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Abstract. This paper is devoted to the study of tilt stability of local minimizers for classical nonlinear
programs with equality and inequality constraints in finite dimensions described by twice continuously differ-
entiable functions. The importance of tilt stability has been well recognized from both theoretical and numerical
perspectives of optimization, and this area of research has drawn much attention in the literature, especially in
recent years. Based on advanced techniques of variational analysis and generalized differentiation, we derive
here complete pointbased second-order characterizations of tilt-stable minimizers entirely in terms of the initial
program data under the new qualification conditions, which are the weakest ones for the study of tilt stability.
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1 Introduction

The notion of tilt-stable local minimizers was introduced by Poliquin and Rockafellar [32] for prob-
lems of unconstrained optimization with a general extended-real-valued objective function, which
implicitly incorporates constraints via the indicator function of the feasible region. Motivated by
the justification of convergence properties, stopping criteria, and robustness of numerical algorithms,
the authors of [32] suggested to study and characterize not just arbitrary local minimizers but those
which behave nicely with respect to linear perturbations tilted the objective function in one direction
or another; namely, minimizers that remain locally unique and Lipschitz continuous under small per-
turbations of the aforementioned type. Tilt stability has attracted strong attention in the literature,
particularly in recent years; see, e.g., [3, 5, 6, 7, 17, 18, 25, 27, 29, 36] and the references therein.

In [32], Poliquin and Rockafellar obtained a characterization of tilt-stable local minimizers for a
large class of prox-regular extended-real-valued functions via the positive-definiteness of their second-
order subdifferential/generalized Hessian in the sense of Mordukhovich [21]; see Section 2. Based
on this result and the newly developed second-order calculus rules, Mordukhovich and Rockafellar
[29] derived a characterization of tilt-stable local minimizers for nonlinear programs (NLPs) with
C?-smooth data assuming the linear independence constraint qualification (LICQ). Under this non-
degeneracy assumption, the characterization of tilt stability was expressed in [29] via Robinson’s
strong second-order sufficient condition (SSOSC) [33] formulated entirely at the local minimizer in
question; such conditions are called pointbased (known also as pointwise) in what follows. They are
surely much more preferable for applications than the neighborhood conditions discussed below.
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In the further lines of research, Mordukhovich and Nghia [25] introduced the notion of tilt-stable
local minimizers with modulus x > 0 for an extended-real-valued objective function and derived,
by developing a new dual-space approach to tilt stability, a characterization of such minimizers in
terms of the so-called combined second-order subdifferential (see Section 2) via a strong positive-
definiteness condition involving k. It is shown in [25] that the obtained characterization reduces to the
one in [32] when the modulus «x is not an issue, and also that the aforementioned result of [25] leads to
a new characterization of tilt-stable local minimizers for NLPs with C2-smooth inequality constraints
without imposing LICQ. Namely, the LICQ assumption was weakened in [25] by the simultaneous
fulfillment of the Mangasarian-Fromovitz constraint qualification (MFCQ) and the constant rank
constraint qualification (CRCQ) conditions, while the characterization of tilt-stable local minimizers
was given in this setting via the new uniform second-order sufficient condition (USOSC). The new
USOSC is shown in [25] to be strictly weaker than SSOSC, while being reduced to the latter under the
validity of LICQ. However, in contrast to LICQ, MFCQ, and SSOSC, the formulations of CRCQ and
USOSC are not pointbased depending on points in a neighborhood of the reference local minimizer.

As demonstrated by simple examples (see Section 8), the combination of MFCQ and CRCQ
constitutes a setting, which is not fully satisfactory for the study of tilt-stable minimizers and may
exclude from consideration important situations when tilt-stable minimizers exist and can be recog-
nized. Furthermore, the obtained USOSC characterization in [25] is a neighborhood condition but not
a pointbased one. On the other hand, the results below show that under the MFCQ assumption alone
a pointbased second-order characterization of tilt stability is not possible, which means that there are
two NLPs with the same derivatives up to the second order at the reference point satisfying MFCQ
but such that one problem admits a tilt-stable minimizer at this point while the other one doesn’t.

To go forward in this paper, we dispense with MFCQ and also with CRCQ by replacing them, in
the general case of both C2-smooth inequality and equality constraints in NLPs, with another pair of
constraint qualifications such that the simultaneous fulfillment of these conditions is strictly weaker
than the validity of each of the conditions MFCQ and CRCQ and thus of their combination. The first
of these new assumptions/qualification conditions, called the metric subregularity constraint qualifi-
cation (MSCQ), weakens the property of metric regularity for the constraint NLP mapping around
the reference minimizer (the latter property is known to be equivalent to MFCQ of this mapping at
the point in question) by its metric subregularity at this point. This assumption has been recently
employed in the papers by Gfrerer and Outrata [11, 12] for evaluating generalized derivatives of the
normal cone mapping to inequality systems. An effective pointbased condition for its validity in terms
of the first-order and second-order derivatives of the inequality constraint functions was introduced
earlier by Gfrerer [8] as the second-order sufficient condition for metric subregularity (SOSCMS).

The other qualification condition coupled here with (and independent of) MSCQ appears for the
first time in this paper under the name of the bounded extreme point property (BEPP) of the NLP
constraint system. Although it is formulated at the reference solution, neighborhood points are used
in the definition as well. Being much weaker than MFCQ and CRCQ, this new qualification condition
is also implied by the aforementioned SOSCMS property, which is completely pointbased.

Involving only the weakest qualification conditions MSCQ and BEPP, the main results of the
paper provide pointbased second-order characterizations of tilt-stable minimizers for general NLPs
with C2-smooth equality and inequality constraints entirely in terms of their initial data. These char-
acterizations are given as follows: first we derive pointbased sufficient conditions for tilt-stable min-
imizers in full generality and then show that they are also necessary for tilt stability under some
additional assumptions. The major sufficient condition for tilt-stable minimizers is formulated via the
strong positive-definiteness (depending on modulus k > 0 of tilt stability and being much weaker than
SSOSC) of the Hessian of the Lagrange function by using a rather narrow subset of extreme points of



the collection of those Lagrange multipliers, which are solutions to a certain linear program associ-
ated with critical directions. The necessity of the second-order conditions is justified under different
additional assumptions: either nondegeneracy in critical directions, or the so-called 2-regularity, or
CRCQ. Furthermore, we show that even without these extra assumptions the aforementioned suffi-
cient conditions become necessary in a slightly modified problem with the same cost function and
constraints reducing to the original ones together with their first and second derivatives at the refer-
ence minimizers. We also provide the quantitative evaluation (estimates and exact formulas) of the
corresponding moduli. All of this allows us to conclude that the obtained second-order pointbased
characterizations of tilt-stable minimizers in NLPs are complete.

The rest of the paper is organized as follows. Section 2 presents some basic constructions and
properties of variational analysis and generalized differentiation widely used in the main body of the
paper. We also formulate here the notion of tilt-stable minimizers and its neighborhood characteriza-
tion in the unconstrained extended-real-valued format of optimization.

Section 3 is devoted to qualification conditions for NLPs with smooth inequality and equality
constraints. We define here the main MSCQ and BEPP conditions and establish their connections
with constraint qualifications well recognized in nonlinear programming and used in the paper. The
next Section 4 involves from one side some second-order analysis to better understand both MSCQ
and BEPP for NLPs with C2-smooth data, while from the other side it demonstrates a significant role
of these qualification conditions to get the desired properties of the indicator function of the constraint
set and also to describe the critical cone to this set and the collection of Lagrange multipliers in critical
directions needed for the subsequent second-order analysis of tilt-stable minimizers.

Section 5 contains important results on the precise calculation under the imposed weakest quali-
fication conditions MSCQ and BEPP of some second-order generalized differential constructions for
sets of feasible solutions to NLPs with C2-smooth inequality and equality constraints via their initial
data. These results, being certainly of their own interest, are used in this section for evaluating some
second-order terms crucial for the subsequent characterizations of tilt-stable minimizers. Note that
the obtained calculating formulas not only extend the corresponding results of [11] to programs with
equality constraints, but also replace a certain relaxed metric regularity condition used in [11] for the
case of inequalities by the weaker BEPP qualification condition developed in this paper.

Sections 6 and 7 are central in the paper containing the pointbased second-order conditions for
tilt-stable minimizers described above; namely, sufficient conditions in Section 6 and rather general
while different settings for their necessity and complete characterizations presented in Section 7.

The obtained results on tilt stability are discussed and illustrated by various examples in Section 8,
where important features of the developed necessary and sufficient conditions and the imposed quali-
fications are revealed in comparison with known results in this direction while discussing also related
numerical issues. The final Section 9 contains some open questions and topics for the future research.

Our notation is basically standard in variational analysis and optimization; see, e.g., [22, 34]. Re-
call that B stands for the closed unit ball in the finite-dimensional space in question with the Euclidean
norm || - || and the scalar product (-, -) between two vectors, B, (x) := x+ rB, the symbol * indicates in
general a dual operation including the matrix transposition, the polar cone, etc., dist (x; Q) denotes the
distance from the point x to the set Q, the symbol V¢(x) stands for the gradient of a scalar function
and for the Jacobian matrix for a vector one at X, and finally we have N := {1,2,...}.



2 Preliminaries from Variational Analysis

Let f: R" — R := RU{co} be an extended-real-valued function, which is assumed to be proper, i.e.,
domf := {x € R"| f(x) < oo} # 0, and let X € dom f. The regular subdifferential (known also as the
presubdifferential and as the Fréchet/viscosity subdifferential) is defined by

limintd ) =) = 0 x = %) 20}.

x> |l — x|

2.1) If(x) = {v* €R"

The limiting subdifferential (known also as the Mordukhovich/basic subdifferential) of f at X is
22) If(®):={v' €R"|Fxp — %, vi =" with f(x) = f(%), v} € df (), k € N}.

Both constructions (2.1) and (2.2) reduce to the subdifferential of convex analysis if f is convex.
For C'-smooth functions the subdifferentials d f(x) and 0 f(x) consist only of the gradient V f(x).

A lower semicontinuous (l.s.c.) function f : R" — R is called prox-regular at ¥ € dom f for
V" € d f(X) if there are reals r,€ > 0 such that for all x,u € B¢ (%) with |f(u) — f(¥)| < € we have

(2.3) fx) > flu)+ v x—u)— %Hx—qu whenever v* € d f(u) NBe(v").

Such a function is said to be subdifferentially continuous at X € dom f for v* € d f(x) if f(xx) — f(%)
for all sequences x; — ¥ and v; — V* as k — oo with v € d f(x¢), k € N.

In what follows we also need some concepts from variational geometry. Given a set Q C R? and
a point 7 € Q, define the (Bouligand-Severi) tangent/contingent cone to Q at Z by

(2.4) To(z) == {ueR!| 31 L 0, ux — u with Z+tuy € Q forall k}.

The (Fréchet) regular normal cone to Q at 7 €  can be equivalently defined either by

(2.5) No(Z) := {v* € Rd‘ limsup<VL__Z> < O},
P

where z 2 Z means that z — Z with z € Q, or as the dual/polar to the contingent cone (2.4), i.e., by
(2.6) No(2) :=Ta(2)".

For convenience, we put No (Z) := 0 for Z ¢ Q. Further, the (Mordukhovich) limiting/basic normal
cone to  at Z € Q is given by

(2.7) No(2) == {7 € R!| 3z — z, v; — 7 with v} € No(z) forall k}.

Note that, in spite of (in fact due to) being nonconvex, the normal cone (2.7) and the corresponding
to it limiting subdifferential and coderivative constructions enjoy full calculi, which are based on
variational/extremal principles of variational analysis; see, e.g., [22, 34] and the references therein.

It is easy to observe the following relationships:

~

9680(z) = No(z) and 98q(z) = Ng(z) forall z € Q

between the corresponding regular and limiting subdiffential/normal cone constructions defined above,
where 8¢ (z) stands for the indicator function of the set Q equal to 0 if z € Q and to  otherwise.
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Considering next a set-valued (in particular, single-valued) mapping ¥ : R = R*, we associate
with it the domain domY¥ and the graph gph¥ by

domW¥ := {z € RY| ¥(z) #0} and gph'¥:= {(z,w)| w € P(2)}

and define the following coderivative constructions. The regular coderivative 5*‘1‘(2, w) 1 R = RY
of W at (z,w) € gphW is generated by the regular normal cone (2.5) via

(2.8) D(z,w)(v') := {u* € RY| (u,—v*) € Npnw(Z,%)}, V' € R,
and the limiting coderivative D*¥(Z,w) : RS = RY of W at (z,w) € gphW is given by
(2.9) D" (z,w)(v*) := {u" € RY| (u*,—v*) € Ngpnw(Z,W) }, V" €R°.

If ¥ is single-valued at Z, we drop w in the notation of (2.8) and (2.9). If ¥ is a single-valued mapping
being smooth around Z, then we have the equalities

D*¥(z)(v) = DP(D)(v') = {V¥(2)"v*} forall v' € R,

One of the striking advantages of the limiting coderivative (2.9) (besides full calculus) is the
possibility to derive in its terms complete pointbased characterizations of some basic properties of
well-posedness in nonlinear and variational analysis related to robust Lipschitzian stability, metric
regularity, and linear openness; see, e.g., [22, 34] and the references therein. Recall that a set-valued
mapping ¥ : R = R is Lipschitz-like around (Z,w) € gph¥ (also known as the pseudo-Lipschitz or
Aubin property) with modulus k > 0 if there are neighborhoods U of Z and V' of w such that

(2.10) Y(z)NV C¥(u)+k||z—u||B for all z,ucU.

