dual of V .
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Convex analysis

We continue by recalling some facts from convex analysis. Let V be a linear vector space and

let A ⊂ V is a convex set, we say that J : A→ (−∞,+∞] is convex if

J (tx1 + (1− t)x2) ≤ tJ(x1) + (1− t)J(x2), ∀x1, x2 ∈ A, ∀t ∈ [0, 1]

and J is strictly convex if

J (tx1 + (1− t)x2) < tJ(x1) + (1− t)J(x2), ∀x1, x2 ∈ A, ∀t ∈ (0, 1).

We say that a convex function of V in R := [−∞,∞] is proper if it nowhere takes the value

−∞ and is not identically equal to +∞.

Now, we recall the notion of lower semi-continuity (l.s.c) and weak lower semi-continuity

(w.l.s.c.) in the setting that is relevant to our further considerations and for more information

we refer to [65, 82, 96]. Let V be a Banach space and J : V → (−∞,+∞]. We say that J

is sequentially l.s.c. if for every sequence {un}∞n=1 ⊂ V such that un → u ∈ V it is satisfied

J(u) ≤ lim inf
n→∞

J(un). Similarly, we say that J is sequentially w.l.s.c. if for every sequence

un ⇀ u ∈ V it is satisfied J(u) ≤ lim inf
n→∞

J(un). It is easy to see that if J1 and J2 are

sequentially l.s.c., respectively, sequentially w.l.s.c., then J1 + J2 is also sequentially l.s.c.,

respectively, sequentially w.l.s.c.. When it comes to proving existence results for convex

minimization problems, we will need the following two facts. If A ⊂ V is norm closed and

convex, then it is also weakly closed. From this it follows that if J is a convex l.s.c. functional,

then J is also sequentially w.l.s.c., see, e.g. Corollary 3.9 in [96] or Corollary 2.2 in [65].

Definition 2.24 (Fenchel conjugate, see, e.g., [65, 96,162])

Let V be a normed vector space and let J : V → (−∞,+∞] be a functional such that J 6≡ +∞.

The functional J∗ : V ∗ → (−∞,+∞] defined by

J∗(v∗) = sup
v∈V
{〈v∗, v〉 − J(v)}

is called the polar (Fenchel conjugate) functional to J .

Obviously, J∗ is l.s.c. and convex as the supremum of the family of continuous affine

functionals 〈·, v〉 − J(v). In a similar fashion we can define the bipolar (biconjugate) J∗∗ to

J .

Definition 2.25 (Fenchel biconjugate, see, e.g., [65, 96])

Let V be a Banach space and let J : V → (−∞,+∞] be a functional such that J 6≡ +∞. The

functional J∗∗ : V → R defined by

J∗∗(v) = sup
v∗∈V ∗

{〈v∗, v〉 − J∗(v∗)}

is called the bipolar (Fenchel biconjugate) functional to J .
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The following theorem will be used in Chapter 4and it is of particular importance to the

derivation of functional a posteriori error estimates which are based on the duality theory.

Theorem 2.26 (Fenchel-Moreau, see, e.g., [65, 96])

Let V be a normed vector space. Assume that J : V → (−∞,+∞] is a convex, l.s.c. proper

functional. Then J∗∗ = J .

Definition 2.27 (see, e.g., [65])

Let J : V → R. We call the limit as λ→ 0+, if it exists, of

J(u+ λv)− J(u)

λ

the directional derivative of J at u in the direction v and denote it by J ′(u; v). If there exists

u∗ ∈ V ∗ such that:

∀v ∈ V, J ′(u; v) = 〈u∗, v〉

we say that J is Gateaux-differentiable at u, call u∗ the Gateaux-differential at u of J , and

denote it by J ′(u).

Definition 2.28

Let C be a subset in the normed vector space V with norm ‖·‖. We say that J : V → R is

coercive in C if

lim J(v) = +∞, for v ∈ C , ‖v‖→ ∞. (2.8)

For coercive functionals we have the following useful property.

Proposition 2.29

If J : C → R is coercive, then the sets Cα := {v ∈ C : J(v) ≤ α} are bounded.

Proof. Assume that Cα is unbounded. Then, for any n ∈ N there is vn ∈ Cα such that

‖vn‖≥ n. From the coercivity condition (2.8) it follows that J(vn) → +∞ which is a

contradiction with the fact that J(vn) ≤ α.

Versions of the next theorem on existence of a minimizer can be found, for example, in

Proposition 1.2 in [65], Theorem 5.4.1 in [139], Theorem 2.11 in [9], Theorem 7.3.7 in [118].

Theorem 2.30 (Existence of a minimizer)

Let V be a reflexive Banach space with norm ‖·‖ and let C be a non-empty closed convex

subset of V . Let J : C → (−∞,+∞] be a convex proper sequentially lower semi-continuous

functional. Let us assume that either C is bounded or that J is coercive over C . Then the

problem

Find u ∈ C such that J(u) = inf
v∈C

J(v) (2.9)

has at least one solution. It has a unique solution if J is strictly convex.
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Proof. Let {un}∞n=1 ⊂ C be a minimizing sequence, i.e.,

lim
n→∞

J(un) = inf
v∈C

J(v) = β,

such that +∞ > J(u1) ≥ J(u2) ≥ . . . ≥ J(un) ≥ . . .. Note that a priori β ∈ [−∞,+∞). We

observe that the sequence un is bounded in V . Indeed, if C is bounded, this is obvious, and

if J is coercive, this follows from Proposition 2.29 with α = J(u1). The set C is convex and

norm closed, thus it is weakly closed. Since, V is a reflexive Banach space and C is weakly

closed, we can extract a weakly convergent subsequence {unk}∞k=1 which converges to an

element u ∈ C , i.e., unk ⇀ u. The functional J is convex and sequentially l.s.c. and thus it is

sequentially w.l.s.c.. Hence,

J(u) ≤ lim inf
n→∞

J(unk) = β,

u is a solution to (2.9), and β > −∞.

Remark 2.31

In Theorem 2.30 we allow the functional J to take the value +∞. In this case, J being convex

over C is equivalent to dom(J) := {v ∈ C : J(v) <∞} being a convex set and J being convex

over dom(J) (see, e.g., [65]).

2.4 Regularity of linear elliptic interface problems

Here we list two theorems concerning the regularity of linear elliptic (interface) problems that

we will use often in this work.

Theorem 2.32 (Boundedness of weak solutions, see, e.g., [174] or Theorem B.2 in [112] )

Let aij(x) ∈ L∞(Ω) satisfy

c |ξ|2 ≤ aij(x)ξiξj for all ξ = (ξ1, . . . , ξd) ∈ Rd, a.e. x ∈ Ω,

where c > 0. Let f0, f1, . . . , fd ∈ Ls(Ω) for s > d and let

u ∈ H1
0 (Ω) :

∫
Ω

d∑
i,j=1

aij
∂u

∂xj

∂v

∂xi
dx =

∫
Ω

(
f0v + f1

∂v

∂x1
+ . . .+ fd

∂v

∂xd

)
dx, ∀v ∈ H1

0 (Ω).

Then

‖u‖L∞(Ω)≤
K

c

d∑
i=0

‖fi‖Ls(Ω)|Ω|
1
d
− 1
s , (2.10)

where K is a constant independent of c.

A key element in the proof of Theorem 2.32 is the following Lemma, which we will also use

in our work.
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Lemma 2.33 (Lemma B.1. in [112])

Let ϕ(t) denote a function which is nonnegative and nonincreasing for k0 ≤ t <∞. Further,

let

ϕ(h) ≤ C ϕ(k)β

(h− k)α
, ∀h > k > k0, (2.11)

where C,α are positive constants and β > 1. If e ∈ R is defined by eα := Cϕ(k0)β−12
αβ
β−1 ,

then ϕ(k0 + e) = 0.

Theorem 2.34 (Optimal regularity of elliptic interface problems, Theorem 1.1 in [66])

Assume that Ω ⊂ Rd is a bounded Lipschitz domain and let Ω0 ⊂ Ω be another domain with a

C1 boundary, which does not touch the boundary of Ω. Let µ be a function on Ω with values

in the set of real, symmetric d× d matrices which is uniformly continuous on both Ω0 and

Ω \ Ω0. Additionally, µ is supposed to satisfy the usual ellipticity condition

∃ c such that c |ξ|2 ≤ µ(x)ξ · ξ for all ξ = (ξ1, . . . , ξd) ∈ Rd, a.e. x ∈ Ω.

Then there is a p > 3 such that for every λ ≥ 0,

−∇ · µ∇+ λ : W 1,q
0 (Ω)→W−1,q(Ω)

is a topological isomorphism for all q ∈ (p′, p) with p′ being the Hölder conjugate of p. If Ω

itself is also a C1 domain, then p may be taken as +∞.



Chapter 3

Existence and uniqueness analysis

This chapter is devoted to the solution theory of the Poisson-Boltzmann equation (PBE)

and the linearized Poisson-Boltzmann equation (LPBE). We start with the introduction of

the PBE and the LPBE, as well as all relevant geometrical regions that describe the system

under study. The main difficulties in the analysis of the PBE are related to the exponential

nonlinearity and the measure data (represented by a linear combination of delta functions)

on the right-hand side of the equation.

The first step in our analysis is to give a meaningful notion of a solution to the LPBE which

also ensures uniqueness. This is done in Section 3.2 by following the ideas in [21,63,85, 153].

In Section 3.2.1 we prove existence and uniqueness of a solution to the LPBE by means of

a 2-term splitting (see, e.g. [48, 141, 195]), where the full potential φ is decomposed into a

singular Coulomb potential G and a more regular reaction field part u. The existence of

a solution is showed by finding a particular representative of the reaction field potential u

which satisfies a standard weak formulation involving H1 spaces. The uniqueness of the

potential φ is proven by employing an adjoint problem with a more regular right hand side

and by making use of an appropriate regularity result for linear interface problems. In some

situations, it can be inappropriate to use the 2-term splitting in practice. For this reason,

in Section 3.2.2, we also consider a 3-term splitting of the potential φ, introduced in [51],

and again show that a particular solution φ can be obtained by considering a standard weak

formulation, involving H1 spaces, for the regular component in this decomposition. We finish

the analysis of the LPBE with Section 3.2.3 where we discuss some regularity properties of

the reaction field component of the potential in the 2- and 3-term splittings.

In Section 3.3, we continue with the analysis of the (nonlinear) PBE. This section has a

similar structure to Section 3.2. First, we extend in a natural way the definition of a weak

solution from the linear case and again show the existence of a solution φ by utilizing the

2- and 3-term splittings. A particular representative of the regular component u for both 2-

and 3-term splittings can be defined as the solution of a weak formulation that involves H1

27
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spaces. This time, the problem contains a nonlinearity of exponential type, and therefore

showing existence and uniqueness even for the weak formulation involving H1 spaces is not a

trivial task. We analyze this weak formulation in detail in Section 3.3.3, where we also prove

a priori L∞ bounds on the regular part u of the potential. An important tool in the proofs

of existence, uniqueness, and boundedness of the component u is a property of the Sobolev

spaces proved in [35]. The existence theorems based on the 2- and 3-term splittings are

stated in Section 3.3.1 and Section 3.3.2, respectively. However, in the case of the PBE, we

are unable to prove the uniqueness of the full potential φ: the proof of uniqueness of the po-

tential φ for the LPBE employs a duality argument which is not available in the nonlinear case.

Similarly to the case of the LPBE, in Section 3.3.4, we summarize some regularity results

for the well behaved component u in the 2- and 3-term splittings, and give the respective

conditions under which they hold.

As a generalization of the a priori L∞ estimate for the regular component u in the 2- and

3-term splittings for the PBE, in Section 3.4, we prove such estimate for the solution of a

more general semilinear elliptic equation with neither sign nor growth conditions on the

nonlinearity.

3.1 Problem formulation

3.1.1 Poisson-Boltzmann equation

Let Ω ⊂ Rd, d = 2, 3 be a bounded domain with Lipschitz boundary ∂Ω whose outward

unit normal vector is denoted by n∂Ω. The domain Ω contains two Lipschitz subdomains,

Ωm and Ωs, which denote the molecular region and the solvent region, respectively. It is

assumed that Ωm ⊂ Ω, i.e., the molecular region is strictly contained in Ω. Each of the

two subdomains Ωm and Ωs is allowed to be a disconnected set, which can be represented

as the union of Lipschitz domains. The boundary of Ωm is denoted by Γ, the interface

between the molecular region and the solvent region, and its outward unit normal vector

is denoted by nΓ. Finally, we can write Ω = Ωm ∪ Γ ∪ Ωs. There are several definitions of

the molecular surface that have been used in practice, the most common of which is the

solvent excluded surface (SES). The SES is formed by the contact points of the Van der

Waals surface and a solvent probe sphere that is rolled over it (see [67, 94, 158, 165]). In

1983 Connolly gave an analytic description of the solvent excluded surface and therefore it is

also known as the Connolly surface (see [53] for the piecewise analytic definition of this surface).

To model the electrostatic potential in a system of biomolecules with the presence of mov-

ing ions the so-called ion exclusion layer (IEL) is introduced. This is a layer around the

bio-molecules in which no ions can penetrate and it is defined as the difference between the

union of the inflated Van der Waals spheres of the atoms by a counterion radius Rion and



3.1. PROBLEM FORMULATION 29

the molecular region defined by the SES. Alternatively, it is defined as the difference between

the region, enclosed by the Connolly surface of the molecule with inflated Van der Waals

spheres of the atoms by a counterion radius Rion, and the usual molecular region defined

by the Connolly surface. We denote this region by ΩIEL. The part of Ωs without the ion

exclusion layer ΩIEL is accessible for ions and we denote it by Ωions. With this notation, it

holds Ωs =
(
ΩIEL \ Γ

)
∪ Ωions (see Figure 3.1).

Figure 3.1: Computational domain Ω with molecular domain Ωm and solution domain

Ωs = ΩIEL \ Γ ∪ Ωions.

The electrostatic potential ϕ is governed by the Poisson equation which is derived from

Gauss’s law of electrostatics. In CGS (centimeter-gram-second) units, the Poisson equation

reads

−∇ · (ε∇ϕ) = 4πρ, (3.1)

where ρ(x) is the charge density at point x and ε is the dielectric coefficient, which is assumed

to be constant in the molecule region Ωm and Lipschitz continuous in the solvent region Ωs

with a possible jump discontinuity across the interface Γ, i.e.,

ε(x) =

{
εm, x ∈ Ωm,

εs(x), x ∈ Ωs.
(3.2)

In the molecular region Ωm, there are only fixed partial charges and therefore the charge

density is

ρm =

Nm∑
i=1

zie0δxi ,

where Nm is the number of fixed partial charges, zi is the valency of the i-th partial charge,

xi its position, and e0 = 4.8032424 × 10−10 esu (= 1.60217662 × 10−19 Coulombs) is the

elementary charge. For all electrostatics units and physical constants that we will be using

see Table 3.1 and Table 3.2. The Poisson equation for the potential ϕ in Ωm reads

−∇ · (εm∇ϕ) = 4πρm.
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In the region ΩIEL there are no fixed partial charges, nor moving ions and therefore the

charge density there is ρIEL = 0. The Poisson equation for ϕ in ΩIEL reads

−∇ · (εs∇ϕ) = ρIEL = 0.

In the region Ωions, there are moving ions whose charge density is assumed to follow Boltzmann

distribution and is given by

ρions =

Nions∑
j=1

Mjξje0e
−
ξje0ϕ

kBT ,

where Nions is the number of different ion species in the solvent, ξj is the valency of the j-th ion

species, Mj = #ions
cm3 is its average concentration in Ωions, kB = 1.38064852× 10−16erg K−1 is

the Boltzmann constant, and T is the absolute temperature. Therefore, the Poisson equation

for the potential ϕ in Ωions reads

−∇ · (εs∇ϕ) = 4πρions.

If we denote the total charge density in Ω by ρ, it holds ρ = ρm + ρIEL + ρions and we can

write one equation in the whole computational domain Ω

−∇ · (ε∇ϕ)− χΩions4π

Nions∑
j=1

Mjξje0e
−
ξje0ϕ

kBT = 4πe0

Nm∑
i=1

ziδxi =: F in Ω, (3.3a)

[ϕ]Γ = 0, (3.3b)

[ε∇ϕ · nΓ]Γ = 0, (3.3c)

ϕ = g on ∂Ω, (3.3d)

where [·]Γ denotes the jump across the interface Γ of the enclosed quantity and we have taken

into account the continuity condition on the potential and the normal component of the

displacement field ε∇ϕ across the interface Γ. We notice that in fact the physical problem pre-

scribes a vanishing potential at infinite distance from the boundary of Ωm, i.e., lim|x|→∞ = 0.

In practice, one uses a bounded computational domain and imposes the boundary condition

(3.35d) instead, where the function g ∈ C0,1(∂Ω) can usually be calculated accurately enough

by solving a simpler problem, possibly with a known analytical solution.

Under the assumption that there are only two ion species in the solution with the same

concentration M1 = M2 = M , which are univalent but with opposite charge, i.e ξj =

(−1)j , j = 1, 2, we obtain the equation

−∇ · (ε∇ϕ) + χΩions8πMe0 sinh

(
e0ϕ

kBT

)
= 4πe0

Nm∑
i=1

ziδxi in Ω. (3.4)



3.1. PROBLEM FORMULATION 31

By introducing the new functions φ = e0ϕ
kBT

and g =
e0g
kBT

in (3.4) we arrive at the equation

for the dimensionless potential φ

−∇ · (ε∇φ) + k
2

sinh (φ) =
4πe2

0

kBT

Nm∑
i=1

ziδxi =: F in Ω, (3.5a)

[φ]Γ = 0, (3.5b)

[ε∇φ · nΓ]Γ = 0, (3.5c)

φ = g on ∂Ω. (3.5d)

The coefficient k is defined by

k
2
(x) =


0, x ∈ Ωm ∪ ΩIEL,

k
2
ions =

8πNAe
2
0Is

1000kBT
, x ∈ Ωions,

(3.6)

where NA = 6.022140857× 1023 is Avogadro’s number and the ionic strength Is, measured in

moles per liter (molar), is given by

Is =
1

2

2∑
j=1

ciξ
2
j =

1000M

NA

with c1 = c2 = 1000M
NA

, the average molar concentration of each ion (see [12,101,141]).

Equation (3.5) is often referred to as the Poisson-Boltzmann equation [103,143,168]. When

there are no ions present, Mj = 0, j = 1, 2, . . . , Nions, Is = 0, k
2

= 0 in Ω, ΩIEL = ∅,
Ωions ≡ Ωs, and equation (3.5a) becomes the linear Poisson equation of electrostatics.

−∇ · (ε∇φ) = F in Ωm ∪ Ωs, (3.7a)

[φ]Γ = 0, (3.7b)

[ε∇φ · nΓ]Γ = 0, (3.7c)

φ = g on ∂Ω. (3.7d)

The Poisson-Boltzmann equation (3.5a) can be linearized by expanding sinh in Maclaurin

series. We obtain the linearized Poisson-Boltzmann equation for the electrostatic potential φ

−∇ · (ε∇φ) + k
2
φ = F in Ω, (3.8a)

[φ]Γ = 0, (3.8b)

[ε∇φ · nΓ]Γ = 0, (3.8c)

φ = g on ∂Ω. (3.8d)

Remark 3.1

We note that the LPBE (3.8) and the Poisson problem (3.7) are often given for the electrostatic
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potential ϕ, and not for the dimensionless potential φ in order to avoid the scaling with the

factor e0
kBT

. The LPBE for the potential ϕ with dimension [ϕ] =
[

charge
length

]
reads

−∇ · (ε∇ϕ) + k
2
ϕ = F in Ω, (3.9a)

[ϕ]Γ = 0, (3.9b)

[ε∇ϕ · nΓ]Γ = 0, (3.9c)

ϕ = g on ∂Ω. (3.9d)

We will use this form of the LPBE in Chapter 5.

For the subsequent analysis of the PBE and the LPBE we will need the function G given by

G =

Nm∑
i=1

Gi = − 2e2
0

εmkBT

Nm∑
i=1

zi ln |x− xi|, if d = 2, (3.10)

G =

Nm∑
i=1

Gi =
e2

0

εmkBT

Nm∑
i=1

zi
|x− xi|

, if d = 3. (3.11)

The function G describes the Coulomb part of the potential due to the partial charges

{zie0}Nmi=1 in a uniform dielectric medium with a dielectric constant εm. It is well known that

G is the distributional solution of the problem

−∇ · (εm∇G) =
4πe2

0

kBT

Nm∑
i=1

ziδxi = F in Rd, d ∈ {2, 3}. (3.12)

What is meant by (3.12) is that (see, e.g. p.106 in [173])

−
∫
Rd

εmG∆vdx = 〈F , v〉 for all v ∈ C∞0 (Rd). (3.13)

In particular, (3.13) is valid for all v ∈ C∞0 (Ω). The function G is weakly differentiable with

a weak derivative equal almost everywhere to its classical derivative. Moreover, G and ∇G
are in Lp(Ω) for all p < d

d−1 and thus G ∈
⋂

p< d
d−1

W 1,p(Ω) (alternatively, we can use the AC

characterization of W 1,p(Ω) functions - see Theorem 10.35 in [122]). Therefore, by applying

the integration by parts formula (see Theorem 2.15), for any v ∈ C∞0 (Ω), we obtain∫
Ω

εmG∆vdx =

∫
∂Ω

εmG∇v · n∂Ωds

︸ ︷︷ ︸
=0

−
∫
Ω

εm∇G · ∇vdx

∫
Ω

εm∇G · ∇vdx = 〈F , v〉 for all v ∈ C∞0 (Ω). (3.14)
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For a fixed q > d, owing to the Sobolev embedding W 1,q
0 (Ω) ↪→ C0,λ(Ω), 0 < λ ≤ 1− d/q (see

Theorem 2.21), F is bounded in W 1,q
0 (Ω):

|〈F , v〉| =
∣∣∣∣∣4πe2

0

kBT

Nm∑
i=1

ziv(xi)

∣∣∣∣∣ ≤ 4πe2
0

kBT

Nm∑
i=1

|zi|‖v‖L∞(Ω)≤ CE
4πe2

0

kBT

Nm∑
i=1

|zi|‖v‖W 1,q(Ω),

where CE is the constant in the inequality ‖v‖L∞(Ω)≤ CE‖v‖W 1,q(Ω). Therefore, by the density

of C∞0 (Ω) in W 1,q
0 (Ω) we see that (3.14) is valid for all v ∈W 1,q

0 (Ω) and consequently for all

v ∈
⋃
q>d

W 1,q
0 (Ω). Therefore, G ∈

⋂
p< d

d−1

W 1,p(Ω) satisfies the weak formulation of (3.12), i.e.,

∫
Ω

εm∇G · ∇vdx = 〈F , v〉 for all v ∈
⋃
q>d

W 1,q
0 (Ω). (3.15)

Table 3.1: Some units expressed in Centimetre-Gram-Second (CGS) system of units. Here
mol denotes the amount of chemical substance that contains exactly 6.02214076 × 1023

(Avogadro’s number) constitutive particles.

abbreviation unit represents expression in CGS

g gram mass g
cm centimetre length cm
s second time s
Å angstrom length 10−8 cm
l liter volume 1000 cm3

M (molar) moles per liter concentration mol/l

esu (statcoulomb) electrostatic unit electric charge cm3/2g1/2s−1

erg erg energy g cm2s−2

Table 3.2: Some physical constants. Here K denotes Kelvin, a unit for temperature.

abbreviation name value in CGS derived units

NA Avogadro’s number 6.022140857× 1023

e0 elementary charge 4.8032424× 10−10 esu
kB Boltmann’s constant 1.38064852× 10−16erg K−1

3.2 Linearized Poisson Boltzmann equation

Now, our goal is to give a meaningful notion of a solution to the linear problem (3.8) which

ultimately will ensure uniqueness and can be also extended to the case of the nonlinear PBE.

There are different ways to define a solution to a linear problem of the form

−div(A(x)∇u) = f in Ω,

u = 0 on ∂Ω,
(3.16)
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where Ω is a bounded Lipschitz domain, f is a bounded Radon measure, and the coefficient

matrix A is such that A ∈ [L∞(Ω)]d×d and there is a constant µ > 0 for which

A(x)ξ · ξ ≥ µ |ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rd. (3.17)

Here we mention two approaches. The first one is due to Stampacchia [174], where he

introduced a notion of a solution to (3.16) defined by duality, and the second one is due

to Boccardo and Gallouët [21], where they defined a distributional solution as the limit of

solutions of (3.16) obtained for more regular data f .

The solution u defined by duality is unique and it can be shown that it satisfies the weak

formulation

u ∈W 1,q
0 (Ω) for every q <

d

d− 1
,∫

Ω

A∇u · ∇vdx =

∫
Ω

vdf, ∀v ∈ C∞0 (Ω).
(3.18)

Unfortunately, to show existence of a solution by the framework of Stampacchia is, in general,

not possible for nonlinear equations since the notion of duality is unavailable.

On the other hand, solutions that are obtained by approximation in the approach of Boc-

cardo and Gallouët also verify the weak formulation (3.18). Moreover, this approach can be

extended for more general nonlinear elliptic problems. However, in dimension d ≥ 3 and for

a general diffusion coefficient matrix A which is in L∞(Ω) and which satisfies the uniform

ellipticity condition (3.17), the weak formulation (3.18) does not ensure uniqueness as it is

shown by a counterexample due to Serrin [153, 167]. Here we note that for d = 2, (3.18)

always has a unique solution due to a regularity result of Meyers (see Theorem 2 in [85]

and Theorem 4.1, Theorem 4.2 in [17]). The question of existence and uniqueness for more

general linear and nonlinear elliptic problems involving measure data is studied for example

in [10,15,22,24,33,36,56,57,63,146,150].

However, under some assumptions on the regularity of the coefficient matrix A, one can still

show the uniqueness of a weak solution to (3.16) by employing an adjoint problem with a

more regular right-hand side. In such cases, the approach involving duality techniques and

the one involving approximation techniques lead to one and the same solution and thus both

approaches are equivalent. In particular, uniqueness can be shown if A∗, the transposed of

A, satisfies the assumptions in Theorem 2.34. We will apply this technique in the proof of

uniqueness in Theorem 3.4 in the next section.

The considerations above lead us to the following definition of a weak solution to the linear

problem (3.8).



3.2. LINEARIZED POISSON BOLTZMANN EQUATION 35

Definition 3.2

We call the measurable function φ a weak solution of (3.8) if it satisfies

φ ∈
⋂

p< d
d−1

W 1,p
g (Ω),

∫
Ω

ε∇φ · ∇vdx+

∫
Ω

k
2
φvdx = 〈F , v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω). (3.19)

Remark 3.3

Note that we can define the weak formulation in Definition 3.2 with test functions in the

much smaller space C∞0 (Ω) as in the weak formulation (3.18). Such a weak formulation is

equivalent for linear problems to the one given above by applying a standard density argument.

3.2.1 2-term splitting φ = G+ u

A commonly used technique (see, e.g. [48, 141,195]) to solve and analyze the PBE is to split

the solution according to φ = G+ u, where u is a well behaved regular component and G

is defined by (3.10) in 2D or (3.11) in 3D. The function u describes the so-called reaction

field potential. The reaction field is defined as the field that includes all forces acting on a

biomolecule due to the presence of the solvent (see [141,163]). By substituting the expression

φ = G+ u in (3.19) and by taking into account (3.15) we obtain the weak formulation that u

has to satisfy:

Find u ∈
⋂

p< d
d−1

W 1,p
g−G(Ω) such that

∫
Ω

ε∇u · ∇vdx+

∫
Ω

k
2
uvdx =

∫
Ωs

(εm − εs)∇G · ∇vdx−
∫
Ω

k
2
Gvdx

=: 〈G2, v〉 −
∫
Ω

k
2
Gvdx for all v ∈

⋃
q>d

W 1,q
0 (Ω).

(3.20)

Since the space W 1,2(Ω) lies between the spaces
⋃
q>d

W 1,q(Ω) and
⋂

p< d
d−1

W 1,p(Ω) we can find

a particular function u that satisfies (3.20) by posing a standard weak formulation for u that

involves H1 spaces. Once we have a u that solves (3.20) we need to show that it is indeed

the only solution. This quick sketch of existence and uniqueness for (3.20) is summarized in

the following theorem.

Theorem 3.4

There exists a weak solution φ of equation (3.8) satisfying (3.19). A particular φ satisfying

(3.19) can be given in the form φ = G+ u, where u ∈ H1
g−G(Ω) ∩H2

loc(Ωm) ∩H2
loc(Ωs) is the

unique solution of the equation∫
Ω

ε∇u · ∇vdx+

∫
Ω

k
2
uvdx = 〈G2, v〉 −

∫
Ω

k
2
Gvdx for all v ∈ H1

0 (Ω). (3.21)

If we assume in addition that Γ ∈ C1, then φ is unique (for example, when Γ is the Connolly

surface it is often a C1 surface).
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Remark 3.5

The homogenized version of (3.21) is given by:

Find u0 ∈ H1
0 (Ω) such that∫

Ω

ε∇u0 · ∇vdx+

∫
Ω

k
2
u0vdx = 〈G2, v〉 −

∫
Ω

k
2
Gvdx−

∫
Ω

ε∇ug−G · ∇vdx−
∫
Ω

k
2
ug−Gvdx,

(3.22)

where ug−G : Ω → R is in H1(Ω) with γ2(ug−G) = g − G on ∂Ω and u = ug−G + u0. The

existence of ug−G follows from the trace theorem (Theorem 2.17).

Notice that k = 0 in Ωm∪ΩIEL and that the function G is smooth in the solvent region Ωs. As

a consequence, the integrals
∫

Ωs

(εm − εs)∇G · ∇vdx and −
∫
Ω

k
2
Gvdx are well defined and each

of them defines a bounded linear functional over H1
0 (Ω). The expression −

∫
Ω

ε∇ug−G · ∇vdx−∫
Ω

k
2
ug−Gvdx also defines a functional in H−1(Ω) and hence the whole right-hand side of

(3.22) defines an element from H−1(Ω).

Remark 3.6

Notice that by applying the integration by parts formula, the term 〈G2, v〉 on the right-hand

side of (3.21) can be rewritten in the form∫
Ωs

(εm − εs)∇G · ∇vdx =−
∫
Γ

(εm − εs)∇G · nΓvds+

∫
∂Ω

(εm − εs)∇G · n∂Ωvds

−
∫
Ωs

(∇(−εs) · ∇G+ (εm − εs)∆G) vdx

=−
∫
Γ

(εm − εs)∇G · nΓvds+

∫
Ωs

∇εs · ∇Gvdx

(3.23)

where we have used the facts that εm is constant in Ωm, εs ∈ C0,1(Ωs) (and therefore

εs ∈W 1,∞(Ωs)), that G is harmonic in a neighborhood of Ωs, and that Γ, ∂Ω ∈ C0,1. Now, it

is seen that (3.21) is the weak formulation of a linear interface elliptic problem with a jump

condition on the normal flux [ε∇u · nΓ]Γ = −(εm − εs)∇G · nΓ = − [ε∇G · nΓ]Γ.

Remark 3.7

To see that (3.23) indeed holds, we first observe that since G ∈ C∞(Ωs), it holds for smooth

functions εs ∈ C∞(Ωs) and v ∈ C∞0 (Ω) by the classical divergence theorem. Next, if

εs ∈ C0,1(Ωs), it follows that εs ∈W 1,∞(Ωs) (see, e.g. Exercise 11.46 in [122]). Since Ωs is

a bounded Lipschitz domain, by Theorem 2.11, for any 1 ≤ p < ∞ there exists a sequence

{εns }∞n=1 ⊂ C∞(Ωs) such that εns → εs in W 1,p(Ωs). Equation (3.23) is satisfied for each εns .

By letting n to infinity, and by using Hölder’s inequality together with the trace theorem
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in W 1,p(Ωs) for εs, ε
n
s , we see that (3.23) is also satisfied for εs ∈ W 1,∞(Ωs). Finally, if

v ∈ H1
0 (Ω) is an arbitrary test function and {vn}∞n=1 ⊂ C∞0 (Ω) such that vn → v ∈ H1

0 (Ω),

then for all n ∈ N∫
Ωs

(εm − εs)∇G · ∇vndx = −
∫
Γ

(εm − εs)∇G · nΓvnds+

∫
Ωs

∇εs · ∇Gvndx.

Again, by letting n to infinity and using Hölder’s inequality together with the trace theorem in

H1(Ωs) for v, vn, we see that (3.23) is satisfied for any εs ∈ C0,1(Ωs) and v ∈ H1
0 (Ω).

Proof of Theorem 3.4.

Existence: Let u ∈ H1
g−G(Ω) be the unique weak solution of problem (3.21), given by the

Lax-Milgram Theorem applied to the homogeneous problem (3.22) (see Remark 3.5). It

is clear that u is also in
⋂

p< d
d−1

W 1,p(Ω) since p < d
d−1 ≤ 2 and W 1,2(Ω) ≡ H1(Ω). Thus,

for each p < d
d−1 , u is in W 1,p(Ω) with a trace on ∂Ω equal to g − G. We conclude that

G+ u ∈
⋂

p< d
d−1

W 1,p
g (Ω). Since ∇G ∈ L∞(Ωs) and for each q > d we have H1

0 (Ω) ⊃W 1,q
0 (Ω),

(3.21) is also valid for all v ∈
⋃
q>d

W 1,q
0 (Ω). By adding together (3.15) and (3.21) we conclude

that φ satisfies the weak formulation (3.19). Finally, by testing (3.21) with v ∈ C∞0 (Ωm),

v ∈ C∞0 (Ωs) and taking into account (3.23) and the facts that G ∈ C∞(Ωs), εs ∈ C0,1(Ωs),

we see that u ∈ H2
loc(Ωm) ∩H2

loc(Ωs). Furthermore, testing with v ∈ C∞0 (Ωm) shows that

u ∈ Ht
loc(Ωm) for all t ≥ 2 (see p. 309 in [70] for interior regularity of elliptic problems).

If in addition εs ∈ C∞(Ωs), then by testing with v ∈ C∞0 (Ωions) and taking into account

(3.23), we see that u ∈ Ht
loc(Ωm) ∩Ht

loc(ΩIEL) ∩Ht
loc(Ωions) for all integer t ≥ 2.

Uniqueness: The idea to prove the uniqueness of φ is from [63] where the authors show

uniqueness of a linear problem with constant diffusion coefficient ε. The difference is that the

type of regularity result for the adjoint problem used in [63] is not applicable in the case of

discontinuous ε. Instead we apply the regularity result from Theorem 2.34. It is enough to

show that if φ satisfies the homogeneous problem (3.19) with F = 0 then φ = 0. For a fixed

θ ∈ L∞(Ω), we consider the auxiliary problem

Find w ∈ H1
0 (Ω) such that∫

Ω

ε∇w · ∇vdx+

∫
Ω

k
2
wvdx =

∫
Ω

θvdx, ∀v ∈ H1
0 (Ω).

(3.24)

By the Lax-Milgram Theorem, this problem has a unique solution w ∈ H1
0 (Ω). In view

of the Sobolev embedding theorem, for d = 3, H1(Ω) ↪→ L6(Ω) and for d = 2, H1(Ω) ↪→
Lr(Ωm), ∀r : 1 ≤ r <∞. Therefore, w ∈ L6(Ω) and consequently (−k2

w+ θ) ∈ L6(Ω). Since∫
Ω

(
−k2

w + θ
)
vdx defines a bounded linear functional in W−1,p′ for all 6

5 ≤ p < d
d−1 and
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since Γ ∈ C1, by applying Theorem 2.34, we see that w ∈ W 1,q0
0 (Ω) for some q0 ∈ (d, 6].

By a density argument we see that (3.24) holds for all test functions v ∈ W 1,q′0
0 (Ω) with

1/q0 + 1/q′0 = 1. Thus, we can use w as a test function in (3.19) (F = 0) and φ as a test

function in (3.24). In this way we obtain

0 =

∫
Ω

ε∇w · ∇φdx+

∫
Ω

k
2
wφdx =

∫
Ω

θφdx. (3.25)

Since θ was an arbitrary function in L∞(Ω), it follows that φ = 0 a.e. in Ω.

From Theorem 3.4 it is seen that if the potential φ is needed, one can avoid the numerical

approximation of the full potential φ which has singularities at the fixed partial charges

{zie0}Nmi=1. Instead, it is enough to find an approximation uh only to the much better behaved

reaction field potential u by numerically solving (3.21). This idea sounds very appealing in

theory, but it is not always appropriate to use in practice. The reason is that if the component

u happens to have almost the same magnitude as G but opposite sign, then adding up both

components gives a number which is much smaller in magnitude compared to u, i.e., we have

|φ| = |G+ u| � |u| (see, e.g. [103]). This typically happens in the solvent region Ωs and

under the conditions that the ratio εm
εs

is much smaller than 1 and that the ionic strength Is

is nonzero. In this case a small relative error in u is already a substantial relative error in

φ = G+u. Here, we summarize the cases, in which the 2-term splitting can be recommended:

• only the reaction field u is needed, for example, when calculating the solvation energy

difference

∆Gvac→solv = Gvac(εvac, εm)−Gsolv(εs, εm) =
1

2

N∑
i=1

qi(uvac(xi)− usolv(xi)),

where qi = zie0, uvac and usolv are the reaction field potentials for the molecule in

vacuum and in solvent, respectively;

• the ratio εm
εs

is close to one and Is is close to zero (k is close to zero);

3.2.2 3-term splitting φ = G+ uH + u

In order to overcome the difficulty connected with the 2-term splitting, one may use a splitting

of φ into 3 components, two of which add up to zero in Ωs. Such a splitting is given by

φ = G+ uH + u, (3.26)

where φ = u in Ωs, i.e. uH = −G in Ωs, and has been also used in [51, 103]. By substituting

the expression φ = G+ uH + u in (3.19) and using (3.15) and the fact that uH = −G in Ωs,
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we obtain the weak formulation that u has to satisfy:

Find u ∈
⋂

p< d
d−1

W 1,p
g (Ω) such that

∫
Ω

ε∇u · ∇vdx+

∫
Ω

k
2
uvdx = −

∫
Ωm

εm∇uH · ∇vdx+

∫
Ωs

εm∇G · ∇vdx =: 〈G3, v〉 (3.27)

for all v ∈
⋃
q>d

W 1,q
0 (Ω).

Notice that if u ∈
⋂

p< d
d−1

W 1,p(Ω), then since φ ∈
⋂

p< d
d−1

W 1,p(Ω), it follows that uH is also

in the space
⋂

p< d
d−1

W 1,p(Ω) and therefore the integral
∫

Ωm

εm∇uH · ∇vdx makes sense. Also

notice that we still have not defined uH in Ωm (uH = −G in Ωs). The only condition that

has to be satisfied so far is that uH + u ∈
⋂

p< d
d−1

W 1,p
g−G(Ω). Thus, if we define uH in Ωm such

that uH ∈ H1(Ω) it will hold uH + u ∈
⋂

p< d
d−1

W 1,p
g−G(Ω). Again, since we have

⋃
q>d

W 1,q(Ω) ⊂W 1,2(Ω) ⊂
⋂

p< d
d−1

W 1,p(Ω)

we will find a particular solution u of problem (3.27) if we consider the standard weak

formulation

Find u ∈ H1
g (Ω) such that∫

Ω

ε∇u · ∇vdx+

∫
Ω

k
2
uvdx = 〈G3, v〉 for all v ∈ H1

0 (Ω),
(3.28)

where G3 is a well defined functional in H−1(Ω) since we have chosen uH to be in H1(Ω).

From the Lax-Milgram Theorem (see Remark 3.5) it follows that problem (3.28) has a unique

solution u ∈ H1
g (Ω) for any fixed uH ∈ H1(Ω). Also notice that if we test (3.28) with

v ∈ H1
0 (Ωm) we obtain∫

Ωm

εm∇u · ∇vdx = −
∫

Ωm

εm∇uH · ∇vdx for all v ∈ H1
0 (Ωm).

It is convenient for the a posteriori analysis in Section 4.3 to define uH to be harmonic in

Ωm, i.e.,

uH ∈ H1
−G(Ωm) and

∫
Ωm

∇uH · ∇vdx = 0 for all v ∈ H1
0 (Ωm), (3.29)

where the Dirichlet boundary condition uH = −G on ∂Ω ensures that uH has the same trace

on Γ from both sides and therefore uH ∈ H1(Ω).
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Remark 3.8

By means of the 3-term splitting we have obtained one particular solution

φ = G+ uH + u ∈
⋂

p< d
d−1

W 1,p
g (Ω)

of (3.19). By Theorem 3.4 it is the unique solution of (3.19).

Remark 3.9

Notice that the right-hand side of equation (3.28) depends on the solution of (3.29). Therefore,

in practice we first have to find an approximation ũH to uH in Ωm and then numerically

solve (3.28) with ũH in it. We will discuss this in detail in Chapter 4. Also, note that

G3 represents a jump condition on the normal component of ε∇u. Indeed, by applying the

divergence theorem (Theorem 2.20) we obtain

〈G3, v〉 = −
∫

Ωm

εm∇uH · ∇vdx+

∫
Ωs

εm∇G · ∇vdx (3.30)

= −〈γnΓ,Ωm

(
εm∇uH

)
, γ2,Γ(v)〉H−1/2(Γ)×H1/2(Γ) + 〈γnΓ,Ωs (εm∇G) , γ2,Γ(v)〉H−1/2(Γ)×H1/2(Γ),

where we have used the facts that εm is constant, ∇uH ∈ H(div; Ωm) (see (3.29)), and that

G is harmonic in a neighborhood of Ωs. In (3.30), γnΓ,Ωm and γnΓ,Ωs are the normal trace

operators in H(div; Ωm) and H(div; Ωs), respectively, and γ2,Γ(v) is the trace of v on Γ. If

∇uH is more regular, then by using the integration by parts formula (Theorem 2.15) (3.30)

can be rewritten in terms of surface integrals over Γ, i.e.,

〈G3, v〉 =

∫
Γ

−εm∇
(
uH +G

)
· nΓvds, ∀v ∈ H1

0 (Ω). (3.31)

This means that if the function u is smooth in each subdomain, it should satisfy the jump

condition [ε∇u · nΓ]Γ = −εm∇
(
uH +G

)
· nΓ.

3.2.3 Regularity of the component u in the 2-term and 3-term splittings

First, using Theorem 2.32, we will show the boundedness of the regular component u in both

splittings without the assumption that Γ ∈ C1. Then, using Theorem 2.34 together with the

assumption that Γ ∈ C1, we will show that u is actually in W 1,q(Ω) for some q > d, which

implies that u is also Hölder continuous. The fact that u is Hölder continuous also follows

from the regularity results of De Giorgi-Nash-Moser. In the case of the 2-term splitting no

additional assumption on the smoothness of the interface Γ is needed, and in the case of the

3-term splitting we have to assume only Γ ∈ C0,1.

2-term splitting

In the case of the 2-term splitting, where φ = G+ u, the regular component u = ug−G + u0 ∈
H1
g−G(Ω) satisfies problem 3.21 and u0 ∈ H1

0 (Ω) satisfies the homogenized problem (3.22).
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Before we continue, we note that ug−G can be chosen in H2(Ω) if the function g, prescribing

the Dirichlet boundary condition, is given as the trace of a function g̃ ∈ H2(Ω). Indeed, we

can construct G̃ ∈ H2(Ω) such that γ2(G̃) = G on ∂Ω: just take G̃ := (ψG)�Ω
∈ C∞(Ω),

where ψ ∈ C∞0 (Rd) is such that it is equal to 1 in a neighborhood of ∂Ω and with support

in Rd \ Ωm. For the function ψ one can mollify the characteristic function of the set

(∂Ω)+δ := {x ∈ Rd : dist(x, ∂Ω) < δ} with a mollifier ηρ for ρ < δ/2, where δ < 1
2dist(Γ, ∂Ω).

Consequently, g̃ − G̃ ∈ H2(Ω), γ2(g̃ − G̃) = g −G and we define ug−G := g̃ − G̃. By using

the fact that u = ug−G + u0, equation (3.22) can be rewritten in the form∫
Ω

ε∇u0 · ∇vdx = −
∫
Ω

k
2
(G+ u)vdx+

∫
Ω

χΩs(εm − εs)∇G · ∇vdx−
∫
Ω

ε∇ug−G · ∇vdx,

(3.32)

Now, since u ∈ H1(Ω), by the Sobolev emebedding theorem it follows that u ∈ L6(Ω) for

d = 2, 3. Since k
2 ∈ L∞(Ω), k = 0 in Ωm ∪ ΩIEL, G is smooth in Ωs and u ∈ L6(Ω)

it follows that k
2
(G + u) ∈ L6(Ω). We also have that χΩs(εm − εs)∇G ∈ [L∞(Ω)]d and

that ε∇ug−G ∈
[
L6(Ω)

]d
. Now, from Theorem 2.32 it follows that u0 ∈ L∞(Ω). Since

ug−G ∈ H2(Ω) ⊂ L∞(Ω) it follows u ∈ L∞(Ω).

To show that u ∈W 1,q(Ω) for some q > d, observe that the right-hand side of (3.32) defines a

bounded linear functional over W 1,p
0 (Ω) for all 6

5 ≤ p <
d
d−1 . If we assume that Γ ∈ C1, then

from Theorem 2.34 it follows that u0 ∈W 1,q(Ω) for some d < q ≤ 6 (q is at most 6, since the

right-hand side of (3.32) defines a bounded linear functional over W 1,p
0 (Ω) for p which is at

least 6
5). Finally, since ug−G ∈W 1,q(Ω) (by the Sobolev embedding Theorem 2.21), it follows

that u ∈ W 1,q(Ω) and hence u is Hölder continuous (again by Theorem 2.21). The Hölder

continuity of u0 and u also follows from the regularity results of De Giorgi-Nash-Moser which

hold for any bounded and measurable coefficient ε (see, e.g., Theorem 2.12 in [107], p. 65,

Theorem 3.5 in [50]). Thus, for the Hölder continuity of u0 and u the assumption that Γ is

C1 is not needed.

3-term splitting

In the case of the 3-term splitting, where φ = G + uH + u, the component u ∈ H1
g (Ω)

satisfies problem (3.28). Similarly to the case of the 2-term splitting, we can rewrite it in a

homogenized form, i.e.,

Find u0 ∈ H1
0 (Ω) such that∫

Ω

ε∇u0 · ∇vdx+

∫
Ω

k
2
u0vdx (3.33)

=−
∫

Ωm

εm∇uH · ∇vdx+

∫
Ωs

εm∇G · ∇vdx−
∫
Ω

ε∇ug · ∇vdx−
∫
Ω

k
2
ugvdx for all v ∈ H1

0 (Ω),
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where ug ∈ H1(Ω) with γ2(ug) = g on ∂Ω and u = ug + u0. If g is given as the trace of

a function g̃ ∈ H2(Ω), then we define ug := g̃ and in this case, by the Sobolev embedding

Theorem 2.21, ∇ug ∈ L6(Ω) for d = 2, 3. In order to apply Theorem 2.32 to (3.33), we need

to ensure that ∇uH ∈ [Ls(Ωm]d for some s > d. This follows by applying Theorem 2.34 to

the homogenized version of (3.29) (here it is enough if Γ is only Lipschitz continuous):

Find uH0 ∈ H1
0 (Ωm) such that∫

Ωm

∇uH0 · ∇vdx = −
∫

Ωm

∇uH−G · ∇vdx for all v ∈ H1
0 (Ωm), (3.34)

where uH−G ∈ H1(Ωm) and γ2

(
uH−G

)
= −G on Γ. Again, we can choose uH−G to be in H2(Ωm).

To see this, let r > 0 be so small that all balls B(xi, r) centered at xi, i = 1, . . . , Nm and

with radius r are strictly contained in Ωm. Then, we define the function uH−G := (ψG)�Ωm
∈

C∞(Ωm), where ψ ∈ C∞0 (Rd) is such that it is equal to 1 in a neighborhood of Γ and

with support in Rd \
Nm⋃
i=1

B(xi, r). It follows that the right-hand side of (3.34) defines a

bounded linear functional over W 1,p
0 (Ωm) for all 1 ≤ p <∞ and by Theorem 2.34 it follows

that uH0 ∈ W 1,q(Ωm) for some q > d. Now, uH = uH−G + uH0 ∈ W 1,q(Ωm). By recalling

that u0 ∈ H1(Ω) ⊂ L6(Ω), ∇ug ∈
[
L6(Ω)

]d
, ug ∈ L∞(Ω), ∇G ∈ [L∞(Ω)]d, we can apply

Theorem 2.32 to (3.33) to obtain that u0 ∈ L∞(Ω). Since ug ∈ H2(Ω) ⊂ L∞(Ω) it follows

u ∈ L∞(Ω).

If we additionally assume that Γ ∈ C1, by recalling that uH ∈ W 1,q(Ωm) and applying

Theorem 2.34 to (3.33), we obtain that u0 ∈ W 1,q
0 (Ω) for some q ∈ (d,min {q, 6}]. As a

consequence, u = ug + u0 is also in W 1,q
0 (Ω) and thus Hölder continuous. As in the 2-term

splitting, the Hölder continuity of u0 and u also follows from the regularity results of De

Giorgi-Nash-Moser under the assumption that ∇uH ∈ [Ls(Ωm)]d for some s > d. As we

showed above, the latter is ensured if Γ ∈ C0,1. We can summarize the above results in the

following theorem.

Theorem 3.10

Assume that the function g prescribing the Dirichlet boundary condition on ∂Ω is given as

the trace of some function g̃ ∈ H2(Ω). The following statements hold true:

(i) the unique u ∈ H1(Ω) in the 2-term splitting defined by the standard weak formulation

(3.21) is Hölder continuous in Ω and thus belongs to L∞(Ω);

(ii) if Γ ∈ C0,1, then the unique u ∈ H1(Ω) in the 3-term splitting, defined by the standard

weak formulation (3.28) is also Hölder continuous in Ω and thus belongs to L∞(Ω);

(iii) if we assume additionally that Γ ∈ C1, then for both 2-term and 3-term splittings u is

in W 1,q(Ω) for some q > d and hence it is also Hölder continuous;
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Remark 3.11

Note that when Γ is not C1 the uniqueness of the potential φ is not clear. Therefore, in

Theorem 3.10, when Γ is not assumed C1, we specify that we are talking about the particular u

given by (3.21) or (3.28). However, when Γ ∈ C1, then u is unique for all weak formulations:

for (3.20) and (3.21), and for (3.27) and (3.28) if uH is fixed by (3.29).

3.3 Poisson-Boltzmann equation

In this section we will consider the general problem where Nions different ion species are present

in the solvent, each one with valency ξj and average number density Mj , j = 1, 2, . . . Nions.

From (3.3) it follows that the nonlinear interface problem for the dimensionless potential φ,

related to the unknown electrostatic potential ϕ via ϕ = e0φ
kBT

, reads

−∇ · (ε∇φ)− χΩions

4πe2
0

kBT

Nions∑
j=1

Mjξje
−ξjφ =

4πe2
0

kBT

Nm∑
i=1

ziδxi = F in Ω, (3.35a)

[φ]Γ = 0, (3.35b)

[ε∇φ · nΓ]Γ = 0, (3.35c)

φ = g on ∂Ω, (3.35d)

We will refer to (3.35) as the general PBE. For convenience, we will denote χΩionsMj by

M j(x), where obviously M j(x) = 0 if x ∈ Ωm ∪ ΩIEL and M j(x) = Mj if x ∈ Ωions. Note

that if the condition

Nions∑
j=1

Mjξj = 0 (3.36)

holds, the solvent is electroneutral and we refer to this as the charge neutrality condition.

We further denote by a(·, ·) the bilinear form defined by a(u, v) =
∫
Ω

ε∇u · ∇vdx for all

u, v ∈ H1(Ω), by b(x, ·) the nonlinearity in (3.35), i.e.,

b(x, s) := −4πe2
0

kBT

Nions∑
j=1

M j(x)ξje
−ξjs, ∀x ∈ Ω, ∀s ∈ R (3.37)

and by B(x, ·) an antiderivative of it given by

B(x, s) :=
4πe2

0

kBT

Nions∑
j=1

M j(x)e−ξjs ≥ 0, ∀x ∈ Ω, ∀s ∈ R. (3.38)

Since d
dsb(x, s) ≥ 0 for every x ∈ Ω it follows that the nonlinearity b(x, ·) is monotone

increasing. This in particular implies that

(b(x, s1)− b(x, s2)) (s1 − s2) ≥ 0, ∀s1, s2 ∈ R, ∀x ∈ Ω. (3.39)
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Note that b(x, 0) = −4πe20
kBT

Nions∑
j=1

M j(x)ξj and therefore when (3.36) is satisfied we have

b(x, 0) = 0, ∀x ∈ Ω. Also note that in the special case when M1 = M2 = M and

ξj = (−1)j , j = 1, 2, equation (3.35) becomes the Poisson-Boltzmann equation (3.5). In this

case, b(x, s) = k
2
(x) sinh(s) and B(x, s) = k

2
(x) cosh(s).

A natural way to extend the weak formulation (3.19) that we defined for the LPBE and for

which we proved existence and uniqueness, is as follows.

Definition 3.12

We call φ a weak solution of problem (3.35) if φ ∈
⋂

p< d
d−1

W 1,p
g (Ω) is such that b(x, φ)v ∈ L1(Ω)

for all v ∈
⋃
q>d

W 1,q
0 (Ω) and

∫
Ω

ε∇φ · ∇vdx+

∫
Ω

b(x, φ)vdx = 〈F , v〉, ∀v ∈
⋃
q>d

W 1,q
0 (Ω) (3.40)

The question of existence and nonexistence of a solution to nonlinear elliptic equations with

measure data has been studied for example in [15, 21, 23, 33, 36]. In [33] it is shown that

even the simple equation −∆u+ |u|p−1 u = δa with u = 0 on ∂Ω and a ∈ Ω does not have a

solution in Lploc(Ω) for any p ≥ d
d−2 when d ≥ 3. We will show the existence of a solution to

(3.40) by finding a φ which has a particular form. More precisely, we will find a particular

solution by means of the 2-term and 3-term splittings of φ as we did in the case of the LPBE.

If φ is unique, then the particular φ found through 2-term and 3-term splitting is the same.

The reason for the existence of a solution of (3.40), despite the fact that the nonlinearity is

of exponential type and much worse than |u|p−1, is that b(x, s) = 0, ∀x ∈ Ωm, which is where

all the delta functions in F are positioned. However, unlike in the case of the LPBE, we are

not able to show uniqueness of φ.

Now we give a somehow detailed overview of the concepts and specific features of our problem

that will be used in this section. To show existence of a solution we employ the 2-term or

the 3-term splitting. Similarly to the case of the LPBE, it will be seen that a particular

representative of the component u, in the case of both 2-term and 3-term splittings, can

be found by solving a well posed weak formulation involving H1 solution space and a test

space V . We will see that for both 2-term and 3-term splittings, the weak formulation defining

a particular u can be written in the general form

Find u ∈ H1
g (Ω) such that b(x, u+ w)v ∈ L1(Ω) for all v ∈ V and

a(u, v) +

∫
Ω

b(x, u+ w)vdx =

∫
Ω

f · ∇vdx for all v ∈ V, (3.41)

where w ∈ L∞(Ωions), f = (f1, f2, . . . , fd) ∈ [Ls(Ω)]d with s > d, and g specifies a Dirichlet
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boundary condition on ∂Ω. In the case of the 2-term splitting we have

w = G, f = χΩs(εm − εs)∇G, and g = g −G on ∂Ω (3.42)

whereas in the case of the 3-term splitting we have

w = 0, f = −χΩmεm∇uH + χΩsεm∇G, and g = g on ∂Ω. (3.43)

In (3.41), one can choose the test space V to be H1
0 (Ω), or H1

0 (Ω) ∩ L∞(Ω), or even

C∞0 (Ω). A priori, all the weak formulations for the three choices of the test space V are

reasonable to consider in the sense that if the function u is regular enough, for example

u ∈ H1(Ω) ∩ C0(Ω) ∩ C1(Ωm) ∩ C1(Ωs) ∩ C2(Ωm) ∩ C2(Ωs), then it can be shown that u

also satisfies the strong form of the elliptic interface problem (3.41). Such weak formulations,

with test space which is only a dense subspace of H1
0 (Ω), for very general nonlinear elliptic

equations but with a sign and/or growth condition on the nonlinearity with respect to u are

studied for example in [14,16,19,20,25,26,34,38–41,72,99,120,121,151,178,186]. However,

the growth conditions with respect to the second argument of b, as well as the sign condition

b(x, s)s ≥ 0, ∀s ∈ R, are not fulfilled in the case of the general PBE where the charge

neutrality condition (3.36) does not hold.

Before we comment on the different choices of a test space V , we note that in dimen-

sion d ≤ 2 it holds that eu ∈ L2(Ω), ∀u ∈ H1
0 (Ω) (see [110, 179]) and thus for d ≤ 2,

b(x, u+w) ∈ L2(Ω), ∀u ∈ H1
0 (Ω) and a standard weak formulation is available. On the other

hand, in dimension d ≥ 3, there are functions u ∈ H1
0 (Ω) such that exponents of them are not

even summable. For example u = ln 1
|x|d ∈ H

1
0 (B(0, 1)) but eu /∈ L1(B(0, 1)) where B(0, 1)

is the unit ball in Rd. Therefore, the condition b(x, u + w)v ∈ L1(Ω), ∀v ∈ V in the weak

formulation (3.41) is necessary.

Choosing V = H1
0 (Ω) in (3.41) allows for a straight forward proof of uniqueness of a solution:

if u1 and u2 are two solutions of (3.41), then by testing the difference of the equations that

u1 and u2 satisfy with v := u1 − u2 ∈ H1
0 (Ω) and by using the monotonicity of b(x, ·) and the

coercivity of a(·, ·), it follows that u1−u2 = 0. However, showing existence of a solution is not

as conventional as it might seem at a first glance. On the other hand, by choosing a smaller

test space V showing existence of a solution u gets easier while showing the uniqueness

becomes harder to prove. In all cases, the uniqueness of a solution is possible to show because

of the fact that the nonlinearity b(x, ·) is monotone increasing. Semilinear elliptic equations

with multiple or even infinitely many solutions are considered for example in [127,148,189,190].

Uniqueness

Particularly interesting is the formulation where V = C∞0 (Ω) because it potentially has

the largest set of solutions as being the most general formulation when one searches for a

solution in H1(Ω). When V = H1
0 (Ω) ∩ L∞(Ω) or V = C∞0 (Ω) showing uniqueness of the
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weak solution u is not a trivial task since the difference of u1 − u2 of two solutions is not

necessarily in V . In the case when V = H1
0 (Ω)∩L∞(Ω) we can test with the (truncated) test

functions Tk(u1 − u2) ∈ H1
0 (Ω) ∩ L∞(Ω), k ≥ 0, where Tk(s) := max{−k,min{k, s}} and use

the monotonicity of b(x, ·) and the coercivity of a(·, ·) to obtain u1 − u2 = 0. This method

and the method that we mentioned for the case V = H1
0 (Ω) do not work when V = C∞0 (Ω)

because the difference u1 − u2 of two weak solutions and their truncations Tk(u1 − u2) are

not necessarily in C∞0 (Ω). We overcome this difficulty by applying Theorem 2.18 due to

H. Brezis and F. Browder. This theorem gives a sufficient condition to be able to evaluate

the extension of an integral bounded linear functional Tb ∈ L1
loc(Ω), defined on the dense

subspace C∞0 (Ω) of H1
0 (Ω), at a given element w ∈ H1

0 (Ω) through the same defining integral.

In particular, if u1 and u2 are two solutions, then

a(u1 − u2, v) +

∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) vdx = 0, ∀v ∈ C∞0 (Ω). (3.44)

Since a(u1 − u2, ·) defines a bounded linear functional over H1
0 (Ω), the functional Tb defined

by the formula 〈Tb, v〉 :=
∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) vdx, ∀v ∈ C∞0 (Ω) satisfies the con-

dition Tb ∈ H−1(Ω) ∩ L1
loc(Ω) in Theorem 2.18. By using the monotonicity of b(x, ·) we

see that (b(x, u1 + w)− b(x, u2 + w)) (u1 − u2) ≥ 0 =: f(x) ∈ L1(Ω). Therefore by The-

orem 2.18 it follows that (b(x, u1 + w)− b(x, u2 + w)) (u1 − u2) ∈ L1(Ω) and the duality

product 〈Tb, u1 − u2〉H−1(Ω)×H1
0 (Ω) coincides with

∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) (u1 − u2)dx.

This means that

a(u1 − u2, u1 − u2) +

∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) (u1 − u2)dx = 0, (3.45)

which implies u1 − u2 = 0. Of course, this approach can also be applied to show uniqueness

when V = H1
0 (Ω) ∩L∞(Ω) instead of using the truncations Tk(u1 − u2). The uniqueness of a

solution to all three formulations is now clear.

Note that if we have an a priori L∞ bound on the solution u of (3.41), then the term

b(x, u+ w) ∈ L∞(Ω). As a consequence, one can use a density argument (density of C∞0 (Ω)

in H1
0 (Ω) or density of H1

0 (Ω) ∩ L∞(Ω) in H1
0 (Ω)) to show that the weak formulations with

V = C∞0 (Ω) and V = H1
0 (Ω)∩L∞(Ω) are equivalent to the weak formulation with V = H1

0 (Ω).

Since the latter one possesses at most one solution u, which as we have seen is easy to prove,

the same will be true for the other two weak formulations. Moreover, if we show the existence

of one of these three problems, then the existence for the others will also follow. In the case

of linear problems, all three weak formulations are obviously equivalent without the need of

any a priori information on the solutions rather than the fact that they are in H1(Ω).

A priori L∞ bound

Showing an a priori L∞ estimates on u for the three choices of V features similar difficulties
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to the ones encountered in the proofs of uniqueness. The case when V = H1
0 (Ω) is again the

easiest: if u is a solution of (3.41) and ug ∈ H1(Ω) is such that γ2(ug) = g, then one can test

with the functions Gk(u − ug) ∈ H1
0 (Ω), where Gk(s) := sgn(u) max {|u| − s, 0} and again

use the monotonicity of b(x, ·) together with the additional assumption that ug ∈ L∞(Ω) and

∇ug ∈ [Ls(Ω)]d for some s > d. We note that Gk is Lipschitz continuous with Gk(0) = 0 and

hence by Stampacchia’s theorem Gk(u− ug) ∈ H1
0 (Ω). Similar test functions Gk have been

used by G. Stampacchia and D. Kinderlehrer in the proof of Theorem 2.32 in the case of linear

elliptic problems. When V = H1
0 (Ω) ∩ L∞(Ω) or V = C∞0 (Ω) the test functions Gk(u− ug)

are not necessarily in V . In the case V = H1
0 (Ω) ∩ L∞(Ω) one can test with the functions

T2k (Gk(u− ug)) ∈ H1
0 (Ω) ∩ L∞(Ω) and use a refined version of Lemma 2.33. However, this

approach is quite technical and it is not applicable when V = C∞0 (Ω). To overcome these

difficulties, once again we can utilize Theorem 2.18 to show that we can test in (3.41) with

the functions Gk(u− ug). More precisely, from (3.41) it follows that the functional Tb defined

by 〈Tb, v〉 :=
∫
Ω

b(x, u+ w)vdx, ∀v ∈ C∞0 (Ω) satisfies the condition Tb ∈ H−1(Ω) ∩ L1
loc(Ω).

Moreover, one can show that b(x, u+w)Gk(u− ug) ≥ fk(x) for certain functions fk ∈ L1(Ω),

and therefore by Theorem 2.18 it follows that b(x, u + w)Gk(u − ug) ∈ L1(Ω) and that

〈Tb, Gk(u − ug)〉H−1(Ω)×H1
0 (Ω) =

∫
Ω

b(x, u+ w)Gk(u− ug)dx. Now, one can use the mono-

tonicity of b(x, ·) and apply techniques similar to the ones used by D. Kinderlehrer and G.

Stampacchia in [112] for linear problems to show the boundedness of u. We will present

this kind of techniques in detail in the proof of Theorem 3.29 in Section 3.4 where we will

show optimal (in terms of the summability exponents of the data) a priori L∞ estimate

on the solution of a more general semilinear elliptic interface problem. For (3.41) we will

take another approach in which we can make use of Theorem 2.32 and which involves the

additional splitting of u into functions uN and uL.

Existence

To show the existence of a weak solution u to (3.41), we cannot apply for example the

theorem of Browder-Minty for monotone operators because the nonlinearity b(x, ·+ w) does

not induce a bounded mapping Tb from H1
0 (Ω) to its dual H−1(Ω) through the formula

〈Tb(z), v〉 =
∫
Ω

b(x, z + w)vdx, ∀v ∈ H1
0 (Ω). Actually, the form

∫
Ω

b(x, ·+ w)vdx is not well

defined for all z ∈ H1
0 (Ω) because, as we already mentioned, b(x, z + w) might not even

be in L1
loc(Ω). The reason for this is that we do not have a polynomial growth condition

on b(x, ·) which would suffice for the appropriate summability of b(x, z + w) such that the

bound |
∫

Ω b(x, z + w)vdx|≤ C‖v‖H1(Ω), ∀v ∈ H1
0 (Ω) holds. Here we note that the existence

results in [34, 187] could be applied to (3.41) to show the existence of a solution u under the

assumption that the charge neutrality condition (3.36) holds and in the case of a homogeneous

Dirichlet boundary condition. Since g is in general not identically zero on ∂Ω and the charge

neutrality condition (3.36) does not necessarily hold in the case of the general PBE, these

results cannot be applied directly.
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To show existence and a priori L∞ estimate we choose an approach that involves the additional

splitting of u into uN and uL and we note that the existence and a priori L∞ estimate can be

achieved without this additional splitting (see p. 61). In both 2-term and 3-term splittings,

the component uL satisfies the linear nonhomogeneous elliptic interface problem

Find uL ∈ H1
g (Ω) such that a(uL, v) =

∫
Ω

f · ∇vdx for all v ∈ V. (3.46)

Then, the component uN has to satisfy

Find uN ∈ H1
0 (Ω) such that b(x, uN + uL + w)v ∈ L1(Ω) for all v ∈ V and

a(uN , v) +

∫
Ω

b(x, uN + uL + w)vdx = 0 for all v ∈ V. (3.47)

Problem (3.46) is linear and hence all weak formulations for the three choices of V are

obviously equivalent. From the Lax-Milgram Theorem it is clear that there exists a unique

uL ∈ H1
g (Ω) satisfying (3.46). Moreover, from Theorem 2.32 it follows that uL ∈ L∞(Ω).

To show existence of uN satisfying (3.47), we introduce the strictly convex energy functional

JN : H1
0 (Ω)→ R ∪ {+∞}, defined by

JN (v) =
1

2
a(v, v) +

∫
Ω

B(x, v + uL + w)dx (3.48)

whose minimizer overH1
0 (Ω) is shown to satisfy (3.47) for V = C∞0 (Ω) and V = H1

0 (Ω) ∩ L∞(Ω).

It should be noted that JN is not Gateaux differentiable at each point in H1
0 (Ω) and thus

we cannot conclude straightforwardly that the minimizer of JN over H1
g (Ω) is a solution to

the weak formulation (3.47) (see Remark 3.25). Instead, by applying the Lebesgue DCT and

using the fact that the nonlinearity B(x, uNmin + uL + w) is in L1(Ω) at the minimizer uNmin
we can see that the unique minimizer uNmin of JN is a solution of (3.47) with V = C∞0 (Ω)

and V = H1
0 (Ω) ∩ L∞(Ω). As we explained above, in order to show that this minimizer is

also a solution to (3.47) with V = H1
0 (Ω), we prove an a priori L∞(Ω) estimate on the weak

solution uN of (3.47) with either V = C∞0 (Ω) or V = H1
0 (Ω) ∩ L∞(Ω). Then, by a density

argument we see that this uN is also a solution to (3.47) with V = H1
0 (Ω). Since all three

weak formulations have at most one solution (for example proved by using Theorem 2.18 and

testing with the difference uN1 − uN2 of two solutions), then this uN is their only solution.

3.3.1 2-term splitting

As in the case of the LPBE, we split φ into the singular Coulomb potential G and a reaction

field potential u. By substituting the expression φ = G + u in (3.40) and by taking into
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account (3.15) we obtain the weak formulation that u has to satisfy:

Find u ∈
⋂

p< d
d−1

W 1,p
g−G(Ω) such that b(x, u+G)v ∈ L1(Ω) for all v ∈

⋃
q>d

W 1,q
0 (Ω) and

∫
Ω

ε∇u · ∇vdx+

∫
Ω

b(x, u+G)vdx =

∫
Ωs

(εm − εs)∇G · ∇vdx = 〈G2, v〉 (3.49)

for all v ∈
⋃
q>d

W 1,q
0 (Ω).

Since the space W 1,2(Ω) lies between the spaces
⋃
q>d

W 1,q(Ω) and
⋂

p< d
d−1

W 1,p(Ω), similarly to

the case of the LPBE, we can find a particular function u that satisfies (3.49) if we can pose

a standard weak formulation for u that involves H1 spaces, i.e.,

u ∈ H1
g−G(Ω) such that a(u, v) +

∫
Ω

b(x, u+G)vdx = 〈G2, v〉 for all v ∈ H1
0 (Ω).

However, as we explained in the beginning of this section, for d = 3 there are functions

u ∈ H1(Ω) such that eu /∈ L1
loc(Ω) and therefore b(x, u + G) might not even be in L1

loc(Ω).

For this reason, in the case d = 3 it makes sense to consider the following 3 weak formulations

and reveal the relations between them.

Find u ∈ H1
g−G(Ω) such that b(x, u+G)v ∈ L1(Ω) for all v ∈ V and

a(u, v) +

∫
Ω

b(x, u+G)vdx = 〈G2, v〉 for all v ∈ V, (3.50)

where V = C∞0 (Ω), V = H1
0 (Ω) ∩ L∞(Ω), or V = H1

0 (Ω). We know that in dimension

d = 3, the Sobolev space H1(Ω) is continuously embedded in L6(Ω). We also know that for

v ∈ L6(Ω), from Hölder’s inequality it follows that a sufficient condition for zv ∈ L1(Ω) is

z ∈ L
6
5 (Ω) (see Remark 3.26). Since b(x, u+G) is not a priori known to lie in L

6
5 (Ω) we can

not apply a density argument to conclude that all three formulations are equivalent. We

will prove this fact by showing an a priori L∞ estimate on the solution u for all three weak

formulations. In this case, since G ∈ L∞(Ωions), b(x, u+G) will be in L∞(Ω) and hence a

density argument will work and all three weak formulations will be equivalent.

We will show existence, uniqueness and boundedness to (3.50) for all three choices of the test

space V in Section 3.3.3.

Before we continue with the 3-term splitting, we formulate the existence result for (3.40),

which is a consequence of the existence of a solution to (3.50) with V = H1
0 (Ω) or V =

H1
0 (Ω) ∩ L∞(Ω). Indeed, if there is a u ∈ H1

g−G(Ω) which satisfies (3.50) with V = H1
0 (Ω) or

V = H1
0 (Ω)∩L∞(Ω), then since H1

g−G(Ω) ⊂
⋂

p< d
d−1

W 1,p
g−G(Ω) and

⋃
q>d

W 1,q
0 (Ω) ⊂ V , it follows

that this u satisfies (3.49). Thus, φ = G+ u satisfies (3.40).
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Theorem 3.13

There exists a weak solution φ of equation (3.35) satisfying (3.40). A particular φ satisfying

(3.40) can be given in the form φ = G+u, where u ∈ H1
g−G(Ω)∩L∞(Ω) is the unique solution

of (3.50) with V = H1
0 (Ω).

As we mentioned earlier, the existence and uniqueness of such u solving (3.50) with V = H1
0 (Ω)

will become clear in Section 3.3.3.

Remark 3.14

In particular Theorem 3.13 provides us with an explicit way to construct a solution of (3.35).

Moreover, the unknown component u satisfies a standard weak formulation involving H1

spaces and can be approximated numerically by standard finite element methods. Note also

that despite the fact that u is unique, we do not claim uniqueness of the full potential φ for

the nonlinear case of the general PBE. It seems that the proof we gave in the linear case

cannot be adapted so easily to the case of a semilinear equation.

3.3.2 3-term splitting

In the 3-term splitting, we have φ = G+ uH + u where uH is such that G+ uH = 0 in Ωs. If

we require that u ∈
⋂

p< d
d−1

W 1,p(Ω), since G ∈
⋂

p< d
d−1

W 1,p(Ω) it means that uH should also

be in the space
⋂

p< d
d−1

W 1,p(Ω). By substituting the expression φ = G+ uH + u in (3.40) and

by taking into account (3.15) we obtain the weak formulation that the component u has to

satisfy:

Find u ∈
⋂

p< d
d−1

W 1,p
g (Ω) such that b(x, u)v ∈ L1(Ω) for all v ∈

⋃
q>d

W 1,q
0 (Ω) and

∫
Ω

ε∇u · ∇vdx+

∫
Ω

b(x, u)vdx = −
∫

Ωm

εm∇uH · ∇vdx+

∫
Ωs

εm∇G · ∇vdx = 〈G3, v〉

for all v ∈
⋃
q>d

W 1,q
0 (Ω).

(3.51)

If we define uH in Ωm such that uH ∈ H1(Ω) it will hold uH + u ∈
⋂

p< d
d−1

W 1,p
g−G(Ω). The

argument here is similar to the argument in the 3-term splitting for the LPBE: since we have⋃
q>d

W 1,q(Ω) ⊂W 1,2(Ω) ⊂
⋂

p< d
d−1

W 1,p(Ω),

we will find a particular solution u of problem (3.51) if we can pose a standard weak

formulation for u that involves H1 spaces. Like in the case of the 2-term splitting, we consider

the following 3 weak formulations with test spaces V = C∞0 (Ω), V = H1
0 (Ω) ∩ L∞(Ω), and
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V = H1
0 (Ω):

Find u ∈ H1
g (Ω) such that b(x, u)v ∈ L1(Ω) for all v ∈ V and∫

Ω

ε∇u · ∇vdx+

∫
Ω

b(x, u)vdx = 〈G3, v〉 for all v ∈ V, (3.52)

where G3 is a well defined functional in H−1(Ω) since we have chosen uH to be in H1(Ω).

For the a posteriori analysis in Section 4.3 it is convenient to define uH to be harmonic in

Ωm, i.e.,

uH ∈ H1
−G(Ωm) and

∫
Ωm

∇uH · ∇vdx = 0 for all v ∈ H1
0 (Ωm). (3.29)

The right hand-side 〈G3, v〉 of (3.51) represents a jump condition on the normal component

of ε∇u. More precisely, if the function u is smooth in each subdomain, it should satisfy the

jump condition [ε∇u · nΓ]Γ = −εm∇
(
uH +G

)
· nΓ (see Remark 3.9).

We will show existence, uniqueness and boundedness to (3.52) for all three choices of the test

space V in Section 3.3.3.

We can formulate another existence result for (3.40), which is a consequence of the existence

of a solution to (3.52) with V = H1
0 (Ω) or V = H1

0 (Ω)∩L∞(Ω): if there is a u ∈ H1
g (Ω) which

satisfies (3.52) with V = H1
0 (Ω) or V = H1

0 (Ω)∩L∞(Ω), then since H1
g (Ω) ⊂

⋂
p< d

d−1

W 1,p
g−G(Ω)

and
⋃
q>d

W 1,q
0 (Ω) ⊂ V , it follows that this u satisfies (3.51). Thus, φ = G+ uH + u satisfies

(3.40).

Theorem 3.15

There exists a weak solution φ of equation (3.35) satisfying (3.40). A particular φ satisfying

(3.40) can be given in the form φ = G + uH + u, where u ∈ H1
g (Ω) ∩ L∞(Ω) is the unique

solution of (3.52) with V = H1
0 (Ω).

Remark 3.16

Note that since we have not proven uniqueness for the problem (3.40), the particular solutions

given by means of the 2-term and 3-term splittings in Theorem 3.13 and Theorem 3.15,

respectively, might be different.

3.3.3 Existence, uniqueness, and boundedness of the component u in the

2-term and 3-term splittings

In this section, we prove existence, uniqueness, and a priori L∞ estimates on the solutions of

(3.50) and (3.52) for all three choices of the test space V . First we observe that these weak
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formulations for both 2-term and 3-term splittings can be written in the common form

Find u ∈ H1
g (Ω) such that b(x, u+ w)v ∈ L1(Ω) for all v ∈ V and

a(u, v) +

∫
Ω

b(x, u+ w)vdx =

∫
Ω

f · ∇vdx for all v ∈ V. (3.41)

In the case of the 2-term splitting we have

w = G, f = χΩs(εm − εs)∇G, and g = g −G on ∂Ω (3.42)

whereas in the case of the 3-term splitting we have

w = 0, f = −χΩmεm∇uH + χΩsεm∇G, and g = g on ∂Ω. (3.43)

We assume that the function g specifying the Dirichlet boundary condition on ∂Ω is given as the

trace of some H2(Ω) function (see the discussion in Section 3.2.3). Note that w ∈ L∞(Ωions)

and f = (f1, f2, . . . , fd) ∈ [Ls(Ω)]d with s > d, since G is smooth in Ωs, εs ∈ C0,1(Ωs), and

∇uH ∈ [Ls(Ωm)]d , s > d if Γ is C0,1 (see the discussion in Section 3.2.3).

Uniqueness

First, we prove uniqueness of a solution to (3.41) for all three choices of the test space V .

Suppose that u1 and u2 are two solutions of (3.41). Then, we have

a(u1 − u2, v) +

∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) vdx = 0, ∀v ∈ V. (3.53)

In the case of V = H1
0 (Ω), u1 − u2 ∈ V and thus we can test (3.53) with v := u1 − u2 to

obtain

a(u1 − u2, u1 − u2) +

∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) (u1 − u2)dx = 0.

