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Robust Multigrid Preconditioning for Parameter Dependent Problems I: The
Stokes-type Case.

June 1997

97-3 Ferdinand Kickinger, Sergei V. Nepomnyaschikh, Ralf Pfau, Joachim Schöberl
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Adaptive Space-Time Finite Element and
Isogeometric Analysis

Ulrich Langer

Abstract This paper provides an overview of completely unstructured space-time
finite element and isogeometric discretizations of parabolic initial-boundary value
problems and optimal control problems constrained by such parabolic problems as
state equation.

1 Introduction

The traditional approaches to the numerical solution of initial-boundary value prob-
lems (IBVP) for parabolic or hyperbolic Partial Differential Equations (PDEs) are
based on the separation of the discretization in time and space leading to time-
stepping methods; see, e.g., [20]. This separation of time and space discretizations
comes along with some disadvantages with respect to parallelization and adaptiv-
ity. To overcome these disadvantages, we consider completely unstructured finite
element (fe) or isogeometric (B-spline or NURBS) discretizations of the space-
time cylinder and the corresponding stable space-time variational formulations of
the IBVP under consideration. Unstructured space-time discretizations considerably
facilitate the parallelization and the simultaneous space-time adaptivity. Moving
spatial domains or interfaces can easily be treated since they are fixed in the space-
time cylinder. Beside initial-boundary value problems for parabolic PDEs, we will
also consider optimal control problems constrained by linear or non-linear parabolic
PDEs. Here unstructured space-time methods are especially suited since the reduced
optimality system couples two parabolic equations for the state and adjoint state that
are forward and backward in time, respectively. In contrast to time-steppingmethods,
one has to solve one big linear or non-linear system of algebraic equations. Thus,
the memory requirement is an issue. In this connection, adaptivity, parallelization,
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2 Ulrich Langer

and matrix-free implementations are very important techniques to overcome this
bottleneck. Fast parallel solvers like domain decomposition and multigrid solvers
are the most important ingredients of efficient space-time methods.
This paper is partially based on joint works with Svetlana Kyas (Matculevich) and
Sergey Repin on adaptive space-time IGA based on functional a posteriori error es-
timators [10, 11], Martin Neumüller and Andreas Schafelner on adaptive space-time
FEM [13, 14], and Olaf Steinbach, Fredi Tröltzsch and Huidong Yang on space-time
FEM for optimal control problems [15, 16].

2 Space-Time Variational Formulations

Let us consider the parabolic IBVP, find D such that

mCD − divG (a ∇GD) = 5 + divG (f) in &, D = 0 on Σ, D = D0 := 0 on Σ0, (1)

as a typical model problem, where & = Ω × (0, )), Σ = mΩ × (0, )), Σ0 = Ω × {0},
Ω ⊂ R3 , 3 = 1, 2, 3, denotes the spatial domain that is assumed to be bounded
and Lipschitz, ) > 0 is the terminal time, 5 ∈ !2 (&) and f ∈ !2 (&)3 are given
sources, and a ∈ !∞ (&) is a given uniformly bounded and positive coefficient that
may discontinuously depend on the spatial variable G = (G1, . . . , G3) and the time
variable C (non-autonomous case). The standard variational formulation of the IBVP
(1) in Bochner spaces reads as follows [17]: Find D ∈ *0 := {E ∈ * := {F ∈ + :=
!2 (0, ) ;�1

0 (Ω)) : mCF ∈ +∗ := !2 (0, ) ;�−1 (Ω))} : E = 0 on Σ0} such that

0(D, E) = ℓ(E) ∀E ∈ +, (2)

where the bilinear form 0(·, ·) and the linear form ℓ(·) are defined by the identities

0(D, E) :=
∫
&

[mCD(G, C)E(G, C) + a(G, C)∇GD(G, C) · ∇GE(G, C)] 3& and

ℓ(E) :=
∫
&

[ 5 (G, C)E(G, C) − f (G, C) · ∇GE(G, C)] 3&, respectively.

