
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Efficient Solution Strategies
in Isogeometric Analysis

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Dipl.-Ing. Stefan K. Kleiss Bakk. techn.

Angefertigt am:

Johann Radon Institute for Computational and Applied Mathematics

Beurteilung:

Dr. Satyendra Tomar (Betreuung)
Univ.-Prof. Dr. Bert Jüttler

Linz, Dezember, 2013

Abstract

Numerical computation of solutions for partial differential equations plays an
important role in modern product development and engineering. Also, the use
of computer aided design (CAD) software in the design process has become a
widespread standard. These two fields are closely connected in the practical
development process, but the corresponding techniques have been developed in-
dependently over the last decades, and a gap has opened between them. Trans-
ferring information between these two fields and processing transferred data
to fit the respective requirements can be a very costly procedure in practical
applications.

Isogeometric analysis (IGA) aims at closing this gap. By directly using the
geometry representation from CAD, the need of transforming geometry data
is eliminated. By using underlying non-uniform rational B-splines (NURBS)
as ansatz functions for numerical solutions, an initial mesh is obtained auto-
matically, thereby eliminating the need of creating a new mesh of the imported
object. Furthermore, one can profit from certain properties of NURBS func-
tions, such as high regularity and NURBS-specific refinement options. In this
thesis, two particular aspects, which arise in the course of numerical computa-
tions, are addressed in the context of IGA.

In the first part, we consider the situation where a complicated object cannot
be represented by a single NURBS geometry mapping, and is thus composed
of several subdomains. By applying techniques from finite element tearing and
interconnecting methods in isogeometric analysis, we introduce the isogeomet-
ric tearing and interconnecting (IETI) method. We discuss requirements for
and the realization of C0-coupling at subdomain interfaces, as well as suitable
preconditioners, both for fully-matching settings and for situations with so-
called “hanging knots”. The latter appear in local refinement methods which
are introduced by the IETI method, and which are also discussed in this thesis.

In the second part, we address the issue of quantitative a posteriori error
estimation. The presently used error estimation techniques are adapted from
classical finite element methods and do not take advantage of IGA-specific prop-
erties. Furthermore, these estimators do not provide sharp quantitative error
bounds. By applying functional-type a posteriori error estimators in IGA, we

i

study the realization of error estimators which are fully computable and provide
quantitatively sharp error bounds, both from above and below. Furthermore,
these estimators also indicate the error distrubution, which can be used for
adaptive refinement. In this thesis, we focus upper bounds for the error. We
exploit NURBS-specific properties in order to define a time-efficient set-up of
the underlying problem, and derive a criterion which indicates the sharpness of
the computed bound and the quality of the indicated error distribution.

ii

Kurzfassung

Das numerische Lösen partieller Differentialgleichungen nimmt eine bedeutende
Rolle im modernen Produktentwicklungsprozessen ein, wie auch die Verwen-
dung computergestützter Konstruktionsverfahren (computer-aided design, CAD).
Während diese beiden Bereiche in der Praxis eng verflochten sind, wurden die
ihnen zu Grunde liegenden Methoden im Lauf der vergangenen Jahrzehnte un-
abhängig voneinander entwickelt. Der Transfer von Daten zwischen den jew-
eiligen Programmen sowie deren Aufbereitung entsprechend den jeweiligen An-
forderungen kann in der Praxis sehr zeitaufwändig sein.

Isogeometric Analysis (IGA) zielt auf einen Brückenschlag zwischen diesen
Bereichen ab. Durch die direkte Verwendung der Geometriedarstellung aus
CAD-Programmen wird eine Transformation der Geometrie-Daten unnotwend-
ig. Indem Non-Uniform Rational B-Splines (NURBS), die CAD-Darstellungen
oft zu Grunde liegen, auch als Ansatzfunktionen für die numerische Lösung ver-
wendet werden, wird automatisch ein erstes, grobes Netz mitgeliefert. Dadurch
ist auch der Prozess des Vernetzen der Geometrie nicht mehr notwendig. Weit-
ers ist es möglich, bei numerischen Berechnungen von positiven Eigenschaften
von NURBS zu profitieren, zum Beispiel von deren Glattheitseigenschaften oder
von NURBS-spezifischen Verfeinerungsmethoden. In dieser Dissertation werden
zwei konkrete Themen behandelt, die im Rahmen numerischer Berechnungen
auftreten und die hier im Kontext von IGA untersucht werden.

Im ersten Teil der Arbeit widmen wir uns Objekten, die auf Grund ihrer Ge-
ometrie nicht mit einer einzigen NURBS-Abbildung dargestellt werden können,
sondern über eine Vereinigung von mehreren Teilgebieten definiert sind. Wir
wenden die Techniken von FETI-Methoden (Finite Element Tearing and In-
terconnecting) in IGA an und definieren die Isogeometric Tearing and Inter-
connecting (IETI) Methode. Wir untersuchen die Voraussetzungen und die
Umsetzung einer C0-stetigen Kopplung an den Übergängen zwischen Teilgebi-
eten, sowie entsprechende Präkonditionierer. Dabei werden auch sogenannte
“hängende Knoten” behandelt, die im Rahmen von neuen, durch die IETI
Methode ermöglichten lokalen Verfeinerungsmethoden auftreten.