Since a(·, ·) is coercive and b(x, ·) is monotone increasing, we obtain u1 − u2 = 0. When

V = H1
0 (Ω) ∩ L∞(Ω) and V = C∞0 (Ω), the difference u1 − u2 is not necessarily in V and we

cannot test with it in (3.53). In this case, V is a dense subspace of H1
0 (Ω) which contains

C∞0 (Ω). Since a(u, ·) defines a bounded linear functional over H1
0 (Ω), from (3.53) it follows

that the linear functional Tc defined by

〈Tc, v〉 := (b(x, u1 + w)− b(x, u2 + w), v) , ∀v ∈ V

is bounded over V . Moreover, c ∈ L1
loc(Ω) and c(u1−u2) ≥ 0 ∈ L1(Ω) a.e. x ∈ Ω. This means

that we can apply Theorem 2.18 to the functional Tc and the test function v = u1−u2 ∈ H1
0 (Ω)

(see also Remark 2.19 after Theorem 2.18). Again, using the coercivity of a(·, ·) and the

monotonicity of b(x, ·) (see (3.39)), we conclude that u1 − u2 = 0.
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Existence

We continue with the proof of existence of a solution to (3.41) simultaneously for the test

spaces V = H1
0 (Ω) ∩ L∞(Ω) and V = C∞0 (Ω). The existence of a solution to (3.41) with

V = H1
0 (Ω) will follow from the existence for the first two choices of V once we prove the a

priori L∞ bound on their common solution.

It is convenient to split u into uL and uN , i.e., u = uL + uN , where uL satisfies the linear

nonhomogeneous interface elliptic problem

Find uL ∈ H1
g (Ω) such that a(uL, v) =

∫
Ω

f · ∇vdx for all v ∈ V, (3.46)

and the component uN has to satisfy

Find uN ∈ H1
0 (Ω) such that b(x, uN + uL + w)v ∈ L1(Ω) for all v ∈ V and

a(uN , v) +

∫
Ω

b(x, uN + uL + w)vdx = 0 for all v ∈ V. (3.47)

Problem (3.46) is linear and hence all weak formulations for the three choices of V are

obviously equivalent. From the Lax-Milgram Theorem it is clear that there exists a unique

uL ∈ H1
g (Ω) satisfying (3.46). Moreover, from Theorem 2.32 it follows that uL ∈ L∞(Ω).

Indeed, let uLg ∈ H2(Ω) be such that γ2(uLg ) = g on ∂Ω. Then we consider the homogenized

version of (3.46) given by

a(uL0 , v) =

∫
Ω

f · ∇vdx−
∫
Ω

ε∇uLg · ∇vdx for all v ∈ V, (3.54)

where uL0 ∈ H1
0 (Ω) and uL := uLg + uL0 . Since ∇uLg ∈ H1(Ω) it follows by the Sobolev

embedding theorem (Theorem 2.21) that ∇uLg ∈
[
L6(Ω)

]d
for d = 2, 3. Therefore, by recalling

that f ∈ [Ls(Ω)]d , s > d we can apply Theorem 2.32 to obtain that uL0 ∈ L∞(Ω) and hence

uL ∈ L∞(Ω).

To show existence of uN satisfying (3.47), we introduce the energy functional JN : H1
0 (Ω)→

R ∪ {+∞}, defined by

JN (v) =
1

2
a(v, v) +

∫
Ω

B(x, v + uL + w)dx, (3.55)

where it is understood that JN (v) = +∞ whenever B(x, v + uL + w) /∈ L1(Ω), i.e.,

JN (v) :=


1

2
a(v, v) +

∫
Ω

B(x, v + uL + w)dx, if B(x, v + uL + w) ∈ L1(Ω),

+∞, if B(x, v + uL + w) /∈ L1(Ω).

(3.56)
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We consider the variational problem

Find uNmin ∈ H1
0 (Ω) such that JN (uNmin) = min

v∈H1
0 (Ω)

JN (v). (3.57)

Notice that for d ≤ 2 it holds ev ∈ L2(Ω) for all v ∈ H1
0 (Ω) (e.g., see [110,179]) and therefore

dom(JN ) =
{
v ∈ H1

0 (Ω) such that JN (v) <∞
}

is a linear space coinciding with H1
0 (Ω).

However, in dimension d = 3, dom(JN ) is only a convex set and not a linear space (see

Remark 3.23). In fact, dom(JN ) is not even a closed subspace of H1
0 (Ω). Indeed, dom(JN )

contains C∞0 (Ω) which is dense in H1
0 (Ω). If dom(JN ) were closed, it would coincide with

H1
0 (Ω) and we know that this is not true in dimension d ≥ 3 (see the examples in Remark 3.23).

Since dom(JN ) is convex and obviously JN is convex over dom(JN ) it follows that JN is

convex over H1
0 (Ω) (see Remark 2.31 and [65]). To show existence of a minimizer of JN over

the reflexive Banach space H1
0 one has to verify the following assertions:

(1) JN is proper, i.e., JN is not identically equal to +∞ and does not take the value −∞;

(2) JN is sequentially weakly lower semicontinuous (s.w.l.s.c.), i.e., if {vn}∞n=1 ⊂ H1
0 (Ω)

and vn ⇀ v (weakly in H1
0 (Ω)) then JN (v) ≤ lim inf

n→∞
JN (vn);

(3) JN is coercive, i.e., lim
n→∞

JN (vn) = +∞ whenever ‖vn‖H1(Ω)→∞.

Assertion (1) is obvious since
∫
Ω

B(x, u+ uL + w)dx ≥ 0 and JN (0) is finite. To see

that (2) is fulfilled, notice that JN is the sum of the functionals A(v) := 1
2a(v, v) and∫

Ω

B(x, v + uL + w)dx. The former is convex and Gateaux differentiable, and therefore

s.w.l.s.c. (for the proof of this implication, see, e.g. Corollary 2.4 in [169]). Indeed, by using

the symmetry of a(·, ·), for any z, v ∈ H1
0 (Ω) and any λ ∈ [0, 1], for the convexity of 1

2a(v, v)

we obtain

A(λz + (1− λ)v)

=
1

2
a(λz + (1− λ)v, λz + (1− λ)v) =

1

2

(
λ2a(z, z) + 2λ(1− λ)a(z, v) + (1− λ)2a(v, v)

)
≤1

2

(
λ2a(z, z) + λ(1− λ) (a(z, z) + a(v, v)) + (1− λ)2a(v, v)

)
(3.58)

=λA(z) + (1− λ)A(v),

where we have used the inequality a(z, v) ≤
√
a(z, z)

√
a(v, v) ≤ 1

2 (a(z, z) + a(v, v)). To see

that A(·) is Gateaux differentiable, we use the symmetry of a(·, ·) together with its linearity
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in each argument. For any z ∈ H1
0 (Ω) and any direction v ∈ H1

0 (Ω) we have

lim
λ→0+

A(z + λv)−A(z)

λ
= lim

λ→0+

1

2

a(z + λv, z + λv)− a(z, z)

λ

= lim
λ→0+

1

2

a(z, z) + λ2a(v, v) + 2λa(z, v)− a(z, z)

λ

= lim
λ→0+

(
1

2
λa(v, v) + a(z, v)

)
= a(z, v).

(3.59)

Since a(z, ·) is a bounded linear functional over H1
0 (Ω), by the definition of Gateaux differen-

tiability (see Definition 2.27), it follows that A is Gateaux differntiable at z with a Gateaux

differential at z equal to the functional A′(z), defined by 〈A′(z), v〉 := a(z, v), ∀v ∈ H1
0 (Ω).

However, for d = 3, the functional
∫
Ω

B(x, v + uL + w)dx is not Gateaux differentiable (see

Remark 3.25). Nevertheless, one can still show that the functional
∫
Ω

B(x, v + uL + w)dx

is s.w.l.s.c. using Fatou’s lemma and the compact embedding of H1
0 (Ω) into L2(Ω) (see

Theorem 2.22) as follows. Let {vn}∞n=1 ⊂ H1
0 (Ω) be a sequence which converges weakly in

H1
0 (Ω) to an element v ∈ H1

0 (Ω), i.e., vn ⇀ v. Since the embedding H1
0 (Ω) ↪→ L2(Ω) is

compact it follows that vn → v (strongly) in L2(Ω), and therefore we can extract a pointwise

almost everywhere convergent subsequence vnm(x)→ v(x) (see Theorem 4.9 in [96]). Since

B(x, ·) is a continuous function for any x ∈ Ω and x 7→ B(x, s) is measurable for any

s ∈ R it means that B is a Carathéodory function and as a consequence the function

x 7→ B
(
x, vnm(x) + uL(x) + w(x)

)
is measurable for all k ∈ N (see Proposition 3.7 in [55]).

By noting that B
(
x, z(x) + uL(x) + w(x)

)
≥ 0 for all z ∈ H1

0 (Ω) and using the fact that

B(x, ·) is a continuous function for any x ∈ Ω, from Fatou’s lemma we obtain

lim inf
m→∞

∫
Ω

B
(
x, vnm(x) + uL(x) + w(x)

)
dx ≥

∫
Ω

lim inf
m→∞

B
(
x, vnm(x) + uL(x) + w(x)

)
dx

=

∫
Ω

B
(
x, v(x) + uL(x) + w(x)

)
dx. (3.60)

Now it is clear that if {vnm}∞m=1 is an arbitrary subsequence of {vn}∞n=1, then there exists a

further subsequence {vnms}
∞
s=1 for which (3.60) is satisfied. This means that (3.60) is also

satisfied for the whole sequence {vn}∞n=1, and hence
∫
Ω

B
(
x, v + uL + w

)
dx is s.l.w.s.c. (see

Remark 3.22).

The coercivity of JN follows by observing that

JN (v) =
1

2
a(v, v) +

∫
Ω

B
(
x, v + uL + w

)
dx ≥ εmin‖∇v‖2L2(Ω)≥

εmin

1 + C2
P

‖v‖H1(Ω),

where CP is the constant in the inequality ‖v‖L2(Ω)≤ CP ‖∇v‖L2(Ω), ∀v ∈ H1
0 (Ω). Now,

the existence of a minimizer uNmin of JN over the reflexive Banach space H1
0 (Ω) follows by
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Theorem 2.30. Moreover, since a(v, v) is a strictly convex functional it follows that JN is

also strictly convex, and therefore this minimizer is unique.

Theorem 3.17

There exists a unique uNmin ∈ H1
0 (Ω) such that JN (uNmin) = min

v∈H1
0 (Ω)

JN (v).

We will show that the minimizer uNmin of JN over H1
0 (Ω) satisfies (3.47) for V = C∞0 (Ω) and

V = H1
0 (Ω) ∩ L∞(Ω). Notice that JN is not Gateaux differentiable at each point in H1

0 (Ω)

and thus we cannot conclude straightforwardly that the minimizer uNmin is a solution to the

weak formulation (3.47) (see Remark 3.25).

Now by using the Lebesgue dominated convergence theorem and the fact that at the unique

minimizer uNmin of JN we have B
(
x, uNmin + uL + w

)
∈ L1(Ω), we will show that uNmin is also

a solution to (3.47). We have that JN
(
uNmin + λv

)
− JN

(
uNmin

)
≥ 0 for all v ∈ H1

0 (Ω) and all

λ ≥ 0, i.e.,

1

2
a
(
uNmin + λv, uNmin + λv

)
+

∫
Ω

B
(
x, uNmin + λv + uL + w

)
dx

−1

2
a
(
uNmin, u

N
min

)
−
∫
Ω

B
(
x, uNmin + uL + w

)
dx ≥ 0,

which, by using the symmetry of a(·, ·), is equivalent to

λa
(
uNmin, v

)
+
λ

2
a(v, v) +

∫
Ω

(
B
(
x, uNmin + λv + uL + w

)
−B

(
x, uNmin + uL + w

))
dx ≥ 0.

(3.61)

Divide both sides of (3.61) by λ > 0 and let λ→ 0+ to obtain

a
(
uNmin, v

)
+ lim
λ→0+

∫
Ω

B
(
x, uNmin + λv + uL + w

)
−B

(
x, uNmin + uL + w

)
λ

dx ≥ 0. (3.62)

To compute the limit in the second term of (3.62), we will apply the Lebesgue dominated

convergence theorem. We have

fλ(x) :=
B
(
x, uNmin(x) + uL(x) + w(x) + λv(x)

)
−B

(
x, uNmin(x) + uL(x) + w(x)

)
λ

λ→0+

−−−−→ b
(
x, uNmin(x) + uL(x) + w(x)

)
v(x) for a.e x ∈ Ω

(3.63)

By the mean value theorem we have

fλ(x) = b
(
x, uNmin + uL(x) + w(x) + Θ(x)λv(x)

)
v(x), where Θ(x) ∈ (0, 1), ∀x ∈ Ω
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and hence, if v ∈ L∞(Ω), we can obtain the following bound on fλ:

|fλ(x)| =

∣∣∣∣∣∣−4πe2
0

kBT
v(x)

Nions∑
j=1

M j(x)ξje
−ξj(uNmin(x)+uL(x)+w(x)+Θ(x)λv(x))

∣∣∣∣∣∣
≤ max

j
|ξj |‖v‖L∞(Ω)

4πe2
0

kBT

Nions∑
j=1

M j(x)e−ξj(u
N
min(x)+uL(x)+w(x))−ξjΘ(x)λv(x)

≤ max
j
|ξj |max

j
e|ξj |‖v‖L∞(Ω)‖v‖L∞(Ω)

4πe2
0

kBT

Nions∑
j=1

M j(x)e−ξj(u
N
min(x)+uL(x)+w(x))

= max
j
|ξj |max

j
e|ξj |‖v‖L∞(Ω)‖v‖L∞(Ω)B

(
x, uNmin(x) + uL(x) + w(x)

)
∈ L1(Ω), ∀λ ≤ 1.

(3.64)

From the Lebesgue dominated convergence theorem, by using (3.63) and (3.64), it follows

that the limit in (3.62) is equal to
∫
Ω

b
(
x, uNmin + uL + w

)
vdx, and therefore we obtain

a
(
uNmin, v

)
+

∫
Ω
b
(
x, uNmin + uL + w

)
vdx ≥ 0, ∀v ∈ H1

0 (Ω) ∩ L∞(Ω). (3.65)

This means that uN = uNmin is a solution to the weak formulation (3.47) for V = H1
0 (Ω)∩L∞(Ω)

and V = C∞0 (Ω). The uniqueness of the solution uN of (3.47) is done in the same way as the

uniqueness of (3.41). Now, it is clear that u = uN + uL ∈ H1
g is the unique solution to (3.41)

for the test spaces V = H1
0 (Ω) ∩ L∞(Ω) and V = C∞0 (Ω).

To show that uN = uNmin is also a solution to (3.47) with V = H1
0 (Ω) and that u = uN + uL

is a solution to (3.41) with V = H1
0 (Ω) we will prove the a priori L∞ bound on the solution

of (3.47) with V = H1
0 (Ω) ∩ L∞(Ω) and V = C∞0 (Ω).

A priori L∞ bound on the component uN

Next, we show that the solution to Problem (3.47) is essentially bounded regardless of which

test space V we have.

Proposition 3.18

The unique weak solution uN to Problem (3.47) belongs to L∞(Ω). Moreover, there is a

positive constant e > 0, depending only on d, Ω, εmin := min
x∈Ω

ε(x), such that ‖uN‖L∞(Ω)≤

‖uL + w‖L∞(Ωions)+e. If the charge neutrality condition (3.36) holds, then e = 0.

Proof. To prove that uN is bounded we apply Theorem 2.18 once again. The first step is to

show that (3.47) holds for the test functions

v = Gs(u
N ) := sgn(uN ) max{

∣∣uN ∣∣− s, 0} =


uN − s for x ∈

{
uN > s

}
,

0 for x ∈
{
uN ∈ [−s, s]

}
,

uN + s for x ∈
{
uN < −s

}
.

(3.66)
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with s ≥ ‖uL + w‖L∞(Ωions). We notice that similar test functions Gs(u
N ) have been used

in [112, Theorem B.2] in the context of linear elliptic problems.

It is easy to see that Gs(0) = 0 and that Gs(·) is Lipschitz continuous for any s. Therefore,

by Stampacchia’s theorem (e.g., see [90,112]) it follows that Gs(u
N ) ∈ H1

0 (Ω) and that the

weak partial derivatives of Gs(u
N ) are given by

∂Gs(u
N )

∂xi
=


∂uN

∂xi
for x ∈

{
uN > s

}
,

0 for x ∈
{
uN ∈ [−s, s]

}
,

∂uN

∂xi
for x ∈

{
uN < −s

}
.

(3.67)

Next, the functional Tb defined by 〈Tb, v〉 :=
∫
Ω

b(x, uN + uL + w)vdx, ∀v ∈ C∞0 (Ω) is bounded

and linear over the dense subspace C∞0 (Ω) of H1
0 (Ω) and b(x, uN + uL + w) ∈ L1

loc(Ω). This

fact follows from (3.47) and the fact that the functional a(uN , ·) belongs to H−1(Ω). Then, in

view of Theorem 2.18, to show that 〈Tb, Gs(uN )〉 =
∫
Ω

b(x, uN + uL + w)Gs(u
N )dx it suffices

to verify that

b(x, uN + uL + w)Gs(u
N ) ≥ f a.e. for some f ∈ L1(Ω). (3.68)

By choosing s ≥ ‖uL + w‖L∞(Ωions), using the monotonicity of b(x, ·), and recalling that

b(x, s) = 0 for all x ∈ Ωm ∪ ΩIEL, we obtain

• for x ∈ Ωions ∩
{
uN > s

}
:

b(x, uN + uL + w)Gs(u
N ) = b(x, uN + uL + w)(uN − s) ≥ b(x, 0)(uN − s);

• for x ∈ Ωions ∩
{
uN ∈ [−s, s]

}
:

b(x, uN + uL + w)Gs(u
N ) = 0;

• for x ∈ Ωions ∩
{
uN < −s

}
:

b(x, uN + uL + w)Gs(u
N ) = b(x, uN + uL + w)(uN + s) ≥ b(x, 0)(uN + s).

(3.69)

By taking into account the equality

b(x, 0) = − 4π

kBT

Nions∑
j=1

Mjξj = const for x ∈ Ωions, (3.70)

we see that b(x, 0) ∈ L∞(Ω) and hence b(x, 0)(uN − s) ∈ L1
(
Ωions ∩

{
uN > s

})
and

b(x, 0)(uN + s) ∈ L1
(
Ωions ∩

{
uN < −s

})
. Therefore, from (3.69) it follows that (3.68) holds

for the summable function f defined by

f(x) =


0 for x ∈ Ωm ∪ ΩIEL ∪

(
Ωions ∩

{
uN ∈ [−s, s]

})
,

b(x, 0)(uN − s) for x ∈ Ωions ∩
{
uN > s

}
,

b(x, 0)(uN + s) for x ∈ Ωions ∩
{
uN < −s

}
.

(3.71)



3.3. POISSON-BOLTZMANN EQUATION 59

Now we are ready to prove that uN ∈ L∞(Ω). First, we consider the case when the charge

neutrality condition (3.36) holds. From (3.68), (3.70), and (3.71), it follows that∫
Ω
b(x, uN + uL + w)Gs(u

N )dx ≥
∫
Ω

b(x, 0)Gs(u
N )dx = 0. (3.72)

Moreover, by using the definition of a(·, ·) and the expression (3.67) for the weak partial

derivatives of Gs(u
N ), we obtain

a(uN , Gs(u
N )) =

∫
Ω
ε∇uN · ∇Gs(uN ) =

∫
Ω
ε∇Gs(uN ) · ∇Gs(uN )dx

≥ εmin‖∇Gs(uN )‖2L2(Ω)≥
εmin

C2
P

‖Gs(uN )‖2L2(Ω), (3.73)

where CP is the constant in the inequality ‖v‖L2(Ω)≤ CP ‖∇v‖L2(Ω) that holds for all v ∈
H1

0 (Ω). Finally, using (3.47), (3.72), and (3.73) we obtain

‖Gs(uN )‖2L2(Ω)≤ 0 for all s ≥ ‖uL + w‖L∞(Ωions).

Consequently
∣∣uN ∣∣ ≤ s almost everywhere for all s ≥ ‖uL + w‖L∞(Ωions).

In the case where the charge neutrality condition (3.36) does not hold, we have∫
Ω
b(x, uN + uL + w)Gs(u

N )dx ≥
∫
Ω

b(x, 0)Gs(u
N )dx. (3.74)

We further estimate a(uN , Gs(u
N )) from below and −

∫
Ω

b(x, 0)Gs(u
N )dx from above using

the Sobolev embedding H1(Ω) ↪→ Lq(Ω) where q < ∞ for d = 2, and q = 2d
d−2 for d ≥ 3.

Let q∗ denote the Hölder conjugate to q. Then, q∗ = q
q−1 > 1 for d = 2, and q∗ = 2d

d+2

for d ≥ 3. In order to treat both cases in which we are interested simultaneously, namely

d = 2, 3, we can take q = 6 and q∗ = 6/5. By CE we denote the embedding constant in the

inequality ‖v‖L6(Ω)≤ CE‖v‖H1(Ω), ∀v ∈ H1(Ω), which depends only on the domain Ω and d.

For a(uN , Gs(u
N )), we have

a(uN , Gs(u
N )) =

∫
Ω
ε∇Gs(uN ) · ∇Gs(uN )dx ≥ εmin

1 + C2
P

‖Gs(uN )‖2H1(Ω) (3.75)

and for −
∫
Ω

b(x, 0)Gs(u
N )dx we obtain

−
∫
Ω

b(x, 0)Gs(u
N )dx = −

∫
A(s)

b(x, 0)Gs(u
N )dx ≤ ‖b(x, 0)‖Lq∗ (A(s))‖Gs(u

N )‖Lq(Ω)

≤ CE‖b(x, 0)‖Lq∗ (A(s))‖Gs(u
N )‖H1(Ω), (3.76)

where A(s) := {x ∈ Ω :
∣∣uN (x)

∣∣ > s}. Combining (3.47), (3.74), (3.75), and (3.76), we arrive

at the estimate

εmin

1 + C2
P

‖Gs(uN )‖H1(Ω)≤ CE‖b(x, 0)‖Lq∗ (A(s)). (3.77)
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The final step before applying Lemma 2.33 is to estimate the left-hand side of (3.77) from

below in terms of |A(h)| for h > s ≥ ‖uL + w‖L∞(Ωions) and the right-hand side of (3.77)

from above in terms of |A(s)|. Again, using the Sobolev embedding H1(Ω) ↪→ Lq(Ω) and

Hölder’s inequality yields

‖Gs(uN )‖H1(Ω)≥
1

CE

∫
Ω

∣∣Gs(uN )
∣∣q dx

 1
q

=
1

CE

 ∫
A(s)

∣∣∣∣uN ∣∣− s∣∣q dx


1
q

≥ 1

CE

 ∫
A(h)

(h− s)qdx


1
q

=
1

CE
(h− s) |A(h)|

1
q (3.78)

and

‖b(x, 0)‖Lq∗ (A(s))≤ ‖b(x, 0)‖L2(Ω)|A(s)|
2−q∗
2q∗ . (3.79)

Combining (3.77), (3.78), and (3.79), we obtain the following inequality for the nonnegative

and nonincreasing function ϕ(t) := |A(t)|

|A(h)| ≤

(
C2
E

(
1 + C2

P

)
εmin

‖b(x, 0)‖L2(Ω)

)q
|A(s)|

q−2
2

(h− s)q
for all h > s ≥ ‖uL + w‖L∞(Ωions).

(3.80)

Since q−2
2 = 2 > 1, by applying Lemma 2.33 we conclude that there is some e > 0 such that

0 < eq =

(
C2
E

(
1 + C2

P

)
εmin

‖b(x, 0)‖L2(Ω)

)q ∣∣A (‖uL + w‖L∞(Ωions)

)∣∣ q−4
2 2

q(q−2)
q−4

≤

(
C2
E

(
1 + C2

P

)
εmin

‖b(x, 0)‖L2(Ω)

)q
|Ω|

q−4
2 2

q(q−2)
q−4 =: eq

and
∣∣A (‖uL + w‖L∞(Ωions)+e

)∣∣ = 0. Hence ‖uN‖L∞(Ω)≤ ‖uL + w‖L∞(Ωions)+e.

From Proposition 3.18 it follows that the solution uN to (3.47) is essentially bounded for

all three choices of the test space V . As a result, the nonlinearity evaluated at uN is also

essentially bounded and thus by a standard density argument the weak formulations (3.47)

for all three choices of V are equivalent. We summarize the obtained in this section results in

the following theorem.

Theorem 3.19

If we assume that

(1) the function g specifying the Dirichlet boundary condition in (3.41) is given as the trace

of some function in H2(Ω),
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(2) in the case of the 3-term splitting Γ ∈ C0,1,

then the unique uL ∈ H1
g (Ω) is also in L∞(Ω). Moreover, the variational problem (3.57)

has a unique minimizer uNmin ∈ H1
0 (Ω) ∩ L∞(Ω) which coincides with the unique solution of

problem (3.47) for all three choices of the test space V . As a result, problem (3.41) has a

unique solution u = uN + uL ∈ H1
g (Ω) ∩ L∞(Ω) for all three choices of the test space V .

Existence, uniqueness, and boundedness of u without the additional splitting

into uN and uL

Finally, we note that one can obtain directly the existence of a solution to problem (3.41) by

considering the variational problem

Find umin ∈ H1
g (Ω) such that J(umin) = min

v∈H1
g (Ω)

J(v), (3.81)

where the functional J : H1
g (Ω)→ R∪{+∞} is defined by J := 1

2a(v, v) +
∫
Ω

B(x, v + w)dx−∫
Ω

f · ∇vdx. Again, here it is understood that J(v) = +∞ whenever B(x, v + w) /∈ L1(Ω),

i.e.,

J(v) :=


1

2
a(v, v) +

∫
Ω

B(x, v + w)dx−
∫
Ω

f · ∇vdx, if B(x, v + w) ∈ L1(Ω),

+∞, if B(x, v + w) /∈ L1(Ω).

(3.82)

It is easy to see that dom(J) is a convex set in H1
g (Ω) and that J is convex on dom(J) (the

argument is similar to the one in Remark 3.23). Since the set H1
g is a closed convex (and

therefore weakly closed) subset of the reflexive Banach space H1(Ω), J is strictly convex,

proper, coercive, and sequentially weakly lower semicontinuous functional, from Theorem 2.30

it follows that problem (3.81) has a unique minimizer umin over H1
g . That H1

g (Ω) is norm

closed in H1(Ω) and convex follows easily by the linearity and boundedness of the trace

operator γ2. That J is strictly convex, proper, and s.w.l.s.c. follows by similar arguments

to the ones made about JN . It is left to see that J is coercive over H1
g (Ω). Let ug ∈ H1(Ω)

be such that γ2(ug) = g on ∂Ω. For any v ∈ H1
g (Ω), we have γ2(v − ug) = 0. Since Ω is a

bounded Lipschitz domain, it follows by Theorem 2.16 that v − ug ∈ H1
0 (Ω). By applying

Poincaré’s inequality we obtain∣∣‖v‖H1(Ω)−‖ug‖H1(Ω)

∣∣ ≤ ‖v − ug‖H1(Ω)≤
√

1 + C2
P ‖∇(v − ug)‖L2(Ω)

≤
√

1 + C2
P

(
‖∇v‖L2(Ω)+‖∇ug‖L2(Ω)

)
.

(3.83)

After squaring both sides of (3.83) and using the inequality 2ab ≤ a2 + b2, ∀a, b ∈ R we

obtain the estimate

‖v‖2H1(Ω)−2‖v‖H1(Ω)‖ug‖H1(Ω)+‖ug‖H1(Ω)≤ 2
(
1 + C2

P

) (
‖∇v‖2L2(Ω)+‖∇ug‖

2
L2(Ω)

)
. (3.84)
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Now, the coercivity of J follows by recalling that B(x, s) ≥ 0, ∀x ∈ Ω, ∀s ∈ R and using

(3.84):

J(v) =
1

2
a(v, v) +

∫
Ω

B(x, v + w)dx−
∫
Ω

f · ∇vdx ≥ εmin

2
‖∇v‖2L2(Ω)−‖f‖L2(Ω)‖∇v‖L2(Ω)

≥ εmin

4
(
1 + C2

P

) (‖v‖2H1(Ω)−2‖v‖H1(Ω)‖ug‖H1(Ω)+‖ug‖H1(Ω)

)
(3.85)

− εmin

2
‖∇ug‖2H1(Ω)−‖f‖L2(Ω)‖v‖H1(Ω)→ +∞ whenever ‖v‖H1(Ω)→∞.

We can summarize the above considerations in the following theorem.

Theorem 3.20

Problem (3.81) has a unique solution umin ∈ H1
g (Ω).

By varying the functional J with directions v ∈ H1
0 (Ω) ∩ L∞(Ω) one can show in a similar

way to the approach for JN that the unique minimizer umin of J over H1
g (Ω) is a solution to

(3.41) for the test spaces V = H1
0 (Ω) ∩ L∞(Ω) and V = C∞0 (Ω). To show that umin is also a

solution to (3.41) with V = H1
0 (Ω) one has to show the a priori L∞ bound on the unique

solution of (3.41) with V = H1
0 (Ω)∩L∞(Ω) and V = C∞0 (Ω) (see p. 52 for the uniqueness of

a solution to (3.41)). This can be done in a similar way to the proof of Proposition 3.18 or

by observing that u = uN + uL ∈ L∞(Ω). The a priori L∞ estimate also follows from the

more general Theorem 3.29 which we prove in Section 3.4.

Once we know that the solution u of (3.41) with V = H1
0 (Ω) ∩ L∞(Ω) or V = C∞0 (Ω) is in

L∞(Ω), it follows that b(x, u+ w) ∈ L∞(Ω) and therefore by a standard density argument

we obtain that u is also the unique solution of (3.41) with V = H1
0 (Ω). We can summarize

the above considerations in the following theorem.

Theorem 3.21

The variational problem (3.81) has a unique minimizer umin ∈ H1
g (Ω) which coincides with the

unique solution of problem (3.41) for the test spaces V = C∞0 (Ω) and V = H1
0 (Ω) ∩ L∞(Ω).

Moreover, if we assume that

(1) the function g specifying the Dirichlet boundary condition in (3.41) is given as the trace

of some function in H2(Ω),

(2) in the case of the 3-term splitting Γ ∈ C0,1,

then umin ∈ L∞(Ω).

Remark 3.22

Denote F (v) :=
∫
Ω

B(x, v + uL + w)dx. We have a sequence {vn}∞n=1 such that for each

subsequence {vnm}∞m=1 one can find a further subsequence {vnms}
∞
s=1 for which



3.3. POISSON-BOLTZMANN EQUATION 63

F (v) ≤ lim inf
s→∞

F (vnms ). We claim that F (v) ≤ lim inf
n→∞

F (vn). To see this, suppose to the

contrary that F (v) > lim inf
n→∞

F (vn). Then, there exists a subsequence {vnm}∞m=1 such that

lim inf
n→∞

F (vn) = lim
k→∞

F (vnm) and therefore F (v) > lim
m→∞

F (vnm). But for this subsequence,

according to the assumptions on {vn}∞n=1, we can find a further subsequence {vnms}
∞
s=1 such

that

F (v) ≤ lim inf
s→∞

F (vnms ) = lim
s→∞

F (vnms ) = lim
m→∞

F (vnm) < F (v),

which is a contradiction with the assumption that F (v) > lim inf
n→∞

F (vn).

Remark 3.23

It is worth noting that dom(JN ) is a linear subspace of H1
0 (Ω) for d ≤ 2 and not a linear

subspace of H1
0 (Ω) if d ≥ 3. In dimension d ≤ 2, from [110, 179] we know that ev ∈ L2(Ω)

for any v ∈ H1
0 (Ω) and thus eλv1+µv2 ∈ L2(Ω) for any λ, µ ∈ R and any v1, v2 ∈ H1

0 (Ω).

On the other hand, if d ≥ 3, first observe that dom(JN ) =
{
v ∈ H1

0 (Ω) : B(x, v + w) ∈ L1(Ω)
}

,

where w := uL + w ∈ L∞(Ωions). For simplicity we consider the case of the PBE, i.e.,

B(x, v + w) = k
2

cosh(v + w). Let Ω = B(0, 1) and let Ωions = B(0, r) for some r < 1,

where B(0, r) denotes the ball in Rd, d ≥ 3 with radius r and a center at 0. We consider the

function v = ln 1
|x| ∈ H

1
0 (B(0, 1)). Since ev = 1

|x| ∈ L
1(Ωions) and eλv = 1

|x|λ
/∈ L1(Ωions) for

any λ ≥ d 1, we obtain∫
Ω

k
2

cosh(v + w)dx =

∫
Ωions

k
2
ions

(
ev+w + e−v−w

)
2

dx

≤1

2
k

2
ionse

‖w‖L∞(Ωions)

∫
Ωions

(
ev + e−v

)
dx ≤ 1

2
k

2
ionse

‖w‖L∞(Ωions)

 ∫
Ωions

evdx+ |Ωions|

 <∞

and ∫
Ω

k
2

cosh(λv + w)dx ≥ 1

2

∫
Ωions

k
2
ionse

λv+wdx ≥ 1

2
k

2
ionse

−‖w‖L∞(Ωions)

∫
Ωions

eλvdx =∞

for any λ > d.

This means that v ∈ dom(JN ), but λv /∈ dom(JN ) for any λ ≥ d. Therefore dom(JN ) is not

a linear space.

However, dom(JN ) ⊂ H1
0 (Ω) is a convex set. To see this, let v1, v2 ∈ dom(JN ), i.e.,

B(x, v1 + w), B(x, v2 + w) ∈ L1(Ω). Since B(x, ·) is convex it follows that for almost each

x ∈ Ω and every λ ∈ [0, 1] we have

B(x, λv1(x) + (1− λ)v2(x) + w(x)) ≤ λB(x, v1(x) + w(x)) + (1− λ)B(x, v2(x) + w(x)).

1For any d, using spherical coordinates, we have
∫

B(0,1)

1

|x|λ dx ∼
1∫
0

1
ρλ
ρd−1dρ =

1∫
0

1
ρλ−d+1 dρ <∞ if and only

if λ− d+ 1 < 1, i.e., if and only if λ < d.
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By integrating the above inequality over Ω we obtain∫
Ω

B(x, λv1 + (1− λ)v2 + w)dx ≤ λ
∫
Ω

B(x, v1 + w)dx+ (1− λ)

∫
Ω

B(x, v2 + w)dx <∞

and thus λv1 + (1− λ)v2 ∈ dom(JN ) for all λ ∈ [0, 1]. Hence dom(JN ) is convex.

Remark 3.24

One can also see that the functional 1
2a(v, v) is sequentially w.l.s.c. by noting that it is convex

and continuous in H1
0 (Ω). From the continuity in H1

0 (Ω) it follows that it is also sequentially

lower semicontinuous. Now, since 1
2a(v, v) is convex and s.l.s.c. it follows that it is also

sequentially w.l.s.c. (see, e.g. Corollary 3.9 in [96] or Corollary 2.2 in [65]). To see that
1
2a(v, v) is continuous in H1

0 (Ω) observe that

1

2
(a(v, v)− a(u, u)) =

1

2
(a(v, v) + a(v, u)− a(v, u)− a(u, u))

=
1

2
(a(v, v − u) + a(v − u, u)) ≤ εmax

(
‖v‖H1(Ω)‖v − u‖H1(Ω)+‖v − u‖H1(Ω)‖u‖H1(Ω)

)
,

where εmax := ‖ε‖L∞(Ω).

Remark 3.25

In dimension d = 3, the functional
∫
Ω

B(x, v + w)dx is not Gateaux differentiable at any

u ∈ H1
0 (Ω)∩L∞(Ω), where we have denoted w := uL+w ∈ L∞(Ωions). In fact

∫
Ω

B(x, v + w)dx

is discontinuous at every u ∈ H1
0 (Ω)∩L∞(Ω). This is easy to demonstrate with the paradigm

of the following example. Let Ωions = B(0, 2) ⊂ Ω be the ball centered at 0 with radius 2 and

for simplicity let B(x, v + w) = k
2

cosh(v + w). There exists a function z ∈ H1
0 (Ω) such that∫

Ωions

eλzdx = +∞ for any λ > 0. In particular, we can set z = φ |x|−1/3, where φ is a smooth

function equal to 1 in B(0, 1) and 0 in R3 \B(0, 2). Then z ∈ H1
0 (Ω), but eλz /∈ L1(Ωions) for

any λ > 0 since eλz > |x|−3 for small enough |x|. In this case, for any u ∈ H1
0 (Ω) ∩ L∞(Ω)

and any λ > 0 we have∫
Ω

k
2

cosh(u+ λz + w)dx ≥ 1

2

∫
Ωions

k
2
ionse

u+λz+wdx ≥ k
2
ionse

−‖u+w‖L∞(Ωions)

2

∫
Ωions

eλzdx = +∞.

Remark 3.26

With respect to the general case of (3.41) which includes both the 2-term and the 3-term

splittings, for the nonlinearity b(x, u+ w), evaluated at the solution u (if it exists), we have

that

b(x, u+ w)v ∈ L1(Ω) for all v ∈ V, (3.86)

where V is one of the spaces H1
0 (Ω), H1

0 (Ω)∩L∞(Ω), or C∞0 (Ω). Moreover, from (3.41) and

the fact that a(u, ·),
∫
Ω

f · ∇(·)dx define bounded linear functionals over H1
0 (Ω) it follows that
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the nonlinearity b(x, u+ w) defines a bounded linear functional for all elements in the dense

subspace V , i.e., ∣∣∣∣∣∣
∫
Ω

b(x, u+ w)v

∣∣∣∣∣∣ ≤ C‖v‖H1(Ω) for all v ∈ V. (3.87)

If we could conclude from (3.86) and (3.87) that b(x, u + w) is in L
6
5 (Ω) (the inverse of

Hölder’s inequality), then a density argument will give us that any solution u of (3.41) with

V = H1
0 (Ω) ∩ L∞(Ω) and V = C∞0 (Ω) is also a solution with V = H1

0 (Ω). However, the

following example, showed to the author by C. Remling [106], demonstrates that this might

not be necessarily true: take the function z = 1
1−|x| , where Ω is the unit ball B1 := B(0, 1) in

R3. Then z /∈ L1(Ω), but

∣∣∣∣∣ ∫B1

zvdx

∣∣∣∣∣ . ‖v‖H1(B1), ∀v ∈ H1
0 (B1). Indeed, we have

∫
B1

|zv|dx =

∫
B1

1

1− |x|
|v|dx =

∫
B1

1

(1− |x|)1/4
· |v|

(1− |x|)3/4
dx

≤

∫
B1

dx

(1− |x|)1/2

∫
B1

v2

(1− |x|)3/2
dx

1/2

= C1

∫
B1

v2

(1− |x|)3/2
dx

1/2

,

(3.88)

where C1 =

(∫
B1

dx
(1−|x|)1/2

)1/2

. If v is a smooth function in C∞0 (B1), we can obtain the

estimate ∫
B1

v2(x)

(1− |x|)3/2
dx ≤ C2‖v‖2H1(B1) (3.89)

for some C2 > 0. Now, from (3.88) and (3.89) it follows that∫
B1

|zv|dx ≤ C1C2‖v‖H1(B1), ∀v ∈ C∞0 (B1). (3.90)

By the density in H1
0 (Ω) of compactly supported smooth functions, (3.90) also holds for all

v ∈ H1
0 (B1). To see this, let v ∈ H1

0 (B1) be an arbitrary function. Then there exists a

sequence {vn}∞n=1 ⊂ C∞0 (B1) such that ‖vn − v‖H1(B1)→ 0. Passing to a subsequence we

obtain that vnk(x) → v(x) a.e x ∈ B1 and also ‖vnk‖H1(B1)→ ‖v‖H1(B1). For each vnk we

have ∫
B1

|zvnk |dx ≤ C1C2‖vnk‖H1(B1).

We can apply Fatou’s lemma to the measurable and positive functions |zvnk | to obtain∫
B1

|z(x)v(x)|dx =

∫
B1

lim inf
k→∞

|z(x)vnk(x)|dx ≤ lim inf
k→∞

∫
B1

|zvnk |dx

≤ lim inf
k→∞

C1C2‖vnk‖H1(B1) = C1C2‖v‖H1(B1).
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Showing the estimate in (3.89): First observe that for any x 6= 0 it holds

v(x) = v(x)− v(x/|x|) = −
1/|x|∫
1

∇v(tx) · xdt.

By using the Cauchy-Schwartz inequality and the fact that 0 < |x| ≤ 1, we obtain the estimate

v2(x) ≤
1/|x|∫
1

|x|2 dt
1/|x|∫
0

|∇v(tx)|2 dt = |x| (1− |x|)
1/|x|∫
0

|∇v(tx)|2 dt (3.91)

≤
(

1

|x|
− 1

) 1/|x|∫
1

|∇v(tx)|2 dt. (3.92)

By dividing both sides of (3.91) by (1− |x|)3/2 and then integrating in the disk A1/2 :=

B1 \B1/2 we obtain

∫
A1/2

v2(x)

(1− |x|)3/2
dx ≤

∫
A1/2

 1

|x|
√

1− |x|

1/|x|∫
1

|∇v(tx)|2 dt

 dx ≤

∫
A1/2

 2√
1− |x|

1/|x|∫
1

|∇v(tx)|2 dt

 dx.

Now we make a spherical change of variables, i.e.,

x1 = r sin θ cosϕ

x2 = r sin θ sinϕ

x3 = r cos θ

θ ∈ [0, π], ϕ ∈ [0, 2π), r ∈ [1/2, 1]

and obtain

∫
A1/2

 2√
1− |x|

1/|x|∫
1

|∇v(tx)|2 dt

 dx

=

1∫
1/2

π∫
0

2π∫
0

2r2 sin θ√
1− r

1/r∫
1

(
|∇v(tr sin θ cosϕ, tr sin θ sinϕ, tr cos θ)|2 dt

)
dϕdθdr. (3.93)

We make one more change of variables in the integral in t: tr = l and we can continue (3.93)
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as follows

∫
A1/2

 2√
1− |x|

1/|x|∫
1

|∇v(tx)|2 dt

 dx

=

1∫
1/2

 2r2

√
1− r

π∫
0

2π∫
0

1∫
r

sin θ

r
|∇v(l sin θ cosϕ, l sin θ sinϕ, l cos θ)|2 dldϕdθ

 dr

≤
1∫

1/2

 2r√
1− r

π∫
0

2π∫
0

1∫
1/2

4l2 sin θ |∇v(l sin θ cosϕ, l sin θ sinϕ, l cos θ)|2 dldϕdθ

 dr

=

1∫
1/2

8r√
1− r

dr

∫
A1/2

|∇v(x)|2 dx = C3‖∇v‖2L2(A1/2),

(3.94)

where C3 :=
1∫

1/2

8r√
1−rdr. Finally, by using (3.94) we obtain the following estimate:

∫
B1

v2(x)

(1− |x|)3/2
dx =

∫
B1/2

v2(x)

(1− |x|)3/2
dx+

∫
A1/2

v2(x)

(1− |x|)3/2
dx

≤
∫

B1/2

v2(x)

(1− 0.5)3/2
dx+ C3‖∇v‖2L2(A1/2)=

√
8‖v‖2L2(B1/2)+C3‖∇v‖2L2(A1/2)

≤
√

8‖v‖2H1(B1/2)+C3‖v‖2H1(A1/2)≤ max{
√

8, C3}‖v‖2H1(B1).

Therefore, (3.89) holds with C2 := max{
√

8, C3}.

3.3.4 Regularity of the component u in the 2-term and 3-term splittings

We have proved that if w ∈ L∞(Ωions), f ∈ [Ls(Ω)]d for some s > d and the function g,

specifying the Dirichlet boundary condition, is given as the trace of some function ug ∈ H2(Ω)

(for example the function uLg in (3.54) on p. 53), then the regular component u in the 2-term

and 3-term splittings defined by (3.41) is essentially bounded.

In the case of the 2-term splitting, the conditions on w and f are obviously satisfied since

w = G ∈ L∞(Ωions) and f = χΩs(εm − εs)∇G ∈ [L∞(Ω)]d.

In the case of the 3-term splitting, we have w = 0 and f = −χΩmεm∇uH + χΩsεm∇G which

is in [Ls(Ω)]d for some s > d if ∇uH is in [Ls(Ωm)]d. The latter is satisfied, for example, if

Γ ∈ C0,1 (see the discussion in Section 3.2.3).
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From the boundedness of u it follows that b(x, u0 + ug + w) ∈ L∞(Ω), where u0 := u− ug ∈
H1

0 (Ω) ∩ L∞(Ω). Then u0 satisfies the linear problem

a(u0, v) = −
∫
Ω

b(x, u0 + ug + w)vdx+

∫
Ω

(−ε∇ug + f) · ∇vdx for all v ∈ H1
0 (Ω). (3.95)

The right-hand side of (3.95) defines a bounded linear functional over the space W 1,p
0 (Ω) for

some p < d
d−1 . Therefore, if we additionally assume that Γ ∈ C1, by Theorem 2.34 it follows

that u0 ∈W 1,q
0 (Ω) for some q > d. As a consequence, u is also in W 1,q(Ω) and thus Hölder

continuous. The Hölder continuity of u0 (and hence of u) also follows from the regularity

results of De Giorgi-Nash-Moser applied to (3.95) (see, e.g., Theorem 2.12 in [107], p. 65,

Theorem 3.5 in [50]). In the case of the 2-term splitting, no assumptions on Γ are required,

and in the case of the 3-term splitting we require Γ ∈ C0,1 to ensure that ∇uH ∈ [Ls(Ωm)]d

for some s > d.

Theorem 3.27

Assume that the function g prescribing the Dirichlet boundary condition on ∂Ω is given as

the trace of some function ug ∈ H2(Ω). The following statements hold true:

(i) the unique u ∈ H1(Ω) in the 2-term splitting defined by the standard weak formulation

(3.50) is Hölder continuous in Ω and thus belongs to L∞(Ω);

(ii) if Γ ∈ C0,1, then the unique u ∈ H1(Ω) in the 3-term splitting, defined by the standard

weak formulation (3.52) is also Hölder continuous in Ω and thus belongs to L∞(Ω);

(iii) if we assume additionally that Γ ∈ C1, then for both 2-term and 3-term splittings u is

in W 1,q(Ω) for some q > d and hence it is also Hölder continuous;

3.4 A more general semilinear elliptic equation

Results on a priori L∞ estimates for linear elliptic equations of second order appear for

example in [112, 174] and for nonlinear elliptic equations in [19, 20, 26, 120, 178]. Vital

techniques in the analysis of these papers are different adaptations of the L∞ regularity

procedure introduced by Stampacchia - for example using different ”nonlinear” test functions

with respect to Gk(u). In [26], the authors prove an L∞ estimate on the weak solutions,

which are already in W 1,p
0 (Ω) ∩ L∞(Ω), of the general nonlinear problem

A(u) +H(x, u,∇u) = f(x)− div g(x) in Ω, u = 0 on ∂Ω (3.96)

where A is a Leray-Lions differential operator and H is a nonlinearity which also depends on

the gradient of u and such that the growth condition |H(x, s, ξ)|≤ C0 + C1|ξ|p, for a.e x ∈
Ω, ∀s ∈ R, ∀ξ ∈ Rd is fulfilled. More precisely, the authors show that for a weak solution

u ∈W 1,p
0 (Ω) ∩ L∞(Ω) it is true that ‖u‖L∞(Ω)≤ γ, where γ depends only on the data. Then

they apply this result to a family of approximate equations for (3.96) in order to prove the
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existence of at least one bounded solutiuon of (3.96).

In the result presented below, we assume a linear operator A and a nonlinearity b(x, s)

which does not depend on the gradient of the solution. We allow for a nonhomogeneous

Dirichlet boundary condition prescribed by a function g ∈ H1(Ω) and we do not assume

any growth or sign conditions on b(x, ·). It seems that such nonlinearities do not satisfy the

growth condition posed on H and thus they are not covered by the result in [26]. With the

assumptions we make, we prove that every weak solution u ∈ H1
γ2(g)(Ω) must be in L∞(Ω)

with ‖u‖L∞(Ω)≤ γ where γ depends only on the data of the problem. As in [26], our L∞

result seems to be optimal in the sense that when b(x, ·) is a linear term, u ∈ L∞(Ω) for

s > d, r > d
2 which coincides with the classical (optimal) results of Stampacchia, De Giorgi,

and Moser in the linear case (see, e.g. the references in [26]) . In [20, 178], the authors prove

L∞ estimates on the solution of very general nonlinear elliptic equations but with a nonlinear

first order term with a growth condition which seems not to cover the case of exponential

nonlinearities with respect to u, as it is the case of the general PBE, and homogeneous

Dirichlet boundary conditions. In [19, 120], L∞ estimates are proved for nonlinear elliptic

equations with homogeneous Dirichlet boundary conditions and with degenerate coercivity

but without a nonlinear first order term.

Definition 3.28 (see, e.g. Definition 3.5 in [55])

Let Ω ⊂ Rn be an open set and let f : Ω×R→ R∪{+∞}. Then f is said to be a Carathéodory

function if

(i) s 7→ f(x, s) is continuous for almost every x ∈ Ω,

(ii) x 7→ f(x, s) is measurable for every s ∈ R.

If f is a Carathéodory function and u : Ω→ R is measurable, then it follows that the function

g : Ω → R ∪ {+∞} defined by g(x) = f(x, u(x)) is measurable (see, e.g., Proposition 3.7

in [55]).

Theorem 3.29 (A priori L∞ estimate)

Let Ω ⊂ Rd, d ≥ 2 be a bounded Lipschitz domain and let b(x, s) : Ω×R→ R be a Carathéodory

function such that

c1(x, s) ≤ b(x, s) ≤ c2(x, s) for a.e x ∈ Ω, ∀s ∈ R, (3.97)

where c1, c2 : Ω× R→ R are Carathéodory functions which are nondecreasing in the second

argument for a.e x ∈ Ω. Let a(u, v) =
∫
Ω

A∇u · ∇vdx =
∫
Ω

d∑
i,j=1

aij(x) ∂u∂xi
∂v
∂xj

dx, where

A = (aij), aij(x) ∈ L∞(Ω), and aij(x) satisfy the uniform ellipticity condition

d∑
i,j=1

aij(x)ξiξj ≥ µ1 |ξ|2 , ∀x ∈ Ω, ∀ξ ∈ Rd
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for some positive constant µ1. Finally, let g ∈ H1(Ω) and let

u ∈ H1
γ2(g)(Ω) be such that b(x, u+ w)v ∈ L1(Ω), ∀v ∈ V and

a(u, v) +

∫
Ω
b(x, u+ w)vdx =

∫
Ω

(f0v + f · ∇v) dx, ∀v ∈ V,
(3.98)

where f = (f1, . . . , fd) and the test space V can be either C∞0 (Ω), H1
0 (Ω)∩L∞(Ω), or H1

0 (Ω).

Provided that g, w ∈ L∞(Ω), ∇g, f ∈ [Ls(Ω)]d, f0, c1(x, g + w), c2(x, g + w) ∈ Lr(Ω),

where s > d, and r > d
2 , then ‖u‖L∞(Ω)≤ γ where γ depends only on the data, i.e, µ1,

|Ω|, ‖aij‖L∞(Ω), ‖g‖L∞(Ω), ‖w‖L∞(Ω), ‖∇g‖Ls(Ω), ‖f‖Ls(Ω), ‖f0‖Lr(Ω), ‖c1(x, g + w)‖Lr(Ω),

‖c2(x, g + w)‖Lr(Ω).

Remark 3.30

Note that in Theorem 3.29, we do not assert existence of a solution to problem (3.98).

Remark 3.31

Note that in Theorem 3.29, if b(x, ·) is nondecreasing for almost each x ∈ Ω, then c1(x, ·)
and c2(x, ·) can be taken equal to b(x, ·). Notice also that there is neither sign condition nor

growth condition on the nonlinearity b(x, ·).

Remark 3.32

Note that in Theorem 3.29, it is enough to consider a domain Ω that is bounded and such

that the trace operator is well defined and the Sobolev embeddings that are used in the proof

below hold.

Remark 3.33

Since c1(x, ·) and c2(x, ·) are nondecreasing it follows that

c1

(
x,−‖g + w‖L∞(Ω)

)
≤ c1(x, g + w) ≤ c1

(
x, ‖g + w‖L∞(Ω)

)
and

c2

(
x,−‖g + w‖L∞(Ω)

)
≤ c2(x, g + w) ≤ c2

(
x, ‖g + w‖L∞(Ω)

)
.

Then the condition that c1(x, g + w), c2(x, g + w) ∈ Lr(Ω) where r > d
2 can be achieved if

c1(x, s) and c2(x, s) define functions in Lr(Ω) for every s ∈ R. For example, this condition will

be fulfilled if c1(x, s) = k1(x)a1(s) and c2(x, s) = k2(x)a2(s) where k1, k2 ≥ 0, k1, k2 ∈ Lr(Ω)

and a1, a2 : R→ R are nondecreasing and continuous functions.

Remark 3.34

From Theorem 3.29 it follows that the nonlinearity evaluated at the solution u (if it exists),

is in L∞(Ω), i.e., b(x, u + w) ∈ L∞(Ω). Therefore, the classical regularity results of De

Giorgi-Nash-Moser (see, e.g., Theorem 2.12 in [107], p. 65, Theorem 3.5 in [50]) for linear

elliptic equations can be applied to the unique solution z (by Lax-Milgram Theorem) of the

linear equation

a(z, v) =

∫
Ω

[(−b(x, u+ w) + f0) v + f · ∇v] dx, ∀v ∈ H1
0 (Ω). (3.99)
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and conclude that z ≡ u is Hölder continuous under the assumption that the trace of the

function g on ∂Ω, prescribing the Dirichlet boundary condition, is also Hölder continuous.

Proof of Theorem 3.29. The idea of the proof is based on the proof of Theorem B.2 in [112],

where the L∞ estimate is proved for a linear elliptic problem tested with the space V = H1
0 (Ω).

We recall that the set H1
γ2(g)(Ω) is defined as all functions in H1(Ω) that are equal to γ2(g)

on ∂Ω in the sense of traces. We rewrite (3.98) in the following homogenized form:

a(u− g, v) = −
∫

Ω
b(x, u+ w)vdx− a(g, v) +

∫
Ω

(f0v + f · ∇v) dx, ∀v ∈ V. (3.100)

Similarly to [112], we construct the following test functions

Gk(u− g) = (u− g)k :=


u− g − k, a.e on {(u− g)(x) > k},
0, a.e on {|(u− g)(x)|≤ k},
u− g + k, a.e on {(u− g)(x) < −k},

(3.101)

for any k ≥ 0, where (u− g)0 := u− g. Since Gk(t) = sign(t)(|t| − k)+ is Lipschitz continuous

with Gk(0) = 0 and u− g ∈ H1
0 (Ω), by Stampacchia’s theorem (e.g., see [90,112]) it follows

that Gk(u− g) ∈ H1
0 (Ω), ∀k ≥ 0. Moreover, the weak partial derivatives are given by

∂(u− g)k
∂xi

=


∂(u−g)
∂xi

, a.e on {(u− g)(x) > k},
0, a.e on {|(u− g)(x)|≤ k},
∂(u−g)
∂xi

, a.e on {(u− g)(x) < −k}.
(3.102)

We have the Sobolev Embedding H1(Ω) ↪→ Lq(Ω) where q =∞ for d = 1, q <∞ for d = 2,

and q = 2d
d−2 for d > 2. With q∗ we will denote the Hölder conjugate to q. Thus q∗ = 1 for

d = 1, q∗ = q
q−1 > 1 for d = 2, and q∗ = 2d

d+2 for d > 2. With CE we denote the embedding con-

stant in the inequality ‖u‖Lq(Ω)≤ CE‖u‖H1(Ω), which depends only on the domain Ω, d, and q.

Testing with Gk(u− g)

By applying again Theorem 2.18, we will show that we can test equation (3.100) with Gk(u−g)

for any k ≥ 0, as well as with u− g, which is not obvious because Gk(u− g) and u− g need

not be in the test space V . For this observe that∫
Ω
b(x, u+ w)vdx = −a(u, v) +

∫
Ω

(f0v + f · ∇v) dx, ∀v ∈ V (3.103)

and that the right-hand side of (3.103) defines a bounded linear functional over H1
0 (Ω):

|a(u, v)| ≤

 d∑
i,j=1

‖aij‖L∞(Ω)

 ‖u‖H1(Ω)‖v‖H1(Ω), ∀v ∈ H1
0 (Ω) (3.104)

and ∣∣∣∣∣∣
∫
Ω

(f0v + f · ∇v) dx

∣∣∣∣∣∣ ≤ ‖f0‖Lq∗ (Ω)‖v‖Lq(Ω)+‖f‖L2(Ω)‖∇v‖L2(Ω)

≤CE‖f0‖Lq∗ (Ω)‖v‖H1(Ω)+‖f‖L2(Ω)‖v‖H1(Ω), ∀v ∈ H1(Ω).

(3.105)
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From (3.103), (3.104), and (3.105), it is clear that the linear functional Tb defined by the

formula 〈Tb, v〉 =
∫

Ω b(x, u+ w)vdx, ∀v ∈ V is bounded in the norm of H1(Ω) over the

dense subspace V and therefore it can be uniquely extended by continuity to a functional

T b ∈ H−1(Ω) over the whole space H1
0 (Ω). By Theorem 2.18, if we show that b(x, u+w)(u−

g)k ≥ fk(x) for some function fk ∈ L1(Ω), then it will follow that b(x, u+w)(u− g)k ∈ L1(Ω)

and that 〈T b, (u− g)k〉 =
∫

Ω b(x, u+ w)(u− g)kdx. Since the extension T b is also equal to

the right hand side of (3.103), we will also obtain that

a(u− g, (u− g)k) =−
∫

Ω
b(x, u+ w)(u− g)kdx− a(g, (u− g)k)

+

∫
Ω

(f0(u− g)k + f · ∇(u− g)k) dx, ∀k ≥ 0.

(3.106)

By using the definition (3.101) of (u− g)k we can write

b(x, u+ w)(u− g)k =


b(x, u+ w)(u− g − k), a.e on {(u− g)(x) > k},
0, a.e on {|(u− g)(x)| ≤ k},
b(x, u+ w)(u− g + k), a.e on {(u− g)(x) < −k}.

Therefore, on the set {(u− g)(x) > k} we obtain the estimate

b(x, u+ w)(u− g − k) ≥ c1(x, u+ w)(u− g − k) ≥ c1(x, g + w)(u− g − k), (3.107)

and on the set {(u− g)(x) < −k} the estimate

b(x, u+ w)(u− g + k) ≥ c2(x, u+ w)(u− g + k) ≥ c2(x, g + w)(u− g + k). (3.108)

If we define the function fk(x) through the equality

fk(x) :=


c1(x, g(x) + w(x))(u(x)− g(x)− k), a.e on {(u− g)(x) > k},
0, a.e on {|(u− g)(x)| ≤ k},
c2(x, g(x) + w(x))(u(x)− g(x) + k), a.e on {(u− g)(x) < −k},

(3.109)

then fk will be in L1(Ω) if c1(x, g +w)(u− g − k) and c2(x, g +w)(u− g + k) ∈ L1(Ω), since

|fk(x)| ≤ |c1(x, g(x))(u(x)− g(x)− k)|+ |c2(x, g(x))(u(x)− g(x) + k)| a.e x ∈ Ω.

To ensure that c1(x, g + w)(u − g − k) ∈ L1(Ω) and c2(x, g + w)(u − g + k) ∈ L1(Ω), it is

enough to require that c1(x, g + w), c2(x, g + w) ∈ Lq∗(Ω). In this case, by Theorem 2.18 it

follows that b(x, u+ w)(u− g)k ∈ L1(Ω) for each k ≥ 0 and that (3.106) holds.

Estimation of the terms in (3.106)

Now the goal is to show that the measure of the set A(k) becomes zero for all k ≥ k1 > 0,

where for k ≥ 0 the set A(k) is defined by

A(k) := {x ∈ Ω : |(u− g)(x)|> k}.



3.4. A MORE GENERAL SEMILINEAR ELLIPTIC EQUATION 73

This would mean that |u− g| ≤ k1 for almost each x ∈ Ω. The idea to show this is to

obtain an inequality of the form (2.11) in Lemma 2.33 for the nonnegative and nonincreasing

function ϕ(k) := |A(k)|. To obtain such an inequality we estimate from below the term on

the left-hand side of (3.106) and from above the terms on the right-hand side of (3.106).

First, by using (3.107) and (3.108) we observe that∫
Ω

b(x, u+ w)(u− g)kdx =

∫
A(k)

b(x, u+ w)(u− g)kdx

=

∫
{u−g>k}

b(x, u+ w)(u− g − k)dx+

∫
{u−g<−k}

b(x, u+ w)(u− g + k)dx

≥
∫

{u−g>k}

c1(x, g + w)(u− g − k)dx+

∫
{u−g<−k}

c2(x, g + w)(u− g + k)dx

=

∫
A(k)

c(x, g + w)(u− g)kdx,

(3.110)

where the function c : Ω× R→ R ∪ {+∞} is defined by

c(x, g(x) + w(x)) :=

{
c1(x, g(x) + w(x)), a.e on {(u− g)(x) ≥ 0},
c2(x, g(x) + w(x)), a.e on {(u− g)(x) < 0}.

Now, we estimate the left-hand side of (3.106) from below. First by using the expression

(3.102) for the weak partial derivatives of Gk(u− g), then the coercivity of a(·, ·), and finally

Poincaré’s inequality, we obtain

a(u− g, (u− g)k) =

∫
Ω

d∑
i,j=1

aij
∂(u− g)

∂xi

∂(u− g)k
∂xj

dx

=

∫
A(k)

d∑
i,j=1

aij
∂(u− g)k

∂xi

∂(u− g)k
∂xj

dx

=a((u− g)k, (u− g)k) ≥ µ1‖∇(u− g)k‖2L2(Ω)≥
µ1

C2
P + 1

‖(u− g)k‖2H1(Ω)

(3.111)

By combining (3.106) with the estimates (3.110) and (3.111) we obtain the intermediate

estimate

µ1

C2
P + 1

‖(u− g)k‖2H1(Ω) ≤

∣∣∣∣∣∣∣
∫

A(k)

c(x, g + w)(u− g)kdx

∣∣∣∣∣∣∣+ |a(g, (u− g)k)|

+

∣∣∣∣∣∣∣
∫

A(k)

f0(u− g)kdx

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∫

A(k)

f · ∇(u− g)kdx

∣∣∣∣∣∣∣ .
(3.112)
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We continue by estimating from above all terms on the right-hand side of (3.112). By applying

Hölder’s inequality we obtain∣∣∣∣∣∣∣
∫

A(k)

f0(u− g)kdx

∣∣∣∣∣∣∣ ≤ ‖f0‖Lq∗ (A(k))‖(u− g)k‖Lq(Ω)

≤ CE‖f0‖Lq∗ (A(k))‖(u− g)k‖H1(Ω).

(3.113)

Thus if f0 ∈ Lr(Ω) with r > q∗, again by using Hölder’s inequality we obtain

‖f0‖q
∗

Lq∗ (A(k))
=

∫
A(k)

|f0|q
∗︸ ︷︷ ︸

∈L
r
q∗ (Ω)

1dx ≤

 ∫
A(k)

|f0|r dx


q∗
r
 ∫
A(k)

1dx


r−q∗
r

= ‖f0‖q
∗

Lr(A(k))|A(k)|
r−q∗
r .

By combining the last estimate with (3.113), we obtain∣∣∣∣∣
∫
A(k)

f0(u− g)kdx

∣∣∣∣∣ ≤ CE‖f0‖Lr(Ω)|A(k)|
r−q∗
rq∗ ‖(u− g)k‖H1(Ω). (3.114)

Similarly, we estimate (r > q∗)∣∣∣∣∣∣∣
∫

A(k)

c(x, g + w)(u− g)kdx

∣∣∣∣∣∣∣ ≤ ‖c(x, g + w)‖Lq∗ (A(k))‖(u− g)k‖Lq(Ω)

≤ CE‖c(x, g + w)‖Lr(Ω)|A(k)|
r−q∗
rq∗ ‖(u− g)k‖H1(Ω).

(3.115)

We continue with the estimation of the fourth term in (3.112):∣∣∣∣∣∣∣
∫

A(k)

f · ∇(u− g)kdx

∣∣∣∣∣∣∣ ≤ ‖f‖L2(A(k))‖(u− g)k‖H1(Ω) (3.116)

If f ∈ [Ls(Ω)]d with s > 2, by using Hölder’s inequality we obtain

‖f‖2L2(A(k))=

∫
A(k)

|f |2︸︷︷︸
∈L

s
2 (Ω)

1dx ≤

 ∫
A(k)

|f |s dx


2
s
 ∫
A(k)

1dx


s−2
s

= ‖f‖2Ls(A(k))|A(k)|
s−2
s ,

and hence by combining with (3.116), we arrive at the estimate∣∣∣∣∣∣∣
∫

A(k)

f · ∇(u− g)kdx

∣∣∣∣∣∣∣ ≤ ‖f‖Ls(Ω)|A(k)|
s−2
2s ‖(u− g)k‖H1(Ω). (3.117)
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It is left to estimate the second term on the right-hand side of (3.112):

|a(g, (u− g)k)| =

∣∣∣∣∣∣
∫
Ω

d∑
i,j=1

aij
∂g

∂xi

∂(u− g)k
∂xj

dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

A(k)

d∑
i,j=1

aij
∂g

∂xi

∂(u− g)

∂xj
dx

∣∣∣∣∣∣∣
≤

d∑
i,j=1

‖aij‖L∞(Ω)

∫
A(k)

∣∣∣∣ ∂g∂xi
∣∣∣∣ ∣∣∣∣∂(u− g)

∂xj

∣∣∣∣ dx ≤
 d∑
i,j=1

‖aij‖L∞(Ω)

 ∫
A(K)

|∇g| |∇(u− g)| dx

≤

 d∑
i,j=1

‖aij‖L∞(Ω)

 ‖∇g‖L2(A(k))‖(u− g)k‖H1(Ω). (3.118)

Similarly to the estimate of ‖f‖L2(A(k)), if ∇g ∈ [Ls(Ω)]d with s > 2, by applying Hölder’s

inequality we can obtain the estimate

‖∇g‖2L2(A(k))=

∫
A(k)

|∇g|2︸ ︷︷ ︸
∈L

s
2 (Ω)

1dx ≤

 ∫
A(k)

|∇g|s dx


2
s
 ∫
A(k)

1dx


s−2
s

= ‖∇g‖2Ls(A(k))|A(k)|
s−2
s

and by combining with (3.118), we arrive at the estimate

|a(g, (u− g)k)| ≤

 d∑
i,j=1

‖aij‖L∞(Ω)

 ‖∇g‖Ls(Ω)|A(k)|
s−2
2s ‖(u− g)k‖H1(Ω). (3.119)

Combining (3.112) with the estimates (3.114), (3.115), (3.117), and (3.119) for the right-hand

side terms in (3.112), and then dividing by ‖(u− g)k‖H1(Ω), we obtain

µ1

C2
P + 1

‖(u− g)k‖H1(Ω)

≤CE‖c(x, g + w)‖Lr(Ω)|A(k)|
r−q∗
rq∗ +

 d∑
i,j=1

‖aij‖L∞(Ω)

 ‖∇g‖Ls(Ω)|A(k)|
s−2
2s

+ CE‖f0‖Lr(Ω)|A(k)|
r−q∗
rq∗ + ‖f‖Ls(Ω)|A(k)|

s−2
2s .

(3.120)

Now, it is left to estimate the left-hand side of (3.120) from below in terms of the measure

of the set A(h) for h > k. We use again the Sobolev embedding theorem and the fact that
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A(k) ⊃ A(h), ∀h > k ≥ 0:

‖(u− g)k‖H1(Ω)≥
1

CE
‖(u− g)k‖Lq(Ω)=

1

CE

∫
Ω

|(u− g)k|q dx

 1
q

=
1

CE

 ∫
A(k)

∣∣∣∣∣∣|u− g| − k︸ ︷︷ ︸
>0

∣∣∣∣∣∣
q

dx


1
q

=
1

CE

 ∫
A(k)\A(h)

(|u− g| − k)q dx+

∫
A(h)

(|u− g| − k)q dx


1
q

≥ 1

CE

 ∫
A(h)

(h− k)qdx


1
q

=
1

CE
(h− k) |A(h)|

1
q .

(3.121)

From (3.120) and (3.121) it follows that

(h− k) |A(h)|
1
q

≤
CE(C2

P + 1)

µ1

CE‖c(x, g + w)‖Lr(Ω)|A(k)|
r−q∗
rq∗ +

 d∑
i,j=1

‖aij‖L∞(Ω)

 ‖∇g‖Ls(Ω)|A(k)|
s−2
2s

+CE‖f0‖Lr(Ω)|A(k)|
r−q∗
rq∗ + ‖f‖Ls(Ω)|A(k)|

s−2
2s

 ≤ CM (|A(k)|
s−2
2s + |A(k)|

r−q∗
rq∗

)
, (3.122)

where

CM :=

CE(C2
P + 1)

µ1
max

CE

(
‖c(x, g + w)‖Lr(Ω)+‖f0‖Lr(Ω)

)
,

 d∑
i,j=1

‖aij‖L∞(Ω)

 ‖∇g‖Ls(Ω)+‖f‖Ls(Ω)

.
We have obtained the following inequality for the measure of A(k):

(h− k) |A(h)|
1
q ≤ CM

(
|A(k)|

s−2
2s + |A(k)|

r−q∗
rq∗

)
, ∀h > k ≥ 0. (3.123)

Since u − g is summable it follows that |A(k)| = meas ({x ∈ Ω : |(u− g)(x)| > k})→ 0

monotonically decreasingly as k → ∞. For this reason, there exists a k0 > 0 such that

|A(k)| ≤ 1, ∀k ≥ k0 (if |Ω| ≤ 1, this is satisfied for all k ≥ 0). Therefore (3.123) takes the

form

(h− k) |A(h)|
1
q ≤ 2CM |A(k)|min { s−2

2s
, r−q

∗
rq∗ } , ∀h > k ≥ k0,
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which is equivalent to the inequality

|A(h)| ≤ (2CM )q
|A(k)|min { s−2

2s
, r−q

∗
rq∗ }q

(h− k)q
, ∀h > k ≥ k0. (3.124)

However, we want to find a k0 which depends only on the data of the problem. For this, observe

that from (3.112) for k = 0, using Hölder’s inequality and the embedding H1(Ω) ↪→ Lq(Ω),

we have

µ1

C2
P + 1

‖u− g‖2H1(Ω)

≤CE‖c(x, g + w)‖Lq∗ (Ω)‖u− g‖H1(Ω)+

 d∑
i,j=1

‖aij‖L∞(Ω)

 ‖∇g‖L2(Ω)‖u− g‖H1(Ω)

+ CE‖f0‖Lq∗ (Ω)‖u− g‖H1(Ω)+‖f‖L2(Ω)‖u− g‖H1(Ω). (3.125)

By dividing both sides of (3.125) by ‖u− g‖H1(Ω), for arbitrary k ≥ 0, we obtain

k |A(k)|
1
2 ≤

∫
Ω

|u− g|2 dx

 1
2

= ‖u− g‖L2(Ω) (3.126)

≤
C2
P + 1

µ1

CE‖c(x, g + w)‖Lq∗ (Ω)+

 d∑
i,j=1

‖aij‖L∞(Ω)

 ‖∇g‖L2(Ω)+CE‖f0‖Lq∗ (Ω)+‖f‖L2(Ω)

 .

If we denote by CD the constant on the right hand side of inequality (3.126), which depends

only on the data of the problem (3.98), then a sufficient condition for |A(k)| ≤ 1 will be

C2
D

k2
≤ 1,

which is equivalent to k ≥ CD =: k0. Here we recall that for d = 2, q∗ can be any number

greater than 1 and for d > 2 we have q = 2d
d−2 . Since we have required r > q∗, the constant

CD is well defined. In order to apply Lemma 2.33 to the nonnegative and nonincreasing

function ϕ(k) = |A(k)| we need to ensure that

min

{
s− 2

2s
,
r − q∗

rq∗

}
>

1

q
,

which is equivalent to

s− 2

2s
>

1

q
and

r − q∗

rq∗
>

1

q
. (3.127)

The first inequality in (3.127) is equivalent to s > 2q
q−2 and the second to r > q

q−2 . We also

recall that in the course of the proof we have required that s > 2.



78 CHAPTER 3. EXISTENCE AND UNIQUENESS ANALYSIS

• For d = 1, to see that ‖u− g‖L∞(Ω)≤ γ, where γ depends only on the data, it is enough

to divide both sides of (3.125) by ‖u − g‖H1(Ω) and apply the embedding inequality

‖u − g‖L∞(Ω)≤ CE‖u − g‖H1(Ω). From (3.125) it is clear that the requirements on s

and r would be s > 2, r ≥ 1.

• For d = 2, we have H1(Ω) ↪→ Lq(Ω) for any q <∞. In this case the requirements on s

and r become s > 2, r > 1.

• For d = 3, we have H1(Ω) ↪→ Lq(Ω) where q = 2d
d−2 and q∗ = 2d

d+2 . In this case the

requirements on s and r are s > d, r > d
2 .

We can summarize the conditions on s and r for d ≥ 2 as s > d and r > d
2 . Now, if we denote

β := min { s−2
2s ,

r−q∗
rq∗ }q from Lemma 2.33 it follows that there exists a constant e, defined by

eq := (2CM )q |A(k0)|β−1 2
qβ
β−1 such that |A(k0 + e)| = 0. Since |A(k0)| ≤ |Ω|, we can write

|A(k1)| = 0, where k1 := k0 +
(

(2CM )q |Ω|β−1 2
qβ
β−1

) 1
q

= CD + (2CM ) |Ω|
β−1
q 2

β
β−1 .

We have proved that ‖u− g‖L∞(Ω)≤ k1 and thus ‖u‖L∞(Ω)≤ γ := ‖g‖L∞(Ω)+k1.

If the function g prescribing the Dirichlet boundary condition on ∂Ω in the general PBE

(3.41) is given as the trace of some function ug ∈ H2(Ω), then from the Sobolev embeddings

for d ≤ 3 we have ug ∈ L∞(Ω) and ∇ug ∈
[
L6(Ω)

]d
. Now, from Theorem 3.29 it directly

follows that the solution u of (3.41) is in L∞(Ω) (we have u ∈ H1
γ2(ug)(Ω) = H1

g (Ω)).

Examples

First observe that when b(x, ·) is nondecreasing we can take c1(x, s) = c2(x, s) = b(x, s).

Additionally, if b(x, 0) = 0 and g + w = 0, the condition c1(x, g + w), c2(x, g + w) ∈ Lr(Ω)

with r > d
2 is trivially satisfied. In particular, g + w = 0 when we have a homogeneous

Dirichlet boundary condition, i.e., g = 0, and w = 0.

We give some examples of functions b that satisfy the assumptions in Theorem 3.29.

(A) b(x, ·) is not necessarily nondecreasing:

(1) b(x, s) = k2(x)
(
es − s2p

)
, k2 ∈ Lr(Ω), r > d

2 , p ≥ 0;

(2) b(x, s) = k2(x)spens, k2 ∈ Lr(Ω), r > d
2 , p ≥ 0, n > 0;

(3) b(x, s) = k2(x)se|s| |sin(s)| (the example in [187]). If w + g = 0, then k2 can be

taken in L1(Ω) since there are c1 and c2 such that c1(x, 0) = c2(x, 0) = 0 and

c1(x, s) ≤ b(x, s) ≤ c2(x, s) (see Figure 3.2);

(4) b(x, s) = k2(x) (sinh(s) + t sin(s)) or

b(x, s) = k2(x) (sinh(s) + t cos(s)), where k2 ∈ Lr(Ω), r > d
2 , t ∈ R;

(B) b(x, ·) is nondecreasing:
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(1) b(x, s) = k2(x)s |s|p , p ∈ N. If g + w = 0, k2 ∈ L1(Ω), else k2 ∈ Lr(Ω), r > d
2 ;

(2) b(x, s) = k
2
(x) sinh(s) where k

2 ∈ L∞(Ω) (the case of the PBE);

(3) b(x, s) := −4πe20
kBT

Nions∑
j=1

M j(x)ξje
−ξjs where Mj ≥ 0, Mj ∈ L∞(Ω), ξj ∈ R, j =

1, . . . , Nions (the case of the general PBE);
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Figure 3.2: b(x, s) = b(s) = se|s| |sin(s)|, c1(x, s) = c1(s) = min {se|s|, 0}, c2(x, s) = c2(s) =

max {se|s|, 0}
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Chapter 4

Functional a posteriori error

estimates

The purpose of this chapter is to derive a posteriori error estimates for the (nonlinear) PBE

which give guaranteed and fully computable bounds on the error measured in global energy

norms. More precisely, we derive error estimates for the regular component u in the 2-term

and 3-term splittings of the full potential φ. In order to treat both splittings, we start in

Section 4.1 by considering a more general semilinear elliptic interface problem, where the

nonlinearity has the same form as in the PBE. After discussing the existence, uniqueness, and

boundedness of the solution to this more general problem by making use of the a priori L∞

estimate proved in Section 3.4, we present the abstract framework for derivation of functional

a posteriori error estimates by following the general approach in [139,155]. We establish the

abstract error identity which defines the error measure natural for the considered class of

problems.

The next step is to apply the abstract framework and compute explicit forms of all the

respective terms in the error identity. First, we focus on the case of homogeneous Dirichlet

boundary condition for which we present in detail all the steps involved in the derivation

of the error estimates (Section 4.1.3). We obtain an error identity (4.51) with respect

to a certain measure for the error which is the sum of the usual combined energy norm

|||∇(v − u)|||2 + |||y∗ − p∗|||2∗ and a certain nonlinear measure. A main result connected to the

explicit computation of this nonlinear measure of the error is given by Proposition 4.5. In

the case of a linear elliptic equation of the form −div(A∇u) + u = f0, the nonlinear error

measure reduces to ‖v− u‖2L2(Ω)+‖div(y∗− p∗)‖2L2(Ω), where v and y∗ are approximations to

the exact solution u and the exact flux p∗ = A∇u.

One advantage of the presented error estimate is that it is valid for any conforming approx-

imations of u and A∇u and that it does not rely on Galerkin orthogonality or properties

specific to the used numerical method. Another advantage is that only the mathematical

81
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structure of the problem is exploited and therefore no mesh dependent constants are present

in the estimate. Majorants of the error not only give guaranteed bounds of global (energy)

error norms but also generate efficient error indicators. Using only the error majorant, we

obtain an analog of Cea’s lemma (Proposition 4.12) which forms a basis for the a priori

convergence analysis of finite element approximations for this class of semilinear problems.

We also derive the explicit form of the terms in the abstract error identity in the case of

a more general nonlinearity of the form k2(x)b(s), where b is a smooth strictly increasing

function. We finish Section 4.1.3 with 3 numerical examples that verify the accuracy of

error majorants and minorants and confirm efficiency of the error indicator in adaptive mesh

procedures.