We note that * = , (0, )) is continuously embedded into � ( [0, )], !2 (Ω)); see
[17]. Alternative space-time variational formulations of the IBVP (1) in anisotropic
Sobolev spaces on & are discussed in [9]. The textbook proof of existence and
uniqueness of a weak solution is based on Galerkin’s method and a priori estimates;
see, e.g., [17] and [9]. Alternatively one can use the Banach-Nečas-Babuška (BNB)
theorem (see, e.g., [3, Theorem2.6]) that provides sufficient and necessary conditions
for the well-posedness of variational problems like (2). Indeed, Steinbach proved in
[19] for a = 1 that the bilinear form 0(·, ·) fulfills the following three conditions:

(BNB1) boundedness: |0(D, E) | ≤
√

2 ‖D‖* ‖E‖+ , ∀D ∈ *0, E ∈ + ,
(BNB2) inf-sup condition: infD∈*0\{0} supE∈+ \{0},

0 (D,E)
‖D ‖* ‖E ‖+ ≥ 1/(2

√
2),
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(BNB3) injectivity of �∗: For every E ∈ + \ {0}, there exists D ∈ *0: 0(D, E) ≠ 0,

which are sufficient and necessary for the well-posedness of (2), in other words, the
operator � : *0 → +∗, defined by 0(·, ·), is an isomorphism. Moreover, ‖D‖*0 ≤
2
√

2 ‖ℓ‖+ ∗ . The norms in the spaces*0,*, and + are defined as follows:

‖D‖2*0
= ‖D‖2* := ‖D‖2+ + ‖mCD‖2+ ∗ = ‖∇GD‖2!2 (&) + ‖∇GFD ‖

2
!2 (&) ,

where FD ∈ + such that
∫
&
∇GFD · ∇GE 3& = 〈mCD, E〉& for all E ∈ + . Here,

〈·, ·〉& := 〈·, ·〉+ ∗×+ denotes the duality product on +∗ ×+ .
In the following two sections, maximal parabolic regularity plays an important

role when deriving locally stabilized isogeometric and finite element schemes. Let
us assume that f = 0 and that the coefficient a = a(G, C) fulfills additional conditions
(see, e.g., [2]) such that the solution D ∈ *0 of (2) belongs to the space

�
!,1
0 (&) = {E ∈ + : mCE, !GE := divG (a∇GD) ∈ !2 (&)}.

Hence, the PDE mCD − !GD = 5 holds in !2 (&). The maximal parabolic regularity
even remains true for inhomogeneous initial data D0 ∈ �1

0 (Ω). We also refer the
reader to the classical textbook [9], where the case a = 1 was considered.

3 Space-Time Isogeometric Analysis

Let us assume that f = 0 and that a fulfills conditions such that maximal parabolic
regularity holds, i.e. the parabolic PDE (1) can be treated in !2 (&). The time variable
C can be considered as just another variable, say, G3+1, and the term mCD can be viewed
as convection in the direction G3+1. Thus, we can multiply the parabolic PDE (1) by
a time-upwind test function Eℎ + _mCEℎ in order to derive stable discrete schemes,
where Eℎ is a test function from some finite-dimensional test space+0ℎ , and _ ≥ 0 is
an appropriately chosen scaling parameter. This choice of test functions is motivated
by the famous SUPG method, introduced by Hughes and Brooks for constructing
stable fe schemes for stationary convection-diffusion problems [4], and which was
later used by Johnson and Saranen [7] for transient problems; see also [5] for the
related Galerkin Least-Squares finite element methods. Instead of fe spaces +0ℎ , we
can also use IGA (B-splines, NURBS) spaces that have some advantages over the
more classical fe spaces; see [6] where IGA was introduced. In particular, in the
single patch case, one can easily construct IGA spaces +0ℎ ⊂ �:−1 (&) of (: − 1)-
times continuously differentiable B-splines of underlaying polynomial degree : .
These B-splines of highest smoothness have asymptotically the best approximation
properties per degree of freedom. In [12], we used such IGA spaces to derive stable
space-time IGA schemes provided that _ = \ℎ with a fixed constant \ > 0, where ℎ
denotes the mesh-size.