Im zweiten Teil der Arbeit untersuchen wir quantitative a posteriori Fehler-
schätzer. Die derzeit in IGA verwendeten a posteriori Fehlerschätzer wurden

iii

von klassichen Finite Elemente Methoden übernommen und nutzen keine der
speziellen Eigenschaften von NURBS aus. Weiters liefern diese Fehlerschätzer
keinen verlässlichen quantitativen Aussagen. Wir integrieren “Functional-Type”
a posteriori Fehlerschätzer in IGA und untersuchen die Umsetzung von Fehler-
schätzern, die in dem Sinne berechenbar sind, dass sie keine unbestimmten
Konstanten beinhalten, und die quantitativ scharfe obere und untere Fehler-
schranken liefern. Weiters zeigen sie die Verteilung des Fehlers an, was für
adaptive Netzverfeinerung verwendet werden kann. Wir konzentrieren uns im
Rahmen dieser Arbeit auf die Untersuchung oberer Fehlerschranken. Durch
die Ausnützung NURBS-spezifischer Eigenschaften erreichen wir, dass das zu
Grunde liegende Problem zeiteffizient aufgestellt werden kann. Weiters definieren
wir ein Kriterium, das anzeigt, ob die berechnete Fehlerschranke scharf und ob
die ermittelte Fehlerverteilung verlässlich ist.

iv

Acknowledgements

First of all, my deep gratitude goes to Dr. Satyendra Tomar for his supervision and
guidance during my Ph.D. studies. His scientific advice, his explanations, his patient
understanding, and his careful review of reports, papers, and this thesis are highly
appreciated. Furthermore, I am thankful for the support and the opportunity to visit
so many conferences and workshops. His unconditional loyalty to his Ph.D. students
and his way of putting his students’ interest above everything else were never taken
for granted and still are not taken for granted.

I am thankful to Prof. Dr. Bert Jüttler and Dr. Clemens Pechstein for the countless
discussions and their advice, for the knowledge they shared with me, and the time
and effort they spent so that I could understand this shared knowledge. I also want
to express my gratitude to Prof. Dr. Sergey I. Repin for his helpful discussions and
suggestions.

I gratefully acknowledge the nice working atmosphere at the campus of the Jo-
hannes Kepler University Linz. I am thankful to my colleagues at the Radon Institute
for Computational and Applied Mathematics (RICAM), in particular all current and
former members of our group “Computational Methods for Direct Field Problems”,
and our group leader Prof. Dr. Ulrich Langer. I very much enjoyed the many math-
ematical and non-mathematical discussions at conferences and at the mensa. Also, I
am thankful to all the current and former members of the Institute of Applied Ge-
ometry for the friendly and open environment (and the countless coffees and cakes).
In particular, I want to thank Monika Bayer for taking care of the hearty atmo-
sphere and for being the anchor that keeps the institute and its quickly changing
staff together.

The support from the Austrian Science Fund (FWF) through the project P21516-
N18, the European Union through the 7th Framework Programme, project 218536
“EXCITING”, and the Austrian Academy of Sciences (ÖAW) are gratefully acknowl-
edged.

Special thanks go to my whole family, for helping me getting where I am today.
To my wife Marion I am more thankful than I can possibly put down in words, for
giving me energy when mine is running low, for having an open ear for my worries
and my successes, for your faith in me, and above all, for your closeness and your
love.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 5

2 Preliminaries 7
2.1 Basic notation, function spaces, and norms 7

2.1.1 Computational domain . 7
2.1.2 Function spaces and norms . 7

2.2 Numerical analysis . 9
2.2.1 Model problems . 9
2.2.2 Variational formulation . 10
2.2.3 Existence and uniqueness . 11
2.2.4 Galerkin’s method . 12
2.2.5 A posteriori error estimation and adaptive refinement 13

3 Isogeometric analysis 15
3.1 B-spline basis functions . 15

3.1.1 Univariate B-spline basis functions 15
3.1.2 Bivariate B-spline basis functions 21

3.2 Isogeometric single-patch discretizations 22
3.2.1 B-spline geometry mappings . 22
3.2.2 Refinement of the geometry mapping 25
3.2.3 Non-uniform rational B-splines (NURBS) 26
3.2.4 Isogeometric discretization . 27

3.3 Further remarks regarding IGA . 27
3.3.1 Approximation properties . 28
3.3.2 Singular and distorted geometry mappings 28
3.3.3 A posteriori error estimation 29
3.3.4 Local refinement . 29

4 IETI - IsogEometric Tearing and Interconnecting 31
4.1 Multi-patch NURBS discretization . 31
4.2 Solver design . 35

vi

Contents

4.2.1 Continuity constraints . 35
4.2.2 Saddle point formulation . 37
4.2.3 Dual-primal formulation . 38
4.2.4 Preconditioner . 43
4.2.5 Isogeometric tearing and interconnecting algorithm 44