The infimum of all such k is called the exact Lipschitzian bound of ¥ around (Z,w) and is denoted
by lip¥(z,w). If V.= R?, relation (2.10) reduces to the (Hausdorff) local Lipschitzian property of set-
valued mappings around Z, while in the single-valued case this is nothing else than the classical local
Lipschitz continuity of ¥ around the reference point. In terms of (2.9) we have the robust coderivative
characterization of the Lipschitz-like property of ¥ around (z,w) with the exact bound formula

(2.11) D*¥(z,w)(0) = {0}, lip¥(z,w)=||D"¥(Z,w)]|

known as the Mordukhovich criterion [34, Theorem 9.40], where | - || stands for the norm of D*W¥(z,w)
as a positively homogeneous set-valued mapping from R* to R?. Further, it has been well recognized
that ¥ is Lipschitz-like around (Z,w) with modulus & > 0 if and only if its inverse ¥~! = M: R* = R¢
is metrically regular around (w,Z) with the same modulus, i.e.,

(2.12) dist (w; M~ (2)) < kdist (z;M(w)) forall ze U, we V.

There are a number of applications for which the robust properties in (2.10) and (2.12) can be
relaxed to the weaker ones with putting # = Z and z = Z in (2.10) and (2.12), respectively. The first
property is known as calmness of ¥ at (Z,w), while the second one is known as metric subregularity
of M at (w,Z). Although these properties are equivalent for ¥ and M = W~!, we prefer to use metric
subregularity in applications to NLPs due to the possibility to formulate it via the initial program data
of the original NLP constraint system; see Section 3 for more discussions.



Next we recall two second-order subdifferential constructions for extended-real-valued functions
employed below and introduced in the direction initiated in [21], i.e., by using a coderivative of a
first-order subdifferential mapping; this is an appropriate dual set-valued extension of the classical
“derivative-of-derivative” approach to second-order differentiation. Proceeding in this way, we take
f:R* R, X € dom f, and a basic subgradient #* € d f(¥) from (2.2) and define the second-order
subdifferential of f at ¥ relative to v* as the set-valued mapping 92 f(&,v*): R" = R” given by [21]

(2.13) (&, 7)(w) == (D*If) (F,7")(w), weR"

The combined second-order subdifferential of f at X relative to v* € d f(x) is defined in this scheme
by [25] replacing the limiting coderivative (2.9) with its regular counterpart (2.8), i.e., by

(2.14) 02 f(%,7)(w) := (D*3f)(%,7")(w), weR"
When f is C2-smooth around %, we have 7 = V (%) and
D2 f(%,77)(w) = 0> f(%,7*)(w) = {V2f(F)w} forany w € R",

where V2 f(x) stands for the classical (symmetric) Hessian matrix. Thus the second-order subdiffer-
entials (2.13) and (2.14) can be treated as the generalized Hessian constructions.

Now we are ready to formulate and discuss the notion of tilt-stable minimizers for extended-real-
valued functions introduced by Poliquin and Rockafellar [32] without specifying tilt stability moduli
and then quantitatively modified and studied by Mordukhovich and Nghia [25] for the case of given
moduli with an explicit calculation of their exact bound.

Definition 2.1 (tilt-stable minimizers). Let f : R” — R, and let ¥ € dom f. Then:
(i) X is a TILT-STABLE LOCAL MINIMIZER of f if there is a number y > O such that the mapping

(2.15) M, (v*) :=argmin { f(x) — (v"\x)| x € By(¥)}, V' €R”,

is single-valued and Lipschitz continuous in some neighborhood of v = 0 € R" with M,(0) = {x}.
(ii) Given x > 0, the point X is a tilt-stable local minimizer of f with MODULUS K if there is Y > 0
such that My (0) = {X} and the mapping M, in (2.15) is single-valued and Lipschitz continuous with
modulus K around the origin 0 € R".
(iii) The EXACT BOUND OF TILT STABILITY of f at X is defined by

2.1 ilt(f.%) := inflipM.
(2.16) tile(f, X) inflip 7(0)

via the exact Lipschitzian bound of the mapping My from (2.15) around the origin.

The main result by Poliquin and Rockafellar [32, Theorem 1.3] gives a characterization of tilt-
stable minimizers for f in the sense of Definition 2.1(i) via the positive-definiteness of the second-
order subdifferential (2.13) at the reference point. In this paper we base our investigations on the
following quantitative characterization by Mordukhovich and Nghia [25, Theorem 3.5], which uses
the combined second-order subdifferential (2.14) in a neighborhood of the reference local minimizer
and provides, in addition to characterizing tilt-stable minimizers in the sense of Definition 2.1(ii), a
precise formula for calculating the exact bound of tilt stability.



Theorem 2.2 (qualitative characterization of tilt-stable minimizers for extended-real-valued func-
tion). Let f: R" — R be a Ls.c. function having 0 € 0 f(%). Assume that f is both prox-regular and
subdifferentially continuous at x for v* = 0. Then the following assertions are equivalent:

(i) The point x is a tilt-stable local minimizer of the function f with modulus x > 0.

(ii) There is a constant 1) > 0 such that

(2.17) (w*,w) > %HWHZ forall w* € 9% f(x,x*)(w), (x,x*) gphd fNBy(%,0).

Moreover, the exact bound of tilt stability of f at X is calculated by

e

(s u)

with the convention that 0/0 := 0.

(2.18) tili(f,%) = inf sup{ ) ' € 92 f(x,x)(u), (x,x*) € gphdf NBy (X, 0)}
n>

3 Qualification Conditions in Nonlinear Programming

In this section we start a preparatory work for the subsequent second-order characterization of tilt-
stable minimizers in NLPs with the system of C?-smooth equality and inequality constraints:

{ gi(x) =0 for i € E,

G-1) qi(x) <0 for i €1,

where E :={1,...,l1} and I := {l; +1,...,1; + [} are finite index sets for the equality and inequal-
ity constraints, respectively. The main goal of this section is to consider appropriate qualification
conditions needed for characterizing tilt stability in NLPs while being of their own interest.

Denote [ := [; 4[5 and rewrite the constraint system (3.1) in the inclusion form

(32) I:={xeR"| g(x) €O} with ¢(x):= (q1(x),...,q(x)) and @ := {0} x R".
Consider further the index set of active inequality constraints

(3.3) S (x):={i€l]|qi(x) =0}, xeT,

and for each x € I" describe the linearized tangent cone (2.4) to I' at this point by

(34) T"(x):={ue R"| (Vgi(x),u) =0 for i € E and (Vg;(x),u) <0 for i€ 7 (x)}.

It is easy to observe that the dual/polar cone to (3.4) admits the following representations:
l
T (x)* = Vg(x)*Ne(q(x)) = {Z?Ldii(x)‘ Ai>0 for i€ #(x) and 4; =0 for iel\ f(x)}.
1=1

Recall that the conventional terminology of nonlinear programming understands by “constraint
qualifications” (CQs) any conditions imposed on the constraints of NLPs ensuring that the Lagrange
multiplier associated with the cost function in first-order necessary optimality conditions is not zero.
For the reader’s convenience, let us list the well-recognized CQs, which are compared in what follows
with the qualification conditions developed in this paper to study tilt-stable minimizers:

o The linear independence constraint qualification (LICQ) holds at ¥ if the gradients of the active
constraints {Vq;(x)| i € EU.#(X)} are linearly independent in R".



e The Mangasarian Fromovitz constraint qualification (MFCQ) holds at ¥ if if the gradients of the
equality constraints {Vg;(¥)| i € E} are linearly independent in R” and there exists a vector u € R”
satisfying (Vg;(x),u) =0 for i € E and (V¢q;(x),u) < 0 for i € . (%).

e The full rank constraint qualification (FRCQ) holds at & if for every subset of the active con-
straints &/ C EU . (X) we have

rank {Vg;(¥)| i € &} = min{|<|, n},

where |.¢7| stands for the cardinality of the set .<7.
e The constant rank constraint qualification (CRCQ) holds at ¥ if there is a neighborhood U of x
such that for any index set &7 C EU.#(X) the system {Vg;(x)| i € 7} has the same rank for all x € U.

We have the following implications, which relate the aforementioned CQs at x € I':
(3.5) LICQ = MFCQ and LICQ = FRCQ = CRCQ.

Indeed, the implications LICQ=—=MFCQ and LICQ=—=-FRCQ are obvious. The remaining implica-
tion FRCQ=—=-CRCQ was observed by Janin (see [15, Proposition 2.1]) who was the first to introduce
and study CRCQ in nonlinear programming.

To proceed further, we recall the equivalent descriptions of MFCQ used in what follows; see,
e.g. [34, Examples 6.40 and 9.44]. They actually follow from the coderivative characterization (2.11)
applied to the inverse of the canonically perturbed constraint mapping M, : R" = R! defined by

(3.6) My(x) :=q(x)—0, xeR"

Proposition 3.1 (equivalent descriptions of MFCQ). Given x € I, the validity of MFCQ at X is
equivalent to each of the following conditions:
(i) The mapping M, is metrically regular around (X,0).
(ii) [Vq(i)*?t =0, A €Np (q()?))] = A=0€R"
(iii) There exist a positive number K such that
A

(3.7) Vq(x)*A > e forall A € Ne(q(¥)).

Furthermore, the infimum of the moduli K for which the metric regularity property holds is equal to

1
max T  —oa
Aeiala(d) IVa(x)A|

Having in mind the metric regularity description of MFCQ in Proposition 3.1, we define now
the following qualification condition, which is clearly weaker than MFCQ and occurs to be very
instrumental for the subsequent study of tilt stability.

Definition 3.2 (metric subregularity constraint qualification). Ler X € I for the constraint system
(3.2). We say that the METRIC SUBREGULARITY CONSTRAINT QUALIFICATION (MSCQ) holds at X
if the mapping M, from (3.6) is metrically subregular at (%,0).

Since in finite-dimensional space all the norms are equivalent, MSCQ can be equivalently de-
scribed via the existence of a neighborhood U of X and a positive number k (for simplicity we keep
the same notation for the modulus) such that

(3.8) dist(x;T) < K(Z lgi(x)] —|—Zmax {qi(x),O}) forall xe U,

icE icl
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i.e., for all x € U sufficiently close to X the distance from x to the constraint set I"in (3.2) is proportional
to the residual of (3.1) at these points. Note also that the MSCQ property from Definition 3.2 is
equivalent to the requirement that the inverse mapping S : R/ = R” given by

(3.9) S@):=M'(y) ={xeR"|yeq(x)—0O}, yeR,

is calm at (0,x). We prefer to deal primarily with MSCQ instead of the calmness requirement on §
due to the fact that the condition in (3.8) is formulated in terms of the initial program data g; while
the inverse mapping S may not be in hands, and it is usually hard to construct it.

Observe that the imposed MSCQ is indeed a constraint qualification at X in the standard sense of
nonlinear programming recalled above. Indeed, the following implication follows from [13, Proposi-
tion 1] and the aforementioned relationship between metric subregularity and calmness:

(3.10) [MSCQ at xeT'] = [I1(x) = T2"(¥)],

where the right-hand side equality in (3.10), saying that the tangent cone (2.4) to I" at X agrees with
the one (3.4) to the linearized constraints, is known as the Abadie constraint qualification (ACQ) for
(3.1) at x, which a CQ in the standard NLP sense.

In order to conduct our subsequent analysis of tilt stability for local minimizers in NLPs, MSCQ
alone is not enough. As the reader can see below, just one additional qualification condition on the
constraint system (3.1) at ¥ is needed. To define this new condition, let us first introduce some objects
associated with (3.1) and (3.2). Given vectors x € " and x* € R", consider the set of multipliers

(3.11) Alx,x") == {4 EN@(q(x))’ Vg(x)*A =x"}
and the corresponding collection of strict complementarity indexes
(3.12) I(a):={iel| A >0} for A =(Ay,...,4) € O

Denote by &(x,x*) the collection of all the extreme points of the closed and convex set of multi-
pliers A(x,x*) and recall that A € A(x,x*) belongs to & (x,x*) if and only if the family of gradients
{Vqi(x)|i € EUIT(A)} is linearly independent. Hence & (x,x*) # 0 if and only if A(x,x*) # 0 and
the gradients of the equality constraints {Vg;(x)| i € E'} are linearly independent.

Now we are ready to introduce the new qualification condition for the constraint system (3.1).

Definition 3.3 (bounded extreme point property). We say that the BOUNDED EXTREME POINT
PROPERTY (BEPP) holds at % if the gradients of the equality constraints {Vq;(X)| i € E} are linearly
independent and there exist a neighborhood U of X and a number x > 0 such that

(3.13) E(x,x") C x||x*||B forall xeT'NU and x* € R".

In contrast to the case of MSCQ, we do not claim that BEPP is a constraint qualification in the
standard sense. Therefore the term “qualification condition” seems to be appropriate for both MSCQ
and BEPP. In what follows we study the properties MSCQ and BEPP simultaneously and apply them
together to deriving pointbased conditions for tilt stable minimizers in NLPs.

The next proposition shows, in particular, that each of the constraint qualifications MFCQ and
CRCQ, and thus the stronger ones from (3.5), ensures the validity of both MSCQ and BEPP.



Proposition 3.4 (robustness of MSCQ and BEPP with sufficient conditions for their validity).
Given x € I from (3.2), the following assertions hold:

(i) Both MSCQ and BEPP are ROBUST properties in the sense that if either MSCQ or BEPP is
satisfied at the reference point ¥ € I that there is a neighborhood U of x such that the corresponding
property is satisfied at any point x € T NU.

(ii) Let either MFCQ or CRCQ hold at ¥ € T and that (in the case of CRCQ) the gradients of
the equality constraints {Vq;(%)| i € E} are linearly independent in R". Then both the qualification
conditions MSCQ and BEPP are satisfied at X.

Proof. Assertion (i) for both MSCQ and BEPP follows directly from the definitions of these
qualification conditions. Also it is straightforward to deduce from the the characterization of MFCQ
in Proposition 3.1(i) that the validity of MFCQ at X implies that MSCQ holds at this point.