In order to construct stable adaptive space-time IGA schemes, we replaced the
global scaling parameter _ by a local scaling function _(G, C) that is changing on the
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mesh according to the local mesh sizes [10, 11]. Let us describe the construction of
these locally stabilized space-time IGAmore precisely. In IGA,we use the same basis
functions for describing both the geometry and IGA spaces +0ℎ . Thus, we assume
that the physical computational domain & = Φ(&̂) is the image of the parameter
domain &̂ := (0, 1)3+1 using the geometrical mapping Φ(b) = ∑

8∈I �̂8,: (b) P8 ,
where {P8}8∈I ⊂ R3+1 are the control points, and �̂8,: , 8 ∈ I, are the multivariate
B-Splines or NURBS. Now we can define the finite-dimensional space

+0ℎ = {Eℎ ∈ +ℎ : Eℎ = 0 on Σ ∪ Σ0} = span{i8 : 8 ∈ I0} (3)

by means of the same basis functions, i.e.,

+ℎ = S:ℎ = S::−1,ℎ = span{i8 = î8 ◦Φ−1 : 8 ∈ I},

where î8 (b) = �̂8,: (b), 8 ∈ I. We now test the PDE mCD − !GD = 5 restricted to a
mesh element  from the set of all mesh elements Kℎ = { = Φ( ̂)}, into which
& is decomposed, by Eℎ + _ mCEℎ , yielding(

mCD − !GD, Eℎ + _ mCEℎ
)
!2 ( ) = ( 5 , Eℎ + _ mCEℎ)!2 ( ) ∀Eℎ ∈ +0ℎ .

Summing up over all  ∈ Kℎ , and integrating by parts, we get the variational
consistency identity

0ℎ (D, Eℎ) = ℓℎ (Eℎ) ∀Eℎ ∈ +0ℎ , (4)

where the bilinear form and the linear form are defined by the identities

0ℎ (D, Eℎ) =(mCD, Eℎ)!2 (&) + (∇GD,∇GEℎ)!2 (&)

+
∑
 ∈Kℎ

_ 

(
(mCD, mCEℎ)!2 ( ) − (!GD, mCEℎ)!2 ( )

)
(5)

and
ℓℎ (Eℎ) := ( 5 , Eℎ)!2 (&) +

∑
 ∈Kℎ

_ ( 5 , mCEℎ)!2 ( ) ,

respectively. Now, the corresponding consistent IGA scheme reads as follows: Find
Dℎ ∈ +0ℎ such that

0ℎ (Dℎ , Eℎ) = ℓℎ (Eℎ) ∀Eℎ ∈ +0ℎ . (6)

The following three properties are fundamental for the derivation of error estimates:

1. Galerkin orthogonality: 0ℎ (D − Dℎ , Eℎ) = 0 ∀ Eℎ ∈ +0ℎ ,
2. +0ℎ-coercivity: 0ℎ (Eℎ , Eℎ) ≥ `2 ‖Eℎ ‖2ℎ ∀ Eℎ ∈ +0ℎ ,
3. Extended boundedness: |0ℎ (D, Eℎ) | ≤ `1 ‖D‖ℎ,∗ ‖Eℎ ‖ℎ ∀D ∈ +0ℎ,∗, Eℎ ∈ +0ℎ ,

provided that _ = \ ℎ with \ = 2−2
 
a−1
 ℎ , where ℎ = diam( ) de-

notes the local mesh-size, a is an upper bound of a on  , and 2 is the com-
putable constant (upper bound) in the local inverse inequality ‖divG∇GEℎ ‖!2 ( ) ≤
2 ℎ

−1
 
‖∇GEℎ ‖!2 ( ) . Then we get `2 = 1/2. The boundedness constant `1 can also
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be computed; see [10, 11]. The norms ‖ · ‖ℎ and ‖ · ‖ℎ,∗ are defined as follows:

‖E ‖2ℎ :=
∑
 ∈Kℎ

[
‖a1/2∇GE ‖2!2 ( ) + _ ‖mCE ‖

2
!2 ( )

]
+ 1

2
‖E ‖2

!2 (Σ) ) , (7)

‖E‖2ℎ,∗ := ‖E‖2ℎ +
∑
 ∈Kℎ

[
_−1
 ‖E‖2!2 ( ) + _ ‖divG (a∇GE)‖2!2 ( )

]
. (8)

We mention that both norms are not only well defined on the IGA space+0ℎ but also
on the extended space +0ℎ,∗ = +0ℎ + �!,10 (&) to which the solution D belongs in the
maximal parabolic regularity setting considered here. The Galerkin orthogonality
directly follows from subtracting (6) from (4). The proof of the other two properties
is also elementary; see [10, 11].

From the+0ℎ-coercivity of the bilinear form 0ℎ (·, ·), we conclude that the solution
Dℎ of the IGA scheme (6) is unique, and, therefore, it exists. In other words, the
corresponding linear system of IGA equations

 ℎDℎ = 5
ℎ

(9)

has a unique solution D
ℎ
= (D8)#ℎ8=1 ∈ R#ℎ= |I0 | . The coefficients (control points) D8

then uniquely define the solution Dℎ =
∑#ℎ
8=1 D8i8 of the IGA scheme (6). The system

matrix  ℎ is non-symmetric, but positive definite due to the +0ℎ-coercivity.
The following best-approximation estimate directly follows from properties 1. -

3. given above:

Theorem 1 Let D ∈ *0 ∩�!,10 (&) be the solution of the IBVP (2), and Dℎ ∈ +0ℎ the
solution of space-time IGA schemes (6). Then the best-approximation estimate

‖D − Dℎ ‖ℎ ≤ inf
Eℎ ∈+0ℎ

(
‖D − Eℎ ‖ℎ + `1

`2
‖D − Eℎ ‖ℎ,∗

)
(10)

holds.

The best-approximation estimate (10) finally yields convergence rate estimates in
terms of ℎ respectively the local mesh-sizes ℎ ,  ∈ Kℎ , provided that D has some
additional regularity; see [10, 11].

In practical application, the use of adaptive IGA schemes is more attractive
than uniform mesh refinement. In order to drive adaptivity, we need local error
indicators, a marking strategy, and the possibility to refine the mesh locally. In IGA,
which starts from a tensor-product setting, local mesh refinement is more involved
than in the FEM. However, nowadays, several refinement techniques are available;
see [10] and the references given therein. Local error indicators [ (Dℎ),  ∈ Kℎ ,
should be derived from a posteriori error estimators. We here consider functional
error estimators that provide an error bound for any conform approximation E to the
solution D of (2). Of course, we are interested in the case E = Dℎ ∈ +0ℎ . We get the
following functional error estimator for a special choice of parameters from [18]:
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|||D − Dℎ |||2 ≤ M
2 (V, Dℎ , y) :=

∑
 ∈Kℎ

[2
 (V, Dℎ , y), (11)

where the norm is defined by |||F |||2 := ‖√a∇GF‖2!2 (&) + ‖F‖
2
!2 (Σ) ) , V is a fixed pos-

itive scaling parameter (function [18]), and y ∈ � (divG , &) is a suitable flux recon-
struction. The local error indicator [2

 
(V, Dℎ , y) := [2

 ,flux (V, Dℎ , y)+[2
 ,pde (V, Dℎ , y)

consists of the parts

[2
 ,flux (V, Dℎ , y) :=

∫
 

(1 + V) |y − a∇GDℎ |23 and (12)

[2
 ,pde (V, Dℎ , y) := 22

�Ω

∫
 

(
1 + V
V
| 5 − mCDℎ + divGy|2

)
3 (13)

evaluating the errors in the flux and in the residual of the PDE, where 2�Ω denotes the
constant in the inequality ‖E‖!2 (&) ≤ 2�Ω ‖