4.3 Refinement options . 44
4.3.1 h-refinement on one subdomain 44
4.3.2 Local refinement by substructuring 47
4.3.3 Preconditioning in the presence of hanging knots 50

4.4 Numerical examples . 51

5 Functional-type a posteriori error estimates 59
5.1 Guaranteed upper bound of the error 59

5.1.1 Post-processing of uh . 60
5.1.2 Cell-wise interpolation . 61
5.1.3 Global minimization . 63

5.2 Steps involved in minimizing the majorant 64
5.3 Quality indicator and local error indicator 66
5.4 Efficient computation/implementation 68

5.4.1 Straightforward procedure . 69
5.4.2 Alternative cost-efficient procedure 70

5.5 Numerical examples for the upper bound 76
5.6 Guaranteed lower bound of the error 88

5.6.1 Definition and computation . 88
5.6.2 Numerical examples for the lower bound 90

6 Summary and discussion 93
6.1 Isogeometric tearing and interconnecting method 93
6.2 Functional-type a posteriori error estimators in IGA 94
6.3 Subjects for further studies . 95

vii

Chapter 1

Introduction

The work presented in this thesis was funded and supported by the Austrian Science
Fund (FWF) through the project P21516-N18, the European Union through the 7th
Framework Programme, project 218536 “EXCITING”, and the Austrian Academy
of Sciences (ÖAW).

The main results of this thesis, which are presented in Chapters 4 and 5, have
been published or are currently under review. The studies of the isogeometric tearing
and interconnecting (IETI) method presented in Chapter 4 have been published in
[57]. The results for guaranteed and sharp a posteriori error estimates in isogeometric
analysis, which are presented in Chapter 5, can be found in the technical report [58].

1.1 Motivation

Numerical computation of solutions for partial differential equations (PDEs) plays
an important role in the design process in modern engineering. A large variety of
physical processes, for example, heat transfer, structural mechanics, fluid dynamics,
or electromagnetics, can be modelled by PDEs. However, in general, it is not possible
to find analytic, i.e., exact solutions for practical problems. Instead, approximate
solutions are obtained by conducting numerical simulations on computers. These
numerical computations are of large importance, in particular if real-life tests are
costly in terms of time, effort, or money. Over the past decades many different
techniques have been developed, such as, for example, the finite difference method
(FDM), the finite element method (FEM), the finite volume method (FVM), and
the boundary element method (BEM). The geometry representations used in these
methods can differ, since they have been developed to fit the specific needs of the
respective method. In this thesis, we will follow the FEM approach.

At the same time, it has become standard to use computer aided design (CAD)
software in the design process. CAD provides high functionality and flexibility for the
designer, but the geometry representation used in CAD differs greatly from geometry
descriptions used in numerical computations. This means that numerical methods
cannot directly use geometry data exported from CAD software. Thus, the full

1

1.1. Motivation

process of numerical computation and quality assurance involves three major tasks.

1. Transformation of the geometry representation from CAD description to a
FEM-suitable representation.

2. Computation of a numerical solution for the problem of interest.

3. Evaluation of the quality of the numerical solution.

We will now discuss these three tasks individually in more detail (the following dis-
cussion can also be found in similar versions in [57, 58]).

Task 1: Geometry data transformation

The transformation of CAD geometry description to typical FEM geometry repre-
sentation, i.e., meshing the computational domain, does not only necessitate suitable
software, but often also requires manual input. While both FEM and CAD have been
under constant development individually, bridging these two fields has become a bot-
tleneck. When complicated objects from practical problems have to be meshed, this
manual work can amount in many man-hours and thus also comes at large financial
cost.

The concept of isogeometric analysis (IGA), introduced by Hughes et al. in 2005
[45], see also [27], is a concept that establishes a close link between the technologies
of CAD and FEM. It takes advantage of the facts that, firstly, it is a common stan-
dard in CAD to use spline representations based on non-uniform rational B-splines
(NURBS), and that, secondly, these NURBS basis functions have properties which
make them suitable as FEM ansatz functions. By directly using the geometry pro-
vided from CAD, the need for data transformation is eliminated, and computations
can be conducted on the original, unchanged domain. This exact geometry repre-
sentation can also be preserved throughout refinement. Chapter 3 of this thesis is
dedicated to a discussion of the fundamentals of IGA as far as they are relevant for
this thesis.

Numerous studies show that IGA can be successfully applied to various problems,
such as, e.g., structural mechanics and elasticity [3, 4, 5, 17, 28, 29, 36, 46], electro-
magnetics [23, 24], fluid dynamics [10, 71], and fluid-structure-interaction [11, 12].
Theoretical issues such as error estimates and convergence rates [8, 14], stability is-
sues [77, 91, 92, 93], and numerical quadrature rules [6, 47] have also been studied
thoroughly.

Task 2: Efficient computation of the numerical solution

Efficient implementation of isogeometric methods on single-patch domains has been
thoroughly studied in many publications (see the references listed above). Solvers and
preconditioners for single-patch IGA have also been studied in [15, 16, 22, 42, 43].

In practical applications, however, situations where it is not possible to repre-
sent complicated objects by only one NURBS mapping occur frequently. In such

2

1.1. Motivation

situations, the computational domain may be composed of several NURBS patches,
and even though the overall geometry may be complicated, the structure within one
subdomain remains highly regular.