Suppose now that CRCQ holds at x. Then it follows from [15, Proposition 2.5] that the mapping
S: R! = R” from (3.9) is calm at (0,%), and hence M, (x) = S~!(x) is metrically subregular at (,0).

Further, let us check that MFCQ at i yields the validity of BEPP at this point. Using the equivalent
description of MFCQ in Proposition 3.1(iii), take k¥ > 0 from (3.7) and find a neighborhood U of x
such that .# (x) C .# (%) and that the estimate ||Vg(x) — V(%) < 5= holds on TN U. Then for every
xeI'NU,x* e R", and A € &(x,x*) we get L € No(g(x)) C No(g(X)) and hence

AL NIALL (1A
K 2K 2K

I =1IVa(x)"All = [[Vg(x)" A = [IVg(x) = Vg®)] - [|A]] = |

This shows that & (x,x*) C 2k||x*||B and thus justifies that BEPP holds at .
It remains to verify that the validity of CRCQ at X together with the linear independence of
{Vqi(%)| i € E} implies that BEPP holds at this point. Assuming the contrary and employing the

. . . r _
imposed linear independence allow us to find sequences x; — &, x; € R", and A¥ € & (xy,x}) such that

k
Vq(xk)*m — 0 as k — oo.
Passing to a subsequence if necessary gives us a vector A € R” with ||| = 1 and such that 1¥ /|| A%|| —
A as k — oo. Since Vg(x)*A = 0, it follows from the above that the gradient family {Vg;(X)| i €
EUIT(A)} with I (A) from (3.12) is linearly dependent, i.e., consists of linearly dependent vectors
in R". Then for each i € I (1) we have Af > 0 whenever k € N is sufficiently large, which shows
that i € . (x;) C .# (%) according to (3.3) and justifies in turn that I7 (1) C It (A¥) C .# (). Now the
assumed CRCQ at ¥ ensures that the family {Vg;(x;)| i € EUIT (L)} is linearly dependent, and hence
the family {Vg;(x;)| i € EUIT(A%)} is linearly dependent as well. This clearly contradicts, due to the
discussion right before Definition 3.3, that A¥ € & (x;,x}) for large numbers k € N. Thus BEPP holds
at X, which completes the proof of the proposition. AN

4 MSCQ and BEPP via Second-Order Analysis

In this section we employ second-order derivatives of the constraint functions g; at X to effectively
support MSCQ and BEPP and also use these qualification conditions to describe some second-order
constructions of variational analysis needed in what follows.

Note that LICQ, MFCQ, and FRCQ are pointbased conditions in contrast to CRCQ, MSCQ, and
BEPP that involve neighborhood points in their definitions. It is worth mentioning to this end that the
papers by Gfrerer [8] and by Li and Mordukhovich [19] contain some (different) pointbased sufficient
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conditions for metric subregularity of general set-valued mappings, which are “almost necessary” for
this property. On the other hand, in the same paper [8] Gfrerer introduced the pointbased second-order
sufficient condition for metric subregularity (SOSCMS) formulated below in Theorem 4.1 that allowed
him to derive “no-gap” second-order necessary and sufficient conditions for metric subregularity,
where the difference between the necessity and sufficiency is the change from inequality to strict
inequality. The reader can find further applications of this condition in the recent papers [9, 10, 11, 12].

The next theorem shows that SOSCMS ensures the validity of not only MSCQ but also of BEPP,
i.e., of both qualification conditions we use for our subsequent pointbased characterizations of tilt
stability in NLPs. In fact, this theorem provides a stronger version of the aforementioned results.
Namely, we consider the case when the constraint system (3.1) can be split into the following two
subsystems with both equality and inequality constraints:

gi(x) =0 for i€ Ey:={1,...,1]} and g;(x) =0 for i € B :={l} +1,....[} + 1} =11},
qi(x) <0 for i€l := {1,...,121} and ¢;(x) <0 for i€ := {121—1—1,...,121—1—1%:12}

in such a way that it is known in advance that for the second system g;(x) =0 as i € E; and ¢;(x) <0
as i € I both MSCQ and BEPP are surely satisfied. In particular, it happens by Proposition 3.4(ii)
if CRCQ is fulfilled at £ and the gradient vectors {Vg;(¥)| i € E»} are linearly independent. One of
the reasons for this is that, although in the absence of FRCQ no pointbased conditions for verifying
CRCQ is known in terms of the gradients Vg;(X), there exist other easily verifiable conditions that
ensure the validity of CRCQ without using any derivatives. For instance, it is well known that CRCQ
holds at every X € I" if the functions g; are linear whenever i € E; UL,. Note that if we ignore the
(E»,L)-system in the following theorem (i.e., put E; = I, = 0), then it merely asserts the validity of
both MSCQ and BEPP for the original constraint system (3.1) at X under the pointbased SOSCMS
assumption imposed at this point, which is surely implied by MFCQ.

Theorem 4.1 (MSCQ and BEPP from SOSCMS). Let the gradients of the equality constraints
{Vqi(X)| i € E} be linearly independent, and the system q;(x) =0 for i € E; and q;(x) <0 fori €I,
Sfulfill both MSCQ and BEPP at x € I'. Impose further the following SOSCMS at X: for every vector
0#£ue Tlli“ (X) from the linearized constraint tangent cone (3.4) we have the implication

(4.1) (A €No(q(x)), Va(®)*2 =0, (u,V*(X,q)(®)u) >0] = Y [A4]=0.

ieE Ul
Then both MSCQ and BEPP are satisfied for the original constraint system (3.1) at X.
Proof. Observe first that the implication

SOSCMS = MSCQ at xeT’

in the general setting of Theorem 4.1 follows from the combination of Theorem 2.6 and Lemma 2.7
in [9]. It remains to verify the other implication

(4.2) SOSCMS = BEPP at x 1.

Assuming the contrary to (4.2), find sequences x; L gand A* € Ne(q(xx)) so that the gradients
{Vqi(x)| i € EUIT(A*)} are linearly independent in R” and that

Vg (xi)*A¥|| < |A¥||/k for all k € N.
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Passing to a subsequence of k — oo gives us A € Ng(g(%)) with ||| = 1 such that A¥/||A¥|| — A and
Vg(x)*A = 0, which yields the linear dependence of the gradients {V¢;(x)|i € EUIT(A)}. Since
It (L) C I (A¥) for the index sets (3.12) and the family of gradients {Vg;(xy)| i € EUIT(A%)} is
linearly independent, it follows that x; # x for all k sufficiently large. Passing to a subsequence again
allows us to find u € R" with ||u|| = 1 for which (x; — %) /||xx — X|| — u as k — . We obviously have
for any active constraint i € EU . (X) that

(Vgi(x),u) = lim

koo ||xx — X <0 ifie s (x)

qi(xk)—qi(i) {—O if ieE,
showing that Vq(¥)u € To(g(%)) and consequently that u € T{i"(%). Furthermore, we deduce from
IT(A) C I (A%) for large k that the condition (A,g(x;)) = 0 yields

e (Aai) —q(x) 1 _
0—221010 [T A §<u,V2<7L,q)(x)u>.

Let us check now that Y';cg,, |4 > 0, which clearly contradicts the SOSCMS assumption in (4.1).
Indeed, setting A%/ := ()Lik),-egjulj and g\/) := (9i)ickur; for j=1,2, we get

k2
Pl a9 22 - 72|
< [[Va® ) A+ Vg ) 2|
— A
= |[Valu) AH| < 25,

where k, denotes a positive number such that the BEPP assumption (3.13) holds for the “second”
constraint subsystem ¢;(x) =0 as i € E» and ¢;(x) <0 as i € . Dividing the latter inequality by || A% ||
and passing to the limit as k — oo, we obtain
Wiy (1)) < A2 () .
HVq (xX)* A H > gt where AV := (Aj)icg,ur; for j=1,2.

Since ||A]] = [|[(A1),A@)|| = 1 we easily conclude that A1) 5 0, and thus Ycp, .y, |A:| > 0. The
obtained contradiction with (4.1) justifies (4.2) and completes the proof of the theorem. A

Next we show that the simultaneous validity of MSCQ and BEPP at X ensures that the indicator
function Or of the constraint set I" from (3.2) belongs to the basic in second-order analysis class of
prox-regular and subdifferentially continuous functions needed for the second-order characterization
of tilt-stable minimizers in the abstract extended-real-valued setting of Theorem 2.2.

Proposition 4.2 (prox-regularity and subdifferential continuity of the constraint indicator func-
tion). Assume that both MSCQ and BEPP hold at X € I'. Then there is a neighborhood U of X such
that for all x € I'NU we have the equalities

(4.3) 96r(x) = d8r(x) = Vg(x)"Ne (q(x)).
Furthermore, Or is prox-regular and subdifferentially continuous at X for every x* € d0r(X).

Proof. The validity of the second equality in (4.3) for x = X under MSCQ at this point fol-
lows from implication (3.10) and the fact that ACQ at X immediately implies the dual condition
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Nr(%) = T (%)* (= Vq(x)*Ne (¢(%))) known as the Guignard constraint qualification (GCQ). Hence
Proposition 3.4(i) ensures the second equality in (4.3) for all x € I" near X. We now show that the first
equality in (4.3) is also satisfied if in addition BEPP holds at ¥ and hence around this point.

Suppose by Definition 3.3 that (3.13) holds with some k and that for all x € U the gradients
(Vgqi(x))ick are linearly independent. Fix x € TNU and x* € ddr(x) and then find sequences x; Lx
and xj — x* with x} € 53r(xk) for all k. Since x; € U when k is large, we get A(x,x;) # 0 for the
set of multipliers and consequently & (xx,x;) # @ for the collection of its extreme points. Picking
AK€ & (xy,x}) for each k gives us ||A%| < k||x;]||. Thus the sequence {A;} is bounded and converges
therefore to some A € R! along a subsequence. We obviously have A € Ng(g(x)) and Vg(x)*A = x*
showing that x* € §5r(x). Since the opposite inclusion §5r(x) C ddr(x) always holds, it tells us that
dor(x) = §5r(x) for every x € 'NU proving in this way the first equality in (4.3).

Considering the last statement of the proposition, observe easily from the definitions that Jr is
subdifferentially continuous at X for ¥* € ddr(x) and that the epigraph of Jr is closed, i.e., Or is Ls.c.
on R". Taking now u,x € 'NU and x* € dor(x), pick A € &(x,x*) and get by BEPP (3.13) that
I < x]|x*]]. Since (A,q(x)) =0, Vg(x)*A = x*, and A;q;(u) < 0 for i € EUI, we conclude that

5r(u)—8r(x) =0 > (Aq(u)—q()) > (2,Vg(x) (=) = LA Ju—x?

4
> {xhu—x) = Sl =,

where 7 := sup {[[VZq(y)|| } y € U}. This verifies the prox-regularity (2.3) of 8 at X for every sub-

gradient ¥* € ddr(x) and thus completes the proof of the proposition. A

As indicated by one of the referees, the prox-regularity of - under MSCQ in Proposition 4.2 can
be derived from [4, Theorem 31(b)], although the notion of MSCQ was not defined therein.

To proceed further, recall the definition of the critical cone to T at (x,x*) € gph 551" given by
(4.4) K(x,x*) := Tp(x) N {x*}*+
via the tangent cone (2.4) and define the multiplier set in a direction v € R" by
4.5) A(x,x*;v) := argmax { (v, V*(1,q) (X)v)| A € A(x,x")}.

Note that (4.5) consists of optimal solutions to a linear program over the feasible set of multipliers
(3.11). This “critical multiplier set” plays a crucial role in our subsequent study of tilt stability.

The next proposition collects some properties of sets (4.4) and (4.5) needed in what follows.
Proposition 4.3 (critical cone and multipliers in critical directions under MSCQ). Ler MSCQ
hold at x € T, and let (x,x*) € gphddr be any pair such that x € T is sufficiently close to X. Then the

following assertions are satisfied:
(i) For every multiplier A € A(x,x*) we have

K(x,x") = {v eR"

Va()) {—0 if ic EUTT(A) }

<0 ifie S)\I*(A)

(ii) There exist a multiplier & € A(x,x*) with IT(A) = I := Ureaqey I7(A) and some vector
v € K(x,x*) satisfying the conditions

=0 ific EUIT(Q),

<Vq,~(x),v>{<0 if ic 7()\IT(A).
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(iii) For every vector v € K(x,x*) we have A(x,x*;v) # 0.

Proof. To verify the first assertion, we use the robustness of MSCQ by Proposition 3.4(i) and
implication (3.10), which ensure that 7;i"(x) = T-(x) for all x € T around *. This yields A(x,x*) # 0
and thus (i) follows from the observation that v € K(x,x*) if and only if

ve T (x) and 0= (x*,v) = Z Ai(Vgi(x),v) = Z Ai(Vgi(x),v),

i€EUI i€EUIT (M)

where the multiplier A € A(x,x*) is chosen arbitrarily. Assertion (ii) follows from [11, Lemma 2].
To justify finally assertion (iii), we employ the dual second-order necessary condition for metric
subregularity from [8, Theorem 6.1] and obtain in this way that for every v € T}"(x) D K (x,x*) and
every A € No(g(x)) with Vg(x)*A = 0 it follows that (v, V>(4,q)(x)v) < 0. The latter inequality
implies that the linear optimization problem

(4.6) maximize (v,V*(1,g)(x)v) subjectto A € A(x,x*)

admits an optimal solution, which exactly means that A(x,x*;v) # 0. A

5 Calculations of Second-Order Generalized Derivatives for NLPs

In this section we present precise calculations of some generalized second-order derivative construc-
tions for the indicator function 8 of the feasible solution set (3.2) given by equality and inequality
constraints via the second-order derivatives of the constraint functions g; as well as the critical cone
(4.4) and the set of multipliers in critical directions (4.5). The theorem below extends the recent results
by Gfrerer and Outrata [11] regarding the following major issues:

e It concerns not only inequality but also equality constraints in (3.1).
e It replaces a certain relaxed uniform metric regularity property in the vicinity of the reference
point employed in [11] by the weaker BEPP qualification condition imposed at this point.