√
a∇GE‖!2 (&) for all E ∈ + . For a = 1,

2�Ω is nothing but the Friedrichs constant in �1
0 (Ω). In contrast to the FEM (see

Sect. 4), the IGA flux a∇GDℎ belongs to � (divG , &) provided that a is continuous,
and +0ℎ ⊂ �1 (&) that is ensured for : ≥ 2. Then we can choose y = a∇GDℎ
yielding [ ,flux (V, Dℎ , y) = 0 and, therefore, [ (V, Dℎ , y) = [ ,pde (V, Dℎ , y). A
more sophisticated flux reconstruction was proposed by Kleiss and Tomar for elliptic
boundary value problems in [8]. Following this idea, we also propose to reconstruct
the flux y from the minimization of the majorant M

2 (V, Dℎ , y) in an IGA space
(S;
;−1,� )3 on a coarser mesh with some mesh-size � ≥ ℎ and with smoother splines

of the underlying degree ; ≥ : . In [10, 11], we present and discuss the results of
many numerical experiments showing the efficiency of this technique for constructing
adaptive space-time IGA methods using different marking strategies. Here we only
show an example from [1] with the manufactured solution D(G, C) = G5/2 (1 − G)C3/4
of (1) with& = (0, 1) × (0, 2), a = 1, and f = 0. The uniform mesh refinement yields
$ (ℎ3/4) in the ‖ · ‖ℎ norm for : = 2, whereas the adaptive version with THB-splines
recovers the full rate $ (ℎ2), where ℎ = #−2

ℎ
and : = 2; see Fig. 1.
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Fig. 1 Solution D (G, C) (right), mesh after 6 (middle) and 8 (right) adaptive refinement levels.
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4 Space-Time Finite Element Analysis

We can construct locally stabilized space-time finite element schemes in the same
way as in the IGA case replacing the IGA space (3) by the finite element space

+0ℎ = {Eℎ ∈ � (&) : Eℎ (G (·)) ∈ P: ( ̂), ∀ ∈ Kℎ , Eℎ = 0 on Σ∩Σ0}, (14)

where Kℎ is a shape regular decomposition of the space-time cylinder & into sim-
plicial elements, i.e., & =

⋃
 ∈Kℎ  , and  ∩  ′ = ∅ for all  and  ′ from Kℎ

with  ≠  ′ (see, e.g., [3] for details), G (·) denotes the map from the reference
element  ̂ (unit simplex) to the finite element  ∈ Kℎ , and P: ( ̂) is the space of
polynomials of the degree : on the reference element  ̂ . For the space-time finite
element solution Dℎ ∈ +0ℎ of (6), we can derive the same best-approximation esti-
mate as given in Theorem 1, from which we get convergence rate estimates under
additional regularity assumptions; see [13, Theorem 13.3]. The case of special dis-
tributional sources f, the divergence of which exists in !2 (&8) on subdomains &8 of
a non-overlapping domain decomposition of the space-time cylinder & =

⋃<
8=1&8 ,

and the case of low-regularity solutions are investigated in [14]. In [13] and [14], we
also present numerical results for different benchmark examples exhibiting different
features in space and time. We compare uniform and adaptive refinement. In the
finite element case, the corresponding system (9) of algebraic equations is always
solved by a parallel AMG preconditioned GMRES. We use BoomerAMG, provided
by the linear solver library hypre1, to realize the AMG preconditioner. The adaptive
version can be based on different local error indicators; see [13, 14]. Below we show
an example where we compare uniform refinement with the adaptive refinement that
is based on Repin’s first functional error estimate (11). It was already mentioned
in Sect. 3 that, in the FEM, we cannot take y = a∇GDℎ because the finite element
flux does not belong to � (divG , &). Therefore, we first recover an appropriate flux
yℎ = 'ℎ (a∇GDℎ) ∈ (+ℎ)3 ⊂ � (divG , &) by nodal averaging à la Zienkiewicz and
Zhu (ZZ). One can use this yℎ as y, or one can improve this yℎ by preforming some
CG minimization steps on the majorantM

2 (V, Dℎ , y) in (+ℎ)3 with the initial guess
yℎ . Finally, one minimizes with respect to V. We mention that the local ZZ-indicator
is nothing but [ ,flux (0, Dℎ , 'ℎ (a∇GDℎ)).