In Section 4.1.4 we present the case of nonhomogeneous Dirichlet boundary condition and

show that all results obtained in the homogeneous case remain valid. Moreover, in Section 4.2

we describe a procedure, based on the patchwise equilibrated flux reconstruction in [30], to

obtain a good conforming approximation y∗ of the solution p∗ of the dual problem. Thus,

the evaluation of the error indicator in the adaptive algorithm, based on the derived error

estimates, can be realized in a very efficient manner in parallel.

Further, in Section 4.3, we apply the obtained results for the more general semilinear problem

to the specific case of the PBE with 2- and 3-term splittings, where in some cases it might be

beneficial to make one additional splitting of the regular component u. Section 4.3.1 and

Section 4.3.2 focus on the derivation of error majorants and minorants for the individual

components of the solution that appear in the different splittings. Since each subproblem that

defines a particular component of the solution depends on the the solution of the previous

one, this causes a certain perturbation error additionally to the approximation error. To our

knowledge, the presented analysis accounts for both sources of error for the first time. This

leads to guaranteed and fully computable a posteriori estimates as well as efficient and robust

indicators for the overall error.

Finally, in Section 4.3.3, we apply the described in this chapter methodology to study the

electrostatic potential in and around the insulin protein with PDB ID 1RWE, the Alexa 488

and 594 dyes, as well as the membrane channel SecYEG. In all these applications we obtain

guaranteed bounds on the relative errors in global energy norms.

4.1 General form of the estimates

4.1.1 A more general semilinear interface elliptic problem

First we want to remind the reader that in bold italic font we denote vector or matrix valued

functions which are not necessarily constant. The constant vectors and variables in Rd, as
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well as the scalar functions, we denote in standard math font.

We start by considering a class of nonlinear interface elliptic problems with a nonlinearity of

the type b(x, s) = k2(x) sinh(s) that also includes the problems defining the regular component

in the 2-term and 3-term splitting of the Poisson-Boltzmann equation:

−∇ · (A∇u) + k2 sinh(u+ w) = f0 − div f in Ω, (4.1a)

u = g on ∂Ω, (4.1b)

which in weak form reads

Find u ∈ H1
γ2(g)(Ω) such that k2 sinh(u+ w)v ∈ L1(Ω) for all v ∈ C∞0 (Ω) and∫

Ω

A∇u · ∇vdx+

∫
Ω

k2 sinh(u+ w)vdx =

∫
Ω

(f0v + f · ∇v) dx for all v ∈ C∞0 (Ω).
(4.2)

Here Ω ⊂ Rd, d = 2, 3 is a bounded domain with Lipschitz boundary ∂Ω. We assume that Ω

contains an interior subdomain Ω1 and we denote Ω2 := Ω \ Ω1, where in general, Ω1 may

consist of several disconnected parts. Typically, in biophysical applications, Ω1 is occupied by

one or more macromolecules and Ω2 is occupied by a solution of water and moving ions. This

is also the case of the Poisson-Boltzmann equation that we have considered in Chapter 3.

There Ω1 = Ωm ∪ ΩIEL and Ω2 = Ωions (and if there is no ion exclusion layer ΩIEL, then

Ω1 = Ωm and Ω2 = Ωs = Ωions). Concerning the measurable function w and the coefficient

k ∈ L∞(Ω) (not necessarily piecewise constant in Ω), we can identify three main cases:

(a) kmax ≥ k(x) ≥ kmin > 0 in Ω and w ∈ L∞(Ω);

(b) k(x) ≡ 0 in Ω1, kmax ≥ k(x) ≥ kmin > 0 in Ω2 and w ∈ L∞(Ω2);

(c) k(x) ≡ 0 in Ω2, kmax ≥ k(x) ≥ kmin > 0 in Ω1 and w ∈ L∞(Ω1).

In what follows, the major attention is paid to the case (b), which arrises when solving

the PBE and which is most interesting from practical point of view. The cases (a) and (c)

can be studied analogously (with some rather obvious modifications). We further assume

that the conditions of Theorem 3.29 that ensure the boundedness of the solution u are

satisfied. Therefore, the function g specifying the Dirichlet boundary condition is such that

g ∈ H1(Ω) ∩ L∞(Ω) and ∇g ∈ [Ls(Ω)]d for some s > d, w ∈ L∞(Ω2), and f ∈ [Ls(Ω)]d.

Additionally, we assume that f0 ∈ L2(Ω) and that A is a symmetric positive definite matrix

with bounded entries, i.e., A ∈ [L∞(Ω)]d×d, such that there exist some µ1, µ2 > 0 for which

µ1 |ξ|2 ≤ A(x)ξ · ξ ≤ µ2 |ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rd. We recall that the space H1
γ2(g)(Ω)

is defined by

H1
γ2(g)(Ω) =

{
v ∈ H1(Ω) : γ2(v) = γ2(g) on ∂Ω

}
with γ2 being the trace operator from H1(Ω) to H

1
2 (∂Ω). Here we note that for the derivation

of the a posteriori error estimates in this chapter we do not have to make any assumptions
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on the regularity of the boundary of the interior subdomain Ω1. Moreover, the boundary of

Ω1 is in general not associated with a jump discontinuity of the coefficient matrix A and the

set Ω1 is introduced only to specify the regions where k ≡ 0.

First we observe that (4.2) possesses a unique solution u. The existence of a solution can be

shown by considering the variational problem

Find umin ∈ H1
γ2(g)(Ω) such that J(umin) = min

v∈H1
γ2(g)

(Ω)
J(v), (4.3)

where the functional J : H1
γ2(g)(Ω)→ R ∪ {+∞} is defined by

J(v) :=


1

2
a(v, v) +

∫
Ω

B(x, v + w)dx−
∫
Ω

(f0v + f · ∇v) dx, if B(x, v + w) ∈ L1(Ω),

+∞, if B(x, v + w) /∈ L1(Ω),

(4.4)

with a(u, v) =
∫
Ω

A∇u · ∇vdx and B(x, s) = k2(x) cosh(s). It can be shown that there exists

a unique minimizer umin ∈ H1
γ2(g)(Ω) of J and that this minimizer is a solution to (4.2) (see

the considerations on p. 61 where g is a function defined only on the boundary ∂Ω). The

proof of the uniqueness is similar to the proof of the uniqueness of a solution to (3.41) on

p. 52. For completeness, we recall it here. Let u1, u2 are two solutions of (4.2). Then,

a(u1 − u2, v) +

∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) vdx = 0, ∀v ∈ C∞0 (Ω).

Now we want to show that we can test the above equation with u1 − u2 ∈ H1
0 (Ω). By using

the monotonicity of b(x, ·) we see that (b(x, u1 + w)− b(x, u2 + w)) (u1 − u2) ≥ 0 ∈ L1(Ω).

Therefore, by applying Theorem 2.18 to the function u1−u2 ∈ H1
0 (Ω) and the bounded linear

functional Tc defined by the relation

〈Tc, v〉 =

∫
Ω

(b(x, u1 + w)− b(x, u2 + w))︸ ︷︷ ︸
:=c

vdx, ∀v ∈ C∞0 (Ω),

we obtain that (b(x, u1 + w)− b(x, u2 + w)) (u1 − u2) ∈ L1(Ω) and that the extension T c of

Tc to the whole space H1
0 (Ω), evaluated at u1 − u2, is given by

〈T c, u1 − u2〉 =

∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) (u1 − u2)dx.

Therefore it holds

a(u1 − u2, u1 − u2) +

∫
Ω

(b(x, u1 + w)− b(x, u2 + w)) (u1 − u2)dx = 0
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and consequently u1 − u2 = 0.

From Theorem 3.29 we also know that the solution u of (4.2) is in L∞(Ω), which implies that

b(x, u+ w) ∈ L∞(Ω). Therefore, by a standard density argument we see that (4.2) holds for

the bigger test space H1
0 (Ω).

Our goal is to derive a posteriori error estimate for (4.2) of the form

|||∇(v − u)||| ≤M⊕(v,y∗),

where |||q|||2 =
∫
Ω

Aq · qdx, ∀q ∈
[
L2(Ω)

]d
is the so-called energy norm, v is an arbitrary

conforming approximation of u, i.e., v ∈ H1
γ2(g)(Ω), and y∗ is a dual variable which in general

lies in the space
[
L2(Ω)

]d
and it is some approximation to the exact flux A∇u. In particular,

if A = I, the identity matrix, we have |||∇(v − u)|||2 = ‖∇(v − u)‖2L2(Ω). Then, we will use

the general results obtained for (4.2) and apply them to the PBE with the 2-term and 3-term

splittings.

Before we continue with the presentation of the abstract framework for deriving functional a

posteriori error estimates, we note that the results we are about to present can be extended

for a more general nonlinearity b(x, s) under certain reasonable assumptions on it.

Remark 4.1

Note that the term f · ∇v in (4.2) can represent a prescribed jump on the quantity A∇u · nΓ

across some interior interface Γ with a unit outward normal vector nΓ. In this case, the

exact flux A∇u is not in H(div; Ω). For example, this is the case with the 2-term and 3-term

splittings in the Poisson-Boltzmann equation (see Remark 3.6 and Remark 3.9).

4.1.2 Abstract framework

First, we briefly recall some results from the duality theory ( [65,139]) not necessarily in their

most general form. Consider a class of variational problems having the following common

form:

Find u ∈ V such that

(P ) J(u) = inf
v∈V

J(v), where J(v) = G(Λv) + F (v).
(4.5)

Here, V , Y are reflexive Banach spaces with the norms ‖.‖V and ‖.‖Y , respectively, F : V →
R ∪ {+∞}, G : Y → R ∪ {+∞} are convex, proper and lower semicontinuous functionals,

Λ : V → Y is a bounded linear operator and J is assumed to be coercive. We additionally,

assume that J(0V ) < +∞ and G is continuous at Λ0V = 0Y , where by 0V and 0Y we denote

the zero elements in V and Y , respectively. In this case, from Theorem 2.30 it follows that

Problem (P ) has a solution u, which is unique if J is strictly convex. The spaces topologically
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dual to V and Y are denoted by V ∗ and Y ∗, respectively. They are endowed with the norms

‖.‖V ∗ and ‖.‖Y ∗ . Henceforth, 〈v∗, v〉 denotes the duality product of v∗ ∈ V ∗ and v ∈ V .

Analogously, (y∗, y) is the duality product of y∗ ∈ Y ∗ and y ∈ Y . Λ∗ : Y ∗ → V ∗ is the

operator adjoint to Λ and it is defined by the relation

〈Λ∗y∗, v〉 = (y∗,Λv), ∀v ∈ V, ∀y∗ ∈ Y ∗.

Recall that the functional T ∗ : V ∗ → R defined by the relation

T ∗(v∗) := sup
v∈V
{〈v∗, v〉 − T (v)}

is called dual (or Fenchel conjugate) to T (see, Definition 2.24) and the functional T ∗∗ : V → R
defined by the relation

T ∗∗(v) = sup
v∗∈V ∗

{〈v∗, v〉 − T ∗(v∗)}

is called Fenchel biconjugate of T (see Definition 2.25). Since G is a proper, convex and lower

semicontinuous functional, from the Fenchel-Moreau Theorem (Theorem 2.26) it follows that

G = G∗∗ and we can write

J(v) = G(Λv) + F (v) = sup
y∗∈Y ∗

{(y∗,Λv)−G∗(y∗) + F (v)},

where G∗ : Y ∗ → R is the Fenchel conjugate of G and the function L : V × Y ∗ → R defined

by

L(v, y∗) = (y∗,Λv)−G∗(y∗) + F (v)

is called the Lagrangian for J . Now it is clear that problem (P ) can be written in the following

form

J(u) = inf
v∈V

J(v) = inf
v∈V

sup
y∗∈Y ∗

L(v, y∗) = sup
y∗∈Y ∗

L(u, y∗).

Analogously to the definition of J , we can also define the functional I∗ by the relation

I∗(y∗) := inf
v∈V

L(v, y∗) = −G∗(y∗) + inf
v∈V
{(y∗,Λv) + F (v)}

=−G∗(y∗)− sup
v∈V
{〈−Λ∗y∗, v〉 − F (v)} = −G∗(y∗)− F ∗(−Λ∗y∗).

In accordance with the general duality theory of the calculus of variations, we can define the

dual counterpart of the primal Problem (4.5):

Find p∗ ∈ Y ∗ such that

(P ∗) I∗(p∗) = sup
y∗∈Y ∗

I∗(y∗) = sup
y∗∈Y ∗

inf
v∈V

L(v, y∗).
(4.6)

Next, we note that from the continuity of G at 0Y it follows that G∗ is coercive (see

Remark 4.2). Now, from the coercivity of G∗ and the fact that F (0V ) is finite, it follows that
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problem (P ∗) also has a solution. To see this, note that since G∗ and F ∗ are convex and

lower semicontinuous as the pointwise supremum of affine functionals (see, e.g., [65, 139]),

it follows that the functional −I∗(y∗) is convex, proper and lower semicontinuous over the

reflexive Banach space Y ∗. Moreover, since G∗ is coercive and F (0V ) is finite we obtain that

−I∗(y∗) is also coercive:

−I∗(y∗) = G∗(y∗) + F ∗(−Λ∗y∗)

≥ G∗(y∗) + 〈−Λ∗y∗, 0V 〉 − F (0V )→ +∞ whenever ‖y∗‖Y ∗→∞.

Thus, I∗ : Y ∗ → R ∪ {−∞} possesses a maximizer p∗ ∈ Y ∗, which is unique if at least one of

the functionals G∗ and F ∗ is strictly convex. Now, by using the assumption that J(0V ) < +∞
and G is continuous at Λ0V = 0Y , it follows that strong duality holds for the problems (P )

and (P ∗) (see, e.g., Chapter III in [65]):

J(u) = inf
v∈V

J(v) = inf
v∈V

sup
y∗∈Y ∗

L(v, y∗) = sup
y∗∈Y ∗

inf
v∈V

L(v, y∗) = sup
y∗∈Y ∗

I∗(y∗) = I∗(p∗). (4.7)

Furthermore, from (4.7) it follows that the pair (u, p∗) is a saddle point of the Lagrangian L, i.e.,

L(u, y∗) ≤ L(u, p∗) ≤ L(v, p∗), ∀v ∈ V, ∀y∗ ∈ Y ∗. (4.8)

The left-hand side of (4.8) implies that u and p∗ satisfy the relations

Λu ∈ ∂G∗(p∗), p∗ ∈ ∂G(Λu), (4.9)

and the right-hand side of (4.8) implies the relations

Λu ∈ ∂F ∗(−Λ∗p∗), −Λ∗p∗ ∈ ∂F (u), (4.10)

where ∂G∗(p∗) and ∂G(Λu) denote the subdifferentials of G∗ at p∗ and of G at Λu, respec-

tively, and ∂F ∗(−Λ∗p∗) and ∂F (u) denote the subdifferentials of F ∗ at −Λ∗p∗ and of F at u,

respectively.

We have

J(v)− I∗(y∗) = G(Λv) + F (v) +G∗(y∗) + F ∗(−Λ∗y∗)

= DG(Λv, y∗) +DF (v,−Λ∗y∗) =: M2
⊕(v, y∗), (4.11)

where

DG(Λv, y∗) := G(Λv) +G∗(y∗)− (y∗,Λv)

and

DF (v,−Λ∗y∗) := F (v) + F ∗(−Λ∗y∗) + 〈Λ∗y∗, v〉



88 CHAPTER 4. FUNCTIONAL A POSTERIORI ERROR ESTIMATES

are the compound functionals for G and F , respectively (see [139]). A compound functional

is nonnegative by the definition of Fenchel conjugate. Since J(v) ≥ I∗(y∗) for all v ∈ V and

y∗ ∈ Y ∗ with equality if and only if v = u and y∗ = p∗, the equality (4.11) shows that DG

and DF can vanish simultaneously if and only if v = u and y∗ = p∗. Now, it is clear that

solving the primal and dual problems (P ) and (P ∗) is equivalent to minimizing the duality

gap J(v)− I∗(y∗), whose minimum we know is equal to zero. Therefore, if v ∈ V and y∗ ∈ Y ∗

are approximations of u and p∗, respectively, the fully computable difference J(v)− I∗(y∗) is

a measure for the error between (v, y∗) and (u, p∗). Moreover, by setting y∗ := p∗ and v := u

in (4.11), we obtain analogous identities for the primal and dual parts of the error:

J(v)− I∗(p∗) = M2
⊕(v, p∗) = DG(Λv, p∗) +DF (v,−Λ∗p∗), (4.12a)

J(u)− I∗(y∗) = M2
⊕(u, y∗) = DG(Λu, y∗) +DF (u,−Λ∗y∗). (4.12b)

Using the fact that J(u) = I∗(p∗) and that the above equalities (4.12a), (4.12b) hold, we

obtain another important identity (see [139]) which describes the full error M2
⊕(v, y∗) as the

sum of the primal and dual parts of the error:

M2
⊕(v, y∗) = J(v)− I∗(y∗)

= J(v)− I∗(p∗) + J(u)− I∗(y∗) = M2
⊕(v, p∗) +M2

⊕(u, y∗). (4.13)

Notice that M2
⊕(v, y∗) depends on the approximations v and y∗ only and, therefore, is fully

computable. The right-hand side of (4.13) can be viewed as a certain measure of the distance

between (v, y∗) and (u, p∗), which vanishes if and only if v = u and y∗ = p∗. Hence the

relation

DG(Λv, p∗) +DF (v,−Λ∗p∗) +DG(Λu, y∗) +DF (u,−Λ∗y∗) = M2
⊕(v, y∗) (4.14)

establishes the equality of the computable term M2
⊕(v, y∗) and an error measure natural for

this class of variational problems.

It is worth noting that the identity (4.14) can be represented in terms of norms if G and F

are quadratic functionals. For example, if V = H1
0 (Ω), V ∗ = H−1(Ω), Y = [L2(Ω)]d = Y ∗,

G(Λv) = G(∇v) =
∫
Ω

1
2A∇v · ∇vdx and F (v) =

∫
Ω

(
1
2v

2 − f0v
)
dx (where A is a symmetric

positive definite matrix with bounded entries and satisfying for some µ1, µ2 > 0 the inequality

µ1 |ξ|2 ≤ A(x)ξ · ξ ≤ µ2 |ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rd), then

DG(Λv,p∗) =
1

2

∫
Ω

A∇(v − u) · ∇(v − u)dx =
1

2
|||∇(v − u)|||2,

DG(Λu,y∗) =
1

2

∫
Ω

A−1(y∗ − p∗) · (y∗ − p∗)dx =:
1

2
|||y∗ − p∗|||2∗,

DF (v,−Λ∗p∗) =
1

2
‖v − u‖2L2(Ω), DF (u,−Λ∗y∗) =

1

2
‖div(y∗ − p∗)‖2L2(Ω).

(4.15)
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In this case, the minimizer of (4.5) solves the linear elliptic problem

−div(A∇u) + u = f0 in Ω,

u = 0 on ∂Ω,
(4.16)

and (4.14) is reduced to the error identity

|||∇(v − u)|||2 + |||y∗ − p∗|||2∗ + ‖v − u‖2L2(Ω)+‖div(y∗ − p∗)‖2L2(Ω)

= |||A∇v − y∗|||2∗ + ‖v − div y∗ − f0‖2L2(Ω)= 2M2
⊕(v,y∗).

(4.17)

The sum of the first and the third term in (4.17) represents the primal, the sum of the second

and fourth term the dual error.

In what follows, we will present the particular form of the error equality (4.14) for the problem

(4.4), or equivalently, (4.2), where the error is measured in a special ”nonlinear norm”. This

measure contains the usual combined energy norm terms, i.e. the sum of the energy norms of

the errors for the primal and dual problem, but also two additional nonnegative terms due to

the nonlinearity B(x, ·) (or equivalently b(x, ·)) which in some cases may dominate the usual

energy norm terms. We start by deriving explicit expressions for G∗, F ∗ and then we will use

these expressions to get an explicit form of the abstract error equality (4.14).

Remark 4.2

Notice that if G is continuous at 0Y , then G∗ is coercive. To prove this, assume to the

contrary that there is some α ∈ R and a sequence {y∗n}∞n=1 ⊂ Y ∗ such that ‖y∗n‖Y ∗→∞ and

G∗(y∗n) ≤ α for all n ∈ N. Let ε > 0 be fixed. From the continuity of G at 0Y we can find a

δ > 0 such that |G(y)−G(0)| ≤ ε for all y ∈ Bδ, where Bδ denotes the ball in Y with center

at 0Y and radius δ. From the definition of Fenchel conjugate, for each n ∈ N, we obtain

α ≥ G∗(y∗n) = sup
y∈Y
{(y∗n, y)−G(y)} ≥ sup

y∈Bδ
{(y∗n, y)−G(y)}

≥ sup
y∈Bδ

(y∗n, y)− |G(0)| − ε.
(4.18)

We will show that sup
y∈Bδ

(y∗n, y) → +∞ when n → ∞. For this, we will use a corollary of

the Hahn-Banach theorem (see, e.g., Corollary 3.1.3 in [64]) and the reflexivity of Y . In

particular, the corollary says that for any y0 ∈ Y with ‖y0‖Y = 1 there exists a functional

y∗0 ∈ Y ∗ with ‖y∗0‖Y ∗= 1 such that (y∗0, y0) = 1. This means that for an arbitrary Y 3 y0 6= 0Y

there is y∗0 ∈ Y ∗ with ‖y∗0‖Y ∗= 1 such that (y∗0, y0) = ‖y0‖Y (since y0

‖y0‖Y has a unit norm).

Thus, if we define y∗1 := ‖y0‖Y y∗0, we will have ‖y∗1‖Y ∗= ‖y0‖Y and (y∗1, y0) = ‖y0‖2Y .

We apply the above property for each y∗n in (4.18). Therefore, we find y∗∗n ∈ Y ∗∗ with

‖y∗∗n ‖Y ∗∗= ‖y∗n‖Y ∗ such that (y∗∗n , y
∗
n) = ‖y∗n‖2Y ∗ for every n ∈ N. Now, from the reflexivity of
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Y , it follows that there is a unique yn ∈ Y such that (y∗∗n , y
∗
n) = (y∗n, yn) and ‖y∗∗n ‖Y ∗∗= ‖yn‖Y .

Therefore, from (4.18) we obtain

α ≥ G∗(y∗n) ≥ sup
y∈Bδ

(y∗n, y)− |G(0)| − ε ≥δ
2

(
y∗n,

yn
‖yn‖Y

)
=

δ

2‖yn‖Y
(y∗∗n , y

∗
n) =

δ

2‖y∗n‖Y ∗
‖y∗n‖2Y ∗→ +∞,

(4.19)

which is a contradiction with the assumption that G∗ is not coercive.

In fact, the opposite is also true, i.e., from the coercivity of G∗ and the fact that G is a proper

l.s.c. convex functional follows the continuity of G at 0Y (see Theorem 7A in [160]).

4.1.3 Homogeneous Dirichlet boundary condition

We start by considering (4.2) with a homogeneous Dirichlet boundary condition, i.e., g = 0

in Ω. We set V := H1
0 (Ω), Y := [L2(Ω)]d (d = 2, 3), and Λ the gradient operator ∇ : H1

0 (Ω)→
[L2(Ω)]d. We further denote g : Ω× R3 → R, g(x, ξ) := 1

2A(x)ξ · ξ. With this notation, we

have

G(Λv) :=

∫
Ω

g(x,∇v(x))dx =

∫
Ω

1

2
A(x)∇v · ∇vdx,

F (v) :=

∫
Ω

B(x, v + w)dx−
∫
Ω

(f0v + f · ∇v) dx,

(4.20)

where we recall that B(x, s) = k2(x) cosh(s), and the functional J , defined by (4.4), can be

written in the form J(v) = G(Λv) +F (v). For any v ∈ V the functional G(Λv) is finite, while

F : V → R ∪ {+∞} may take the value +∞ for some v ∈ V if d ≥ 3 (e.g v = log 1
|x|α , α ≥ d

on the unit ball in Rd). However, if d ≤ 2, then exp(v) ∈ L1(Ω), ∀v ∈ H1
0 (Ω) and F : V → R

(see [110, 179]). Also, F (0V ) is obviously finite since w ∈ L∞(Ω2) and it is satisfied that

J(0V ) < +∞ and G is continuous at Λ0V = 0Y . Moreover, G and F are proper, convex

and sequentially lower semicontinuous functionals. That G is proper and convex is obvious.

That G is s.l.s.c., follows form its continuity in Y . The fact that F is proper follows from

the fact that B(x, s) ≥ 0 for a.e. x ∈ Ω and all s ∈ R. The convexity of F follows from the

convexity of B(x, ·), and the (weak) sequential lower semicontinuity of F follows from the

fact that it is the sum of the s.l.s.c. functionals
∫
Ω

B(x, v + w)dx and −
∫
Ω

(f0v + f · ∇v) dx.

The sequential lower semicontinuity of the functional
∫
Ω

B(x, v + w)dx follows by applying

Fatou’s lemma and we note that this argument is similar to the one made about the functional∫
Ω

B(x, v + uL + w)dx on p. 55.

We continue by setting V ∗ = H−1(Ω) and Y ∗ = Y = [L2(Ω)]d. In this case, Λ∗ coincides

with −div considered as an operator from [L2(Ω)]d to H−1(Ω). It is clear that G is coercive
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in Y since G(y) =
∫
Ω

1
2Ay · ydx ≥

1
2µ1‖y‖2L2(Ω)→ +∞ whenever ‖y‖L2(Ω)→ ∞. We will

see that G∗(y∗) =
∫
Ω

1
2A
−1y∗ · y∗dx ≥ 1

2µ2
‖y∗‖2L2(Ω) and hence it is also coercive in Y ∗

(this also follows from the continuity of G at 0Y ). Therefore, based on the discussion in

Section 4.1.2 and the properties of G and F that we verified above, all assumptions that

guarantee existence of a solution to the primal and dual problem, as well as validity of the

strong duality relation (4.7) are fulfilled. We conclude that the primal problem (P ) and

its dual (P ∗) in our particular case have solutions u ∈ H1
0 (Ω) and p∗ ∈

[
L2(Ω)

]d
, which

are unique since G and G∗ are strictly convex, and moreover, the strong duality relation

(4.7) holds. In addition, the optimality conditions (4.9) and (4.10) hold. Since G and G∗

are Gateaux differentiable, they have unique subgradients at Λu and p∗ respectively, and

therefore, we obtain the relation

p∗ = A∇u (4.21)

between the solution of the primal and dual problem.

Fenchel Conjugates of the functionals G and F

Fenchel conjugate of G

It is easy to find that G∗(y∗) =
∫
Ω

1
2A
−1y∗ · y∗dx. Indeed, we have

G∗(y∗) = sup
y∈Y


∫
Ω

(
y∗ · y − 1

2
Ay · y

)
dx

 ≤
∫
Ω

sup
ξ∈Rd

{
y∗(x) · ξ − 1

2
A(x)ξ · ξ

}
dx. (4.22)

The supremum in ξ ∈ Rd is actually achieved for a.e. x ∈ Ω at some ξ0(x) since the function

−
(
y∗(x) · ξ − 1

2
A(x)ξ · ξ

)
is strictly convex, continuous and coercive over Rd for a.e. x ∈ Ω. The necessary conditions

for a maximum are

∂

∂ξi

(
y∗(x) · ξ − 1

2
Aξ · ξ

)
= 0, i = 1, 2, . . . , d,

from which we obtain ξ0(x) = A−1(x)y∗(x) for a.e. x ∈ Ω. Thus, substituting the expression

for ξ0 in (4.22) we obtain

G∗(y∗) = sup
y∈Y


∫
Ω

(
y∗ · y − 1

2
Ay · y

)
dx

 ≤
∫
Ω

1

2
A−1y∗ · y∗dx. (4.23)

Since ξ(x) = A−1(x)y∗(x) ∈
[
L2(Ω)

]d
, we see that the supremum in the definition of Fenchel

conjugate is actually achieved and thus

G∗(y∗) =

∫
Ω

1

2
A−1y∗ · y∗dx. (4.24)
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Fenchel conjugate of F

First, we observe that the exact flux p∗ = A∇u ∈
[
L2(Ω)

]d
can be represented in the form

p∗ = f + p∗0, where p∗0 ∈ H(div; Ω) and div p∗0 = b(x, u+ w)− f0. (4.25)

To see this, notice that p∗ satisfies the equation

∫
Ω

p∗ · ∇vdx+

∫
Ω

b(x, u+ w)vdx =

∫
Ω

(f0v + f · ∇v) dx. (4.26)

By substituting p∗ = f + p∗0 in (4.26), where a priori p∗0 is only in
[
L2(Ω)

]d
, we obtain

∫
Ω

p∗0 · ∇vdx =

∫
Ω

(−b(x, u+ w) + f0) vdx. (4.27)

Now, since u ∈ L∞(Ω), it follows that −b(x, u+w)+f0 ∈ L2(Ω), and therefore p∗0 ∈ H(div; Ω)

with a weak divergence given by

div p∗0 = b(x, u+ w)− f0. (4.28)

In particular, since b(x, ·) = 0 for a.e. x ∈ Ω1, it follows that div p∗0 + f0 = 0 in Ω1.

Since the exact flux p∗ has the form (4.25), it is enough to find an explicit form of F ∗(−Λ∗y∗)

only for such functions y∗ ∈
[
L2(Ω)

]d
that have the form

y∗ = f + y∗0 for some y∗0 ∈ H(div; Ω). (4.29)

For q∗ ∈ H(div; Ω) and an arbitrary measurable function z : Ω2 → R, we introduce the

functional

Iq∗(z) :=

∫
Ω2

[(div q∗ + f0)z −B(x, z + w)] dx. (4.30)

Recalling that in the particular case (b) for the functions k and w, the nonlinearity B is
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supported on Ω2, for any y∗ of the form (4.29) we have

F ∗(−Λ∗y∗) = sup
z∈H1

0 (Ω)

{〈−Λ∗y∗, z〉 − F (z)} = sup
z∈H1

0 (Ω)

{(−y∗,Λz)− F (z)}

= sup
z∈H1

0 (Ω)

∫
Ω

(−y∗ · ∇z −B(x, z + w) + f0z + f · ∇z) dx

= sup
z∈H1

0 (Ω)

∫
Ω

(−y∗0 · ∇z −B(x, z + w) + f0z) dx

= sup
z∈H1

0 (Ω)

∫
Ω

(div y∗0z −B(x, z + w) + f0z) dx (finite if div y∗0 + f0 = 0 in Ω1)

= sup
z∈H1

0 (Ω)

Iy∗0 (z) ≤
∫
Ω2

sup
ξ∈R

{
(div y∗0(x) + f0(x)) ξ −B (x, ξ + w(x))

}
dx

=

∫
Ω2

(
(div y∗0(x) + f0(x)) ξ0(x)−B (x, ξ0(x) + w(x))

)
dx = Iy∗0 (ξ0). (4.31)

Here ξ0 : Ω2 → R is computed from the condition

d

dξ
[(div y∗0(x) + f0(x)) ξ −B (x, ξ + w(x))] = 0, for a.e. x ∈ Ω2, (4.32)

which is equivalent to

div y∗0(x) + f0(x)− k2(x) sinh (ξ + w(x)) = 0 for a.e. x ∈ Ω2.

We notice that (4.32) is a necessary condition for a maximum which is also sufficient since

B(x, ·) is convex. The solution of the last equation exists, is unique, and is given by

ξ0(x) = arsinh

(
div y∗0(x) + f0(x)

k2(x)

)
− w(x) = ln

(
ρ(y∗0) +

√
ρ2(y∗0) + 1

)
− w(x)

= ln (Θ (ρ(y∗0)))− w, for a.e. x ∈ Ω2,

(4.33)

where

ρ(y∗0) :=
div y∗0(x) + f0(x)

k2(x)
and Θ(s) := s+

√
s2 + 1 for s ∈ R,

and we have used the formula arsinh(s) = ln
(
s+
√
s2 + 1

)
, ∀s ∈ R.

In Proposition 4.5, we will prove that we have not overestimated the supremum over z ∈ H1
0 (Ω)

in (4.31) and that we actually have equalities everywhere. By using the expression for ξ0(x),

for any y∗ ∈ [L2(Ω)]d of the form (4.29) with div y∗0 + f0 = 0 in Ω1 we obtain an explicit
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formula for F ∗(−Λ∗y∗):

F ∗(−Λ∗y∗) =

∫
Ω2

[
k2

(
div y∗0 + f0

k2

)(
arsinh

(
div y∗0 + f0

k2

)
− w

)

− k2 cosh

(
arsinh

(
div y∗0 + f0

k2

))]
dx

=

∫
Ω2

[
k2ρ(y∗0) (ln (Θ (ρ(y∗0)))− w)− k2

√
ρ2(y∗0) + 1

]
dx,

(4.34)

where we have used the formula cosh(arsinh(s)) =
√
s2 + 1, ∀s ∈ R.

Remark 4.3

Since
∣∣∣ln(t+

√
t2 + 1

)∣∣∣ ≤ |t| , ∀t ∈ R, the function ln (Θ(f(x))) − w(x) belongs to L2(Ω2)

for any f ∈ L2(Ω2). Since ρ(y∗0) =
div y∗0(x)+f0(x)

k2(x)
and f0 ∈ L2(Ω2), k2 ≥ k2

min > 0 in Ω2, we

conclude that ξ0(x) ∈ L2(Ω2) if y∗0 ∈ H(div; Ω). Therefore the integrals in (4.34) are well

defined.

Remark 4.4

Note that the set Ω1 where the coefficient k is zero (and where the problem is linear) dictates

where the dual variable y∗0 has to be exactly equilibrated, i.e., div y∗0 +f0 = 0 (see the derivation

of F ∗(−Λ∗y∗) in (4.31)).

Now our goal is to prove that the inequality sup
z∈H1

0 (Ω)

Iy∗0 (z) ≤ Iy∗0 (ξ0) holds as equality. In

other words, we want to prove that the error estimate remains sharp and that the computed

majorant M2
⊕(v,y∗) will be indeed zero if approximations (v,y∗) coincide with the exact

solution (u,p∗).

Proposition 4.5

For any y∗0 ∈ H(div; Ω) with div y∗0 + f0 = 0 in Ω1 it holds

sup
z∈H1

0 (Ω)

Iy∗0 (z) = Iy∗0 (ξ0) <∞.

Proof. The idea is to approximate ρ(y∗0) =
div y∗0+f0

k2 ∈ L2(Ω2) and w�Ω2
∈ L∞(Ω2) by C∞0 (Ω2)

functions (in the a.e. sense) and use the Lebesgue dominated convergence theorem. From

the density of C∞0 (Ω2) in L2(Ω2) we can find a sequence {ψn}∞n=1 ⊂ C∞0 (Ω2) such that

ψn(x)→ ρ(y∗0(x)), a.e. in Ω2 and |ψn(x)| ≤ h(x) ∈ L2(Ω2) (see Theorem 4.9 in [96]). Again,

from the density of C∞0 (Ω2) in L2(Ω2) we can find a sequence {wn}∞n=1 ⊂ C∞0 (Ω2) such that

wn(x) → w(x), a.e. in Ω2 and |wn(x)| ≤ m + 2, where m := ‖w‖L∞(Ω2) (see Remark 4.6).

Then

zn(x) := ln (Θ (ψn(x)))− wn(x)→ ξ0(x), a.e. in Ω2
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and zn ∈ C∞0 (Ω2) ⊂ H1
0 (Ω2) ⊂ H1

0 (Ω) (by extending the functions by zero in Ω1). Since

B(x, ·) is continuous, we have the pointwise a.e. in Ω2 convergence

(div y∗0(x) + f0(x)) zn(x)−B (x, zn + w(x))→ (div y∗0(x) + f0(x)) ξ0(x)−B(x, ξ0(x) + w(x)).

Now we search for a function in L1(Ω2) that majorates the function

|(div y∗0(x) + f0(x)) zn(x)−B (x, zn + w(x))|:∣∣(div y∗0(x) + f0(x)) zn(x)− k2(x) cosh (zn(x) + w(x))
∣∣

≤ |div y∗0(x) + f0(x)| |zn(x)|+ k2(x)e‖w‖L∞(Ω2)e|zn(x)| (4.35)

Our next goal is to bound |zn(x)| in (4.35). For the first summand, by using Remark 4.3, we

obtain

|zn(x)| = |ln (Θ (ψn(x)))− wn(x)| ≤ |ψn(x)|+m+ 2 ≤ h(x) +m+ 2 ∈ L2(Ω2).

However, this bound cannot be used in the second term because eh might not belong even to

L1(Ω2). In order to find an L1-majorant for the second summand in (4.35), we distinguish

the following two cases:

Case 1: ψn(x) > 0. Then |ln (Θ (ψn(x)))| ≤ |ln (Θ (h(x)))| .

Case 2: ψn(x) ≤ 0. We have Θ (ψn(x)) ≤ 1. Therefore, 0 ≥ ψn(x) ≥ −h(x). Since Θ(s) is

a monotonically increasing function,

Θ(0) = 1 ≥ Θ(ψn(x)) ≥ Θ(−h(x)) > 0.

From here we obtain

ln(1) = 0 ≥ ln (Θ (ψn(x))) ≥ ln (Θ (−h(x)))

and using the relation Θ(−h) = 1
Θ(h) we conclude that

|ln (Θ (ψn(x)))| ≤ |ln (Θ (−h(x)))| = |ln (Θ (h(x)))| .

Finally, for almost all x ∈ Ω2 we have

|zn(x)| = |ln (Θ (ψn(x)))− wn(x)| ≤ |ln (Θ (h(x)))|+m+ 2

= ln (Θ (h(x))) +m+ 2, because h(x) ≥ 0, for a.e.x ∈ Ω2.

Therefore, ∣∣(div y∗0(x) + f0(x)) zn(x)− k2(x) cosh (zn(x) + w(x))
∣∣

≤ |div y∗0(x) + f0(x)|
(
h(x) + ‖w‖L∞(Ω2)+2

)
+ k2(x)e2‖w‖L∞(Ω2)+2Θ (h(x)) := H(x) ∈ L2(Ω2),

where in the last line we have used the fact that Θ (h(x)) ∈ L2(Ω2). All the conditions of the

Lebesgue’s dominated convergence theorem are satisfied and we see that Iy∗0 (zn)→ Iy∗0 (ξ0)

and, consequently, sup
z∈H1

0 (Ω)

Iy∗0 (z) = Iy∗0 (ξ0).
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Remark 4.6

Since |Ω2| <∞ it follows that L∞(Ω2) ⊂ Lp(Ω2) for all 1 ≤ p <∞. Therefore, if we fix one

such p, by the density of C∞0 (Ω2) in Lp(Ω2) we can find a sequence {ψn}∞n=1 ⊂ C∞0 (Ω2) such

that ψn → w in Lp(Ω). From Theorem 4.9 in [96] it follows that there is a subsequence (not

relabeled) such that ψn(x)→ w(x) for a.e. x ∈ Ω. Now, if m = ‖w‖L∞(Ω2), let ϕ : R→ R be

a smooth function such that

ϕ(t) =


t, |t|≤ m+ 1,

m+ 2, t > m+ 2,

−m− 2, t < −m− 2.

Then for the sequence {wn}∞n=1 defined by wn := ϕ◦ψn, ∀n ∈ N, we have wn ∈ C∞0 (Ω2), ∀n ∈
N, ‖wn‖L∞(Ω2)≤ m+ 2, ∀n ∈ N, and wn(x) = ϕ(ψn(x))→ ϕ(w(x)) = w(x) for a.e. x ∈ Ω2.

Remark 4.7

Let us denote fx(s) = f(x, s) := B(x, s+ w(x))− f0(x)s, ∀s ∈ R and for a.e. x ∈ Ω. If we

define the functional F̃ : L2(Ω)→ R ∪ {+∞} by the relation

F̃ (z) :=

∫
Ω

fx(z(x))dx =

∫
Ω

f(x, z(x))dx =

∫
Ω

(B(x, z + w)− f0z) dx,

then the Fenchel conjugate functional of F̃ (with respect to the pairing of L2(Ω) and L2(Ω)

given by the inner product in L2(Ω)), evaluated at div y∗0 ∈ L2(Ω), is given by the relation

F̃ ∗(div y∗0) = sup
z∈L2(Ω)


∫
Ω

div y∗0zdx−
∫
Ω

f(x, z(x))dx

 = sup
z∈L2(Ω)

Iy∗0 (z). (4.36)

By a well known theorem due to Rockafellar (Theorem 2 in [161]) it follows that the Fenchel

conjugate functional of F̃ evaluated at div y∗0 ∈ L2(Ω) (with respect to the pairing of L2(Ω)

and L2(Ω) given by the inner product in L2(Ω)) is given by the relation

F̃ ∗(div y∗0) =

∫
Ω

f∗x(div y∗0(x))dx =

∫
Ω

f∗(x,div y∗0(x))dx,

where f∗x(·) is the conjugate to fx(·) for a.e. x ∈ Ω (with respect to the pairing between R
and R given by (a∗, a) = a∗a for all a∗, a ∈ R).

The purpose of this remark is to pay attention to the fact that the result of Rockafellar is

applicable when one finds Fenchel conjugates of integral functionals defined over spaces that

are ”decomposable” (such as Lp-spaces). However, H1
0 (Ω) is not of this type, and therefore

the computations in (4.31) and Prposition 4.5 are required.

Remark 4.8

Notice that since

ξ0(x) = ln (Θ (ρ(y∗0)))− w ∈ L2(Ω2), for a.e. x ∈ Ω2,
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then ξ0 is in L2(Ω) when extended by zero in Ω1. Now, taking into account the fact that

sup
z∈L2(Ω)

Iy∗0 (z) ≤
∫
Ω2

sup
ξ∈R

{
(div y∗0(x) + f0(x)) ξ −B (x, ξ + w(x))

}
dx = Iy∗0 (ξ0)

we see that the supremum over L2(Ω) above is actually achieved and sup
z∈L2(Ω)

Iy∗0 (z) = Iy∗0 (ξ0).

Therefore, by Proposition 4.5 it follows that

sup
z∈H1

0 (Ω)

Iy∗0 (z) = Iy∗0 (ξ0) = sup
z∈L2(Ω)

Iy∗0 (z). (4.37)

One may ask if we could exploit the density of H1
0 (Ω) in L2(Ω) to show the left equality in

(4.37) and not having to go through Proposition 4.5. If Iy∗0 was continuous, then the left

equality in (4.37) follows from the density of H1
0 (Ω) in L2(Ω). However, the functional Iy∗0 is

only upper semicontinuous and not continuous over L2(Ω). Hence, a density argument is not

applicable.

Error measures

In this section, we apply the abstract framework from Section 4.1.2 and derive explicit form

of relation (4.14) adapted to our problem. For any y∗ ∈
[
L2(Ω)

]d
of the form (4.29) with

div y∗0 + f0 = 0 in Ω1, the quantity M2
⊕(v,y∗) is fully computable and is given by the relation

(4.11). To give an explicit expression for M2
⊕(v,y∗) we first have to compute DG(Λv,y∗) and

DF (v,−Λ∗y∗). For the first compound functional we obtain

DG(Λv,y∗) =G(Λv) +G∗(y∗)− (y∗,Λv)

=

∫
Ω

1

2
A∇v · ∇vdx+

∫
Ω

1

2
A−1y∗ · y∗dx−

∫
Ω

y∗ · ∇vdx

=

∫
Ω

1

2
A−1(A∇v − y∗) · (A∇v − y∗)dx =

1

2
|||A∇v − y∗|||2∗.

(4.38)

For the second compound functional we have

DF (v,−Λ∗y∗) =F (v) + F ∗(−Λ∗y∗) + 〈Λ∗y∗, v〉

=

∫
Ω

(
k2 cosh(v + w)− f0v − f · ∇v

)
dx

+

∫
Ω2

[
k2

(
div y∗0 + f0

k2

)(
arsinh

(
div y∗0 + f0

k2

)
− w

)

− k2 cosh

(
arsinh

(
div y∗0 + f0

k2

))]
dx+

∫
Ω

y∗ · ∇vdx,
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from which by using the relation y∗ = f + y∗0 and the fact that y∗0 is in H(div; Ω) with

div y∗0 + f0 = 0 in Ω1 we obtain

DF (v,−Λ∗y∗) =

∫
Ω2

k2

[
cosh(v + w) +

(
div y∗0 + f0

k2

)
arsinh

(
div y∗0 + f0

k2

)

− cosh

(
arsinh

(
div y∗0 + f0

k2

))
−
(

div y∗0 + f0

k2

)
(v + w)

]
dx.

(4.39)

The fully computable majorant M2
⊕(v,y∗) is given by

M2
⊕(v,y∗) = DG(Λv,y∗) +DF (v,−Λ∗y∗)

=

∫
Ω

η2(x)dx =
1

2
|||A∇v − y∗|||2∗ +DF (v,−Λ∗y∗),

(4.40)

where DG(Λv,y∗) and DF (v,−Λ∗y∗) are given by (4.38) and (4.39), respectively, and

η2(x) =



1
2A
−1 (A∇v − f − y∗0) · (A∇v − f − y∗0) , for x ∈ Ω1,

1
2A
−1 (A∇v − f − y∗0) · (A∇v − f − y∗0)

+k2
[
cosh(v + w) +

(
div y∗0+f0

k2

)
arsinh

(
div y∗0+f0

k2

)
− cosh

(
arsinh

(
div y∗0+f0

k2

))
−
(

div y∗0+f0

k2

)
(v + w)

]
, for x ∈ Ω2.

(4.41)

It is clear that η2(x) ≥ 0 since it is the sum of the compound functionals (which are non-

negative by the definiton of a Fenchel conjugate) generated by gx(ξ) := g(x, ξ) = 1
2A(x)ξ · ξ

and fx(s) := B(x, s+ w(x))− f0(x)s and evaluated at (∇v(x),y∗(x)) and (v(x), div y∗0(x)),

respectively. It therefore qualifies as an error indicator, provided that y∗0 is chosen appropri-

ately, which we demonstrate with numerical experiments in the next sections.

To give an explicit form of the principal error identity (4.14), we should also compute the

quantities DG(Λv,p∗), DG(Λu,y∗), DF (v,−Λ∗p∗), and DF (u,−Λ∗y∗). By using (4.38) and

the relation p∗ = A∇u, we obtain

DG(Λv,p∗) =
1

2

∫
Ω

A∇(v − u) · ∇(v − u)dx =
1

2
|||∇(v − u)|||2, (4.42)

DG(Λu,y∗) =
1

2

∫
Ω

A−1(y∗ − p∗) · (y∗ − p∗)dx =
1

2
|||y∗ − p∗|||2∗. (4.43)

Now, we find explicit expressions for the nonlinear measures DF (v,−Λ∗p∗) and DF (u,−Λ∗y∗)

similar to the ones for the case of quadratic F in (4.15) for the linear elliptic equation

−div(A∇u) + u = f0. We will need the following assertion:

Proposition 4.9

For all s, t ∈ R it holds

(t− s)2

2
≤ U(s, t) ≤ (sinh(t)− sinh(s))2

2
, (4.44)
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where U(s, t) = cosh(t)− cosh(s) + s sinh(s)− t sinh(s).

Proof. For the first inequality, denote

U1(s, t) := U(s, t)− (t− s)2

2
.

We prove that for any fixed s ∈ R, U1(s, t) ≥ 0 for all t ∈ R. If s = 0, we have cosh(t)−1 ≥ t2

2

for all t ∈ R. If s 6= 0, the necessary condition for a minimum in t is ∂U1
∂t (s, t) = 0 which is

equivalent to sinh(t)− sinh(s)− t+ s = 0. The only solution of this equation is t = s because

the function sinh(t)− t is strictly monotonically increasing. It is left to observe that at t = s

we have ∂2U1
∂t2

= cosh(s)− 1 > 0 and that U1(s, t = s) = 0.

For the second inequality, denote

U2(s, t) :=
(sinh(t)− sinh(s))2

2
− U(s, t).

If t = 0, the inequality U2(s, 0) ≥ 0 reduces to the inequality q(s) := sinh2(s)
2 − 1 + cosh(s)−

s sinh(s) ≥ 0 which is true since the minimum of the function q(s) is 0. If t 6= 0, the necessary

condition for a minimum in s is ∂U2
∂s = 0 which is equivalent to cosh(s)(sinh(s)− sinh(t)−

s+ t) = 0. The only solution of this equation is s = t. Now, it is left to observe that at s = t

we have ∂2U2
∂s2

= cosh(t)(cosh(t)− 1) > 0 and that U2(s = t, t) = 0.

Since for the exact solution u of (4.2) we have

div p∗0 + f0

k2
= sinh(u+ w) and u = arsinh

(
div p∗0 + f0

k2

)
− w a.e. in Ω2,

by using (4.39) we obtain

DF (v,−Λ∗p∗) =

∫
Ω2

k2 (cosh(v + w)− cosh(u+ w) + u sinh(u+ w)− v sinh(u+ w)) dx.

(4.45)

Similarly,

DF (u,−Λ∗y∗) =

∫
Ω2

k2 (cosh(T )− cosh(S) + S sinh(S)− T sinh(S)) dx, (4.46)

where

T := arsinh

(
div p∗0 + f0

k2

)
and S := arsinh

(
div y∗0 + f0

k2

)
.

The nonlinear quantities DF (v,−Λ∗p∗) and DF (u,−Λ∗y∗) measure the error over Ω2 in v

and in div y∗0 , respectively. Using inequality (4.44), we can represent these two measures in a
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form, which resembles the corresponding estimates in the case (4.15) of a quadratic functional

F , namely,∫
Ω2

k2

2
(v − u)2dx ≤ DF (v,−Λ∗p∗) ≤

∫
Ω2

k2

2
(sinh(v + w)− sinh(u+ w))2dx (4.47)

and ∫
Ω2

k2

2
(S − T )2dx ≤ DF (u,−Λ∗y∗) ≤

∫
Ω2

1

2k2
(div y∗0 − div p∗0)2dx. (4.48)

Note that if the coefficient k satisfies case (a), i.e., kmax ≥ k ≥ kmin > 0 in Ω, the equivalences∫
Ω

k2

2 (v − u)2dx h ‖v − u‖2L2(Ω) and
∫
Ω

1
2k2 (div y∗0 − div p∗0)2dx h ‖div y∗0 − div p∗0‖2L2(Ω) hold

(in this case the requirement div y∗0 + f0 = 0 in Ω1 is not needed: look at the derivation of

F ∗(−Λ∗y∗) in (4.31)). Moreover, replacing the nonlinear term k2 sinh(u + w) with u, the

inequalities (4.47) and (4.48) reduce to the equalities for DF (v,−Λ∗p∗0) and DF (u,−Λ∗y∗)

in (4.15) because in this case the inverse function of f(s) = s is again f(s). The functions

on the left-hand side, in the middle, and on the right-hand side in the inequality (4.44) are

depicted on Figure 4.1. Further, if v is in a δ1-neighborhood of u in L∞(Ω) norm, since sinh

is a locally Lipschitz function, we can find a constant C1

(
δ1, ‖u‖L∞(Ω)

)
> 1 such that∫

Ω2

k2

2
(sinh(v + w)− sinh(u+ w))2dx ≤ C1

(
δ1, ‖u‖L∞(Ω)

) ∫
Ω2

k2

2
(v − u)2dx. (4.49)

Analogously, if f0 ∈ L∞(Ω2) and ‖div(y∗0 − p∗0)‖L∞(Ω2)≤ δ2 (recall that when f0 ∈ L∞(Ω2),

div p∗0 is in L∞(Ω2) and if f0 ∈ L∞(Ω), then div p∗0 is in L∞(Ω)), then we can find a constant

C2

(
δ2, ‖div p∗0‖L∞(Ω2)

)
< 1 such that

C2

(
δ2, ‖div p∗0‖L∞(Ω2)

) ∫
Ω2

1

2k2
(div y∗0 − div p∗0)2dx ≤

∫
Ω2

k2

2
(S − T )2dx. (4.50)

Here, the constant C2 is again a Lipschitz constant for the locally Lipschitz function sinh.

Notice that if k2
max ≥ k2 ≥ k2

min > 0 in Ω, then everywhere in (4.47), (4.48), (4.49), and

(4.50), the integrals are taken over the entire domain Ω. Now, the abstract error identity

(4.14) takes the form

1

2
|||∇(v − u)|||2 +

1

2
|||y∗ − p∗|||2∗

+

∫
Ω2

k2

2
(v − u)2dx+ C2

(
δ2, ‖div p∗0‖L∞(Ω2)

) ∫
Ω2

1

2k2
(div y∗0 − div p∗0)2dx

≤ 1

2
|||∇(v − u)|||2 +

1

2
|||y∗ − p∗|||2∗ +DF (v,−Λ∗p∗) +DF (u,−Λ∗y∗) = M2

⊕(v,y∗) (4.51)

≤ 1

2
|||∇(v − u)|||2 +

1

2
|||y∗ − p∗|||2∗

+ C1

(
δ1, ‖u‖L∞(Ω)

) ∫
Ω2

k2

2
(v − u)2dx+

∫
Ω2

1

2k2
(div y∗0 − div p∗0)2dx.



4.1. GENERAL FORM OF THE ESTIMATES 101



cosh(t) - cosh(s) + s sinh(s) - t sinh(s)
1

2
(t - s)2

1

2
(sinh(t) - sinh(s))2

Figure 4.1: Functions in the inequality (4.44).

Relation (4.51) shows that the computable majorant M2
⊕(v,y∗) is bounded from below

and above by a multiple of one and the same error norm. Since DF (v,−Λ∗p∗) ≥ 0 and

DF (u,−Λ∗y∗) ≥ 0 we also obtain a guaranteed bound on the error in the combined energy

norm:

|||∇(u− v)|||2 + |||y∗ − p∗|||2∗ ≤ 2M2
⊕(v,y∗). (4.52)

Moreover, from the pointwise equality

A−1 (A∇v − y∗) · (A∇v − y∗)
=A−1 (A∇(v − u)− (y∗ − p∗)) · (A∇(v − u)− (y∗ − p∗))
=A∇(v − u) · ∇(v − u) +A−1(y∗ − p∗) · (y∗ − p∗)− 2(y∗ − p∗) · ∇(v − u),

(4.53)

after applying Young’s inequality and integrating over Ω, we obtain a lower bound for the

error in combined energy norm:

1

2
|||A∇v − y∗|||2∗ ≤ |||∇(v − u)|||2 + |||y∗ − p∗|||2∗. (4.54)

Remark 4.10

Integrating (4.53) over Ω we obtain the algebraic identity

|||A∇v − y∗|||2∗ = |||∇(v − u)|||2 + |||y∗ − p∗|||2∗ − 2

∫
Ω

(y∗ − p∗) · ∇(v − u)dx, (4.55)

from which the Prager-Synge identity is derived. Indeed, since y∗ = f + y∗0 and p∗ = f + p∗0
with y∗0, p

∗
0 ∈ H(div; Ω), we obtain

|||A∇v − y∗|||2∗ = |||∇(v − u)|||2 + |||y∗ − p∗|||2∗ + 2

∫
Ω

div(y∗0 − p∗0)(v − u)dx. (4.56)
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Now, if div y∗0 = div p∗0 = −f0 + k2 sinh(u + w) in Ω, i.e., if y∗0 is exactly equilibrated, the

above equality implies the Prager-Synge equality.

Comparing (4.55) with (4.51), by using the fact that

M⊕(v,y∗)2 =
1

2
|||A∇v − y∗|||2∗ +DF (v,−Λ∗y∗),

we arrive at the relation

DF (v,−Λ∗y∗) = DF (v,−Λ∗p∗) +DF (u,−Λ∗y∗) +

∫
Ω

(y∗ − p∗) · ∇(v − u)dx, (4.57)

which is an analogue of the Prager-Synge identity in the case when y∗0 is exactly equilibrated.

From here, it is seen that if the integral on the right-hand side of (4.57) is small compared to

the other terms, then the error in v and div y∗0 measured with DF (v,−Λ∗p∗)+DF (u,−Λ∗y∗) is

controlled mainly by the computable term DF (v,−Λ∗y∗) in the majorant M2
⊕(v,y∗). Moreover,

(4.55) enables us to give a practical estimation of the error in combined energy norm, which

is very close to the real error in all of the experiments that we have conducted.

Remark 4.11 (Convergence order under uniform refinement with Lagrange P1 elements)

Note that for a smooth coefficient matrix A with f = 0, f0 ∈ L2(Ω), b(x, s) = s, Ω a bounded

open convex polyhedral domain, and a homogeneous Dirichlet boundary condition, we have

that the solution u of the problem

−div(A∇u) + u = f0 in Ω,

u = 0 on ∂Ω

is in H2(Ω). In this case, y∗ = y∗0 ∈ H(div; Ω) (note that we do not require the condition

div y∗0 + f0 = 0 in Ω1 since in this case k2 = 1 > 0 everywhere in Ω) and we have

‖uh− u‖L2(Ω)= O(h2), where {uh} are the Galerkin approximations of u in the finite element

spaces {Vh}h→0 of continuous piecewise linear functions defined over a regular family of

triangulations {Th}h→0. Moreover, let Lh be the finite element space of piecewise constant

functions over Th and let ΠLh be the L2(Ω) projection onto the space Lh ⊂ L2(Ω). Then, if y∗

is partially equilibrated, i.e., such that div y∗ = ΠLh (−f0 + uh) (in particular, ΠLh (−f0) =

−f0 when f0 is piecewise constant over Th), then we find

‖div(y∗ − p∗)‖L2(Ω) = ‖ΠLh(−f0 + uh)− (−f0 + u)‖L2(Ω)

≤ ‖f0 −ΠLh(f0)‖L2(Ω)+‖ΠLh(uh)− u‖L2(Ω).
(4.58)

To estimate the term ‖f0 −ΠLh(f0)‖L2(Ω), let us additionally assume that f0 ∈ H1(K) for all

K ∈ Th. In this case, by using Poincaré’s inequality (for functions with zero mean) on each
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element K ∈ Th we obtain

‖f0 −ΠLh(f0)‖2L2(Ω) =

∫
Ω

(f0 −ΠLh(f0))2 dx =
∑
K∈Th

∫
K

f0 −
1

|K|

∫
K

f0dx

2

dx

≤
∑
K∈Th

C2
P (K)‖∇f0‖2L2(K) ≤

h2

π2

∑
K∈Th

‖∇f0‖2L2(K) = O(h2),

(4.59)

where we have used the fact that on the convex domains K the Poincaré constant CP (K) is

bounded by hK
π ≤

h
π (see [149]) with h being the maximum diameter among all diameters hK

of elements K in the triangulation Th. For the term ‖ΠLh(uh)− u‖L2(Ω), since uh ∈ H1(Ω),

similarly to (4.59), we have

‖ΠLh(uh)− u‖L2(Ω) ≤ ‖ΠLh(uh)− uh‖L2(Ω)+‖uh − u‖L2(Ω)

≤ h

π
‖∇uh‖L2(Ω)+O(h2) = O(h),

(4.60)

where we have used the fact that ‖∇uh‖L2(Ω) is bounded due to the fact that ‖∇(uh − u)‖L2(Ω)→ 0

as h→ 0. By taking into account (4.58), (4.59), and (4.60) we obtain∫
Ω

(y∗ − p∗) · ∇(uh − u)dx = −
∫
Ω

div(y∗ − p∗)(uh − u)dx = O(h3),

|||∇(uh − u)|||2 = O(h2), DF (uh,−Λ∗p∗) =
1

2
‖uh − u‖2L2(Ω)= O(h4),

DF (u,−Λ∗y∗) =
1

2
‖div(y∗ − p∗)‖2L2(Ω)= O(h2).

Depending on the approach used to find an approximation y∗ of the exact flux p∗ = A∇u, we

may also have |||y∗ − p∗|||2∗ = O(h2).

Guaranteed lower and upper bounds for the primal part of the error

From Section 4.1.2 we know that in abstract form the primal part of the error is given by

J(v)− J(u) = DG(Λv, p∗) +DF (v,−Λ∗p∗). (4.12a)

By using (4.13) and the fact that u is a minimizer of J , for any approximation v ∈ V of u

and any w ∈ V , y∗ ∈ Y ∗ we obtain

M2
	(v, w) := J(v)− J(w) ≤ J(v)− J(u) ≤M2

⊕(v, y∗), (4.61)

where the left-hand side of (4.61) makes sense only if J(v)− J(w) ≥ 0. In particular, for the

case of the linear problem (4.16), the primal part of the error is given by the expression:

2 (J(v)− J(u)) = |||∇(v − u)|||2 + ‖v − u‖2L2(Ω), (4.62)



104 CHAPTER 4. FUNCTIONAL A POSTERIORI ERROR ESTIMATES

where we have used the expressions for DG(Λv, p∗) and DF (v,−Λ∗p∗) in (4.15). Thus, for any

approximation v ∈ H1
0 (Ω) of u and any w ∈ V = H1

0 (Ω), y∗ ∈ H(div; Ω) ⊂
[
L2(Ω)

]d
= Y ∗

(4.61) takes the explicit form

2 (J(v)− J(w)) ≤ |||∇(v − u)|||2 + ‖v − u‖2L2(Ω)

≤ |||A∇v − y∗|||2∗ + ‖v − div y∗ − f0‖2L2(Ω).
(4.63)

Obviously, when A = I, the identity matrix, then (4.62) coincides with the squared H1(Ω)

norm of the error. As we have seen by (4.47) and (4.49) in the nonlinear case, the term

DF (v,−Λ∗p∗) is equivalent to the squared L2(Ω2)-norm of the error and hence the ”nonlinear”

measure of the error (4.12a) is an analogue of the squared H1 norm of the error in the linear

case. In a similar way one can also derive lower and upper bounds for the dual part of the

error given by (4.12b).

Near best approximation result

Here we present a near best approximation result which is a byproduct of the functional a

posteriori error estimates that we have derived above. Contrary to the result in [48, Theorem

6.2], we do not make any restrictive assumptions on the meshes to ensure that the finite element

approximations uh are uniformly bounded in L∞(Ω) norm. In our analysis, Vh ⊂ L∞(Ω)

is a closed subspace of H1
0 (Ω) (not necessarily finite dimensional) and uh is the (unique)

minimizer of J (J is defined by (4.4)) over Vh, which is the unique solution of the Galerkin

problem:

Find uh ∈ Vh such that

a(uh, v) +

∫
Ω

b(x, uh + w)vdx =

∫
Ω

(f0v + f · ∇v) dx for all v ∈ Vh. (4.64)

Then, using (4.12a) and the expression (4.42) for DG(Λv,p∗), for any v ∈ Vh we can write

|||∇(uh − u)|||2 + 2DF (uh,−Λ∗p∗) = 2 (J(uh)− J(u))

≤ 2 (J(v)− J(u)) = |||∇(v − u)|||2 + 2DF (v,−Λ∗p∗).

Since 2DF (uh,−Λ∗p∗) ≥ 0, by using (4.47), we obtain the following generalization of Cea’s

Lemma to the case of our nonlinear problem.

Proposition 4.12

Let Vh ⊂ L∞(Ω) be a closed subspace of H1
0 (Ω) and uh ∈ Vh be the Galerkin approximation

of u defined by (4.64). Then

|||∇(uh − u)|||2 ≤ inf
v∈Vh

{
|||∇(v − u)|||2 +

∫
Ω2

k2(sinh(v + w)− sinh(u+ w))2dx

}
. (4.65)
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For example, if Ω is a polyhedral domain and we use the finite element method with

P1 Lagrange elements, let V 1
h be the corresponding space where h refers to the maxi-

mum element size of a triangulation of Ω into tetrahedrons. By Ih(ψ) we denote the

Lagrange finite element interpolant of ψ ∈ C0(Ω). Using (4.65) we can show unquali-

fied convergence of the finite element approximations uh to u as h → 0. Let ε > 0 and

ū ∈ C∞0 (Ω) be such that ‖∇(ū− u)‖L2(Ω)≤ ε and ‖ū‖L∞(Ω)≤ ‖u‖L∞(Ω)+2 (see Remark 4.13).

Also, let L be the Lipschitz constant in the inequality |sinh(s)− sinh(t)| ≤ L |s− t| for all

s, t ∈
[
−‖u‖L∞(Ω)−‖w‖L∞(Ω2)−2, ‖u‖L∞(Ω)+‖w‖L∞(Ω2)+2

]
. Then, by applying first Propo-

sition 4.12 with v = Ih(u) and then the triangle inequality together with Young’s inequality,

we obtain

|||∇(uh − u)|||2 ≤ 2
(
|||∇(Ih(ū)− ū)|||2 + |||∇(ū− u)|||2

)
(4.66)

+ 2

∫
Ω2

k2(sinh(Ih(ū) + w)− sinh(ū+ w))2dx+

∫
Ω2

k2(sinh(ū+ w)− sinh(u+ w))2dx

 .

For the first term in (4.66), by assuming mesh regularity, we have

|||∇(Ih(ū)− ū)|||2 + |||∇(ū− u)|||2 ≤ µ2

(
C|ū|22h2 + ε2

)
,

where |ū|2 denotes the H2 seminorm of ū and C > 0 is a constant depending on the mesh

regularity. Using the fact that ‖Ih(ū)‖L∞(Ω)≤ ‖ū‖L∞(Ω)≤ ‖u‖L∞(Ω)+2, for the second term

in (4.66), we obtain the upper bound

2k2
maxL

2
(
‖Ih(ū)− ū‖2L2(Ω)+‖ū− u‖

2
L2(Ω)

)
≤ 2k2

maxL
2C2

P

(
‖∇(Ih(ū)− ū)‖2L2(Ω)+‖∇(ū− u)‖2L2(Ω)

)
≤ 2k2

maxL
2C2

P

(
C|ū|22h2 + ε2

)
,

where CP is the constant in the Poincaré’s inequality ‖v‖L2(Ω)≤ CP ‖∇v‖L2(Ω), ∀v ∈ H1
0 (Ω).

This inequality shows that the right-hand side of (4.66) can be made as small as desired

provided that we choose ε and h small enough and therefore |||∇(uh − u)||| → 0 when h→ 0.

Moreover, (4.65) can be also used to obtain qualified convergence of uh in the energy norm

under additional assumptions on the regularity of A, the meshes, and the regularity of u.

Remark 4.13

Note that if u ∈ H1
0 (Ω)∩L∞(Ω) one can find a sequence {un}∞n=1 ⊂ C∞0 (Ω) such that un → u

in H1(Ω) and ‖un‖L∞(Ω)≤ m + 2, where m := ‖u‖L∞(Ω). Indeed, since C∞0 (Ω) is dense

in H1
0 (Ω), we can find a sequence {ψn}∞n=1 ⊂ C∞0 (Ω) such that ψn → u in H1(Ω). Up to

a subsequence (not relabeled) we have also that ψn(x) → u(x), a.e x ∈ Ω and ∇ψn(x) →
∇u(x), a.e x ∈ Ω. Now, let ϕ : R→ R be the smooth function defined in Remark 4.6. One

can choose ϕ such that 0 ≤ ϕ′(t) ≤ 1, ∀t ∈ R. The functions un := ϕ ◦ ψn are in C∞0 (Ω) with

‖un‖L∞(Ω)≤ m+ 2. Now, by using the fact that |ϕ(t1)− ϕ(t2)|≤ |t1 − t2|, ∀t1, t2 ∈ R and the

Lebesgue dominated convergence theorem one can show that ‖un − u‖H1(Ω)→ 0.
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Computing F ∗(−Λ∗y∗) for a more general nonlinearity of the form k2(x)b(s)

If we consider the more general problem

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω) (4.67)∫
Ω

A∇u · ∇vdx+

∫
Ω

k2(x)b(u+ w)vdx =

∫
Ω

(f0v + f · ∇v) dx.

whereA ∈ [L∞(Ω)]d×d is as in (4.2), k and w satisfy, for example, case (b), i.e., w is measurable

in Ω with w ∈ L∞(Ω2) and k ∈ L∞(Ω) with k = 0 in Ω1 and k2
max ≥ k2 ≥ k2

min > 0 in

Ω2 (in our particular case of the PBE we have k = 0 in Ωm ∪ ΩIEL and k = kions = const

in Ωions), b(s) is a strictly increasing continuous function on R, w ∈ L∞(Ω2), f0 ∈ L2(Ω),

f ∈ [Ls(Ω)]d , s > d. From Theorem 3.29 we have u ∈ L∞(Ω). Let F : H1
0 (Ω)→ R ∪ {+∞}

be defined as usual by

F (v) =

∫
Ω

(
k2B(v + w)− f0v − f · ∇v

)
dx, (4.68)

where B(s) =
s∫
0

b(q)dq. Under appropriate additional conditions on b(·) that also ensure the

unique solvability of the primal and dual variational problems (P ) and (P ∗), as well as the

validity of the strong duality relation (4.7), one can compute F ∗(−Λ∗y∗) explicitly for certain

y∗ ∈
[
L2(Ω)

]d
. Following the ideas in (4.31) and Proposition 4.5 we can find an explicit

expression of F ∗(−Λ∗y∗) for any y∗ ∈ [L2(Ω)]d of the form y∗ = f + y∗0 with y∗0 ∈ H(div; Ω)

and div y∗0 + f0 = 0 in Ω1:

F ∗(−Λ∗y∗) =

∫
Ω2

[
k2

(
div y∗0 + f0

k2

)(
b−1

(
div y∗0 + f0

k2

)
− w

)

− k2B

(
b−1

(
div y∗0 + f0

k2

))]
dx,

(4.69)

where b−1 : R→ R is the inverse function of b(·). Then we can compute

DF (v,−Λ∗y∗) =

∫
Ω2

k2

[
B(v + w) +

(
div y∗0 + f0

k2

)
b−1

(
div y∗0 + f0

k2

)

− B

(
b−1

(
div y∗0 + f0

k2

))
−
(

div y∗0 + f0

k2

)
(v + w)

]
dx.

(4.70)

By using the relation
divp∗0+f0

k2 = b(u+ w), where p∗ = f + p∗0, we find

DF (v,−Λ∗p∗) = F (v) + F ∗(−Λ∗p∗) + 〈Λ∗p∗, v〉

=

∫
Ω2

k2 [B(v + w)−B(u+ w) + ub(u+ w)− vb(u+ w)] dx. (4.71)
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Next, by using the monotonicity of b(·) we observe that for any s, t ∈ R the following inequality

holds:

B(t)−B(s) + sb(s)− tb(s) =

t∫
s

b(q)dq − b(s)(t− s)

≤ b(t)(t− s)− b(s)(t− s) = (b(t)− b(s)) (t− s).

(4.72)

Therefore,

DF (v,−Λ∗p∗) ≤
∫
Ω2

k2 (b(v + w)− b(u+ w)) (v − u)dx (4.73)

and we obtain an analogue of the near best approximation result in Proposition 4.12

|||∇(uh − u)|||2 ≤ inf
v∈Vh

{
|||∇(v − u)|||2 +

∫
Ω2

k2 (b(v + w)− b(u+ w)) (v − u)dx

}
, (4.74)

where uh is the Galerkin approximation of u in the closed subspace Vh ⊂ H1
0 (Ω) ∩ L∞(Ω).

Now, if b(·) is Lipschitz continuous with a Lipschitz constant L, then the second term in the

infimum in (4.74) is bounded by

L

∫
Ω2

k2(v − u)2dx ≤ LC2
P ‖∇(v − u)‖2L2(Ω),

where CP is Poincaré’s constant in the inequality ‖v‖L2(Ω)≤ CP ‖∇v‖L2(Ω), ∀v ∈ H1
0 (Ω). If b(·)

is only locally Lipsctiz, then qualified and unqualified convergence can be shown by using the lo-

cal Lipschitz constant of b(·) for the interval
[
−‖u‖L∞(Ω)−‖w‖L∞(Ω2)−2, ‖u‖L∞(Ω)+‖w‖L∞(Ω2)+2

]
similarly to the considerations after Proposition 4.12.

Remark 4.14

When b(s) = s, we have B(s) = s2

2 and b−1(s) = s. One can easily obtain the following

expression for DF :

DF (v,−Λ∗y∗) =

∫
Ω2

1

2k2

(
k2(v + w)− div y∗0 − f0

)2
dx, (4.75)

where y∗ = f + y∗0 with y∗0 ∈ H(div; Ω) and div y∗0 + f0 = 0 in Ω1. For any v ∈ H1
0 (Ω), the

main error identity (4.14) takes the form

|||∇(v − u)|||2 +

∫
Ω2

k2(v − u)2dx+ |||y∗ − p∗|||2∗ +

∫
Ω2

1

k2
(div y∗0 − div p∗0)2 dx

=M2
⊕(v,y∗) = |||A∇v − y∗|||2∗ +

∫
Ω2

1

k2

(
k2(v + w)− div y∗0 − f0

)2
dx,

(4.76)

where p∗ = A∇u and p∗ = f + p∗0 with p∗0 ∈ H(div; Ω) and div p∗0 = k2(u + w) − f0 in

Ω. In the case of the LPBE with 2-term or 3-term splitting we have w = G or w = 0 and

f = χΩs(εm − εs)∇G or f = χΩmεm∇uH + χΩsεm∇G, respectively, k = k, Ω1 = Ωm ∪ΩIEL,

Ω2 = Ωions, f0 = 0, A = εI.
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Effect of data oscillation

In the case of the PBE, we have f0 = 0 and therefore the equilibration condition div y∗0 +f0 = 0

in the domain Ω1 = Ωm∪ΩIEL can be satisfied exactly. However, for general functions f0 this

condition can only be satisfied approximately. Let V 1
h and Lh be the finite element spaces

of continuous piecewise linear functions and of piecewise constant functions, respectively,

defined on a triangulation Th of Ω. We assume that we apply a partial equilibration of y∗0
that satisfies div y∗0 + ΠLh(f0) = 0 in Ω1, where ΠLh is the L2(Ω)-projection operator that

maps onto the space Lh. For example, this is the case when y∗0 is found in the lowest order

Raviart-Thomas space RT0 by the patchwise flux reconstruction in [30, 31] (see Section 4.2).

Let us denote by f0 ∈ Lh the projection ΠLh(f0) and by u the solution of (4.2) with f0

instead of f0. Then for all v ∈ H1
0 (Ω) we have∫

Ω

A∇u · ∇vdx+

∫
Ω

k2 sinh(u+ w)vdx =

∫
Ω

(f0v + f · ∇v) dx, (4.77a)

∫
Ω

A∇u · ∇vdx+

∫
Ω

k2 sinh(u+ w)vdx =

∫
Ω

(
f0v + f · ∇v

)
dx, (4.77b)

where we recall that u, u ∈ L∞(Ω) and hence the test space can be taken H1
0 (Ω). By

subtracting the second equation in (4.77) from the first one and by taking v := u − u we

obtain

|||∇(u− u)|||2 +

∫
Ω

k2 (sinh(u+ w)− sinh(u+ w)) (u− u)dx =

∫
Ω

(
f0 − f0

)
(u− u)dx.

(4.78)

From (4.78), by using the monotonicity of sinh and the fact that
∫
K

(f0 − f0)dx = 0, ∀K ∈ Th,

for cK := 1
|K|
∫
K

(u− u)dx, ∀K ∈ Th we obtain in a standard way:

|||∇(u− u)|||2 ≤
∑
K∈Th

(f0 − f0)(u− u− cK)dx

≤ 1

µ1

∑
K∈Th

CP (K)‖f0 − f0‖L2(K)|||∇(u− u)|||K

≤ 1

µ1

 ∑
K∈Th

h2
K

π2
‖f0 − f0‖2L2(K)

 1
2

|||∇(u− u)|||,

(4.79)

where |||q|||2K :=
∫
K

Aq · qdx and we have also applied Poincaré’s inequality on each element K

together with the fact that the constants CP (K) are bounded by hK
π (see [149]). Therefore,

we see that

|||∇(u− u)||| ≤ 1

µ1

 ∑
K∈Th

h2
K

π2
‖f0 − f0‖2L2(K)

 1
2

, (4.80)
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where the righ-hand side of (4.80) is fully computable.

Now, our goal is to estimate the distance between an approximation uh and u, where uh ∈ V 1
h

is an approximation of u. By using the error identity (4.51) applied to the problem (4.77b)

defining u, we find

|||∇(uh − u)||| ≤ |||∇(uh − u)|||+ |||∇(u− u)|||

≤
√

2M⊕(uh,y
∗) +

1

µ1

 ∑
K∈Th

h2
K

π2
‖f0 − f0‖2L2(K)

 1
2

,
(4.81)

where M
2
⊕(uh,y

∗) is the error majorant for problem (4.77b) y∗ = f +y∗0 with y∗0 ∈ H(div; Ω)

and div y∗0 +f0 = 0 in Ω1. In other words, if f0 is not a piecewise constant function, we find an

approximation uh ∈ H1
0 (Ω) of u. Then uh is also an approximation to u, for which the error

estimate (4.81) holds. Moreover, if f0 ∈ H1(Ω), then by using again Poincaré’s inequality on

each element K, we see that the second term in the upper bound for |||∇(uh − u)||| in (4.81)

is O(h2). Here we note that the approximation uh could be any element in H1
0 (Ω) and not

necessarily in V 1
h . This is due to the fact that the majorant M

2
⊕(uh,y

∗) is well defined for

any conforming approximation of u.

Numerical experiments for a homogeneous interface condition

In this section we present numerical examples which illustrate the error identity (4.51) and

performance of functional a posteriori error estimates for the case f = 0 and Ω1 with a

Lipschitz boundary Γ whose unit outward normal vector is nΓ. Numerical examples for the

case f 6= 0 will be given directly for the PBE on real biomolecular structures in Section 4.3.

All numerical experiments are carried out in FreeFem++ developed and maintained by

Frederich Hecht [98] and all pictures are generated in VisIt [52]. We solve adaptively the

homogeneous nonlinear interface Problem (4.2) with A = εI, ε : Ω→ R, a smooth function

in each subdomain Ω1 and Ω2, and w := whref = ζ − zhref where zhref is a good Galerkin

finite element approximation of the solution z of

−∇ · (ε∇z) = −k2 sinh(ζ) + f0 in Ω1 ∪ Ω2, (4.82a)

[z]Γ = 0, (4.82b)

[ε∇z · nΓ]Γ = 0, (4.82c)

z = 0, on ∂Ω, (4.82d)

for given functions ζ and f0. We compare the accuracy of the adaptively computed solution

uh of (4.2) for w = whref to the reference solution zhref . The adaptive mesh refinement

(AMR) is based on the error indicator ‖
√

2η‖L2(Oi) for subdomains Oi where the function η is

defined in (4.41) and η2 is the integrand of the majorant M2
⊕(v,y∗). The factor

√
2 accounts
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for the factor 2 in (4.52). More precisely, we find approximations uh to the exact solution

u ∈ H1
0 (Ω) of the problem∫

Ω

ε∇u · ∇vdx+

∫
Ω

b(x, u+ whref )vdx =

∫
Ω

f0vdx = 0, ∀v ∈ H1
0 (Ω). (4.83)

In all examples, we use piecewise constant parameters ε and k, and for y∗ ∈ H(div; Ω)

(y∗ = y∗0 when f = 0), we use a patchwise equilibrated reconstruction of the numerical

flux ε∇uh based on [30,31] (see Section 4.2). More precisely, we find y∗ in the lowest order

Raviart-Thomas space RT0 over the same mesh, such that its divergence is equal to the L2

orthogonal projection of k2 sinh(uh+w)+f0 onto the space Lh of piecewise constant functions.