In [13], it was discussed how to merge two-patch geometries with T-splines such
that one global domain is obtained. In contrast to this approach, the isogeometric
tearing and interconnecting (IETI) method (to be pronounced ["jEtI], like Yeti) is
proposed in Chapter 4 (see [57]). The multi-patch structure is preserved and the
technology from finite element tearing and interconnecting (FETI) methods is applied
within the isogeometric framework.

FETI methods are powerful solvers for large-scale finite element systems. They
were introduced by Farhat and Roux [41] and belong to the class of iterative sub-
structuring methods (also called non-overlapping domain decomposition methods),
see, e.g., [95]. In the FETI-approach, the computational domain is given as one global
geometry, which is then subdivided into non-overlapping subdomains. In contrast to
this, we assume for the IETI method that the computational domain is already given
as a composition of non-overlapping subdomains. In both cases, each subdomain gets
its own set of equations derived from the global equation. To ensure the equivalence
to the global equation, continuity conditions are introduced at the interfaces between
subdomains using Lagrange multipliers.

This tearing and interconnecting method, however, is not only a coupling method
but provides a powerful solver design. By (carefully) eliminating the original vari-
ables from the resulting saddle point problem, one obtains a system in the Lagrange
multipliers (i.e., only on the interface). The solution of the original problem can be
easily computed from the solution of this interface problem. For generalizations to
boundary element discretizations see, e.g., [60, 61, 73]. For generalizations to spec-
tral element discretizations see, e.g., [51]. For a thorough study of FETI and BETI
methods for multiscale problems, see [75] and the monograph [74].

Since the number of Lagrange multipliers is typically large, the interface problem
is usually solved iteratively by FETI preconditioned conjugate gradients [86]. Suitable
preconditioners have been proposed in [41, 52, 53]. The analyses in [53, 66] show
that under suitable conditions the condition number of the preconditioned system is
bounded by C(1+log(H/h)γ), γ ≤ 3, whereH is the subdomain diameter and h is the
mesh size. This results in quasi-optimal complexity of the overall method. Recently,
it has been shown in [15] that this bound also holds true for BDDC preconditioners
in IGA.

We mention that the classical FETI method is formulated as a two-grid method,
and thus involves the solution of a coarse system. An efficient alternative is the
dual-primal FETI (FETI-DP) method, see [39, 54, 55, 67], which is followed in this
thesis. Since FETI-DP methods and BDDC methods have the same essential spec-
trum (except for zeros and ones), it is expected that the above mentioned bound
for the condition number of the preconditioned system also holds for the IETI-DP
method.

3

1.1. Motivation

Task 3: Sharp estimation of the unknown error

Once a numerical solution has been computed, it is important to assure the quality
of this solution. Since, typically, the exact solution is not known, it is not possible
to compute the exact error. Hence, it is necessary to find computable bounds for the
unknown error in order to quantify the accuracy of the numerical solution. Despite
the importance of this issue, a posteriori error estimation in isogeometric analysis is
still in an infancy stage. To the best of the author’s knowledge, the only published
results are [33, 49, 97, 98, 99]. In [33, 97], the authors used the a posteriori error
estimates based on hierarchical bases [7]. Its reliability and efficiency is subjected to
the saturation assumption on the (enlarged) underlying space and the constants in
the strengthened Cauchy inequality. As the authors remarked, the first assumption
is critical and its validity depends on the considered example. Moreover, an accurate
estimation of constants in the strengthened Cauchy inequality requires the solution
of generalized minimum eigenvalue problem. As noted in [49], this approach delivers
less than satisfactory results. In [49, 98, 99], the authors used the residual-based a
posteriori error estimates, which require the computation of constants in Clement-
type interpolation operators. Such constants are mesh (element) dependent, often
generic/unknown or incomputable for general element shape; and the global constant
often over-estimates the local constants, and thus the exact error. This fact has been
explicitly stated by the authors in [49] and in [98]. Furthermore, Zienkiewicz-Zhu type
a posteriori error estimates are based on post-processing of approximate solutions,
and depend on the superconvergence properties of the underlying basis. To the best
of our knowledge, superconvergence properties for B-splines (NURBS) functions are
not yet known. Summarily, in general situations, the reliability and efficiency of these
methods often depend on undetermined constants, which is not suitable for quality
assurance purposes.

In Chapter 5 of this thesis, a functional-type a posteriori error estimator for
isogeometric discretizations is presented (see [58]). These error estimates, which
were introduced in [79, 80, 82] and have been studied for various fields (see the
monograph [84] and the references therein), provide guaranteed, sharp, and fully
computable bounds (without any generic undetermined constants). These estimates
are derived on purely functional grounds (based on integral identities or functional
analysis) and are thus applicable to any conforming approximation in the respective
space. Functional-type a posteriori error estimates provide two-sided bounds of the
unknown error, and thus provide a guaranteed interval containing the true error. In
this thesis, we mention lower bounds only briefly and focus on the efficient realization
of upper bounds of the error in IGA.