Let us now consider the parabolic NISTBenchmarkMovingCircularWave Front2
for testing our adaptive locally stabilized space-time femethod.We again consider the
parabolic IBVP (1) with the following data: 3 = 2,& = (0, 10) × (−5,−5) × (0, )) ⊂
R3, ) = 10, a = 1, f = 0, and the manufactured exact solution

D(G, C) = (G1 − 0) (G1 − 10) (G2 + 5) (G2 − 5) tan−1 (C)
( c
2
− tan−1 (U(A − C))

)
/�

with A =
√
(G1 − G12)2 + (G2 − G22)2, where the parameters (G12 , G22) and U describe

the center and the steepness of the circular wave front, respectively. We choose

1 https://computing.llnl.gov/projects/hypre
2 https://math.nist.gov/cgi-bin/amr-display-problem.cgi
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(G12 , G22) = (0, 0) and U = 20 (mild wave front). The scaling parameter � is
equal to 10000. The space-time adaptivity is driven by the local error indicators
[ ,flux (V, Dℎ , yℎ) using Dörfler’s marking. Fig. 2 shows the adaptive meshes after
a cut through the space-time cylinder & at C = 0, 2.5, 5, 7.5, and 10. In Fig. 3,
we compare the convergence history for uniform and adaptive refinements for the
polynomial degrees : = 1, 2, 3. In the adaptive case, we use Dörfler’s marking with
the bulk parameter 0.25. The solution has steep gradients in the neighborhood of
the wave front that is perfectly captured by the adaptive procedure. This adaptive
procedure quickly leads to the optimal rates $ (ℎ: ), and dramatically reduces the
error in the ‖ · ‖ℎ norm, where ℎ = (#ℎ)−1/(3+1) = #−1/3

ℎ
in the adaptive case. Fig. 4

shows the corresponding efficiency indices �eff = [flux (0, Dℎ , yℎ)/‖D − Dℎ ‖ℎ , where
[2
flux (V, Dℎ , yℎ) =

∑
 ∈Kℎ [

2
 ,flux (V, Dℎ , yℎ).

5 Space-Time Optimal Control

The optimal control of evolution equations turns out to be interesting from both
a mathematical and a practical point of view. Indeed, there are many important
applications in technical, natural, and life sciences. Let us first consider the following
space-time tracking optimal control problem: For a given target function D3 ∈ !2 (&)

t = 0 t = 2.5 t = 5

t = 7.5 t = 10

Fig. 2 Adaptive space-time meshes at the cuts C = 0, 2.5, 5, 7.5, and 10 through & ⊂ R3.
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Fig. 3 Comparison of uniform and adaptive refinements for : = 1, 2, 3.
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Fig. 4 Efficiency indices �eff for Dörfler’s marking with bulk parameter 0.25

(desired state) and for some appropriately chosen regularization (cost) parameter
r > 0, find the state D ∈ *0 and the control I ∈ / minimizing the cost functional

� (D, I) = 1
2

∫
&

|D − D3 |2 d& + r
2
'(I) (15)

subject to the linear parabolic IBVP (1) respectively its variational formulation (2).
The regularization term '(I) is usually chosen as the !2 (&)-norm ‖I‖2!2 (&) , and,
thus, / = !2 (&), whereas the control I acts as right-hand side 5 in (1) respectively
(2), and f = 0. Since the state equation (2) has a unique solution D ∈ *0, one
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can reason the existence of a unique control I ∈ / minimizing the quadratic cost
functional � (((I), I), where ( is the solution operator mapping I ∈ / to the unique
solution D ∈ *0 of (2); see, e.g., [17] and [21]. On the other side, the solution of the
quadratic optimization problem minI∈/ � (((I), I) is equivalent to the solution of
the first-order optimality system. After eliminating the control D from the optimality
system by means of the gradient equation ? + rI = 0, we arrive at the reduced
optimality system: Find the state D ∈ *0 and the adjoint state ? ∈ %) such that