Theorem 5.1 (generalized second-order derivatives of the constraint indicator function under
MSCQ and BEPP). Given x € I, assume that both MSCQ and BEPP hold at x. Then for any x € I’

sufficiently close to X and any regular subgradient x* € §5r(x) the following assertions hold:
(i) The tangent cone (2.4) to the graph of ddr is calculated by

1) T

gphgar(x,x*) = {(v,v*) € R2"| A € A(x,x";v) with v* € Vz(l,q>(x)v+NK(xjx*)(v)}.

(ii) Assume that A(x,x*;-) is constant on K (x,x*) \ {0} and take an arbitrary multiplier

A(x,x*;v) for ve K(x,x*)\{0} if K(x,x*)+# {0},
(5:2) re { A(x,x*;0) otherwise.

Then we have the simplified tangent cone formula

(5.3) Tgph%r(x,x*) ={(wv) e ]RZ”‘ v e VEH(A,q) (x)v+ Ng () (V) }-

Furthermore, the regular normal cone (2.5) to the graph of 551— is calculated by

54 N

nae () = { (" w) € R w € K(x,x*), w* € —=V*(A,q)(x)w+K(x,x")"}

with an arbitrary multiplier A taken from (5.2).
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Proof. Consider the equivalent representation of I" obtained by replacing the equality constraints
with two inequalities, i.e., the following one:

(5.5) gi(x) <0 for i = 1,...,1, where [:=2l;+1b,
qi(x) if 1 <i<ly,
qi(x) = —qi—, (x) if L 4+1<i<21,

gi—1, (x) if2l1+1<i<2l +1b.
It is easy to conclude from the metric subregularity description (3.8) that the modified constraint
mapping Mz(x) := q(x) — R for (5.5) is metrically subregular at (¥,0) if and only the original one M,
from (3.6) has the same property at this point. Proceeding similarly to the proof of [11, Theorem 1]
while using the BEPP condition at X (and hence at points nearby), we arrive at the representation

5.6) T 5 (6,x")={(m") €R¥| I € A(x,x";v) with v* € V2(A,q) (x)v+ Ni(eoy (V) },

gphdér

where the sets of multipliers /~\(x,x*) and /~\(x,x*;v) are defined as in (3.11) and (4.5), respectively,
but for the extended inequality system (5.5), i.e.,

Alx,x*) = {I €Ny (a(x)) | V§(x) A =x"}, Alx,x";v) = argmax { (v, v2<1,a)(x)v>\ 2e Alx,x")}.

The only essential difference from the proof of [11, Theorem 1] is that now we need to justify the
following fact under the MSCQ and BEPP assumptions made: for any sequences xi L xand x; —x"
with x} € ]Vr(xk) there exists a bounded sequence of multipliers Ak e K(xk,xZ) as k € N. To verify
this, observe that BEPP together with MSCQ guarantees the existence of a sequence A% € & (X, X)
satisfying the estimate || A¥|| < «||x}|| with some constant k > 0 independent of k € N. Defining

ALy = AF for i=1i+1,...,1,

A=Al AL, =0 for i=1,....1; with A} >0,
A =0, A, = —Af for i=1,...,1; with A} <0,
we get Ak € K(xk,xZ) and H)NLI‘H = ||A¥||. It shows that the sequence {Ik } is bounded, and so formula

(5.6) holds by [11, Theorem 1]. It is easy to see that the set on the right-hand side of (5.1) is the same
as the one on the right-hand side of (5.6), which thus verifies the claimed representation (5.1).

To justify (5.3) and its dual version (5.4), note that for every pair 0 # v,v, € K(x,x*) we have
A(x,x*;v1) = A(x,x*;v;) if and only if A(x,x*;v;) = A(x,x*;v2). Checking carefully the proof of
[11, Theorem 3] allows us to observe that the aforementioned relaxed metric regularity assumption on
Mg therein can be replaced by the validity of formula (5.6) verified above. Hence we can apply [11,
Theorem 3] to derive the tangent cone and regular normal cone representations

s (657) = {007) v € V20,0)) () + Ny )}

nghgﬁr(x,x*) = {(w*,w)‘ we K(x,x"), w* e 7V2<7L,Z1)(x)w+K(x,x*)*},
where 1 is an arbitrarily fixed multiplier from A(x,x*;v) for some 0 # v € K(x,x*) if K(x,x*) # {0}
and from A(x,x*) = A(x,x*;0) otherwise. The obtained formulas easily yield the claimed representa-
tions (5.3) and (5.4) and thus complete the proof of the theorem. A

It is worth mentioning that the trivial replacement of an equality by two inequalities as in (5.5)
usually does not provide valuable results. However, the imposed MSCQ and BEPP qualification
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conditions are so powerful, while being fairly nonrestrictive, that they allow us to do it as shown
above in the proof of Theorem 5.1.

The next result is a consequence of Theorem 5.1(i), which gives us an explicit estimate of the
combined second-order subdifferential (2.14) of the constraint indicator function, which is very in-
strumental in deriving efficient conditions for tilt-stable minimizers in NLPs; see Sections 6 and 7.

Corollary 5.2 (combined second-order subdifferential of the constraint indicator function). As-
sume that both MSCQ and BEPP are satisfied at X. Then there is a neighborhood U of X such that
for every (x,x*) € gphddr with x € U the following assertion holds: Given any pair (w,w*) with
w* € 9280 (x,x*)(w), we have —w € K(x,x*) and

(5.7) (w*,w) > (w,V(A,q)(x)w) whenever A € A(x,x";—w).

Proof. Let U be neighborhood of x such that both MSCQ and BEPP hold for every x e I'NU.
Fixx e I'NU, x* € dér(x) and (w,w*) with w* € D*dér(x,x*)(w). By definition (2.8) of the regular
coderivative and representation (2.6) of the regular normal cone we have

*

(W*,—W) € ngh&&*(xvxﬂﬂ) = (Tgph88r(x7X*)) :
It follows from Theorem 5.1 and Proposition 4.2 that

{0} x K(x,x")" C Tgphgér(x,x*) = Tophos, (X,X7).
This implies consequently the relationships

(W*,0) + (—w,v*) <0 forall v' € K(x,x")"

and hence —w € K (x,x*). Fixing now any vector A € A(x,x*; —w) and using (5.1) give us the inclusion
(—=w, —V2(4,q) (x)W) € Typnas (x,x*), and so (5.7) is implied by

0> (W', —w) + (=w, = V*(4,q) (x)w) = = {w", w) + (w, V2(4,q) (x)w),

which completes the proof of the corollary. A

The next proposition shows that the stronger CRCQ property yields the additional assumption in
Theorem 5.1(i1) and thus justifies the fulfillment of the simplified formulas (5.3) and (5.4) therein.

Proposition 5.3 (calculating tangent and regular normal cones under CRCQ). Let CRCQ hold at
x € I'. Then there is a neighborhood U of X such that for every x € TN U and x*,v € R" satisfying

(5.8) (Vqi(x),v) =0 whenever i € EUI" with I := U (1)
AEA(x,x*)

the form (v,V*(-,q)(x)v) is constant on A(x,x*). In particular, we have A(x,x*;v) = A(x,x*), and
therefore representations (5.3) and (5.4) are satisfied.

Proof. The robustness of CRCQ allows us to proceed in what follows for any x € I" from some
neighborhood U of x. Consider the case of A(x,x*) # 0 (otherwise the assertion is trivial), fix any
v € R" with (Vg;(x),v) =0, i € EUI", and choose the maximal subset J of E UI" such that the
gradients {Vg;(x)| i € J} are linearly independent. Consider the equations

(5.9) gi(x+1v+A*z(t)) =0, i€,
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where the rows of the |J| x n matrix A are given by the gradients Vg;(x), i € J, and where the vectors
z(t) € RV for any fixed r € R are unknown. Atz =0 we have the trivial solution z(0) = 0 to (5.9) while
the Jacobian matrix of this system with respect to z at 7 = 0 is the |J| x |J| matrix AA*, which is in-
vertible since the rows of A are linearly independent. Applying the classical implicit function theorem
ensures the existence of 7 > 0 and a C!-smooth function z : (—7,7) — R” satisfying the conditions

2(0) =0, gi(x+1v+A"z(t)) =0 forall i€ J, t € (—1,7).

By setting x(¢) := x+1tv+A*z(¢) and differentiating the system (5.9) with respect to ¢ we obtain

= <Vq,-(x),v+A*%z(O)> = <Vq,-(x),A*%Z(O)>, i€l

E‘b( ())

showing that AA* %1(0) = 0 and therefore %z(O) = 0. Thus we arrive at the conditions

d

3(7(0) =X, E

x(0)=v, and ¢;(x(¢)) =0 forall i€ J, 1 € (—F,).

It follows from CRCQ that when ¢ € (—7,7) is sufficiently small, the index set J is the maximal
subset of EUI" such that the gradients {V¢;(x(¢))| i € J} are linearly independent. Hence for every
index i € (EUI")\J and small 7 € (—7,7) the gradient Vg;(x(¢)) can be represented as some linear
combination Y ;c; 0:;(¢)Vq;(x(¢)) of Vq;(x(t)), j € J. Employing the standard chain rule tells us that

< 4i(50)) = (Vai(x(0)), 230 = Xm0 (Vs (), S50)) = 0, i € (BT,

jeJ

and consequently that ¢;(x(z)) =0 for all i € EUI" and small 7 € (—7,7). Since we also have JL,-(]) =
k() Oasiel\ el forany AV 22 € A(x,x"), 1tfollowsthat<7t D22 q(x(1))) =0ifr € (—7,7)

is small enough. Thus by taking into account that Vg(x)*A(1) = Vg(x)*A(? ). = x* we get
o (A=A g(50) - g(0)
50 12
~ lim </1(1) — 2 vg(x) (x()) —x) )+ 5 (x(t) —x, VZ(AD) — 1@ ) (x) (x(1) —x)) +o(||x(r) —x||?)
50 12
1
= (VA -2% g (),

which shows that the form (v, V2(-,q)(x)v) is constant on A(x,x*) and hence A(x,x*;v) = A(x,x*).
Since every critical direction v € K(x,x*) fulfills (5.8) by Proposition 4.3, the validity of the claimed
representations (5.3) and (5.4) follows. A

6 Pointbased Second-Order Sufficient Conditions for Tilt Stability

Consider an NLP problem of minimizing a C?>-smooth function ¢ : R” — R subject to the constraint
system (3.1), where the equality and inequality constraints are described by C2-smooth functions:

6.1)

minimize ¢(x) subject to
gi(x) =0 for i € E and ¢;(x) <0 for i € I.
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Using the notation of the previous section, rewrite (6.1) in the unconstrained format
(6.2) minimize f(x) on R", where f(x):= ¢@(x)+ dp(x)

is an extended-real-valued objective. Applying Definition 2.1 to the unconstrained problem (6.2), we
arrive at the notions of a tilt-stable minimizer X for (6.1), its modulus k, and the exact bound of tilt
stability tilt(@, q,x) of the nonlinear program (6.1) at its tilt-stable minimizer X.

It immediately follows from the subdifferential and coderivative sum rules given in [22, Proposi-
tion 1.107 and Theorem 1.62], respectively, that

Of(x) = Vo(x) +I6(x), If(x) =Ve(x)+Id(x), and

9% f(x,x")(v) = Vo (x)v+ (5*8&) (x,x*=V@(x))(v) whenever x €T, x" € df(x), veR"

for the first-order and second-order subdifferential constructions in (2.1), (2.2), and (2.14). Further-
more, we deduce from the definitions of prox-regularity and subdifferential continuity due to Proposi-
tion 4.2 that f in (6.2) possesses these properties at any x € I" close to & for x* € d f(x) if both MSCQ
and BEPP qualification conditions are satisfied at . R

By the elementary Fermat rule and sum rule for d f given above we obviously have that any local
minimizer X for (6.1) fulfills the first-order necessary optimality condition

0 € df (%) = Vo (%) + (%),

which can be equivalently written (provided that the GCQ ]Vr(f) = T{"(%)* holds, which is surely
the case by (3.10) when MSCQ is satisfied at ) either as A(x,—V¢(x)) # 0 for the set of Lagrange
multipliers (3.11), o—more explicitly—in terms of the KKT system

(6.3) 0=V,Z(x 1) forsome A € No(q(x))
via the classical Lagrange function defined by
(6.4) ZL(x,A) = @(x)+ (A,q)(x) for xe R" A € R’
To formulate our results on tilt stability, define the set of extreme multipliers in critical directions
(6.5) Ag(x,x"3v) = Alx,x*;v) N & (x,x") forall (x,x*) € gphNr, v € K(x,x"),

which is the collection of extreme points of the multiplier set A(x,x*) solving the linear program
(4.6); see the above constructions of & (x,x*) and A(x,x*;v)). It is well known in linear programming
that Ag(x,x*;v) # 0 if and only if both sets A(x,x*;v) and & (x,x*) are nonempty; in this case the set
Ag(x,x*;v) precisely reduces to all the extreme points of the convex polyhedron A(x,x*;v) in (4.5).