For elliptic problems with the weak solution u ∈ H1
0 (Ω), these upper bounds

involve computing a free function y ∈ H(Ω,div). In order to get a sharp estimate,
this function y is computed by solving a global problem. This could be perceived
as a drawback when compared to error estimation techniques which rely on local
computations and are thus apparently cheaper. However, we stress that functional-
type error estimates do not only provide an error indicator which can be used for

4

1.2. Outline

cell marking in the course of adaptive refinement, but also quantify the error in
the computed solution (and thus guarantee the quality of the computed solution).
Therefore, the associated cost should be weighed against the importance of these
two aspects. To the best of our knowledge, there is no other, particularly cheaper,
method available which can fulfill these objectives in general situations.

In Chapter 5, we will elaborate on how such an upper bound of the error can be
computed efficiently by a proper set-up of the global problem. Two aspects motivate
the application of functional-type error estimates in IGA: Firstly, unlike the stan-
dard Lagrange basis functions, NURBS basis functions of degree p are, in general,
globally Cp−1-continuous. Hence, NURBS basis functions of degree p ≥ 2 are, in
general, at least C1-continuous, and therefore, their gradients are automatically in
H(Ω,div). Thereby, we avoid constructing complicated functions in H(Ω,div), in
particular for higher degrees (see, e.g., [21, 23, 24, 38]). Secondly, since the con-
sidered problem is solved in an isogeometric setting, an efficient implementation of
NURBS basis functions is readily available, which can be used to construct the above
mentioned function y. Hence, applying the technique of functional-type a posteriori
error estimation in a setting that relies only on the use of already available NURBS
basis functions is greatly appealing.

1.2 Outline

The remainder of this thesis is organized as follows.

• In Chapter 2, some basic, but important definitions and concepts are recalled,
and we specify the considered model problems. This is done for the sake of
completeness and in order to fix the used notations.

• In Chapter 3, the main aspects of IGA are recalled, in particular those relevant
for the scope of this thesis.

• In Chapter 4, which is based on [57], the isogeometric tearing and interconnect-
ing (IETI) method (see discussion of Task 2 above) is introduced. The coupling
at subdomain interfaces and requirements on the discretization are discussed,
as well as a suitable preconditioner for the interface problem. New options for
local refinement, which are introduced by the IETI method and which rely only
on tensor product basis functions, are also elaborated.

• In Chapter 5, which is based on [58], functional-type a posteriori error estima-
tors for IGA are presented (see discussion of Task 3 above). The focus is set on
estimating the error from above, which is discussed in the light of isogeometric
discretizations. Special NURBS properties are exploited in order to obtain an
efficient set-up. The accuracy of the computed bounds and the effort for ob-
taining these bounds are investigated. Furthermore, a criterion for the quality
of the error bound, both with respect to the magnitude and the distribution of

5

1.2. Outline

the error, is presented. Functional-type lower error bounds are briefly addressed
and a proof-of-concept is presented in a basic, straightforward set-up.

• In Chapter 6, the presented results are summarized and discussed, including
the recommendation for further studies.

Numerical examples illustrating the potential of the methods introduced in Chap-
ters 4 and 5 are presented within the respective chapters.

6

Chapter 2

Preliminaries

In this chapter, some well-known definitions and results are recalled in order to fix
the notations used in this thesis, and for later reference. These results and definition
can be found in many standard references, such as, for example, the monographs
[18, 19, 26, 74, 84, 95].

2.1 Basic notation, function spaces, and norms

2.1.1 Computational domain

Throughout this thesis, let Ω ⊂ R2 be a non-empty, open, bounded and connected
Lipschitz domain with boundary Γ = ∂Ω. Let Γ be composed of two disjoint sets,
namely Γ0 and Γ1, i.e.,

Γ = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅.

On Γ0, essential (Dirichlet or displacement) boundary conditions are prescribed. On
Γ1, natural (Neumann or traction) boundary conditions are prescribed.

When a domain Ω is composed of N disjoint subdomains, we denote these sub-
domains by the superscript index in parenthesis, i.e.,

Ω =

N⋃

k=1

Ω(k), where Ω(k) ∩ Ω(ℓ) = ∅, for k 6= ℓ, (2.1)

and where Ω denotes the closure of Ω. This will be used in particular in Chapter 4.

2.1.2 Function spaces and norms

Let Ω ⊂ R2 be as described above. We denote the space of functions which are
continuous over Ω by C(Ω), and the space of functions which have k continuous
derivatives by Ck(Ω). The L2-norm of a function v over Ω is defined by

‖v‖20 =

∫

Ω
|v(x)|2 dx.

7

2.1. Basic notation, function spaces, and norms

The space of square-integrable functions over Ω is denoted by

L2(Ω) =
{
v : Ω → R

∣∣∣ ‖v‖0 <∞
}
.

The L∞-norm of a function v over Ω is defined by

‖v‖2∞ = ess supx∈Ω |v(x)|,

and the space of Lebesgue-measurable functions with bounded essential supremum
is denoted by

L∞(Ω) =
{
v : Ω → R

∣∣∣ v is Lebesgue-measurable, ‖v‖∞ <∞
}
.