Recall that

M2
⊕(v,y∗) = M2

⊕(v,p∗) +M2
⊕(u,y∗),

where

M2
⊕(v,y∗) =

1

2
|||ε∇v − y∗|||2∗ +DF (v,−Λ∗y∗)

is fully computable and

M2
⊕(v,p∗) = J(v)− J(u) =

1

2
|||∇(v − u)|||2 +DF (v,−Λ∗p∗)

is the primal error, whereas

M2
⊕(u,y∗) = I∗(p∗)− I∗(y∗) =

1

2
|||y∗ − p∗|||2∗ +DF (u,−Λ∗y∗)

is the dual error. Further, we use v for the approximate solution uh and u for the reference

solution zhref and define the efficiency index of the lower bound for the error in combined

energy norm (4.54) by

ICEN,Low
Eff :=

√
2

2 |||ε∇v − y
∗|||∗√

|||∇(v − u)|||2 + |||y∗ − p∗|||2∗
.

Similarly,

ICEN,Up
Eff :=

√
2M2
⊕(v,y∗)√

|||∇(v − u)|||2 + |||y∗ − p∗|||2∗

defines the efficiency index of the upper bound (4.52) for the error in combined energy norm.

Finally,

IE
Eff :=

√
2M2
⊕(v,y∗)

|||∇(v − u)|||
and PCEN

rel :=
|||ε∇v − y∗|||∗√
|||∇v|||2 + |||y∗|||2∗
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define the efficiency index of the upper bound for the error in energy norm and the practical

estimate of the relative error in combined energy norm, respectively.

Example 1 (2D problem)

In the first example, the domain Ω is a square with a side 20 with Ω1 being a regular 15-sided

polygon with a radius of its circumscribed circle equal to 2. The coefficients ε and k are

defined by the relations

ε(x) =

{
ε1 = 1, x ∈ Ω1,

ε2 = 100, x ∈ Ω2,
k(x) =

{
k1 = 0.15, x ∈ Ω1,

k2 = 0.4, x ∈ Ω2,
and

ζ = L

(
exp

(
−b1

(
(x1 − c1))2

σ2
1

− 1

))
− exp

(
−b2

(
(x2 − c2)2

σ2
2

− 1

)))
,

f0 = 0, where b1 = 2 = b2 = 2, c1 = −1, c2 = 6, σ1 = σ2 = 1.5, L = 0.8. The reference

solution zhref is computed on a multiply refined mesh with 50 086 142 triangles. Note that

k2 = 0.0225 in Ω1 and k2 = 0.16 in Ω2. The mesh adaptation is done with the built in

function ”adaptmesh” of FreeFem++. The localized error indicator ‖
√

2η‖L2(Oi), computed

on each vertex patch Oi of the mesh, is compared to its average value over all patches and

the local mesh size is divided by two if this average is smaller then the local value.

Table 4.12 illustrates the main error identity (4.13) and the convergence of its constituent

parts. Further, it is seen that the dual error 2M2
⊕(u,y∗) dominates the primal error in

this example. This is due to the fact that the term 2DF (u,−Λ∗y∗), measuring the error

in div y∗ (cf. (4.48) and (4.50)), is much larger than |||∇(v − u)|||2 + DF (v,−Λ∗p∗), where

DF (v,−Λ∗p∗) behaves like ‖v − u‖2L2(Ω2) (cf. (4.47) and (4.49)). As we mentioned earlier,

for y∗ we use a partially equilibrated reconstruction of the numerical flux ε∇v which is the

reason why the integral term in (4.55) is negligible compared to the combined energy norm of

the error. This fact is confirmed by the values of the efficiency index of the lower bound (4.54).

In Table 4.14 we can see that ICEN,Low
Eff is approximately equal to 0.7071 ≈

√
2

2 . The value

of the efficiency index with respect to the combined energy norm and the value of the ratio

DF (v,−Λ∗y∗)/M2
⊕(v,y∗) are also coupled in the sense that if we have only one of these

two quantities, we can estimate the other one by using the main error equality (4.51). This

estimation is accurate because the integral term in (4.57) is very close to zero and therefore

DF (v,−Λ∗y∗) ≈ DF (v − Λ∗p∗) +DF (u− Λ∗y∗). One more consequence of using a partially

equilibrated flux is that we obtain a very accurate practical estimate of the absolute and

relative error in combined energy norm as illustrated in the last two columns of Table 4.14.

Figure 4.4 depicts a mesh that is a part of a sequence of meshes obtained by mesh adaptation

using the localized functional error indicator ‖
√

2η‖L2(Oi). Figure 4.5 depicts a mesh with

approximately the same number of elements but obtained by mesh adaptation using the error
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Table 4.1: Example 1 (2D)

AMR with the indicator ‖
√

2η‖L2(Oi) with patchwise flux equilibration for y∗.

Recall that 2M2
⊕(v,p∗) + 2M2

⊕(u,y∗) = 2M2
⊕(v,y∗).

Example 1 (2D): k1 = 0.15, k2 = 0.4, ε1 = 1, ε2 = 100

#elts
‖v−u‖L2(Ω)

‖u‖L2(Ω)
[%] |||∇(v−u)|||

|||∇u||| [%]
|||y∗−p∗|||∗
|||p∗|||∗

[%] 2M2
⊕(v,y∗) 2M2

⊕(v,p∗) 2M2
⊕(u,y∗)

196 15.0077 51.5582 86.1021 1778.14 66.5980 1711.54

347 5.69339 30.8534 41.7241 703.594 20.7780 682.816

630 4.20384 21.7715 31.4858 217.719 10.2201 207.498

1 315 2.39552 15.8532 23.1244 76.8018 5.37574 71.4261

2 865 1.87075 11.7353 17.1655 33.9310 2.94414 30.9869

5 938 0.64611 7.93001 11.4692 16.0812 1.33874 14.7425

12 006 0.36985 5.64786 8.23544 7.75232 0.67872 7.07360

24 571 0.16023 3.94241 5.76054 3.85268 0.33039 3.52229

48 483 0.08909 2.80265 4.09366 1.90043 0.16682 1.73361

97 423 0.03961 1.97875 2.88455 0.96275 0.08304 0.87970

192 905 0.02230 1.39832 2.03200 0.47524 0.04136 0.43388

386 185 0.01015 0.99471 1.44616 0.24134 0.02082 0.22052

Table 4.2: Example 1 (2D)

AMR with the indicator ‖
√

2η‖L2(Oi) with patchwise flux equilibration for y∗.

Recall that |||∇(v − u)|||2 + |||y∗ − p∗|||2∗ + 2DF (v,−Λ∗p∗) + 2DF (u,−Λ∗y∗) = 2M2
⊕(v,y∗).

Example 1 (2D): k1 = 0.15, k2 = 0.4, ε1 = 1, ε2 = 100

#elts |||∇(v − u)|||2 |||y∗ − p∗|||2∗ 2DF (v,−Λ∗p∗) 2DF (u,−Λ∗y∗)

196 56.5057 157.588 10.0923 1553.95

347 20.2350 37.0058 0.54296 645.811

630 10.0756 21.0729 0.14450 186.425

1 315 5.34235 11.3668 0.03338 60.0593

2 865 2.92742 6.26338 0.01671 24.7235

5 938 1.33673 2.79619 0.00200 11.9462

12 006 0.67805 1.44169 0.00067 5.63191

24 571 0.33038 0.70538 0.00001 2.81691

48 483 0.16696 0.35622 0.00000 1.37739

97 423 0.08323 0.17687 0.00000 0.70283

192 905 0.04156 0.08777 0.00000 0.34611

386 185 0.02103 0.04445 0.00000 0.17606
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Table 4.3: Example 1 (2D)

AMR with the indicator ‖
√

2η‖L2(Oi) with patchwise flux equilibration for y∗.

Example 1 (2D): k1 = 0.15, k2 = 0.4, ε1 = 1, ε2 = 100

#elts DF (v,−Λ∗y∗)
M2
⊕(v,y∗)

[%] ICEN,Low
Eff ICEN,Up

Eff IE,Up
Eff PCEN

rel [%]
True rel. error

in CEN [%]

196 89.0701 0.67371 2.88191 5.60966 74.6973 70.9641

347 92.4942 0.67919 3.50597 5.89671 36.2638 36.6935

630 85.9525 0.70066 2.64380 4.64848 27.1574 27.0680

1 315 78.2616 0.70681 2.14392 3.79158 19.9383 19.8250

2 865 72.8992 0.70729 1.92142 3.40452 14.7523 14.7032

5 938 74.3009 0.70708 1.97256 3.46846 9.87419 9.85973

12 006 72.6473 0.70722 1.91238 3.38130 7.06762 7.06119

24 571 73.1176 0.70708 1.92864 3.41485 4.93753 4.93591

48 483 72.4826 0.70694 1.90588 3.37371 3.50789 3.50805

97 423 73.0084 0.70678 1.92392 3.40108 2.47256 2.47347

192 905 72.8486 0.70629 1.91692 3.38145 1.74226 1.74418

386 185 72.9912 0.70546 1.91972 3.38748 1.23829 1.24114

indicator

|||ε∇v − y∗|||∗(Oi) =

∫
Oi

1

ε
|ε∇v − y∗|2 dx

 1
2

.

The mesh in Figure 4.4 is refined mainly where the error in div y∗ is the dominant part of the

error M2
⊕(v,−Λ∗p∗) +M2

⊕(u,−Λ∗y∗). On the other hand, the mesh in Figure 4.5 is refined

most around the extrema of the solution. Figure 4.7 depicts the minimal set of elements K

of a mesh Th that contains at least 30% of the total indicated error
∑

K∈Th
|||ε∇v − y∗|||∗(K)

(greedy algorithm with a bulk factor of 0.3), where Th is part of the same sequence as the

mesh illustrated in Figure 4.5.

Figure 4.9 depicts the elements marked by the greedy algorithm using a bulk factor of 0.5

and employing the true error
√

2M2
⊕(v,p∗) + 2M2

⊕(u,y∗) as indicator. Figure 4.8 depicts

elements which are marked additionally or failed to be marked by the same greedy algorithm

when employing the functional error indicator ‖
√

2η‖L2(Oi) for the same bulk factor. The

ratio of the number of these differently marked elements, that is, elements which are marked

by one of the two methods but not by the other one, and the total number of elements is

0.022 and the ratio of the number of differently marked elements to the number of marked

elements using the true error is 0.048 (see Table 4.4). Comparing the indicated error and

the true error elementwise, one finds that the error indicator generated by the majorant

M2
⊕(v,y∗) reproduces the local distribution of the error with a very high accuracy. This

is also confirmed by Figure 4.3 where it can be seen that all error measures are almost
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identical in both cases of adaptive mesh refinement. Mesh adaptation based on the functional

error indicator ‖
√

2η‖L2(Oi) instead of the error indicator |||ε∇v − y∗|||∗(Oi) (see Figure 4.2)

yields approximately twice smaller efficiency indexes in energy and combined energy norms

and approximately twice smaller values for the full error M2
⊕(v,p∗) +M2

⊕(u,y∗) on meshes

with a comparable number of elements. The reason for the higher efficiency indexes is that

no adaptive control is applied on the nonlinear part of the error measure in (4.51), and

consequently, the ratio DF (v,−Λ∗y∗)/M2
⊕(v,y∗) is increasing, reaching values close to 100%

on fine meshes. However, the error in |||∇(v − u)||| and |||y∗ − p∗|||∗ might be a little higher

in the case of the functional error indicator ‖
√

2η‖L2(Oi). For example, on the mesh from

Figure 4.7 with 24 122 elements, M2
⊕(v,p∗) + M2

⊕(u,y∗) = 3.8314, |||∇(v − u)||| = 0.4674,

|||y∗ − p∗|||∗ = 0.6540, whereas on a mesh with 24 571 elements from the sequence adapted

with the indicator ‖
√

2η‖L2(Oi), we obtained a value of 1.9263 for M2
⊕(v,y∗), and 0.574791

and 0.8399 for |||∇(v − u)||| and |||y∗ − p∗|||∗, respectively. This shows that by reducing the

error in div y∗ the functional error indicator ‖
√

2η‖L2(Oi) provides a better approximation

for the primal and dual problem together.
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Figure 4.2: Comparison of errors for AMR based on the functional error indicator

‖
√

2η‖L2(Oi) versus AMR based on the indicator |||ε∇v − y∗|||∗(Oi) (cf. Remark 4.11).

Now, we want to demonstrate that flux equilibration is indeed an important subtask to make

the proposed error bounds reliable and efficient. For this purpose, we use a simple global

gradient averaging procedure, i.e. project the numerical flux ε∇v ∈ L2(Ω) onto the subspace

[Vh]2, where Vh is the finite element space of continuous piecewise linear functions. Then, the
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Figure 4.3: Comparison of errors for AMR based on the functional error indicator

‖
√

2η‖L2(Oi) versus AMR based on the indicator generated by the true error√
2M2
⊕(v,p∗) + 2M2

⊕(u,y∗) (cf. Remark 4.11).

Table 4.4: Example 1 (2D)

Example 1 (2D): k1 = 0.15, k2 = 0.4, ε1 = 1, ε2 = 100

#elts
#marked elts

with true error

#differently

marked elts

differently marked elts

in % of all mesh elts
196 62 6 3.06122

347 150 10 2.88184

630 288 14 2.22222

1 315 632 39 2.96578

2 865 1439 113 3.94415

5 938 2949 216 3.63759

12 006 5981 534 4.44778

24 571 12099 961 3.91111

48 483 24194 2233 4.60574

97 423 47784 4012 4.11812

problem in Example 1 is solved adaptively once by applying the functional error indicator

‖
√

2η‖L2(Oi) and next by applying the error indicator |||ε∇v − y∗|||∗(Oi). Figure 4.10 shows

the adapted mesh with 563 965 elements, which is a part of a sequence of meshes obtained by
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Figure 4.4: Mesh on the 9-th level of AMR

(97 423 elements) based on the error indi-

cator ‖
√

2η‖L2(Oi) with flux equilibration

for y∗.

Figure 4.5: Mesh on the 9-th level of AMR

(97 353 elements) based on the error indi-

cator |||ε∇v − y∗|||∗(Oi) with flux equilibra-

tion for y∗.

applying the functional error indicator with gradient averaging for y∗. Figure 4.11 shows

a mesh with 444 092 elements, which is part of a sequence of meshes adapted using the

second indicator with gradient averaging for y∗. By comparing with the results based on

flux equilibration for y∗ it can be seen that the mesh in Ω2 close to the interface Γ is refined

too much for both error indicators. Apart from that, the meshes on Figures 4.11 and 4.5

look quite similar, unlike the meshes on Figures 4.10 and 4.4. For meshes with a comparable

number of elements, by applying the indicator |||ε∇v − y∗|||∗(Oi) using gradient averaging

instead of flux equilibration we obtained ∼ 30% larger values for the error |||∇(v − u)||| and

60% larger values for the error |||y∗ − p∗|||∗. The difference in the errors when applying the

functional indicator ‖
√

2η‖L2(Oi) with gradient averaging for y∗ instead of flux equilibration

resulted in an even more drastic increase of the error, namely between 40% and 180% for

|||∇(v − u)||| and between 64% and 66% for |||y∗ − p∗|||∗, where the meshes had between 21 528

and 563 965 elements. In both cases we obtained an increasing sequence of efficiency indexes

with respect to energy and combined energy norms reaching values of 133 and 107 with the

functional error indicator on a mesh with 2 089 022 elements, and 570 and 269 with the error

indicator |||ε∇v − y∗|||∗(Oi) on a mesh with 2 954 218 elements (see Table 4.5). This is due to

the fact that the nonlinear term DF (u,−Λ∗y∗), which measures the error in div y∗ (see (4.48)

and (4.50)), dominates the other terms in the nonlinear measure M2
⊕(v,p∗) +M2

⊕(u,y∗) for

the error, reaching more than 99.99% of it in both cases. In both experiments with gradient

averaging for y∗, increasing values of DF (u,−Λ∗y∗) are in correspondence with increasing

error ‖div y∗ − div p∗‖L2(Ω) and increasing efficiency indexes.
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Figure 4.6: Reference solution for Exam-

ple 1 (2D).

Figure 4.7: Mesh on the 7th level

of AMR (24 122 elements) based on

the error indicator |||ε∇v − y∗|||∗(Oi)
with flux equilibration for y∗. The

elements are marked by applying the

error indicator ‖
√

2η‖L2(K) and us-

ing the greedy algorithm with bulk

factor 0.3.

Table 4.5: Example 1 (2D)

AMR with the indicator |||ε∇v − y∗|||∗Oi with simple gradient averaging for y∗.

Recall that |||∇(v − u)|||2 + |||y∗ − p∗|||2∗ + 2DF (v,−Λ∗p∗) + 2DF (u,−Λ∗y∗) = 2M2
⊕(v,y∗).

Example 1 (2D): k1 = 0.15, k2 = 0.4, ε1 = 1, ε2 = 100

#elts |||∇(v − u)|||2 |||y∗ − p∗|||2∗ 2DF (v,−Λ∗p∗) 2DF (u,−Λ∗y∗) 2M2
⊕(v,y∗) IE,Up

Eff

196 56.5057 119.481 10.0923 3271.95 3458.03 7.8229

400 27.6244 64.5618 0.94063 2210.53 2303.66 9.1319

739 13.3498 32.5272 0.26263 1533.74 1579.88 10.8786

1 399 6.90615 15.8220 0.05236 1186.27 1209.05 13.2314

2 723 3.27272 9.22987 0.01196 916.267 928.782 16.8462

4 903 1.94379 4.89744 0.00388 804.389 811.234 20.4291

9 463 0.98523 2.63409 0.00087 815.815 819.435 28.8395

17 907 0.52683 1.47142 0.00012 775.161 777.159 38.4076

34 040 0.27330 0.79663 0.00002 767.024 768.094 53.0131
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Figure 4.8: Mesh on the 2nd level of AMR

(630 elements) based on the error indicator

‖
√

2η‖L2(Oi) with flux equilibration for y∗.

Here we mark red those elements, which

differ in the markings based on the indi-

cator ‖
√

2η‖L2(K) and on the true error√
2M2
⊕(v,p∗) + 2M2

⊕(u,y∗). Marking is

done by greedy algorithm with bulk fac-

tor 0.5.

Figure 4.9: Mesh on the 2nd level of AMR

(630 elements) based on the error indicator

‖
√

2η‖L2(Oi) with flux equilibration for y∗.

The elements are marked by applying the

true error
√

2M2
⊕(v,p∗) + 2M2

⊕(u,y∗) as

an indicator using greedy algorithm with

bulk factor 0.5.
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Figure 4.10: Mesh with 563 965 ele-

ments, adapted using the error indica-

tor ‖
√

2η‖L2(Oi) with gradient averaging

for y∗.

Figure 4.11: Mesh with 444 092 ele-

ments, adapted using the error indicator

|||ε∇v − y∗|||∗(Oi) with gradient averaging

for y∗.
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Example 2 (2D problem)

Figures 4.13 and 4.15 show how meshes depend on the indicator in another example,

where ε1 = 1 ε2 = 100, k1 = 0.2, k2 = 0.3. The function ζ = exp
(
−b1

(
|x−c1|2
σ2

1
− 1
))
−

exp
(
−b2

(
|x−c2|2
σ2

2
− 1
))

and f0 = exp
(
−b3

(
|x|2
σ2

3
− 1
))

sin
(
x1x2

4

)
, where b1 = 2.2, b2 = 2.5,

b3 = 6, c1 = (−1, 0), c2 = (5, 5), σ1 = σ2 = 2, σ3 = 10. The indicator |||ε∇v − y∗|||∗(Oi)
correctly approximates elementwise errors in the combined energy norm but does not capture

the rest of the error, which results from the nonlinearity k2 sinh(u + w) and the right-

hand side f0 in (4.83). On the other hand, the term DF (v,−Λ∗y∗) controls the error

DF (v,−Λ∗p∗) +DF (u,−Λ∗y∗) and this is the reason why the mesh on Figure 4.13 resembles

the wavy features of the function f := −k2 sinh(u+ w) + f0. The isolines of the reference

solution and of the function f are depicted on Figures 4.14 and 4.12.
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Figure 4.12: Function f = −k2 sinh(u+w)+

f0.

Figure 4.13: Mesh with 395 935 ele-

ments, obtained by AMR using the

error indicator ‖
√

2η‖L2(Oi) with flux

equilibration for y∗.

Figure 4.14: Reference solution. Figure 4.15: Mesh with 555 489 el-

ements, obtained by AMR using

the error indicator |||ε∇v − y∗|||∗(Oi)
with flux equilibration for y∗.

Example 3 (3D problem)

Here we consider an example close to a real physical problem. The computational domain

Ω is a cube of side length 20 Angstroms with a triangulated water molecule Ω1 in it. The

diameter of the water molecule, which is positioned in the center of the cube, is about 2.75

Angstroms. Its shape is not changed during the mesh adaptation process. The surface mesh
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of the water molecule is taken from [1]. Figure 4.16 illustrates the initial tetrahedral mesh,

which consists of 60 222 elements. It is generated using TetGen [170] and adaptively refined

with the help of mmg3d [62]. Using the localized error indicator ‖
√

2η‖L2(Oi) computed on

each vertex patch Oi of the mesh, a new local mesh size at each vertex is defined by the

formula

hnew
i = hold

i

max

{
min

{AM
{
‖
√

2η‖L2(Oj)

}
‖
√

2η‖L2(Oi)

, 1

}
, 0.35

} (4.84)

and supplied to mmg3d, where AM
{
‖
√

2η‖L2(Oj)

}
is the arithmetic mean of

{
‖
√

2η‖L2(Oj)

}
over all vertex patches Oj . The coefficients ε and k for this example are typical for electrostatic

computations in biophysics using the PBE and are given by

ε(x) =

{
ε1 = 2, x ∈ Ω1,

ε2 = 80, x ∈ Ω2,
k(x) =

{
k1 = 0, x ∈ Ω1,

k2 = 0.84, x ∈ Ω2.
We consider the homogeneous problem, i.e., f0 = 0, and

ζ = exp

(
−b1

(
|x− c1|2

σ2
1

− 1

))
− exp

(
−b2

(
|x− c2|2

σ2
2

− 1

))

+ exp

(
−b3

(
|x− c3|2

σ2
3

− 1

))
+ exp

(
−b4

(
|x− c4|2

σ2
4

− 1

))
,

where b1 = b2 = b3 = b4 = 2.3, c1 = (1, 1, 0), c2 = (4, 4, 0), c2 = (0, 6, 0), c2 = (−5, 0, 0),

σ1 = σ2 = σ3 = σ4 = 2. The reference solution zhref is computed on a very fine mesh,

obtained after a sequence of adaptive mesh refinements, that contains 79 917 007 tetrahedrons.

Since f0 = 0 in Ω1 is a constant function, the patchwise reconstruction from [30] produces a

flux y∗ with zero divergence in Ω1 and, therefore, the reliability of our majorant is guaranteed.

In this example, we achieved a very tight guaranteed bound on the error in combined energy

norm, as well as in energy norm. The efficiency index ICEN,Up
Eff settles at around 1.05 and the

efficiency index IE,Up
Eff decreases to 1.30 (see Table 4.26). This is in a good agreement with the

fact that in this example the ratio DF (v,−Λ∗y∗)/M2
⊕(v,y∗) is well controlled and decreases to

around 10% (see column 2 in Table 4.27). We also note that in this example we obtained very

similar results with the error indicator |||ε∇v − y∗|||∗(Oi). For the efficiency index ICEN,Low
Eff

of the lower bound on the combined energy norm of the error we obtain values converging

to approximately 0.7071 which is the approximate value of
√

2
2 (see column 3 in Table 4.26).

This means that the combined energy norm of the error
√
|||∇(v − u)|||2 + |||y∗ − p∗|||2∗ is

practically equal to |||ε∇v − y∗|||∗. Another consequence of this fact is the good accuracy of

the practical estimation PCEN
rel of the relative error in combined energy norm (see columns

6 and 7 in Table 4.26). The tight bounds on the error also enable us to compute tight and
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Figure 4.16: Initial mesh in Example 3

consisting of 60 222 tetrahedrons.

Figure 4.17: Ratio of the error indicator

|||ε∇v − y∗|||∗ and combined energy norm

of the error, elementwise. Mesh on the

4th level of AMR (1.1736e+ 06 elements)

in Example 3 using the error indicator

‖
√

2η‖L2(Oi) with flux equilibration for y∗.

guaranteed upper bounds on the relative error in energy norm.

|||∇(v − u)|||
|||∇u|||

≤

√
2M2
⊕(v,y∗)

|||∇v||| −
√

2M2
⊕(v,y∗)

=: RENUp (4.85)

where (4.85) is valid if |||∇v||| −
√

2M2
⊕(v,y∗) > 0.

Table 4.6: Example 3 (3D)

AMR with the indicator ‖
√

2η‖L2(Oi) with patchwise flux equilibration for y∗.

Recall that 2M2
⊕(v,p∗) + 2M2

⊕(u,y∗) = 2M2
⊕(v,y∗).

Example 3 (3D): k1 = 0, k2 = 0.84, ε1 = 2, ε2 = 80

#elts
‖v−u‖L2(Ω)

‖u‖L2(Ω)
[%] |||∇(v−u)|||

|||∇u||| [%]
|||y∗−p∗|||∗
|||p∗|||∗

[%] 2M2
⊕(v,y∗) 2M2

⊕(v,p∗) 2M2
⊕(u,y∗)

60 222 76.8320 108.015 167.589 425569 117373 308196

103 236 11.9257 46.3306 55.1210 47104.5 17845.0 29259.5

222 118 1.09233 17.7353 14.9578 4484.44 2224,69 2259.75

552 936 0.49820 8.67222 7.09062 965.067 513.706 451.361

1 173 598 0.25609 6.58075 5.33661 539.734 295.254 244.481

2 056 678 0.17094 5.37625 4.18207 350.648 197.016 153.631

2 973 146 0.12317 4.73466 3.53852 265.167 152.783 112.385

3 906 919 0.10071 4.32886 3.12966 216.336 127.703 88.6336
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Table 4.7: Example 3 (3D)

AMR with the indicator ‖
√

2η‖L2(Oi) with patchwise flux equilibration for y∗.

Recall that |||∇(v − u)|||2 + |||y∗ − p∗|||2∗ + 2DF (v,−Λ∗p∗) + 2DF (u,−Λ∗y∗) = 2M2
⊕(v,y∗).

Example 3 (3D): k1 = 0, k2 = 0.84, ε1 = 2, ε2 = 80

#elts |||∇(v − u)|||2 |||y∗ − p∗|||2∗ 2DF (v,−Λ∗p∗) 2DF (u,−Λ∗y∗) RENUp[%]

60 222 79487.0 191346 37886.0 116850 -

103 236 14623.9 20699.7 3221.12 8559.78 310.049

222 118 2142.92 1524.28 81.7757 735.474 33.9219

552 936 512.376 342.528 1.32980 108.833 13.4714

1 173 598 295.039 194.026 0.21458 50.455 9.75647

2 056 678 196.919 119.155 0.09743 34.4762 7.72193

2 973 146 152.724 85.3044 0.05857 27.0805 6.64970

3 906 919 127.666 66.7303 0.03663 21.9033 5.96873

As a remark, we note that the efficiency indexes with respect to the energy and combined

energy norms of the error can be improved if we use a flux reconstruction in a bigger space,

say RT1, which has better approximation properties. In this way the error in div y∗ will

decrease and as a result, the term DF (v,−Λ∗y∗) and consequently the dual part of the

error 2M2
⊕(u,y∗) = |||y∗ − p∗|||2∗ +DF (u,−Λ∗y∗) will constitute a smaller part of the whole

majorant and the error, respectively. Even better, we can minimize the majorant with respect

to y∗ in a subspace of H(div; Ω) like RT0, possibly on another finer mesh. Note that in the

limit case we have

inf
y∗∈H(div;Ω)

M2
⊕(v,y∗) = M2

⊕(v,p∗) =
1

2
|||∇(v − u)|||2 +DF (v,−Λ∗p∗)

and the dual error completely vanishes. In this case,

ICEN,Up
Eff = IE

Eff =

√
2M2
⊕(v,p∗)

|||∇(v − u)|||
=

√
|||∇(v − u)|||2 + 2DF (v,−Λ∗p∗)

|||∇(v − u)|||
,

where the last ratio tends to 1 because by (4.49) the term DF (v,−Λ∗p∗) ∼ ‖v − u‖2L2(Ω)

and has a higher order of convergence than |||∇(v − u)|||2. In practice, we can minimize the

majorant with respect to y∗ only once on a sufficiently big subspace of H(div; Ω) to find

some good approximation y∗ of p∗ and then reuse this y∗ and obtain guaranteed and tight

bounds on the error in energy and combined energy norm.

A key factor that determines the efficiency index is the ratio DF (v,−Λ∗y∗)
M2
⊕(v,y∗)

. Assuming that

DF (v,−Λ∗y∗) ≈ DF (v,−Λ∗p∗) +DF (u,−Λ∗y∗),
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Table 4.8: Example 3 (3D)

AMR with the indicator ‖
√

2η‖L2(Oi) with patchwise flux equilibration for y∗.

Example 3 (3D): k1 = 0, k2 = 0.84, ε1 = 2, ε2 = 80

#elts DF (v,−Λ∗y∗)
M2
⊕(v,y∗)

[%] ICEN,Low
Eff ICEN,Up

Eff IE,Up
Eff PCEN

rel [%]
True rel. error

in CEN [%]

60 222 40.0541 0.68627 1.25353 2.31386 92.8434 140.985

103 236 20.4500 0.72828 1.15478 1.79473 47.6870 50.9159

222 118 16.1172 0.71615 1.10583 1.44661 16.4040 16.4054

552 936 11.2249 0.70786 1.06248 1.37241 7.90966 7.92099

1 173 598 9.33477 0.70731 1.05053 1.35254 5.98505 5.99106

2 056 678 9.82289 0.70725 1.05327 1.33442 4.81343 4.81632

2 973 146 10.2057 0.70722 1.05547 1.31767 4.17784 4.17960

3 906 919 10.1194 0.70719 1.05492 1.30175 3.77592 3.77716

which means that the last term in (4.57) is close to zero, we obtain from (4.51) the estimate

ICEN,Up
Eff ≈ 1√

1− DF (v,−Λ∗y∗)
M2
⊕(v,y∗)

.

From what we have observed, the efficiency index IE,Up
Eff with respect to the energy norm

usually is no more than twice bigger than ICEN,Up
Eff (assuming we have a good approximation

y∗ to p∗). Therefore, if during the computations we detect that this ratio is increasing we

can apply the so-called estimation with one step delay, i.e compute the value of the majorant

M2
⊕(v,y∗) for the current mesh level with the reconstructed y∗ from the next level.

Recomputing the majorant with the last reconstructed y∗

To illustrate these ideas, for the first example we recomputed the value of the majorant

M2
⊕(v,y∗) on all mesh levels (sequence of meshes is the same one from Tables 4.12, 4.13, 4.14)

using the flux y∗ that we obtained through the patchwise reconstruction with equilibration

at the last level 11, where the mesh consists of 386 185 elements. This y∗ gives a very good

approximation to the exact flux p∗ and thus the error in div y∗ at all adaptation levels before

level 11 is much smaller relative to the error measured in energy or combined energy norm.

As a consequence, the ratio DF (v,−Λ∗y∗)/M2
⊕(v,y∗) is small and increases from around

4% to its final value of 73% at level 11. The respective efficiency indexes with respect to

the energy and combined energy norms are given in Table 4.18. This time, the majorant

M2
⊕(v,y∗) gives a much tighter bound on the error in energy and combined energy norm and

the efficiency indexes increase from around 1 to their final values at level 11 of 3.3889 and

1.9206, respectively.
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Table 4.9: Example 1 (2D)

Example 1 (2D): k1 = 0.15, k2 = 0.4, ε1 = 1, ε2 = 100

#elts
‖v−u‖L2(Ω)

‖u‖L2(Ω)
[%] |||∇(v−u)|||

|||∇u||| [%]
|||y∗−p∗|||∗
|||p∗|||∗

[%] 2M2
⊕(v,y∗) 2M2

⊕(v,p∗) 2M2
⊕(u,y∗)

196 15.0077 51.5582 1.44602 66.8185 66.5980 0.22050

347 5.69339 30.8534 1.44602 20.9985 20.7780 0.22050

630 4.20384 21.7715 1.44602 10.4406 10.2201 0.22050

1 315 2.39552 15.8532 1.44602 5.59620 5.37574 0.22050

2 865 1.87075 11.7353 1.44602 3.16460 2.94414 0.22050

5 938 0.64611 7.93001 1.44602 1.55920 1.33874 0.22050

12 006 0.36985 5.64786 1.44602 0.89920 0.67872 0.22050

24 571 0.16023 3.94241 1.44602 0.55090 0.33039 0.22050

48 483 0.08909 2.80265 1.44602 0.38750 0.16682 0.22050

97 423 0.03961 1.97875 1.44602 0.30370 0.08304 0.22050

192 905 0.02230 1.39832 1.44602 0.26210 0.04136 0.22050

386 185 0.01015 0.99471 1.44602 0.24150 0.02082 0.22050

Table 4.10: Example 1 (2D)

Example 1 (2D): k1 = 0.15, k2 = 0.4, ε1 = 1, ε2 = 100

#elts |||∇(v − u)|||2 |||y∗ − p∗|||2∗ 2DF (v,−Λ∗p∗) 2DF (u,−Λ∗y∗)

196 56.5057 0.04444 10.0923 0.17606

347 20.2350 0.04444 0.54296 0.17606

630 10.0756 0.04444 0.14450 0.17606

1 315 5.34235 0.04444 0.03338 0.17606

2 865 2.92742 0.04444 0.01671 0.17606

5 938 1.33673 0.04444 0.00200 0.17606

12 006 0.67805 0.04444 0.00067 0.17606

24 571 0.33038 0.04444 0.00001 0.17606

48 483 0.16696 0.04444 0.00000 0.17606

97 423 0.08323 0.04444 0.00000 0.17606

192 905 0.04156 0.04444 0.00000 0.17606

386 185 0.02103 0.04444 0.00000 0.17606
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Table 4.11: Example 1 (2D)

Example 1 (2D): k1 = 0.15, k2 = 0.4, ε1 = 1, ε2 = 100

# elements DF (v,−Λ∗y∗)
M2
⊕(v,y∗)

[%] ICEN,Low
Eff ICEN,Up

Eff IE,Up
Eff PCEN

rel [%]
True rel. error

in CEN [%]

196 15.8135 0.70520 1.08700 1.08740 38.5074 36.4137

347 3.61970 0.70640 1.01760 1.01870 22.1410 21.8386

630 3.24520 0.70650 1.01570 1.01800 15.5098 15.4285

1 315 2.99700 0.70980 1.01930 1.02350 11.3338 11.2565

2 865 5.11630 0.71080 1.03190 1.03970 8.41663 8.36086

5 938 9.91240 0.71310 1.06250 1.08000 5.75210 5.69982

12 006 19.9535 0.70580 1.11560 1.15160 4.11607 4.12246

24 571 35.1659 0.69030 1.21230 1.29130 2.89890 2.96931

48 483 45.0879 0.70940 1.35380 1.52340 2.23724 2.23000

97 423 59.5529 0.69360 1.54240 1.91030 1.69993 1.73298

192 905 68.6293 0.69130 1.74560 2.51110 1.39059 1.42237

386 185 73.0132 0.70550 1.92060 3.38890 1.23821 1.24105
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4.1.4 Nonhomogeneous Dirichlet boundary condition

Now, we consider problem (4.2) in the case when γ2(g) is not identically zero on ∂Ω. The

unique solution u ∈ H1
γ2(g)(Ω) ∩ L∞(Ω) of (4.2) is the unique minimizer over H1

γ2(g)(Ω) of

the functional J defined by (4.4). Then u0 := u− g ∈ H1
0 (Ω) ∩ L∞(Ω) is the unique solution

of the problem

Find u0 ∈ H1
0 (Ω) such that k2 sinh(g + u0 + w)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and (4.86)∫
Ω

A∇(g + u0) · ∇vdx+

∫
Ω

k2 sinh(g + u0 + w)vdx =

∫
Ω

(f0v + f · ∇v) dx for all v ∈ H1
0 (Ω)

as well as of the variational problem

(P ) Find u0 ∈ H1
0 (Ω) such that J(u0) = min

v∈H1
0 (Ω)

J(v), (4.87)

where J : H1
0 (Ω)→ R ∪ {+∞} is defined by J(v) := J(g + v), i.e.,

J(v) =
1

2
a(g + v, g + v) +

∫
Ω

B(x, g + v + w)dx−
∫
Ω

(f0(g + v) + f · ∇(g + v)) dx. (4.88)

We recall that in (4.88) it is understood that J(v) = +∞ whenever B(x, g + v + w) /∈ L1(Ω).

Now problem (4.87) falls in the abstract framework considered in Section 4.1.2 and we can

proceed as we did in the case of homogeneous Dirichlet boundary condition.

Remark 4.15

Another equivalent approach to the derivation of functional a posteriori error estimates for

problem (4.86) is to rewrite it in the following homogenized form

Find u0 ∈ H1
0 (Ω) such that k2 sinh(g + u0 + w)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and∫
Ω

A∇u0 · ∇vdx+

∫
Ω

k2 sinh(g + u0 + w)vdx =

∫
Ω

(
f0v + (f −A∇g) · ∇v

)
dx

for all v ∈ H1
0 (Ω).

(4.89)

Now, by recalling that g ∈ H1
0 (Ω) ∩ L∞(Ω) and ∇g ∈ [Ls(Ω)]d for some s > d, we can make

the substitution w → g+w ∈ L∞(Ω2) and f → f −A∇g ∈ [Ls(Ω)]d and apply all the results

obtained in Section 4.1.3 for the case of homogeneous Dirichlet boundary condition.

We set V := H1
0 (Ω), V ∗ := H−1(Ω), Y :=

[
L2(Ω)

]d
, Y ∗ :=

[
L2(Ω)

]d
(d = 2, 3), Λ the

gradient operator ∇ : H1
0 (Ω)→ [L2(Ω)]d, and Λ∗ : Y ∗ → V ∗ the operator adjoint to Λ. By

noting that Λg ∈ Y , for any v ∈ H1
0 (Ω) and any y ∈

[
L2(Ω)

]d
, we have (see also Chapter 7.3
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in [139])

G(y) = G(Λg + y) =

∫
Ω

1

2
A (∇g + y) · (∇g + y) dx,

G(Λv) := G (Λ(g + v)) =

∫
Ω

1

2
A∇(g + v) · ∇(g + v)dx,

F (v) := F (g + v) =

∫
Ω

B(x, g + v + w)dx−
∫
Ω

(f0(g + v) + f · ∇(g + v)) dx,

(4.90)

where G and F are defined by (4.20). Then J(v) can be written in the form

J(v) = G(Λv) + F (v). (4.91)

The dual counterpart to the primal variational problem (P ) is given by

(P ∗) Find p∗ ∈
[
L2(Ω)

]d
such that I

∗
(p∗) = sup

y∗∈[L2(Ω)]d
I
∗
(y∗), (4.92)

where I
∗

:
[
L2(Ω)

]d → R ∪ {−∞} is defined by the relation

I
∗
(y∗) = −G∗(y∗)− F ∗(−Λ∗y∗). (4.93)

It is easy to see that all conditions on G, F , and J posed in Section 4.1.2 that ensure the

existence and uniqueness of the primal and dual problems (P ) and (P ∗), as well as the validity

of the strong duality relations (4.7), are satisfied. Hence we have

J(u0) = inf
v∈H1

0 (Ω)
J(v) = sup

y∗∈[L2(Ω)]d
I
∗
(y∗) = I

∗
(p∗).

Moreover, the optimality conditions (4.9) are satisfied, i.e.,

Λu0 ∈ ∂G
∗
(p∗), p∗ ∈ ∂G(Λu0). (4.94)

The functional G is Gateaux-differentiable at any y ∈
[
L2(Ω)

]d
with a Gateaux differential

given by A (∇g + y). Indeed, if t > 0 and q ∈
[
L2(Ω)

]d
, by using the symmetry of A we

obtain

lim
t→0+

G(y + tq)−G(y)

t
= lim

t→0+

1
2 (A(∇g + y + tq),∇g + y + tq)− 1

2 (A(∇g + y),∇g + y)

t

= lim
t→0+

t (A(∇g + y), q) + t2

2 (Aq, q)

t

= (A(∇g + y), q) .

This means that G has a unique subdifferential at y which coincides with its Gateaux

differential A(∇g + y). Therefore, from the second optimality condition in (4.94), it follows

that

p∗ = A∇(g + u0) = A∇u. (4.95)
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Fenchel Conjugates of the functionals G and F

Fenchel conjugate of G

For any y∗ ∈ Y ∗ we obtain

G
∗
(y∗) = sup

y∈Y

{
(y∗,y)−G(y)

}
= sup
y∈Y
{(y∗,Λg + y)−G(Λg + y)− (y∗,Λg)}

= sup
σ∈Y
{(y∗,σ)−G(σ)} − (y∗,Λg)

= G∗(y∗)− (y∗,Λg),

(4.96)

where we have used the fact that Λg ∈ Y .

Fenchel conjugate of F

From (4.86) and (4.95) it follows that the exact solution p∗ ∈
[
L2(Ω)

]d
of the dual problem

(P ∗) satisfies∫
Ω

p∗ · ∇vdx+

∫
Ω

k2 sinh(g + u0 + w)vdx =

∫
Ω

(f0v + f · ∇v) dx for all v ∈ H1
0 (Ω). (4.97)

Therefore, p∗ has the form

p∗ = f + p∗0, where p∗0 ∈ H(div; Ω) with div p∗0 = b(x, g + u0 + w)− f0 (4.98)

and it makes sense to compute F
∗
(−Λ∗y∗) only for such y∗ ∈

[
L2(Ω)

]d
that have the form

y∗ = f + y∗0 with y∗0 ∈ H(div; Ω). (4.99)

Notice that we do not impose the additional condition that p∗0 satisfies. However, in the

process of computing F
∗
(−Λ∗y∗) we will see that in order for F

∗
(−Λ∗y∗) to be finite, y∗0

has to satisfy the condition div y∗0 + f0 = 0 in the region where k = 0, i.e., in Ω1 (the same

reasoning was used for the computation of F
∗
(−Λ∗y∗) in the case of homogeneous Dirichlet

condition).

Recalling that in the particular case (b) for the functions k and w, the nonlinearity B is

supported on Ω2, for any y∗ of the form (4.99), similarly to the case of homogeneous Dirichlet

boundary condition, we have

F
∗
(−Λ∗y∗) = sup

z∈H1
0 (Ω)

{〈−Λ∗y∗, z〉 − F (g + z)} = sup
z∈H1

0 (Ω)

{(−y∗,Λz)− F (g + z)}

= sup
z∈H1

0 (Ω)

∫
Ω

(
− y∗ · ∇z −B(x, g + z + w) + f0(g + z) + f · ∇(g + z)

)
dx

= sup
z∈H1

0 (Ω)

∫
Ω

(
− y∗0 · ∇z −B(x, g + z + w) + f0(g + z) + f · ∇g

)
dx

= sup
z∈H1

0 (Ω)

∫
Ω

(
div y∗0z −B(x, g + z + w) + f0z

)
dx+

∫
Ω

(f0g + f · ∇g) dx.
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The last supremum is finite if div y∗0 + f0 = 0 in Ω1. For q∗ ∈ H(div; Ω) and an arbitrary

measurable function z : Ω2 → R, we introduce the functional

Iq∗(z) :=

∫
Ω2

[(div q∗ + f0)z −B(x, g + z + w)] dx. (4.100)

Then, for y∗ of the form (4.99) with div y∗0 + f0 = 0 in Ω1 we obtain

F
∗
(−Λ∗y∗) = sup

z∈H1
0 (Ω)

Iy∗0 (z) +

∫
Ω

(f0g + f · ∇g) dx

≤
∫
Ω2

sup
ξ∈R

{
(div y∗0(x) + f0(x)) ξ −B (x, g + ξ + w(x))

}
dx+

∫
Ω

(f0g + f · ∇g) dx

=

∫
Ω2

(
(div y∗0(x) + f0(x)) ξ0(x)−B (x, g + ξ0(x) + w(x))

)
dx+

∫
Ω

(f0g + f · ∇g) dx

=Iy∗0 (ξ0) +

∫
Ω

(f0g + f · ∇g) dx. (4.101)

Here ξ0 : Ω2 → R is computed from the condition

d

dξ
[(div y∗0(x) + f0(x)) ξ −B (x, g + ξ + w(x))] = 0, for a.e. x ∈ Ω2, (4.102)

which is equivalent to

div y∗0(x) + f0(x)− k2(x) sinh (g(x) + ξ + w(x)) = 0 for a.e. x ∈ Ω2.

The solution of the last equation is given by

ξ0(x) = arsinh

(
div y∗0(x) + f0(x)

k2(x)

)
− (g(x) + w(x)) for a.e. x ∈ Ω2, (4.103)

If we substitute w with g + w in Proposition 4.5, we see that sup
z∈H1

0 (Ω)

Iy∗0 (z) = Iy∗0 (ξ0) and

hence we have equalities everywhere in (4.101). By using the expression for ξ0(x), for any

y∗ ∈ [L2(Ω)]d of the form (4.29) with div y∗0 + f0 = 0 in Ω1 we obtain an explicit formula for

F
∗
(−Λ∗y∗):

F
∗
(−Λ∗y∗) =

∫
Ω2

[
k2

(
div y∗0 + f0

k2

)(
arsinh

(
div y∗0 + f0

k2

)
− (g + w)

)

− k2 cosh

(
arsinh

(
div y∗0 + f0

k2

))]
dx+

∫
Ω

(f0g + f · ∇g) dx.

(4.104)
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Error measures

For any y∗ ∈
[
L2(Ω)

]d
of the form (4.99) with div y∗0 + f0 = 0 in Ω1, the quantity M

2
⊕(v,y∗)

is fully computable and is given by the relation (4.11). To give an explicit expression for

M
2
⊕(v,y∗) we compute DG(Λv,y∗) and DF (v,−Λ∗y∗), where v ∈ H1

0 (Ω) is an approximation

of u0. For the first compound functional by using (4.90) and (4.96) we obtain

DG(Λv,y∗) =G(Λv) +G
∗
(y∗)− (y∗,Λv)

=G (Λ(g + v)) +G∗(y∗)− (y∗,Λg)− (y∗,Λv)

=DG(Λ(g + v),y∗) =
1

2
|||A∇(g + v)− y∗|||2∗.

(4.105)

For the second compound functional by using (4.90) and (4.104) we have

DF (v,−Λ∗y∗) = F (v) + F
∗
(−Λ∗y∗) + 〈Λ∗y∗, v〉

=

∫
Ω

(
k2 cosh(g + v + w)− f0(g + v)− f · ∇(g + v)

)
dx

+

∫
Ω2

[
k2

(
div y∗0 + f0

k2

)(
arsinh

(
div y∗0 + f0

k2

)
− (g + w)

)

−k2 cosh

(
arsinh

(
div y∗0 + f0

k2

))]
dx+

∫
Ω

(f0g + f · ∇g) dx+

∫
Ω

y∗ · ∇vdx,

from which by using the relation y∗ = f + y∗0 and the fact that y∗0 is in H(div; Ω) with

div y∗0 + f0 = 0 in Ω1 we obtain

DF (v,−Λ∗y∗) =

∫
Ω2

k2

[
cosh(g + v + w) +

(
div y∗0 + f0

k2

)
arsinh

(
div y∗0 + f0

k2

)

−cosh

(
arsinh

(
div y∗0 + f0

k2

))
−
(

div y∗0 + f0

k2

)
(g + v + w)

]
dx

=DF (g + v,−Λ∗y∗).

(4.106)

The fully computable majorant M
2
⊕(v,y∗) is given by

M
2
⊕(v,y∗) = DG(Λv,y∗) +DF (v,−Λ∗y∗)

= DG(Λ(g + v),y∗) +DF (g + v,−Λ∗y∗)

=

∫
Ω

η2(x)dx

=
1

2
|||A∇(g + v)− y∗|||2∗ +DF (g + v,−Λ∗y∗) = M2

⊕(g + v,y∗),

(4.107)

where DG(Λv,y∗) and DF (v,−Λ∗y∗) are given by (4.105) and (4.106), respectively, and

DG, DF , M2
⊕ are the compound functionals and majorant from the case with homogeneous

Dirichlet boundary condition. If we denote v = g + v, we obtain

M
2
⊕(v,y∗) = M2

⊕(v,y∗)



4.1. GENERAL FORM OF THE ESTIMATES 133

and

η2(x) =



1
2A
−1 (A∇v − f − y∗0) · (A∇v − f − y∗0) , for x ∈ Ω1,

1
2A
−1 (A∇v − f − y∗0) · (A∇v − f − y∗0)

+k2
[
cosh(v + w) +

(
div y∗0+f0

k2

)
arsinh

(
div y∗0+f0

k2

)
− cosh

(
arsinh

(
div y∗0+f0

k2

))
−
(

div y∗0+f0

k2

)
(v + w)

]
, for x ∈ Ω2.

(4.108)

Since v is an arbitrary approximation of u0 in H1
0 (Ω), we can consider v as an arbitrary

approximation of u in H1
γ2(g)(Ω). We recall that η2(x) ≥ 0 since it is the sum of the com-

pound functionals (which are nonnegative by the definiton of a Fenchel conjugate) generated

by gx(ξ) := g(x, ξ) = 1
2A(x)ξ · ξ and fx(s) := B(x, s + w(x)) − f0(x)s and evaluated at

(∇v(x),y∗(x)) and (v(x), div y∗0(x)), respectively.

To give an explicit form of the principal error identity (4.14), we should also compute the

quantities DG(Λv,p∗), DG(Λu0,y
∗), DF (v,−Λ∗p∗), and DF (u0,−Λ∗y∗). By using (4.105)

and the relation p∗ = A∇(g + u0) = A∇u, we obtain

DG(Λv,p∗) =
1

2

∫
Ω

A∇(v − u0) · ∇(v − u0)dx

=
1

2
|||∇(v − u0)|||2 =

1

2
|||∇ (v − u)|||2,

(4.109)

DG(Λu0,y
∗) =

1

2

∫
Ω

A−1(y∗ − p∗) · (y∗ − p∗)dx =
1

2
|||y∗ − p∗|||2∗. (4.110)

Notice that DG(Λv,p∗) measures the error in energy norm in both approximations v and v

of u0 and u, respectively.

Next, we obtain explicit expressions for the nonlinear measuresDF (v,−Λ∗p∗) andDF (u0,−Λ∗y∗)

in a similar fashion to the case of homogeneous Dirichlet boundary condition. Since for the

exact solution u0 of the primal problem (P ) and the part p∗0 of the exact solution of the dual

problem (P ∗) we have the relations

div p∗0 + f0

k2
= sinh(g + u0 + w) and u0 = arsinh

(
div p∗0 + f0

k2

)
− (g + w) a.e. in Ω2,
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by using (4.106) we obtain

DF (v,−Λ∗p∗)

=

∫
Ω2

k2 (cosh(g + v + w)− cosh(g + u0 + w) + u0 sinh(g + u0 + w)− v sinh(g + u0 + w)) dx

=

∫
Ω2

k2 (cosh(v + w)− cosh(u+ w) + u sinh(u+ w)− v sinh(u+ w)) dx

=DF (v,−Λ∗p∗). (4.111)

Similarly,

DF (u0,−Λ∗y∗) =

∫
Ω2

k2 (cosh(T )− cosh(S) + S sinh(S)− T sinh(S)) dx

= DF (u,−Λ∗y∗),

(4.112)

where

T := arsinh

(
div p∗0 + f0

k2

)
and S := arsinh

(
div y∗0 + f0

k2

)
.

As before, the nonlinear quantities DF (v,−Λ∗p∗) and DF (u0,−Λ∗y∗) measure the error over

Ω2 in v, v and in div y∗0, respectively. As before, by using inequality (4.44), we can obtain∫
Ω2

k2

2
(v − u0)2dx ≤ DF (v,−Λ∗p∗) ≤

∫
Ω2

k2

2
(sinh(g + v + w)− sinh(g + u0 + w))2dx

(4.113)

and ∫
Ω2

k2

2
(S − T )2dx ≤ DF (u0,−Λ∗y∗) ≤

∫
Ω2

1

2k2
(div y∗0 − div p∗0)2dx. (4.114)

By taking into account (4.109), (4.110) and the relations DF (v,−Λ∗p∗) = DF (v,−Λ∗p∗),

DF (u0,−Λ∗y∗) = DF (u,−Λ∗y∗), M2
⊕(v,y∗) = M2

⊕(v,y∗), the abstract error identity (4.14)

can be written in an analogous form to (4.51) (we only give it in terms of v = g + v and

u = g + u0)

1

2
|||∇(v − u)|||2 +

1

2
|||y∗ − p∗|||2∗

+

∫
Ω2

k2

2
(v − u)2dx+ C2

(
δ2, ‖div p∗0‖L∞(Ω2)

) ∫
Ω2

1

2k2
(div y∗0 − div p∗0)2dx

≤ 1

2
|||∇(v − u)|||2 +

1

2
|||y∗ − p∗|||2∗ +DF (v,−Λ∗p∗) +DF (u,−Λ∗y∗) = M2

⊕(v,y∗) (4.115)

≤ 1

2
|||∇(v − u)|||2 +

1

2
|||y∗ − p∗|||2∗

+ C1

(
δ1, ‖u‖L∞(Ω)

) ∫
Ω2

k2

2
(v − u)2dx+

∫
Ω2

1

2k2
(div y∗0 − div p∗0)2dx,



4.1. GENERAL FORM OF THE ESTIMATES 135

where δ1 > 0, δ2 > 0 are arbitrarily fixed numbers and C1, C2 are local Lipschitz constants

for the function sinh that depend on δ1, ‖u‖L∞(Ω) and δ2, ‖div p∗0‖L∞(Ω2), respectively. We

note that the inequalities in (4.115) are valid for v and y∗0 such that ‖v − u‖L∞(Ω)≤ δ1 (or

equivalently, ‖v − u0‖L∞(Ω)≤ δ1) and for f0 ∈ L∞(Ω2), ‖div(y∗0 − p∗0)‖L∞(Ω2)≤ δ2. We also

pay attention to the fact that the underlined equality in (4.115) is valid without the conditions

mentioned above (remember that div y∗0 + f0 = 0 in Ω1 is always assumed).

We also have the following lower bound for the combined energy norm of the error:

1

2
|||A∇v − y∗|||2∗ ≤ |||∇(v − u)|||2 + |||y∗ − p∗|||2∗. (4.116)

Guaranteed lower and upper bounds for the primal part of the error

Recall from Section 4.1.2 that the primal part of the error is given by

J(v)− J(u0) = DG(Λv,p∗) +DF (v,−Λ∗p∗), (4.117)

or equivalently, in terms of v = g + v,

J(v)− J(u) = DG(Λv,p∗) +DF (v,−Λ∗p∗). (4.118)

By using (4.13) and the fact that u0 is a minimizer of J (or equivalently, u is a minimizer of

J), for any approximation v ∈ H1
0 (Ω) of u0 and any w ∈ H1

0 (Ω), y∗ ∈ Y ∗ of the form (4.99)

with div y∗0 + f0 = 0 in Ω1 we obtain

M
2
	(v, w) := J(v)− J(w) ≤ J(v)− J(u0) ≤M2

⊕(v,y∗). (4.119)

Equivalently, by using the relation J(v) = J(g + v) for any v ∈ H1
0 (Ω), we can write (4.119)

in terms of v, w := g + w, u = g + u0 as follows

M2
	(v, w) := J(v)− J(w) ≤ J(v)− J(u) ≤M2

⊕(v,y∗), (4.120)

where we remind that the left-hand sides of (4.119) and (4.120) make sense only if J(v)−
J(w) ≥ 0 and J(v)− J(w) ≥ 0.

Near best approximation result

Let Vh ⊂ L∞(Ω) be a closed subspace of H1
0 (Ω) (not necessarily finite dimensional) and u0,h

be the minimizer of J over Vh (this minimizer is unique), which is the unique solution of the

Galerkin problem:

Find u0,h ∈ Vh such that

a(u0,h, v) +

∫
Ω

b(x, g + u0,h + w)vdx =

∫
Ω

(
f0v + (f −A∇g) · ∇v

)
dx for all v ∈ Vh.

(4.121)
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Then, using (4.12b) and the expression (4.109) for DG(Λv,p∗), for any v ∈ Vh we can write

|||∇(u0,h − u0)|||2 + 2DF (u0,h,−Λ∗p∗) = 2
(
J(u0,h)− J(u0)

)
≤ 2

(
J(v)− J(u0)

)
= |||∇(v − u0)|||2 + 2DF (v,−Λ∗p∗).

Since 2DF (u0,h,−Λ∗p∗) ≥ 0, by using (4.113), we obtain the following generalization of Cea’s

Lemma.

Proposition 4.16

Let Vh ⊂ L∞(Ω) be a closed subspace of H1
0 (Ω) and u0,h ∈ Vh be the Galerkin approximation

of u0 defined by (4.121). Then

|||∇(u0,h − u0)|||2 ≤ inf
v∈Vh

{
|||∇(v − u0)|||2 +

∫
Ω2

k2(sinh(g + v + w)− sinh(g + u0 + w))2dx

}
,

(4.122)

or equivalently,

|||∇(uh − u)|||2 ≤ inf
v∈g+Vh

{
|||∇(v − u)|||2 +

∫
Ω2

k2(sinh(v + w)− sinh(u+ w))2dx

}
, (4.123)

where as usual v = g + v, uh = g + u0,h, and u = g + u0.

Effect of data oscillation

The effect of data oscillation, i.e., the effect of partial equilibration of y∗0 is quite analogous to

the case of homogeneous Dirichlet boundary condition and we do not repeat it here. We only

note that one has first to obtain an analogue of (4.81) for u0 and uosc
0,h, an approximation of

the solution uosc
0 of the homogenized problem (4.89) with fosc

0 = ΠLh(f0) instead of f0. Then

the obtained estimate is rewritten in terms of u = g + u0, uosc
h := g + uosc

0,h to obtain

|||∇(uosc
h − u)||| ≤

√
2M⊕,osc(u

osc
h ,y∗) +

1

µ1

 ∑
K∈Th

h2
K

π2
‖f0 − fosc

0 ‖2L2(K)

 1
2

, (4.124)

where M2
⊕,osc(u

osc
h ,y∗) is the majorant for the nonhomogeneous problem with fosc

0 instead of

f0 and has the form (4.107).

4.2 Finding a good approximation of the dual variable

Minimization of the majorant

The problem of finding a good approximation y∗ of p∗ is the same for both cases of homo-

geneous and nonhomogeneous Dirichlet boundary conditions. Thus, we only consider the

homogeneous case and use the respective notation. Our goal is to find for a given v ∈ H1
0 (Ω)
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a good approximation y∗ ∈
[
L2(Ω)

]d
of the exact flux p∗ of the form y∗ = f + y∗0 with

div y∗0 + f0 = 0 in Ω1, i.e., over the set where k = 0. For this purpose we can minimize the

majorant M2
⊕(v,f + y∗0) or, equivalently, minimize the functional

−I∗(f + y∗0) = G∗(f + y∗0) + F ∗ (−Λ∗(f + y∗0))

in y∗0 over a subspace of H(div; Ω) by additionally enforcing the condition that div y∗0 +f0 = 0

in Ω1. For example one can minimize M2
⊕(v,f + y∗0) over a finite dimensional subspace of

H(div; Ω) such as the lowest order Raviart-Thomas space RT0. Let Th be a partition of Ω

into triangles in 2D and tetrahedrons in 3D and let f0 be a piecewise constant of degree s

over each element K ∈ Th. Then one can minimize the majorant M2
⊕(v,f + y∗0) over the

subspace RT0 by additionally enforcing the condition div y∗0 + f0 = 0 in Ω1 (if f0 is not

piecewise constant, then one also has the data oscillation effect described in Section 4.1.3 on

p. 108). Obviously, this approach gives the best possible y∗0 in the respective subspace of

H(div; Ω), but it essentially requires the solution of the dual problem which can be quite costly.

Patchwise equilibrated flux reconstruction

Another, computationally favorable, approach, which can be easily realized in parallel, is

to apply a patchwise flux reconstruction that will also yield a partial equilibration of y∗0
(see [29–31]). Since the computations on each patch are independent from the computations

on the rest of the patches, this reconstruction is easy to implement in parallel. We assume

that Ω is a polyhedral domain. Let Th := {Ki}NEi=1 be a partition of Ω into triangles in 2D

and tetrahedrons in 3D, which is a part of a family of shape-regular triangulations {Th}h→0.

We will present this equilibrated patchwise flux reconstruction in the case where uh is the

Galerkin approaximation of u in the finite element space V 1
h ⊂ H1

0 (Ω) of continuous piecewise

linear functions over the triangulation Th, i.e., uh satisfies the problem

Find uh ∈ V 1
h such that (4.64)

a(uh, v) +

∫
Ω

b(x, uh + w)vdx =

∫
Ω

(f0v + f · ∇v) dx for all v ∈ V 1
h .

Additionally, let Lh ⊂ L2(Ω) denote the space of piecewise constant functions with respect to

the triangulation Th. Then this approach generates a y∗0 such that div y∗0 + ΠLh(f0) = 0 in

Ω1, where ΠLh denotes the L2(Ω)-orthogonal projection operator onto the subspace Lh.

First, we briefly present the method in the case of a linear problem with a homogeneous

interface condition, i.e., b = 0, f = 0 and ε∇u ∈ H(div; Ω) by following the original work

in [29–31]. We consider the problem

−∇ · (ε∇u) = f0 in Ω,

u = 0 on ∂Ω,
(4.125)
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where ε is a piecewise constant function with respect to the triangulation Th such that

εmax ≥ ε(x) ≥ εmin > 0 for a.e. x ∈ Ω. Here we note that the case of nonhomogeneous

Dirichlet boundary condition is treated in the exact same way. The goal is to find a dual

variable σ ∈ RT0 ⊂ H(div; Ω) (here σ plays the role of y∗) with divσ + ΠLf (f0) = 0 in Ω.

We search it in the form σ = ε∇uh + σ∆, where uh ∈ H1
0 (Ω) is the Galerkin finite element

approximation of (4.125) in the space V 1
h and

RT0,−1 :=
{
τ ∈

[
L2(Ω)

]d
: τ�K = aK + bKx, aK ∈ Rd, bK ∈ R, ∀K ∈ Th

}
,

RT0 := RT0,−1 ∩H(div; Ω).
(4.126)

Obviously, ε∇uh is a piecewise constant function with respect to Th and in general it is not

in H(div; Ω). This means that σ∆ is also not in H(div; Ω) and that σ∆ is only in the broken

Raviart-Thomas space RT0,−1. The conditions σ∆ + ε∇uh ∈ H(div; Ω) and div(σ∆ + ε∇uh)

can be rewritten in the form

divσ∆ = −f0 in all K ∈ Th,[
σ∆ · n

]
= − [ε∇uh · n] on all internal faces, F, i.e., F 6⊂ ∂Ω.

(4.127)

For a given vertex V of the mesh let ψV ∈ V 1
h be the hat basis function with ψV (V ) = 1 and

ψV (x) = 0 for x ∈ Ω \ ωV , and let ωV :=
⋃
{K : V ∈ ∂K} be its associated patch. Then the

correction σ∆ ∈ RT0,−1 is defined as

σ∆ =

NV∑
i=1

σωV , (4.128)

where NV is the number of vertices in Th and {σωV } ⊂ RT0,−1 with supp σωV ⊂ ωV for all

vertices V, are the solutions of the following local problems:

divσωV = − 1

|K|

∫
K

f0ψV dx in all K ⊂ ωV ,

[σωV · n] = −1

d
[ε∇uh · n] on all F ⊂ ωV \ ∂ωV ,

σωV · n = 0 on ∂ωV .

(4.129)

We note that the last equation in (4.129) is enforced only for vertices V /∈ ∂Ω and that all

local problems have a solution (see [30,31]). In 2D there is also a constructive solution for

the local problems (see, e.g. [28,30]).

Now, we consider the general problem (4.64) where ε is not necessarily a piecewise constant

function. Our considerations are motivated by the observation that the exact p∗0 := p∗ − f
satisfies the integral identity∫

Ω

p∗0 · ∇vdx =

∫
Ω

(−b(x, u+ w) + f0) vdx for all v ∈ H1
0 (Ω), (4.130)
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where p∗ = ε∇u. If we define the function q := ε∇uh − f , then by using (4.64) we see that∫
Ω

q · ∇vdx =

∫
Ω

(−b(x, uh + w) + f0) vdx for all v ∈ V 1
h .

Since ∇v ∈ Lh for all v ∈ V 1
h it follows that ΠLh (q) ∈ Lh (by abusing the notation we use

Lh and ΠLh for both the scalar and vectorial cases) satisfies the problem∫
Ω

ΠLh(q) · ∇vdx =

∫
Ω

(−b(x, uh + w) + f0) vdx for all v ∈ V 1
h . (4.131)

We define y∗0 ∈ RT0 by applying the described above patchwise equilibrated flux reconstruction

to the numerical flux ΠLh(q) ∈ Lh, where −b(x, uh + w) + f0 plays the role of f0 in (4.125).

Notice that since k = 0 in Ω1, the obtained y∗0 satisfies the relation div y∗0 + ΠLh(f0) = 0

in Ω1. Therefore, if f0 is a piecewise constant function in Ω1, then ΠLh(f0) = f0 and y∗0 is

exactly equilibrated in Ω1. This is the case of the PBE where f0 = 0 in Ω for both 2-term

and 3-term splittings.

4.3 Poisson-Boltzmann equation

First we recall that a function φ is called a weak solution of the general Poisson-Boltzmann

problem (3.35) (see Definition 3.12) if φ ∈
⋂

p< d
d−1

W 1,p
g (Ω) is such that b(x, φ)v ∈ L1(Ω) for

all v ∈
⋃
q>d

W 1,q
0 (Ω) and

∫
Ω

ε∇φ · ∇vdx+

∫
Ω

b(x, φ)vdx = 〈F , v〉, ∀v ∈
⋃
q>d

W 1,q
0 (Ω). (3.40)

In this section we will consider only the special case of a symmetric 1-1 ionic solution where

the nonlinearity is given by b(x, s) = k
2

sinh(s). We note that the general case is treated

in a similar way, the only difference being the expressions for F , F ∗, DF in the main error

identity (4.51). In the general case, the nonlinearity has the form

b(x, s) := χΩions(x)
4πe2

0

kBT

Nions∑
j=1

−Mjξje
−ξjs, ∀x ∈ Ω, ∀s ∈ R

and hence it can be represented in the form b(x, s) = k2(x)b(s) with k2(x) = χΩions(x) and

b(s) =
4πe20
kBT

Nions∑
j=1
−Mjξje

−ξjs. Then F , F ∗, and DF can be computed by using the formulas

(4.68), (4.69), and (4.70) in Section 4.1.3.
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4.3.1 2-term splitting

With the 2-term splitting the dimensionless potential φ is decomposed into G and u, i.e,

φ = G+ u, where G is given by (3.11). As we have shown in Section 3.3.1 and Section 3.3.3,

one can define a particular solution of (3.40) by considering the problem

Find u ∈ H1
g−G(Ω) such that b(x, u+G)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and

a(u, v) +

∫
Ω

b(x, u+G)vdx = 〈G2, v〉 for all v ∈ H1
0 (Ω),

(3.50)

where

〈G2, v〉 =

∫
Ω

fG2
· ∇v =

∫
Ωs

(εm − εs)∇G · ∇vdx

and fG2
:= χΩs(εm − εs)∇G. From Theorem 3.13 we know that this problem possesses a

unique solution in H1(Ω) ∩ L∞(Ω).

Additional splitting of u into uL and uN

First, we analyze the case where the regular component u is split into uL and uN , i.e.,

u = uL + uN , where uL satisfies the nonhomogeneous linear interface problem (3.46) and uN

satisfies the homogeneous nonlinear interface problem (3.47) which take the particular form

Find uL ∈ H1
g−G(Ω) such that

a(uL, v) =

∫
Ωs

(εm − εs)∇G · ∇vdx for all v ∈ H1
0 (Ω) (4.132)

and

Find uN ∈ H1
0 (Ω) such that b(x, uN + uL +G)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and

a(uN , v) +

∫
Ω

b(x, uN + uL +G)vdx = 0 for all v ∈ H1
0 (Ω).

(4.133)

Notice that the solution of (4.133) depends on the solution of (4.132) and recall that

uL, uN ∈ L∞(Ω) (see Theorem 3.19 and Theorem 3.27). Let uLhL denote an approximation of

uL that is computed by some conforming FEM based on the weak formulation (4.132) on

some mesh ThL for which we use a subscript hL to distinguish the finite element functions

associated with it. Such an approximation could be computed by solving the homogenized

version of (4.132) with some function ug−G ∈ H1(Ω) ∩ L∞(Ω) and ∇(ug−G) ∈ Ls(Ω), s > d

such that γ2(ug−G) = g −G on ∂Ω (see, e.g., the considerations in Section 3.2.3). The exact

solution of (4.132) with uLhL instead of uL is denoted by ũN and satisfies the problem

Find ũN ∈ H1
0 (Ω) such that b(x, ũN + uLhL +G)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and

a(ũN , v) +

∫
Ω

b(x, ũN + uLhL +G)vdx = 0 for all v ∈ H1
0 (Ω).

(4.134)
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Since uLhL ∈ L
∞(Ω), from the considerations in Section 3.3.3 it follows that there is a unique

solution ũN ∈ H1
0 (Ω) ∩ L∞(Ω) of (4.134). Further, let ũNhN denote an approximation of ũN

computed by some conforming FEM based on the weak formulation (4.134) on some mesh

ThN which might be different from ThL . Then the function uh := uLhL + ũNhN ∈ H
1
g−G(Ω) is a

conforming approximation of the solution u of (3.50), where the subscript h signifies that uh

is a discrete approximation. Our goal is to estimate the error |||∇(uh − u)|||. We have

|||∇(uh − u)||| =
∣∣∣∣∣∣∇(uLhL + ũNhN − u

L − uN )
∣∣∣∣∣∣

≤
∣∣∣∣∣∣∇(uLhL − uL)

∣∣∣∣∣∣+
∣∣∣∣∣∣∇(ũNhN − u

N )
∣∣∣∣∣∣. (4.135)

For the second term on the RHS we have that∣∣∣∣∣∣∇(ũNhN − u
N )
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∇(ũNhN − ũ

N )
∣∣∣∣∣∣+

∣∣∣∣∣∣∇(ũN − uN )
∣∣∣∣∣∣. (4.136)

Now, the first term on the RHS in (4.136) we estimate by the functional a posteriori error

estimate (4.51) where A = εI, k = k, w = uLhL +G ∈ L∞(Ωions), f0 = 0, and f = 0. For any

ỹ∗N ∈ H(div; Ω) with div ỹ∗N = 0 in Ωm ∪ ΩIEL we have∣∣∣∣∣∣∇(ũNhN − ũ
N )
∣∣∣∣∣∣ ≤ √2M⊕,N (ũNhN , ỹ

∗
N ), (4.137)

where the fully computable majorant M2
⊕,N (ũNhN , ỹ

∗
N ) is given by

2M2
⊕,N (ũNhN , ỹ

∗
N ) =

∣∣∣∣∣∣ε∇ũNhN − ỹ∗N ∣∣∣∣∣∣2∗ + 2DF,N (ũNhN ,−Λ∗ỹ∗N ), (4.138)

and

DF,N (ũNhN ,−Λ∗ỹ∗N ) =

∫
Ωions

k
2
[
cosh(ũNhN + uLhL +G) +

(
div ỹ∗N

k
2

)
arsinh

(
div ỹ∗N

k
2

)

− cosh

(
arsinh

(
div ỹ∗N

k
2

))
−
(

div ỹ∗N

k
2

)
(ũNhN + uLhL +G)

]
dx. (4.139)

The second term in (4.136) we estimate as follows:

a(uN , v) + (b(x, uN + uL +G), v) = 0, ∀v ∈ H1
0 (Ω)

a(ũN , v) + (b(x, ũN + uLhL +G), v) = 0, ∀v ∈ H1
0 (Ω)

(4.140)

Subtracting the second from the first equation above, we get

a
(
uN − ũN , v

)
=
(
b(x, ũN + uLhL +G)− b(x, uN + uL +G), v

)
, ∀v ∈ H1

0 (Ω). (4.141)

Now by taking v := uN + uL − ũN − uLhL ∈ H
1
0 (Ω) we obtain

a
(
uN − ũN , uN + uL − ũN − uLhL

)
=
(
b(x, ũN + uLhL +G)− b(x, uN + uL +G), uN + uL − ũN − uLhL

)
≤ 0,

(4.142)
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where we have used the monotonicity of the nonlinearity: (b(x,w)− b(x, z), w − z) ≥
0, ∀w, z ∈ H1(Ω) ∩ L∞(Ω). Using the boundedness of the bilinear form a(·, ·) we get∣∣∣∣∣∣∇(uN − ũN )

∣∣∣∣∣∣2 = a
(
uN − ũN , uN − ũN

)
= a

(
uN − ũN , uN + uL − ũN − uLhL

)
+ a

(
uN − ũN , uLhL − u

L
)

≤ 0 +
∣∣∣∣∣∣∇(uN − ũN )

∣∣∣∣∣∣∣∣∣∣∣∣∇(uLhL − u
L)
∣∣∣∣∣∣.

Thus, ∣∣∣∣∣∣∇(uN − ũN )
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∇(uLhL − u

L)
∣∣∣∣∣∣. (4.143)

Combining the estimates (4.135), (4.136), (4.137), and (4.143), for any ỹ∗N ∈ H(div; Ω) with

div ỹ∗N = 0 in Ωm ∪ ΩIEL we obtain the estimate

|||∇(uh − u)||| ≤ 2
∣∣∣∣∣∣∇(uLhL − uL)

∣∣∣∣∣∣+
√

2M⊕,N (ũNhN , ỹ
∗
N ). (4.144)

It is left to estimate the term
∣∣∣∣∣∣∣∣∣∇(uLhL − uL)

∣∣∣∣∣∣∣∣∣. Let us denote p∗L := ε∇uL. Then from (4.132)

it is clear that p∗L ∈
[
L2(Ω)

]d
has the form p∗L = fG2

+ p∗L,0 for some p∗L,0 ∈ H(div; Ω) with

div p∗L,0 = 0 in Ω. Now, for any ψ ∈ H1
0 (Ω), any approximation v ∈ H1

g−G(Ω) of uL, and any

y∗L ∈
[
L2(Ω)

]d
of the form y∗L = fG2

+ y∗L,0 with y∗L,0 ∈ H(div; Ω) we obtain

(ε∇(uL − v),∇ψ) =

∫
Ω

fG2
· ∇ψdx− (ε∇v,∇ψ) + (y∗L,∇ψ)− (fG2

+ y∗L,0,∇ψ)

=
(
div y∗L,0, ψ

)
− (ε∇v − y∗L,∇ψ) .

Now, taking ψ = uL − v ∈ H1
0 (Ω) we have that∣∣∣∣∣∣∇(uL − v)

∣∣∣∣∣∣2 ≤ CPΩ√
εmin
‖div y∗L,0‖L2(Ω)

∣∣∣∣∣∣∇(uL − v)
∣∣∣∣∣∣+ |||ε∇v − y∗L|||∗

∣∣∣∣∣∣∇(uL − v)
∣∣∣∣∣∣

and thus by dividing by
∣∣∣∣∣∣∇(uL − v)

∣∣∣∣∣∣ we obtain∣∣∣∣∣∣∇(uL − v)
∣∣∣∣∣∣ ≤ CPΩ√

εmin
‖div y∗L,0‖L2(Ω)+|||ε∇v − y∗L|||∗ =: M⊕,L (v,y∗L) , (4.145)

where CP,Ω is Poincaré’s constant in the inequality ‖v‖L2(Ω)≤ CP,Ω‖∇v‖L2(Ω), ∀v ∈ H1
0 (Ω).

Remark 4.17

Notice that we have only used the implication that uLhL and ũNhN are in L∞(Ω) and have

not used anywhere the fact that uLhL and ũNhN satisfy a Galerkin formulation. Thus, all

considerations above are valid for any conforming approximations of uL and uN that are also

in L∞(Ω).

Finally, for the 2-term splitting, by using (4.144) and (4.145) we arrive at the following

proposition.
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Proposition 4.18

Let uLhL ∈ H
1
g−G(Ω) be an approximation of uL and let ũNhN ∈ H

1
0 (Ω) be an approximation of

the solution ũN of (4.134). Then uh := uLhL + ũNhN ∈ H
1
g−G(Ω) is a conforming approximation

of the exact solution u of (3.50). Moreover, for any y∗L of the form y∗L = fG2
+ y∗L,0 with

y∗L,0 ∈ H(div; Ω) and for any ỹ∗N ∈ H(div; Ω) with div ỹ∗N = 0 in Ωm ∪ ΩIEL the following

guaranteed estimate holds

|||∇ (uh − u)||| ≤ 2M⊕,L
(
uLhL ,y

∗
L

)
+
√

2M⊕,N
(
ũNhN , ỹ

∗
N

)
, (4.146)

where M⊕,L

(
uLhL ,y

∗
L

)
and M⊕,N

(
ũNhN , ỹ

∗
N

)
are defined by (4.145) and (4.138), respectively.

Note that we can also estimate the H1-seminorm and the full H1-norm of the difference

uh − u by introducing Poincaré’s constant and the minimum and maximum values of the

dielectric coefficient ε.