Now we are ready to establish the major second-order sufficient condition for tilt stability in (6.1),
with a prescribed modulus k¥ > 0 and a constructive lower estimate for the exact bound of tilt stability
tilt(¢, g, x), formulated ar the reference point ¥ € I'. As the reader can see, this pointbased condition
is expressed via the strong positive-definiteness of the Hessian of the Lagrange function (6.4) on the
subspace orthogonal to the gradients Vg;(X) for the equality and strict complementarity constraint
indexes (3.12) generated by extreme multipliers in all the critical directions (6.5) at (¥, —V@(%)).
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Theorem 6.1 (pointbased sufficient condition for tilt-stable minimizers in NLPs with prescribed
moduli). Given a feasible point ¥ € I" and a number x > 0, suppose that MSCQ, BEPP, and the
first-order necessary optimality condition (6.3) are satisfied at X and that the second-order condition

6.6) (W, ViZL(xA)w) > %HWH2 whenever w# 0 with (Vq;(X),w)=0,i€ EUI" (1)

holds for all the (finitely many) extreme Lagrange multipliers in critical directions

(6.7) AEAs = U As(%,—Vo(%);v).
04veK (x,— V()

Then X is a tilt-stable local minimizer for (6.1) with modulus K. Furthermore, we have the estimate

>

(w, V2.2 (x, A

(6.8) tilt(g,q,%) > sup{ ™ ( A€ As, (Vgi(®),w) =0, i€ Euﬁ(x)} >0

of the exact tilt stability bound of (6.1) at X with the convention that 0/0 := 0 in (6.8).

Proof. Employing Theorem 2.2 and Proposition 4.2, it suffices to show that the second-order
condition (6.6) with A from (6.7) implies the validity of (2.17) for the function f defined in (6.2).
Then the exact bound lower estimate (6.8) follows directly from (2.18) and (6.6).

Suppose on the contrary that (2.17) fails while (6.7) holds and then find sequences x; — X and
x; — 0as k — oo as well as (wg,wy) € gphézf(xk,xz) such that

1
(6.9) (Wi, wi) < EHW,{HZ for all large k € N.

Since (wy,—wy) € ﬁgphagf(xk,x,’;) and wy # 0 by (6.9), we may assume that ||wg|| = 1 for all k and
select a subsequence wy — w with some w from the unit sphere of R". It follows from Corol-
lary 5.2 that —wy € K(xg,y;) with y; := x; — V@(x;). Further, we have by Proposition 4.3(iii)
that A(xg,y;; —wk) # 0, and thus the set Ag(xg,y;; —wi) is also nonempty for each k € N. Since
wi — V2Q(xk)wy € (D*98r) (xz, ¥;)(wi) by the above constructions and definition (2.14) of the com-
bined second-order subdifferential, we get from the crucial conclusion (5.7) of Corollary 5.2 that there
is a sequence of A% € Ag(xr,y5; —wy) satisfying the inequality

<W1t - VZ(P(Xk)Wk,Wk> > <Wk7V2 <lk7q> (Xk)Wk>,
which can be rewritten in terms of the Lagrange function (6.4) as
(6.10) (Wi, we) > (wi, V2L (x, AX)wy ) with some A* € Ag(xe, v —wi), k€N

The imposed BEPP at X ensures that the sequence {AK} from (6.10) is bounded, and hence we find A
so that A% — 2 for all k — oo without loss of generality. It is easy to see that A € Ng(g(%)) and that

Vq(x)*A = lim Vg(x)*A* = lim y; = —V (%)
k—yo0 k—ro0
telling us that A € A(%, —V@(X)). Let us show next that A €co&(x,—Vo(F)).

Assuming the contrary gives us A = A+ A" with A¢ € co &' (X, —V (X)) and A" # 0 belonging to
the recession cone of A(X,—V@(X)),i.e., A/ >0foralli €I and Vg(x)*A" = 0. Since

I"(AN) cIt(A) I (A% ¢ 7 ()
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for the index sets (3.3) and (3.12) when k is large and since the gradient family (Vq;(xk));cpur+(as) is
linearly independent, we have A" € & (x;, Vq(x;)*A”) for such k. This clearly contradicts BEPP by

V *x2r
L IValw) ]

=0
koe AT ’

and hence the claimed inclusion A € co& (%, —V¢()) is verified.

Furthermore, due to the inclusions It (1) C IT(A¥) and —wy € K(x;,y}) for large k, we get
(Vqi(xx),—wi) = 0 whenever i € E UI*(AK) and thus conclude that (Vg;(%),w) = 0 for all indexes
i € EUI(A) by passing to the limit as k — co. Combining (6.9) and (6.10) gives us

- 1
(6.11) (w, V22 (% A)w) < [lw]?

by the limiting procedure with the limit pair (w, 4) constructed above.

Consider now the following two cases, which completely cover the situation. In the first case
suppose that x; # ¥ for infinitely many k and get (x; — X)/||xx — %|| — v by passing to a subsequence
if necessary. Taking into account that I+ (1) C I (AX) C .# (x;) for large k, we get the relationships

qi(x) — ql<>{—o if i€ EUIT(),

(Vgi(%),v) = lim <0 if ie F@\IT),

koo ||xx — X|

which show that Vg(%)*v € Te(g(%)), 0 = (A, Vq(F)v) = —(V(%),v), and so v € K(x —V(p()?))

(4.4). Moreover, (A,q(x;)) = 0 when k is sufficiently large, and the conditions (A — A, Vg(%))
(A,q(xx)) < 0 hold whenever A € A(X,—V¢(X)). Hence we have
A—A A—A — (A —2,q(x
0o > 21imsup—< ’q_(xzk» :21imsup< 14(%)) _< 3 7CI(X)>
koo | — x| ko ek — ]|
—%5 VA -2, — 3
= limsup <xk % VY q>2( ) )> = <V, V(A —1,q) (X)V>
ko [k — ]|

showing that A € A(%, —@(%);v). Since A € co&' (%, —V (X)) by the above, it has the representation
-_— N . . . . N .
(6.12) A=Y B/u with p/ € &£(x,—Ve(x), B/ >0, Y /=1
j=1 j=1

for some N € N. Taking into account that (v, V2(u/,q)(%)v) < (v, V?(1,q)(¥)v) due to the definition
of A(X,—@(X);v) in (4.5) and that

= ;ﬁ’(v, VA (ul,q) (@) — (v V2 (4, q) (%)),

we conclude that the following relationships are satisfied:

(v, V(! q)(®)v) = (v, V*(A,q)(¥)v), andso p/ € Ag (%, —@(X);v) for j=1,...,N.
The latter allows us to use the assumed second-order condition (6.6) for u/, which implies that

(W, V2L (%,2)w) > L|w|? by I (u/) C I () and hence contradicts (6.11). This justifies the state-
ment of the theorem in the first case under consideration.
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In the second case we have x; # X only for finitely many k and so can suppose that x; = x for
all k € N. Since —wk € K(%,y}) as shown above, we easily get that —w € K(¥,—V (%)) for the
limit point w. It follows now from [2, Theorem 5.3.2(2)] that A € A(%¥,—V@(%); —w). Representing
A € co&(%,—V (%)) as in (6.12) and using the same arguments as in the first case above, we arrive
at a contradiction with (6.11) and thus complete the proof of theorem. A

Theorem 6.1 provides a pointbased second-order sufficient condition for tilt-stable local mini-
mizers of NLPs with a prescribed modulus x > 0 via the strong (involving the given modulus x)
positive-definiteness of the Hessian Vi (%, i) in (6.6) over the subspace therein with A from (6.7).
A natural question arises about the sufficiency of the positive-definiteness counterpart of (6.6) and
(6.7) for tilt stability of X with no modulus specified, i.e., in the sense of Definition 2.1(i). The va-
lidity of this statement can be justified by using the device similar to the proof of Theorem 6.1 while
applying instead of Theorem 2.2 above (taken from [25, Theorem 3.5]) the characterization of tilt
stability in the sense of Definition 2.1(i) in the unconstrained format of optimization obtained in [32,
Theorem 1.3] via the positive-definiteness of the basic second-order subdifferential (2.13). However,
the desired result can be also deduced directly from Theorem 6.1 as in the following corollary.

Corollary 6.2 (pointbased sufficient condition for tilt-stable minimizers in NLPs with no modu-
lus specified). Assume hat MSCQ, BEPP, and the first-order necessary optimality condition (6.3) are
satisfied at X and that the positive-definiteness condition

(6.13)  (w,VEL(%A)w) >0 forall A € Ag, (Vgqi(¥),w)=0,i € EUI" (1), w#0
holds. Then there is k > 0 such that X is a tilt-stable local minimizer with modulus x for (6.1).

Proof. Since the set of extreme multipliers A is finite as a subset of extreme points of a convex
polyhedron, it is possible to conclude that the positive-definiteness condition (6.13) implies its strong
counterpart (6.7) with the same vectors A. Indeed, the suitable modulus k > 0 can be constructed
so that k! is the minimum of the minimal eigenvalues of the matrices A¥V2.Z(%,A/)A;, where the
columns of A; form an orthonormal basis of the subspace

{weR"| (Vg;(x),w)=0,i € EUI"(A")} with A’ € As.

The reader may proceed with more details if necessary. A

Note that the second-order sufficient conditions in both Theorem 6.1 and Corollary 6.2 trivially
hold and ensure tilt stability of X if Ag = 0, i.e., when K (%, —V¢(%)) = {0}. However, in this case we
can make a more precise statement, which corresponds to tilt(¢, g, %) = 0 in (6.8).

Proposition 6.3 (tilt stability with zero exact bound). Let MSCQ, BEPP. and the first-order neces-
sary optimality condition (6.3) hold at X € T'. Suppose further that K(x,—V@(x)) = {0}. Then for all
Y > 0 sufficiently small there is a neighborhood V of the origin in R" such that

My(v*) = {x} forall v: €V,
where the argminimum mapping My is defined in (2.15) with f given in (6.2).

Proof. The negation of this statement gives us a sequence of }; | O such that for every neighbor-
hood V of 0 € R” there exists a vector v* € V with M, (v¥) # {x}. Using Theorem 6.1 and passing to
a subsequence if necessary, we can assume that for every fixed k € N there is a neighborhood Vj, of 0
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on which My, is single-valued and Lipschitz continuous with modulus k. Hence for each k we find
vi € Ve N LB and x; #  with My, (v;) = {x;}. Then

1 1
—FJ < -0l < — k
[k xH—k”Vk ||_2k1’k, €N,

which shows by definition (2.1) of the regular subdifferential that 0 € 5( f—(v,+))(xk). By passing to
a subsequence again if needed, we get that (x; — ) /||xx — %|| — v for some unit vector v € R” and that
MSCQ and BEPP hold at x;. This justifies the KKT form (6.3) of the stationary condition 0 € 5( f-
(v%,-))(x) and also the existence of a convergent sequence Ay — A with A € & (xi, —V@(xx) +v5).
Using the same arguments as in the proof of Theorem 6.1 yields A € A(X, —V (%)) and

vy qilk) —qi(®) =0 if i€ EUIT(D),
(Vail®),v) = lim = {go if ie 7 (D)\I*(A),

which imply that v € T{i"(%) and —(V@(%),v) = (4, Vq(%)v) = 0. This brings us to the contradiction
0 # v € K(x,—V@(x) and thus completes the proof of the proposition. A

7 Necessary Conditions and Characterizations of Tilt Stability in NLPs

We start with establishing the necessity of the major second-order sufficient condition of Theorem 6.1
under additional assumptions involving either nondegeneracy, or the notion of 2-regularity. The latter
notion was initiated (and named) by Tret’yakov [35] in the case of zero Jacobian and then was strongly
developed by Avakov [1] whom we mainly follow in the next definition. The symbol [Vzg(i)v, w]
stands therein for the s-vector column with the quadratic form entries (V2g;(X)v,w), i =1,...,s, gen-
erated by the Hessians of all the component g; of the mapping g: R™ — R*.

Definition 7.1 (2-regularity). Let g : R™ — R® be twice Fréchet differentiable at X € R™. We say that
g is 2-REGULAR at the point X in the direction v € R™ if for any p € R’ the system

(7.1) Veg(@)u+ [Vig(®)v,w] =p, Vg@w=0
admits a solution (u,w) € R™ x R™.

Note that Avakov [1] used this notion only for directions v satisfying the conditions Vg(x)v =0
and [V2g(%)v,v] € rge Vg(x) for the range of the derivative/Jacobian operator Vg(X).

Given ¥ € T, fix a tangent direction v € 7" (%) from the linearized constraint cone (3.4) and define
the subset of the active inequality constraint indexes (3.3) in the direction v by

(7.2) I (xv) == {i € ()| (Vqi(x),v) =0}.
Introduce further the collection of 2-regularity vectors in the direction v € Tlli" (%) by

(7.3) E(xv) = {zeR”‘ <V‘1i(f),2>+<v,vzqi(x)v>{:0 for i € E, }

<0 for i€ 7 (%)
and consider the corresponding collection of active inequality constraint indexes (7.2) in this direction

C(%;v) == {Sa” C f()?;v)‘ Jz € E(Bv) with? = {i € I (%v)| (Vgi(%),2) + (v, V2gi(®)v) = O}.
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The next result shows that 2-regularity of the constraint mapping at the reference point in the given
tangent direction built upon equality and “maximal” active inequality constraints implies a certain
parametric LICQ along a feasible curve with the same active constraint indexes. In what follows we
understand a maximal element of a subset S in a partially ordered set in the usual sense of order theory,
i.e., as an element of § that is not smaller than any other element in S. It is clear that for S = € (%;v)
below a maximal element (by inclusion “C”) always exists if ’(X;v) # 0, but it may not be unique.

Lemma 7.2 (parametric LICQ from 2-regularity). Fix X € I', a tangent direction v € TFlin (%) and a
maximal element € of the index subset collection € (X;v) defined above. Then the 2-regularity of the

constraint mapping (qi) . . at % in the direction v implies that for every subset ¢’ C ¢’ there exists

a number T > 0 and a mapping X : [0,7] — T such that

~ _ ~ . xX(t)—x
x(0)=x, S (x(7)) =, lr%l ="

and LICQ is satisfied at X() for every T € (0, 7).