Let α = (α1, . . . , αd) be a multi-index of dimension d with non-negative integer entries
αi, with |α| =∑d

i=1 αi. We define

∇α =

(
∂α1

∂xα1
1

, . . . ,
∂αd

∂xαd
d

)
.

The Sobolev space Hk(Ω) is defined by

Hk(Ω) =
{
v ∈ L2(Ω)

∣∣∣ ∇αv ∈ L2(Ω), ∀ multi-indices α, |α| ≤ k
}
.

For k = 1, the H1-seminorm is defined by

|v|21 = ‖∇v‖20,

and the full H1-norm is defined by

‖v‖21 = ‖v‖20 + ‖∇v‖20 = ‖v‖20 + |v|21.

The space

H1(Ω) =
{
v ∈ L2(Ω)

∣∣∣ ∇v ∈ (L2(Ω))d
}
,

thus denotes the space of L2(Ω)-functions with square integrable first derivatives.
The Laplace operator ∆, acting on a scalar function v : Rd → R, is defined by

∆v =
d∑

i=1

∂2v

∂x2i
,

the divergence of a vector-valued function w : Rd → Rd is defined by

divw =
d∑

i=1

∂wi

∂xi
.

8

2.2. Numerical analysis

The space of functions in (L2(Ω))d with square integrable divergence is denoted by

H(Ω,div) =
{
w ∈ (L2(Ω))d

∣∣∣ divw ∈ L2(Ω)
}
.

and endowed with the norm

‖w‖2div = ‖w‖20 + ‖divw‖20.

Note that, in general, we do not use a special notation (such as, e.g., the symbol ~·)
for distinguishing between vectors and scalars. The context will sufficiently clarify
whether a variable is scalar, a vector, or a matrix.

Two norms ‖ · ‖a and ‖ · ‖b on a space V are equivalent, if there exist constants µ
and µ, such that

µ‖v‖a ≤ ‖v‖b ≤ µ‖v‖a, ∀v ∈ V.

When a norm ‖ · ‖∗ is taken over a subset Q ⊂ Ω, we indicate this by writing
‖ · ‖∗,Q. For example,

‖v‖20,Q =

∫

Q
|v(x)|2 dx.

When boundary values of L2-functions are discussed, they are to be understood as
traces of these functions. We omit a discussion of the standard trace operator and
refer the reader to the references listed at the beginning of this chapter.

The dual of a Banach space V is denoted by V ∗, and the duality product on
V ∗ × V by 〈·, ·〉. The dual norm is given by

‖f‖V ∗ = sup
v∈V, v 6=0

|〈f, v〉|
‖v‖V

.

2.2 Numerical analysis

In this section, we define the model problems which will be considered in this thesis,
and we recall the general steps needed for obtaining a numerical solution for these
problems.

2.2.1 Model problems

In the scope of this thesis, we will consider three model problems which are described
by the partial differential equations (PDEs) presented below. By ~n, we denote the
outer unit normal vector to Ω (as mentioned above, we will, in general, omit the
symbol ~·). Let VC = C2(Ω) ∩ C1(Ω ∪ Γ1) ∩ C(Ω ∪ Γ0). Functions u which solve the
following PDEs in a strong sense are called classical solutions or strong solutions.

9

2.2. Numerical analysis

(I) Scalar diffusion

Find a function u ∈ VC , u : Ω → R, such that

− div(A∇u) = f in Ω,
u = g0 on Γ0,

A∂u
∂~n = g1 on Γ1,

 (2.2)

where A denotes the diffusion coefficient, and f denotes the source term. The func-
tions g0 and g1 are given Dirichlet and Neumann boundary conditions, respectively.

(II) Linear elasticity

Find the vector-valued displacement field u ∈ (VC)
2, u : Ω → R2, such that

− div(σ(u)) = f in Ω,
u = g0 on Γ0,

σ(u)~n = tN on Γ1,

 (2.3)

where σ(u) = Cε(u), C is the fourth-order stiffness tensor, and ε(u) = 1
2(∇u+∇uT)

is the linearized strain tensor. The function f denotes body forces, g0 given boundary
displacements, and tN the surface traction forces.

We will consider only isotropic materials. In this case, we have

σ(u) = λ tr(ε(u))I + 2µ ε(u),

where λ and µ are Lamé’s parameters. These parameters can be represented by the
Young’s modulus E and Poisson’s ratio ν as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

2.2.2 Variational formulation

From the PDEs presented in Section 2.2.1, one can derive the variational form or
weak form in the standard way. Choose a proper function space V and a set of test
functions V0 ⊂ V which vanish on Γ0. Let Vg be the set of functions in V which fulfill
the essential boundary conditions on Γ0 (note that, if only homogeneous essential
boundary conditions are considered, we have V0 = Vg). Multiply the first equation
in (2.2) or (2.3), respectively, with a test function v ∈ V0. Then, integrating over the
computational domain, applying partial integration and using boundary conditions,
we obtain the following general variational formulation or weak formulation.

Find u ∈ Vg, such that

a(u, v) = 〈f, v〉 ∀v ∈ V0. (2.4)

The bilinear forms a(·, ·) and the functionals 〈f, ·〉 are given as follows.