Remark 4.19 (Choosing y∗L,0)

In practice, to find a sharp bound on the error
∣∣∣∣∣∣∣∣∣∇(uLhL − u

L)
∣∣∣∣∣∣∣∣∣ we can do a minimization of

the majorant M⊕,L(uLhL ,y
∗
L) in y∗L,0 over a finite dimensional subspace of H(div; Ω). However,

it is more convenient to minimize the squared majorant M2
⊕,L(uLhL ,y

∗
L;α) simultaneously over

α ∈ R>0 := {x ∈ R : x > 0} and y∗L,0 in a finite dimensional subspace of H(div; Ω), cf. [156]:

∣∣∣∣∣∣∇(uLhL − u
L)
∣∣∣∣∣∣2 ≤M2

⊕,L(uLhL ,y
∗
L)

≤ (1 + α)
C2
PΩ

εmin
‖div y∗L,0‖2L2(Ω)+

(
1 +

1

α

) ∣∣∣∣∣∣ε∇uLhL − fG2
− y∗L,0

∣∣∣∣∣∣2
∗

:= M2
⊕,L(uLhL ,y

∗
L;α). (4.147)

Another computationally favorable approach that we use in applications and that gives prac-

tically the same estimate and error indicator as the minimization of the majorant is to

apply the patchwise flux reconstruction described in Section 4.2 on p. 137. In this case it is

necessary that uLhL is obtained by a Galerkin FEM. More precisely, uLhL = uLg−G + uL0,hL where

uLg−G ∈ H1(Ω)∩L∞(Ω) with ∇uLg−G ∈ [Ls(Ω)]d for some s > d is such that γ2(uLg−G) = g−G
on ∂Ω and uL0,hL ∈ V

1
hL

satisfies the Galerkin problem∫
Ω

ε∇
(
uLg−G + uL0,hL

)
· ∇vdx =

∫
Ω

fG2
· ∇vdx, ∀v ∈ V 1

hL
, (4.148)

where V 1
hL
⊂ H1

0 (Ω) is the space of continuous piecewise linear functions over a mesh ThL.

Then q := ε∇uLhL − fG2
satisfies ∫

Ω

q · ∇vdx = 0, ∀v ∈ V 1
hL
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and ΠLhL
(q) satisfies ∫

Ω

ΠLhL
(q) · ∇vdx = 0, ∀v ∈ V 1

hL
.

Finally, y∗L,0 ∈ RT0 is defined as the patchwise flux reconstruction of ΠLhL
(q).

Remark 4.20 (Choosing ỹ∗N )

To choose the best possible ỹ∗N in some finite dimensional subspace of H(div; Ω) one can

minimize the majorant M2
⊕,N (ũNhN , ỹ

∗
N ) in ỹ∗N . In applications, we again use the patchwise

flux reconstruction from Section 4.2. More precisely, let ũNhN be a Galerkin approximation of

ũN in the space V 1
hN

of continuous piecewise linear functions over a mesh ThN , i.e.,∫
Ω

ε∇ũNhN · ∇vdx+

∫
Ω

k
2

sinh(ũNhN + uLhL +G)vdx, ∀v ∈ V 1
hN
.

Then, if ε is piecewise constant with respect to ThN , we apply the flux reconstruction to the

piecewise constant numerical flux ε∇ũNhN with the right-hand side

f0 := −k2
sinh(ũNhN + uLhL +G).

If ε is not piecewise constant, we apply the flux reconstruction to the piecewise constant flux

ΠLhN
(ε∇ũNhN ).

Remark 4.21

Notice that the near best approximation result in Propostion 4.12 holds for ũNhN if ũNhN is

chosen as the Galerkin approximation of ũN in a closed subspace VhN of H1
0 (Ω) ∩ L∞(Ω).

No additional splitting of u into uL and uN

One can solve (3.50) directly without the additional splitting into uL and uN . In this case,

we can apply directly the a posteriori error estimates from Section 4.1.4 where g = ug−G ∈
H1(Ω) ∩ L∞(Ω) with ∇(ug−G) ∈ [Ls(Ω)]d, u = ug−G + u0, Ω1 = Ωm ∪ ΩIEL, Ω2 = Ωions,

A = εI, k = k, w = G, f0 = 0, f = fG2
. Let uh ∈ H1

g−G(Ω) be a conforming approximation of

u and let, as usual, p∗ = ε∇u. Then for any y∗ of the form y∗ = fG2
+y∗0 with y∗0 ∈ H(div; Ω)

and div y∗0 = 0 in Ωm ∪ ΩIEL the error identity (4.115) takes the form

1

2
|||∇(uh − u)|||2 +

1

2
|||y∗ − p∗|||2∗ +DF (uh,−Λ∗p∗) +DF (u,−Λ∗y∗) = M2

⊕(uh,y
∗), (4.149)

where

2M2
⊕(uh,y

∗) = |||ε∇uh − y∗|||2∗ + 2DF (uh,−Λ∗y∗) (4.150)
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and DF (uh,−Λ∗p∗), DF (u,−Λ∗y∗), and DF (uh,−Λ∗y∗) are given by (4.111), (4.112), and

(4.106), respectively. Also, we have the near best approximation result in Proposition 4.16

provided that uh = ug−G + u0,h where u0,h is the solution of the Galerkin problem

Find u0,h ∈ Vh such that

a(ug−G + u0,h, v) +

∫
Ω

k
2

sinh(u0,h + ug−G +G)vdx =

∫
Ω

fG2
· ∇vdx, ∀v ∈ Vh (4.151)

for some closed subspace Vh ⊂ L∞(Ω) of H1
0 (Ω).

Remark 4.22 (Choosing y∗0)

To define a good y∗0 we proceed similarly to Remark 4.20 and we only comment on the

patchwise flux reconstruction approach. Let u0,h be the Galerkin solution of (4.151) in

the space V 1
h ⊂ H1

0 (Ω) of continuous piecewise linear functions over a mesh Th and let

uh := ug−G + u0,h. Then q := ε∇uh − fG2
satisfies∫

Ω

q · ∇vdx =

∫
Ω

−k2
sinh(uh +G)vdx, ∀v ∈ V 1

h .

Thus ΠLh(q), where ΠLh is the L2-projection operator onto the space of piecewise constant

functions over Th, also satisfies the above equation and we define y∗0 as the patchwise flux

reconstruction from Section 4.2 of ΠLh(q). Therefore, div y∗0 + ΠLh(−k2
sinh(uh +G)) = 0.

Since k = 0 in Ωm ∪ ΩIEL we see that div y∗0 is exactly equilibrated in Ωm ∪ ΩIEL and the

reliability of the majorant M2
⊕(uh,y

∗) is guaranteed.

4.3.2 3-term splitting

With the 3-term splitting the dimensionless potential φ is decomposed into G, uH , and u, i.e,

φ = G+ uH + u, where G is given by (3.11) and uH = −G in Ωs and satisfies the following

problem in Ωm:

uH ∈ H1
−G(Ωm) and

∫
Ωm

∇uH · ∇vdx = 0 for all v ∈ H1
0 (Ωm). (3.29)

As we have shown in Section 3.3.2 and Section 3.3.3, one can define a particular solution of

(3.40) by considering the problem

Find u ∈ H1
g (Ω) such that b(x, u)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and∫
Ω

ε∇u · ∇vdx+

∫
Ω

b(x, u)vdx = 〈G3, v〉 for all v ∈ H1
0 (Ω),

(3.52)

where

〈G3, v〉 =

∫
Ω

fG3
· ∇v = −

∫
Ωm

εm∇uH · ∇vdx+

∫
Ωs

εm∇G · ∇vdx
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with

fG3
:= χΩmεm∇uH + χΩsεm∇G.

From Theorem 3.15 we know that the problem (3.52) possesses a unique solution in H1(Ω) ∩
L∞(Ω). Notice that the solution of (3.52) depends on the solution of (3.29). For this reason

we will need first to derive a posteriori error estimates for the approximate solution of (3.29).

Harmonic component uH

Let ũH ∈ H1
−G(Ωm) denote a conforming approximation of uH on Ωm and let T (∇ũH) ∈

H(div; Ωm) with T being a regularization operator that maps the numerical flux ∇ũH into

H(div; Ω). If ∇ũH is in H(div; Ωm), then T can be chosen to be the identity mapping. To

obtain fully reliable error bounds for approximate solutions of problem (3.52) with the 3-term

splitting, we need first to derive a posteriori estimates for the quantities

‖∇(ũH − uH)‖L2(Ωm) and ‖T
(
∇ũH

)
−∇uH‖L2(Ωm).

For the first quantity, similarly to (4.145), we have (see also [156])

‖∇
(
ũH − uH

)
‖L2(Ωm)≤ CPΩm‖div

(
T
(
∇ũH

))
‖L2(Ωm)+‖∇ũH − T (∇ũH)‖L2(Ωm), (4.152)

where CP,Ωm is Poincaré’s constant in the inequality ‖v‖L2(Ωm)≤ CP,Ωm‖∇v‖L2(Ωm), ∀v ∈
H1

0 (Ωm). For the second quantity, we proceed as follows:

‖∇ũH − T
(
∇ũH

)
‖2L2(Ωm) = ‖∇

(
ũH − uH

)
‖2L2(Ωm)

+ ‖∇uH − T
(
∇ũH

)
‖2L2(Ωm) (4.153)

+ 2

∫
Ωm

∇
(
ũH − uH

)
·
(
∇uH − T

(
∇ũH

))
dx.

Thus, using the Cauchy-Schwartz inequality, we obtain

‖∇
(
ũH − uH

)
‖2L2(Ωm)+‖∇u

H − T
(
∇ũH

)
‖2L2(Ωm)

≤ ‖∇ũH − T
(
∇ũH

)
‖2L2(Ωm)+2‖div

(
T
(
∇ũH

))
‖L2(Ωm)CPΩm‖∇

(
ũH − uH

)
‖L2(Ωm)

≤ ‖∇ũH − T
(
∇ũH

)
‖2L2(Ωm)+‖∇

(
ũH − uH

)
‖2L2(Ωm)+C

2
PΩm‖div

(
T
(
∇ũH

))
‖2L2(Ωm).

Finally,

‖∇uH − T
(
∇ũH

)
‖L2(Ωm)

≤
(
‖∇ũH − T

(
∇ũH

)
‖2L2(Ωm)+C

2
PΩm‖div

(
T
(
∇ũH

))
‖2L2(Ωm)

) 1
2

=: M⊕,H
(
ũH , T

(
∇ũH

)) (4.154)

If T
(
∇ũH

)
is additionally equilibrated (for example using the patchwise equilibration tech-

nique from Section 4.2) then both estimates (4.152) and (4.154) follow from (4.153) (Prager-

Synge estimate).
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Additional splitting of u into uL and uN

We start with the case where the regular component u is further split into uL and uN , i.e.,

u = uL + uN , where uL satisfies the nonhomogeneous linear interface problem (3.46) and uN

satisfies the homogeneous nonlinear interface problem (3.47) which take the particular form

Find uL ∈ H1
g (Ω) such that

a(uL, v) = −
∫

Ωm

εm∇uH · ∇vdx+

∫
Ωs

εm∇G · ∇vdx for all v ∈ H1
0 (Ω) (4.155)

and

Find uN ∈ H1
0 (Ω) such that b(x, uN + uL)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and

a(uN , v) +

∫
Ω

b(x, uN + uL)vdx = 0 for all v ∈ H1
0 (Ω).

(4.156)

Notice that the solution of (4.156) depends on the solution of (4.155) which depends on

the solution of (3.29). We also recall that uL and uN are in L∞(Ω) (see Theorem 3.19 and

Theorem 3.27).

Let ũL denote the exact solution of problem (4.155) with T
(
∇ũH

)
instead of ∇uH on the

right-hand side, i.e.,

Find ũL ∈ H1
g (Ω) such that

a(ũL, v) = −
∫

Ωm

εmT
(
∇ũH

)
· ∇vdx+

∫
Ωs

εm∇G · ∇vdx =: 〈G̃3, v〉 for all v ∈ H1
0 (Ω),

(4.157)

where 〈G̃3, v〉 can also be written as 〈G̃3, v〉 =
∫
Ω

fG̃3
· ∇vdx with

fG̃3
:= χΩmεmT

(
∇ũH

)
+ χΩsεm∇G.

Here we note that ũL will be in L∞(Ω) if T
(
∇ũH

)
∈ [Ls(Ω)]d for some s > d. This will be

ensured if, for example, ũH is a continuous piecewise linear finite element approximation and

the operator T corresponds to the patchwise flux reconstruction procedure from Section 4.2.

Additionally, let ũLhL denote some conforming approximation of ũL computed on some partition

ThL of Ω (actually ũLhL can be any conforming approximation as long as it is in L∞(Ω)).

Next, let ũN denote the exact solution of problem (4.156) but with ũLhL instead of uL in it,

i.e.,

Find ũN ∈ H1
0 (Ω) such that b(x, ũN + ũLhL)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and

a(ũN , v) +

∫
Ω

b(x, ũN + ũLhL)vdx = 0 for all v ∈ H1
0 (Ω).

(4.158)
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Finally, by ũNhN we denote a conforming approximation of ũN computed on some mesh ThN

(again ũNhN can be any conforming approximation as long as it is in L∞(Ω)). With the above

notation, uh := ũLhL + ũNhN ∈ H
1
g (Ω) is a conforming approximation of the solution u of (3.52).

Our goal is to estimate the error |||∇(uh − u)|||. In other words, we estimate the effect of using

an approximation of uH in (4.155) to compute an approximation of uL which is then used in

equation (4.156) to compute an approximation of uN on the quality of the total approximate

regular part of the potential uh. The arguments are similar to the ones we made in the case

of the 2-term splitting.

We have

|||∇(uh − u)||| =
∣∣∣∣∣∣∇(ũNhN + ũLhL − u

N − uL)
∣∣∣∣∣∣

≤
∣∣∣∣∣∣∇(ũNhN − u

N )
∣∣∣∣∣∣+

∣∣∣∣∣∣∇(ũLhL − u
L)
∣∣∣∣∣∣ (4.159)

For the first term on the RHS in (4.159) we have∣∣∣∣∣∣∇(ũNhN − u
N )
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∇(ũNhN − ũ

N )
∣∣∣∣∣∣+

∣∣∣∣∣∣∇(ũN − uN )
∣∣∣∣∣∣. (4.160)

The first term on the RHS in (4.160) we estimate by the functional a posteriori error

estimate (4.51), where A = εI, k = k, w = ũLhL ∈ L
∞(Ωions), f0 = 0, and f = 0. For any

ỹ∗N ∈ H(div; Ω) with div ỹ∗N = 0 in Ωm ∪ ΩIEL we have∣∣∣∣∣∣∇(ũNhN − ũ
N )
∣∣∣∣∣∣ ≤ √2M⊕,N (ũNhN , ỹ

∗
N ), (4.161)

where the fully computable majorant M2
⊕,N (ũNhN , ỹ

∗
N ) is given by

2M2
⊕,N (ũNhN , ỹ

∗
N ) =

∣∣∣∣∣∣ε∇ũNhN − ỹ∗N ∣∣∣∣∣∣2∗ + 2DF,N (ũNhN ,−Λ∗ỹ∗N ), (4.162)

and

DF,N (ũNhN ,−Λ∗ỹ∗N ) =

∫
Ωions

k
2
[
cosh(ũNhN + ũLhL) +

(
div ỹ∗N

k
2

)
arsinh

(
div ỹ∗N

k
2

)

− cosh

(
arsinh

(
div ỹ∗N

k
2

))
−
(

div ỹ∗N

k
2

)
(ũNhN + ũLhL)

]
dx. (4.163)

The second term in (4.160) we estimate as follows:

a
(
uN , v

)
+ (b(x, uN + uL), v) = 0, ∀v ∈ H1

0 (Ω)

a
(
ũN , v

)
+ (b(x, ũN + ũLhL), v) = 0, ∀v ∈ H1

0 (Ω)
(4.164)

By subtracting the second from the first equation above, we obtain

a
(
uN − ũN , v

)
=
(
b
(
x, ũN + ũLhL

)
− b

(
x, uN + uL

)
, v
)
, ∀v ∈ H1

0 (Ω). (4.165)

Now take v := uN + uL − ũN − ũLhL ∈ H
1
0 (Ω) and we obtain

a
(
uN − ũN , uN + uL − ũN − ũLhL

)
=
(
b
(
x, ũN + ũLhL

)
− b

(
x, uN + uL

)
, uN + uL − ũN − ũLhL

)
≤ 0,

(4.166)
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where we have used the monotonicity of the nonlinearity: (b(x,w)− b(x, z), w − z) ≥ 0, ∀w, z ∈
H1(Ω) ∩ L∞(Ω). Using the boundedness of the bilinear form a (·, ·) we obtain∣∣∣∣∣∣∇ (uN − ũN)∣∣∣∣∣∣2 = a

(
uN − ũN , uN − ũN

)
= a

(
uN − ũN , uN + uL − ũN − ũLhL

)
+ a

(
uN − ũN , ũLhL − u

L
)

≤ 0 +
∣∣∣∣∣∣∇ (uN − ũN)∣∣∣∣∣∣∣∣∣∣∣∣∇ (ũLhL − uL)∣∣∣∣∣∣.

Thus, ∣∣∣∣∣∣∇(uN − ũN )
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∇(ũLhL − u

L)
∣∣∣∣∣∣. (4.167)

Next, we estimate the term
∣∣∣∣∣∣∣∣∣∇(ũLhL − u

L)
∣∣∣∣∣∣∣∣∣ that also appears in (4.159). By the triangle

inequality, we have∣∣∣∣∣∣∇(ũLhL − u
L)
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∇ (ũLhL − ũL)∣∣∣∣∣∣+

∣∣∣∣∣∣∇ (ũL − uL)∣∣∣∣∣∣. (4.168)

The second term in (4.168) is bounded as follows: subtract equation (4.155) from (4.157),

take for a test function v = ũL − uL and use Cauchy-Schwartz inequality to obtain∣∣∣∣∣∣∇ (ũL − uL)∣∣∣∣∣∣2 ≤ √εm‖T (∇ũH)−∇uH‖L2(Ωm)

∣∣∣∣∣∣∇(ũL − uL)
∣∣∣∣∣∣

Thus, we get∣∣∣∣∣∣∇ (ũL − uL)∣∣∣∣∣∣ ≤ √εm‖T (∇ũH)−∇uH‖L2(Ωm)≤
√
εmM⊕,H

(
ũH , T

(
∇ũH

))
. (4.169)

It is left to estimate the first term in (4.168). Let us denote p̃∗L := ε∇ũL. Then from (4.157)

it follows that p̃∗L ∈
[
L2(Ω)

]d
has the form p̃∗L = fG̃3

+ p̃∗L,0 for some p̃∗L,0 ∈ H(div; Ω) with

div p̃∗L,0 = 0 in Ω. Similarly to the estimate (4.145) in the case of the 2-term splitting, for

any v ∈ H1
g (Ω) and any ỹ∗L ∈

[
L2(Ω)

]d
of the form ỹ∗L = fG̃3

+ ỹ∗L,0 with ỹ∗L,0 ∈ H(div; Ω)

we obtain∣∣∣∣∣∣∇(ũL − v)
∣∣∣∣∣∣ ≤ CPΩ√

εmin
‖div ỹ∗L,0‖L2(Ω)+|||ε∇v − ỹ∗L|||∗ =: M⊕,L (v, ỹ∗L) . (4.170)

Finally, if we want to compute an approximation uh of u with a prescribed error tolerance δ,

by combining (4.159), (4.160), (4.161), (4.167), (4.168), (4.169), and (4.170) we obtain

|||∇ (uh − u)||| ≤
∣∣∣∣∣∣∇ (ũNhN − ũN)∣∣∣∣∣∣+

∣∣∣∣∣∣∇ (ũLhL − uL)∣∣∣∣∣∣+
∣∣∣∣∣∣∇ (ũLhL − uL)∣∣∣∣∣∣

≤
√

2M⊕,N
(
ũNhN , ỹ

∗
N

)
+ 2

(∣∣∣∣∣∣∇ (ũLhL − ũL)∣∣∣∣∣∣+
∣∣∣∣∣∣∇ (ũL − uL)∣∣∣∣∣∣)

≤
√

2M⊕,N
(
ũNhN , ỹ

∗
N

)
+ 2

(
M⊕,L

(
ũLhL , ỹ

∗
L

)
+
√
εm‖T

(
∇ũH

)
−∇uH‖L2(Ωm)

)
≤ 2
√
εmM⊕,H

(
ũH , T

(
∇ũH

))
+ 2M⊕,L

(
ũLhL , ỹ

∗
L

)
+
√

2M⊕,N
(
ũNhN , ỹ

∗
N

)
≤ δ.

(4.171)
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Proposition 4.23

Let ũH be a conforming approximation of the solution uH of (3.29) and let T
(
∇ũH

)
∈

H(div; Ωm) be a reconstruction of the numerical flux ∇ũH . Next, let ũLhL ∈ H
1
g (Ω) be an

approximation of the solution ũL of (4.157) and let ũNhN ∈ H
1
0 (Ω) be an approximation of

the solution ũN of (4.158). Then uh := ũLhL + ũNhN ∈ H
1
g (Ω) is a conforming approximation

of the exact solution u of (3.52). Moreover, for any ỹ∗L of the form ỹ∗L = fG̃3
+ ỹ∗L,0 with

ỹ∗L,0 ∈ H(div; Ω) and for any ỹ∗N ∈ H(div; Ω) with div ỹ∗N = 0 in Ωm ∪ ΩIEL the following

guaranteed estimate holds

|||∇ (uh − u)||| ≤ 2
√
εmM⊕,H

(
ũH , T

(
∇ũH

))
+ 2M⊕,L

(
ũLhL , ỹ

∗
L

)
+
√

2M⊕,N
(
ũNhN , ỹ

∗
N

)
,

(4.172)

where M⊕,L

(
ũLhL , ỹ

∗
L

)
and M⊕,N

(
ũNhN , ỹ

∗
N

)
are defined by (4.170) and (4.162), respectively.

Remark 4.24

Similarly to Remark 3.9, the functional G̃3 generates a jump condition on the normal compo-

nent of the flux ε∇ũL. When ũL is smooth in each subdomain and T (∇ũH) is regular enough,

we have
[
ε∇ũL · nΓ

]
Γ

= −εm
(
T (∇ũH) +∇G

)
· nΓ, where nΓ is the unit outward normal

vector with respect to Ωm. Indeed, by applying the divergence theorem (Theorem 2.20) and

using the fact that εm is constant and G is harmonic in a neighborhood of Ωs, one can obtain

〈G̃3, v〉 =−
∫

Ωm

εmT
(
∇ũH

)
· ∇vdx+

∫
Ωs

εm∇G · ∇vdx

=− 〈γnΓ,Ωm

(
εmT

(
∇ũH

))
, γ2,Γ(v)〉H−1/2(Γ)×H1/2(Γ)

+ 〈γnΓ,Ωs (εm∇G) , γ2,Γ(v)〉H−1/2(Γ)×H1/2(Γ)

+

∫
Ωm

div
(
εmT

(
∇ũH

))
vdx, ∀v ∈ H1

0 (Ω),

(4.173)

where γnΓ,Ωm and γnΓ,Ωs are the normal trace operators in H(div; Ωm) and H(div; Ωs),

respectively, and γ2,Γ(v) is the trace of v on Γ. Thus, if T
(
∇ũH

)
is more regular, then

(4.173) can be represented in terms of integrals over Γ:

〈G̃3, v〉 =

∫
Γ

−εm
(
T
(
∇ũH

)
+∇G

)
· nΓvds+

∫
Ωm

div
(
εmT

(
∇ũH

))
vdx. (4.174)

The jump condition is now perturbed since we only have an approximation T
(
∇ũH

)
to ∇uH .

Remark 4.25

Notice that the near best approximation result in Propostion 4.12 holds for ũNhN if ũNhN is

chosen as the Galerkin approximation of ũN in a closed subspace VhN of H1
0 (Ω) ∩ L∞(Ω).

Remark 4.26

To define good ỹ∗L,0 and ỹ∗N one proceeds similarly to Remark 4.19 and Remark 4.20.
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No additional splitting of u into uL and uN

One can also solve (3.52) directly without the additional splitting into uL and uN . More

precisely, for a given approximation ũH of uH let ũ be the exact solution of the following

problem:

Find ũ ∈ H1
g (Ω) such that b(x, ũ)v ∈ L1(Ω) for all v ∈ H1

0 (Ω) and∫
Ω

ε∇ũ · ∇vdx+

∫
Ω

b(x, ũ)vdx = 〈G̃3, v〉 for all v ∈ H1
0 (Ω).

(4.175)

In this case, if ũh ∈ H1
g (Ω) denotes a conforming approximation of ũ, we can apply directly

the a posteriori error estimates from Section 4.1.4 where g = ũg ∈ H1(Ω) ∩ L∞(Ω) with

∇ũg ∈ [Ls(Ω)]d, ũ = ũg + ũ0, Ω1 = Ωm ∪ ΩIEL, Ω2 = Ωions, A = εI, k = k, w = 0, f0 = 0,

f = fG̃3
. Let, as usual, p̃∗ = ε∇ũ. Then for any ỹ∗ of the form ỹ∗ = fG̃3

+ ỹ∗0 with

ỹ∗0 ∈ H(div; Ω) and div ỹ∗0 = 0 in Ωm ∪ ΩIEL the error identity (4.115) takes the form

1

2
|||∇(ũh − ũ)|||2 +

1

2
|||ỹ∗ − p̃∗|||2∗ +DF (ũh,−Λ∗p̃∗) +DF (ũ,−Λ∗ỹ∗) = M2

⊕(ũh, ỹ
∗), (4.176)

where

2M2
⊕(ũh, ỹ

∗) = |||ε∇ũh − ỹ∗|||2∗ + 2DF (ũh,−Λ∗ỹ∗) (4.177)

and DF (ũh,−Λ∗p̃∗), DF (ũ,−Λ∗ỹ∗), and DF (ũh,−Λ∗ỹ∗) are given by (4.111), (4.112), and

(4.106), respectively, (or by (4.45), (4.46), and (4.39) in the case of homogeneous Dirichlet

boundary condition g = 0). Also, we have the near best approximation result in Proposi-

tion 4.16 provided that ũh = ũg + ũ0,h where ũ0,h is the solution of the Galerkin problem

Find ũ0,h ∈ Vh such that

a(ũg + ũ0,h, v) +

∫
Ω

k
2

sinh(ũ0,h + ũg)vdx =

∫
Ω

fG̃3
· ∇vdx, ∀v ∈ Vh (4.178)

for some closed subspace Vh ⊂ L∞(Ω) of H1
0 (Ω).

Now the overall estimate for the error |||∇(ũh − u)||| can be easily obtained. We have

|||∇(ũh − u)||| ≤ |||∇(ũh − ũ)|||+ |||∇(ũ− u)|||. (4.179)

By using (4.176), the first term on the right-hand side of (4.179) is estimated by
√

2M⊕(ũh, ỹ
∗).

For the second term, after subtracting equation (4.175) from (3.52), we obtain

a(u− ũ, v) = (b(x, ũ)− b(x, u)), v) +

∫
Ωm

εm
(
T
(
∇ũH

)
−∇uH

)
· ∇vdx for all v ∈ H1

0 (Ω).

Set here v := u− ũ ∈ H1
0 (Ω). Using the monotonicity of b(x, ·), we see that

|||∇(u− ũ)||| ≤
√
εm‖T

(
∇ũH

)
−∇uH‖L2(Ωm). (4.180)

By combining (4.179) and (4.180) we can formulate the following proposition for the overall

error estimate of the component u.
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Proposition 4.27

Let ũH be a conforming approximation of the solution uH of (3.29) and let T
(
∇ũH

)
∈

H(div; Ωm) be a reconstruction of the numerical flux ∇ũH . Next, let ũh ∈ H1
g (Ω) be an

approximation of the solution ũ of (4.175). Then, for any ỹ∗ of the form ỹ∗ = fG̃3
+ ỹ∗0 with

ỹ∗0 ∈ H(div; Ω) and div ỹ∗0 = 0 in Ωm ∪ ΩIEL the following guaranteed error estimate holds:

|||∇ (ũh − u)||| ≤
√
εmM⊕,H

(
ũH , T

(
∇ũH

))
+
√

2M⊕ (ũh, ỹ
∗) , (4.181)

where M⊕,H
(
ũH , T

(
∇ũH

))
and M⊕ (ũh, ỹ

∗) are defined by (4.154) and (4.177), respectively.

Remark 4.28 (Choosing ỹ∗0)

We proceed similarly to Remark 4.22. Let ũ0,h be the Galerkin solution of (4.178) in the space

V 1
h ⊂ H1

0 (Ω) of continuous piecewise linear functions over a mesh Th and let ũh := ũg + u0,h.

Then q := ε∇ũh − fG̃3
satisfies∫

Ω

q · ∇vdx =

∫
Ω

−k2
sinh(ũh)vdx, ∀v ∈ V 1

h .

Thus ΠLh(q), where ΠLh is the L2-projection operator onto the space of piecewise constant

functions over Th, also satisfies the above equation and we define ỹ∗0 as the patchwise flux

reconstruction from Section 4.2 of ΠLh(q). Therefore, div ỹ∗0 + ΠLh(−k2
sinh(ũh)) = 0. Since

k = 0 in Ωm ∪ΩIEL we see that div ỹ∗0 is exactly equilibrated in Ωm ∪ΩIEL and the reliability

of the majorant M2
⊕(ũh, ỹ

∗) is guaranteed.

4.3.3 Applications

In this section we present six numerical examples based on the two term and three term

splittings. They show that the nonlinear mathematical model in question can be studied by

fully reliable computer simulation methods that provide results with guaranteed and explicitly

known accuracy. In the first four examples, we consider the system of two chromophores

Alexa 488 and Alexa 594, which are used for protein labeling in biophysical experiments.

The fifth experiment is conducted on an insulin protein (PDB ID: 1RWE). The sixth one

is performed on the protein membrane channel SecYEG. In the first five examples, we

assume a solvent consisting of NaCl with k
2
ions = 10 Å−2, corresponding to ionic strength of

Is ≈ 1.178M at T = 298K. The ground state charges are obtained by CHARMM 32. In the

first four examples, we assume dielectric constants εm = 2, εs = 80 and in the fifth example

εm = 20, εs = 80. In the sixth example, we again assume a solvent consisting of NaCl, but

this time with an ionic strength Is = 0.1M and an absolute temperature T = 300K. These

conditions correspond to k
2
ions = 0.843 Å−2. The dielectric coefficient inside the protein and

membrane regions is εm = 4, while εs = εs(x) is variable in the part of the solution region

which is inside the channel.
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The numerical experiments are carried out in FreeFem++ developed and maintained by

Frederich Hecht [98]. All figures below are generated with the help of VisIt [52]. The

computational domain Ω for the first four examples is a cube with a side length of A =

6× amax + 24 Å = 295.85 Å, where amax is the maximum side length of the smallest bounding

box for the molecules with edges parallel to the coordinate axes. The computational domain

Ω for the fifth example is a cube with a side length of 20× amax = 814.02 Å and the compu-

tational domain in the sixth example is a cube with a side length of 1000 Å. The molecules

are positioned in the center of Ω. For the Poincaré’s constant CPΩ on a cube we have that

CPΩ ≤ A
√

3
3π (see [135]). The Dirichlet boundary condition for all experiments is given by g = 0

on ∂Ω. The discretizations used in the numerical tests to find conforming approximations of

uL, uN , and u are based on standard linear P1 finite elements although the derived estimates

apply to any conforming approximations that are in L∞(Ω), which could for example also

be obtained from higher order finite element methods (hpFEM) or isogeometric analysis (IGA).

The surface mesh for the first four examples is constructed with TMSmesh 2.1 [49, 129]

which produces a Gaussian molecular surface. The surface mesh of the two chromophores is

additionally optimized with the help of mmgs [58]. The surface meshes of the insulin protein

in the fifth example and of the membrane channel SecYEG in the sixth example are generated

with NanoShaper [61] for a grid parameter GridScale=2 and represent the solvent-accessible

surface (Connolly surface) with a radius of the probe sphere equal to 1.4 Å. In the sixth

example, an ion exclusion layer with a thickness of 2 Å is added around the channel SecYEG

and the membrane in which it is embedded.

The initial tetrahedral meshes are generated using TetGen [170] and then they are adaptively

refined with the help of mmg3d [62]. The shape of the molecules is not changed during

adaptation. This is justified, since the molecule structure is only known with a certain

precision from X-ray crystallography. It is also possible to use isoparametric elements to

represent the molecular surface exactly. Then, in the mesh refining procedure new points will

be inserted on the surface by splitting the curved elements on the interface Γ.

Remark 4.29

In order to compute a true conforming approximation of uL in the 2-term splitting, one has

to solve the homogenized problem (4.148) with some function uLg−G ∈ H1(Ω) ∩ L∞(Ω) with

∇uLg−G ∈ [Ls(Ω)]d for some s > d and γ2(uLg−G) = g −G on ∂Ω. In practice, even if g = 0,

one cannot just take the function −G defined over Ω a.e. since it is not even in H1(Ω).

However, a simple truncation Ts(−G) := max{−s,min{s,−G}} for s ≥ ‖G‖L∞(∂Ω) already

ensures that Ts(−G) ∈ H1(Ω) ∩ L∞(Ω) with ∇Ts(−G) ∈ [L∞(Ω)]d and γ2 (Ts(−G)) = −G
on ∂Ω. Thus, one can solve the homogenized problem (4.148) with uL−G := Ts(−G), i.e.,∫

Ω

ε∇
(
uL−G + uL0,hL

)
· ∇vdx =

∫
Ω

fG2
· ∇vdx, ∀v ∈ V 1

0,hL
,
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where V 1
0,hL
⊂ H1

0 (Ω) is a finite element space of continuous piecewise linear functions on a

triangulation ThL. However, in the examples that we present below, we find uLhL by simply

solving the problem

Find ũLhL in V 1
−G,hL such that∫

Ω

∇ũLhL · ∇vdx =

∫
Ω

fG2
· ∇vdx, ∀v ∈ V 1

0,hL
,

where V 1
−G,hL ⊂ H

1(Ωm) is the finite element space of continuous piecewise linear functions

which are equal to Πh(−G) on ∂Ω with Πh being the standard nodal interpolation operator.

Therefore, in this case γ2

(
uLhL

)
≈ −G on ∂Ω. We proceed in a similar way when dealing

with the harmonic component uH .

Example 1: System 1 (Alexa 488 and Alexa 594), 2-term splitting with additional

decomposition into uL and uN

The first system consists of the two chromophores (dyes) Alexa 594 and Alexa 488, frequently

used for protein labeling in biophysical experiments, with a total of 171 atoms in aqueous

solution of NaCl. The parameters of the force fields of Alexa chromophores were created

by an analogy approach from that of similar chemical groups in the CHARMM force field

(version v35b3). The coordinates of the molecules are taken from a time frame of molecular

dynamic simulations. In the all-atom MD simulations the dyes were attached to a polyproline

11 and dissolved in water box with NaCl [172]. The parameters of this example are εm = 2,

εs = 80, Is = 1.178M , which corresponds to k
2
ions = 10 Å−2 at T = 298K. In this example,

ΩIEL = ∅ and thus Ωs ≡ Ωions, Ωm ∪ ΩIEL = Ωm.

Finding uL

First, we solve adaptively (4.132) to find an approximation uLhL of uL. As an error indicator

we use the second term in the error estimate (4.145) computed over each element K

ηLK =
∣∣∣∣∣∣ε∇uLhL − y∗L∣∣∣∣∣∣∗(K)

=

∫
K

1

ε

∣∣ε∇uLhL − y∗L∣∣2 dx
 1

2

, (4.182)

where y∗L = χΩs(εm − εs)∇G+ y∗L,0. In this example, to find y∗L,0 ∈ H(div; Ω), we perform

a minimization of the squared majorant M2
⊕,L(uLhL ,y

∗
L;α) defined in (4.147) over α ∈ R>0

and y∗L,0 ∈ RT0 defined over the same mesh. This procedure gives a very sharp bound

from above for the error. Moreover, we have a simple and efficient lower bound for the

energy norm of the error ∇(uLhL − u
L). Indeed, let us denote by JL the quadratic functional

whose unique minimizer over H1
g−G(Ω) is the solution uL of (4.132) and which is defined

by JL(v) =
∫
Ω

ε
2

∣∣∇uL∣∣ dx− 〈G2, v〉. Then, assuming that uLhL ∈ H
1
g−G(Ω) (for example when

uLhL = uLg−G + uL0,hL , where uL0,hL is the finite element solution of the homogenized equation
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(4.148)), from the equality∣∣∣∣∣∣∇ (uLhL − uL)∣∣∣∣∣∣2 = 2
(
JL(uLhL)− JL(uL)

)
(4.183)

it follows that for all w ∈ H1
g−G(Ω)∣∣∣∣∣∣∇ (uLhL − uL)∣∣∣∣∣∣2 ≥ 2

(
JL
(
uLhL
)
− JL(w)

)
=: M2

	,L
(
uLhL , w

)
. (4.184)

For w we always take the last available approximation uLhL from the adaptive procedure and

compute the lower bound for the error on all previous levels. For convenience, we will denote

the approximation uLhL on mesh level i by uLi . Instead y∗L and y∗L,0 we write y∗L,i and y∗L,0,i
where i = 0, 1, ..p̄, i = 0 corresponds to the initial mesh, and i = p̄ corresponds to the last

mesh. The results after solving adaptively for uL are shown in the tables below where ‖v‖0
denotes the L2(Ω) norm of the function v and p̄ = 7.

Table 4.12: Example 1. System 1

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level i #elements ‖uLi ‖0
∣∣∣∣∣∣∇uLi ∣∣∣∣∣∣ M	,L(uLi , u

L
p̄ ) M⊕,L(uLi ,y

∗
L,i) JL(uLi )

0 667 008 63584.27 15679.01 3318.24 3358.51 -122925209.65

1 1 695 251 64014.26 15977.11 1267.71 1369.07 -127627031.79

2 3 803 582 64064.47 16006.50 819.032 968.374 -128095169.28

3 7 238 416 64094.10 16018.35 543.720 749.503 -128282760.11

4 10 268 886 64109.01 16022.61 401.463 653.047 -128349989.97

5 13 164 899 64115.19 16024.94 295.404 593.411 -128386944.42

6 16 124 993 64119.55 16026.50 194.810 549.973 -128411600.81

7 19 531 518 64122.38 16027.69 - 514.037 -128430576.31

We can also find guaranteed lower and upper bounds on the relative errors in energy and

combined energy norm, as well as practical estimations for these quantities. The combined

energy norm of the pair (v, q) ∈ H1
0 (Ω)×

[
L2(Ω)

]d
is defined by

|||(v, q)|||CEN :=

√
|||∇v|||2 + |||q|||2∗.

By RENL,Up
i,j,k,s we denote the guaranteed upper bound for the relative error in energy norm,

by RCENL,Up
i,j,s the guaranteed upper bound on the relative error in combined energy norm, by

RENL,Low
i,j,k,s the guaranteed lower bound on the relative energy norm error, and by RCENL,Low

i,j,s

the guaranteed lower bound for the relative error in combined energy norm where the indices

i, j, k, s correspond to the refinement levels from which approximations for uL and p∗L are

taken. For any i, j, k, s ∈ {0, 1, 2, ..., p̄} we have∣∣∣∣∣∣∇uLj ∣∣∣∣∣∣−M⊕,L (uLj ,y∗L,s) ≤ ∣∣∣∣∣∣∇uLj −∇ (uLj − uL)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∇uLj ∣∣∣∣∣∣+M⊕,L
(
uLj ,y

∗
L,s

)
.
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Therefore,∣∣∣∣∣∣∇(uLi − uL)
∣∣∣∣∣∣

|||∇uL|||
≤

M⊕,L(uLi ,y
∗
L,k)∣∣∣∣∣∣∣∣∣∇uLj ∣∣∣∣∣∣∣∣∣−M⊕,L(uLj ,y

∗
L,s)

=: RENL,Up
i,j,k,s, (4.185a)

RENL,Low
i,j,k,s : =

M	,L(uLi , u
L
k )∣∣∣∣∣∣∣∣∣∇uLj ∣∣∣∣∣∣∣∣∣+M⊕,L(uLj ,y

∗
L,s)
≤
∣∣∣∣∣∣∇(uLi − uL)

∣∣∣∣∣∣
|||∇uL|||

, (4.185b)

where (4.185a) is valid if
∣∣∣∣∣∣∣∣∣∇uLj ∣∣∣∣∣∣∣∣∣−M⊕,L(uLj ,y

∗
L,s) > 0. For any level i, the above bounds

are expected to be the sharpest when we take j, k, s = p̄. In practice, on each level i, the best

one can do is to take for RENL,Up
i,j,k,s j = i, s = i, k = i. Optionally, once the computations

are done, i.e., we have reached level p̄, one can return and recompute slightly sharper upper

bounds for each i = 0, 1, ..., p̄ with j = p̄, s = p̄ and k = i. This results in only 2 arithmetic

operations per level, provided that
∣∣∣∣∣∣∇uLp̄ ∣∣∣∣∣∣ and M⊕,L(uLi ,y

∗
L,i), i = 0, 1, ..., p̄ are stored. On

the other hand, RENL,Low
i,j,k,s is equal to zero if k = i and it is expected that RENLow

i,j,k,s will be

negative if k < i. Therefore, on each level i, to compute the best possible lower bounds for

all previous levels 0, 1, ..., i− 1, we take k = i, j = i, s = i. Further, we have the equality

|||ε∇v − y∗|||2∗ = |||∇(v − u)|||2 + |||y∗ − p∗|||2∗ − 2

∫
Ω

(y∗ − p∗) · ∇(v − u)dx, (4.186)

which holds for any v, u ∈ H1(Ω) and any y∗,p∗ ∈
[
L2(Ω)

]d
.Taking into account that

y∗L = fG2
+ y∗L,0 and p∗L = fG2

+ p∗L,0 with div p∗L,0 = 0 in Ω and y∗L,0 ∈ H(div; Ω), we also

have ∣∣∣∣∣∣
∫
Ω

(y∗L − p∗L) · ∇(uLhL − u
L)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

div y∗L,0(uLhL − u
L)dx

∣∣∣∣∣∣
≤
CPΩ‖div y∗L,0‖L2(Ω)√

εmin
M⊕,L(uLhL ,y

∗
L),

(4.187)

where we have used Poincaré’s inequality ‖v‖L2(Ω)≤ CPΩ‖∇v‖)L2(Ω), ∀v ∈ H1
0 (Ω) together

with the estimate (4.145). Therefore, we obtain the estimates

(
MCEN
	,L (uLhL ,y

∗
L)
)2

:=
∣∣∣∣∣∣ε∇uLhL − y∗L∣∣∣∣∣∣2∗ − 2

CPΩ‖div y∗L,0‖L2(Ω)√
εmin

M⊕,L(uLhL ,y
∗
L)

≤
∣∣∣∣∣∣(uLhL − uL,y∗L − p∗L)

∣∣∣∣∣∣2
CEN

≤
∣∣∣∣∣∣ε∇uLhL − y∗L∣∣∣∣∣∣2∗ + 2

CPΩ‖div y∗L,0‖L2(Ω)√
εmin

M⊕,L(uLhL ,y
∗
L)

=:
(
MCEN
⊕,L (uLhL ,y

∗
L)
)2
.

(4.188)

Since in this example y∗L,0 is found by minimization of M2
⊕,L(uLhL ,y

∗
L;α), in our experiments

‖div y∗L,0‖L2(Ω) is usually of the order 10−5 to 10−4 and the above estimate is very sharp.
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On the other hand, if we apply the patchwise flux reconstruction from Remark 4.19, then

y∗L,0 is exactly equilibrated in Ω and ‖div y∗L,0‖L2(Ω) is exactly equal to zero. For any level

i = 0, 1, ..., p̄, we can bound the relative error in the combined energy norm as follows∣∣∣∣∣∣∣∣∣(uLi − uL,y∗L,i − p∗L)∣∣∣∣∣∣∣∣∣
CEN∣∣∣∣∣∣(uL,p∗L)

∣∣∣∣∣∣
CEN

≤
MCEN
⊕,L (uLi ,y

∗
L,i)

√
2
(∣∣∣∣∣∣∣∣∣∇uLj ∣∣∣∣∣∣∣∣∣−M⊕,L(uLj ,y

∗
L,s)
) := RCENL,Up

i,j,s ,

RCENL,Low
i,j,s :=

MCEN
	,L (uLi ,y

∗
L,i)

√
2
(∣∣∣∣∣∣∣∣∣∇uLj ∣∣∣∣∣∣∣∣∣+M⊕,L(uLj ,y

∗
L,s)
) ≤

∣∣∣∣∣∣∣∣∣(uLi − uL,y∗L,i − p∗L)∣∣∣∣∣∣∣∣∣
CEN∣∣∣∣∣∣(uL,p∗L)

∣∣∣∣∣∣
CEN

.

(4.189)

For every level i, the sharpest estimates RCENL,Up
i,j,s and RCENL,Low

i,j,s are expected to be

obtained when j = p̄, s = p̄. In the table below, we also present the practical estimation

PL,CEN
rel,i for the relative error in combined energy norm given by

PL,CEN
rel,i :=

∣∣∣∣∣∣∣∣∣ε∇uLi − y∗L,i∣∣∣∣∣∣∣∣∣∗√
2
∣∣∣∣∣∣∇uLi ∣∣∣∣∣∣ for all i = 0, 1, ..., p̄. (4.190)

Table 4.13: Example 1. System 1.

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level #elements RENL,Low
i,p̄,p̄,p̄[%] RENL,Up

i,p̄,i,p̄[%] RCENL,Low
i,p̄,p̄ [%] PL,CEN

rel,i [%] RCENL,Up
i,p̄,p̄ [%]

i

0 667 008 20.0598 21.6487 14.3546 15.1455 15.3079

1 1 695 251 7.66370 8.82493 5.85216 6.05907 6.24017

2 3 803 582 4.95130 6.24207 4.13936 4.27784 4.41381

3 7 238 416 3.28696 4.83125 3.20376 3.30850 3.41621

4 10 268 886 2.42697 4.20949 2.79147 2.88196 2.97656

5 13 164 899 1.78581 3.82509 2.53655 2.61840 2.70474

6 16 124 993 1.17768 3.54509 2.35088 2.42650 2.50675

7 19 531 518 0.00000 3.31345 2.19726 2.26777 2.34296

Finding ũN

Once we have obtained an approximation uLhL for uL, we solve adaptively (4.134) with uLhL
in it to find approximations ũNhN of ũN . For uLhL we take the approximation uL2 from level 2.

In this case, we have M⊕,L(uL2 ,y
∗
L,2) = 968.374, see Table 4.12, and RENL,Up

2,2,2,2 = 6.43946%.

For ỹ∗N ∈ H(div; Ω) with div(ỹ∗N ) = 0 in Ωm ∪ ΩIEL, we use the patchwise equilibrated

reconstruction of the numerical flux ε∇ũNhN described in Remark 4.20. As an error indicator,

we use the quantity ηNK defined by

ηNK =
(∣∣∣∣∣∣ε∇ũNhN − ỹ∗N ∣∣∣∣∣∣2∗(K)

+ 2DF,N,K(ũNhN ,−Λ∗ỹ∗N )
) 1

2
. (4.191)
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where DF,N,K(ũNhN ,−Λ∗ỹ∗N ) is defined by (4.139) but with integration taking place only on

elements K ∈ Ωions. From (4.51) we have the following upper bounds for the error in energy

and combined energy norm∣∣∣∣∣∣∇(ũNhN − ũ
N )
∣∣∣∣∣∣ ≤ √2M⊕,N (ũNhN , ỹ

∗
N )∣∣∣∣∣∣(ũNhN − ũN , ỹ∗N − p̃∗N)∣∣∣∣∣∣CEN

≤
√

2M⊕,N (ũNhN , ỹ
∗
N ).

We will denote by ũNi the finite element approximations of ũN and by ỹ∗N,i the approximations

of the flux p̃∗N at mesh refinement level i, i = 0, 1, 2, ..., p̄, where p̄ = 6. By JNhL : H1
0 (Ω)→

R ∪ {+∞} we denote the functional defined by

JNhL(v) :=


∫
Ω

[ ε
2
|∇v|2 + k

2
cosh(v +G+ uLhL)

]
dx, if k

2
cosh(v +G+ uLhL) ∈ L1(Ω),

+∞, if k
2

cosh(v +G+ uLhL) /∈ L1(Ω).

(4.192)

The unique minimizer of JNhL over H1
0 (Ω) is the solution ũN to the problem (4.134) with

uLhL in it. The subscript hL in the notation for the functional JNhL corresponds to the mesh

refinement level on which the approximation uLhL of uL is computed. Since in this case we

take uL2 as an approximation of uL, we are interested in the values of JN2 (ũNi ) on levels

i = 0, 1, ..., p̄ in the adaptive solution for ũN (see Table 4.14).

Table 4.14: Example 1. System 1.

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level #elements ‖ũNi ‖0
∣∣∣∣∣∣∇ũNi ∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣ε∇ũNi − ỹ∗N,i∣∣∣∣∣∣∣∣∣∗ √

2M⊕,N (ũNi , ỹ
∗
N,i) JN2 (ũNi )

i

0 667 008 927.667 324.330 155.122 192.502 259 017 030.56

1 1 315 573 928.279 320.425 70.1561 108.592 259 013 323.94

2 5 800 985 928.384 321.655 39.3835 61.8732 259 012 091.45

3 9 514 417 928.394 321.675 33.1119 52.9724 259 011 967.30

4 13 957 123 928.399 321.741 29.4864 47.2872 259 011 894.50

5 18 286 791 928.401 321.782 26.7945 43.4640 259 011 849.22

6 22 883 680 928.403 321.807 24.8527 40.5678 259 011 818.93

As for the part uN we can define the following guaranteed lower and upper bounds on the

relative errors. For any i, j, k, s ∈ {0, 1, . . . , p̄} we have∣∣∣∣∣∣∇(ũNi − ũN )
∣∣∣∣∣∣

|||∇ũN |||
≤

√
2M⊕,N (ũNi , ỹ

∗
N,k)∣∣∣∣∣∣∣∣∣∇ũNj ∣∣∣∣∣∣∣∣∣−√2M⊕,N (ũNj , ỹ

∗
N,s)

=: RENN,Up
i,j,k,s (4.193)
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By using the main error identity (4.51), the lower bound (4.54) for the combined energy

norm, and the estimates∣∣∣∣∣∣(ũNi , ỹ∗N,s)∣∣∣∣∣∣CEN
−
√

2M⊕,N
(
ũNi , ỹ

∗
N,s

)
≤
∣∣∣∣∣∣(ũN , p̃∗N )

∣∣∣∣∣∣
CEN

≤
∣∣∣∣∣∣(ũNi , ỹ∗N,s)∣∣∣∣∣∣CEN

+
√

2M⊕,N
(
ũNi , ỹ

∗
N,s

)
for all i, s = 0, 1, ..., p̄, we can define the following guaranteed lower and upper bounds for the

relative error in combined energy norm:∣∣∣∣∣∣∣∣∣(ũNi − ũN , ỹ∗N,i − p̃∗N)∣∣∣∣∣∣∣∣∣
CEN∣∣∣∣∣∣(ũN , p̃∗N)∣∣∣∣∣∣CEN

≤

√
2M⊕,N

(
ũNi , ỹ

∗
N,i

)
∣∣∣∣∣∣∣∣∣(ũNj , ỹ∗N,s)∣∣∣∣∣∣∣∣∣

CEN
−
√

2M⊕,N

(
ũNj , ỹ

∗
N,s

) := RCENN,Up
i,j,s ,

RCENN,Low
i,j,s :=

1√
2

∣∣∣∣∣∣∣∣∣ε∇ũNi − ỹ∗N,i∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(ũNj , ỹ∗N,s)∣∣∣∣∣∣∣∣∣
CEN

+
√

2M⊕,N

(
ũNj , ỹ

∗
N,s

) ≤
∣∣∣∣∣∣∣∣∣(ũNi − ũN , ỹ∗N,i − p̃∗N)∣∣∣∣∣∣∣∣∣

CEN∣∣∣∣∣∣(ũN , p̃∗N)∣∣∣∣∣∣CEN

.

The sharpest values for RENN,Up
i,j,k,s, RCENN,Up

i,j,s , and RCENN,Low
i,j,s at each level i are expected

to be obtained when j = p̄, k = p̄, s = p̄ (assuming that we do not have another better

approximation ỹ∗N for the flux p̃∗N ). The practical estimation PN,CEN
rel,i for the relative error in

combined energy norm is given by

PN,CEN
rel,i :=

∣∣∣∣∣∣∣∣∣ε∇ũNi − ỹ∗N,i∣∣∣∣∣∣∣∣∣∗√
2
∣∣∣∣∣∣∇ũNi ∣∣∣∣∣∣ for all i = 0, 1, ..., p̄. (4.194)

We also introduce a practical upper bound

PRENN,Up
i,j :=

∣∣∣∣∣∣∣∣∣ε∇ũNi − ỹ∗N,j∣∣∣∣∣∣∣∣∣∗∣∣∣∣∣∣∇ũNi ∣∣∣∣∣∣ for all i, j = 0, 1, ..., p̄, (4.195)

for the relative error in energy norm which is based on the relation∣∣∣∣∣∣∇(ũNi − ũN )
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(ũNi − ũN , ỹ∗N,i − p̃∗N)∣∣∣∣∣∣CEN

≈
∣∣∣∣∣∣ε∇ũNi − ỹ∗N,i∣∣∣∣∣∣∗

and is useful when it is suspected that the guaranteed upper bound for the relative error

overestimates the real error. The above introduced bounds on the relative errors are presented

in Table 4.15 and Table 4.16.

Finally, according to (4.146) the overall error in the regular component u will be

|||∇(uh − u)||| ≤ 2M⊕,L(uLhL ,y
∗
L) +

√
2M⊕,N (ũNhN , ỹ

∗
N )

= 2M⊕,L(uL2 ,y
∗
L,2) +

√
2M⊕,N (ũN6 , ỹ

∗
N,6) = 2× 968.37 + 40.57 = 1977.31

For comparison, the energy norm of the approximate regular component uh = uL2 + ũN6
is |||∇uh||| = 16276.2. This means that the relative error in energy norm is no more than

approximately 1977.31/16276.2 = 12.15%.
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Table 4.15: Example 1. System 1.

System 1: k
2

ions = 10 Å−2, εm = 2, εs = 80

level #elements PRENN,Up
i,i [%] RENN,Up

i,i,i,i[%] RCENN,Low
i,i,i [%] PN,CEN

rel,i [%] RCENN,Up
i,i,i [%]

i

0 667 008 47.828 146.02 16.227 33.819 66.164

1 1 315 573 21.894 51.263 8.7551 15.481 31.076

2 5 800 985 12.243 23.817 5.3764 8.6578 15.695

3 9 514 417 10.293 19.714 4.6026 7.2786 13.152

4 13 957 123 9.1646 17.229 4.1455 6.4803 11.579

5 18 286 791 8.3269 15.616 3.7964 5.8880 10.546

6 22 883 680 7.7228 14.424 3.5422 5.4608 9.7758

Table 4.16: Example 1. System 1.

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level #elements RENN,Up
i,p̄,p̄,p̄ RCENN,Low

i,p̄,p̄ RCENN,Up
i,p̄,p̄

∣∣∣∣∣∣∣∣∣ε∇ũNi − ỹ∗N,p̄∣∣∣∣∣∣∣∣∣∗ √
2M⊕,N (ũNi , ỹ

∗
N,p̄)

i [%] [%] [%]

0 667 008 40.974 22.129 46.434 89.292 115.23

1 1 315 573 24.311 10.008 26.194 51.983 68.373

2 5 800 985 16.737 5.6183 14.924 32.512 47.071

3 9 514 417 15.855 4.7236 12.777 29.023 44.591

4 13 957 123 15.269 4.2064 11.406 27.033 42.943

5 18 286 791 14.841 3.8224 10.484 25.734 41.741

6 22 883 680 14.424 3.5422 9.7758 24.852 40.567

Example 2. System 1 (Alexa 488 and Alexa 594), 2-term splitting with additional

decomposition into uL and uN recomputed with uL4

Here, we recompute an approximation uh of the regular component u from Example 1. This

time we take uL4 as an approximation of uL and solve with it for ũN . For uL4 , we have

M⊕,L(uL4 ,y
∗
L,4) = 653.047 and RENL,Up

4,4,4,4 = 4.2489%. The final level is p̄ = 3.

In Table 4.19, it can be seen that the convergence of ũNhN to ũN is faster compared to the

case when we used a worse approximation for uL. Finally, according to (4.146) the overall

error in the regular component u can be estimated by

|||∇(uh − u)||| ≤ 2M⊕,L(uLhL ,y
∗
L) +

√
2M⊕,N (ũNhN , ỹ

∗
N )

= 2M⊕,L(uL4 ,y
∗
L,4) +

√
2M⊕,N (ũN3 , ỹ

∗
N,3)

= 2× 653.047 + 35.784 = 1341.878.

For comparison, the energy norm of the approximate regular component uh = uL4 + ũN3 is

|||∇uh||| = 16298.534. This means that the relative error in energy norm is no more than
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Table 4.17: Example 2. System 1 recomputed with uL4 .

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level i #elements ‖ũNi ‖0
∣∣∣∣∣∣∇ũNi ∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣ε∇ũNi − ỹ∗N,i∣∣∣∣∣∣∣∣∣∗ √

2M⊕,N (ũNi , ỹ
∗
N,i) JN4 (ũNi )

0 667 008 880.446 314.647 128.067 142.404 259 007 595.76

1 1 389 691 880.942 309.468 39.1633 60.4019 259 004 495.90

2 5 706 468 880.989 309.166 24.0717 40.2461 259 004 177.33

3 8 606 657 880.992 309.138 20.5852 35.7841 259 004 134.61

Table 4.18: Example 2. System 1 recomputed with uL4 .

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level i #elements PRENN,Up
i,i [%] RENN,Up

i,i,i,i [%] RCENN,Low
i,i,i [%] PN,CEN

rel,i [%] RCENN,Up
i,i,i [%]

0 667 008 40.702 82.676 14.972 28.780 44.499

1 1 389 691 12.655 24.251 5.5423 8.9484 15.943

2 5 706 468 7.7860 14.965 3.5610 5.5055 10.125

3 8 606 657 6.6589 13.090 3.0751 4.7085 8.9065

Table 4.19: Example 2. System 1 recomputed with uL4 .

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level #elements RENN,Up
i,p̄,p̄,p̄ RCENN,Low

i,p̄,p̄ RCENN,Up
i,p̄,p̄

∣∣∣∣∣∣∣∣∣ε∇ũNi − ỹ∗N,p̄∣∣∣∣∣∣∣∣∣∗ √
2M⊕,N (ũNi , ỹ

∗
N,p̄)

i [%] [%] [%]

0 667 008 33.507 19.131 35.443 73.624 91.593

1 1 389 691 16.777 5.8504 15.033 31.708 45.861

2 5 706 468 13.637 3.5959 10.017 22.183 37.279

3 8 606 657 13.090 3.0751 8.9065 20.585 35.784

approximately 1341.878/16298.534 = 8.23%.

Example 3: System 1 (Alexa 488 and Alexa 594) recomputed with 2-term split-

ting without additional decomposition into uL and uN

Here we recompute an approximation uh of the regular component u from Example 1 and

Example 2 (all parameters are the same) by solving directly problem (3.50) where the non-

homogeneous Dirichlet boundary condition is given by g −G = −G on ∂Ω. We apply the

procedure described in Section 4.3.1 on p. 144 (see also Section 4.1.4 for the derivation

of the error estimates in the case of nonhomogeneous Dirichlet boundary condition). We
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denote the approximation uh of u on mesh refinement level i by ui. Similarly, y∗i denotes

the approximation y∗ of p∗ = ε∇u at mesh refinement level i. The last refinement level is

p̄ = 11. To find y∗i we apply the flux reconstruction described in Remark 4.22. We define

the quantities PRENUp
i,j , RENUp

i,j,k,s, RCENLow
i,j,s , PCEN

rel,i , RCENUp
i,j,s in a similar fashion as for

the component ũN in the 2-term splitting with the additional decomposition into uL and uN .

The rest of the notation is the same as in Section 4.3.1 and Section 4.1.4.

This time we obtain a guaranteed upper bound on the relative error in the regular component

u of 2.53% (see 4-th column in Table 4.21) compared to around 8.23% when additional

decomposition into uL and uN is applied. Moreover, the minorant M	(ui, up̄) and the

majorant
√

2M⊕(ui,y
∗
i ) provide tight bounds on the primal part of the error J(ui)− J(u) =

M2
⊕(ui,p

∗) (columns 5 and 7 in Table 4.20).

Table 4.20: Example 3. System 1 recomputed with 2-term splitting without additional

decomposition into uL and uN . Here, M	(ui, up̄) is the minorant for the primal part of the

error defined by (4.120) and
√

2M⊕(ui,y
∗
i ) is an upper bound both for the primal part of

the error and for the energy norm of the error.

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level #elements ‖ui‖0 |||∇ui|||
√

2M	(ui, up̄) |||ε∇ui − y∗i |||∗
√

2M⊕(ui,y
∗
i ) J(ui)

i

0 667 008 64847.173 16446.255 3867.60 4881.16 5067.89 137 987 860.82

1 1 619 690 64853.944 16282.891 1384.92 1585.69 1594.16 131 467 694.44

2 3 624 678 64855.019 16278.101 933.867 1104.89 1107.65 130 944 733.77

3 6 830 130 64855.176 16283.830 681.347 850.948 853.001 130 740 796.37

4 9 861 226 64855.249 16284.985 559.190 729.952 731.163 130 665 026.35

5 12 982 453 64855.305 16285.379 476.068 653.787 654.706 130 622 000.18

6 16 420 992 64855.346 16285.807 409.548 597.282 598.027 130 592 544.59

7 20 636 057 64855.370 16286.127 349.061 550.313 550.920 130 569 601.53

8 25 937 013 64855.382 16286.388 289.230 508.493 508.983 130 550 506.67

9 32 602 138 64855.404 16286.599 226.473 470.277 470.673 130 534 324.62

10 40 972 275 64855.430 16286.773 153.787 434.999 435.316 130 520 504.81

11 51 409 492 64855.446 16286.923 - 402.449 402.703 130 508 679.46
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Figure 4.18: Convergence of the majorant
√

2M⊕(ui,y
∗
i ) under adaptive mesh refinement

with the error indicator ‖
√

2η‖L2(Oi), where η is defined by (4.108) on p. 133 and Oi is the

patch of elements around the vertex Vi (see (4.84) on p. 122 for details on the adaptive

procedure using the software mmg3d).

Table 4.21: Example 3. System 1 recomputed with 2-term splitting without additional

decomposition into uL and uN .

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level #elements PRENUp
i,i [%] RENUp

i,i,i,i[%] RCENLow
i,i,i [%] PCEN

rel,i [%] RCENUp
i,i,i[%]

i

0 667 008 29.67 44.539 11.965 20.986 27.088

1 1 619 690 9.738 10.852 4.5437 6.8860 7.4187

2 3 624 678 6.787 7.3014 3.2344 4.7995 5.0486

3 6 830 130 5.225 5.5279 2.5178 3.6951 3.8437

4 9 861 226 4.482 4.7008 2.1711 3.1695 3.2771

5 12 982 453 4.014 4.1886 1.9510 2.8387 2.9246

6 16 420 992 3.667 3.8120 1.7867 2.5933 2.6648

7 20 636 057 3.379 3.5011 1.6495 2.3893 2.4498

8 25 937 013 3.122 3.2260 1.5269 2.2077 2.2592

9 32 602 138 2.887 2.9759 1.4145 2.0417 2.0856

10 40 972 275 2.670 2.7462 1.3104 1.8885 1.9260

11 51 409 492 2.470 2.5352 1.2140 1.7472 1.7791
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Example 4: System 1 (Alexa 488 and Alexa 594) recomputed with 3-term split-

ting without additional decomposition into uL and uN

In this example, we solve the PBE for the system consisting of the two chromophores Alexa

488 and Alexa 594 but this time we utilize the 3-term splitting without further decomposition

of the regular component u in uL + uN . The parameters are the same as in the first three

examples, i.e., εm = 2, εs = 80, Is ≈ 1.178M , which corresponds to k
2
ions = 10 Å−2 at

T = 298K. In this example, ΩIEL = ∅ and thus Ωs ≡ Ωions, Ωm ∪ ΩIEL = Ωm.

Finding the harmonic component uH

According to the 3-term splitting, we first have to obtain a conforming approximation ũH

of uH by solving problem (3.29). We solve this problem on a sequence of adapted meshes

using the error majornat (4.152) and the derived from it error indicator. To reconstruct the

numerical flux ∇ũH and obtain T (∇ũH) we can either minimize the majorant in (4.152) (the

right-hand side of this inequality) over a subspace of H(div; Ωm), like RT0, or apply some

patchwise flux reconstruction technique. We notice that minimization of the majorant over

RT0 defined on the same mesh and applying the patchwise equilibrated flux reconstruction

from [30,31] yields practically the same results. Also, notice that when div
(
T
(
∇ũH

))
= 0

the right-hand side of (4.152) coincides with the majorant M⊕,H
(
ũH , T (∇ũH)

)
in (4.154).

We have computed ũH on a final mesh with 32 457 251 tetrahedrons. The corresponding value

for the majorant in (4.154) is M⊕,H
(
ũH , T (∇ũH)

)
= 18.410, where T (∇ũH) is obtained by

the flux reconstruction in [30,31] and thus div
(
T (∇ũH)

)
= 0. Since in this case

‖∇
(
ũH − uH

)
‖L2(Ωm)≤M⊕,H

(
ũH , T (∇ũH)

)
= 18.410,

and ‖∇ũH‖L2(Ωm)= 703.092, we obtain a guaranteed upper bound on the relative error in

H1(Ωm) seminorm

‖∇
(
ũH − uH

)
‖L2(Ωm)

‖∇uH‖L2(Ωm)
≤

M⊕,H
(
ũH , T (∇ũH)

)
‖∇ũH‖L2(Ωm)−M⊕,H (ũH , T (∇ũH))

= 2.69 %.

Finding the regular component ũ

Now, we find a conforming approximation ũh of ũ, the exact solution of problem (4.175),

by adaptively solving the Galerkin problem (4.178) (with ũg ≡ 0). By ũi and ỹ∗i we denote

the finite element approximations at mesh refinement level i to ũ and p̃∗, respectively. Here

p̄ = 18. In order to find a good approximation ỹ∗ of the exact flux p̃∗ having the form

ỹ∗ = fG̃3
+ ỹ∗0 with ỹ∗0 ∈ H(div; Ω) and div ỹ∗0 = 0 in Ωm ∪ΩIEL we apply the patchwise flux

reconstruction described in Remark 4.28.

We define the quantities PRENUp
i,j , RENUp

i,j,k,s, RCENLow
i,j,s , PCEN

rel,i , RCENUp
i,j,s in a similar fashion

as for the component ũN in the 2-term splitting. We should note that the bounds on the error

in energy norm obtained by the majorant
√

2M⊕(ũi, ỹ
∗
i ) in Table 4.22 are rather conservative

and they could be improved by applying a flux reconstruction involving a higher order
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Raviart-Thomas spaces, like RT1. To obtain an idea of how much the error is overestimated,

we can compare the values
√

2M⊕(ũ0, ỹ
∗
p̄) and

√
2M⊕(ũ1, ỹ

∗
p̄) of the majorant, evaluated with

the last available approximation ỹ∗p̄ of the exact flux p̃∗ to the values
√

2M⊕(ũ0, ỹ
∗
0) and√

2M⊕(ũ1, ỹ
∗
1) evaluated with the current ỹ∗0 and ỹ∗1 at the first two meshes. We see that the

overestimation is between around 125.21/70.117 ≈ 1.785 and 76.024/45.312 ≈ 1.677 times.

This means that it is safe to assume that the real error |||∇(ũ− ũ18)||| at the last level p̄ = 18

is no more than approximately
√

2M⊕(ũp̄, ỹ
∗
p̄)/1.785 ≈ 14.765. On the other hand, owing to

(4.61), we can define a minorant for the primal part M2
⊕ (ũi, p̃

∗) = J̃(ũi)− J̃(ũ) of the error,

where J̃ : H1
0 (Ω)→ R ∪ {+∞} is defined by

J̃(v) :=


∫
Ω

[ ε
2
|∇v|2 + k

2
cosh(v)− fG̃3

· ∇v
]
dx, if k

2
cosh(v) ∈ L1(Ω),

+∞, if k
2

cosh(v) /∈ L1(Ω),

(4.196)

For any w ∈ H1
0 (Ω) we have

2M2
⊕(ũi, p̃

∗) = |||∇(ũi − ũ)|||2 + 2DF (ũi,−Λ∗p̃∗)

= 2
(
J̃(ũi)− J̃(ũ)

)
≥ 2

(
J̃(ũi)− J̃(w)

)
=: 2M2

	(ũi, w).
(4.197)

In practice, we always take for w the last available approximation ũp̄. Moreover, from (4.49)

we know that the nonlinear measure 2DF (ũi,−Λ∗p̃∗) h ‖ũi− ũ‖2L2(Ωions)
. Therefore this term

converges faster than |||∇(ũi − ũ)|||2 (see Figure 4.3 on p. 115) and the minorant
√

2M	(ũi, w)

is approximately a lower bound also for the error in energy norm. From Table 4.24 we see

that the primal part of the error
√

2M⊕(ũh, p̃
∗) is between 64.949 and 70.117 on the initial

mesh, and between 36.827 and 45.312 on the first adapted mesh. With this in mind, we

obtain an overall guaranteed bound on the error in energy norm for the regular component u

by using (4.181):

|||∇(u− ũ18)||| ≤
√
εmM⊕,H

(
ũH , T

(
∇ũH

))
+
√

2M⊕(ũ18, ỹ
∗
18)

=
√

2× 18.410 + 26.356 = 52.391.

For comparison, the energy norm of ũ18 is equal to 300.05 (see Table 4.22).
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Table 4.22: Example 4. System 1 recomputed with 3-term splitting without additional

decomposition into uL and uN .

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level i #elements ‖ũi‖0 |||∇ũi||| |||ε∇ũi − ỹ∗i |||∗
√

2M⊕(ũi, ỹ
∗
i ) J̃(ũi)

0 667 008 58.089 295.42 124.22 125.21 258 884 684.61

1 1 448 301 58.857 298.20 75.479 76.024 258 883 253.51

2 2 345 138 58.909 298.76 62.856 63.370 258 883 072.64

3 3 170 889 58.957 299.09 56.527 56.987 258 882 952.86

4 3 964 923 58.987 299.26 52.422 52.846 258 882 884.40

5 4 805 923 59.008 299.39 49.288 49.683 258 882 836.09

6 5 770 299 59.025 299.48 46.644 47.016 258 882 798.37

7 6 920 812 59.039 299.56 44.234 44.585 258 882 765.86

8 8 330 105 59.049 299.64 41.993 42.322 258 882 736.73

9 10 054 979 59.059 299.70 39.878 40.186 258 882 710.79

10 12 150 021 59.067 299.76 37.882 38.172 258 882 687.45

11 14 681 622 59.075 299.81 36.002 36.274 258 882 666.41

12 17 712 647 59.082 299.86 34.260 34.514 258 882 647.95

13 21 324 443 59.088 299.90 32.645 32.883 258 882 631.77

14 25 599 530 59.095 299.94 31.152 31.376 258 882 617.49

15 30 665 444 59.100 299.97 29.770 29.980 258 882 604.93

16 36 657 462 59.105 300.00 28.484 28.681 258 882 593.86

17 43 733 890 59.109 300.03 27.292 27.477 258 882 584.08

18 52 088 245 59.112 300.05 26.182 26.356 258 882 575.36

Figure 4.19: On the left: cross section of the mesh with the plane y = 3 Å at level i = 1 in the

mesh refinement procedure for finding the component ũ in Example 4. The molecule region

Ωm is marked red (Alexa 594). On the right: error indicator as a piecewise constant function.
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Table 4.23: Example 4. System 1 recomputed with 3-term splitting without additional

decomposition into uL and uN .

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level #elements PRENUp
i,i [%] RENUp

i,i,i,i[%] RCENLow
i,i,i [%] PCEN

rel,i [%] RCENUp
i,i,i[%]

i

0 667 008 42.04 73.56 15.63 29.73 40.23

1 1 448 301 25.31 34.21 10.57 17.89 21.56

2 2 345 138 21.03 26.92 9.057 14.87 17.41

3 3 170 889 18.89 23.53 8.260 13.36 15.40

4 3 964 923 17.51 21.44 7.732 12.38 14.14

5 4 805 923 16.46 19.89 7.321 11.64 13.19

6 5 770 299 15.57 18.62 6.970 11.01 12.40

7 6 920 812 14.76 17.48 6.646 10.44 11.68

8 8 330 105 14.01 16.44 6.341 9.909 11.03

9 10 054 979 13.30 15.48 6.051 9.408 10.42

10 12 150 021 12.63 14.59 5.774 8.936 9.850

11 14 681 622 12.00 13.76 5.512 8.491 9.317

12 17 712 647 11.42 13.00 5.266 8.078 8.827

13 21 324 443 10.88 12.31 5.036 7.696 8.377

14 25 599 530 10.38 11.68 4.822 7.344 7.963

15 30 665 444 9.924 11.10 4.623 7.017 7.583

16 36 657 462 9.494 10.57 4.437 6.713 7.232

17 43 733 890 9.096 10.08 4.263 6.432 6.908

18 52 088 245 8.725 9.630 4.100 6.170 6.608

Table 4.24: Example 4. System 1 recomputed with 3-term splitting without additional

decomposition into uL and uN .

System 1: k
2
ions = 10 Å−2, εm = 2, εs = 80

level RENUp
i,p̄,p̄,p̄ RCENLow

i,p̄,p̄ RCENUp
i,p̄,p̄

√
2M	(ũi, ũp̄)

∣∣∣∣∣∣ε∇ũi − ỹ∗p̄∣∣∣∣∣∣∗ √
2M⊕(ũi, ỹ

∗
p̄)

i [%] [%] [%]

0 25.61 19.45 31.39 64.949 69.784 70.117

1 16.55 11.82 19.06 36.827 45.191 45.312

2 15.02 9.843 15.88 31.536 41.005 41.131

3 13.92 8.852 14.28 27.477 37.973 38.103
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Figure 4.20: Full potential surface map with the 3-term splitting (without additional decom-

position into uL + uN ) for the system Alexa 488 and Alexa 594 in units kBT/e0. Blue color

indicates a positive potential (values> 2.5kBT/e0) and red color indicates negative potential

(values < −2.5KBT/e0).
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Example 5: System 2 (Insulin protein, PDB ID: 1RWE), 3-term splitting without

additional decomposition into uL and uN

For the third application, we consider the insulin protein with the crystal structure from

Protein Data Bank (ID code 1RWE). This is a small protein that functions in the hormonal

control of metabolism [184]. Because of its importance in the treatment of diabetes mellitus,

it has attracted attention as a target of protein engineering. In recent years, insulin analogues

have gained widespread clinical acceptance [42]. Despite such empirical success, the binding of

insulin to the insulin receptor still raises many questions. Electrostatic interactions between

molecules might contribute significantly to the binding mechanism. The Poisson-Boltzmann

equation can be used to calculate the electrostatic surface of insulin, which could help to

determine the binding sites. Moreover, the distribution of the electrostatic potential around

the protein can be used in simulations of binding dynamics.

Here, the CHARMM-GUI web server was employed to add hydrogen atoms to the system. The

total number of atoms (with the added hydrogens) is 1590. The charges for the calculations

were taken from the psf file created by the CHARMM-GUI. The number of nonzero charges

that define the simple Coulomb potential G in (3.11) is 1574 and the total charge of this

protein is equal to −4 e0. In this example, the parameters are εm = 20, εs = 80, Is ≈ 1.178M

which corresponds to k
2
ions = 10 Å−2 at T = 298K. Again, there is no ion exclusion layer,

i.e., ΩIEL = ∅ and Ωs ≡ Ωions. The initial surface mesh is created by NanoShaper [61] with

GridScale=2.

Finding the harmonic component uH

As in Example 4, we first have to obtain a conforming approximation ũH of uH by solving

problem (3.29). We solve this problem on a sequence of adapted meshes using the error

majornat (4.152) and the derived from it error indicator. To reconstruct the numerical flux

∇ũH and obtain T (∇ũH) we apply the equilibrated patchwise flux reconstruction technique

[30,31] with RT0 elements. Therefore, we have div
(
T
(
∇ũH

))
= 0. We have computed ũH

on a final mesh with 31 971 835 tetrahedrons. The corresponding value for the majorant

in (4.154) is M⊕,H
(
ũH , T

(
∇ũH

))
= 9.178 and for comparison ‖∇ũH‖L2(Ωm)= 149.680. We

obtain a guaranteed upper bound on the relative error in the H1(Ωm) seminorm

‖∇
(
ũH − uH

)
‖L2(Ωm)

‖∇uH‖L2(Ωm)
≤

M⊕,H
(
ũH , T

(
∇ũH

))
‖∇ũH‖L2(Ωm)−M⊕,H (ũH , T (∇ũH))

= 6.53 %.

Finding the regular component ũ

Here, we find a conforming approximation ũh of ũ, the exact solution of problem (4.175), by

adaptively solving the Galerkin problem (4.178). Again, by ũi and ỹ∗i we denote the finite

element approximations at mesh refinement level i to ũ and p̃∗, respectively. Here p̄ = 13. In

order to find a good approximation ỹ∗ of the exact flux p̃∗ having the form ỹ∗ = fG̃3
+ ỹ∗0

with ỹ∗0 ∈ H(div; Ω) and div ỹ∗0 = 0 in Ωm ∪ΩIEL we apply the patchwise flux reconstruction
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described in Remark 4.28.