Proof. It is done in [12, Proposition 4] for the case of inequality constraints, but the given proof
goes through by replacing each equality by two inequalities as in the proof of Theorem 5.1. A

Now we are ready to establish the no-gap necessity of the second-order sufficient condition in
Theorem 6.1 for tilt-stable minimizers with modulus k > 0, where the strict inequality sign “>" in
(6.6) is replaced by “>" under the extra alternative assumptions: either nondegeneracy in critical
directions, or 2-regularity of the underlying narrow part of active constraints in critical directions.
Since the latter notion has been formulated in Definition 7.1, it remains to introduce the former one.

Definition 7.3 (nondegeneracy in critical direction). We say that a feasible solution X to problem
(6.1) NONDEGENERATES IN THE CRITICAL DIRECTION v if the set of multipliers A(X,—V@(X);v)
from (4.5) at (x,—V@(X)) in the direction v is a singleton.

It is clear that this notion is a significant relaxation of the standard notion of nondegeneracity in
NLP, which means that the whole set of Lagrange multipliers A(x, —V (%)) from (3.11) is a singleton.

Theorem 7.4 (no-gap necessary condition for tilt stability with prescribed moduli under either
nondegeneracy or 2-regularity). Let X be a tilt-stable local minimizer with modulus x > 0 for pro-
gram (6.1), and let both MSCQ and BEPP hold at x. Suppose further that for any nonzero critical
direction 0 # v € K(X,— V(X)) from (4.4) one of the following assumptions is satisfied:

(a) either X nondegenerates in the critical directions v,

(b) or for every extreme multiplier A € Ag (X, —V@(X);v) from (6.5) there exists a maximal element
€ € €(%;v) such that I (L) C € for the strict complementarity index set (3.12) and that the narrow

active constraint mapping (Qi)ieEuff is 2-REGULAR at X in the direction v.

Then we have the pointbased second-order necessary condition for tilt stability
1 -
(74) (W, ViL(®A)w) > EHWZH whenever A € Ag, (Vqi(X),w) =0,i€ EUI"(A)

with modulus K and with the upper estimate of the exact bound of tilt stability of (6.1) at X given by

Iw]?

(w, V2.2 (x,A)w)

(7.5) tilt( ¢, q,%) < sup{ A €Ag, (Vqi(x),w)=0,i€ EUI*(/’L)} < oo
under the convention that 0/0 := 0 in (7.5).
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Proof. Suppose on the contrary that X is a tilt-stable local minimizer with modulus x while
1 -
(W, V2L (%)W) < EHWZH for some A € Ay and w € R" with (Vg;(x),w)=0, i€ EUI" (),

which obviously yields w # 0. We now show that there exist a number 7 > 0 and a mapping x: [0, T| —
I" such that x(0) = &, .# (x(1)) = I (A), LICQ is fulfilled at x(7) for every 7 € (0,7), and
xX(t)—x

lim =,
)0 T

where the nonzero critical direction 0 # v € K (X, —V@(X)) is chosen such that A € Ag (%, —V@(X);v).
Observe that under the assumption made in (b) this follows from Lemma 7.2 with ¢ = I (A ). Hence
it remains to consider only the case when

A, ~Vo(E):v) = A (5, Vo (@):v) = {4},

Recall that by the definition A, it is a solution to the linear optimization problem (4.6) with x =
X and x* = —V¢(x). Then duality theory in linear optimization ensures the existence of a strictly
complementary dual solution to (4.6), i.e., some z € R" satisfying

for i€ EUIT(),
(7.6) (Vai(%),2) + (v V?qi(3) >{<0 fzr iifL(Jx) \(13(1)-

Taking into account that (Vg;(x),v) =0 fori € EUIT (1) gives us

2 2
_ T
ai(#+ v 52) = ai(®) + (Vi) + 5 ((Vail®).2) + (2 V2@ ) +o(e) = o(e?)
whenever i € EUIT(A). Since A is an extreme point of A(X,—V@(x)), the constraint gradients
{Vqi(x)|i€ EUIT(A)} are linearly independent. Applying the Lyusternik-Graves theorem on metric
regularity for smooth mappings, we find positive constants y and 7 such that for every 7 € [—7, T]
there is is curve x(7) satisfying the conditions ¢;(x(7)) =0 fori € EUI* (1) and
2

H)?(T) — (X+ v+ sz) H < )/H (q,-()H— W4 —2

2 )>ieEUI+()L)H =o(7).

Suppose without loss of generality that the gradients {Vg;(x(7))| i € EUIT(A)} are linearly indepen-
dent for every T € [—7, Z]. Then it follows from (Vg;(x),v) <0 with i € #(x)\IT(A) that
N i 2 o1
q:(x(1)) =g <x+Tv+ ?z) +o(17) < > (<Vq,- ),2) + (v, V3gi(x v>> +o(t

forallie .#(x)\I"(A) and 7 > 0 sufficiently small. Since we also have g;(x(7)) <0 wheniel\ .7 (X)
and 7 is small enough, it gives us the property

S (x(1)) =I"(A) whenever 7€ (0,7),

this verifies the existence of the curve x{(-) with the claimed properties.
Now we pick an arbitrary sequence 7 | 0 as k — oo with 7 < 7 for all k and consider the vectors
x = Xx(7) and x; = Vg(xx)*A. Denote by wy the unique optimal solution to the quadratic program:

(7.7) minimize |lu—w||* subjectto (Vg;(xi),u) =0 forall i€ EUI"().
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Employing standard arguments in such settings (see, e.g., in the proof of [16, Theorem 8.2]) shows
that wy — w as kK — oo. Moreover, it follows from Proposition 4.3(i) on the description of the critical
cone (4.4) and from the constraint structure in (7.7) that —wy € K(x,x;) and also that

~ ~

Neph a5y (Xi; X)) =ngh§5F(xk,x}§) = {(u*,u)‘ u € K(xg,xp), u* € —V2<l,q>(xk)u+K(xk7xZ)*}

by further applying Theorem 5.1 and Proposition 4.2. Therefore we get
(V2 (l,q> (xk)wk, —Wk) € nghagr(xk,xz), and so V)%Z(xk,l)wk S ézf(xk,Vq)(xk) +)C;:) (Wk).

Since V@ (xi) +x; = V2L (x,A) — 0 as k — oo, it follows from Theorem 2.2 that

1
<wk,V§$(xk,7L)wk> > EHWkHz for all large k € N.

By passing to the limit as k — oo, this clearly contradicts the assumption made at the beginning of the
proof of this theorem, and hence we arrive at the necessary condition (7.4) for tilt stability. The exact
bound estimate (7.5) easily follows from (7.4), and thus we are done. A

The next result is a consequence of Theorem 7.4 ensuring the necessity of the pointbased positive-
definiteness condition (6.13) from Corollary 6.2 for tilt-stable minimizers of (6.1) with no modulus
specified under the mild assumptions of Theorem 7.4.

Corollary 7.5 (pointbased necessary condition for tilt-stable minimizers in NLPs with no mod-
ulus specified). Let X be a tilt-stable local minimizer of (6.1) under the assumptions of Theorem 7.4.
Then the second-order positive-definiteness condition (6.13) is satisfied.

Proof. If x is a tilt-stable minimizers of (6.1), then by Definition 2.1(i) applied to the function f
from (6.2) there is ¥ > 0 such that ¥ is tilt stable for (6.1) with modulus x as formulated in Defini-
tion 2.1(ii). Thus we get condition (7.4) by Theorem 7.4, which obviously implies (6.13). A

Now we are ready to present complete characterizations of tilt-stable minimizers for (6.1) with
and without prescribed moduli, which are combinations of the results obtained above while definitely
deserve to be formulated as a theorem. Moreover, the following theorem contains the precise point-
based formula for calculating the exact bound of tilt stability.

Theorem 7.6 (second-order characterizations of tilt stability for NLPs under either nondegen-
eracy or 2-regularity). Let X € I" be a feasible solution to (6.1) satisfying MSCQ, BEPP, and the
first-order optimality condition (6.3). Suppose further that for every 0 # v € K(x,—V@(X)) either
assumptions in (a) or in (b) of Theorem 7.4 are also satisfied. Then the following assertions hold:

(i) Given K > 0, the point X is a tilt-stable minimizer of (6.1) with any modulus k' > K if and only
if the second-order condition (6.13) is fulfilled.

(ii) The point X is tilt-stable minimizer of (6.1) with some modulus x > 0 if and only if we have
the positive-definiteness condition over the extreme multipliers formulated in (6.13).

Furthermore, the exact bound of tilt stability of (6.1) at X is finite and calculated by

2
tilt(9.4.7) = sup{ - V{';f‘('x 7] A €Ae (V@) =0 i Eum)},

where we use the convention that 0/0 := 0 as above.
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Proof. It follows from the combination of the results obtained in Theorem 6.1 and Theorem 7.4
for assertion (i) and in Corollary 6.2 and Corollary 7.5 for assertion (ii). A

Note that the second-order necessary conditions for tilt stability obtained above (and hence the
characterizations of Theorem 7.6) involves a certain nondegeneracy in critical directions—either ex-
plicitly assumed in Theorem 7.4(a), or via 2-regularity in Theorem 7.4(b) that reduces to nondegen-
eracy by Lemma 7.2. The next result shows that these nondegeneracy assumptions can be avoided if
our basic qualification conditions MSCQ and BEPP are replaced by the stronger CRCQ at the refer-
ence point. Observe that the pointbased second-order characterizations of tilt stability obtained in the
new setting are somewhat different from those in Theorem 7.4 and are expressed via the set of all the
Lagrange multipliers (3.11), while still being pointbased and constructive. It is also worth mentioning
that, in the absence of LICQ, the assumptions of Theorem 7.4(b) and Theorem 7.7 are strictly com-
plementary to each other. Indeed, the assumptions of Theorem 7.4(b) imply that the gradients of the
active inequality constraints are linearly independent, while CRCQ imposed in Theorem 7.7 requires
its linear dependence around the reference point.

In the new theorem presented below we exclude the case of K(X, —V¢@(x)) = {0}, which has been
already considered in Proposition 6.3.

Theorem 7.7 (second-order characterizations of tilt stability for NLPs under CRCQ). Letx €T
be a feasible solution to (6.1) satisfying CRCQ and the first-order optimality condition (6.3). Assume
further that the gradients of the equality constraints {Vq;(X)| i € E} are linearly independent and that
K(x,—V@(X)) # {0} for the critical cone (4.4). Then the following assertions hold:

(i) Given x > 0, X is a tilt-stable minimizer of (6.1) with any modulus K’ > « if and only if

(7.8) <W,V§$(JZ,A)W> > lKHwH2 forall A € A(x,—Ve(x)), (Vgi(x),w)=0,ic EUI",

where I'" is defined in (5.8) with x = X and x* = —V @(x) while I (A) is taken from (3.12). Moreover,
the latter is equivalent to the condition:

For every w € R" with (Vq;(x),w) =0asi € EUI" there is A € A(X,—V (%)) such that
1

(7.9) (VL@ A)w) > —[|w].

(ii) The point X is a tilt-stable minimizer of (6.1) without modulus specified if and only if
(7.10) <w, Vif(i,l)w> >0 forall A€ A()Z, —V(p(x)), w#0, <Vq,~()?),w> =0,ic EUI,
which is equivalent to positive-definiteness condition: for every 0 # w € R" with (Vg;(X),w) =0
whenever i € EUI™ there is a multiplier A € A(%,—V (%)) such that (w,Vi.ZL (%, 2)w) > 0.

In any of these cases the exact bound of tilt stability of (6.1) at X is finite and calculated by

w 2
tilt( ¢, q,%) = sup{ o V,%J?(ti,k)w) ‘ A EAN(X-V(X)), (Vgi(X),w) =0,i € E u1+}

with the convention that 0/0 := 0 as above.

Proof. First we justify the sufficiency of (7.8) for the tilt stability of x with any modulus K > K.
Pick any A € A(x, — (%)) with I (1) = I by Proposition 4.3(ii) and proceed similarly to the proof
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of Theorem 6.1. Suppose on the contrary that there are sequences x; — X and x; — 0 and pairs
(wes ;) € gph 02 (i, x}) (wy) satisfying

1
(7.11) (Wi, wk) < —||wi||* for some &’ >k andall k € N.
K

Lety;, A, 1, and w be chosen as in the proof of Theorem 6.1. Since I (1) C IT(A¥) C 7 (x;) for all
k sufficiently large and since we have the equality

(7.12) Z (Z-L)qu'(f)‘F Z iiVCIi(f):O

i€EUIt (1) icl\I+(2)

by the definition of /7 (A) in (3.12), it follows from the result of Lu [20, Proposition 1] involving
CRCQ that I C .#(xy), i.e., all the constraints for i € I are active at x;. Hence the critical directions
—wyi € K(x,yy) satisfy the relationships

(Vai(xi),—wi) =0 if i€ EUIT(A¥) and (Vg;(x),—wi) <0 if i € 7 (x) \IT(AF)
for all large k, which readily ensure their limiting counterparts
(Vgi(x),—w)=0 if i€ EUI"(A) and (Vgq;(%),—w) <0 if ie IT\IT().
By scalar multiplication of (7.12) and w with taking into account that )NL,- >0ifielt\I +(7L) we get
(Vgi(%),w) =0 for iel" \7"(2), and so (Vqi(%),w)=0 for ic EUI".

Proceeding then as in the proof of Theorem 6.1 gives us a contradiction with (7.11) and thus verifies
the sufficiency part of this theorem with the lower estimate “>" in the exact bound formula.

To prove next the necessity of (7.8) for tilt stability in (i) and hence the upper estimate of tilt(¢, ¢, %),
suppose on the contrary that ¥ is a tilt-stable local minimizer with modulus x’ for every k' > K, but
there are vectors A € A(X,—V@(x)) and w € R"\ {0} satisfying

1
(7.13) (W, VEL (% A)w) < EHWZH with (Vg;(¥),w) =0 forall i€ EUIT.