r

∫
&

[
mCD E + a ∇GD · ∇GE

]
3& +

∫
&

? E 3& = 0,

−
∫
&

D @ 3& +
∫
&

[
− mC ? @ + a ∇G ? · ∇G@

]
3& = −

∫
&

D3 @ 3&,

(16)

holds for all E, @ ∈ + , where %) := {? ∈ , (0, )) : ? = 0 on Σ) }. Now the
well-posedness of (16) can again be proved by means of the BNB theorem verifying
the corresponding conditions (BNB1) – (BNB3); see [16, Theorem 3.3]. In the same
paper, we analyze the finite element Galerkin discretization of the reduced optimality
system: Find (Dℎ , ?ℎ) ∈ *0ℎ × %) ℎ such that

�(Dℎ , ?ℎ; Eℎ , @ℎ) = −(D3 , @ℎ)!2 (&) ∀(Eℎ , @ℎ) ∈ +0ℎ ×+) ℎ , (17)

where the bilinear form �(·, ·) results from adding the left-hand sides of (16).
The finite element subspace spaces *0ℎ = +0ℎ = (:

ℎ
(&) ∩ *0 and %) ℎ = +) ℎ =

(:
ℎ
(&) ∩%0 are defined on a shape-regular decomposition of the space-time cylinder

& in simplicial elements as usual; cf. Section 4. Of course, we can here also use IGA
instead of FEM as discretization method; cf. Section 3. In [16], we show an inf-sup
condition which leads to a best-approximation error estimate of the form√

r‖D − Dℎ ‖2+ + ‖? − ?ℎ ‖2+ ≤ 2 inf
(Eℎ ,@ℎ) ∈*0ℎ×%) ℎ

√
‖D − Eℎ ‖2*0

+ ‖? − @ℎ ‖2%) (18)

for the case a = 1, where 2 = 1 + 2
√

22� (r) and 2� (r) is the boundedness constant
of the bilinear form �(·, ·). If D and ? have additional regularity, we easily get
convergence rate estimates, e.g., $ (ℎ) if D, ? ∈ �2 (&); see [16, Theorem 3.5].

In some applications, one wants to restrict the action of the control I in space
and time. Thus, in the case of partial control, we have to replace the right-hand
side 5 = I by 5 = j&2 I, where j&2 is the characteristic function of the space-time
control domain &2 ⊂ &. Then we can again derive the reduced optimality system,
and solve it by means of the space-time finite element method. Let us consider a
concrete example. In this example, we consider the spatial domain Ω = (0, 1)2 and
the terminal time ) = 1. Therefore, we have & = (0, 1)3. The control subdomain is
given as &2 = (0.25, 0.75)2 × (0, )). A smooth target D3 = sin(cG) sin(cH) sin(cC)
is used, and the regularization (cost) parameter r = 10−5. Fig. 5 presents the state
Dℎ and the control Iℎ for partial (up) and full (down) distributed controls. We
use continuous, piecewise linear finite element approximations on a quasi-uniform
decomposition of & into tetrahedral elements.
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Finally, we mention that, in [15], we introduce and investigate the space-time
energy regularization '(I) = ‖I‖2

!2 (0,) ;�−1 (Ω)) , and compare it to the !2 (&) and the
sparse regularization. Furthermore, the space-time approach can easily be general-
ized to other observations like terminal time observation, the control via boundary
conditions, the control via initial conditions (inverse heat conduction problem), and,
last but not least, the control of non-linear parabolic IBVP with box constraints
imposed on the control [16].
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Fig. 5 The state D (left) control I (right) for partial control (up) and full control (down).
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