As in Example 4, the bounds on the error in energy norm obtained by the majorant√
2M⊕(ũi, ỹ

∗
i ) in Table 4.25 could be improved by applying a flux reconstruction involving a

higher order Raviart-Thomas spaces, like RT1. To obtain an idea of how much the error is

overestimated, we compare the values
√

2M⊕(ũ0, ỹ
∗
p̄) and

√
2M⊕(ũ1, ỹ

∗
p̄) of the majorant, eval-

uated with the last available approximation ỹ∗p̄ of the exact flux p̃∗ to the values
√

2M⊕(ũ0, ỹ
∗
0)

and
√

2M⊕(ũ1, ỹ
∗
1) evaluated with the current ỹ∗0 and ỹ∗1 at the first two meshes. We see

that the overestimation is between around 199.91/163.38 ≈ 1.223 and 134.64/112.01 ≈ 1.202

times. This means that it is safe to assume that the real error |||∇(ũ− ũ13)||| at the last level

p̄ = 13 is no more than approximately
√

2M⊕(ũp̄, ỹ
∗
p̄)/1.223 ≈ 46.78. Moreover, from Table

4.27 we see that the primal part of the error
√

2M⊕(ũh, p̃
∗) is between 152.95 and 163.38 on

the initial mesh, and between 96.074 and 112.01 on the first adapted mesh. With this in

mind, we obtain an overall guaranteed bound on the error in energy norm for the regular

component u by using (4.181):

|||∇(u− ũ13)||| ≤
√
εmM⊕,H

(
ũH , T

(
∇ũH

))
+
√

2M⊕(ũ13, ỹ
∗
13)

=
√

20× 9.178 + 57.210 = 93.436.

For comparison, the energy norm of ũ13 is equal to 559.21 (see Table 4.25).

Figure 4.21: Cross section of the mesh with the plane y = 15 Å at level i = 2 in the mesh

refinement procedure for finding the regular component ũ in Example 5. On the left, the

molecule region Ωm is marked red. On the right, error indicator as a piecewise constant

function.
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Table 4.25: Example 5. System 2.

System 2: k
2
ions = 10 Å−2, εm = 20, εs = 80

level i #elements ‖ũi‖0 |||∇ũi||| |||ε∇ũi − ỹ∗i |||∗
√

2M⊕(ũi, ỹ
∗
i ) J̃(ũi)

0 724 737 100.70 541.07 197.54 199.91 5 393 609 145.91

1 1 523 717 101.76 551.97 133.27 134.64 5 393 602 063.00

2 2 325 989 101.92 554.50 113.47 114.69 5 393 600 517.46

3 3 082 380 102.02 555.68 102.78 103.86 5 393 599 760.05

4 3 880 178 102.09 556.42 95.072 96.062 5 393 599 280.10

5 4 785 000 102.14 556.97 88.861 89.780 5 393 598 923.77

6 5 850 441 102.19 557.41 83.527 84.386 5 393 598 635.46

7 7 140 525 102.22 557.79 78.690 79.493 5 393 598 388.08

8 8 713 471 102.25 558.11 74.286 75.037 5 393 598 175.65

9 10 625 629 102.28 558.39 70.215 70.917 5 393 597 989.90

10 12 948 272 102.31 558.63 66.431 67.087 5 393 597 826.84

11 15 764 841 102.33 558.85 62.913 63.526 5 393 597 682.94

12 19 162 081 102.35 559.04 59.670 60.242 5 393 597 557.40

13 23 234 788 102.37 559.21 56.676 57.210 5 393 597 447.87

Table 4.26: Example 5. System 2.

System 2: k
2
ions = 10 Å−2, εm = 20, εs = 80

level #elements PRENUp
i,i [%] RENUp

i,i,i,i[%] RCENLow
i,i,i [%] PCEN

rel,i [%] RCENUp
i,i,i[%]

i

0 724 737 36.50 58.59 14.09 25.81 33.79

1 1 523 717 24.14 32.26 10.16 17.07 20.46

2 2 325 989 20.46 26.07 8.842 14.47 16.91

3 3 082 380 18.49 22.98 8.105 13.07 15.07

4 3 880 178 17.08 20.86 7.562 12.08 13.78

5 4 785 000 15.95 19.21 7.118 11.28 12.76

6 5 850 441 14.98 17.83 6.732 10.59 11.91

7 7 140 525 14.10 16.62 6.378 9.975 11.14

8 8 713 471 13.31 15.53 6.051 9.411 10.45

9 10 625 629 12.57 14.54 5.747 8.891 9.822

10 12 948 272 11.89 13.64 5.461 8.408 9.242

11 15 764 841 11.25 12.82 5.194 7.960 8.709

12 19 162 081 10.67 12.07 4.945 7.547 8.221

13 23 234 788 10.13 11.39 4.713 7.166 7.775
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Table 4.27: Example 5. System 2.

System 2: k
2
ions = 10 Å−2, εm = 20, εs = 80

level RENUp
i,p̄,p̄,p̄ RCENLow

i,p̄,p̄ RCENUp
i,p̄,p̄

√
2M	(ũi, ũp̄)

∣∣∣∣∣∣ε∇ũi − ỹ∗p̄∣∣∣∣∣∣∗ √
2M⊕(ũi, ỹ

∗
p̄)

i [%] [%] [%]

0 32.54 16.43 27.17 152.95 162.83 163.38

1 22.31 11.08 18.29 96.074 111.67 112.01

2 19.36 9.438 15.58 78.352 96.842 97.196

3 17.73 8.548 14.11 68.002 88.649 89.017

Figure 4.22: Full potential surface map of the insulin protein (PDB ID: 1RWE) in units

kBT/e0. Blue color indicates a positive potential (values> 2.5kBT/e0) and red color indicates

negative potential (values < −2.5KBT/e0).

Example 6: System 3 (SecYEG protein membrane channel with ion exclusion

layer), 3-term splitting without additional decomposition into uL and uN

In this example, the computations are performed on the SecYEG membrane protein channel

with an open plug and with a signal sequence in the lateral gate. The channel is located in

the plasma membrane of bacteria and provides a lateral exit into the bilayer for membrane

proteins, while simultaneously offering a pathway into the aqueous interior for secreted

proteins. The molecular mechanisms that determine the functionality of the channel for these

two pathways and driving forces of the translocation are not comprehensively understood.

Important contributions to both may come from the electrostatic interactions between the

SecYEG and translocated peptide.

The pdb file with the atoms positions is taken from a frame in a molecular dynamics
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simulation which includes 46 373 atoms, 9 563 of which belong to the SecYEG. Here, the

number of nonzero charges that define the simple Coulomb potential G in (3.11) is 7 305

and the total charge of the SecYEG protein channel is equal to 13 e0. With the help of the

open-source 3D computer graphics software Blender [18], the original membrane, which is

created by NanoShaper [61] with GridScale=2, is embedded in a big slab parallel to the

XY coordinate plane extending to the boundaries of the computational domain Ω, a cube

with dimensions 1000 × 1000 × 1000 Å3. The slab has a thickness equal to the average

thickness of the original membrane, i.e., 38.84 Å. Ion exclusion layer (ΩIEL) with a tickness

of 2 Å is added around the membrane and the SecYEG channel. The dielectric coefficient

in the channel and the membrane is εm = 4 and it is varying in the solvent region Ωs, 80

in the part of the solvent region that is outside the region between the two planes parallel

to the XY coordinate plane (dashed lines on Figure 4.23) and it decreases linearly to a

value of 4 at z = z0 = −4 Å in the solvent region. The two planes bounding the region

of varying dielectric εs(x) are at z = −17.49 Å and z = 9.49 Å, respectively. The initial

mesh has 10 287 866 tetrahedral elements and a total of p̄ = 3 mesh refinement steps are made.

Introducing the membrane region into the continuum electrostatic models extends the ap-

plicability of the PBE to treating membrane channel proteins. However, incorporating the

membrane with the embedded in it membrane channel in finite element calculations is a hard

task. Recently, an automated method to generate meshes for implicit membrane solvation

models, containing membrane transport proteins, was developed in [128]. This methodology in

conjunction with a finite element solution, but without adaptivity, of the PBE for membrane

channel proteins was presented in [109]. There, the membrane is again approximated as a

solvent-inaccessible planar low-dielectric slab, but no ion exclusion layer around the membrane

and the channel is created.

Finding the harmonic component uH

First, we compute an approximation ũH of uH . The initial triangulation of the molecular

domain Ωm consists of 4 113 729 tetrahedrons. In Table 4.28 are shown all 5 levels of adaptive

mesh refinement and the corresponding values for the norm ‖∇ũH‖L2(Ωm) as well as for the

majorant M⊕,H
(
ũHi , T

(
∇ũHi

))
and the approximate upper bound

M⊕,H(ũHi ,T(∇ũHi ))
‖∇ũHi ‖L2(Ωm)

[%] for

the relative error. Here, T
(
∇ũH

)
∈ RT0 is the patchwise reconstruction from [30,31] of the

numerical flux ∇ũH .

Finding the regular component ũ

Here, we find a conforming approximation ũh of ũ, the exact solution of problem (4.175),

by adaptively solving the Galerkin problem (4.178) with T
(
∇ũH5

)
from the last refinement

level. Again, ũi and ỹ∗i denote the finite element approximations at mesh refinement level

i to ũ and p̃∗, respectively. Again, to obtain a good approximation of p̃∗ we apply the

flux reconstruction from Remark 4.28. On the last refinement level p̄ = 3 we achieve an
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approximate upper bound for the relative error in energy norm for the approximation ũ3 of ũ

of 16.09 % (see Table 4.29). Here we note that this estimate is rather conservative. This is

evident from the fact that at level i = 0, the ratio between the upper and lower bounds on

the primal part of the error is more than 2 (see columns 4 and 5 in Table 4.29). The upper

bound, i.e., the value of the majorant
√

2M⊕(ũi, ỹ
∗
i ) can be improved if we consider a flux

reconstruction in a bigger subspace of H(div; Ω), like RT1. According to (4.181) we have

the following estimate:

|||∇(u− ũ3)||| ≤
√
εmM⊕,H

(
ũH , T

(
∇ũH

))
+
√

2M⊕(ũ3, ỹ
∗
3)

=
√

4× 116.98 + 245.72 = 479.68.

For comparison the energy norm of the approximate regular component ũ3 is |||∇ũ3||| = 1526.84.

Figure 4.23: On the left: different regions for the SecYEG channel with an ion exclusion

layer (IEL). On the right: mesh at refinement level i = 3. Molecular region is maerked in

red, whereas the ion exclusion layer is in yellow and green respectively above and below the

membrane.
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Figure 4.24: On the left: initial mesh. On the right: mesh at refinement level i = 3.

Figure 4.25: On the left: electrostatic potential ϕ in units KBT
e0

at mesh refinement level

i = 3. On the right: surface potential map in units KBT
e0

at mesh refinement level i = 3.

Table 4.28: Example 6. System 3. Here JH : H1
−G(Ωm) → R is defined by JH(v) :=∫

Ωm

1
2 |∇v|

2 dx

System 3: Is = 0.1M, k
2
ions = 0.843 Å−2, T = 300K, εm = 4, εs = 80

level # elements ‖∇ũHi ‖L2(Ωm) M⊕,H
(
ũHi , T

(
∇ũHi

))
JH
(
ũHi
) M⊕,H(ũHi ,T(∇ũHi ))

‖∇ũHi ‖L2(Ωm)

[%]

i

0 4 113 729 1662.3557 544.81 1 381 713.30 32.77

1 9 859 418 1644.8591 264.61 1 352 780.89 16.08

2 19 497 424 1642.8727 185.06 1 349 515.49 11.26

3 33 167 516 1642.0064 150.29 1 348 092.61 9.153

4 48 298 685 1641.4157 130.73 1 347 122.81 7.964

5 65 604 295 1641.0111 116.98 1 346 458.68 7.128
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Figure 4.26: Potential in units kBT/e0 along 9 segments parallel to the Z-axis and passing

through 9 uniformly distributed points in a rectangle in the XY−plane with a center at

(4.05, 0.55) and sides 2.1 Å and 2.3 Å. The rectangle is chosen in such a way that most of

the lines pass through the channel. Only the potential outside the channel is plotted, i.e.,

we have plotted only the regular component u in the 3-term splitting. The zero values of

the potential indicate that at these coordinates the particular segment crosses the interior

of the SecYEG channel (the region Ωm). In blue are the values of the potential computed

with a variable dielectric coefficient εs(x) and in red are the values computed with a constant

εs = 80.

Table 4.29: Example 6. System 3.

System 3: Is = 0.1M, k
2
ions = 0.843 Å−2, T = 300K, εm = 4, εs = 80 with ũH5

level # elements |||∇ũi|||
√

2M	(ũi, ũp̄)
√

2M⊕(ũi, ỹ
∗
i ) J̃ (ũi)

√
2M⊕(ũi,ỹ∗i )
|||∇ũi||| [%]

i

0 10 287 866 1462.18 446.41 996.39 805 687 862.26 68.14

1 18 713 711 1514.89 191.40 466.35 805 606 537.60 30.78

2 43 525 735 1524.72 80.102 293.41 805 591 428.09 19.24

p̄ = 3 79 867 368 1526.84 - 245.72 805 588 219.90 16.09



Chapter 5

Goal-oriented error estimates

The purpose of this chapter is to derive goal-oriented error estimates for the electrostatic

interaction between molecules and to apply and verify them in practice. In Section 5.1, we

start by stating the primal problem that defines the electrostatic potential in a system of

biomolecules and introduce the electrostatic interaction between molecules in terms of a goal

functional. In order to have a consistent description of the symmetric in nature electrostatic

interaction, one needs to consider the Linearized Poisson-Boltzmann equation with a homoge-

neous Dirichlet boundary condition as the primal problem governing the electrostatic potential.

In Section 5.2, we continue with a brief overview of the dual weighted residual (DWR)

method, a goal-oriented error estimation approach that involves the adjoint problem. For

regular goal functionals, which are also in L2, and primal problems with a regular right-hand

side, also in L2, we show the steps in the derivation of an error representation for the goal

quantity in terms of the unknown adjoint solution. Based on this error representation, one

can obtain effective elementwise and nodewise error indicators (5.17) and (5.18). Since these

error indicators involve the unknown solution z of the adjoint problem, we also comment on

the error that one makes when using an approximation of z.

Further, in Section 5.3, we proceed with the derivation of goal-oriented error estimates for the

electrostatic interaction between molecules. Now, the right-hand side of the primal problem

is not a regular functional, i.e., it is not representable by a locally summable function, and it

is also not in H−1(Ω). In the case of the 2-term splitting, it is a surface density, representing

the jump in the normal component of the displacement field, and in the case of no splitting

applied, it is a linear combination of delta functions. What is more, the goal functional is

also not regular and also does not belong to H−1(Ω): it is a linear combination of pointwise

evaluations, which are naturally expressed in terms of delta functions. It is clear that the steps

involved in the derivation of the error representation in the case of a regular L2 goal functional

and a primal problem with a regular L2 right-hand side become nontrivial for the problem that

we are interested in. A standard approach in such situations is to regularize the goal functional

177
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by replacing the point evaluations with averaging over small balls B(xi,1, ρ), where ρ is the

radius around the points of interest xi,1. In our case, the potential is a harmonic function in a

neighborhood of xi,1, and therefore such an averaging is equivalent to taking point evaluations.

In Section 5.3.1 we derive error estimate 1 for the electrostatic interaction due to the

reaction field part of the potential, where the goal functional is regularized by using averaging

over balls. Since the reaction field potential is in H1 and the solution z of the adjoint problem

is in H1, this is the only case in which all the steps in the derivation of the representation

of the error in the goal quantity are straight forward. We obtain one more error estimate

(error estimate 3) which involves regularization of the goal functional and which is applied

directly to the full potential. The derivation of the corresponding error representation in terms

of the adjoint solution z is based on Proposition 5.10, which is the main result in Section 5.3.3.

In general, regularizing the goal functional by means of averaging over balls, changes the goal

functional and requires the computation of integrals of discontinuous functions over balls. To

achieve a high enough accuracy, the mesh needs to be a priori adapted around the points of

interest and special integration rules have to be used. In order to avoid the conceptual short-

comings of this approach we derive two more representations of the error (error estimate 2

and error estimate 4) in the goal quantity which do not require averaging and directly

exploit the original goal functional. In Section 5.3.2 we present error estimate 2 for the

electrostatic interaction due to the reaction field potential in which the goal quantity is a

linear combination of pointwise evaluations. The main result in this section is Proposition 5.6

which is the basis for the derivation of the error representation for the goal quantity. Finally,

in Section 5.3.4, we obtain error estimate 4 for the full electrostatic interaction where the

goal functional is again formed by a linear combination of pointwise evaluations. In this case,

the derivation of the error representation in the goal quantity is based on Proposition 5.12,

which is also the main result in the section.

In Section 5.4 we present a large collection of tests performed on problems with analytically

known solutions and demonstrate the efficiency and optimality of the derived error estimates.

Additionally, we compare our results to the results obtained with the software package MEAD

(Macroscopic Electrostatics with Atomic Detail) version 2.2.8a, a well-known representative

of the solvers utilizing the finite difference method with uniform Cartesian grids. We end this

chapter with Section 5.5, where we present two practical biophysical applications related to

the computation of Fröster resonance energy transfer (FRET) and the electrostatic interaction

between chromophores in their ground state. Again, a comparison with MEAD is performed.

5.1 Electrostatic interaction between two molecules

In Chapter 4 we have derived error estimates that give guaranteed bounds on the error

measured in energy norm. These are global estimates that provide a general idea of the
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quality of a computed solution. However, in many applications one is interested not in the

solution itself over the whole computational domain, but rather in a specific quantity that

depends on the solution. Often these quantities of interest have local nature and can be

expressed in terms of a linear functional, called a goal functional. For example, if one is

interested in the average value of a solution u over a small region ω ⊂ Ω, the goal functional

is

〈L , u〉 =
1

|ω|

∫
ω

udx.

The methods of estimating the error 〈L , u− ũ〉 between the exact solution u and the approx-

imate solution ũ in terms of the goal functional often involve the so-called adjoint boundary

value problem whose right-hand side is formed by L (see, e.g., [4,144]). Convergence analysis

for adaptive finite element methods based on goal oriented error estimates can be found, for

example, in [78,104,105].

In this chapter we derive goal-oriented error estimates for the electrostatic interaction be-

tween two molecules whose interior regions are denoted by Ωm,1 and Ωm,2, and their ion

exclusion layers by ΩIEL,1 and ΩIEL,2 (see Figure 5.1). With this in mind, we can write

Ωm = Ωm,1 ∪ Ωm,2, ΩIEL = ΩIEL,1 ∪ ΩIEL,2, and Γ = Γ1 ∪ Γ2, where Γ1 and Γ2 are the

Lipschitz boundaries of Ωm,1 and Ωm,2, respectively.

In the biophysical applications that we will consider, Ωm,1 and Ωm,2 are occupied by two

chromophores (Alexa 594 and Alexa 488) and Ωs is occupied by a dielectric, such as water in

which moving ions, such as Na+ and Cl−, can be present. The presented theory and methods

apply for more general configurations with more molecular domains, Ωm,1, . . . ,Ωm,l, l ∈ N,

and they are not limited to the applications that we present. When the two molecules are very

close to each other, the regions Ωm,1 and Ωm,2 cannot be distinguished and are merged into

one connected region Ωm. Similarly, if the distance between Ωm,1 and Ωm,2 is less than 2Rion,

ΩIEL,1 and ΩIEL,2 are merged into ΩIEL, where Rion is the thickness of the ion exclusion

layer.

To model the electrostatic interaction between the two chromophores, we will use the lin-

earized Poisson-Boltzmann equation (3.9) for the potential ϕ with dimension [ϕ] =
[

charge
length

]
in which we will assume that g = 0. This ensures linearity of the problem and in particular

ensures that the electrostatic interaction does not depend on whether the potential is created

by the partial charges of one or the other chromophore.

We use the following notation. For short, by Dye I we denote Alexa 594, occupying Ωm,1, and

by Dye II we denote Alexa 488, occupying Ωm,2. Further, by E1−2 we denote the electrostatic

interaction computed by the formula E1−2 =
N2∑
i=1

ϕ1(xi,2)qi,2, where ϕ1 is the electrostatic

potential created by the partial charges of Dye I, N2 is the number of partial charges in

Dye II, qi,2 = zi,2e0, i = 1, 2, . . . , N2 are the charges of Dye II, and xi,2, i = 1, 2, . . . , N2
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Figure 5.1: Different regions in the case Is 6= 0

are thier coordinates. Similarly, E2−1 denotes the electrostatic interaction computed by

the formula E2−1 =
N1∑
i=1

ϕ2(xi,1)qi,1. Here, N1 is the number of partial charges in Dye

I, qi,1 = zi,1e0, i = 1, 2, . . . , N1 are its partial charges, and xi,1, i = 1, 2, . . . , N1 are the

corresponding coordinates. In what follows, the primal problem that we consider is the LPBE

for the potential ϕ2, [ϕ2] =
[

charge
length

]
, created by the charges in Dye II (see Figure 5.1)

−∇ · (ε∇ϕ2) + k
2
ϕ2 = 4πe0

N2∑
i=1

zi,2δxi,2 =: F2 in Ω, (5.1a)

[ϕ2]Γ = 0, (5.1b)

[ε∇ϕ2 · n]Γ = 0, (5.1c)

ϕ2 = 0 on ∂Ω (5.1d)

and the weak formulation that ϕ2 satisfies reads

ϕ2 ∈
⋂

p< d
d−1

W 1,p
0 (Ω),

∫
Ω

ε∇ϕ2 · ∇vdx+

∫
Ω

k
2
ϕ2vdx = 〈F2, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω). (5.2)

We remind that since we impose a homogeneous Dirichlet boundary condition on ∂Ω, it does

not matter whether the electrostatic interaction is computed with the potential created by

the charges of one or the other dye and there is no loss of generality by considering the LPBE

for ϕ2. Indeed, the weak formulation for ϕ1 reads

ϕ1 ∈
⋂

p< d
d−1

W 1,p
0 (Ω),

∫
Ω

ε∇ϕ1 · ∇vdx+

∫
Ω

k
2
ϕ1vdx = 〈F1, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω), (5.3)

where F1 := 4πe0

N1∑
i=1

zi,1δxi,1 . In Proposition 5.12 we will prove that we can test (5.2) with
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ϕ1 and (5.3) with ϕ2 which implies

〈F2, ϕ1〉 =

∫
Ω

ε∇ϕ2 · ∇ϕ1dx+

∫
Ω

k
2
ϕ2ϕ1dx = 〈F1, ϕ2〉. (5.4)

Therefore

4π

N2∑
i=1

qi,2ϕ1(xi,2) = 4π

N1∑
i=1

qi,1ϕ2(xi,1)

⇔ E1−2 = E2−1 =: E.

However, for the nonlinear PBE we cannot make this conclusion and in general E2−1 6= E1−2.

We further introduce the following notation. By G2 and G1, [Gi] =
[

charge
length

]
, i = 1, 2, we

denote the Coulomb potentials created by the charges in Dye II and Dye I, respectively.

G1 :=

N1∑
i=1

qi,1
εm |x− xi,1|

, G2 :=

N2∑
i=1

qi,2
εm |x− xi,2|

(5.5)

Similarly, by u2 and u1, [ui] =
[

charge
length

]
, i = 1, 2, we denote the reaction field part of the

total potential ϕ2 and ϕ1, respectively. Finally, by EG2 , Eu2 , EG1 , and Eu1 we denote the

electrostatic interaction corresponding to G2, u2, G1, u1, respectively, and they are defined

as follows:

EG2 : =

N1∑
i=1

G2(xi,1)qi,1, Eu2 : =

N1∑
i=1

u2(xi,1)qi,1

EG1 : =

N2∑
i=1

G1(xi,2)qi,2, Eu1 : =

N2∑
i=1

u1(xi,2)qi,2

(5.6)

Since ϕ1 = G1 + u1 and ϕ2 = G2 + u2, with the notation above, it holds

E2−1 = EG2 + Eu2 and E1−2 = EG1 + Eu1 . (5.7)

As we mentioned earlier, we assume that we have partial charges only in Dye II. In order to

find E2−1 we need to compute the values of the potential ϕ2 or u2 at the positions xi,1 of the

partial charges in Dye I. More precisely, we are interested in the accurate evaluation of the

quantity of interest E2−1 or Eu2 . Mathematically, the goal functional can be written as

1

4π
F1 =

N1∑
i=1

qi,1δxi,1 . (5.8)

Therefore, assuming that ϕ2 and u2 are continuous at least in a neighborhood of {xi,1}N1
i=1,

then we can write

E2−1 = 〈 1

4π
F1, ϕ2〉 and Eu2 = 〈 1

4π
F1, u2〉. (5.9)
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We will see in Section 5.3.2 and Section 5.3.4 that these quantities are indeed well defined

since the functions ϕ2 and u2 have higher regularity in a neighborhood of the point evaluations

involved in 1
4πF1.

According to Theorem 3.4, the equation defining the reaction field potential u2 ∈ H1
−G2

(Ω)

in the splitting ϕ2 = G2 + u2 is∫
Ω

ε∇u2 · ∇vdx+

∫
Ω

k
2
u2vdx =

∫
Ωs

(εm − εs)∇G2 · ∇vdx−
∫
Ω

k
2
G2vdx =: 〈T2, v〉 (5.10)

for all v ∈ H1
0 (Ω).

5.2 A general goal-oriented error estimate approach

In this section, we show the (general) form of the goal-oriented a posteriori error estimates

that involve the adjoint problem by considering primal problems with regular right hand-side

and regular goal functional. For this, we use the paradigm of the problem

Find u ∈ H1
g (Ω) such that∫

Ω

ε∇u · ∇vdx =

∫
Ω

fvdx =: 〈F , v〉, for all v ∈ H1
0 (Ω) (5.11)

where the right hand side is a regular functional represented by the function f ∈ L2(Ω)

(see [138]), g ∈ C0,1(∂Ω), and ε ≥ ε0 > 0 is a bounded function. For a natural number k, and

a mesh parameter h, by V k
h we denote the finite element space defined on a mesh Th with

continuous piecewise polynomial functions of degree k. Further, for a function g ∈ H1/2(∂Ω),

by V k
g,h we denote the subset of V k

h in which all functions have boundary values equal to g.

Let uh denote a Galerkin approximation from the finite element space V k
g,h ⊂ H1

g (Ω) defined

on a triangulation Th with piecewise polynomial functions of degree k. Let the quantity of

interest 〈Z , u〉 be also a regular functional represented by the L2(Ω) function l. In this case

〈Z , u〉 =

∫
Ω

ludx

and we want to derive an estimate for the quantity 〈Z , u− uh〉. We introduce the adjoint

problem of (5.11), given by

Find z ∈ H1
0 (Ω) such that∫

Ω

ε∇v · ∇zdx =

∫
Ω

lvdx = 〈Z , v〉 for all v ∈ H1
0 (Ω) (5.12)

and a Galerkin approximation zτ from a finite element space V k∗
0,τ ⊂ H1

0 (Ω) with piecewise

polynomial functions of degree k∗ on a mesh Tτ that may or may not coincide with Th. We
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can express the error measured in terms of the goal functional Z in the following way:

〈Z , u− uh〉 =

∫
Ω

ε∇(u− uh) · ∇zdx

=〈F , z〉 −
∫
Ω

ε∇z · ∇uhdx = (f, z)− (ε∇z,∇uh) =: E(uh, z).

(5.13)

Thus 〈Z , u − uh〉 can be computed provided that z is available. In practice, one has to

find an approximation zτ of z. In this case it is better to rewrite E(uh, z) in the form

E(uh, z) = E(uh, zτ ) + E(u, uh, z, zτ ) (see [138]), where

E(u, uh, z, zτ ) = 〈F , z − zτ 〉 − (ε∇uh,∇(z − zτ ))

=

∫
Ω

ε∇(u− uh) · ∇(z − zτ )dx
(5.14)

If V k
0,h ≡ V k∗

0,τ , due to Galerkin orthogonality, it follows that E(uh, zτ ) = 0 and 〈Z , u−uh〉 = E .

In the case V k
0,h 6= V k∗

0,τ we have the approximate equality 〈Z , u− uh〉 ≈ E(uh, zτ ). Indeed, if

we have sufficiently regular solutions, for example, u, z ∈ H2(Ω), and a sequence of regular

triangulations Th and Tτ , since zτ → z as τ → 0, |||∇zτ ||| is bounded and

|E(uh, zτ )| =

∣∣∣∣∣∣
∫
Ω

ε∇(u− uh) · ∇zτdx

∣∣∣∣∣∣ ≤ |||∇(u− uh)||||||∇zτ ||| = O(h). (5.15)

For E we have

|E | =

∣∣∣∣∣∣
∫
Ω

ε∇(u− uh) · ∇(z − zτ )dx

∣∣∣∣∣∣
≤ |||∇(u− uh)||||||∇(z − zτ )||| = O(hτ).

(5.16)

Therefore E has a higher order of convergence than E(uh, zτ ) which means that asymptotically,

E(uh, zτ ) contains the major part of the error. (see [115,139]) For example, H2 regularity for

the primal and adjoint problem will hold when ε ∈ C0,1(Ω), Ω is an open bounded convex

domain (thus with Lipschitz boundary), and there is a function g̃ ∈ H2(Ω) such that the

trace of g̃ on ∂Ω coincides with g (see Theorem 3.2.1.2 in [95] and Remark 5.1). Instead of

neglecting the term E , one can also replace the unknown functions z,∇u, and ∇z by means

of postprocessing the available approximations uh and zτ . One such approach is to use the

postprocessed gradients Gh(∇uh) and Gτ (∇zτ ) in E instead of ∇u and ∇z, where

Gh : [L2(Ω)]d → [Vh]d, Gτ : [L2(Ω)]d → [Vτ ]d

are averaging operators and to exploit superconvergence properties of the primal and adjoint

problem (see [100,115,119,139] ). Another approach (see [138]) is to further rewrite the term
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E in a form that does not depend on the unknown solution z of the adjoint problem and

apply superconvergent postprocessing of the function uh and a regularization of the adjoint

flux ε∇zτ . A third approach that exploits Galerkin orthogonality is suggested in [159] and is

based on the relation (see [13])

〈Z , u− uh〉 = 〈F , z − Ihz〉 −
∫
Ω

ε∇uh · ∇(z − Ihz)dx

=
∑
K∈Th

{(f, (z − Ihz))K − (ε∇uh,∇(z − Ihz))K}︸ ︷︷ ︸
=:ηK

=: η(uh, z),
(5.17)

where uh is the Galerkin approximation of u in the space V k
g,h and Ih denotes the finite

element interpolant in V k
g,h. There, the authors suggest a new localization approach based on

the partition of unity
NV∑
i=1

ψi ≡ 1 which is introduced in the error identity (5.17):

〈Z , u− uh〉

=

∫
Ω

{
f

(
(z − Ihz)

NV∑
i=1

ψi

)
− ε∇uh · ∇

(
(z − Ihz)

NV∑
i=1

ψi

)}
dx

=

NV∑
i=1

{(f, (z − Ihz)ψi)− (ε∇uh,∇ ((z − Ihz)ψi))}︸ ︷︷ ︸
=:ηPUi

=: ηPU (uh, z)

(5.18)

and the unknown interpolation error z − Ihz is approximated in an appropriate way. Here

{ψi}NVi=1 are the nodal P1 basis functions and NV is the number of nodes. It is easy to see

that the introduced error, if one uses an approximation zτ instead of z in (5.17), is again

given by the expression E(u, uh, z, zτ ). In this case

〈Z , u− uh〉 = η(uh, zτ ) + E(u, uh, z, zτ )

=ηPU (uh, zτ ) + E(u, uh, z, zτ )
(5.19)

and η(uh, zτ ) = ηPU (uh, zτ ) = E(uh, zτ ). The resulting error indicators ηK in (5.17) are

element-wise contributions and the error indicators ηPUi in (5.18) are node-wise contributions

of the error (see [159]). Here we note that deriving the error identity (5.17) in the general

case presented above is straight forward since we have standard weak formulations for u and

z that involve H1 spaces and regular right-hand sides, i.e., right-hand sides being functions in

L2(Ω). The adjoint solution z of (5.12) is sometimes referred to as the influence function and

the quantity z − Ihz in (5.17) is referred to as the sensitivity factor (see, e.g. [13,144,159]).

The influence function demonstrates how the information from the residual

R(uh) ∈ H−1(Ω) : 〈R(uh), v〉 =

∫
Ω

(fv − ε∇uh · ∇v) dx, ∀v ∈ H1
0 (Ω)

in the primal problem is propagated to the error Z (u− uh) in the quantity of interest. This

approach to a posteriori error estimation with respect to a quantity of interest is called the
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dual weighted residual method (DWR method) since the residual R(uh) is weighted with the

quantity z or z − Ihz obtained by a solution of the dual problem (5.12). In the next section,

we will derive four goal-oriented error estimates for problem (5.1), two variations in the case

of 2-term splitting and two variations in the case of no splitting applied. The main difficulty

in deriving each of the four goal-oriented error estimates for problem (5.1) will be to prove

the error identity (5.13) or equivalently (5.17) and (5.18) in each separate case.

Remark 5.1

If Ω is a bounded convex open subset of Rd (thus with Lipschitz boundary), g̃ ∈ H2(Ω), and

ε ∈ C0,1(Ω), then the solution u of (5.11) is in H2(Ω). To see this, let u = g̃ + u0, where u0

satisfies the homogenized version of (5.11)

Find u0 ∈ H1
0 (Ω) such that∫

Ω

ε∇u0 · ∇vdx = −
∫
Ω

ε∇g̃ · ∇vdx+

∫
Ω

fvdx for all v ∈ H1
0 (Ω). (5.20)

We have that ε ∈ C0,1(Ω) ⊂ W 1,∞(Ω) and ∇g̃ ∈
[
H1(Ω)

]d
. If v ∈ C∞0 (Ω), then by

Theorem 2.9, ∇g̃v ∈
[
H1(Ω)

]d
. Moreover, Leibniz’ formula applies for the weak derivatives

of ∇g̃v and we obtain

div (∇g̃v) = div(∇g̃) +∇g̃ · ∇v. (5.21)

Since ∇g̃v has compact support in Ω, it follows by Theorem 2.10 that ∇g̃v ∈
[
H1

0 (Ω)
]d

. By

the divergence theorem applied to the functions ε ∈ H1(Ω) and ∇g̃v ∈
[
H1

0 (Ω)
]d

and by using

(5.21) we obtain ∫
Ω

∇ε · ∇g̃vdx = −
∫
Ω

εdiv (∇g̃v) dx+

∫
∂Ω

γ2(∇g̃v) · n∂Ωεds

︸ ︷︷ ︸
=0

= −
∫
Ω

εdiv (∇g̃) vdx−
∫
Ω

ε∇g̃ · ∇vdx.

(5.22)

Since ε ∈ W 1,∞(Ω), by a standard density argument, (5.22) is also valid for all v ∈ H1
0 (Ω)

and for the first term on the right-hand side of (5.20) we obtain

−
∫
Ω

ε∇g̃ · ∇vdx =

∫
Ω

(∇ε · ∇g̃ + εdiv (∇g̃))︸ ︷︷ ︸
∈L2(Ω)

vdx. (5.23)

Therefore, u0 ∈ H1
0 (Ω) satisfies the equation∫

Ω

ε∇u0 · ∇vdx =

∫
Ω

f̃vdx for all v ∈ H1
0 (Ω), (5.24)
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where f̃ := ∇ε · ∇g̃ + εdiv (∇g̃) + f ∈ L2(Ω). Finally, by Theorem 3.2.1.2 in [95] it

follows that u0 ∈ H2(Ω) and consequently u = g̃ + u0 ∈ H2(Ω). If, in addition, ∇g̃
was in

[
H1(Ω)

]d ∩ [L∞(Ω)]d, then by Theorem 2.8, ε∇g̃ ∈
[
H1(Ω)

]d
and in particular

ε∇g̃ ∈ H(div; Ω). Thus, we directly obtain

−
∫
Ω

ε∇g̃ · ∇vdx =

∫
Ω

div (ε∇g̃)︸ ︷︷ ︸
∈L2(Ω)

vdx. (5.25)

5.3 Error estimates for the electrostatic interaction

In this section, we present four goal-oriented a posteriori error estimates in which the quantity

of interest is the electrostatic interaction E2−1 = E1−2 between the two dyes (Dye I and

Dye II). The first two estimates are applied to the solution u2 of the regular problem (5.10)

and the other two are applied to the whole potential ϕ2, the solution of (5.2). The first

two estimates are convenient to use when εm
εs

is close to 1 and the other two estimates are

especially appropriate in the case εm
εs
� 1 and Is > 0. We recall that when εm

εs
� 1 and Is > 0,

due to the strong dielectric screening, the reaction field potential u2 is very close in absolute

value to the Coulomb part of the potential G2 but with opposite sign, i.e |G2 + u2| � |u2|
and small relative errors in u2 result in huge relative errors in ϕ2 = G2 + u2.

Since computing the electrostatic interaction involves point evaluations of the potential, the

goal functional is not regular as it is the case with the standard formulation in (5.12). Instead,

it is a linear combination of delta functions. The usual way to treat such goal functionals is to

regularize them by means of some averaging over small balls B(xi, ρ) with a radius ρ around

the points of interest xi. There are two problems with this approach. The first one is that in

this way we change the goal functional and we are no more solving the original problem of

estimating real point values of the solution. Instead we are estimating the averaged solution

at these points with the parameter ρ. The second problem is that in order to perform this

averaging we need to be able to integrate expressions of the form
∫
Ω

χB(xi,ρ)vdx, where v is

a finite element function from a finite element space of degree k or k∗. These expressions

involve integration of the discontinuous functions χB(xi,ρ)v with support in the balls B(xi, ρ)

and appear when assembling the load vector for the adjoint problem and also when evaluating

the goal functional at the approximate solution of the primal problem. To achieve a high

enough accuracy, the mesh needs to be a priori adapted around the points of interest and

special integration rules are required. Of course, the averaging can also be done by means of

mollification with a small parameter ρ. In this case the functions to be integrated are not

discontinuous, but in order to achieve good enough accuracy, the mesh should be again a

priori adapted to the regions of mollification. However, the first problem remains. Namely,

we are again solving a perturbed adjoint problem where the original goal functional (a linear

combination of delta functions) is replaced by its mollified version. Moreover, even at the

exat solution of the primal problem, the quantity of interest is not exact but rather a mollified
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version of it with the parameter ρ.

Two of the presented below goal-oriented error estimates (error estimate 2 and error es-

timate 4) completely resolve the above mentioned issues. This is made possible by deriving

representations of the error in the goal quantity which do not involve averaging and exploit

directly the original goal functional. The theoretical justification of these representations

of the error is also presented below. The other two error estimates that we present (error

estimate 1 and error estimate 3) resolve only the first issue. Namely, the regularization

by averaging does not change the original quantity of interest because the solution of the

primal problem is a harmonic function in the molecular region. However, the integration

problem remains and needs to be carefully addressed.

In the estimates that we will derive for the electrostatic interaction between the two chro-

mophores, we will use one and the same mesh for the primal and adjoint problem, i.e.,

Tτ ≡ Th. For the primal problem we will use Galerkin approximations with continuous piece-

wise linear finite elements and for the adjoint problem we will use Galerkin approximations

with continuous piecewise polynomials of degree 2, i.e., k = 1 and k∗ = 2. We note that in

the error estimates presented in Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 other finite element

spaces can also be used on possibly different meshes Th and Tτ .

5.3.1 Error estimation 1: 2-term splitting in primal problem and regular

goal functional

Testing (5.10) with functions v ∈ C∞0 (Ωm) we see that the reaction field potential u2 is

harmonic in Ωm, and in particular, in Ωm,1. This means that we can write

〈 1

4π
F1, u2〉 = 〈 1

4π
F 1, u2〉,

where

〈 1

4π
F 1, u2〉 : =

N1∑
i=1

qi,1
|(B(xi,1, ri,1))|

∫
B(xi,1,ri,1)

u2dx (5.26)

with

|B(xi,1, ri,1)| = 4π(ri,1)3

3
in d = 3 and |B(xi,1, ri,1)| = π(ri,1)2 in d = 2.

In (5.26), B(xi,1, ri,1) is the open ball with center at xi,1 and a radius ri,1, where ri,1 < ri,1

and ri,1 is the Van der Waals radius of the i-th atom in Dye I. Now, the goal functional 1
4πF 1

is a bounded linear functional over H1
0 (Ω). In fact, it is representable by a square summable

function l throught the formula

〈 1

4π
F 1, v〉 =

∫
Ω

lvdx, (5.27)
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where l is defined by

l(x) :=

N1∑
i=1

3

4π(ri,1)3
χB(xi,1,ri,1)(x). (5.28)

Let u2,h denote the Galerkin finite element approximation of u2 in a finite element space

V k
−G2,h

⊂ H1
−G2

(Ω) with k = 1 (see Remark 5.4). Our goal is to estimate the quantity

〈 1
4πF 1, u2 − u2,h〉. We introduce the adjoint problem

Find z ∈ H1
0 (Ω) such that∫

Ω

ε∇v · ∇zdx+

∫
Ω

k
2
vzdx = 〈 1

4π
F 1, v〉, ∀v ∈ H1

0 (Ω),
(5.29)

which is the weak formulation of the problem

−∇ · (ε∇z) + k
2
z = l in Ω, (5.30a)

[z]Γ = 0, (5.30b)

[ε∇z · nΓ]Γ = 0, (5.30c)

z = 0 on ∂Ω. (5.30d)

As in Section 5.2 we obtain the error representation in terms of the adjoint solution z ∈ H1
0 (Ω)

〈 1

4π
F 1, u2 − u2,h〉 =

∫
Ω

ε∇ (u2 − u2,h) · ∇zdx+

∫
Ω

k
2

(u2 − u2,h) zdx

= 〈T2, z〉 −
∫
Ω

ε∇u2,h · ∇zdx−
∫
Ω

k
2
u2,hzdx =: E(u2,h, z).

(5.31)

Note that by the Sobolev embedding theorem z ∈ H1
0 (Ω) implies z ∈ L6(Ω) for d = 2, 3 and

that z satisfies the equation

∫
Ω

ε∇v · ∇zdx =

∫
Ω

(
−k2

z + l
)

︸ ︷︷ ︸
∈L6(Ω)

vdx, ∀v ∈ H1
0 (Ω),

(5.32)

which by Theorem 2.32 means that z ∈ L∞(Ω). This means that the term on the right-hand

side of (5.32) defines a bounded linear functional over W 1,p
0 (Ω) for any 1 ≤ p < d

d−1 . If we

additionally assume that Γ ∈ C1, from Theorem 2.34 it follows that z ∈ W 1,q
0 (Ω) for some

q > d and by the Sobolev embedding theorem it follows that z has a continuous representative.
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Therefore, the nodal P1 interpolant in V 1
h of z is well defined and we can write

E(u2,h, z) = 〈T2, z − Ihz〉 −
∫
Ω

ε∇u2,h · ∇(z − Ihz)dx−
∫
Ω

k
2
u2,h(z − Ihz)dx

=
∑
K∈Th

ηK := η(u2,h, z)

=

NV∑
i=1

{
〈T2, (z − Ihz)ψi〉 − (ε∇u2,h,∇ ((z − Ihz)ψi))−

(
k

2
u2,h, (z − Ihz)ψi

)}
︸ ︷︷ ︸

=:ηPUi

= : ηPU (u2,h, z),

(5.33)

where NV is the number of vertices (nodes) in the mesh Th, {ψi}NVi=1 are the nodal P1 basis

functions, Ih is the nodal interpolation operator in V 1
h , and

ηK(u2,h, z) = ((εm − εs)∇G2χΩs − ε∇u2,h,∇(z − Ihz))K
−
(
k

2
(G2 + u2,h), (z − Ihz)

)
K
.

(5.34)

To apply in practice the error indicators ηPUi or ηK , we use a Galerkin finite element

approximation z
(2)
h of z from the finite element space V k∗

0,τ with k∗ = 2 and τ ≡ h, i.e., V k∗
0,τ

is defined on the same triangulation Th as the finite element space V 1
−G2,h

for the primal

problem. Taking into account (5.7) and (5.9), the approximate electrostatic interaction EP2−1,

computed by means of the Primal solution, is given by

EP2−1 = EG2 + 〈 1

4π
F 1, u2,h〉 (5.35)

and the error estimation for the electrostatic interaction E2−1 is

E2−1 − EP2−1 = EG2 + 〈 1

4π
F 1, u2〉 −

(
EG2 + 〈 1

4π
F 1, u2,h〉

)
= 〈 1

4π
F 1, u2 − u2,h〉

= E(u2,h, z) = E(u2,h, z
(2)
h ) + E(u2, u2,h, z, z

(2)
h ).

(5.36)

As in Section 5.2, we can bound the term E(u2,h, z
(2)
h ) by

∣∣∣E(u2,h, z
(2)
h )
∣∣∣ =

∣∣∣∣∣∣
∫
Ω

ε∇(u2 − u2,h) · ∇z(2)
h dx+

∫
Ω

k
2

(u2 − u2,h) z
(2)
h dx

∣∣∣∣∣∣
≤ εmax‖∇(u2 − u2,h)‖L2(Ω)‖∇z

(2)
h ‖L2(Ω)+k

2
ions‖u2 − u2,h‖L2(Ω)‖z

(2)
h ‖L2(Ω)

≤ C1

(
εmax‖∇(u2 − u2,h)‖L2(Ω)+k

2
ions‖u2 − u2,h‖L2(Ω)

)
(5.37)
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whereas the error E(u2, u2,h, z, z
(2)
h ) that we make when using an approximation z

(2)
h instead

of z in E(u2,h, z) can be bounded as follows

E(u2, u2,h, z, z
(2)
h ) = 〈T2, z − z(2)

h 〉 −
∫
Ω

ε∇u2,h · ∇(z − z(2)
h )dx−

∫
Ω

k
2
u2,h

(
z − z(2)

h

)
dx

=

∫
Ω

ε∇(u2 − u2,h) · ∇(z − z(2)
h )dx+

∫
Ω

k
2

(u2 − u2,h) (z − z(2)
h )dx

≤ εmax‖∇(u2 − u2,h)‖L2(Ω)‖∇(z − z(2)
h )‖L2(Ω)+k

2
ions‖u2 − u2,h‖L2(Ω)‖z − z

(2)
h ‖L2(Ω)

≤ C2

(
εmax‖∇(u2 − u2,h)‖L2(Ω)+k

2
ions‖u2 − u2,h‖L2(Ω)

)
‖∇(z − z(2)

h )‖L2(Ω). (5.38)

In (5.37) and (5.38) C1 and C2 are generic constants. In the derivation of the upper

bound (5.37) we have used the fact that ‖∇z(2)
h ‖L2(Ω) and ‖z(2)

h ‖L2(Ω) are bounded since

‖∇(z − z(2)
h )‖L2(Ω)→ 0, which is true for regular triangulations Th by virtue of Cea’s lemma,

even without assumptions on the regularity of z. We have also used Poincareé’s inequality

to bound the L2 norms of z
(2)
h and z − z(2)

h in (5.37) and (5.38), respectively. From (5.37)

and (5.38) it is seen that E(u2, u2,h, z, z
(2)
h ) converges faster to zero than E(u2,h, z

(2)
h ) and,

therefore, we can assume that the major part of the error in (5.36) is contained in the

term E(u2,h, z
(2)
h ). For this reason, we can skip E(u2, u2,h, z, z

(2)
h ) in (5.36) and write the

approximate equality

E2−1 − EP2−1 ≈ E(u2,h, z
(2)
h ), (5.39)

which can also be written in the form

E2−1 ≈ EP2−1 + E(u2,h, z
(2)
h ). (5.40)

The quantity EP2−1 + E(u2,h, z
(2)
h ) is a corrected value for the electrostatic interaction.

Remark 5.2

For the practical application of this error estimation approach where instead of the original

goal functional 1
4πF1 we use a regularized version of it, 1

4πF 1, special quadrature rules are

needed for the evaluation of the terms 〈 1
4πF 1, u2,h〉 and 〈 1

4πF 1, z
(2)
h 〉 (see, e.g. [108, 145] for

such quadrature rules).

Remark 5.3

Even if the interface Γ is not C1, the elementwise error indicators ηK(u2,h, z
(2)
h ) and the

nodewise error indicators ηPUi (u2,h, z
(2)
h ) are well defined since z

(2)
h is a continuous function

and, thus, Ihz
(2)
h is well defined.

Remark 5.4

In particular, if we assume that −G2 is exactly representable on ∂Ω in the finite element space
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V k
h , then we can take u2,h ∈ V k

−G2,h
⊂ V k

h to be a finite element solution of the corresponding

Galerkin problem

Find u2,h ∈ V k
−G2,h such that∫

Ω

ε∇u2,h · ∇vdx+

∫
Ω

k
2
u2,hvdx = 〈T2, v〉 for all v ∈ V k

0,h. (5.41)

Else, if −G2 is not exactly representable on ∂Ω in the finite element space V k
h , then one can

obtain u2,h by solving a Galerkin formulation for the homogenized version of equation (5.10)

Find u0 ∈ H1
0 (Ω) such that∫

Ω

ε∇u0 · ∇vdx+

∫
Ω

k
2
u0vdx = 〈T2, v〉+

∫
Ω

ε∇G̃2 · ∇vdx+

∫
Ω

k
2
G̃2vdx.

(5.42)

One finds u0,h ∈ V k
0,h by solving the Galerkin formulation∫

Ω

ε∇u0,h · ∇vdx+

∫
Ω

k
2
u0,hvdx = 〈T2, v〉+

∫
Ω

ε∇G̃2 · ∇vdx+

∫
Ω

k
2
G̃2vdx (5.43)

for all v ∈ V k
0,h, where G̃2 : Ω→ R is in H2(Ω) with γ2(−G̃2) = −G2 on ∂Ω. Consequently,

one defines u2,h := −G̃2 + u0,h ∈ H1
−G2

(Ω). In this case, if V k
0,h ≡ V k∗

0,τ and zτ ∈ V k∗
0,τ is the

Galerkin approximation of the adjoint problem (5.29), the term E(u2,h, zτ ) is still zero.

Remark 5.5

For the construction of G̃2 just take (ψG2)�Ω
∈ C∞(Ω), where ψ ∈ C∞0 (Rd) is such that it

is equal to 1 in a neighborhood of ∂Ω and with support in Rd \ Ωm. For ψ just mollify the

characteristic function of the set (∂Ω)+δ := {x ∈ Rd : dist(x, ∂Ω) < δ} with a mollifier ηρ for

ρ < δ/2, where δ < 1
2dist(Γ, ∂Ω).

5.3.2 Error estimation 2: 2-term splitting in primal problem and irregular

goal functional

Here, we solve the same primal problem (5.10). This time the right-hand side of the adjoint

problem (5.30) is formed by the original goal functional 1
4πF1 /∈ H−1(Ω) defined in (5.8).

In this way we avoid the numerical integration of the discontinuous functions arising when

averaging over the balls B(xi,1, ri,1). The functional 1
4πF1 is not bounded over H1

0 (Ω) and

the weak form of the adjoint problem is defined in a similar way to the weak formulation

(5.2)

Find z ∈
⋂

p< d
d−1

W 1,p
0 (Ω) such that

∫
Ω

ε∇v · ∇zdx+

∫
Ω

k
2
vzdx = 〈 1

4π
F1, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω)

(5.44)
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Here we note that the solution z to the adjoint problem (5.44) satisfies the relation z = 1
4πϕ1

since ϕ1 solves the same linear problem but with a right-hand side F1 and a homogeneous

Dirichlet boundary condition (see (5.3)). Now, the physical meaning of the adjoint problem is

clear. From Theorem 3.4 we know that (5.44) possesses a unique solution z ∈
⋂

p< d
d−1

W 1,p
0 (Ω)

which has the form z = 1
4πϕ1 = 1

4π (G1 + u1) where u1 satisfies (5.10) with G1 instead of

G2. Again, by u2,h we denote the Galerkin finite element approximation of u2 in the space

V k
h with k = 1. In order to derive a similar estimate to (5.31) we will need the following

Proposition 5.6.

Proposition 5.6

The following equalities hold true∫
Ω

ε∇(u2 − u2,h) · ∇zdx+

∫
Ω

k
2
(u2 − u2,h)zdx = 〈 1

4π
F1, u2 − u2,h〉, (5.45)

∫
Ω

ε∇u2 · ∇zdx+

∫
Ω

k
2
u2zdx = 〈T2, z〉 =

∫
Ω

(εm − ε)∇G2 · ∇zdx−
∫
Ω

k
2
G2zdx. (5.46)

Remark 5.7

In particular, (5.45) and (5.46) mean that the integrals on the left-hand sides are well defined,

as well as the expression 〈 1
4πF1, u2 − u2,h〉 is well defined. Note, that (5.45) means that we

can test (5.44) with the function u2− u2,h which, in general, is not in
⋃
q>d

W 1,q
0 (Ω) and (5.46)

means that we can test (5.10) with z which is not in H1
0 (Ω).

Remark 5.8

If Γ is of class C1, since ∂Ω ∈ C0,1, then from Theorem 2.34 it follows that u2 ∈W 1,q̄(Ω) for

some q̄ > 3. More precisely, we can apply Theorem 2.34 to the homogenized version (5.42)

of (5.10) with u2 = −G̃2 + u0. By applying the Lax-Milgram Theorem we see that problem

(5.42) has a unique solution u0 ∈ H1
0 (Ω). By the Sobolev embedding theorems, we know that

H1
0 (Ω) ↪→ L6(Ω) for d = 1, 2, 3 and thus 〈T2, v〉+

∫
Ω

ε∇G̃2 · ∇vdx+
∫
Ω

k
2
G̃2vdx−

∫
Ω

k
2
u0vdx

defines a bounded linear functional over W 1,r
0 for all r ∈ [6/5,+∞). By Theorem 2.34 there

exists p > d such that −∇·ε∇ : W 1,q
0 →W−1,q

0 =
(
W 1,q′

0

)∗
is a topological isomorphism for all

q ∈ (p′, p), where p′ and q′ denote the Hölder conjugates of p and q, respectively. In particular,

it follows that there exists q̄ such that d < q̄ < p and q̄ ≤ 6 for which u0 ∈W 1,q̄
0 (Ω). Again by

the Sobolev embedding theorems it follows that G̃2 ∈ H2(Ω) ↪→ W 1,q̄(Ω), and consequently,

u2 = −G̃2 + u0 ∈W 1,q̄
−G2

(Ω).

It is also clear that u2,h ∈W 1,q̄(Ω) when u2,h = −G̃2 + u0,h and u2,h ∈W 1,∞(Ω) when u2,h is

a pure finite element function. Thus u2 − u2,h ∈W 1,q̄
0 (Ω) ⊂

⋃
q>d

W 1,q
0 (Ω) and therefore (5.45)

is satisfied.

In order to avoid some technical details we will prove Proposition 5.6 only for the case Is = 0,

i.e., k = 0 and note that the proof for the case Is 6= 0 is similar.
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Proof of Proposition 5.6. Let Bm,1(r) :=
⋃N1
i=1B(xi,1, r), where B(xi,1, r) is the open ball

with center at xi,1 and a radius r. Here, r is chosen so small that B(xi,1, 2r) is strictly

contained in Ωm and B(xi,1, 2r) ∩ B(xj,1, 2r) = ∅ for all i 6= j, i, j = 1, 2, .., N1 (see Fig-

ure 5.2). The idea to prove (5.45) is to approximate u2 − u2,h with functions ψn in W 1,q
0 (Ω)

for some fixed d < q ≤ 6 such that ψn → u2 − u2,h in H1 (Ω \Bm,1(r)) and ψn → u2 − u2,h

in W 1,q(Bm,1(r)). Similarly, to prove (5.46) we find functions ψn ∈ H1
0 (Ω) such that ψn → z

in W 1,p(Bm,1(2r)) for some fixed p < d
d−1 and ψn → z in H1 (Ω \Bm,1(2r)). Thus, let us fix

q such that d < q ≤ 6 and let p be its Hölder conjugate, i.e., p is such that 1
p + 1

q = 1. It is

clear that p satisfies p < d
d−1 .

Proof of (5.45):

Let w := u2 − u2,h. Since u2,h ∈ W 1,∞(Ω) and u2 ∈ H2
loc(Ωm) (see Theorem 3.4), by the

Sobolev embedding theorems it follows that w ∈ W 1,q(Bm,1(2r)) ∩H1
0 (Ω). We can find a

sequence wn ∈ C∞0 (Ω) such that ‖wn − w‖H1(Ω)−−−→
n→∞

0. Now, let χ1 be a smooth cut-off

function such that

χ1(x) =

{
1, x ∈ Bm,1(r),

0, x ∈ Ω \Bm,1(2r).
(5.47)

and define ψn := wn + (w − wn)χ1. We have

ψn =


w, x ∈ Bm,1(r),

wn + (w − wn)χ1, x ∈ A1 := Bm,1(2r) \Bm,1(r),

wn, x ∈ Ω \Bm,1(2r).

(5.48)

By the product rule, applied to the functions (w − wn) ∈ H1
0 (Ω) and χ1 ∈ C∞0 (Ω) (see

Theorem 2.9) we obtain that (w − wn)χ1 ∈ H1(Ω) and therefore ψn ∈ H1(Ω). Since

(w−wn)χ1 has a compact support in Ω, by Theorem 2.10 it follows that (w−wn)χ1 ∈ H1
0 (Ω)

and consequently that ψn ∈ H1
0 (Ω). Moreover, for the weak derivatives we have

∂ψn
∂xi

=
∂wn
∂xi

+
∂

∂xi
((w − wn)χ1) =

∂wn
∂xi

+
∂(w − wn)

∂xi
χ1 + (w − wn)

∂χ1

∂xi
(5.49)

and thus

∂ψn
∂xi

=



∂w

∂xi
, x ∈ Bm,1(r),

∂wn
∂xi

+
∂(w − wn)

∂xi
χ1 + (w − wn)

∂χ1

∂xi
, x ∈ A1 = Bm,1(2r) \Bm,1(r),

∂wn
∂xi

, x ∈ Ω \Bm,1(2r).

(5.50)

From the expression (5.48) for ψn and the expression (5.50) for ∂ψn
∂xi

, by recalling that

w ∈W 1,q (Bm,2(2r)), we see that ψn ∈ Lq(Ω) and also ∂ψn
∂xi
∈ Lq(Ω) for all n ∈ N. Therefore,
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we conclude that ψn ∈W 1,q(Ω) and since all ψn have compact support in Ω, by Theorem 2.10,

it follows that ψn ∈W 1,q
0 (Ω) for all n ∈ N. Now, for every n ∈ N, it holds∫

Bm,1(r)

ε∇z · ∇ψndx+

∫
A1

ε∇z · ∇ψndx+

∫
Ω\Bm,1(2r)

ε∇z · ∇ψndx = 〈 1

4π
F1, ψn〉 (5.51)

Obviously, ‖ψn −w‖W 1,q(Bm,1(r))= 0, ∀n ∈ N and ‖ψn −w‖H1(Ω\Bm,1(2r))−−−→
n→∞

0. On the set

A1, since ‖χ1‖L∞(Ω)≤ 1 and ‖∂χ1

∂xi
‖L∞(Ω) is bounded for all i = 1, 2, 3, we have∥∥∥∥∂ψn∂xi

− ∂w

∂xi

∥∥∥∥
L2(A1)

≤
∥∥∥∥∂wn∂xi

− ∂w

∂xi

∥∥∥∥
L2(A1)

+

∥∥∥∥∂ (w − wn)

∂xi
χ1

∥∥∥∥
L2(A1)

+

∥∥∥∥(w − wn)
∂χ1

∂xi

∥∥∥∥
L2(A1)

≤
∥∥∥∥∂wn∂xi

− ∂w

∂xi

∥∥∥∥
L2(A1)

+

∥∥∥∥∂ (w − wn)

∂xi

∥∥∥∥
L2(A1)

‖χ1‖L∞(Ω)

+ ‖(w − wn)‖L2(A1)

∥∥∥∥∂χ1

∂xi

∥∥∥∥
L∞(Ω)

→ 0

(5.52)

and, therefore, ‖∇(ψn−w)‖L2(A1)−−−→
n→∞

0. By observing that∇z = 1
4π∇ϕ1 = 1

4π (∇G1 +∇u1) ∈
L2 (Ω \Bm,1(r)) and by applying Hölder’s inequality we obtain∣∣∣∣∣∣

∫
A1

ε∇z · ∇ (ψn − w) dx

∣∣∣∣∣∣ ≤ εmax‖∇z‖L2(A1)‖∇(ψn − w)‖L2(A1)→ 0,

∣∣∣∣∣∣∣
∫

Ω\Bm,1(2r)

ε∇z · ∇ (ψn − w) dx

∣∣∣∣∣∣∣ ≤ εmax‖∇z‖L2(Ω\Bm,1(2r))‖∇(ψn − w)‖L2(Ω\Bm,1(2r))→ 0.

Also, ∣∣∣∣〈 1

4π
F1, ψn〉 − 〈

1

4π
F1, w〉

∣∣∣∣ =

∣∣∣∣∣
N1∑
i=1

qi,1ψn(xi,1)−
N1∑
i=1

qi,1w(xi,1)

∣∣∣∣∣
≤

N1∑
i=1

|qi,1| |ψn(xi,1)− w(xi,1)| ≤ CE‖ψn − w‖W 1,q(Bm,1(r))

N1∑
i=1

|qi,1| → 0,

where CE is the embedding constant in the inequality ‖v‖L∞(Ω)≤ CE‖v‖W 1,q(Ω). Finally,

letting n→∞ in (5.51) gives (5.45).

Proof of (5.46)

We have that z ∈
⋂

s< d
d−1

W 1,s
0 (Ω) and in particular z ∈ W 1,p

0 (Ω). There exist functions

zn ∈ C∞0 (Ω) such that ‖zn − z‖W 1,p(Ω)−−−→
n→∞

0. We define the functions

ψn := z + (zn − z)χ1,
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where χ1 is defined by (5.47). We have

ψn =


zn, x ∈ Bm,1(r),

z + (zn − z)χ1, x ∈ A1 = Bm,1(2r) \Bm,1(r),

z, x ∈ Ω \Bm,1(2r).

(5.53)

By the product rule (see Theorem 2.9), applied to the functions (zn − z) ∈ W 1,p
0 (Ω) and

χ1 ∈ C∞0 (Ω), it follows that (zn − z)χ1 ∈W 1,p(Ω). Moreover,

∂ψn
∂xi

=
∂z

∂xi
+
∂(zn − z)

∂xi
χ1 + (zn − z)

∂χ1

∂xi
(5.54)

and therefore,

∂ψn
∂xi

=



∂zn
∂xi

, x ∈ Bm,1(r),

∂z

∂xi
+
∂(zn − z)

∂xi
χ1 + (zn − z)

∂χ1

∂xi
, x ∈ A1 = Bm,1(2r) \Bm,1(r),

∂z

∂xi
, x ∈ Ω \Bm,1(2r).

(5.55)

Since the support of (zn − z)χ1 is a compact set in Ω, by Theorem 2.10, it follows that

(zn − z)χ1 ∈W 1,p
0 (Ω) and consequently, ψn ∈W 1,p

0 (Ω), ∀n ∈ N. From (5.53) and (5.55), by

using the fact that z = 1
4π (G1 + u1) ∈ H1 (Ω \Bm,1(r)), we find that ψn ∈ H1(Ω), ∀n ∈ N

and consequently ψn ∈ H1
0 (Ω), ∀n ∈ N (see Remark 5.9).

Now, for every n ∈ N we have

∫
Bm,1(r)

ε∇u2 · ∇ψndx+

∫
A1

ε∇u2 · ∇ψndx+

∫
Ω\Bm,1(2r)

ε∇u2 · ∇ψndx = 〈T2, ψn〉 (5.56)

Obviously, ‖∇(ψn − z)‖Lp(Bm,1(r))−−−→
n→∞

0, whereas on the set A1, for all i = 1, 2, 3 we have

∥∥∥∥∂ψn∂xi
− ∂z

∂xi

∥∥∥∥
Lp(A1)

≤
∥∥∥∥∂ (zn − z)

∂xi
χ1

∥∥∥∥
Lp(A1)

+

∥∥∥∥(zn − z)
∂χ1

∂xi

∥∥∥∥
Lp(A1)

≤
∥∥∥∥∂ (zn − z)

∂xi

∥∥∥∥
Lp(A1)

‖χ1‖L∞(Ω)+ ‖(zn − z)‖Lp(A1)

∥∥∥∥∂χ1

∂xi

∥∥∥∥
L∞(Ω)

→ 0

(5.57)

and therefore ‖∇(ψn − z)‖Lp(A1)−−−→
n→∞

0.

By applying Hölder’s inequality and using the fact that ∇u2 ∈ Lq (Bm,1(2r)) (by Theorem 3.4
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and the Sobolev embedding theorems) we obtain∣∣∣∣∣∣∣
∫

Bm,1(r)

ε∇u2 · ∇(ψn − z)dx

∣∣∣∣∣∣∣ ≤ εmax‖∇u2‖Lq(Bm,1(r))‖∇(ψn − z)‖Lp(Bm,1(r))→ 0,

∣∣∣∣∣∣
∫
A1

ε∇u2 · ∇(ψn − z)dx

∣∣∣∣∣∣ ≤ εmax‖∇u2‖Lq(A1)‖∇(ψn − z)‖Lp(A1)→ 0,

∫
Ω\Bm,1(2r)

ε∇u2 · ∇ψndx =

∫
Ω\Bm,1(2r)

ε∇u2 · ∇zdx, ∀n ∈ N,

〈T2, ψn〉 =

∫
Ωs

(εm − ε)∇G2 · ∇ψndx = 〈T2, z〉, ∀n ∈ N

Finally, letting n→∞ in (5.56) we obtain (5.46).

Remark 5.9

Let Ω ⊂ Rd be a bounded Lipschitz domain. If z ∈W 1,p(Ω) ∩W 1,q(Ω) with 1 < p < q <∞,

then γp(z) = γq(z) a.e. on ∂Ω. Indeed, let zn ∈ C∞(Ω) such that zn → z in W 1,q(Ω).

For this sequence, zn�∂Ω = γq(zn) → γq(z) in Lq(∂Ω). But we also have that zn → z in

W 1,p(Ω) (1 ≤ p < q) and thus zn�∂Ω = γp(zn) → γp(z) in Lp(∂Ω). From here we see that

zn�∂Ω → γq(z) in Lp(∂Ω) and zn�∂Ω → γp(z) in Lp(∂Ω). This means that γp(z) = γq(z) a.e.

on ∂Ω.

Figure 5.2: Different regions in the case Is 6= 0.

Now, by using first (5.45) and then (5.46) we can derive the error equality for
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〈 1
4πF1, u2 − u2,h〉 in terms of the adjoint solution z

〈 1

4π
F1, u2 − u2,h〉 =

∫
Ω

ε∇ (u2 − u2,h) · ∇zdx+

∫
Ω

k
2

(u2 − u2,h) zdx

= 〈T2, z〉 −
∫
Ω

ε∇u2,h · ∇zdx−
∫
Ω

k
2
u2,hzdx =: E(u2,h, z).

(5.58)

Note that in order to evaluate the error estimator E(u2,h, z), one has to know the exact

solution z of the adjoint problem or an approximation of it. As we already discussed in

Section 5.3.1, in practice one finds a good approximation of z in a richer space than the one

in which u2,h is found. In particular, we use the Galerkin finite element approximation z
(2)
h

of z from the space V 2
h defined on the same mesh Th on which V 1

h is defined. In this case, by

using Galerkin orthogonality, similarly to (5.17) (see [13,159]) we can write

E(u2,h, z
(2)
h ) =〈T2, z

(2)
h − Ihz

(2)
h 〉 −

∫
Ω

ε∇u2,h · ∇(z
(2)
h − Ihz

(2)
h )dx

−
∫
Ω

k
2
u2,h(z

(2)
h − Ihz

(2)
h )dx

=
∑
K∈Th

ηK(u2,h, z
(2)
h ) := η(u2,h, z

(2)
h ) (5.59)

=

NV∑
i=1

ηPUi (u2,h, z
(2)
h ) =: ηPU (u2,h, z

(2)
h ),

where NV is the number of vertices in the mesh Th, {ψi}NVi=1 are the nodal P1 basis functions,

Ih is the nodal interpolation operator in V 1
h , and

ηK(u2,h, z
(2)
h ) =

(
(εm − εs)∇G2χΩs − ε∇u2,h,∇(z

(2)
h − Ihz

(2)
h )
)
K

−
(
k

2
(G2 + u2,h), (z

(2)
h − Ihz

(2)
h )
)
K
,

(5.60)

ηPUi (u2,h, z
(2)
h ) =

(
(εm − εs)∇G2χΩs − ε∇u2,h,∇

(
(z

(2)
h − Ihz

(2)
h )ψi

))
−
(
k

2
(G2 + u2,h), (z

(2)
h − Ihz

(2)
h )ψi

)
.

(5.61)

Taking into account (5.7) and (5.9), the approximate electrostatic interaction EP2−1 is given

by

EP2−1 = EG2 + 〈 1

4π
F1, u2,h〉 (5.62)

and the error estimation for the electrostatic interaction E2−1 is

E2−1 − EP2−1 = EG2 + 〈 1

4π
F1, u2〉 −

(
EG2 + 〈 1

4π
F1, u2,h〉

)
= 〈 1

4π
F1, u2 − u2,h〉

= E(u2,h, z) = E(u2,h, z
(2)
h ) + E(u2, u2,h, z, z

(2)
h ).

(5.63)
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In view of Section 5.3.1 we expect that the term E(u2, u2,h, z, z
(2)
h ) again converges faster

than the term E(u2,h, z
(2)
h ). For this reason the following approximate equality holds:

E2−1 − EP2−1 ≈ E(u2,h, z
(2)
h ), (5.64)

which can also be written in the form

E2−1 ≈ EP2−1 + E(u2,h, z
(2)
h ). (5.65)

The quantity EP2−1 +E(u2,h, z
(2)
h ) is a corrected value for the electrostatic interaction and can

be used as a better approximation of the interaction E2−1. However, in practice, it is better to

use the quantity EA1−2 := 〈F2, z
(2)
h 〉, computed with the more accurate Adjoint solution z

(2)
h ,

since it is easier to compute and numerically more stable. Indeed, as we already mentioned,

the solution z of the adjoint problem coincides with 1
4πϕ1, where ϕ1 is the exact potential

created by the charges of the first molecule. Therefore, 〈F2, z
(2)
h 〉 is an approximation to the

electrostatic interaction E1−2 = 〈F2, z〉 = 〈F2,
1

4πϕ1〉 which is equal to E2−1. In Section 5.5.1,

we demonstrate the improved accuracy of EA1−2 compared to EP2−1 and in Section 5.4 we use

EA1−2 as a better approximation to the electrostatic interaction in an application related to

FRET.

Alternative approach by 2-term splitting in the adjoint problem

To evaluate approximately E(u2,h, z) we can also apply the 2-term splitting to the adjoint

problem and use the approximation z̃ = 1
4πG1 +wk

∗
τ /∈ V k∗

τ , where wk
∗
τ ∈ V k∗

τ is a conforming

finite element approximation of the regular part w = 1
4πu1. Here, the mesh Tτ may or may

not coincide with Th and k∗ may or may not be equal to k. We can write

E(u2,h, z) = E(u2,h, z̃) + E(u2, u2,h, z, z̃), (5.66)

where

E(u2,h, z̃) = 〈T2, z̃〉 −
∫
Ω

ε∇u2,h · ∇z̃dx−
∫
Ω

k
2
u2,hz̃dx, (5.67)

E(u2, u2,h, z, z̃) = 〈T2, z − z̃〉 −
∫
Ω

ε∇u2,h · ∇(z − z̃)dx−
∫
Ω

k
2
u2,h (z − z̃) dx

=

∫
Ω

ε∇(u2 − u2,h) · ∇(w − wk∗τ )dx+

∫
Ω

k
2

(u2 − u2,h) (w − wk∗τ )dx. (5.68)

Here we have used the fact that z − z̃ = w − wk∗τ
(
∈ H1

0 (Ω)
)
. Note that the expression

−
∫
Ω

ε∇u2,h · ∇z̃dx is well defined since z̃ ∈ Lp(Ω) for all p < d
d−1 and ∇u2,h ∈ L∞(Ω). The

expressions 〈T2, z〉, 〈T2, z̃〉, −
∫
Ω

k
2
u2,hzdx, and −

∫
Ω

k
2
u2,hz̃dx are well defined because k

2
is

zero in Ωm where z and z̃ have singularities.
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Note that even if V k
h ≡ V k∗

τ (and the approximation wk
∗
τ is from the space V k

h ), the term

E(u2,h, z̃) is in general different from zero. Another thing to keep in mind is that we

need to compute the integral
∫
Ω

ε
4π∇u2,h · ∇G1dx which has singularities at the positions

xi,1, i = 1, . . . , N1 of the point charges qi,1, i = 1, . . . , N1. In the case of piecewise constant

ε and a piecewise linear approximation u2,h this integration can be carried out analytically.

Otherwise, appropriate quadrature rules have to be used (see, e.g., [108,145]).

As in (5.15), we can observe by comparing E(u2,h, z̃) and E(u2, u2,h, z, z̃) that asymptotically

E(u2,h, z̃) contains the major part of the error 〈 1
4πF1, u2 − u2,h〉. Indeed,

|E(u2,h, z̃)|=

∣∣∣∣∣∣〈T2, z̃〉 −
∫
Ω

ε∇u2,h · ∇z̃dx−
∫
Ω

k
2
u2,hz̃dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Ω

ε∇(u2 − u2,h) · ∇z̃dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
Ω

k
2
(u2 − u2,h)z̃dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Bm,1(r)

ε∇(u2 − u2,h) · ∇z̃dx+

∫
Ω\Bm,1(r)

ε∇(u2 − u2,h) · ∇z̃dx

∣∣∣∣∣∣∣
+ k

2
ions‖u2 − u2,h‖L2(Ω)‖z̃‖L2(Ωions)

≤ εmax

(
‖∇(u2 − u2,h)‖Lq(Bm,1(r))‖∇z̃‖Lp(Bm,1(r))

+ ‖∇(u2 − u2,h)‖L2(Ω\Bm,1(r))‖∇z̃‖L2(Ω\Bm,1(r))

)
+ k

2
ions‖u2 − u2,h‖L2(Ω)‖z̃‖L2(Ωions)

≤ εmaxC1

(
‖∇(u2 − u2,h)‖Lq(Bm,1(r))+‖∇(u2 − u2,h)‖L2(Ω\Bm,1(r))

)
+ k

2
ionsC2‖u2 − u2,h‖L2(Ω)

≤ C3

(
‖∇(u2 − u2,h)‖Lq(Bm,1(r))+‖∇(u2 − u2,h)‖L2(Ω\Bm,1(r))+‖u2 − u2,h‖L2(Ω)

)
, (5.69)

where C1, C2, C3 are generic constants. In the derivation of the upper bound (5.69) we have

used the following facts:

1) that we can test the weak formulation (5.10) for u2 with z̃ (similar to the proof of (5.46))

2) that u2 and u2,h are in W 1,q(Bm,1(r)

3) that z̃ ∈ L2 (Ω \Bm,1(r))

4) that z̃ = 1
4πG1+wk

∗
τ and that ‖wk∗τ ‖L2(Ω) and ‖∇wk∗τ ‖L2(Ω are bounded since wk

∗
τ converges

to w in H1(Ω)

5) that ‖∇wk∗τ ‖Lp(Bm,1(r))≤ |Bm,1(r)|
2−p
2p ‖∇wk∗τ ‖L2(Bm,1(r)).
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For the term E(u2, u2,h, z, z̃) we have the following estimate

E(u2, u2,h, z, z̃) ≤

∣∣∣∣∣∣
∫
Ω

ε∇(u2 − u2,h) · ∇(w − wk∗τ )dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
Ω

k
2
(u2 − u2,h)(w − wk∗τ )dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

Bm,1(r)

ε∇(u2 − u2,h) · ∇(w − wk∗τ )dx+

∫
Ω\Bm,1(r)

ε∇(u2 − u2,h) · ∇(w − wk∗τ )dx

∣∣∣∣∣∣∣
+ k

2
ions‖u2 − u2,h‖L2(Ω)‖w − wk

∗
τ ‖L2(Ω)

≤ εmax

(
‖∇(u2 − u2,h)‖Lq(Bm,1(r))‖∇(w − wk∗τ )‖Lp(Bm,1(r))

+ ‖∇(u2 − u2,h)‖L2(Ω\Bm,1(r))‖∇(w − wk∗τ )‖L2(Ω\Bm,1(r))

)
+ k

2
ionsCP ‖u2 − u2,h‖L2(Ω)‖∇(w − wk∗τ )‖L2(Ω)

≤ C4

(
‖∇(u2 − u2,h)‖Lq(Bm,1(r))+‖∇(u2 − u2,h)‖L2(Ω\Bm,1(r))

)
‖∇(w − wk∗τ )‖L2(Ω)

+ k
2
ionsCP ‖u2 − u2,h‖L2(Ω)‖∇(w − wk∗τ )‖L2(Ω)

≤ C5

(
‖∇(u2 − u2,h)‖Lq(Bm,1(r))+‖∇(u2 − u2,h)‖L2(Ω\Bm,1(r))+‖u2 − u2,h‖L2(Ω)

)
‖∇(w − wk∗τ )‖L2(Ω), (5.70)

where C4 and C5 are generic constants and CP is Poincaré’s constant in the inequality

‖v‖L2(Ω)≤ CP ‖∇v‖L2(Ω) for v ∈ H1
0 (Ω). In the derivation of the upper bound (5.70) we have

used the fact that p < d
d−1 ≤ 2 and consequently the Lp(Bm,1(r)) norm of ∇(w − wk∗τ ) can

be bounded from above by the L2(Bm,1(r)) norm of ∇(w − wk∗τ ). By comparing the upper

bounds (5.69) and (5.70) we can assume that the term E(u2, u2,h, z, z̃) converges faster to

zero than E(u2,h, z̃) and thus the major part of the error in (5.66) is asymptotically contained

in E(u2,h, z̃) (see [115,139] for similar arguments in the case of high regularity of the solutions

of the primal and adjoint problem). It is also seen that if wk
∗
τ → w in H1(Ω), then

〈 1

4π
F1, u2 − u2,h〉 = E(u2,h, z̃) + E(u2, u2,h, z, z̃)→ E(u2,h, z̃)

Thus, we can write the approximate equality

〈 1

4π
F1, u2 − u2,h〉 ≈ E(u2,h, z̃),

where E(u2,h, z̃) is fully computable. Since u2, w ∈ H1(Ω), all post processing techniques from

[100,115,119,139] and [138] can be applied to approximately evaluate the term E(u2, u2,h, z, z̃)

although superconvergence of the gradients cannot be guaranteed since our primal and adjoint

problems have solutions of low regularity.
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5.3.3 Error estimation 3: no splitting in primal problem and regular goal

functional

Unfortunately, the 2-term regularization is not always appropriate to use. Typically, in the

presence of a strong dielectric screening in the solvent region Ωs, i.e. εm
εs
� 1, the analytically

known component EG2 and the reaction field component Eu2 have an opposite sign but

almost the same absolute value. Thus, for the full electrostatic interaction we have

|EG2 + Eu2 | = |E2−1| � |Eu2 | ,

which means that a small relative error in the numerically approximated component Eu2

results in a large relative error in the full interaction E2−1. It may very well happen that

|E2−1| = 0.001× |Eu2 |. This means that a relative error of 1% in |Eu2 | (|e| = 0.01× |Eu2 |)
results in a relative error of 1000% in E2−1:

|e|
|E2−1|

=
0.01× |Eu2 |
0.001× |Eu2 |

= 10.