We can clearly choose k' > K so close to K that inequality (7.13) holds and can suppose by Proposi-
tion 5.3 that A = A without loss of generality. Proposition 4.3(ii) allows us to select a critical direction
v € K(%, —V(x)) satisfying the conditions

(Vgqi(¥),v) =0 for i€ EUI" and (Vg;(x),v) <0 for i€ #(x)\I".

Following the proof of Proposition 5.3 under CRCQ, we find a C'-smooth mapping X : (—7,7) — R"
with X(0) = %, £X(0) = v, and ¢;(¥(t)) = 0 when i € EUI" and t € (—7,7). This yields £ ¢;(x(0)) =
Vgi(x)v < 0 whenever i € .# (%) \ I, and thus x(r) € T and .# (x(¢)) = I for all small # > 0.

To complete the proof of this part, we proceed similarly to the case of Theorem 7.4 selecting
an arbitrary sequence 7 | 0, setting x; := X(7) and x} := Vg(xx)*A, and denoting by wy the unique
optimal solution to the quadratic optimization program:

minimize |lu—w|* subjectto (Vg;(xi),u) =0 forall i€ J,

where J is a maximal subset of E U™ such that the gradient vectors {Vg;(%)| i € J} is linearly in-
dependent. Then wy — w as in the proof of Theorem 7.4, while the assumed CRCQ tells us that
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(Vgi(xx),wr) =0 for all i € EUIT and k sufficiently large. Following again the arguments of the
latter theorem and taking into account that A(X, —V@(X);v) = A(X, —V¢@(X)) by Proposition 5.3 valid
under CRCQ, we employ the regular normal cone representation (5.4) with A from (5.2) and thus ar-
rive at a contradiction with (7.13), which establishes the “if and if”” statement in (i). The equivalence of
(7.8) for the validity of (7.9) with some A € A(x,—V¢(x)) follows immediately from Proposition 5.3.
Verifying finally assertion (ii), it remains to observe by Proposition 4.3(ii) that the positive-
definiteness condition (7.10) with the selected A € A(X, —V (%)) from that proposition yields

(w,ViZ(x,A)w) > p||w?|| whenever (Vg;(¥),w)=0 as i€ EUI"
for this fixed I, where the number U is positive and is defined by
w = inf{{w, V2L (% 1)w)]| [[wl| = 1, (Vagi(),w) =0, ie EUI'}.

This completes the proof of the theorem by taking into account the discussions above. A

The final result of this section shows that, as far as second-order analysis is concerned, the point-
based sufficient condition (6.13) of Corollary 6.2 is also necessary for tilt stability in the sense of
Definition 2.1 without either nondegeneracy or CRCQ requirements of Theorems 7.4 and 7.7. The
only assumption needed for this statement is the pointbased SOSCMS property (4.1) by the first au-
thor [8] that has already been discussed in Section 4. The exact meaning of the theorem below is
that violating (6.13) at x € I" for the given NLP (6.1) yields the violation of tilt stability in a modified
NLP with the same cost function and the same values of the constraint functions and their first and
second derivatives at X as in (6.1). Thus (6.13) is in fact an unimprovable pointbased characterization
of tilt-stable minimizers for NLPs with C2-smooth data under the mild SOSCMS assumption.

Theorem 7.8 (pointbased second-order characterization of tilt stability under SOSCMS). Let
X € I satisfy the first-order optimality condition (6.3) in NLP (6.1) as well as SOSCMS in the form

(7.14) [A € No(q(%)), Vg(®)*A =0, (u,V*(A,q)(®)u) > 0] => 1 =0.
Suppose further that the negation of (6.13) holds, i.e.,
(w, V%f()?,l)w> <0 forsome A € Ag and w#0 with (Vq;(%),w) =0,i€ EUIT(A).
Then there exist C*-smooth functions q;: R" — Rasi=1,...,1 satisfying
Gi(%) = qi(%), V§i(%) = Vqi(%), and V?qi(%) = V?qi(%) forall i=1,...,1
and such that X is not a tilt-stable local minimizer of the modified nonlinear program
(7.15) minimize @(x) subjectto q;(x) =0 for i€ E and q;(x) <0 for i€l.

Proof. Take a critical direction 0 # v € K(%, —@(x)) for which A € Ag (X, —V@(%);v) and suppose
without loss of generality that ||v|| = 1. Recall by the definition of Ag (X, —V@(%);v) in (6.5) that A

solves the linear program (4.6) with x = ¥ and x* = —V@(x). Consider now the problem
minimize (V9(3).2) subject 0 (Vei(5)2) + (nVg(ep) 4 0 155
<0, ie (%),
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which is dual to (4.6) with x = ¥ and x* = —V¢(x). Since A solves (4.6), classical duality in linear
programming ensures the existence of 7 € R” that solves the dual program and satisfies

=0, ic EUI*(A),

<ti(i),§> + <v,V26]i(x)v> {S 0, ie L(x)\IT(A).

Denoting now z = 7+ av for some a > 0 sufficiently large, we have

=0, i€ EUIT(A),

(2) >0 and (Vi(¥),2) + (1 Vqi(F)v) {S 0, i€ sS®\IMA).

Furthermore, the reader can directly check the following inequalities:

1
142(z,v)(x—%,v) > 1 —2(z,v)|[|x— x| > 0 whenever [|x—|| <2r with r:= m,
7,V

3 1—2<z,v>”x—)?||—|—64<z,v>3r2(\|x—f|]—r)
= 2(z,v)|lx—%|| >0 whenever [x—zx| >2r

1+2(z,v)x—5v) +64(z,)* (e — 7 — )

v

These relationships allow us to define the real-valued function ¥ : R” — R by

(7.16) 00) —1+ \/1 +2(z,v) (x—%,v) +64<z,v>3max{||x—x|| —r,0}3’

(zv)

which is clearly twice continuously differentiable in R" satisfying the condition

) -l \/1 +2t<z,v>+t2<z,v>2
N (z,v)

together with V&3 (%) = v and V29 (&) = (z,v)vw*), where vw(*) indicated the matrix multiplication of
the vector column v € R" by the vector row y(*). Consider next the index set

1:= {ie 7(&v)| (Vai(%),2) + (v, V2qi(®)v) =0} DI*(A)

1 1
19<X+tv+ Etzz =t whenever sz+ EtZZH <r

and by using (7.16) define the new constraint functions as follows

qi(x) — qi (T + B (x)v+ 19 (x)%2) for ie EUIT(A),
G05) = i) — (T4 D@+ 10 ()%) — -t for i€ T\ I*(A),
qi(x) for ie I\T.

This gives us the following relationships with the original constraint functions:
Vgi(x) = Vgi(x)— <Vq,-()?), v>v = Vyg,(%),
VZ@'()Z) = qu,-()?) - (<v, qu,-(i)v> + <Vq,-(f),z> —(z,v) (Vq,-()?),\/})vv(*) = VZqi()Z)
whenever i € E UT. Furthermore, for 0 < ¢ with 0 < ||rv + 11%z|| < ritholds
(- 1,
qi (x +tv+ <tz

2

)_ 0 for ie EUIT(A),
| =lev+r32f <0 for ieT\It(A).
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Since I\ I can be partitioned into the sets I\ .# (), . (%) \ Z (%;v), and . (%;v) \ I with
qi(x) < 0 for I\J("), qi(¥) =0, (Vgi(x),v) <0 for i € 7 (%)\ #(%v), and
qi(¥) =0, (Vgi(x),v) =0, (Vgi(x),2) + (v V?qi(¥)v) <0 for i € .7 (; W\T

and by the validity of the representation

. 1 1 12
qi ()E—l—tV-F Etzb) =q; ()E—l-tv-f— ftzz> = qi(%) +1{Vqi(X),v) + 5 <<Vq,-(i),z>
+(», V2qi(®¥)v) ) +o(t?),
we conclude that g; (X +7v+ %tzz) <Oforalliel \IA and all # > O sufficiently small. It follows from
(7.14) that SOSCMS (4.1) is satisfied for g with E; = I, = @, and so Theorem 4.1 shows that both

MSCQ and BEPP holds at x for the modified constraint system g(x) € ® with ® from (3.2).
To complete the proof, pick an arbitrary sequence #; | 0 as k — oo, denote

1 ~
X = T+ Et,?z and xj := Vq(x)*A,

and then consider the unique solution wy to the quadratic program (7.7) with g replaced by g. Using
the same arguments as in the proof of Theorem 7.4 gives us the convergence wy — w as k — oo and
the following relationships held for all k € N: —wy € K (x¢,x),

nghagf(xk,x/t) :nghg&r(xk,x;) = {(u*,u)‘ u € K(xp,xz), u* € —V2<7L,q>(xk)u—i—K(xk,x,t)*},

SPN=N

and Viﬁxk, L)wi € 9% f(xi, Vo (xi) +x7) (W), where
[i={xeR"|§x) €O}, fi=0+8&, Z(A) =0+ (1,9),

and K denotes the critical cone (4.4) generated by the aforementioned hat-constructions. Since we
obviously have V@ (x) +x; = V,.Z (xx,4) — 0 as k — oo as well as

l}im <wk,V)2€.,2/”\(xk,7L)wk> = <w, Vi.,?(f,l)v@ <0
—So0

it follows from Theorem 2.2 that ¥ is not a tilt-stable minimizer of (7.15), and we are done. A

8 Discussions and Examples

In this section we discuss some remarkable features of the obtained second-order sufficient conditions
and characterizations of tilt-stable minimizers in NLPs as well as the imposed MSCQ and BEPP qual-
ification conditions, which ensure their validity. The presented examples reveal striking differences
between the new results and those known in the literature and also illustrate new phenomena on tilt
stability that have not been observed earlier.

Recall that the first characterization of tilt-stable minimizers in NLPs is obtained in [29, Theo-
rem 5.2] under LICQ in the pointbased form of the classical SSOSC [33]:

(8.1) <w,V§$(£,/l)w> >0 whenever w# 0 with (Vg;(%),w) =0 forall i€ EUIT(A),

where A € R/ is the unique Lagrange multiplier satisfying the KKT system (6.3). It has been well
recognized that the simultaneous fulfillment of LICQ and SSOSC is a characterization of Robinson’s
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strong regularity [33] for the variational inequality associated with KKT (6.3), and thus tilt stability of
the local minimizer X in (6.1) is equivalent to strong regularity of X in (6.3) under the validity of LICQ,
which is a necessary condition for strong regularity; see [29, Corollary 5.3] with the references and
discussions therein. All the examples presented below demonstrate that in the results obtained in this
paper in the absence of LICQ, which is surely not mandatory for tilt-stable minimizers, the property
of tilt stability is far removed from strong regularity while postulating nevertheless a nice behavior of
local minimizers from both qualitative and quantitative/numerical viewpoints.

It is shown in [27, Theorem 3.5] that SSOSC (8.1), assumed to hold for all the Lagrange multipli-
ers in (6.3), is still a sufficient condition for tilt-stable minimizers in NLPs with inequality constraints
when LICQ is relaxed to the simultaneous fulfillment of MFCQ and CRCQ at the reference point.
The subsequent result of [25, Theorem 4.3] provides a characterization of tilt-stable minimizers in the
same setting as in [27] while being expressed via the non-pointbased USOSC discussed above in Sec-
tion 1. Furthermore, [25, Example 4.5] demonstrates that the pointbased SSOSC fails in this setting,
i.e., it cannot recognize a tilt-stable minimizer under MFCQ and CRCQ. It is worth mentioning to this
end that the major difference of SSOSC (8.1) from the similarly looking condition (7.10) is that the
positive-definiteness of the Hessian V2.Z(%,1) in the latter one is required for the larger index set
I from (5.8) independent of A. Thus condition (7.10) is weaker than (8.1) providing a pointbased
characterization of tilt stability under the validity of CRCQ by Theorem 7.7 while SSOSC fails to do
it even under assuming in addition that MFCQ holds at this point.

We now show that the usage of the new sufficient condition (6.13) from Corollary 6.2, which
involves not all the Lagrange multiplies but only the extreme ones in critical directions A € A from
(6.7), allows us to recognize a tilt-stable minimizer that does exist in [25, Example 4.5].

Example 8.1 (pointbased recognizing tilt stability via extreme multipliers in critical directions
under MFCQ and CRCQ). Consider the following nonlinear program in R3:

minimize @ (x) := 7 +x3 —I—x% —x1xp for x = (x1,x2,x3)
subjectto  gi(x) :=x1—x3 <0, ¢2(x):=—x;—x3 <0,
@G3(x):=x—x3 <0, qa(x):=—-x—x3<0.

It is easy to check that MFCQ and CRCQ hold at x = (0,0,0), and thus both MSCQ and BEPP are
satisfied at X by Proposition 3.4(ii). We can directly calculate that

1
A(X,—V(p()?)) = {QL S Ri‘ A=A = 0 Mm=A3, M+A+A3+A = 1},
_ _ 133 35 _ _
£(% Vo) = {(0’1’§’§)’ (g,g,o,o) } and K (%, V(%)) = (0,0,0).
Hence the second-order sufficient condition (6.13) is trivially fulfilled due to As = 0, and thus it

recognizes tilt stability of the local minimizer X in this example.

Remark 8.2 (other consequences of Example 8.1). Besides the main purpose of Example 8.1, it
allows us to illustrate some other remarkable phenomena on tilt stability.