10

2.2. Numerical analysis

(I) Scalar diffusion:

a(u, v) =

∫

Ω
A∇u · ∇v dx,

〈f, v〉 =

∫

Ω
f v dx+

∫

Γ1

g1 v ds.

(II) Linear elasticity:

a(u, v) =

∫

Ω
σ(u) : ε(v) dx,

〈f, v〉 =

∫

Ω
f · v dx+

∫

Γ1

tN · v ds,

where the product of matrices of size d× d is defined by σ : ε =
∑d

i,j=1 σijεij .

2.2.3 Existence and uniqueness

We recall some fundamental results regarding the existence and uniqueness of a so-
lution to the problems presented above.

Definition 2.1. Let V be a normed linear space. A bilinear form a(·, ·) : V ×V → R
is called coercive on V , if there exist a constant µ1 > 0, such that

µ1‖v‖2 ≤ |a(v, v)|, ∀v ∈ V.

It is called bounded, if there exists a constant µ2 <∞, such that

|a(v,w)| ≤ µ2‖v‖V ‖w‖V , ∀v,w ∈ V.

In all model problems, we assume that the given data is such that 〈f, ·〉 is a
bounded linear functional and that the bilinear form a(·, ·) is bounded and coercive.
In this case, the energy norm is defined by

‖v‖E =
√
a(v, v). (2.5)

The existence and uniqueness of a solution for problem (2.4) is guaranteed by the
following theorem.

Theorem 2.2. (Lax-Milgram) Let V be a Hilbert space, the bilinear form a(·, ·) :
V × V → R be bounded and coercive, and f : V → R be a bounded linear form, i.e.,
f ∈ V ∗. Then, the variational problem (2.4) has a unique solution u ∈ V and

1
µ2
‖f‖V ∗ ≤ ‖u‖V ≤ 1

µ1
‖f‖V ∗ , (2.6)

where µ1 and µ2 are as in Definition 2.1.

When the bilinear form is symmetric, bounded, and coercive, we can reformulate
problem (2.4) as the following minimization problem.

Find u such that

u = argmin
v∈Vg

J(v), where J(v) = 1
2a(v, v) − 〈f, v〉. (2.7)

The functional J(v) is called Ritz energy functional.

11

2.2. Numerical analysis

2.2.4 Galerkin’s method

Usually, the infinite-dimensional problem (2.4) cannot be solved analytically. To
reduce it to a finite-dimensional problem, we apply Galerkin’s method as follows.
Choose a finite-dimensional subspace Vh ⊂ V and replace the infinite-dimensional
spaces V , V0, and Vg in (2.4) by finite-dimensional subspaces Vh, V0h, Vgh ⊂ V , such
that V0h ⊂ V0, and Vgh ⊂ Vg. We assume that the prescribed essential boundary
conditions are such that there exists a function ǧ ∈ Vh : g0 = ǧ|Γ0 (otherwise, we
project the data g0 to Vh). We define

V0h = {v ∈ Vh : v|Γ0 = 0},
Vgh = ǧ + V0h = {v ∈ Vh : v|Γ0 = ǧ}.

Note that, when homogeneous essential boundary conditions are prescribed, we have
Vgh = V0h. The problem is thus reformulated as follows.

Find uh ∈ Vgh, such that

a(uh, vh) = 〈f, vh〉 ∀vh ∈ V0h. (2.8)

Let Φ = {ϕ1, . . . , ϕn} be a basis of Vh (i.e., Vh is n-dimensional), then any function
uh ∈ Vh can be represented in the form

uh(x) =

n∑

i=1

uiϕi(x) (2.9)

with real-valued coefficients ui. These coefficients are referred to as degrees of freedom
(DOF). The vector u = (ui, . . . , un)

T is called the coefficient vector. It uniquely
determines the corresponding discrete function, and thus, we identify uh and u with
each other. We insert the representation (2.9) in (2.8) and use each basis function
ϕj ∈ V0h, j = 1, . . . , n as a test function. This results in a total of n conditions which
can be written as the linear system of equations

Ku = f , (2.10)

where the stiffness matrix K is given by

(K)ji = a(ϕi, ϕj), i, j = 1, . . . , n,

and the load vector f by

(f)j = 〈f, ϕj〉, j = 1, . . . , n.

The statement of Theorem 2.2 also holds true for the discretized problem (2.8),
since the conditions are fulfilled on the full function space V , and thus also on the
subspace Vh ⊂ V .

The entries of the stiffness matrix and the load vector are usually assembled
from local contributions, i.e., for each element of the mesh, the underlying integral

12

2.2. Numerical analysis

is computed locally and the result is added to the corresponding entry in the matrix
or vector, respectively.

Note that, in numerical implementations, a(·, ·) and 〈f, ·〉 in (2.8) usually cannot
be realized exactly, e.g., due to inexact integral computation using quadrature rules,
or due to the approximation of boundary conditions. While this could be indicated,
e.g., by writing ah(·, ·) and fh(·), we omit this for the sake of readability.