In such situations, it is best not to apply the 2-term splitting, but to solve directly equation

(5.2), which we recall here

ϕ2 ∈
⋂

p< d
d−1

W 1,p
0 (Ω),

∫
Ω

ε∇ϕ2 · ∇vdx+

∫
Ω

k
2
ϕ2vdx = 〈F2, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω). (5.2)

We consider the goal functional 1
4πF 1 defined by (5.27) which is given by a linear combination

of averaging operators over the balls B(xi,1, ri,1). This is justified since the function ϕ2 is

harmonic in Ωm,1 as the sum of the harmonic in Ωm functions G2 and u2. The electrostatic

interaction E2−1 can be expressed in terms of the goal functional as follows

E2−1 = 〈 1

4π
F1, ϕ2〉 = 〈 1

4π
F 1, ϕ2〉. (5.71)

The corresponding adjoint problem is the same as (5.29) and we also recall it here

Find z ∈ H1
0 (Ω) such that∫

Ω

ε∇v · ∇zdx+

∫
Ω

k
2
vzdx = 〈 1

4π
F 1, v〉, ∀v ∈ H1

0 (Ω),
(5.29)

Let ϕ2,h denote the Galerkin finite element approximation of ϕ2 in the space V k
0,h ⊂⋂

p< d
d−1

W 1,p
0 (Ω) of continuous piecewise polynomial functions of degree k over a mesh Th

Find ϕ2,h ∈ V k
0,h, s.t.

∫
Ω

ε∇ϕ2,h · ∇vdx+

∫
Ω

k
2
ϕ2,hvdx = 〈F2, v〉, ∀v ∈ V k

0,h. (5.72)

In our numerical experiments, we always take k = 1. To derive an error representation

involving the adjoint solution z, similar to (5.31), we will need the following Proposition 5.10.
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Proposition 5.10

The following equalities hold true∫
Ω

ε∇(ϕ2 − ϕ2,h) · ∇zdx+

∫
Ω

k
2
(ϕ2 − ϕ2,h)zdx = 〈 1

4π
F 1, ϕ2 − ϕ2,h〉, (5.73)

∫
Ω

ε∇ϕ2 · ∇zdx+

∫
Ω

k
2
ϕ2zdx = 〈F2, z〉. (5.74)

Moreover,

〈 1

4π
F 1, ϕ2〉 = 〈F2, z〉. (5.75)

In order to avoid some technical details we will prove Proposition 5.10 only for the case

Is = 0, i.e., k = 0 and note that the proof for the case Is 6= 0 is similar.

Proof. The proof is similar to the proof of Proposition 5.6. Let Bm,2(r) :=
⋃N2
i=1B(xi,2, r),

where B(xi,2, r) is the open ball with center at xi,2 and a radius r. Again, here, r is chosen

so small that B(xi,2, 2r) is strictly contained in Ωm and B(xi,2, 2r) ∩B(xj,2, 2r) = ∅ for all

i 6= j, i, j = 1, 2, . . . , N2 and, additionally, B(xi,2, 2r) ∩B(xj,1, 2r) = ∅ for all i = 1, 2, . . . , N2

and all j = 1, 2, . . . , N1 (see Figure 5.2). We also assume that Bm,2(2r) ∩
N1⋃
i=1

B(xi,1, ri,1) = ∅.

The idea to prove (5.73) is to approximate ϕ2 − ϕ2,h with functions ψn in H1
0 (Ω) such that

ψn → ϕ2−ϕ2,h in H1
0 (Ω \Bm,2(2r)) and ψn → ϕ2−ϕ2,h in W 1,p(Bm,2(2r)) for some p < d

d−1 .

Similarly, to prove (5.74) we find functions ψn ∈W 1,q
0 (Ω) such that ψn → z in W 1,q(Bm,2(r))

for some q > d and ψn → z in H1 (Ω \Bm,2(r)). Thus, let us fix q such that d < q ≤ 6 and

let p be its Hölder conjugate, i.e., p is such that 1
p + 1

q = 1. It is clear that p satisfies p < d
d−1 .

Now, ϕ2 has singularities at the positions xi,2 of the charges qi,2 of the second dye. Testing

equation (5.29) with

v ∈ C∞0

(
Ωm \

N1⋃
i=1

B(xi,1, ri,1)

)
we see that (see p. 310 in [70] for interior regularity of linear elliptic problems)

z ∈ H1
0 (Ω) ∩Ht

loc

(
Ωm \

N1⋃
i=1

B(xi,1, ri,1)

)
for all intiger t ≥ 2.

From the Sobolev embedding theorem, it follows that z ∈W 1,q

(
Ωm \

N1⋃
i=1

B(xi,1, ri,1)

)
and

consequently z ∈W 1,q (Bm,2(2r)) which is also true for Is > 0, i.e., k
2
ions > 0.

Proof of (5.73)

Since w := ϕ2 − ϕ2,h ∈ W 1,p
0 (Ω), there exist functions wn ∈ C∞0 (Ω) such that ‖wn −
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w‖W 1,p(Ω)−−−→
n→∞

0. We define the functions ψn := w + (wn − w)χ2, where χ2 is a smooth

cut-off function such that

χ2(x) =

{
1, x ∈ Bm,2(r),

0, x ∈ Ω \Bm,2(2r).
(5.76)

We have

ψn(x) =


wn, x ∈ Bm,2(r),

w + (wn − w)χ2, x ∈ A2 := Bm,2(2r) \Bm,2(r),

w, x ∈ Ω \Bm,2(2r).

(5.77)

All functions ψn are clearly in W 1,p
0 (Ω), as the sum of such functions. Indeed, by the product

rule (see Theorem 2.9) applied to the functions wn−w ∈W 1,p
0 (Ω) and χ2 ∈ C∞0 (Ω), it follows

that (wn − w)χ2 ∈ W 1,p(Ω). Since (wn − w)χ2 has a compact support in Ω, by applying

Theorem 2.10, we see that (wn − w)χ2 ∈W 1,p
0 (Ω). Moreover, the weak derivatives of ψn are

given by

∂ψn
∂xi

=
∂w

∂xi
+

∂

∂xi
((wn − w)χ2) =

∂w

∂xi
+
∂(wn − w)

∂xi
χ2 + (wn − w)

∂χ2

∂xi
, i = 1, 2, 3 (5.78)

and therefore

∂ψn
∂xi

=



∂wn
∂xi

, x ∈ Bm,2(r),

∂w

∂xi
+
∂(wn − w)

∂xi
χ2 + (wn − w)

∂χ2

∂xi
, x ∈ A2 = Bm,2(2r) \Bm,2(r),

∂w

∂xi
, x ∈ Ω \Bm,2(2r).

(5.79)

From (5.77) and (5.79), by observing that ϕ2 = G2 + u2 ∈ H1 (Ω \Bm,2(r)), we see that over

each subdomain, ψn,
∂ψn
∂xi
∈ L2 and thus ψn ∈ H1(Ω). Because ψn ∈W 1,p

0 (Ω) it also follows

that ψn ∈ H1
0 (Ω) (see Remark 5.9). Now, for all n ∈ N we have∫

Bm,2(r)

ε∇z · ∇ψndx+

∫
A2

ε∇z · ∇ψndx+

∫
Ω\Bm,2(2r)

ε∇z · ∇ψndx = 〈 1

4π
F 1, ψn〉 (5.80)

Obviously, ‖∇(ψn − w)‖Lp(Bm,2(r))−−−→
n→∞

0, whereas on the set A2, for all i = 1, 2, 3 we have

∥∥∥∥∂ψn∂xi
− ∂w

∂xi

∥∥∥∥
Lp(A2)

≤
∥∥∥∥∂ (wn − w)

∂xi
χ2

∥∥∥∥
Lp(A2)

+

∥∥∥∥(wn − w)
∂χ2

∂xi

∥∥∥∥
Lp(A2)

≤
∥∥∥∥∂ (wn − w)

∂xi

∥∥∥∥
Lp(A2)

‖χ2‖L∞(Ω)+ ‖(wn − w)‖Lp(A2)

∥∥∥∥∂χ2

∂xi

∥∥∥∥
L∞(Ω)

→ 0

(5.81)

and therefore ‖∇(ψn − w)‖Lp(A2)−−−→
n→∞

0.
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By applying Hölder’s inequality and using the fact that ∇z ∈ Lq (Bm,2(2r)) we obtain∣∣∣∣∣∣∣
∫

Bm,2(r)

ε∇z · ∇(ψn − w)dx

∣∣∣∣∣∣∣ ≤ εmax‖∇z‖Lq(Bm,2(r))‖∇(ψn − w)‖Lp(Bm,2(r))−−−→
n→∞

0,

∣∣∣∣∣∣
∫
A2

ε∇z · ∇(ψn − w)dx

∣∣∣∣∣∣ ≤ εmax‖∇z‖Lq(A2)‖∇(ψn − w)‖Lp(A2)−−−→
n→∞

0.

We also have that for all n ∈ N,∫
Ω\Bm,2(2r)

ε∇z · ∇ψndx =

∫
Ω\Bm,2(2r)

ε∇z · ∇wdx,

where the integral on the right is well defined because z ∈ H1
0 (Ω) and ψn ∈ H1

0 (Ω). For the

right-hand side of (5.80), we obviously have

〈 1

4π
F 1, ψn − w〉 =

∫
Ω

l(ψn − w)dx =

∫
N1⋃
i=1

B(xi,1,ri,1)

l(ψn − w)dx = 0 for all n ∈ N.

Finally, letting n→∞ in (5.80) we obtain (5.73).

Proof of (5.74)

Since z ∈ H1
0 (Ω), we can find functions zn ∈ C∞0 (Ω), n = 1, 2 . . . such that

‖zn − z‖H1(Ω)−−−→
n→∞

0. We define the functions ψn := zn + (z − zn)χ2, n ∈ N. We have

ψn(x) =


z, x ∈ Bm,2(r),

zn + (z − zn)χ2, x ∈ A2 := Bm,2(2r) \Bm,2(r),

zn, x ∈ Ω \Bm,2(2r).

(5.82)

Obviously, the function ψn ∈ H1
0 (Ω) for all n ∈ N as the sum of such functions. Indeed, by

the product rule (see Theorem 2.9) applied to the functions z− zn ∈ H1
0 (Ω) and χ2 ∈ C∞0 (Ω),

it follows that (z− zn)χ2 ∈ H1(Ω). Since (z− zn)χ2 has a compact support in Ω, by applying

Theorem 2.10, we see that (z − zn)χ2 ∈ H1
0 (Ω). Moreover, the weak derivatives of ψn are

given by

∂ψn
∂xi

=
∂zn
∂xi

+
∂(z − zn)

∂xi
χ2 + (z − zn)

∂χ2

∂xi
, i = 1, 2, 3 (5.83)

and, therefore,

∂ψn
∂xi

=



∂z

∂xi
, x ∈ Bm,2(r),

∂zn
∂xi

+
∂(z − zn)

∂xi
χ2 + (z − zn)

∂χ2

∂xi
, x ∈ A2 = Bm,2(2r) \Bm,2(r),

∂zn
∂xi

, x ∈ Ω \Bm,2(2r).

(5.84)
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From (5.82) and (5.84), by using the fact that z ∈W 1,q (Bm,2(2r)), we can see that ψn,
∂ψn
∂xi
∈

Lq(Ω), i = 1, 2, 3 for all n = 1, 2, . . . and, therefore, ψn ∈ W 1,q(Ω). Since supp ψn ⊂⊂ Ω,

again by Theorem 2.10, it follows that ψn ∈W 1,q
0 (Ω). Now, for all n ∈ N it holds that∫

Bm,2(r)

ε∇ϕ2 · ∇ψndx+

∫
A2

ε∇ϕ2 · ∇ψndx+

∫
Ω\Bm,2(2r)

ε∇ϕ2 · ∇ψndx = 〈F2, ψn〉. (5.85)

On the set A2, for i = 1, 2, 3, since ‖zn − z‖H1(Ω)→ 0 and χ2,
∂χ2

∂xi
, i = 1, 2, 3 are essentially

bounded, we have∥∥∥∥∂ψn∂xi
− ∂z

∂xi

∥∥∥∥
L2(A2)

≤
∥∥∥∥∂zn∂xi

− ∂z

∂xi

∥∥∥∥
L2(A2)

+

∥∥∥∥∂ (z − zn)

∂xi
χ2

∥∥∥∥
L2(A2)

+

∥∥∥∥(z − zn)
∂χ2

∂xi

∥∥∥∥
L2(A2)

→ 0.

(5.86)

By using the fact that ϕ2 = G2 + u2 ∈ H1 (Ω \Bm,2(r)) and by applying Hölder’s inequality

we obtain∣∣∣∣∣∣
∫
A2

ε∇ϕ2 · ∇(ψn − z)dx

∣∣∣∣∣∣ ≤ εmax‖∇ϕ2‖L2(A2)‖∇(ψn − z)‖L2(A2)→ 0

∣∣∣∣∣∣∣
∫

Ω\Bm,2(2r)

ε∇ϕ2 · ∇(ψn − z)dx

∣∣∣∣∣∣∣ ≤ εmax‖∇ϕ2‖L2(Ω\Bm,2(2r))‖∇(ψn − z)‖L2(Ω\Bm,2(2r))→ 0

〈F2, ψn〉 = 〈F2, z〉 for all n ∈ N.

By letting n→∞ in (5.85), we obtain (5.74). To show (5.75), we only need to verify that∫
Ω

ε∇ϕ2 · ∇zdx+

∫
Ω

k
2
ϕ2zdx = 〈 1

4π
F 1, ϕ2〉.

The proof of this equality is the same as the proof of (5.73) where instead of w = ϕ2 − ϕ2,h

we take w = ϕ2.

Now, by using first (5.73) and then (5.74) we can derive the error representation for

〈 1
4πF 1, ϕ2 − ϕ2,h〉 in terms of the adjoint solution z ∈ H1

0 (Ω)

〈 1

4π
F 1, ϕ2 − ϕ2,h〉 =

∫
Ω

ε∇ (ϕ2 − ϕ2,h) · ∇zdx+

∫
Ω

k
2

(ϕ2 − ϕ2,h) zdx

= 〈F2, z〉 −
∫
Ω

ε∇ϕ2,h · ∇zdx−
∫
Ω

k
2
ϕ2,hzdx =: E(ϕ2,h, z).

(5.87)

We recall the observation we made about z in Section 5.3.1 under the assumption that Γ ∈ C1.

Namely, there exists q > d such that z ∈W 1,q
0 (Ω) which, by the Sobolev embedding theorem,
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implies that z has a continuous representative. Therefore, the nodal P1 interpolant in V 1
h of

z is well defined and we can write

E(ϕ2,h, z) = 〈F2, z − Ihz〉 −
∫
Ω

ε∇ϕ2,h · ∇(z − Ihz)dx−
∫
Ω

k
2
ϕ2,h(z − Ihz)dx

=
∑
K∈Th

ηK(ϕ2,h, z) =: η(ϕ2,h, z)

=

NV∑
i=1

{
〈F2, (z − Ihz)ψi〉 − (ε∇ϕ2,h,∇ ((z − Ihz)ψi))−

(
k

2
ϕ2,h, (z − Ihz)ψi

)}
︸ ︷︷ ︸

=:ηPUi

=: ηPU (ϕ2,h, z),

(5.88)

where NV is the number of nodes in the mesh Th, Ih is the nodal interpolation operator in

V 1
h , and

ηK(ϕ2,h, z) = 〈F2, (z − Ihz)χK〉 − (ε∇ϕ2,h,∇(z − Ihz))K
−
(
k

2
ϕ2,h, (z − Ihz)

)
K
.

(5.89)

Note that for an element K ∈ Th, the term 〈F2, (z − Ihz)χK〉 can be nonzero only if K

contains a partial charge from Dye II in it. Similarly, the term 〈F2, (z − Ihz)ψi〉 in the

definition of ηPUi can be nonzero only if the support of ψi contains a partial charge from

Dye II. To apply in practice the error indicators ηPUi or ηK , we use a Galerkin finite element

approximation z
(2)
h of z from the finite element space V k∗

0,τ with k∗ = 2 and τ ≡ h, i.e., V k∗
0,τ is

defined on the same triangulation Th as the finite element space V 1
0,h for the primal problem.

By taking into account (5.9), the approximate electrostatic interaction EP2−1 is given by

EP2−1 = 〈 1

4π
F 1, ϕ2,h〉 (5.90)

and the error estimation for the electrostatic interaction E2−1 is

E2−1 − EP2−1 = 〈 1

4π
F 1, ϕ2 − ϕ2,h〉

= E(ϕ2,h, z) = E(ϕ2,h, z
(2)
h ) + E(ϕ2, ϕ2,h, z, z

(2)
h ).

(5.91)

In view of Section 5.3.1, assuming that the term E(ϕ2, ϕ2,h, z, z
(2)
h ) converges faster to zero

than the term E(ϕ2,h, z
(2)
h ), we can write the approximate equality

E2−1 − EP2−1 ≈ E(ϕ2,h, z
(2)
h ). (5.92)

From the first two lines in (5.87) it can be seen that we also have an approximate version of

(5.75), given by the relation

E(ϕ2,h, z
(2)
h ) = 〈F2, z

(2)
h 〉 − 〈

1

4π
F 1, ϕ2,h〉. (5.93)
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In other words, the practical estimate for the error E(ϕ2,h, z
(2)
h ) is equal to the approximate

electrostatic interaction EA1−2 = 〈F2, z
(2)
h 〉, computed with the more accurate Lagrange Pk∗(=

P2) finite element, minus the approximate electrostatic interaction EP2−1 = 〈 1
4πF 1, ϕ2,h〉,

computed with Lagrange Pk(= P1) finite element. In practical computations (see Section 5.4,

Section 5.5.1, and Section 5.5.2), we use the corrected value for the electrostatic interaction,

which is given by EA1−2:

E2−1 ≈ EP2−1 + E(ϕ2,h, z
(2)
h ) = EP2−1 +

(
〈F2, z

(2)
h 〉 − 〈

1

4π
F 1, ϕ2,h〉

)
= EA1−2. (5.94)

Remark 5.11

Similarly to the first error estimation approach, for the practical application of this third error

estimate where instead of the original goal functional 1
4πF1 we use a regularized version of it,

1
4πF 1, special quadrature rules are needed for the evaluation of the terms 〈 1

4πF 1, ϕ2,h〉 and

〈 1
4πF 1, z

(2)
h 〉 (see, e.g. [108, 145] for such quadrature rules).

5.3.4 Error estimation 4: no splitting in primal problem and irregular

goal functional

Finally, we present a goal error estimation approach for the electrostatic interaction that

involves the primal problem (5.2), where the right-hand side is F2, and an adjoint problem in

which the right-hand side is formed by the irregular goal functional 1
4πF1 /∈ H−1(Ω). With

this approach, since we use directly the functional 1
4πF1, we avoid the problem with the

integration of discontinuous functions in the averaging procedure in Section 5.3.3. We recall

the primal problem defining the electrostatic potential ϕ2

ϕ2 ∈
⋂

p< d
d−1

W 1,p
0 (Ω),

∫
Ω

ε∇ϕ2 · ∇vdx+

∫
Ω

k
2
ϕ2vdx = 〈F2, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω). (5.2)

The weak form of the adjoint problem is given by (5.44) and we recall it here

Find z ∈
⋂

p< d
d−1

W 1,p
0 (Ω) such that

∫
Ω

ε∇v · ∇zdx+

∫
Ω

k
2
vzdx = 〈 1

4π
F1, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω).

(5.44)

We also recall that the solution z to the adjoint problem (5.44) satisfies the relation z = 1
4πϕ1

since ϕ1 solves the same linear problem but with a right-hand side F1 and a homogeneous

Dirichlet boundary condition (see (5.3)). In other words, the primal problem defines the

potential created by the charges of Dye 2 and the adjoint problem defines the potential

created by the charges of Dye I. As it is physically expected, the electrostatic interaction in

both cases should be the same, i.e, E2−1 = E1−2 (see Proposition 5.12). From Theorem 3.4

we know that (5.44) possesses a unique solution z ∈
⋂

p< d
d−1

W 1,p
0 (Ω) which has the form
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z = 1
4πϕ1 = 1

4π (G1 + u1) where u1 satisfies (5.10) with G1 instead of G2. By ϕ2,h we denote

the Galerkin finite element approximation of ϕ2 in the space V k
0,h with k = 1 defined by

(5.72). In order to derive an error representation for the goal quantity E2−1 = 〈 1
4πF1, ϕ2〉 in

terms of the adjoint solution z, we will need the following Proposition 5.12.

Proposition 5.12

The following equalities hold true∫
Ω

ε∇(ϕ2 − ϕ2,h) · ∇zdx+

∫
Ω

k
2
(ϕ2 − ϕ2,h)zdx = 〈 1

4π
F1, ϕ2 − ϕ2,h〉, (5.95)

∫
Ω

ε∇ϕ2 · ∇zdx+

∫
Ω

k
2
ϕ2zdx = 〈F2, z〉. (5.96)

Moreover,

〈 1

4π
F1, ϕ2〉 = 〈F2, z〉 = 〈 1

4π
F2, ϕ1〉. (5.97)

In order to avoid some technical details we will prove Proposition 5.12 only for the case

Is = 0, i.e., k = 0 and note that the proof for the case Is 6= 0 is similar.

Remark 5.13

In particular, (5.95) and (5.96) mean that the integrals on the left hand-sides are well defined,

as well as the expressions 〈 1
4πF1, ϕ2 − ϕ2,h〉 and 〈F2, z〉 are well defined. Note, that (5.95)

means that we can test (5.44) with the function ϕ2 − ϕ2,h which is not in
⋃
q>d

W 1,q
0 (Ω) and

(5.96) means that we can test (5.2) with z which is also not in
⋃
q>d

W 1,q
0 (Ω).

Proof of Proposition 5.12. We start with (5.95). The proof of this equality we split in two

steps. The first step is to show that we can test the equation (5.44) also with functions

v ∈ H1
0 (Ω) ∩W 1,q (Bm,1(2r)). Here, v ∈W 1,q (Bm,1(2r)) means that the restriction of v and

its first weak derivatives ∂v
∂xi

to Bm,1(2r) are in Lq (Bm,1(2r)). In the second step, we use the

functions ψn = w + (wn − w)χ2 ∈ H1
0 (Ω) ∩W 1,q (Bm,1(2r)) from the proof of (5.73) and we

show that by taking the limit n→∞, we arrive at (5.95). Before we continue, let us fix q

such that d < q ≤ 6 and let p be its Hölder conjugate, defined by 1
p+1

q = 1. Obviously, p < d
d−1 .

Step 1. Let v ∈ H1
0 (Ω)∩W 1,q (Bm,1(2r)). We will approximate v with functions θn ∈W 1,q

0 (Ω)

such that θn → v in W 1,q (Bm,1(r)) and θn → v in H1 (Ω \Bm,1(r)). Since v ∈ H1
0 (Ω),

there exist functions vn ∈ C∞0 (Ω) such that vn → v in H1(Ω). We define the functions

θn := vn + (v − vn)χ1, where χ1 is defined by (5.47). We have

θn(x) =


v, x ∈ Bm,1(r),

vn + (v − vn)χ1, x ∈ A1 = Bm,1(2r) \Bm,1(r),

vn, x ∈ Ω \Bm,1(2r).

(5.98)
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Obviously, the function θn ∈ H1
0 (Ω) for all n ∈ N as the sum of such functions. Indeed, by the

product rule (see Theorem 2.9) applied to the functions v− vn ∈ H1
0 (Ω) and χ1 ∈ C∞0 (Ω), we

obtain that (v − vn)χ1 ∈ H1(Ω). Since (v − vn)χ1 has a compact support in Ω, by applying

Theorem 2.10, we see that (v − vn)χ1 ∈ H1
0 (Ω). Moreover, the weak derivatives of θn are

given by

∂θn
∂xi

=
∂vn
∂xi

+
∂(v − vn)

∂xi
χ1 + (v − vn)

∂χ1

∂xi
, i = 1, 2, 3 (5.99)

and, therefore,

∂θn
∂xi

=



∂v

∂xi
, x ∈ Bm,1(r),

∂vn
∂xi

+
∂(v − vn)

∂xi
χ1 + (v − vn)

∂χ1

∂xi
, x ∈ A1 = Bm,1(2r) \Bm,1(r),

∂vn
∂xi

, x ∈ Ω \Bm,1(2r).

(5.100)

From the expressions (5.98) and (5.100) for θn and ∂θn
∂xi

, i = 1, 2, 3, respectively, we see that

θn,
∂θn
∂xi
∈ Lq(Ω), i = 1, 2, 3, and therefore θn ∈W 1,q(Ω). Since the support of θn is a compact

set in Ω, by Theorem 2.10, it follows that θn ∈W 1,q
0 (Ω) for all n ∈ N. Now, for all n ∈ N we

have ∫
Bm,1(r)

ε∇θn · ∇zdx+

∫
A1

ε∇θn · ∇zdx+

∫
Ω\Bm,1(2r)

ε∇θn · ∇zdx = 〈 1

4π
F1, θn〉. (5.101)

On the set A1, for i = 1, 2, 3, since ‖vn − v‖H1(Ω)→ 0 and χ1,
∂χ1

∂xi
, i = 1, 2, 3 are essentially

bounded, we have∥∥∥∥∂θn∂xi
− ∂v

∂xi

∥∥∥∥
L2(A1)

≤
∥∥∥∥∂vn∂xi

− ∂v

∂xi

∥∥∥∥
L2(A1)

+

∥∥∥∥∂ (v − vn)

∂xi
χ1

∥∥∥∥
L2(A1)

+

∥∥∥∥(v − vn)
∂χ1

∂xi

∥∥∥∥
L2(A1)

→ 0

(5.102)

and, therefore, ‖∇(θn − v)‖L2(A1)−−−→
n→∞

0. Obviously, we also have that

‖∇(θn − v)‖L2(Ω\Bm,1(2r))−−−→
n→∞

0.

By applying Hölder’s inequality and using the fact that∇z = 1
4π (∇G1 +∇u1) ∈ L2 (Ω \Bm,1(r))

we obtain ∣∣∣∣∣∣
∫
A1

ε∇z · ∇(θn − v)dx

∣∣∣∣∣∣ ≤ εmax‖∇z‖L2(A1)‖∇(θn − v)‖L2(A1)→ 0,

∣∣∣∣∣∣∣
∫

Ω\Bm,1(2r)

ε∇z · ∇(θn − v)dx

∣∣∣∣∣∣∣ ≤ εmax‖∇z‖L2(Ω\Bm,1(2r))‖∇(θn − v)‖L2(Ω\Bm,1(2r))→ 0.
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We also have that for all n ∈ N ∫
Bm,1(r)

ε∇z · ∇θndx =

∫
Bm,1(r)

ε∇z · ∇vdx,

〈 1

4π
F1, θn〉 =

N1∑
i=1

qi,1v(xi,1) =: 〈 1

4π
F1, v〉,

where the integral
∫

Bm,1(r)

ε∇z · ∇vdx is well defined because z ∈
⋂

s< d
d−1

W 1,s
0 (Ω) and v ∈

H1
0 (Ω) ∩W 1,q (Bm,1(2r)), and 〈 1

4πF1, v〉 is well defined because by the Sobolev embedding

theorem v ∈ W 1,q (Bm,1(2r)) ↪→ C0,λ
(
Bm,1(2r)

)
, 0 < λ ≤ 1 − d/q (see Theorem 2.11).

Finally, by letting n → ∞ in (5.101) we obtain that (5.44) holds true when tested with

v ∈ H1
0 (Ω) ∩W 1,q (Bm,1(2r)).

Step 2. Now, we take the functions ψn = w+(wn−w)χ2 ∈ H1
0 (Ω) from the proof of (5.73). By

observing the facts that G2 is smooth in Bm,1(2r) and that by the Sobolev embedding theorem

u2 ∈ H2
loc(Ωm) implies u2 ∈ W 1,q (Bm,1(2r)), we see that ϕ2 = G2 + u2 ∈ W 1,q (Bm,1(2r)).

Now, since w = ϕ2 − ϕ2,h ∈ W 1,q (Bm,1(2r)), we see that ψn = w + (wn − w)χ2 ∈ H1
0 (Ω) ∩

W 1,q (Bm,1(2r)) for all n ∈ N. By the first step, we have that for all n ∈ N it holds∫
Bm,1(r)

ε∇z · ∇ψndx+

∫
A1

ε∇z · ∇ψndx+

∫
Ω\(Bm,1(2r)∪Bm,2(2r))

ε∇z · ∇ψndx

+

∫
A2

ε∇z · ∇ψndx+

∫
Bm,2(r)

ε∇z · ∇ψndx = 〈 1

4π
F1, ψn〉

(5.103)

On the domains of integration for the first three integrals in (5.103), ∇ψn = ∇w. From the

proof of (5.73) we have that

‖∇(ψn − w)‖Lp(Bm,2(r))−−−→
n→∞

0 and ‖∇(ψn − w)‖Lp(A2)−−−→
n→∞

0.

By applying Hölder’s inequality and using the fact that∇z = 1
4π (∇G1 +∇u1) ∈ Lq (Bm,2(2r))

(this is due to the fact that u1 ∈ H2
loc(Ωm) and the Sobolev embedding theorem) we obtain∣∣∣∣∣∣∣

∫
Bm,2(r)

ε∇z · ∇(ψn − w)dx

∣∣∣∣∣∣∣ ≤ εmax‖∇z‖Lq(Bm,2(r))‖∇(ψn − w)‖Lp(Bm,2(r))→ 0,

∣∣∣∣∣∣
∫
A2

ε∇z · ∇(ψn − w)dx

∣∣∣∣∣∣ ≤ εmax‖∇z‖Lq(A2)‖∇(ψn − w)‖Lp(A2)→ 0.

〈L , ψn〉 =

N1∑
i=1

qi,1w(xi,1) =: 〈 1

4π
F1, w〉, ∀n ∈ N.
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Finally, letting n→∞ in (5.103), we obtain (5.95).

The proofs of (5.96) and (5.97) are similar to the proof of (5.95) and we skip them.

Now, by using first (5.95) and then (5.96) we can derive the error equality for

〈 1
4πF1, ϕ2 − ϕ2,h〉 in terms of the adjoint solution z

〈 1

4π
F1, ϕ2 − ϕ2,h〉 =

∫
Ω

ε∇ (ϕ2 − ϕ2,h) · ∇zdx+

∫
Ω

k
2

(ϕ2 − ϕ2,h) zdx

= 〈F2, z〉 −
∫
Ω

ε∇ϕ2,h · ∇zdx−
∫
Ω

k
2
ϕ2,hzdx =: E(ϕ2,h, z).

(5.104)

Note that in order to evaluate the error estimator E(ϕ2,h, z), one has to know the exact

solution z of the adjoint problem or an approximation of it. As we have already discussed, in

practice one finds a good approximation of z in a richer space than the one in which ϕ2,h

is found. In particular, we use the Galerkin finite element approximation z
(2)
h of z from the

space V 2
h defined on the same mesh Th on which V 1

h is defined. In this case, by using Galerkin

orthogonality, similarly to (5.17) (see [13,159]), we can write

E(ϕ2,h, z
(2)
h ) =〈F2, z

(2)
h − Ihz

(2)
h 〉 −

∫
Ω

ε∇ϕ2,h · ∇(z
(2)
h − Ihz

(2)
h )dx

−
∫
Ω

k
2
ϕ2,h(z

(2)
h − Ihz

(2)
h )dx

=
∑
K∈Th

ηK(ϕ2,h, z
(2)
h ) =: η(ϕ2,h, z

(2)
h )

=

NV∑
i=1

ηPUi (ϕ2,h, z
(2)
h ) =: ηPU (ϕ2,h, z

(2)
h ),

(5.105)

where NV is the number of nodes in the mesh Th, {ψi}NVi=1 are the nodal P1 basis functions,

Ih is the nodal interpolation operator in V 1
h , and

ηK(ϕ2,h, z
(2)
h ) =〈F2, (z

(2)
h − Ihz

(2)
h )χK〉 −

(
ε∇ϕ2,h,∇(z

(2)
h − Ihz

(2)
h )
)
K

−
(
k

2
ϕ2,h, (z

(2)
h − Ihz

(2)
h )
)
K
,

(5.106)

ηPUi (ϕ2,h, z
(2)
h ) =〈F2,

(
z

(2)
h − Ihz

(2)
h

)
ψi〉 −

(
ε∇ϕ2,h,∇

(
(z

(2)
h − Ihz

(2)
h )ψi

))
−
(
k

2
ϕ2,h,

(
z

(2)
h − Ihz

(2)
h

)
ψi

)
.

(5.107)

Recall that for an element K ∈ Th, the term 〈F2, (z
(2)
h − Ihz

(2)
h )χK〉 can be nonzero only if

K contains a partial charge from Dye II in it. Similarly, the term 〈F2,
(
z

(2)
h − Ihz

(2)
h

)
ψi〉 in

the definition of ηPUi can be nonzero only if the support of ψi contains a partial charge from

Dye II. The approximate electrostatic interaction EP2−1 is given by

EP2−1 = 〈 1

4π
F1, ϕ2,h〉 (5.108)
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and the error estimation for the electrostatic interaction E2−1 is

E2−1 − EP2−1 = 〈 1

4π
F1, ϕ2 − ϕ2,h〉

= E(ϕ2,h, z) = E(ϕ2,h, z
(2)
h ) + E(ϕ2, ϕ2,h, z, z

(2)
h ),

(5.109)

where

E(ϕ2, ϕ2,h, z, z
(2)
h ) = 〈F2, z − z(2)

h 〉 −
∫
Ω

ε∇ϕ2,h · ∇(z − z(2)
h )dx−

∫
Ω

k
2
ϕ2,h(z − z(2)

h )dx

=

∫
Ω

ε∇(ϕ2 − ϕ2,h) · ∇(z − z(2)
h )dx+

∫
Ω

k
2
(ϕ2 − ϕ2,h)(z − z(2)

h )dx. (5.110)

We expect that the term E(ϕ2, ϕ2,h, z, z
(2)
h ) again converges faster than the term E(ϕ2,h, z

(2)
h ),

as we can assume in Section 5.3.1, and in practice we use the approximate equality

E2−1 − EP2−1 ≈ E(ϕ2,h, z
(2)
h ) = 〈F2, z

(2)
h 〉 − 〈

1

4π
F1, ϕ2,h〉, (5.111)

which can also be written in the form

E2−1 ≈ EP2−1 +

(
〈F2, z

(2)
h 〉 − 〈

1

4π
F1, ϕ2,h〉

)
= 〈F2, z

(2)
h 〉. (5.112)

The quantity EP2−1 + E(ϕ2,h, z
(2)
h ) = EA1−2 is the ”corrected” value for the electrostatic

interaction and it is used in the biophysical applications as a better approximation of the

interaction E2−1 (see Section 5.4, Section 5.5.1, and Section 5.5.2).

Remark 5.14

We have proved Proposition 5.6, Proposition 5.10, and Proposition 5.12 in the case when

all charges {qi,1}N1
i=1 and {qi,2}N2

i=1 are placed inside the molecular region Ωm. However, in

the proofs we only use the assumptions that εm is constant, that εs ∈ C0,1(Ωs), and that

the charges are at a positive distance from the interface Γ. These assumptions guarantee

the H2
loc regularity of the reaction field part of the potential in the regions Ωm and Ωs (see

Theorem 3.4). Therefore, if we further assume εs to be constant (εs will play the role of the

constant εm in the definition of the Green’s function G), the same proofs with slight technical

modifications would work in the case when Is = 0 and either the charges {qi,1}N1
i=1 or {qi,2}N2

i=1

or both {qi,1}N1
i=1 and {qi,2}N2

i=1 are in the solvent region Ωs.

When Is > 0 (k
2
ions > 0), let us assume without loss of generality that {qi,1}N1

i=1 ⊂ Ωs. The

regularity of the primal problem, defining the potential u2, in the case of error estimate 1

and error estimate 2, or ϕ2, in the case of error estimate 3 and error estimate 4, is

analyzed as usual through the 2-term splitting (Theorem 3.4) where

G2 :=

N2∑
i=1

qi,2
εm |x− xi,2|

.
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For the analysis of the adjoint problem in the case of error estimate 2 and error esti-

mate 4, assume additionally that εs is constant (the adjoint problem in the case of error

estimate 1 and error estimate 3 has a regular L∞ right-hand side and hence there are

no difficulties). Observe that 1
|x−xi,1|t

∈ L1(Ω) if and only if t < d. Thus, if d = 3, then
1

εs|x−xi,1| ∈ L
2(Ωs). Therefore the function G1 defined by

G1 :=

N1∑
i=1

qi,1
εs |x− xi,1|

is also in L2(Ωs). It is clear that G1 ∈
⋂

p< d
d−1

W 1,p
0 (Ω), and similarly to (3.15), G1 satisfies

∫
Ω

εs∇G1 · ∇vdx = 〈F1, v〉, ∀v ∈
⋃
q>d

W 1,q
0 (Ω), (5.113)

where F1 = 4π
N1∑
i=1

qi,1δxi,1.

The adjoint problem defining the potential z = 1
4πϕ1 is given by

Find z ∈
⋂

p< d
d−1

W 1,p
0 (Ω) such that

∫
Ω

ε∇v · ∇zdx+

∫
Ω

k
2
vzdx = 〈 1

4π
F1, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω).

(5.44)

We can perform the splitting of ϕ1 into G1 and u1, where ϕ1 solves (5.44) but with a right-hand

side F1, and u1 ∈ H1
−G1

(Ω) ⊂
⋂

p< d
d−1

W 1,p
−G1

(Ω) satisfies

∫
Ω

ε∇u1 · ∇vdx+

∫
Ω

k
2
u1vdx =

∫
Ωm

(εs − εm)∇G1 · ∇vdx−
∫
Ω

k
2
G1vdx, ∀v ∈ H1

0 (Ω).

(5.114)

Indeed, the rigth-hand side of (5.114) defines a functional in H−1 (in the first integral on

the right-hand side, G1 is smooth, whereas in the second intergal, G1 has singularities in Ωs)

and hence by the Lax-Milgram Theorem (5.114) has a unique solution u1 ∈ H1
−G1

(Ω). The

uniqueness of ϕ1 under the assumption that Γ ∈ C1 is done in a similar way to the proof in

Theorem 3.4. Finally, by testing with functions v ∈ C∞0 (Ωm), v ∈ C∞0 (Ωs) and using the fact

that G1 ∈ L2(Ω), we obtain that u1 ∈ H1
−G1

(Ω) ∩H2
loc(Ωm) ∩H2

loc(Ωs) (see p. 309 in [70] for

interior H2 regularity of linear elliptic problems).

5.3.5 Summary of all four error estimates

Before we move on to the applications, we summarize the four error estimates that we

derived in Sections 5.3.1, 5.3.2, 5.3.3, 5.3.4 and briefly discuss their features and applicability.
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For the relevant notation below, we refer to the respective sections. We recall that since

we solve the linearized Poisson-Boltzmann equation and we impose homogeneous Dirichlet

boundary conditions on the potential, the computed electrostatic interaction does not depend

on whether the charges are in Dye II or in Dye I, i.e., E2−1 = E1−2. Thus, without loss of

generality, we assume that there are only charges in Dye II and we are interested in computing

the electrostatic potential at the positions of the charges in Dye I. However, in the case

of the nonlinear PBE, the symmetry of the electrostatic interaction is in general lost and

E2−1 6= E1−2 even with homogeneous Dirichlet boundary conditions.

Two of the derived error estimates, namely error estimate 1 and error estimate 3, exploit

averaging over balls B(xi,1, ri,1) in the goal functional. If the finite element mesh is not

aligned with the balls B(xi,1, ri,1), the rigorous application of these two estimates necessitates

the use of special quadrature rules that can perform the integration of discontinuous functions

with high enough accuracy (see [108,145]). As an alternative to these two error estimates,

we present error estimate 2 and error estimate 4, where the goal functional is a linear

combination of pointwise evaluations and thus the integration problem is eliminated.

Error estimate 1 and error estimate 2

These two approaches are applicable when only the reaction field potential is needed or when

the dielectric screening in the solvent region Ωs is weak. The latter is typically the case when

the ratio εm/εs is close to one and the ionic strength Is is zero. The primal problem in error

estimate 1 and error estimate 2 defines the reaction field potential u2 ∈ H1
−G2

(Ω) in the

two term splitting ϕ2 = G2 + u2 and according to Theorem 3.4 is given by∫
Ω

ε∇u2 · ∇vdx+

∫
Ω

k
2
u2vdx

=

∫
Ωs

(εm − εs)∇G2 · ∇vdx−
∫
Ω

k
2
G2vdx = 〈T2, v〉 for all v ∈ H1

0 (Ω).
(5.10)

Equation (5.10) is the weak formulation of the linear interface problem

−∇ · (ε∇u2) + k
2
u2 = −k2

G2 in Ωm ∪ Ωs, (5.115a)

[u2]Γ = 0, (5.115b)

[ε∇u2 · nΓ]Γ = − [ε∇G2 · nΓ]Γ , (5.115c)

u2 = −G2 on ∂Ω. (5.115d)

The right-hand side of the adjoint problem in error estimate 1 is formed by the regular

goal functional 1
4πF 1 ∈ H−1(Ω) ∩ L∞(Ω) defined by

〈 1

4π
F 1, v〉 =

∫
Ω

lvdx, with l(x) =

N1∑
i=1

χB(xi,1,ri,1)(x)

|B(xi,1, ri,1)|
(5.116)
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and the weak form of the adjoint problem is

Find z ∈ H1
0 (Ω) such that∫

Ω

ε∇v · ∇zdx+

∫
Ω

k
2
vzdx = 〈 1

4π
F 1, v〉, ∀v ∈ H1

0 (Ω).
(5.29)

Since u2 is harmonic in Ωm, for the reaction field part Eu2 of the interaction it holds

Eu2 =

N1∑
i=1

qi,1u2(xi,1) = 〈 1

4π
F1, u2〉 = 〈 1

4π
F 1, u2〉.

On the other hand, the right-hand side of the adjoint problem in error estimate 2 is formed

by the goal functional 1
4πF1 /∈ H−1(Ω) and the weak formulation in this case is

Find z ∈
⋂

p< d
d−1

W 1,p
0 (Ω) such that

∫
Ω

ε∇v · ∇zdx+

∫
Ω

k
2
vzdx = 〈 1

4π
F1, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω).

(5.44)

In all four error estimates, the corresponding approximate solution u2,h and ϕ2,h of the primal

problem is found by solving a Galerkin formulation in the space V 1
h of continuous piecewise

linear functions over a mesh Th whereas the approximate solution z
(2)
h of the adjoint problem

is found by a Galerkin formulation in the space V 2
h of continuous piecewise quadratic functions

over the same mesh Th.

In error estimate 1, the approximate electrostatic interaction EP2−1 is given by

EP2−1 = EG2 + 〈 1

4π
F 1, u2,h〉, (5.35)

whereas in error estimate 2, the approximate electrostatic interaction EP2−1 is given by

EP2−1 = EG2 + 〈 1

4π
F1, u2,h〉. (5.62)

The error estimator for the electrostatic interaction E2−1 is E(u2,h, z
(2)
h ), i.e.,

E2−1 − EP2−1 = E(u2,h, z) ≈ E(u2,h, z
(2)
h ),

where the quantity E(u2,h, z
(2)
h ) is given in both cases by

E(u2,h, z
(2)
h ) = 〈T2, z

(2)
h 〉 −

∫
Ω

ε∇u2,h · ∇z
(2)
h dx−

∫
Ω

k
2
u2,hz

(2)
h dx.

The corrected value for E2−1 is EP2−1+E(u2,h, z
(2)
h ). However, in the case of error estimate 2

it is better to use the quantity EA1−2 = 〈F2, z
(2)
h 〉 since it is easier to compute and numerically
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more stable (note that E1−2 = 〈F2, z〉). As error indicators, we use either the elementwise

indicators ηK or the nodewise indicators ηPUi . In both error estimation approaches we have

E(u2,h, z
(2)
h ) =〈T2, z

(2)
h − Ihz

(2)
h 〉 −

∫
Ω

ε∇u2,h · ∇(z
(2)
h − Ihz

(2)
h )dx

−
∫
Ω

k
2
u2,h(z

(2)
h − Ihz

(2)
h )dx

=
∑
K∈Th

ηK(u2,h, z
(2)
h ) =

NV∑
i=1

ηPUi (u2,h, z
(2)
h ),

(5.117)

where NV is the number of nodes in the mesh Th, {ψi}NVi=1 are the nodal P1 basis functions,

Ih is the nodal interpolation operator in V 1
h , and

ηK(u2,h, z
(2)
h ) =

(
(εm − εs)∇G2χΩs − ε∇u2,h,∇(z

(2)
h − Ihz

(2)
h )
)
K

−
(
k

2
(G2 + u2,h), (z

(2)
h − Ihz

(2)
h )
)
K
,

(5.118)

ηPUi (u2,h, z
(2)
h ) =

(
(εm − εs)∇G2χΩs − ε∇u2,h,∇

((
z

(2)
h − Ihz

(2)
h

)
ψi

))
−
(
k

2
(G2 + u2,h), (z

(2)
h − Ihz

(2)
h )ψi

)
.

(5.119)

Error estimate 3 and error estimate 4

The next two approaches, error estimate 3 and error estimate 4, are appropriate to use

in the presence of strong dielectric screening when one needs the the full potential and not

only the reaction field part of it (however, we show in Section 5.4.2 and Section 5.4.3 that

even in the presence of strong dielectric screening, Solver 1 and Solver 2 perform equally

well when one has to sompute electrostatic interactions). This time we do not perform the

2-term splitting and the primal problem in these two cases defines the full potential ϕ2

ϕ2 ∈
⋂

p< d
d−1

W 1,p
0 (Ω),

∫
Ω

ε∇ϕ2 · ∇vdx+

∫
Ω

k
2
ϕ2vdx = 〈F2, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω). (5.2)

In error estimate 3, the goal functional 1
4πF 1 and the corresponding adjoint problem

are the same as in error estimate 1. This time, the goal quantity is the full electrostatic

interaction E2−1 = 〈 1
4πF 1, ϕ2〉 and the approximate interaction is given by

EP2−1 = 〈 1

4π
F 1, ϕ2,h〉.

As an alternative to error estimate 3, error estimate 4 does not exploit averaging over

the balls B(xi,1, ri,1) and thus avoids the cumbersome numerical integration of discontinuous

functions. In this case, the goal functional is 1
4πF1 and the corresponding adjoint problem
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is the same as in error estimate 2. The goal quantity is E2−1 = 〈 1
4πF1, ϕ2〉 and the

approximate interaction is

EP2−1 = 〈 1

4π
F1, ϕ2,h〉.

The error estimator for the electrostatic interaction E2−1 is E(ϕ2,h, z
(2)
h ), i.e.,

E2−1 − EP2−1 = E(ϕ2,h, z) ≈ E(ϕ2,h, z
(2)
h ),

where the quantity E(ϕ2,h, z
(2)
h ) is given in both cases by

E(ϕ2,h, z
(2)
h ) = 〈F2, z

(2)
h 〉 −

∫
Ω

ε∇ϕ2,h · ∇z
(2)
h dx−

∫
Ω

k
2
ϕ2,hz

(2)
h dx.

In each case, we can further rewrite the quantity E(ϕ2,h, z
(2)
h ) as

E(ϕ2,h, z
(2)
h ) =


〈F2, z

(2)
h 〉 − 〈

1

4π
F 1, ϕ2,h〉, for error estimate 3,

〈F2, z
(2)
h 〉 − 〈

1

4π
F1, ϕ2,h〉, for error estimate 4.

(5.120)

The corrected value for E2−1, which we use in practice, is EP2−1 +E(ϕ2,h, z
(2)
h ) = 〈F2, z

(2)
h 〉 =

EA1−2 for both error estimates. Recall that EA1−2 is computed with the higher accurate adjoint

solution z
(2)
h ∈ V

2
h . As error indicators, we use either the elementwise indicators ηK or the

nodewise indicators ηPUi . In both error estimation approaches we have

E(ϕ2,h, z
(2)
h ) =〈F2, z

(2)
h − Ihz

(2)
h 〉 −

∫
Ω

ε∇ϕ2,h · ∇(z
(2)
h − Ihz

(2)
h )dx

−
∫
Ω

k
2
ϕ2,h(z

(2)
h − Ihz

(2)
h )dx

=
∑
K∈Th

ηK(ϕ2,h, z
(2)
h ) =

NV∑
i=1

ηPUi (ϕ2,h, z
(2)
h ),

(5.121)

where

ηK(ϕ2,h, z
(2)
h ) =〈F2,

(
z

(2)
h − Ihz

(2)
h

)
χK〉 −

(
ε∇ϕ2,h,∇

(
z

(2)
h − Ihz

(2)
h

))
K

−
(
k

2
ϕ2,h,

(
z

(2)
h − Ihz

(2)
h

))
K
,

(5.122)

ηPUi (ϕ2,h, z
(2)
h ) =〈F2,

(
z

(2)
h − Ihz

(2)
h

)
ψi〉 −

(
ε∇ϕ2,h,∇

(
(z

(2)
h − Ihz

(2)
h )ψi

))
−
(
k

2
ϕ2,h,

(
z

(2)
h − Ihz

(2)
h

)
ψi

)
.

(5.123)

Remark 5.15

We note that in all four error estimates it is not necessary to use the spaces V 1
h and V 2

h for

the primal and adjoint problem, respectively. Instead, one can use conforming spaces V k
h and
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V k∗
h of polynomial degrees k < k∗. It is even possible to take an approximation of z in the

same space V k
h as for the primal problem and then use some reconstruction to reinterpret it

as a function in the higher accurate space V k∗
h . For such reconstructions we refer to [159]

and the references therein. Finally, the underlying meshes for the two discrete spaces V k
h and

V k∗
h can be also different.

Adaptive algorithm

In general, adaptive algorithms can be represented with the following diagram (Figure 5.3):

Instead of the mesh parameter h, we will use a subindex l = 1, 2, . . . . to denote the refinement

solve estimate mark refine

Figure 5.3: Schematic representation of an adaptive refinement algorithm.

level. The number of elements in the mesh Tl at refinement level l will be denoted by N l
E

and the number of vertices by N l
V . Based on our experience, we have not noticed significant

difference between the two error indicators ηK and ηPUi and thus, we will present results

obtained only with the indicators ηK . The adaptive finite element solver based on the four

error estimates above can be summarized as follows.

Solve

In this step, a Galerkin finite element approximation u2,l or ϕ2,l from the space V 1
l , defined

on the current mesh Tl, is found by solving (5.41) or (5.72), respectively.

Estimate

Next, we find an approximation z
(2)
l ∈ V 2

0,h for the adjoint problem by solving a Galerkin

formulation of (5.29) for error estimate 1 and error estimate 3 or (5.44) for error

estimate 2 and error estimate 4. Once we have z
(2)
l , we compute the error indicators

ηK(u2,l, z
(2)
l ) in the case of error estimate 1 and error estimate 2 or ηK(ϕ2,l, z

(2)
l ) in the

case of error estimate 3 and error estimate 4.

Mark

Based on the values of ηK , a set of elements Ml ⊂ Tl is marked for refinement. This set can

be chosen through different marking strategies.

(i) One such marking strategy takes the average of all indicators

∑
K∈Tl

|ηK |

NE
and compares
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it to each |ηK |. If |ηK | is larger than this average, the element K is marked for refinement.

(ii) Another marking strategy ranks the values |ηK | in descending order and for a parameter

θ ∈ (0, 1) it chooses the first θNE of them.

(iii) A third, very popular method, is the so-called bulk criterion or greedy algorithm, which

for a given bulk parameter θ ∈ (0, 1) selects the smallest set of elements Ml ⊂ Tl such

that
∑

K∈Ml

|ηK | ≥ θη, where η =
∑
K∈Tl

|ηK |.

Depending on the marking strategy, the sets of selected elements for refinement can be also

different.

If the mesh generator performs local refinement using information different from that of

elements being marked or not, one has to define an algorithm to deliver this information

based on the element error indicators ηK . We will illustrate this in the following for the mesh

generator mmg3d [62], which requires as an input for refinement a new local mesh size hnew
i

at each vertex Vi, i = 1, 2, . . . , NV . Then mmg3d tries to generate a mesh in which the local

mesh size is as close as possible to hnew
i . If hold

i denotes the old (current) mesh size, defined

as the arithmetic mean of the lengths of all edges connected to vertex Vi, then the new local

mesh size hnew
i is computed from the indicators ηK and the old mesh size hold

i by the formula

hnew
i = hold

i max

 1

max { ηOi
AM{ηOi}

, 1}
, r

, (5.124)

where Oi :=
⋃
{K ∈ Tl : Vi ∈ K} (all elements K are compact sets), ηOi =

∣∣∣∣∣ ∑K⊂Oi ηK
∣∣∣∣∣ are

patchwise (nodewise) error indicators (very similar to the error indicators ηPUi that were

constructed with partition of unity), and AM{ηOi} is the arithmetic mean of all ηOi , i.e.,

AM{ηOi} :=

NV∑
i=1

ηOi

NV
.

In (5.124), r ∈ (0, 1) is a parameter which guarantees that the minimum local mesh size hnew
i

satisfies hnew
i ≥ rhold

i herewith limiting the decrease of the mesh size. In our computations,

we use r = 0.35.

Refine

Finally, a new mesh Tl+1 is obtained through a refinement based on the marked elements

Ml on the previous step.



220 CHAPTER 5. GOAL-ORIENTED ERROR ESTIMATES

Below, we give a pseudocode of the adaptive solver based on error estimate 4 in which any

marking strategy can be used. The pseudocodes for the adaptive solvers based on the other

three error estimates are similar.

Algorithm 1 Adaptive solver based on error estimate 4

1: l← 0, initialize T0, V
1

0 , V
2

0

2: do

3: ϕ2,l ← Solveprim(Tl, V
1
l )

4: z
(2)
l ← Solveadj(Tl, V

2
l )

5: {ηK}K∈Tl ← Estimate(ϕ2,l, z
(2)
l ,Tl)

6: Ml ← Mark({ηK}K∈Tl)

7: Tl+1 ← Refine(Tl,Ml)

8: l← l + 1

9: while convergence or maximum number of refinement levels reached

Above, the procedure ϕ2,l ←Solveprim(Tl, V
1
l ) finds a Galerkin approximation of ϕ2 based

on (5.72), whereas z
(2)
l ←Solveadj(V 2

l ) finds a Galerkin approximation of z based on (5.29).

We prefer to use error estimate 2 and error estimate 4 since no special quadrature rule

is needed. In all presented examples and applications, we have used the conjugate gradient

(CG) method with a simple Jacoby preconditioner in the procedures Solveprim and Solveadj .

The error tolerance used in the stopping criteria of the CG method is set very low in order

to ensure that the iterative error is negligible compared to the discretization error. This

allows us to demonstrate the efficiency of the goal-oriented error estimates developed above,

independently from the choice of a particular iterative solver.

5.4 Verification of the error estimates

In this section, we present 3 tests in which the exact solution is known and we compare the

results obtained by applying the derived error estimates. We will abbreviate by Solver 1,

Solver 2, Solver 3, or Solver 4 the adaptive algorithm based on error estimate 1, error

estimate 2, error estimate 3, or error estimate 4, respectively. We recall that the

number of DOFs in the primal problem is equal to the number of mesh vertices in the mesh

Th, whereas the number of DOFs in the adjoint problem is approximately 8 times larger

in 3D. We will often compare our results to the results obtained with the software package

MEAD (Macroscopic Electrostatics with Atomic Detail) version 2.2.8a and thus we give a

brief overview of it. MEAD is a collection of several applications for the purpose of modeling

electrostatics in molecules where the electrostatic potential is determined by approximately

solving the LPBE with the finite difference method on uniform Cartesian grids. To improve

the accuracy without massively increasing the computational costs, MEAD utilizes a so-called

focusing scheme where a sequence of several computations on progressively finer grids are

done. The first and coarsest grid has n1 grid points in each coordinate direction and covers a
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relatively big region Ω in R3 with a coarse grid spacing h1. The boundary condition for this

first grid is specified by the analytical solution of a simplified problem. For example, in the

case of a molecule with a dielectric coefficient ε = εm embedded in a solvent with ε = εs ≥ εm,

the potential g on the boundary ∂Ω is given by a simple Coulomb potential with a dielectric

coefficient equal to εs everywhere, i.e.,

g =

Nm∑
i=1

qi
εs |x− xi|

, (5.125)

where qi, i = 1, 2, . . . , Nm are the partial charges of the molecule. Next, a computation on a

finer grid, with a smaller extent, is done, where the values for the potential on the boundary

are taken from the solution on the previous grid. Depending on the size of the molecular

system and the application, three or more focused grids can be used, where the grids are

usually focused on the areas of interest. Each focused grid level l in MEAD is specified by its

centering, number of grid points per direction nl, and grid spacing hl Å. The centering can

be specified by one of the following two key words ON ORIGIN and ON GEOM CENT or by

specifying a center of interest by its three coordinates. For example, a grid configuration with

three focused grids, all centered at the geometrical center of the molecular system, looks like

ON GEOM CENT n1 h1

ON GEOM CENT n2 h2

ON GEOM CENT n3 h3,

where nl, l = 1, 2, . . . must be odd numbers. Typical values for nl, hl, l = 1, 2, 3 for one

of the applications that we will be interested in are n1 = 97, h1 = 3, n2 = 161, h2 = 1,

n3 = 161, h3 = 0.25. If all focused grids are centered at ON GEOM CENT, for short we

write

ON GEOM CENT n1 − h1, n2 − h2, n3 − h3.

To compute the electrostatic interaction with MEAD we have used either multiflex or potential.

In the case of multiflex, to find the electrostatic interaction, MEAD performs two calculations

for each focused grid - one for the electrostatic potential created by the charges of the first

molecule and one for the electrostatic potential created by the charges of the second molecule.

The final value for the electrostatic interaction is the average of the computed values for E2−1

and E1−2. In the case of potential, MEAD outputs the potential at a priori specified by the

user coordinates. Thus, we first compute the potential created by the charges {qi,1}N1
i=1 of

the first molecule and specify the positions {xi,2}N2
i=1 of the charges of the second molecule at

which the potential has to be returned. Next, we run potential with charges in the second

molecule and specify the positions of the charges of the first molecule at which the potential

has to be written out. Finally, by using the returned potentials at the positions {xi,1}N1
i=1 and

{xi,2}N2
i=1 and the charges {qi,1}N1

i=1 and {qi,2}N2
i=1, respectively, we compute the approximations

for E2−1 and E1−2, respectively, and take their average. Both approaches produce the same
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values for the electrostatic interaction. Since multiflex performs many calculations that are

not relevant to the electrostatic interaction, we mostly use the procedure potential.

5.4.1 Uniform dielectric

In the first test, the dielectric coefficient is set to 1 in the whole R3 and there are no ions

present in the solvent domain, i.e., k = 0 and ΩIEL = ∅. We present the results for a total of

139 different configurations. Since εm = εs = 1 in Ω, it means that the effect of the interface Γ

and its approximation by a piecewise triangular surface is eliminated. All volume meshes are

generated in FreeFem++ [98] with TetGen [170] and then adaptively refined with mmg3d [62].

Notice that the Dirichlet boundary condition specified by MEAD is given by (5.125), which

in this case (εm = εs) coincides with the exact potential on the boundary of the coarsest

focused grid used by MEAD.

120 FRET frames with electroneutral dyes and atomic transition charges

The first 120 configurations correspond to 120 frames from a molecular dynamics (MD)

simulation on the Alexa 594 and Alexa 488 dyes attached to a polyproline with a length of

six amino residues. This MD simulation is related to the calculation of the Fröster resonance

energy transfer (FRET) and thus the partial charges in each dye correspond to the so-called

atomic transition charges. We will give more information on FRET in Section 5.5.1. The

number of nonzero charges in each dye is N1 = 74 and N2 = 52, respectively, and the total

charge in each dye is zero. The computational domain Ω is a cube with a very big, relative

to the distances between the charges in the system, side length A. In particular, for this

test, we use side lengths A between 130 000 Å and 250 000 Å depending on the dimensions of

the smallest box that contains all N1 +N2 charges in the system. The boundary condition

for the potential is set to zero on ∂Ω and due to the big size of Ω it approximates the exact

potential on ∂Ω with a very high accuracy.

For this test, we used as initial meshes the ones that we used for the case of different dielectric

coefficient in Ωm and Ωs (see Section 5.5.1). This means that the surfaces of the two dyes

are actually triangulated and we have assigned εm = εs = 1 in both Ωm and Ωs. Since

these meshes have uniform edge length (equal to the average edge length of the triangulated

molecular surface Γ) for the elements inside the molecular region Ωm, it means that they

have unnecessarily many elements for this test, where εm = εs. However, in the next tests we

will use much coarser meshes with much less elements and will demonstrate that this does

not affect the adaptive algorithm and achieved accuracy.

We compare the obtained solution by using Solver 4 and the exact solution, given by

E2−1 =

N1∑
i=1

qi,1G2(xi,1) =

N2∑
i=1

qi,2G1(xi,2) = E1−2. (5.126)
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We note that the relative error in the solution of Solver 2 is of the order 10−10 % and thus

we do not present any plots for it. The reason for this small error is that Solver 2 finds the

reaction field potential u2, which in this case is zero. More precisely, since the inhomogeneous

Dirichlet boundary condition u2 = −G2 (in the 2-term splitting of the potential ϕ2 = G2 +u2)

is prescribed on a surface which is at around 130 000 to 250 000 Å from the molecular sys-

tem, the numerical approximation uh,2 is also very close to zero. In fact, for the numerical

approximation Ẽu2 of the electrostatic interaction due to the reaction field potential we have
Ẽu2
EG2
≈ 10−12, where this ratio for the exact reaction field interaction Eu2 is, of course, zero.

On the other hand, the relative error for Solver 4 at refinement level 6 and 7 is of the order

10−2 % to 10−3 % as it can be seen on Figure 5.4. The reason for the higher relative error is that

now Solver 4 solves for the full potential ϕ2 without exploiting the 2-term splitting and thus

all singularities around the fixed partial charges of Dye II have to be approximated numerically.

On Figure 5.4, we also present the relative error for the software package MEAD with two

different focused grids. The grid specification of the first one is ON GEOM CENT 97-3,

161-1, 161-0.25 which means that there are three focused grids, all centered at the geometrical

center of the molecular system (Dye I and Dye II). The coarsest one has 97 grid points in

each coordinate direction with a uniform grid spacing of 3 Å. The second, finer grid, has

161 grid points per direction with a grid spacing of 1 Å, and the third, finest grid, has 161

grid points per direction with a grid spacing of 0.25 Å. The second grid configuration for

MEAD is ON GEOM CENT 285-3, 285-1, 285-0.25. Clearly, for the first focused grid, the

computational domain is a cube with edge length equal to 96× 3 = 288 Å and for the second

focused grid, it is a cube with edge length of 284× 3 = 852 Å. It is seen that in almost all

120 frames, Solver 4 gives a better solution than MEAD even at the initial mesh refinement

level (MRL). After only one refinement, the average relative error in Solver 4 decreases

approximately 6 times from 0.18% to 0.03% which is already 22.8 times less than the average

error in MEAD with the better grid.

To compare the number of degrees of freedom (DOFs) on each refinement level with the

corresponding relative error, in Table 5.1 we present the average number of DOFs in the

primal and adjoint problems for each MRL and the corresponding average relative errors. We

recall that the adjoint problem is solved in the space V 2
h of continuous piecewise quadratic

polynomials, and hence, in dimension three, the finite element space V 2
h has approximately

eight times more DOFs than the space V 1
h . For comparison, the number of DOFs for the

first grid configuration in MEAD is 912 673, 4 173 281, 4 173 281, and for the second grid

configuration is 23 149 125, 23 149 125, 23 149 125. Here we recall that on each focused

grid MEAD has to solve two finite difference systems - one for the potential created by the

charges of the first molecule and one for the potential created by the charges of the second

molecule. This means that for the case of three focused grids, MEAD has to solve a total

of six finite difference systems. The final electrostatic interaction EM is the average of the
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computed values for E2−1 and E1−2.
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Figure 5.4: Neutral dyes with transition state atomic charges. Relative errors for MEAD with

grid 1 and grid 2 compared to the relative errors
|E2−1−EA1−2|
|E2−1| [%] for Solver 4 on different

refinement levels l, where EA1−2 = 〈F2, z
(2)
l 〉 and E1−2 = E2−1 = E. Grid 1 in MEAD

with specifications ON GEOM CENT 97-3, 161-1, 161-0.25 and grid 2 with specifications

ON GEOM CENT 285-3, 285-1, 285-0.25. Some frames have less refinement levels since the

maximum number of refinement steps has been set lower.

Recall that for error estimate 4 we have the following error representation

E2−1 − EP2−1 = 〈 1

4π
F1, ϕ2 − ϕ2,h〉

= E(ϕ2,h, z) = E(ϕ2,h, z
(2)
h ) + E(ϕ2, ϕ2,h, z, z

(2)
h ),

(5.109)

where EP2−1 + E(ϕ2,h, z
(2)
h ) = EA1−2 and

E(ϕ2,h, z) =

∫
Ω

ε∇ (ϕ2 − ϕ2,h) · ∇zdx+

∫
Ω

k
2

(ϕ2 − ϕ2,h) zdx,

E(ϕ2, ϕ2,h, z, z
(2)
h ) =

∫
Ω

ε∇(ϕ2 − ϕ2,h) · ∇(z − z(2)
h )dx+

∫
Ω

k
2
(ϕ2 − ϕ2,h)(z − z(2)

h )dx.
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Table 5.1: Solver 4. 120 FRET frames with atomic transition charges and neutral dyes,

k = 0, εm = εs = 1.

level l aver. # DOFs aver. # DOFs aver.
|E2−1−EP2−1|
|E2−1| [%] aver.

|E2−1−EA1−2|
|E2−1| [%]

primal adjoint

0 54 156 429 196 4.62501 0.18054

1 73 913 584 813 1.40682 0.03163

2 104 776 826 317 1.15969 0.02257

3 153 669 1 208 861 0.94636 0.01462

4 236 377 1 857 374 0.72293 0.00912

5 379 346 2 979 865 0.55447 0.00544

6 627 629 4 931 084 0.42831 0.00331

7 1 100 814 8 651 503 0.24057 0.00136

If we assume for a moment that ϕ2 and z have higher regularity, say in the Sobolev space

H3(Ω), that we have a regular family of triangulations {Th}h→0, and that the adjoint problem

in the Aubin-Nitsche technique is H2-regular, then one can show that the following relations

hold (see, e.g., [32, 68]):

‖ϕ2 − ϕ2,h‖L2(Ω) = O(h2), ‖∇ (ϕ2 − ϕ2,h) ‖L2(Ω) = O(h),

‖z − Ihz‖L2(Ω) = O(h2), ‖∇ (z − Ihz) ‖L2(Ω) = O(h),

‖z − z(2)
h ‖L2(Ω) = O(h3), ‖∇

(
z − z(2)

h

)
‖L2(Ω) = O(h2).

Therefore, by using Galerkin orthogonality and the Cauchy-Schwarz inequality we find

E(ϕ2,h, z) =

∫
Ω

ε∇ (ϕ2 − ϕ2,h) · ∇ (z − Ihz) dx+

∫
Ω

k
2

(ϕ2 − ϕ2,h) (z − Ihz) dx

≤ εmax‖∇ (ϕ2 − ϕ2,h) ‖L2(Ω)‖∇ (z − Ihz) ‖L2(Ω)

+ kmax‖(ϕ2 − ϕ2,h) ‖L2(Ω)‖z − Ihz‖L2(Ω)≤ C1h
2

(5.127)

and in a similar way we find

E(ϕ2, ϕ2,h, z, z
(2)
h ) ≤ C2h

3, (5.128)

where Ih is the nodal interpolation operator in the space V 1
h and C1, C2 > 0 are constants

independent of h. This means that under uniform mesh refinement in 3D we would have∣∣E2−1 − EP2−1

∣∣ = |E(ϕ2,h, z)| ≤ C1h
2 h

C1

(#DOFs)2/3
, (5.129)∣∣E2−1 − EA1−2

∣∣ =
∣∣∣E(ϕ2, ϕ2,h, z, z

(2)
h )
∣∣∣ ≤ C2h

3 h
C2

#DOFs
. (5.130)

In the case of adaptive mesh refinement, it is more appropriate to measure the approximation

error in terms of the number of degrees of freedom #DOFs instead of the maximum mesh



226 CHAPTER 5. GOAL-ORIENTED ERROR ESTIMATES

size h. From Figure 5.5 it seems that the same optimal convergence order, O((#DOFs)−2/3)

and O((#DOFs)−1), hold for the errors
∣∣E2−1 − EP2−1

∣∣ and
∣∣E2−1 − EA1−2

∣∣, respectively, in

the case where ϕ2 and z are much less regular (both in
⋂

p< d
d−1

W 1,p
0 (Ω)). On Figure 5.6
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Figure 5.5: Neutral dyes with transition state atomic charges. Convergence of average

(over 120 frames) relative errors of Solver 4 for the quantities EA1−2 = 〈F2, z
(2)
l 〉 and

EP2−1 = 1
4π 〈F1, ϕ2,l〉. The average number of DOFs per MRL and the average relative errors

for the primal and adjoint problems used in this plot are given in Table 5.1.

we show the convergence of the relative errors in the primal and adjoint problems for two

particular frames.
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Figure 5.6: Solver 4. Neutral dyes with transition state atomic charges. Convergence of

relative error in the primal and adjoint problems for frames with global numbers 9 and 23.

19 frames with electroneutral dyes and atomic ground state charges

In the next 19 frames the partial charges in the two dyes correspond to their ground state

charge density. The first 10 of these frames are randomly chosen from the same MD sim-

ulation from which the previous 120 frames were chosen, and thus the dyes are attached
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to a polyproline with a length of 6 amino residues. The other 9 frames are from another

MD simulation, where the two dyes are attached to a polyproline with a length of 20 amino

residues. The number of nonzero charges in Dye I and Dye II is 79 and 73, respectively.

Again, the two dyes are electroneutral, and thus the total charge sum in each dye is zero.

The computational domain Ω is a cube with a side length A = 4000× a, where a is the edge

length of the smallest cube, with edges parallel to the coordinate axes, that contains the two

dyes. For the first 10 frames a ≈ 40 Å and A ≈ 160 000 Å, whereas for the other 9 frames a

takes values of up to 100 Å, corresponding to A ≈ 400 000 Å. Since the mesh is very coarse

towards the boundary of Ω, increasing A even to over 1 000 000 Å is at the cost of a few more

tetrahedrons. Again, as in the previous test, the meshes used here have much more elements

than needed for this kind of numerical experiment, where εm = εs. This is due to the fact

that we reuse the meshes that were generated for the case of different dielectric coefficients εm

and εs, where it is important to resolve the interface Γ with a good precision. Nevertheless,

we will present two more tests, where the initial meshes have approximately 13 times less

elements and the edge length of the cube Ω reaches more than 5× 106 Å.

The results that we have obtained with Solver 4 are also compared to the results obtained

with the application potential in the software package MEAD. We have observed that there

is an accuracy issue with the default stopping criteria in the iterative solver of MEAD, which

is Successive over-relaxation (SOR). For this reason, we have run MEAD with 6 different

configurations for the focused grids and different stopping criteria for the SOR method. Below

we list the six configurations that we have tested in MEAD.

• Configuration 1: ON GEOM CENT: 97-3, 161-1, 161-0.25,

Default SOR accuracy: maxiter=10× 3
2(grid_dim− 1), maxrmsdiff= 2×10−5

grid dim−1
;

• Configuration 2: ON GEOM CENT: 97-3, 161-1, On the geometric center of the dye

without charges: 161-0.25,

Default SOR accuracy: maxiter=10× 3
2(grid_dim− 1), maxrmsdiff= 2×10−5

grid dim−1
;

• Configuration 3: ON GEOM CENT: 97-3, 161-1, On the geometric center of the dye

without charges: 401-0.1,

maxiter=6000, maxrmsdiff= 2×10−8

grid dim−1
;

• Configuration 4:

Frames 1-10: ON GEOM CENT: 101-3, 201-1, 321-0.25 ,

Frames 11:19: ON GEOM CENT: 101-3, 201-1, 401-0.25,

Default SOR accuracy: maxiter=10× 3
2(grid_dim− 1), maxrmsdiff= 2×10−5

grid dim−1
;

• Configuration 5:

Frames 1-10: ON GEOM CENT: 101-3, 201-1, 321-0.25,

Frames 11-19: ON GEOM CENT: 101-3, 201-1, 401-0.25,

maxiter=3000, maxrmsdiff= 2×10−8

grid dim−1
;
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• Configuration 6:

Frames 1-10: ON GEOM CENT: 101-3, 201-1, 321-0.25,

Frames 11-19: ON GEOM CENT: 101-3, 201-1, 401-0.25,

maxiter=12000, maxrmsdiff= 2×10−8

grid dim−1
;

In MEAD, the variable minits specifies the minimum number of iterations, which by default

is set to 3(grid_dim− 1)/2, where grid_dim is the number of grid points in each coordinate

direction. Further, by maxrmsdiff is denoted the MEAD variable specifying the tolerance for

the maximum root mean square of the difference (rmsdiff) between two consecutive solutions

ϕk and ϕk+1 in the SOR method, and by maxiter is denoted the MEAD variable specifying

the maximum number of iterations. By default, maxrmsdiff is set to 2×10−5/(grid_dim−1)

and maxiter is set to 10 × minits. The SOR procedure in MEAD stops when either the

maximum number of iterations is reached or the current iteration number is greater than

or equal to minits and simultaneously rmsdiff is less than or equal to maxrmsdiff. Note

that in configuration 2 and 3, the third focused grid is centered at the geometric center of

the dye without charges. More precisely, we make two calculations with potential : one with

charges in Dye I and one with charges in Dye II. When the charges are in Dye I, we specify

the positions {xi,2}N2
i=1 of the charges in Dye II at which the computed potential has to be

written out by potential and hence the last focused grid is centered at Dye II in attempt

to better resolve the potential at these positions {xi,2}N2
i=1. Similarly, when the charges are

in Dye II, we specify the positions {xi,1}N1
i=1 of the charges of Dye I at which the computed

potential has to be written out by potential and the last focused grid is centered at Dye I.

As we have already explained, the final value for the electrostatic interaction is the average

of the computed values for E2−1 and E1−2. Additionally, in configurations 4, 5, and 6, the

last focused grid for frames 11 through 19 has a higher number of grid points per coordinate

direction since the length of the polyproline connecting the two dyes is larger for these frames,

and thus the minimal box that contains the molecular system is also larger.

In Table 5.2 are presented the average (over the 19 frames) number of DOFs per MRL for

the primal and adjoint problems as well as the average (over all 19 frames) relative error in

percents for the primal and adjoint problems. On Figure 5.8 are shown the relative errors

for all 19 frames for three MEAD configurations and three MRLs for Solver 4, whereas on

Figure 5.7 is shown the convergence of the average relative errors with respect to the average

number of DOFs per MRL (with the data from Table 5.2). For comparison, in Table 5.3 we

present the average (over all 19 frames) relative errors for MEAD together with the number

of DOFs for each focused grid, where E = E2−1 = E1−2 is the exact electrostatic interaction

and EM is the average of the two computed by MEAD approximations for E2−1 and E1−2.

It is clear that the default stopping criteria in SOR (configurations 1, 2 , 4) is not quite

appropriate. Another conclusion that can be made from the results presented in Table 5.3 is

that focusing the last and finest grid on the dye of interest does not improve the quality of the



5.4. VERIFICATION OF THE ERROR ESTIMATES 229

computed electrostatic potential. As a consequence, the quality of the computed electrostatic

interaction is also not improved (see the averages for configurations 2 and 3).
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Figure 5.7: Neutral dyes with ground state atomic charges. Convergence of average (over

19 frames) relative errors of Solver 4 for the quantities EA1−2 = 〈F2, z
(2)
l 〉 and EP2−1 =

1
4π 〈F1, ϕ2,l〉. The average number of DOFs per MRL and the average relative errors for the

primal and adjoint problems used in this plot are given in Table 5.2.
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Table 5.2: Solver 4. 19 frames with atomic ground state charges and neutral dyes, k = 0,

εm = εs = 1.

level l aver. # DOFs aver. # DOFs aver.
|E2−1−EP2−1|
|E2−1| [%] aver.

|E2−1−EA1−2|
|E2−1| [%]

primal adjoint

0 54 268 430 026 3.73208 0.16928

1 79 173 625 903 0.73420 0.01639

2 118 824 935 871 0.76450 0.01519

3 182 132 1 430 898 0.47930 0.00980

4 288 720 2 266 601 0.39852 0.00625

5 475 450 3 733 080 0.28664 0.00355

6 803 911 6 315 438 0.29003 0.00286

7 1 346 508 10 582 506 0.12850 0.00119

Table 5.3: MEAD. 19 frames with atomic ground state charges and neutral dyes, k = 0,

εm = εs = 1. Here, E = E2−1 = E1−2 and EM is the computed with MEAD value.

configuration # DOFs in # DOFs in # DOFs in aver.
|E−EM |
|E| [%]

focused grid 1 focused grid 2 focused grid 3

1 912 673 4 173 281 4 173 281 1.51675

2 912 673 4 173 281 4 173 281 4.58068

3 912 673 4 173 281 64 481 201 4.15532

4 1 030 301 8 120 601 33 076 161 or 64 481 201 1.38888

5 1 030 301 8 120 601 33 076 161 or 64 481 201 0.28533

6 1 030 301 8 120 601 33 076 161 or 64 481 201 0.29212
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Figure 5.8: Neutral dyes with ground state atomic charges. Relative errors for MEAD with

three configurations versus relative errors
|E2−1−EA1−2|
|E2−1| [%] for the interaction computed with

the adjoint solution in Solver 4 for three different mesh refinement levels l.

19 frames with electroneutral dyes and atomic ground state charges. Very coarse

initial meshes.