(i) The tilt-stable minimizer X in Example 8.1 cannot be recognized not only by SSOSC (8.1), but
also by its relaxed version involving extreme multipliers:

(w, V22 (x,A)w) >0 whenever A € A(X,—Vo(x))N& (X, —Vo(¥)),

(8.2) 0#weR", and (Vg;(x),w)=0 forall i€ EUIT(A),
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which differs from our new condition (6.13) by omitting the critical directions in the construction of
Ag. Indeed, taking A = (%, 2,0,0) € A(X,—Ve(x)) N & (%, —Ve(x)) and w = (0,1,0) in the setting of
Example 8.1, we arrive at the relationships

(Vgi(%),w) =0 for i € {1,2} =I"(A) while (w,Vi.Z(x,A)w)=0,

which show that the “non-critical” counterpart (8.2) of (6.13) fails at the tilt-stable minimizer X.

(ii) Example 8.1 cannot be directly used to illustrate Theorem 7.7, since the critical cone is trivial
in this example while the opposite is assumed in the theorem. However, increasing the dimension
of the problem by adding the term %xﬁ to the cost function in Example 8.1 gives us an NLP with
K(x,—Ve(x)) = (0,0,0) x R # {0} at the tilt-stable minimizer ¥ = 0 and such that the new condition
(7.10) holds while SSOSC (8.1) fails therein. Indeed, in this case we have It = {1,2,3,4}, and
therefore [(Vg;(%),w) =0 for all i € I'] implies that w = (0,0,0,w4) and (w, V2L (,A)w) = w} for
allA € A(X,—Vo(%)), i.e., condition (7.10) is satisfied. On the other hand, we get /" (3/8,5/8,0,0) =
{1,2}, which shows the violation of (8.1) for w = (0,1,0,0).

The next example reveals the situation when both MFCQ and CRCQ fail at a local minimizer X
while SOSCMS (4.1), and hence MSCQ and BEPP by Theorem 4.1, are satisfied at this point together
with the other assumptions of Theorem 7.6 ensuring therefore that the second-order condition (6.13)
provides a complete pointbased characterization of tilt stability for x.

Example 8.3 (pointbased characterization of tilt stability under 2-regularity but without MFCQ
and CRCQ). Given a parameter pair (a,b) € R?, consider the following NLP in R*:

b
minimize  @(x) 1= —x; + gx% + Ex% for x = (x1,x2,x3)
1 1
(8.3) subjectto g (x) :=x; — Ex% <0, q2(x):=x— Ex% <0,
@3 (x) == —x) — Exz - Ex% <0.

Letting ¥ = (0,0,0), it is easy to observe that both MFCQ and CRCQ are violated at ¥ while SOSCMS
(4.1) holds with E; = I, = 0 therein. To check the latter, pick any vectors 0 # u = (u;,up,u3) and
0 # (A1,42,43) € No(q(X)) satisfying Vg(X)u € Te(g(x)) and (Vg(x),A) = 0 and then get u; = 0,
M+A—2A3=0,4 >0, > 0,43 >0, and so A3 = A; + A, > 0. This gives us

(u, V2 (A,q)(®)u) = — (M +A3)u3 — (A +2A3)u3 < 0

and thus verifies the validity of SOSCMS in this setting.
The corresponding set of multipliers (3.11) and its extreme points are calculated by, respectively,

A®-Ve®) ={AeR| L+ —A=1}, &(F—-Vo()={(1,0,0),(0,1,0)}.

The critical cone amounts to K (%, —V@(x)) = {0} x R xR, and for 0 # v € K(X,—V¢(X)) we have

(1,0,0) if v3 <13,
A(x,=Vo(E):v) = {(A1,4,0) ERY| A1+ A =1} ifv3 =03,
(0,1,0) if v3 > vi.

This tells us that A(X,—V@(%);v) is a singleton when v} # v3, and thus we meet the assumptions
of Theorem 7.4(b) used also in Theorem 7.6 by showing that for every 0 # v € K(x,—V¢(X)) with
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v3 = v} and every A € Ag (%, —Vo(%);v) = {(1,0,0),(0,1,0)} there is a maximal subset % of € (%;v)

such that I (1) C € and (¢ ) —
above that vi = 0 and v% = v3 2 0 in our case and that the set E from (7.3) is

is 2-regular at x in the direction v. To proceed, observe from the

[I]

2 2 2 2
(z1,22,23)| 21 —v3 <0, 71 =3 <0, —z1 —v; —v3 <0},

which gives us %( ) = {0,{3},{1,2}}. Then we have that ¢ = {1,2} is a maximal element of
(1,0,0),(

E(x;v), IT(A) C {(1,0,0),(0,1,0)}, and for every a € R? the system
< > <vV q (% >—M1—V2W2:a]7 <Vq1()f),w>:w1 =0,
<Vq2 (%), > <v V? Q% > =u; —Vviw3 = O, <Vq2()€),w> =w; =0

has a solution (u,w), e.g., u = (a1,0,0) and w = (0,0, (0; — &z)/v3). This verifies the required
2-regularity in Theorem 7.6, and so we can apply the tilt-stability characterizations therein. The
straightforward second-order calculation in the positive-definiteness condition (6.13) shows that x is
a tilt-stable local minimizer in (8.3) if and only if a > 1 and b > 1. Furthermore, we can compute the
exact bound of tilt stability of ¥ in this program by tilt(¢,q,%) = 1/min{a — 1,b— 1}.

Note finally that in this example SSOSC (8.1) failsatxifa=b=2,41 = (0,2,1) € A(X,—Vo(X)),
and w = (0,0, 1). Indeed, we have then (Vg (%), w) = (Vq3(%),w) = 0 while (w, V2.2 (X, 1)w) = —1.

The next example demonstrates that the additional assumptions of Theorem 7.6 (taken from The-
orem 7.4) ensuring the necessity of the second-order sufficient condition (6.13) for tilt-stable mini-
mizers, cannot be dropped even under the validity of MFCQ.

Example 8.4 (nondegeneracy and 2-regularity are essential for pointbased characterizing tilt-stable
minimizers). Consider the the following NLP in R?:

1
minimize  @(x) := —x; + Exg, x = (x1,X2,x3),

(8.4)
subjectto g (x) :=x; —i—x% <0, g2(x) :=x; <0.

We obviously have that MFCQ holds at ¥ = (0,0,0), and hence both MSCQ and BEPP assumed in
Theorem 6.1 are satisfied at this point. Since the second constraint in (8.4) is clearly redundant, we can
consider the equivalent version of this problem without the latter constraint and easily deduce from
Theorem 6.1 that X is a tilt-stable minimizer in it with modulus ¥ = 1. However, applying Theorem 6.1
to the original (“full”) version of (8.4) shows that the second-order sufficient condition (6.13) fails,
and so we cannot make a conclusion about tilt stability of X in (8.4) by using this theorem. Indeed,
taking v=(0,1,0), A = (0,1), and w = (0,0, 1) gives us

vEK()E —V(p(‘)) {veR3| vi =0}, A € Ag (%, —Vo(x);v) = {(1,0),(0,1)},
= {2}, (Vg2(%),w) =0, and (w,VZ.ZL(%,A) > 0

which shows that the sufficient condition (6.13) for tilt stability is not fulfilled at X. The reason
is that the additional assumption of Theorem 7.4 ensuring the necessity of (6.13) for tilt stability
are not satisfied here. To see this, observe that the set of Lagrange multipliers (4.5) in the critical
direction v is not a singleton (i.e., X degenerates in this direction), which violates the assumption in
Theorem 7.4(a). Furthermore, the set of active inequality constraint indexes (7.2) in this direction is
€ (x;v) ={0,{1,2}}, which shows that the 2-regularity assumption of Theorem 7.4(b) is also violated.
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The last example in this section is a modification of Example 8.4 illustrating the phenomenon
on tilt stability revealed in Theorem 7.8, which shows that there are two NLPs with the same cost
function and the same values of the constraints functions and their derivatives up to the second order
at the reference point such that this point satisfies SOSCMS and gives a tilt-stable local minimum
for one program but not for the other one. The example presented below illustrates this phenomenon
under MFCQ (which is stronger than SOSCMS) in the case where the constraint functions and their
derivatives up the third order are the same in at the point in question. Actually this example can be
further modified to exhibit the aforementioned phenomenon under the validity of MFCQ in the case
where the constraint functions and their derivative of any order are the same at the reference point.

Example 8.5 (pointbased characterizations of tilt stability are not possible under MFCQ alone).
Consider the following NLP in R, which differs from (8.4) by the term —xj in the function g (x):

1
minimize  Q(x) := —x; + ~x3, x= (x1,%2,%3),

é

8.5

(®) subject to g (x) :=x1 —x5+x3 <0, g2(x) :=x; <O0.

We obviously have that MFCQ holds at ¥ = (0,0,0) in (8.5) and the values of the constraint functions

and their derivatives up to the third order at X are same in (8.4) and (8.5). As shown in Example 8.4, x

is a tilt stable minimizer of (8.4) while the second-order sufficient condition (6.13) fails for ¥ in (8.4).
To verify that ¥ is nor a tilt-stable minimizer for NLP in (8.5), pick the same elements v = (0, 1,0),

A =(0,1), and w = (0,0,1) as in Example 8.4 and then, according to Definition 2.1 of tilt stability

and its adjustment for NLPs in Section 6, consider the problem

. 1 .
minimize —xj+ Ex% — uxy subjectto xj —xé +x§ <0, x <0

with only one tilt parameter u € R in this case. For each u ## 0 the latter parametric optimization
problem has two distinct solutions (0, «, +u?), which excludes the validity of tilt stability of £ in (8.5).

Note that we can also construct an NLP equivalent (in the second-order) to (8.4) but without tilt
stability at X by using the proof of Theorem 7.8. Indeed, let z=v = (0, 1,0) and thus get the functions

q1(x) =x; —I—x% — (x% +x% —l—x%)z and g»(x) =x;
in the proof therein, where g is surely more complicated in comparison with (8.5).

Remark 8.6 (tilt stability and critical multipliers). Finally in this section, we discuss some nu-
merical consequences of the obtained results on tilt stability. This concerns relationships between tilt
stability of local minimizers in NLPs and the so-called critical minimizers that have been recently
discovered and then strongly investigated in the excellent book by Izmailov and Solodov [14]. It is
shown in [14] that critical multipliers, which may appear even in the case of unique multipliers under
LICQ, are largely responsible for slow convergence of major primal-dual numerical algorithms includ-
ing Newton and Newton-type methods, the augmented Lagrangian method, the sequential quadratic
programming method, etc. Therefore it is highly desired from the numerical viewpoint to rule out the
existence of critical multipliers and so to be able making such a conclusion based on the initial data
of the NLP in question. These and related issues have been discussed in the recent comments of the
second author [23] on the survey by Izmailov and Solodov devoted to critical multipliers, which is
based on their book [14]. It is conjectured in [23] that under appropriate qualification conditions tilt
stability excludes the existence of critical multipliers.
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The results obtained in this paper shed light on this conjecture and its consequences for primal-
dual algorithms of numerical optimization. Indeed, it can be derived from [25, Theorem 4.3] that
the simultaneous validity of MFCQ and CRCQ (and surely in the case of LICQ) at the given tilt
minimizer ¥ ensures that critical multipliers do not appear at X, i.e., the above conjecture is valid
in this setting. Thus the pointbased necessary conditions for (as well as the characterizations of)
tilt-stable minimizers established in Section 7 allow us to exclude, under the validity of MFCQ and
CRCQ at &, undesired behavior of the aforementioned numerical algorithms. Observe, in particular,
that our major pointbased second-order condition (6.13), which characterizes the tilt stability of x by
Theorem 7.6(ii) via the positive-definiteness of the Hessian of the Lagrange function only for extreme
multipliers in critical directions (6.7), tells us now that all the Lagrange multipliers are noncritical at
X in the sense of [14] in this rather general setting.

On the other hand, MFCQ alone does not allow us to exclude the existence of critical multipliers
at tilt stable minimizers. It happens, in particular, in the setting of Example 8.4 under MFCQ and also
in Example 8.3 under the weaker SOSCMS. Alexey Izmailov (private communication) informed us
about a two-dimensional example admitting the unique critical Lagrange multiplier under the validity
of MFCQ (but not LICQ) at a tilt-stable minimizer. Thus the question remains on what (weaker than
CRCQ) should be added to MFCQ, or even what can replace MFCQ and CRCQ together, to ensure
that tilt stability excludes critical multipliers at the reference local minimizer.

9 Open Questions and Further Research

It seems to us that this paper basically clarifies the situation with second-order necessary and sufficient
conditions for tilt-stable local minimizers in finite-dimensional NLPs, and not much is expected to be
added to this theory. However, principal questions remain about using the obtained results and the very
notion of tilt stability in numerical optimization including, in particular, more work on relationships
between tilt stability and critical multipliers discussed at the end of Section 8. Challenging issues
arise on infinite-dimensional (mainly Hilbert space) extensions of the obtained pointbased characteri-
zations and also on establishing appropriate counterparts of the NLP tilt stability theory above in other
remarkable classes of constrained optimization, particularly for problems of conic programming.

Among the most natural topics of the future research we mention developing a comprehensive
theory of full stability for local minimizers in NLPs as well as in other classes of constrained opti-
mization and variational problems. The notion of full stability was introduced by Levy, Poliquin and
Rockafellar [17] in the extended-real-valued framework of unconstrained optimization as a far-going
generalization of tilt stability. Recently it has been largely extended to various classes of constrained
optimization problems in [24, 26, 28, 30, 31]. However, most of the results obtained in these papers
impose nondegeneracy assumptions (analogs of LICQ) on the corresponding constraints. The only
exception is [24], where neighborhood characterizations of full stability in NLPs are obtained under
the simultaneous validity of partial versions of MFCQ and CRCQ. A major goal of the future research
is to extend the theory of tilt stability developed in this paper to the case of fully stable local min-
imizers in NLPs. Note that full stable minimizers seem to be more appropriate to rule out critical
multipliers according to the second conjecture in [23].
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