Now, we repeat the previous test, but this time we use much coarser initial meshes which

means much less elements. Moreover, the edge length of the cube Ω is between 3.7×106 Å and

6× 106 Å and so the homogeneous Dirichlet boundary condition on the potential is prescribed

with a very high accuracy. In Table 5.4 we present the average number of DOFs per MRL as

well as the corresponding average relative error in the primal and adjoint problems. We can

see that a relative error of 0.23 % in the electrostatic interaction is achieved on average with

131 868 DOFs in the adjoint problem. For comparison, MEAD achieves an average error of

0.29 % with configurations 5 and 6 at a significant computational cost: 33 076 161 DOFs for

frames 1-10 and 64 481 201 DOFs for frames 11-19 in the last focused grid (see Table 5.3). On

Figure 5.9 is shown the convergence of the average relative error versus the average number

of DOFs per MRL in primal and adjoint problems (with the data from Table 5.4).
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Table 5.4: Solver 4. Very coarse initial meshes. 19 frames with atomic ground state charges

and neutral dyes, k = 0, εm = εs = 1.

level l aver. # DOFs aver. # DOFs aver.
|E2−1−EP2−1|
|E2−1| [%] aver.

|E2−1−EA1−2|
|E2−1| [%]

primal adjoint

0 3 951 29 739 15.50291 3.17777

1 6 411 49 223 7.47266 0.55509

2 10 684 82 785 3.07105 0.39941

3 16 965 131 868 1.79431 0.22948

4 26 283 204 637 1.89854 0.15297

5 41 136 320 745 1.17146 0.10046

6 66 581 520 204 0.82917 0.06163
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Figure 5.9: Neutral dyes with ground state atomic charges. Very coarse initial meshes.

Convergence of average (over 19 frames) relative errors of Solver 4 for the quantities

EA1−2 = 〈F2, z
(2)
l 〉 and EP2−1 = 1

4π 〈F1, ϕ2,l〉. The average number of DOFs per MRL and the

average relative errors for the primal and adjoint problems used in this plot are given in

Table 5.4.
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19 frames with charged dyes and atomic ground state charges. Very coarse initial

meshes.

In this test, we use the same 19 frames (positions of the charges of the two dyes) as in the

previous two tests, but with different set of charges for both dyes. In particular, both dyes

are charged with a total charge of −2 e0 in each dye. Again, the number of nonzero charges

in Dye I and Dye II is 79 and 73, respectively. In Table 5.5 are presented the average relative

error for the primal and adjoint problems as well as the respective average number of DOFs

per MRL. On Figure 5.10 is shown the convergence of the average per MRL relative error

versus the respective average number of DOFs (with the data from Table 5.5). We note that

after MRL 7 the error for the (more accurately solved) adjoint problem starts to stagnate.

This is due to the approximate boundary condition on ∂Ω. For a higher accuracy than around

0.002 % in the case of charged dyes, a larger domain Ω is required.

Table 5.5: Solver 4. Very coarse initial meshes. 19 frames with atomic ground state charges

and charged dyes, k = 0, εm = εs = 1.

level l aver. # DOFs aver. # DOFs aver.
|E2−1−EP2−1|
|E2−1| [%] aver.

|E2−1−EA1−2|
|E2−1| [%]

primal adjoint

0 3 951 29 739 21.89265 3.02298

1 5 455 41 623 7.64000 0.36758

2 10 009 77 657 2.67448 0.06875

3 17 576 137 170 1.94356 0.03040

4 30 091 235 446 1.37424 0.01756

5 50 773 397 871 0.98067 0.00914

6 84 089 659 384 0.73550 0.00564

7 140 790 1 104 774 0.55714 0.00383

For comparison, in this case with charged dyes, the average (over 19 frames) relative error with

MEAD for configurations 5 and 6 (see p. 227 for the description of different configurations) is

0.081 % and 0.115 %, respectively. The corresponding number of DOFs is between 33× 106

and 64× 106 depending on the size of the smallest box that contains the two dyes. On the

other hand, the number of DOFs with Solver 4 for a comparable average relative error is

less than 78× 104 (see Table 5.5). This is approximately a factor of 850 times less compared

to MEAD with the above configurations.
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Figure 5.10: Charged dyes with ground state atomic charges and a total charge of −2 e0

in each dye. Very coarse initial meshes. Convergence of average (over 19 frames) relative

errors of Solver 4 for the quantities EA1−2 = 〈F2, z
(2)
l 〉 and EP2−1 = 1

4π 〈F1, ϕ2,l〉. The average

number of DOFs per MRL and the average relative errors for the primal and adjoint problems

used in this plot are given in Table 5.5.

5.4.2 Born ion model with Is = 0

Solver 4

In this test we check the performance of Solver 4 in the presence of a sharp interface and

we also compare it to MEAD. The set up is as follows: an ion, with a Born radius R equal to

1, 2, and 3 Å with εm = 4 and charge q1 = 1 e0, is placed in a dielectric medium with εs = 80

and zero ionic strength (see Figure 5.11). We compute the electrostatic interaction between

the ion and a test charge q2 = −1 e0 placed at distances varying from 1 Å to 74 Å. In other

words, we compute the potential at the coordinates of the test charge and multiply it by

−1 e0. In this case, it is easy to check that the electrostatic potential ϕ is given by

ϕ(r) =


q1

εmr
+
q1 (εm − εs)
εmεsR

, r ≤ R,
q1

εsr
, r ≥ R,

(5.131)

where r is the distance to the charge q1 at the center of the Born ion.

Figure 5.11: Born ion model with Is = 0.

The computational domain in Solver 4 is a cube with an edge length of approximately

1 350 000 Å and a homogeneous Dirichlet boundary condition is prescribed at its boundary.
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We have done computations with two levels of geometric approximation of the surface of

the Born ion sphere. The triangulated surface meshes are generated with NanoShaper [61],

where the quality of the geometric approximation is controlled with the parameter GridScale.

A GridScale parameter equal to 2 means that in the construction of the surface mesh is

used a cubical grid with spacing of h = 0.5 Å and GridScale = 4 means that the spacing in

the cubical grid is h = 0.25 Å (see Figure 5.12). A grid scale of 2 produces an average edge

length of the triangulated surface mesh of around 0.45 Å, whereas GridScale = 4 results in

an average edge length on the molecular surface of around 0.225 Å.

(a) GridScale=2. (b) GridScale=4.

Figure 5.12: Triangulated with NanoShaper surfaces of a sphere with radius R = 1 Å.

This means that on Figure 5.14 one should compare the solution produced by MEAD on

focused grids with a spacing of the final grid h3 = 0.25 Å to the solution produced by Solver 4

corresponding to a surface mesh generated with GridScale = 4 in NanoShaper. Since the

finite difference solution strongly depends on the relative position and orientation of the grid

and molecular structure, the values for the relative errors of MEAD, used in Figure 5.14,

are averages of the values sampled in different directions from the Born ion’s center. More

precisely, the value es for the relative error at a distance s Å from the Born ion’s center is

obtained by averaging over 10 different directions ~di, i = 1, 2, . . . , 10, where ~d1 = (1, 0, 0),
~d2 = (−1, 0, 0), ~d3 = (0, 1, 0), ~d4 = (0,−1, 0), ~d5 = (0, 0, 1), ~d6 = (0, 0,−1), ~d7 = (1, 1, 1),
~d8 = (−1,−1,−1), ~d9 = (1, 0.5, 0.2), ~d10 = (−1,−0.5,−0.2). The precise definition of es is

es :=

10∑
i=1

e
(
~c+ s

~di
|~di|2

)
10

,

where ~c is the position of the Born ion’s center and e(~x) is the error at the point ~x. In the

examples below, we have chosen ~c = (0.05, 0.03,−0.025) so that the finite difference grid is

not centered exactly at the Born ion’s center.

Notice, that the default stopping criteria in this MEAD version (2.2.8 a) is not appropriate:

the relative error for both used grids, ON ORIGIN 97-3, 161-1, 161-0.25 and ON ORIGIN
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285-1, 285-0.5, 285-0.1, approaches values of 20 % and 50 %, respectively, at 35 Å from the

Born ion (the red and yellow curves on Figure 5.14). The corresponding relative errors at a

distance of 74 Å reach 30 % and 80 %, respectively. On the other hand, the relative errors of

MEAD with the improved stopping criteria do not exceed 0.1 %. Here we note that MEAD

uses single precision arithmetics. The transition to double precision arithmetics could possibly

improve the results even further. In comparison, the relative errors for Solver 4 do not

exceed 0.022 %. However, at the interface Γ between the interior region of the Born ion sphere

and the exterior dielectric medium, the finite difference solution given by MEAD is of very

poor quality with relative errors reaching more than 60 % and more than 20 % for the grids

ON ORIGIN 97-3, 161-1, 161-0.25 and ON ORIGIN 285-1, 285-0.5, 285-0.1, respectively,

for both default SOR method and the one with improved stopping criteria. The relative

errors around the interfaces in the solution produced by the adaptive finite element Solver 4

do not exceed more than 2.2 % and more than 0.6 % with GridScale=2 and GridScale=4,

respectively. It is seen that the solution produced by Solver 4 for a relatively coarse surface

representation of the Born sphere (GridScale = 2) has a better quality even than the MEAD

solution corresponding to the grid with spacing in the last focused grid of 0.1 Å and with the

improved stopping criteria.

Further, on Figure 5.15 and Figure 5.16 is shown the convergence of the relative errors at

all mesh refinement levels l = 0, 1, . . . , 5 for GridScale=2 and GridScale=4, respectively.

Additionally, in Table 5.6 and Table 5.7, we present the average number of DOFs in the adjoint

problem for R = 1, 2, 3 Å and for each refinement level with GridScale=2 and GridScale=4,

respectively. The average is taken over all distances from 5 Å to 74 Å from the Born ion’s

center. At each of these distances, the corresponding number of DOFs is very close to the

average. The number of DOFs corresponding to the distances 1, 2, 3, 4 Å are much less, and

thus we do not include them in the averaging. We note that we have used initial meshes with

a uniform mesh size inside the Born ion sphere related to the average edge length on the

triangulated sphere. This means that the initial meshes have a large number of elements,

especially for spheres with larger radius R. The computational cost can be further reduced,

without sacrificing the convergence orders and accuracy, if one uses coarser meshes with

nonuniform mesh size inside the triangulated sphere, as we have demonstrated in the previous

two examples.

Remark 5.16

Recall that the primal problem gives the potential ϕ2 created by the charges of the second

molecule. In this example, there is no second molecule, only a test charge which we have

chosen to be the one that creates the potential ϕ2. Thus, the right-hand side of the primal

problem is given by

F2 = 4πq2δx2 ,

where x2 is the position of the test charge q2. The right hand side of the adjoint problem is
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given by
1

4π
F1 = q1δx1 ,

where x1 = (0, 0, 0) is the position of the charge q1 in the Born ion. The solution z of the

adjoint problem is equal to 1
4πϕ1 and the more accurate approximation for the electrostatic

interaction that we use is 〈 1
4πF1, ϕ2,h〉+ E(ϕ2,h, z

(2)
h ) = 〈F2, z

(2)
h 〉 = EA1−2. Notice also that

the test charge is placed in the solvent region Ωs. In this case, the derived representations for

the error in the goal quantity are still valid based on Remark 5.14.

Table 5.6: Solver 4. GridScale=2. Born ion model, k = 0, εm = 4, εs = 80. Averages of

number of DOFs and errors for adjoint problem for distances from 5 Å to 74 Å. Uniform initial

mesh size inside the Born ion sphere related to the average edge length on the triangulated

surface.

R = 1 Å R = 2 Å R = 3 Å

level aver. # DOFs aver. aver. # DOFs aver. aver. # DOFs aver.

adjoint error [%] adjoint error [%] adjoint error [%]

0 7 509 6.26998 18 201 6.55494 63 310 1.03680

1 10 341 0.82301 23 192 0.62322 85 871 0.08286

2 19 556 0.22892 41 040 0.11699 146 781 0.02227

3 36 953 0.08525 74 919 0.03849 282 397 0.01115

4 71 184 0.04124 144 749 0.02071 538 558 0.00796

5 135 774 0.01962 275 398 0.01114 995 427 0.00672

Table 5.7: Solver 4. GridScale=4. Born ion model, k = 0, εm = 4, εs = 80. Averages of

number of DOFs and errors for adjoint problem for distances from 5 Å to 74 Å. Uniform initial

mesh size inside the Born ion sphere related to the average edge length on the triangulated

surface.

R = 1 Å R = 2 Å R = 3 Å

level aver. # DOFs aver. aver. # DOFs aver. aver. # DOFs aver.

adjoint error [%] adjoint error [%] adjoint error [%]

0 18 543 3.69832 121 019 0.68096 229 342 2.71617

1 23 061 0.52291 151 693 0.06063 245 086 0.25489

2 41 278 0.11451 263 636 0.01419 312 620 0.03238

3 77 046 0.03822 513 567 0.00834 557 970 0.00800

4 154 979 0.01903 1 000 098 0.00663 1 056 868 0.00622

5 301 694 0.01044 1 860 927 0.00597 2 011 042 0.00555
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(a) Initial mesh, l = 0. (b) Final mesh, l = 9.

Figure 5.13: Solver 4. GridScale=2. Born ion model, R = 1 Å, Is = 0M , εm = 4, εs = 80.

Distance between q2 and q1 is 10 Å. Full potential ϕ2,l (obtained by solving the primal

problem) at initial and final meshes in units e0/Å. Pictures generated with VisIt [52]
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(a) R = 1 Å.
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(b) R = 2 Å.
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(c) R = 3 Å.

Figure 5.14: Born ion model, Is = 0M . Relative errors of Solver 4 in the computed

electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at mesh refinement level l = 5 versus MEAD

relative errors for four configurations.
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(b) R = 2 Å.
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(c) R = 3 Å.

Figure 5.15: Born ion model, Is = 0M . Relative errors of Solver 4 in the computed

electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at mesh refinement levels l = 0, 1, 2, . . . , 5. Born

ion sphere triangulated using NanoShaper with parameter GridScale=2.
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(b) R = 2 Å.
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(c) R = 3 Å.

Figure 5.16: Born ion model, Is = 0M . Relative errors of Solver 4 in the computed

electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at mesh refinement levels l = 0, 1, 2, . . . , 5. Born

ion sphere triangulated using NanoShaper with parameter GridScale=4.
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Solver 2

Now we demonstrate the performance of Solver 2 in the case εm = 4, εs = 80 and note that

the case of a smaller ratio εm/εs is easier to handle. Here, we only present the results for

R = 2 Å. The computational domain is the same as with Solver 4, i.e., a cube with an edge

length of approximately 1 350 000 Å on whose boundary is prescribed a homogeneous Dirichlet

boundary condition. We have done computations with two levels of geometric approximation

of the surface of the Born ion sphere. Recall that the solution of the primal problem gives

the reaction field part u2 of the full potential ϕ2 = G2 + u2:∫
Ω

ε∇u2 · ∇vdx+

∫
Ω

k
2
u2vdx =

∫
Ωs

(εm − εs)∇G2 · ∇vdx−
∫
Ω

k
2
G2vdx = 〈T2, v〉 (5.10)

for all v ∈ H1
0 (Ω), whereas the solution z of the adjoint problem gives the potential ϕ1 scaled

by 1
4π :

Find z ∈
⋂

p< d
d−1

W 1,p
0 (Ω) such that

∫
Ω

ε∇v · ∇zdx+

∫
Ω

k
2
vzdx = 〈 1

4π
F1, v〉, ∀v ∈

⋃
q>d

W 1,q
0 (Ω).

(5.44)

In order to demonstrate more clearly the difference between the refined meshes obtained

by applying the 2-term splitting and those obtained without it (compare Figure 5.13 to

Figure 5.20), we relabel the charge in the Born ion to be q2 = 1 e0 and the test charge to

be q1 = −1 e0 (see Figure 5.17). In this way, the primal problem defines the reaction field

potential u2 created by the charge q2 in the Born ion. Recall that based on Remark 5.14, the

weak formulations for the primal and adjoint problems are well defined even if all charges

are in the solution domain Ωs and also the representations for the error in the goal quantity,

obtained in Section 5.3.1, Section 5.3.2, Section 5.3.3, and Section 5.3.4, ramain valid. Then,

as usual, we have

G2 =
q2

εm |x− x2|
, F2 = 4πq2δx2 , and

1

4π
F1 = q1δx1 ,

where x2 = (0, 0, 0) is the position of q2 and x1 is the position of the test charge.

Figure 5.17: Born ion model with Is = 0.

On Figure 5.18 we present the convergence of the relative error in the quantity 〈F2, z
(2)
l 〉

(the approximate value for the interaction that we use in practice) for distances from 1 Å
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to 35 Å from the charge q2. It is seen that for GridScale=2 the relative error at the last

MRL is smaller than the relative error with GridScale=2 at the last MRL for Solver 4

(compare with Figure 5.15b)). This might be due to the fact that with Solver 2 only one

singularity has to be approximated, the one in the solution z of the adjoint problem, whereas

with Solver 4 both solutions of the primal and adjoint problem have singularities which

have to be approximated. As a result, the distribution of the nodes in the mesh Th has to

be balanced between both singularities (compare Figure 5.20 to Figure 5.13). We should

note that the convergence of the error slows down after several MRL due to the geometric

approximation of the Born ion sphere and of the boundary conditions.
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Figure 5.18: Born ion model, Is = 0M . Relative errors of Solver 2 in the computed

electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at all mesh refinement levels. Born ion sphere

triangulated using NanoShaper with parameter GridScale=2 and GridScale=4.

On Table 5.8 we present the number of DOFs and relative errors for a distance of 15 Å

between the charges q2 and q1 when GridScale=2. From (5.131) we know that

Eu2 =
q1q2(εm − εs)

εmεsr
, EG2 =

q1q2

εmr
, E2−1 =

q1q2

εsr

Since in this example the ratio εm/εs = 1/20 � 1, we see that Eu2/E2−1 = εm−εs
εm

= −19.

This means that the relative error in the full electrostatic interaction EP2−1 is a factor of

19 larger than the relative error in the approximation u2,h of the reaction field potential u2

(see columns 3 and 4 in Table 5.8). If the electrostatic interaction Eu2 is needed with high

accuracy, then as an approximation to Eu2 one should use

Eu2 ≈ 〈F2, z
(2)
h 〉 − EG2 = EA1−2 − EG2 . (5.132)

The relative errors
|Eu2−(EA1−2−EG2)|

|Eu2 |
in percents are given in Table 5.9. Now, since the

quantity E2−1 = 〈F2, z〉 is 19 times smaller than Eu2 in absolute value, the relative error in

the approximation EA1−2 − EG2 of Eu2 is 19 times smaller than the relative error in EA1−2. In

other words, with Solver 2 we can obtain approximations with very high accuracy for both
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the full electrostatic interaction E2−1 = E1−2 and Eu2 , even if εm/εs � 1. Note that the

same trick can be used with Solver 4, i.e., we can subtract EG2 from EA1−2 to obtain a good

approximation of Eu2 .

Table 5.8: Solver 2. GridScale=2. Born ion model, R = 2 Å, Is = 0M , εm = 4, εs = 80.

Distance between q2 and q1 is 15 Å. Number of DOFs for primal and adjoint problems

as well as relative errors in the quantities 〈 1
4πF1, u2,l〉, EA1−2, and EP2−1, where EA1−2 =

〈F2, z
(2)
l 〉 and EP2−1 = EG2 + 〈 1

4πF1, u2,l〉. Exact values: Eu2 = 0.01583333333 e2
0Å
−1,

EG2 = −0.01666666667 e2
0Å
−1, E2−1 = −0.00083333333 e2

0Å
−1.

level
# DOFs

primal

|Eu2−〈 1
4πF1,u2,l〉|
|Eu2 |

[%]
|E2−1−EP2−1|
|E2−1| [%]

# DOFs

adjoint

|E2−1−EA1−2|
|E2−1| [%]

0 2 437 33.1168 629.220 18 201 5.06380

1 3 083 11.1502 211.855 23 261 0.35202

2 5 522 3.29127 62.5342 42 623 0.18523

3 10 075 1.89948 36.0901 78 728 0.02398

4 21 522 1.08123 20.5434 169 752 0.00947

5 46 644 0.65646 12.4728 369 433 0.00445

6 97 881 0.39601 7.52423 775 895 0.00314

7 209 838 0.23719 4.50663 1 665 167 0.00254

Table 5.9: Solver 2. GridScale=2. Born ion model, R = 2 Å, Is = 0M , εm = 4, εs = 80.

Distance between q2 and q1 is 15 Å. Relative error in the approximation EA1−2 − EG2 of the

quantity Eu2 at all MRLs.

level # DOFs adjoint
|Eu2−(EA1−2−EG2)|

|Eu2 |
[%]

0 18 201 0.26651

1 23 261 0.01852

2 42 623 0.00974

3 78 728 0.00126

4 169 752 0.00049

5 369 433 0.00023

6 775 895 0.00016

7 1 665 167 0.00013
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Figure 5.19: Solver 2. GridScale=2. Born ion model, R = 2 Å, Is = 0M , εm = 4,

εs = 80. Distance between q2 and q1 is 15 Å. Convergence of relative error in the quantities

EA1−2 = 〈F2, z
(2)
l 〉 and 1

4π 〈F1, u2,l〉. Data from Table 5.8. Note that the error in 〈F2, z
(2)
l 〉

stagnates at around 106 DOFs due to the error in the geometric approximation of the Born

ion sphere and approximate boundary condition on ∂Ω.

(a) Initial mesh, l = 0. (b) Final mesh, l = 7.

Figure 5.20: Solver 2. GridScale=2. Born ion model, R = 2 Å, Is = 0M , εm = 4, εs = 80.

Distance between q2 and q1 is 15 Å. Reaction field potential u2,l (obtained by solving the

primal problem) at initial and final meshes in units e0/Å. Pictures generated with VisIt [52]
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5.4.3 Born ion model with Is > 0 and an ion exclusion layer

Solver 4

In this test we check the performance of Solver 4 in the presence of sharp interface, an

ion exclusion layer, and positive ionic strength Is. We again compare our results to MEAD,

as a representative of a finite difference solver with uniform Cartesian grids. The set up is

as follows: an ion, with a Born radius R equal to 1, 2, and 3 Å with εm = 4 and charge

q1 = 1 e0, is placed in a dielectric medium with εs = 80 and ionic strength Is = 0.3M ,

corresponding to k
2
ions = 2.52916 Å−2 at T = 300 K. Additionally, an IEL with a thickness of

a probe ion’s radius Rion = 2 Å is added around the Born ion (see Figure 5.21). We compute

the electrostatic interaction between the ion and a test charge −1 e0 placed at distances

varying from 1 Å to 35 Å. In other words, we compute the potential at the coordinates of the

test charge and multiply it by −1 e0. In this case, it is easy to check that the electrostatic

potential ϕ is given by

ϕ(r) =



q1

εmr
+
q1 (εm − εs)
εmεsR

−
q1

k√
εs(

1 + a k√
εs

)
εs
, r ≤ R,

q1

εsr
−

q1
k√
εs(

1 + a k√
εs

)
εs
, R ≤ r ≤ a,

q1 exp
(
a k√

εs

)
(

1 + a k√
εs

)
εs

exp
(
−r k√

εs

)
r

, r ≥ a,

(5.133)

where r is the distance to the charge q1 at the center of the Born ion and a = R + Rion.

The computational domain in Solver 4 is a cube with an edge length of approximately

Figure 5.21: Born ion model with ion exclusion layer and Is > 0.

240 000 Å and a homogeneous Dirichlet boundary condition is prescribed at its boundary.

We have again performed all computations with two levels of geometric approximation of

the surface of the Born ion sphere and of the IEL surface: with GridScale=2 and GridScale=4.

On Figure 5.22 are shown the relative errors for R = 1, 2, 3 Å for both Solver 4 and MEAD

with four different configurations. Again, as in the previous test, each value for the relative
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error in MEAD is an average over 10 different directions. This time the default stopping

criteria in the SOR method in MEAD is more or less adequate and the iterative error is not

higher than the discretization error, except in the regions where the distance to the test charge

is in the ranges (R+ 1) to 15 Å and (R+ 1) to 20 Å for the grids ON ORIGIN 97-3, 161-1,

161-0.25 and ON ORIGIN 285-1, 285-0.5, 285-0.1, respectively. Notice that the last focused

grid of the first grid configuration in MEAD extends exactly to a distance of 20 Å from the

origin in each coordinate direction and the last focused grid for the second grid configuration

extends to 14.2 Å. The error at the interface Γ with the first (coarser) grid configuration in

MEAD reaches 70 % for R = 1 Å and drops to less than 30 % for R = 3 Å. Decreasing the

grid spacing to 0.1 Å in the last focused grid in the second grid configuration reduces the

relative error at the Born ion’s surface around 3 times to values of 25 % at R = 1 Å and 9 % at

R = 3 Å. For comparison, the relative error with Solver 4 and GridScale=2 does not exceed

2.23 % in the region around the interface Γ for all R = 1, 2, 3 Å, and it drops 4 times when

using surface meshes with 2 times smaller average edge length (GridScale=4). The relative

errors for Solver 4 with GridScale=2 stay at a constant level less than 0.2 % everywhere

and for all R = 1, 2, 3 Å. The improved geometric approximation with GridScale=4 results in

4 times smaller errors for all R = 1, 2, 3 Å and all distances of the test charge to the Born

ion’s center. Here we note that the accuracy of Solver 4 seems to be limited only by the

geometric quality of the Born ion sphere and almost not influenced by the distance between

the Born ion and the boundary ∂Ω, where the homogeneous Dirichlet boundary condition is

prescribed. Recall that GridScale=4 means that in the construction of triangulated surface

mesh in NanoShaper is used a cubic grid with a spacing h = 0.25 Å. It is clear that the

geometric approximation of the molecular surface with GridScale=4 corresponds to a uniform

finite difference grid with spacing h = 0.25 Å and hence the results obtained with MEAD

for the first (coarser) mesh should be compared to the results obtained with Solver 4 for

GridScale=4 (see Figure 5.22).

Further, on Figure 5.23 and Figure 5.24 is shown the convergence of the relative errors at

all mesh refinement levels l = 0, 1, . . . , 5 for GridScale=2 and GridScale=4, respectively.

Additionally, in Table 5.10 and Table 5.11, we present the average number of DOFs in

the adjoint problem for R = 1, 2, 3 Å and for each refinement level with GridScale=2 and

GridScale=4, respectively. The average is taken over all distances from 5 Å to 35 Å from the

Born ion’s center. At each of these distances, the corresponding number of DOFs is close to

the average.
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Remark 5.17

Similarly to Remark 5.16, recall that the primal problem gives the potential ϕ2 created by the

charges of the second molecule. As it is the case in the previous example, there is no second

molecule, only a test charge which is chosen to be the one that creates the potential ϕ2. Then,

the right-hand side of the primal problem is given by

F2 = 4πq2δx2 ,

where x2 is the position of the test charge q2. The right hand side of the adjoint problem is

given by
1

4π
F1 = q1δx1 ,

where x1 = (0, 0, 0) is the position of the charge q1 in the Born ion. The solution z of

the adjoint problem is equal to 1
4πϕ1 and the corrected approximation for the electrostatic

interaction that we use is 〈 1
4πF1, ϕ2,h, 〉+ E(ϕ2,h, z

(2)
h ) = 〈F2, z

(2)
h 〉.

Table 5.10: Solver 4. GridScale=2. Born ion model with IEL, Is = 0.3M , kions =√
2.52916 Å−1, εm = 4, εs = 80. Averages of number of DOFs and errors for adjoint problem

for distances from 5 Å to 35 Å. Almost uniform initial mesh size inside the Born ion sphere

and IEL.

R = 1 Å R = 2 Å R = 3 Å

level aver. # DOFs aver. aver. # DOFs aver. aver. # DOFs aver.

adjoint error [%] adjoint error [%] adjoint error [%]

0 67 337 10.6634 128 199 1.47893 198 495 3.09911

1 78 786 1.46270 151 767 0.20302 229 093 0.44182

2 101 142 0.23882 208 175 0.18200 290 703 0.17553

3 153 626 0.19039 328 007 0.18174 435 816 0.16043

4 259 281 0.19348 561 477 0.18009 711 183 0.15786

5 447 791 0.19416 975 413 0.17963 1 228 265 0.15936

Solver 2

Here, we demonstrate the performance of Solver 2 in the case of Is > 0 and a relatively high

jump in the dielectric coefficient ε across the interface Γ. The set up is the same as before:

Is = 0.3M , εm = 4, εs = 80, T = 300 K, kions =
√

2.52916 Å−1 and we only present the

results for R = 2 Å. We again relabel the charges and denote by q2 = 1 e0 the charge in the

Born ion, and by q1 = −1 e0 the test charge. The primal problem defines the reaction field

potential u2 due to the charge q2 in the Born ion, whereas the adjoint problem defines the

scaled by 1
4π potential created by the test charge q1. On Figure 5.25 is shown the convergence

of the relative errors in the quantity EA1−2 for all mesh refinement levels with GridScale=2

and GridScale=4. Decreasing two times the average edge length on the triangulated Born

ion and IEL surfaces, improves the geometric approximation and results in a decrease of
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Table 5.11: Solver 4. GridScale=4. Born ion model with IEL, Is = 0.3M , kions =√
2.52916Å−1, εm = 4, εs = 80. Averages of number of DOFs and errors for adjoint problem

for distances from 5 Å to 35 Å. Almost uniform initial mesh size inside the Born ion sphere

and IEL.

R = 1 Å R = 2 Å R = 3 Å

level aver. # DOFs aver. aver. # DOFs aver. aver. # DOFs aver.

adjoint error [%] adjoint error [%] adjoint error [%]

0 92 813 1.62254 199 442 3.16998 316 748 1.28987

1 108 763 0.34620 224 197 0.38920 355 793 0.14383

2 141 467 0.08001 277 619 0.07653 445 032 0.04494

3 214 166 0.04943 406 363 0.04475 670 251 0.03946

4 356 606 0.05000 662 737 0.04484 1 037 000 0.04061

5 631 951 0.04973 1 133 363 0.04482 1 744 445 0.04050

the error by a factor of 4 at the last refinement level, where the maximum accuracy for the

respective geometry approximation is obtained.

This time, since Is > 0, the screening of the electrostatic potential is even stronger than

in the case Is = 0. As a result, Eu2/E2−1 = 240.964336395 and a relative error of 1 % in

the approximation 〈 1
4πF1, u2,l〉 of Eu2 becomes a realtive error of 240.964336395 % in the

quantity EG2 + 〈 1
4πF1, u2,l〉 approximating the full interaction E2−1 (see Table 5.12). If the

interaction Eu2 is needed, then one should use the approximation given by (5.132). This

time a relative error of 1 % in the quantity EA1−2 = 〈F2, z
(2)
l 〉 results in a relative error of

1/240.964336395 % in the approximation EA1−2 − EG2 to Eu2 (see Table 5.13).

Table 5.12: Solver 2, GridScale=4. Born ion model, R = 2 Å, Is = 0.3M , εm = 4, εs = 80.

Distance between q2 and q1 is 15 Å. Number of DOFs for primal and adjoint problems

as well as relative errors in the quantities 〈 1
4πF1, u2,l〉, EA1−2, and EP2−1, where EA1−2 =

〈F2, z
(2)
l 〉 and EP2−1 = EG2 + 〈 1

4πF1, u2,l〉. Exact values: Eu2 = 0.01659778599 e2
0Å
−1,

EG2 = −0.01666666667 e2
0Å
−1, E2−1 = −6.888067437× 10−5 e2

0Å
−1.

level
# DOFs

primal

|Eu2−〈 1
4πF1,u2,l〉|
|Eu2 |

[%]
|E2−1−EP2−1|
|E2−1| [%]

# DOFs

adjoint

|E2−1−EA1−2|
|E2−1| [%]

0 25 398 1.34194 323.360 199 442 0.07305

1 28 094 0.25676 61.8705 220 717 0.19776

2 34 085 0.03821 9.20855 268 172 0.09099

3 49 764 0.01674 4.03422 392 598 0.04373

4 84 578 0.00493 1.18946 669 104 0.04410

5 148 492 0.00746 1.79961 1 176 079 0.04339

6 287 232 0.00620 1.49610 2 276 800 0.04337

7 572 645 0.00378 0.91316 4 542 599 0.04336

8 1 115 642 0.00247 0.59569 8 845 074 0.04336
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Table 5.13: Solver 2, GridScale=4. Born ion model, R = 2 Å, Is = 0.3M , εm = 4, εs = 80.

Distance between q2 and q1 is 15 Å. Relative error in the approximation EA1−2 − EG2 of the

quantity Eu2 at all MRLs.

level # DOFs adjoint
|Eu2−(EA1−2−EG2)|

|Eu2 |
[%]

0 199 442 0.00030312

1 220 717 0.00082073

2 268 172 0.00037766

3 392 598 0.00018152

4 669 104 0.00018305

5 1 176 079 0.00018012

6 2 276 800 0.00018004

7 4 542 599 0.00018001

8 8 845 074 0.00018000

Remark 5.18

Note that if the electrostatic potential is needed at one point of interest x0 that is not necessarily

in the molecular region Ωm, one can just place a unit fictitious (test) charge at this position and

apply one of the error estimates developed in this chapter to compute a fictitious electrostatic

interaction. The mesh will be refined in such a way that the electrostatic interaction, which is

the same as the potential at x0, is computed with high accuracy.
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(c) R = 3 Å.

Figure 5.22: Born ion model with IEL, Is = 0.3M . Relative errors of Solver 4 in the

computed electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at mesh refinement level l = 5 versus

MEAD relative errors for four configurations.
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(b) R = 2 Å.
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(c) R = 3 Å.

Figure 5.23: Solver 4. Born ion model with IEL, Is = 0.3M . Relative errors in the computed

electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at mesh refinement levels l = 0, 1, 2, . . . , 5. Born

ion sphere triangulated using NanoShaper with parameter GridScale=2.
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(c) R = 3 Å.

Figure 5.24: Solver 4. Born ion model with IEL, Is = 0.3M . Relative errors in the computed

electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at mesh refinement levels l = 0, 1, 2, . . . , 5. Born

ion sphere triangulated using NanoShaper with parameter GridScale=4.
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(b) GridScale=4.

Figure 5.25: Solver 2. Born ion model with IEL, R = 2 Å, Is = 0.3M , εm = 4, εs = 80.

Relative errors in the computed electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at all mesh

refinement levels.
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5.5 Applications

We will consider electrostatic interactions between the chromophores Alexa 488 and Alexa

594, attached to the all-trans polyproline helices of 6 and 20 residues (POLY6 and POLY20),

placed in aqueous solution with 300 mM NaCl (see Figure 5.26). This system allows the

introduction of different types of interactions that provide us with an opportunity to compare

the performance of the solvers on different physical models. We compute the coupling

between the dyes for the time frames of all-atom molecular dynamics (MD) simulations,

performed with NAMD package (for more details, see [172]). For each polyproline length,

10 trajectories are generated, each with a time window of 200 ns. Standard CHARMM force

field (version 35b3 ) is used for the polyproline. The force field parameters of the Alexa

chromophores are created by an analogy approach from that of similar chemical groups in

the CHARMM force field. The water molecules in the MD simulations are parameterized,

using a TIP3P model.

The calculation of the interaction follows the usual procedure, starting with computing of

electrostatic potential from the Poisson or lineraized Poisson-Boltzmann equations. The

obtained potential is then used to calculate the electrostatic coupling E2−1 = E1−2. We

present two different physical models where the electrostatic interaction is required. The

first one is related to FRET and the second one describes the interaction energy between

chromophores in their ground state.

Obviously, the interaction energy also depends on the definition of the solute surface (see, e.g

[5]). However, the study of this problem is beyond the scope of this thesis. For all experiments

that we present in the rest of this chapter, the molecular surface of the chromophores is

defined as the solvent excluded surface (SES), formed by the contact points of the Van der

Waals surface and a solvent probe sphere that is rolled over it (see [94, 158, 165]). In 1983

Connolly gave an analytic description of the solvent excluded surface and therefore it is also

known as Connolly surface (see [53] for the piecewise analytic definition of this surface). The

surface meshes of the two dyes are generated with NanoShaper [61] using GridScale=2 and a

probe sphere radius of 1 Å. The initial volume meshes are generated with TetGen [170] and

after this they are adaptively refined with mmg3d [62]. We compare our results to the results

obtained with MEAD in which the molecular surface is also represented by the SES. Thus, in

all MEAD calculations, we use the same probe sphere radius of 1 Å.

5.5.1 Application to FRET

The first model is related to the Fröster resonance energy transfer (FRET) between the two

dyes. FRET is an important mechanism for the estimation of intermolecular distances in

fluorescent labeled proteins. In experiments, FRET is measured between a donor and an

acceptor dye, linked to a protein. A nonradiative relaxation process transmits the electronic
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Figure 5.26: Alexa chromophores attached to the all-trans polyproline helice of 6 residues.

excitation from the excited donor to the acceptor chromophore, which is initially in the ground

state. In FRET only water (and ions) electronic polarization is involved in the screening of

the chromophores’ interaction. This determines an optical dielectric constant of the medium

εs equal to 2. The efficiency of the transfer depends on the electrostatic coupling between

the dyes, which can be calculated with the Poisson equation (see [172]). Atomic transition

charges are obtained by fitting the ab initio electrostatic potential of the transition density

on a 3D grid around the chromophores using the program CHELP-BOW (for more details,

see [172]). These charges are the same as the ones used in the first example with uniform

dielectric ε equal to 1. Both dyes are electroneutral and the number of nonzero charges in

Dye I and Dye II is N1 = 74 and N2 = 52, respectively. Here we present the results for

120 frames from the MD simulation for POLY6. The computational domain Ω is a cube

with an edge length between 130 000 Å and 250 000 Å depending on the dimension of the

smallest box that contains both dyes. Again, a homogeneous Dirichlet boundary condition is

prescribed on ∂Ω.

On Figure 5.27 is shown the relative distance between the coupling EM , obtained with

MEAD with three different configurations, and the coupling EA1−2 = 〈F2, z
(2)
l 〉, obtained with

Solver 2 using the adjoint solution z
(2)
l at MRL l = 5. Additionally, in Table 5.14 are given

the avergae (over all 120 frames) number of DOFs in the primal and adjoint problems. Recall

that since the primal problem is solved with the finite element method for the Lagrange

P1 element, the number of DOFs in the primal problem for each MRL l is equal to the

number of vertices in the mesh Tl. Similarly to the case of uniform dielectric coefficient

ε = 1, one to two refinements of the mesh are enough for convergence (see Table 5.1 on p. 225).

In the first two configurations, grid 1 and grid 2, MEAD is run with its default stopping

criteria in the SOR method (see Figure 5.27). The average relative distance for grid 1 in

MEAD is 2.229 %, whereas with grid 2 it drops to 1.227 % despite the fact that all focused

grids have the same spacings h1 = 3 Å, h2 = 1 Å, h3 = 0.25 Å. The only difference between

the grids is the region they span. From Figure 5.27 it is seen that the drop in the average
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distance is mostly due to the frame with number 28, where the relative distance decreases

from 60 % to 2 %. A similar drop in the relative error between EM and the exact coupling

E2−1 = E1−2 = EG2 = EG1 in the case of uniform dielectric ε = 1 is observed when the span

of the focused grids is increased (see Figure 5.4 for ε = 1 with grid 1 and grid 2). In the case

of different dielectric coefficient in Ωm and Ωs, the increase of the span of the coarsest grid

also improves the accuracy in the approximate boundary condition used by MEAD.

On Figure 5.27, we also show the relative distance between the interaction computed with

Solver 2 and the interaction computed with MEAD using grid 2 but with improved stopping

criteria in SOR: maxrmsdiff = 2× 10−9/(grid dim− 1) and maxiter=3000.
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Figure 5.27: FRET application. Neutral dyes with transition state atomic charges. Relative

distance
|EA1−2−EM |
|EA1−2|

between MEAD coupling EM and the coupling EA1−2 = 〈F2, z
(2)
l 〉 obtained

with Solver 2 at MRL l = 5 with GridScale=2. Grid 1 in MEAD with specifications

ON GEOM CENT 97-3, 161-1, 161-0.25 and grid 2 with specifications ON GEOM CENT

285-3, 285-1, 285-0.25. Grid 2* is the same as grid 2, but the stopping criteria in SOR is

improved: maxrmsdiff = 2× 10−9/(grid dim− 1) and maxiter=3000.
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Table 5.14: Solver 2, GridScale=2, εm = 1, εs = 2, Is = 0. Neutral dyes with transition

state atomic charges. Average (over all 120 frames) number of DOFs in the primal and

adjoint problems for each MRL l = 0, 1, . . . , 5. All initial meshes have a uniform mesh size in

the molecular region, related to the average edge length on the molecular surface Γ.

level aver. # DOFs primal aver. # DOFs adjoint

0 54 156 429 196

1 74 124 586 695

2 106 702 842 292

3 157 736 1 242 095

4 242 896 1 910 434

5 391 030 3 074 173

5.5.2 Application to interaction between chromophores in ground state

The second model that we consider describes interactions between chromophores, being in

their ground state and in equilibrium with the solvent. In this model the induced polarization

of water molecules is caused by both electronic polarization and orientation of the molecular

dipoles. Averaging over all degrees of freedom yields a dielectric constant εs = 80. This

results in a relatively high jump in the dielectric coefficient across the interface Γ, since the

dielectric permittivity εm of proteins and chromophores is low. In this application, we take

εm = 4.

To study the effect of different levels of approximation in the physical model describing

the electrostatic potential we use MD frames for POLY6 and POLY20 labeled with Alexa

chromophores with their ground-state charges. For every frame we compute the coupling

between the dyes, using 5 different levels of approximation:

(1) NO-INTERFACE (no interfaces): chromophores are represented by the fixed point

charges at the places of their atoms, immersed in the solution with dielectric constant

ε = 80 everywhere; since the reaction field potential is zero, the interaction is given by

the analytically known Coulomb coupling EG2 = EG1 ;

(2) SURF-DYES (dyes-solution interface): chromophores with point charges and εm = 4 are

separated from the solution (εs = 80) by their molecular surface Γ (see Figure 5.28a));

(3) SURF-DYES-POLYPRO (dyes-solution and polyproline-solution interfaces): chro-

mophores are represented like in the previous model; polyproline (εm = 4) is separated

from the solution with its molecular surface (see Figure 5.28b));

(4) SURF-DYES-POLYPRO-IONS (dyes-solution and polyproline-solution interfaces with

an IEL and presence of ions): the previous model is complemented by introduction of
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ions in the solution. The ionic strength that is used for the experiments is equal to

0.3M , which at T = 300 K results in k =
√

2.52916 Å−1 (see Figure 5.28c));

(5) SURF-DYES-POLYPRO-IONS-NO-IEL: the previous model but without an ion exclu-

sion layer.

Furthermore, the strength of the electrostatic interaction is influenced by the total charge

in each chromophore. We perform calculations with Solver 4 for charged dyes with a total

charge sum equal to −2 e0 and for neutral dyes with a total charge sum equal to 0 e0. The

computational domain Ω is a cube with a side length between 160 000 Å and 400 000 Å

depending on the size of the smallest box containing the molecular system. The obtained

results are compared to the ones obtained with MEAD. The ground-state charges of the

chromophores are the same as in the examples with uniform dielectric coefficient ε = 1 and

are assigned, based on the CHARMM force field (version v35b3). The number of nonzero

charges in the dyes is N1 = 79 and N2 = 73. We present results for 19 frames: 10 frames

with POLY6 and 9 frames with POLY20.

(a) SURF-DYES (b) SURF-DYES-POLYPRO (c) SURF-DYES-POLYPRO-IONS

Figure 5.28: Different levels of approximation in the physical model describing the electrostatic

potential in the system Alexa 594-POLY6-Alexa 488.

Charged dyes with a total charge sum of −2 e0

On Figure 5.29 is shown the relative distance between the interaction EM , obtained with

MEAD for three of the six configurations that we used in the examples with uniform dielectric

coefficient ε = 1 (see p. 227), and the interaction EA1−2 = 〈F2, z
(2)
l 〉, obtained with Solver 4

at MRL l = 4. The average (over 3× 19 = 57 frames) distances for all 6 configurations are as

follows:

• configuration 1: 7.89 %

• configuration 2: 7.13 %

• configuration 3: 1.83 %
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• configuration 4: 7.11 %

• configuration 5: 1.27 %

• configuration 6: 1.23 %

It is seen that configurations 3, 5, and 6 give the best match with the results obtained with

Solver 4. Those are also the configurations with improved stopping criteria in the SOR

procedure. Additionally, in Table 5.15 is given the average number of DOFs in the primal and

adjoint problem for each MRL l in the case of the approximation SURF-DYES-POLYPRO.

All initial meshes have a uniform mesh size in Ωm which is related to the average edge length

on the triangulated surface of the molecules. If the mesh size is nonuniform in Ωm, then the

number of mesh vertices decrease around two times for the longer polyproline POLY20.
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Figure 5.29: Charged dyes with ground state charges and total charge sum of −2 e0. Relative

distance
|EA1−2−EM |
|EA1−2|

[%] between the interaction EM obtained with MEAD and the interaction

EA1−2 = 〈F2, z
(2)
l 〉 obtained with Solver 4 at MRL l = 4. MEAD interaction computed with

configurations 2, 4, and 6 for the grids and stopping criteria in the SOR method from p. 227.

Further, on Figure 5.30 is shown the dependence of the coupling between the two dyes on the

approximation level used in the physical model describing the electrostatic potential in the

system. The first three approximations give very similar couplings for most of the 19 frames.

It is evident that the analytically known Coulomb interaction EG2 = EG1 , provides a very

good approximation to the interaction when Is = 0, especially for the frames 11 to 19, where

the two dyes are sufficiently far away from each other (frames 11-19 correspond to POLY20).

When Is > 0, the screening of the electrostatic potential by the ions in the solution is much

stronger and hence the absolute value of the interaction is several orders of magnitude smaller.

Of course, the effect of the screening is even stronger when there is a larger region, occupied

by the solvent, between the dyes (frames 11-19). With this said, even though the ion exclusion
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Table 5.15: Solver 4, GridScale=2, εm = 4, εs = 80, Is = 0.3M . Charged dyes with ground

state atomic charges and a charge sum of −2 e0 in each dye. Average number of DOFs

in the primal and adjoint problems for each MRL l = 0, 1, . . . , 5 for the approximation

SURF-DYES-POLYPRO. The average for POLY6 is taken over frames 1-10 and for POLY20

over frames 11-19. All initial meshes with uniform mesh size inside the molecular region,

related to the average edge length on the molecular surface.

aver. # DOFs primal aver. # DOFs adjoint

level POLY6 POLY20 POLY6 POLY20

0 74 324 125 829 589 576 998 602

1 100 227 151 289 793 537 1 199 203

2 156 028 228 415 1 231 934 1 807 599

3 254 192 418 277 2 001 100 3 300 607

4 422 054 743 386 3 319 367 5 859 052

5 711 480 1 297 965 5 592 983 10 217 478

layer has a thickness of only 2 Å, removing this layer is enough to cause a further decrease in

the interaction approximately by a factor of 2 (SURF-DYES-POLYPRO-IONS-NO-IEL).

2 4 6 8 10 12 14 16 18
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

2 4 6 8 10 12 14 16 18

10
-3

10
-2

Figure 5.30: Charged dyes with ground state charges and total charge sum −2 e0. Absolute

value of the coupling EA1−2 = 〈F2, z
(2)
l 〉 between the two dyes for the 5 levels of approximation

made in the physical model. Coupling obtained with Solver 4 at MRL l = 4.

Neutral dyes (charge sum of 0 e0)

Here, we use the meshes from the previous example and only the set of charges {qi,1}N1
i=1 and

{qi,2}N2
i=1 are different. On Figure 5.32 is shown the relative distance between the interaction

EM , obtained with MEAD for three of the six configurations that we use in the examples

with uniform dielectric coefficient ε = 1 (see p. 227), and the interaction EA1−2 = 〈F2, z
(2)
l 〉,

obtained with Solver 4 at MRL l = 4. The average (over 3 × 19 = 57 frames) distances

for each of the 6 configurations and the average (over 3 × 19 − 1 = 56 frames) without

including the case SURF-DYES-POLYPRO-IONS in frame 6 are given in Table 5.16. Again,
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Table 5.16: Neutral dyes with ground state atomic charges. Average relative distance between

couplings obtained with MEAD for 6 different configurations and Solver 4.

MEAD

configuration

average over

57 frames [%]

average over

56 frames [%]

1 50.06 39.02

2 40.67 31.24

3 27.76 25.24

4 38.18 26.84

5 27.12 15.74

6 24.66 13.24

configurations 3, 5, and 6 give the best match with the results obtained with Solver 4.

In this case the differences between the solutions obtained with MEAD and Solver 4 are

significant. Before further commenting on the discrepancies with MEAD, on Figure 5.33

we show the ratios of the couplings obtained with MEAD to the couplings obtained with

Solver 4. It is evident that there are accuracy issues in MEAD since for several frames, the

couplings obtained for different configurations differ by a factor of 1.5 to 2 and some even

have a different sign (see frames 10 and 15). We give more details for several problematic

frames in Table 5.18, Table 5.19, and Table 5.20. There, we compare the values for E1−2

and E2−1 obtained by MEAD and Solver 4. It is seen that with configurations 1, 2, 4,

corresponding to a default stopping criteria in SOR, often times the values for E1−2 and

E2−1 have different signs. On the other hand, with configurations 5, 6, and 7, corresponding

to improved stopping criteria in SOR, MEAD produces approximations of E1−2 and E2−1

which are closer in value and have the same sign. We recall that the grid specifications in

configurations 5, 6, and 7 are the same and the only difference is the number of maximum

iterations allowed in the SOR procedure: for configuration 5 maxiter=3000, for configuration

6 maxiter=12000, and for configuration 7 maxiter=4000. As in the examples with a uniform

dielectric coefficient ε = 1, it is seen that focusing on the dye of interest, i.e., focusing on

the region at which the potential is needed, does not improve the quality of the computed

interaction. Looking at Table 5.18, Table 5.19, and Table 5.20 is clear that the variation in

the iteration number in the SOR procedure has a strong impact on the computed interaction.

On the other hand, the difference in the two values obtained by solving the adjoint (with P2

elements) and the primal (with P1 elements) problems with Solver 4 is negligible.

We identify several reasons for the discrepancies in the interactions computed with MEAD.

The two most important ones are the ineffective stopping criteria in SOR and the use of

single precision arithmetic. If the number of iterations in SOR is too low, then the iterative

error dominates the discretization one. Increasing too much the number of iterations in SOR

is also not recommended since in this case round off errors, especially with single precision

arithmetic, start accumulating and the quality of the solution starts deteriorating.
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Another cause of errors, that is common for all solvers based on finite difference schemes

with uniform Cartesian grids, is the fact that the position of the interface Γ, as well as

the positions and magnitudes of the charges in the molecular region Ωm are not taken into

account when computing the electrostatic interaction, i.e., the grid is not refined accordingly.

As an illustration, consider the example of a Born ion with a charge of 1 e0 positioned at

the origin of the coordinate system and let ϕ be the potential it creates. Let {qi}Ni=1 be test

charges and let {ri}Ni=1 be the respective distances from the Born ion’s center. Assume that

the average error in the computed potential ϕh at a distance r from the Born ion’s center

is e. Since the problem is spherically symmetric and all test charges are treated equal (the

solver is not aware of their presence), on average, the error in the computed electrostatic

interaction Ẽ will be
N∑
i=1

qie(ri). Now, it is easy to analyze the overall error in E when taking

different combinations of test charges qi and distances ri from the center. For example, if

qi = 1 e0 for all i = 1, 2, . . . N , and ri = r, i = 1, 2, . . . , N , then the error in the interaction

is E − Ẽ = Ne. For MEAD with improved stopping criteria and a grid with specifications

ON ORIGIN 97-3 161-1 161-0.25, we have calculated the average relative errors for the Born

ion with a radius R = 14, 16, 18 Å over samples of 400 points distributed on the spheres with

radii R − 2 + 0.5i Å, i = 0, 1, . . . , 8 (see Figure 5.31). The absolute values of the relative

errors for the spheres with radii different from the radius R of the Born ion vary anywhere

between 0.13 % to 1 % (for example, see Table 5.17). The average error e is higher for

spheres close to the interface Γ and reaches around 5 % for the spheres coinciding with the

Born ion sphere. This means that for N unit charges, the relative error in the interaction

can easily reach N%. Of course, if the sum of all charges qi is 0 and all of them are at the

same distance r from the center, then on average the error will be zero. However, if not all

of them are at the same distance from the center, then the average error can become high again.

The fact that the test charges are not “visible” is true even for adaptive finite element solvers

that rely on energy norm error estimates. In contrast, the idea of the adaptive FE solvers

based on the goal-oriented error estimates that we have presented is to take into account not

only the charges creating the potential ϕ, but also the presence of the test charges so that for

a given number of DOFs the error E − Ẽ is as small as possible.

Finally, on Figure 5.34 we show the dependence of the electrostatic interaction on the different

levels of approximation in the model. This time, the simple Coulomb interaction EG2 = EG1

differs significantly from the interactions computed with the other approximations in the

model.
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Table 5.17: Born ion with R = 16 Å, εm = 4, εs = 80, Is = 0M . Average relative errors(
400∑
i=1

E(r)−Ẽi(r)
E(r)

)
/400 [%] for r = R−2+0.5i, i = 0, 1, . . . , 9. Here E(r) = E2−1(r) = E1−2(r)

is the exact interaction between the Born ion and a test charge at a distance r and Ẽi(r) is

the computed with MEAD interaction at the i-th sample point.

config. (1.1): ON ORIGIN 97-3 161-1 161-0.25, maxiter=4000, maxrmsfidd= 2×10−8

grid dim−1
;

config. (2.1): ON ORIGIN 285-1 285-0.5 285-0.15, maxiter=4000, maxrmsfidd= 2×10−8

grid dim−1
;

config. (2.2): ON ORIGIN 285-1 285-0.5 285-0.15, maxiter=12000, maxrmsfidd= 2×10−8

grid dim−1
;

configuration R− 2 R− 1.5 R− 1 R− 0.5 R R+ 0.5 R+ 1 R+ 1.5 R+ 2

config. (1.1) 0.282 0.348 0.438 0.577 -4.554 -0.209 -0.214 -0.219 -0.224

config. (2.1) 0.381 0.486 0.641 0.899 -1.785 0.775 0.802 0.829 0.856

config. (2.2) 0.147 0.191 0.254 0.351 -2.686 -0.152 -0.154 -0.155 -0.156

Table 5.18: Frame 15, SURF-DYES approximation. Neutral dyes with ground state charges,

εm = 4, εs = 80, Is = 0M . Check of symmetry in the electrostatic interactions EM1−2 and EM2−1

obtained with MEAD. In the last row are the respective values EA1−2 = 〈F2, z
(2)
l 〉 (adjoint

problem), EP2−1 = 〈 1
4πF1, ϕ2,l〉 (less accurately solved primal problem), and E =

EA1−2+EP2−1

2

obtained with Solver 4 at MRL l = 7. Configuration 7 with specifications: ON GEOM CENT

101-3, 201-1, 401-0.25, maxiter=4000, maxrmsfidd= 2×10−8

grid dim−1
.

configuration EM
1−2 EM

2−1 EM =
EM1−2+EM2−1

2

MEAD, config. 1 -9.665545e-08 -2.167925e-07 -1.567239e-07

MEAD, config. 2 8.639515e-08 -2.671485e-07 -9.037667e-08

MEAD, config. 3 1.606346e-07 -9.567210e-08 3.248125e-08

MEAD, config. 4 1.201878e-07 -1.873185e-07 -3.356532e-08

MEAD, config. 5 1.044903e-07 4.926980e-08 7.688007e-08

MEAD, config. 6 1.030285e-07 9.154090e-08 9.728472e-08

MEAD, config. 7 1.048365e-07 6.787570e-08 8.635612e-08

Solver 4, l = 7 EA
1−2 =2.036060e-07 EP

2−1 =1.979671e-07 E =2.007865e-07
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Table 5.19: Frame 10, SURF-DYES approximation. Neutral dyes with ground state charges,

εm = 4, εs = 80, Is = 0M . Check of symmetry in the electrostatic interactions EM1−2 and EM2−1

obtained with MEAD. In the last row are the respective values EA1−2 = 〈F2, z
(2)
l 〉 (adjoint

problem), EP2−1 = 〈 1
4πF1, ϕ2,l〉 (less accurately solved primal problem), and E =

EA1−2+EP2−1

2

obtained with Solver 4 at MRL l = 7. Configuration 7 with specifications: ON GEOM CENT

101-3, 201-1, 321-0.25, maxiter=4000, maxrmsfidd= 2×10−8

grid dim−1
.

configuration EM
1−2 EM

2−1 EM =
EM1−2+EM2−1

2

MEAD, config. 1 2.601868e-08 -2.639895e-07 -1.189854e-07

MEAD, config. 2 -2.957653e-07 -3.436340e-07 -3.196996e-07

MEAD, config. 3 -2.472066e-07 -4.216845e-07 -3.344455e-07

MEAD, config. 4 -1.646121e-07 -4.858850e-08 -1.066003e-07

MEAD, config. 5 1.359186e-07 2.225950e-07 1.792568e-07

MEAD, config. 6 1.362875e-07 1.996230e-07 1.679552e-07

MEAD, config. 7 1.356246e-07 2.072520e-07 1.714383e-07

Solver 4, l = 5 EA
1−2 =2.782821e-07 EP

2−1 = 2.789001e-07 E =2.785911e-07

Table 5.20: Frame 16, SURF-DYES-POLYPRO approximation. Neutral dyes with ground

state charges, εm = 4, εs = 80, Is = 0M . Check of symmetry in the electrostatic interactions

EM1−2 and EM2−1 obtained with MEAD. In the last row are the respective values EA1−2 =

〈F2, z
(2)
l 〉 (adjoint problem), EP2−1 = 〈 1

4πF1, ϕ2,l〉 (less accurately solved primal problem),

and E =
EA1−2+EP2−1

2 obtained with Solver 4 at MRL l = 7. Configuration 7 with specifications:

ON GEOM CENT 101-3, 201-1, 401-0.25, maxiter=4000, maxrmsfidd= 2×10−8

grid dim−1
.

configuration EM
1−2 EM

2−1 EM =
EM1−2+EM2−1

2

MEAD, config. 1 -1.047835e-07 -2.442948e-07 -1.745391e-07

MEAD, config. 2 2.258915e-07 -2.009694e-07 1.246102e-08

MEAD, config. 3 2.269249e-07 -1.088780e-07 5.902342e-08

MEAD, config. 4 2.327025e-07 -1.595722e-07 3.656515e-08

MEAD, config. 5 2.370433e-07 1.065088e-07 1.717760e-07

MEAD, config. 6 2.749463e-07 2.678155e-07 2.713809e-07

MEAD, config. 7 2.472049e-07 1.676093e-07 2.074071e-07

Solver 4, l = 6 EA
1−2 =2.938374e-07 EP

2−1 =2.920518e-07 E =2.929446e-07
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Figure 5.31: Nine concentric spheres with radii R− 2 + 0.5i Å, i = 0, 1, . . . , 8 for R = 16 Å.

On each sphere there are 400 points over which an average value of the relative error is

computed.
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Figure 5.32: Neutral dyes with ground state charges. Relative distance
|EA1−2−EM |
|EA1−2|

[%] between

the interaction EM obtained with MEAD and the interaction EA1−2 = 〈F2, z
(2)
l 〉 obtained

with Solver 4 at MRL l = 4. MEAD interaction computed with configurations 2, 4, and 6

for the grids and stopping criteria in the SOR method from p. 227.
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Figure 5.33: Neutral dyes with ground state charges. Ratio EM
EA1−2

of the coupling EM obtained

with MEAD to the coupling EA1−2 = 〈F2, z
(2)
l 〉 obtained with Solver 4 at refinement level 4.
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EA1−2 = 〈F2, z
(2)
l 〉 between the two dyes for the 5 levels of approximation made in the physical

model. Coupling obtained with Solver 4 at MRL l = 4.
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Chapter 6

Conclusion

This thesis had three main goals, which can be summarized as follows:

• present a rigorous solution theory for the linearized and nonlinear Poisson-Boltzmann

equation;

• derive a posteriori error estimates in terms of global energy norms of the solution as

well as in terms of a specific quantity of interest;

• implement adaptive FE solvers based on the aforementioned estimates and apply these

solvers to the treatment of problems of practical interest.

With respect to the solution theory, we have successfully proven the existence and uniqueness

of a solution to the linearized PBE and existence of a solution to the nonlinear PBE in

suitable function spaces for problems with measure right-hand side. This is achieved by

employing a 2- and 3-term splittings of the full potential. Moreover, we have shown that the

unique solution of the LPBE can be obtained by considering a standard weak formulation,

involving H1 spaces, for the regular component of the solution in both splittings. Likewise, a

particular solution of the nonlinear PBE can be obtained by considering a weak formulation

for the regular component of the potential in both splittings.

The fact that the regular component of the solution satisfies a weak formulation involving

H1 spaces means that this component can be numerically approximated by means of well

studied methods, such as the FE method. Besides, it also means that the duality theory

for convex variational problems is applicable. This allowed us to derive functional type a

posteriori error estimates for the regular component of the solution to the nonlinear PBE.

The advantage of this approach, based on the duality theory, is that it requires only the

structure of the problem and therefore no global or local mesh-dependent constants enter

the estimate. This is in contrast to other methods, e.g., residual based a posteriori error

estimates, which depend on the particular triangulation. Therefore functional type estimates

do not only give an error indicator but also a fully computable and guaranteed bound on
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the error. To the best of our knowledge, this approach to the a posteriori error estimation

has not been previously applied to problems of continuum electrostatics. Despite the high

popularity of the PBE in the biophysics community, it seems that the use of adaptive FE

methods in conjunction with a posteriori error estimation techniques is limited mainly to the

developments in [48,102,103], where residual type error estimates are derived.

Besides functional type error estimates, we have also considered goal oriented ones. The

motivation for such kind of estimates came while we were involved in an interdisciplinary

project, where FRET (Fröster resonance energy transfer) rates had to be calculated. The

efficiency of the transfer depends on the electrostatic coupling between the two dyes exhibiting

FRET, and the calculation of the coupling only involves the values of the potential at the

positions of the fixed charges in one of the dyes. Therefore, it was clear that functional type

error estimates controlling the global quality of the solution, are not efficient in such situations.

The third main goal of this work was to design adaptive FE solvers that utilize the above-

mentioned functional and goal oriented error estimates and to utilize them in real biophysical

applications. We have successfully implemented in FreeFem++ [98] several such solvers that

can solve with high accuracy the PBE for complex molecular structures. The solver based on

the functional type error estimate can also return guaranteed bound on the relative error in

energy norms. The solute surface meshes are generated with NanoShaper [61] and then a

tetrahedral volume mesh is constructed with the help of TetGen [170]. The adaptive mesh

refinement is driven either by the functional type error indicators or by the goal oriented ones,

where the remeshing is done with the help of mmg3d [62]. What is more, we have verified

the reliability and efficiency of these solvers on a series of problems with analytically known

solutions. Here, we note that other surface mesh generators, volume mesh generators, and

mesh refinement softwares can also be used.

As a possible future work we can consider the following research directions:

• Using higher order Raviart-Thomas or Brezzi-Douglas-Marini finite elements for the

patchwise equilibrated flux reconstruction of the dual variable in the functional type

error estimates;

• Proving the convergence of the adaptive FE algorithms based on the derived a posteriori

error estimates;

• Utilizing isoparametric or isogeometric finite elements to represent more accurately the

curved solute-solvent interface;

• Implementation of the adaptive FE solvers in C++ and making them available to the

biophysics community.



List of Notation

Ω - Computational domain

Ωm - Molecular/solute domain

ΩIEL - Ion exclusion layer

Ωions - Ionic domain

Ωs - Solution domain

∂Ω - Boundary of Ω

Γ - Solute-solvent interface/boundary of Ωm

n∂Ω - Unit outward normal vector to ∂Ω

nΓ - Unit outward normal vector to Γ

ε - Dielectric coefficient

εm - Dielectric coefficient in the molecular domain

εs - Dielectric coefficient in the solution domain

k - Inverse Debye length coefficient (piecewise constant) for the dimensionless PBE and

LPBE

kions - Inverse Debye length in Ωions for the dimensionless PBE and LPBE

k - Coefficient in the general semilinear problem

φ - Dimensionless electrostatic potential
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ϕ - Electrostatic potential with dimension charge
length

g - Dirichlet boundary condition for the dimensionless potential φ

g - Dirichlet boundary condition for the potential ϕ with dimension charge
length

G - Coulomb part of the potential. In Chapter 3 and Chapter 4 is dimensionless and in

Chapter 5 has dimension charge
length

u - Regular component of the potential in the 2- and 3-term splittings. In the 2-term

splitting is also called reaction field potential. In Chapter 3 and Chapter 4 is dimen-

sionless and in Chapter 5 has dimension charge
length .

uH - Harmonic component of the potential in the 3-term splitting. In Chapter 3 and

Chapter 4 is dimensionless and in Chapter 5 has dimension charge
length .

G2 - Functional on the right-hand side of the weak formulation for the regular component

in the 2-term splitting for the PBE.

G3 - Functional on the right-hand side of the weak formulation for the regular component

in the 3-term splitting for the PBE.

H1
γ2(g)(Ω) - The set of all functions in H1(Ω) that are equal to γ2(g) on ∂Ω in the sense

of traces. Here g ∈ H1(Ω)

H1
g (Ω) - The set of all functions in H1(Ω) whose trace is equal to g on ∂Ω. Here

g ∈ H
1
2 (∂Ω).

ϕ2 - Potential generated by the charges in molecule II/exact solution of the primal

problem (Chapter 5)

ϕ1 -Potential generated by the charges in molecule I (Chapter 5)

G2, u2 - Coulomb and reaction field part of the potential in the 2-term splitting of ϕ2

(Chapter 5)

G1, u1 - Coulomb and reaction field part of the potential in the 2-term splitting of ϕ1

(Chapter 5)

EG2 , Eu2 - Coulomb and reaction field part of the electrostatic interaction with the

2-term splitting of ϕ2 (Chapter 5)
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EG1 , Eu1 - Coulomb and reaction field part of the electrostatic interaction with the

2-term splitting of ϕ1 (Chapter 5)

E2−1 - Electrostatic interaction between dye/molecule II and dye/molecule I, computed

with the potential created by the charges in dye II, evaluated at the positions of the

charges in dye I and multiplied by the charges in dye I (Chapter 5)

E1−2 - Electrostatic interaction between dye I and dye II, computed with the potential

created by the charges in dye I, evaluated at the positions of the charges in dye II and

multiplied by the charges in dye II (Chapter 5)

ϕ2,h - Approximate solution of the primal problem with P1 elements (Chapter 5)

z
(2)
h - Approximate solution of the adjoint probem with P2 elements (Chapter 5)

EP2−1 - Approximate electrostatic interaction between dye II and dye I, computed with

the primal problem (Chapter 5)

EA1−2 - Approximate electrostatic interaction between dye I and dye II, computed with

the adjoint problem (Chapter 5)

1
4πF1 - Goal functional/functional on the right-hand side of the adjoint problem (Chap-

ter 5)

F2 - Functional on the right-hand side of the primal problem (Chapter 5)
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4. The molecule region Ωm is marked red (Alexa 594). On the right: error

indicator as a piecewise constant function. . . . . . . . . . . . . . . . . . . . . 166

4.20 Full potential surface map with the 3-term splitting (without additional de-

composition into uL + uN ) for the system Alexa 488 and Alexa 594 in units

kBT/e0. Blue color indicates a positive potential (values> 2.5kBT/e0) and

red color indicates negative potential (values < −2.5KBT/e0). . . . . . . . . . 168

4.21 Cross section of the mesh with the plane y = 15 Å at level i = 2 in the mesh
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such a way that most of the lines pass through the channel. Only the potential

outside the channel is plotted, i.e., we have plotted only the regular component

u in the 3-term splitting. The zero values of the potential indicate that at

these coordinates the particular segment crosses the interior of the SecYEG

channel (the region Ωm). In blue are the values of the potential computed

with a variable dielectric coefficient εs(x) and in red are the values computed

with a constant εs = 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.1 Different regions in the case Is 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2 Different regions in the case Is 6= 0. . . . . . . . . . . . . . . . . . . . . . . . . 196

5.3 Schematic representation of an adaptive refinement algorithm. . . . . . . . . 218

5.4 Neutral dyes with transition state atomic charges. Relative errors for MEAD

with grid 1 and grid 2 compared to the relative errors
|E2−1−EA1−2|
|E2−1| [%] for

Solver 4 on different refinement levels l, where EA1−2 = 〈F2, z
(2)
l 〉 and E1−2 =

E2−1 = E. Grid 1 in MEAD with specifications ON GEOM CENT 97-3,

161-1, 161-0.25 and grid 2 with specifications ON GEOM CENT 285-3, 285-1,

285-0.25. Some frames have less refinement levels since the maximum number

of refinement steps has been set lower. . . . . . . . . . . . . . . . . . . . . . . 224

5.5 Neutral dyes with transition state atomic charges. Convergence of average (over

120 frames) relative errors of Solver 4 for the quantities EA1−2 = 〈F2, z
(2)
l 〉

and EP2−1 = 1
4π 〈F1, ϕ2,l〉. The average number of DOFs per MRL and the

average relative errors for the primal and adjoint problems used in this plot

are given in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.6 Solver 4. Neutral dyes with transition state atomic charges. Convergence

of relative error in the primal and adjoint problems for frames with global

numbers 9 and 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.7 Neutral dyes with ground state atomic charges. Convergence of average (over

19 frames) relative errors of Solver 4 for the quantities EA1−2 = 〈F2, z
(2)
l 〉 and

EP2−1 = 1
4π 〈F1, ϕ2,l〉. The average number of DOFs per MRL and the average

relative errors for the primal and adjoint problems used in this plot are given

in Table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5.8 Neutral dyes with ground state atomic charges. Relative errors for MEAD with

three configurations versus relative errors
|E2−1−EA1−2|
|E2−1| [%] for the interaction

computed with the adjoint solution in Solver 4 for three different mesh

refinement levels l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231



278 LIST OF FIGURES

5.9 Neutral dyes with ground state atomic charges. Very coarse initial meshes.

Convergence of average (over 19 frames) relative errors of Solver 4 for the

quantities EA1−2 = 〈F2, z
(2)
l 〉 and EP2−1 = 1

4π 〈F1, ϕ2,l〉. The average number

of DOFs per MRL and the average relative errors for the primal and adjoint

problems used in this plot are given in Table 5.4. . . . . . . . . . . . . . . . . 232

5.10 Charged dyes with ground state atomic charges and a total charge of −2 e0

in each dye. Very coarse initial meshes. Convergence of average (over 19

frames) relative errors of Solver 4 for the quantities EA1−2 = 〈F2, z
(2)
l 〉 and

EP2−1 = 1
4π 〈F1, ϕ2,l〉. The average number of DOFs per MRL and the average

relative errors for the primal and adjoint problems used in this plot are given

in Table 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.11 Born ion model with Is = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.12 Triangulated with NanoShaper surfaces of a sphere with radius R = 1 Å. . . . 235
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Relative errors in the computed electrostatic interaction EA1−2 = 〈F2, z
(2)
l 〉 at

all mesh refinement levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5.26 Alexa chromophores attached to the all-trans polyproline helice of 6 residues. 256

5.27 FRET application. Neutral dyes with transition state atomic charges. Relative

distance
|EA1−2−EM |
|EA1−2|

between MEAD coupling EM and the coupling EA1−2 =

〈F2, z
(2)
l 〉 obtained with Solver 2 at MRL l = 5 with GridScale=2. Grid 1 in

MEAD with specifications ON GEOM CENT 97-3, 161-1, 161-0.25 and grid 2

with specifications ON GEOM CENT 285-3, 285-1, 285-0.25. Grid 2* is the

same as grid 2, but the stopping criteria in SOR is improved: maxrmsdiff =

2× 10−9/(grid dim− 1) and maxiter=3000. . . . . . . . . . . . . . . . . . . 257

5.28 Different levels of approximation in the physical model describing the electro-

static potential in the system Alexa 594-POLY6-Alexa 488. . . . . . . . . . . 259

5.29 Charged dyes with ground state charges and total charge sum of −2 e0. Relative

distance
|EA1−2−EM |
|EA1−2|

[%] between the interaction EM obtained with MEAD and

the interaction EA1−2 = 〈F2, z
(2)
l 〉 obtained with Solver 4 at MRL l = 4.

MEAD interaction computed with configurations 2, 4, and 6 for the grids and

stopping criteria in the SOR method from p. 227. . . . . . . . . . . . . . . . . 260

5.30 Charged dyes with ground state charges and total charge sum −2 e0. Absolute

value of the coupling EA1−2 = 〈F2, z
(2)
l 〉 between the two dyes for the 5 levels of

approximation made in the physical model. Coupling obtained with Solver 4

at MRL l = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



280 LIST OF FIGURES

5.31 Nine concentric spheres with radii R− 2 + 0.5i Å, i = 0, 1, . . . , 8 for R = 16 Å.
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Uniform initial mesh size inside the Born ion sphere related to the average

edge length on the triangulated surface. . . . . . . . . . . . . . . . . . . . . . 237



LIST OF TABLES 283

5.7 Solver 4. GridScale=4. Born ion model, k = 0, εm = 4, εs = 80. Averages of

number of DOFs and errors for adjoint problem for distances from 5 Å to 74 Å.
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22(6):799–815, 2005.

[11] D. Bashford. An object-oriented programming suite for electrostatic effects in biological

molecules. In Proceedings of the Scientific Computing in Object-Oriented Parallel

Environments, ISCOPE ’97, pages 233–240, London, UK, UK, 1997. Springer-Verlag.

287

https://www.rocq.inria.fr/gamma/gamma/download/affichage.php?dir=MOLECULE&name=water_mol&last_page=6
https://www.rocq.inria.fr/gamma/gamma/download/affichage.php?dir=MOLECULE&name=water_mol&last_page=6


288 BIBLIOGRAPHY

[12] D. Bashford. Macroscopic electrostatic models for protonation states in proteins.

Frontiers in Bioscience, 9(2):1082–1099, 2004.

[13] R. Becker and R. Rannacher. An optimal control approach to a posteriori error

estimation in finite element methods. Acta Numer., 10:1–102, 2001.
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wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die

vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument identisch.

Linz, June 2019

————————————————

Svetoslav Nakov



304 BIBLIOGRAPHY



Curriculum Vitae

Name: Svetoslav Nakov

Nationality: Bulgaria

Date of Birth: 21 February, 1989

Place of Birth: Sofia, Bulgaria

Education:

2003–2008 High School of Mathematics and Natural Sciences,

Veliko Tarnovo, Bulgaria

2008–2012 Bachelor Study in Applied Mathematics,

University of Sofia ”St. Kliment Ohridski”

2012–2014 Master Study

in Computational Mathematics and Mathematical Modeling,

University of Sofia ”St. Kliment Ohridski”

2014–2019 PhD Study in Computational Mathematics,

Johannes Kepler University, Linz

Research Stays:

Dec. 2016–Mar. 2017 University of Duisburg-Essen,

visiting Prof. Johannes Kraus

Mar. 2017–Jun. 2017 Pennsylvania State University,

visiting Prof. Ludmil Zikatanov

Work and Teaching:

Oct. 2014–Sep. 2018 Radon Institute for Computational and Applied Mathematics,



306 BIBLIOGRAPHY

research scientist

Feb. 2014–Jul. 2014 University of Sofia ”St. Kliment Ohridski”

graduate teaching assistant for a course

in Applications of Mathematics for Modeling Real Problems

Apr. 2013–Sep. 2014 Bulgarian Academy of Sciences, Institute of Mechanics,

mathematician

Feb. 2012–Jul. 2013 University of Sofia ”St. Kliment Ohridski”

graduate teaching assistant for a course

in Numerical Linear Algebra

Scholarships and Awards:

2009–2014 European Students Award and Scholarship as part of the

project ”Students Scholarships and Awards” co-funded

by the European Union and

the Bulgarian Ministry of Education, Youth

2013–2014 Scholarship for high grade point average (GPA)

in the Master program awarded by

University of Sofia ”St. Kliment Ohridski”

2009–2012 Scholarship for high grade point average (GPA)

in the Bachelor program

awarded by Sofia University ”St. Kliment Ohridski”

14–16 May 2010 Silver Medal from the National Mathematics Olympiad

for University Students, V. Tarnovo, Bulgaria

27 Mar. 2012 Gold Medal from the 3-rd National Armwrestling Competition

for University Students, +95 kg Right Hand Division,

Blagoevgrad, Bulgaria

Special Interests: Armwrestling, Volleyball, Fitness


	Introduction
	Preliminaries
	Classes of continuous functions
	Lebesgue and Sobolev spaces
	Variational problems and convex analysis
	Regularity of linear elliptic interface problems

	Existence and uniqueness analysis
	Problem formulation
	Poisson-Boltzmann equation

	Linearized Poisson Boltzmann equation
	2-term splitting =G+u
	3-term splitting =G+u^H+u
	Regularity of the component u in the 2-term and 3-term splittings

	Poisson-Boltzmann equation
	2-term splitting
	3-term splitting
	Existence, uniqueness, and boundedness of the component u in the 2-term and 3-term splittings
	Regularity of the component u in the 2-term and 3-term splittings

	A more general semilinear elliptic equation

	Functional a posteriori error estimates
	General form of the estimates
	A more general semilinear interface elliptic problem
	Abstract framework
	Homogeneous Dirichlet boundary condition
	Nonhomogeneous Dirichlet boundary condition

	Finding a good approximation of the dual variable
	Poisson-Boltzmann equation
	2-term splitting
	3-term splitting
	Applications


	Goal-oriented error estimates
	Electrostatic interaction between two molecules
	A general goal-oriented error estimate approach
	Error estimates for the electrostatic interaction
	Error estimation 1: 2-term splitting in primal problem and regular goal functional
	Error estimation 2: 2-term splitting in primal problem and irregular goal functional
	Error estimation 3: no splitting in primal problem and regular goal functional
	Error estimation 4: no splitting in primal problem and irregular goal functional
	Summary of all four error estimates

	Verification of the error estimates
	Uniform dielectric
	Born ion model with I_s=0
	Born ion model with I_s>0 and an ion exclusion layer

	Applications
	Application to FRET
	Application to interaction between chromophores in ground state


	Conclusion
	List of Notation
	List of Figures
	List of Tables