2.2.5 A posteriori error estimation and adaptive refinement

Since the size of the problem (2.10) depends on the size of the chosen basis Φ, it is
desirable to achieve a certain accuracy with as few basis functions as possible. By
applying a posteriori error estimation techniques and estimating the distrubution of
the (unknown) true error, it is possible to identify areas with high contributions to
the global error and apply local refinement only there. For surveys of a posteriori
error estimation techniques, see, e.g., [1, 2, 25, 37] and the references therein, as well
as the references given at the beginning of this chapter.

Let η denote an estimate of the true error in some norm ‖ · ‖∗, i.e.,
η ≈ ‖u− uh‖∗.

Let Qh denote a mesh of the computational domain. Assume that we can write η as
a sum of local, element-wise contributions, e.g.,

η =
∑

Q∈Qh

ηQ or η2 =
∑

Q∈Qh

η2Q,

and assume that the distribution of the local contributions ηQ estimates the distri-
bution of the true error. Once we have computed local estimates ηQ for each element
Q of the mesh, we can compare them and choose a criterion for selecting elements
which will be marked for further refinement. Typically, one chooses a threshold Θ
and marks all cells Q for refinement, where the local error is above this threshold,
i.e., where

ηQ > Θ. (2.11)

There are several possibilities for determining Θ, some of which we briefly present
here. The parameter ψ ∈ [0, 1] which appears in the criteria below determines how
many elements will be marked for refinement. Choosing ψ = 0 results in global
refinement, setting ψ = 1 results in no refinement.

2.2.5.1 Fixed percentile of elements

In every step, a fixed percentile of all elements is marked for refinement, i.e., Θ is
chosen such that

Θ = (100 · ψ)-percentile of {ηQ}Q. (2.12)

The α-percentile of a set A = {a1, . . . , aν} denotes the value ā below which α percent
of all values ai fall. For example, if we choose ψ = 0.8 in (2.12), then Θ is chosen
such that nQ > Θ holds for 20% of the elements of the mesh.

13

2.2. Numerical analysis

When this criterion is used, the DOF increase by a fixed ratio in every step,
but if ψ is chosen too large, it might result in the refinement of more elements than
necessary.

2.2.5.2 Fixed ratio of the largest local error

This is a very simple to implement criterion where a cell is marked for refinement, if
it exceeds a certain fraction of the largest local error, i.e., Θ is chosen as

Θ = ψ max
Q

{ηQ}. (2.13)

Here, the number of marked elements can vary. If the error distribution has a very
large peak in a small area, and if the parameter ψ is chosen too large, the following
situation may arise. If some (possibly large) areas have local errors which are large
enough to contribute significantly to the total error, but still small enough to fall
below the threshold Θ (which can be high due to the peak in the error distribution),
then these areas may remain unmarked, thus slowing down the convergence.

2.2.5.3 Bulk-criterion

As a third criterion we mention the method described in [34]. The marked elements
are chosen such that their contributions to the global estimate sum up to a certain
fraction of the global estimate, i.e., a set of elements T ⊂ Qh is marked, such that

∑

Q∈T
ηQ ≥ (1− ψ) η. (2.14)

The convergence of an adaptive scheme based on this marking criterion (and certain
conditions) was shown in [34].

14

Chapter 3

Isogeometric analysis

The motivation for IGA has been discussed in the introduction in Section 1.1, Task 1.
With this in mind, the mathematical principle is easily summarized. In IGA, the
isoparametric principle is applied by expressing both the geometry and the discrete
solution in terms of the same basis functions. In contrast to isoparametric methods
of classical FEM, however, we assume that the geometry description is given as an
input from CAD, which also already determines the initial, coarsest discretization of
the domain.

In this chapter, we recall the definitions and methods of IGA relevant for the
scope of this thesis and fix the used notations. The results presented in this chapter
can be found, for example, in [28, 45] and the monograph [27]. For details on splines,
see [76]. Note that these references will, in general, not be cited explicitly within this
chapter, since they provide the basis for most of the statements in this chapter.

3.1 B-spline basis functions

We first define univariate B-spline basis functions and, for simplicity, discuss some
important properties and refinement methods for univariate basis functions. The
results extend straightforwardly to bivariate tensor product basis functions. Note
that this is not a complete discussion of splines (for a complete discussion, the reader
is referred to [76]).

3.1.1 Univariate B-spline basis functions

3.1.1.1 Recursive definition

Definition 3.1. A knot vector s is defined as a finite, real-valued, monotonically
increasing sequence of real numbers, i.e.,

s = (s1, . . . , sm), si ≤ si+1, ∀i ∈ {1, . . . ,m− 1}.

An entry si, i ∈ {1, . . . ,m}, of the knot vector is referred to as knot. A knot si is
called interior knot, if (s1 < si) ∧ (si < sm). We say that the multiplicity of a knot

15

3.1. B-spline basis functions

si is r, if r = #{j ∈ {1, . . . ,m} : sj = si} (where # denotes the cardinality), i.e., if
a total of r knots have the same value as si. For any i ∈ {1, . . . ,m− 1}, the interval
between two consecutive knots (si, si+1) is called knot span. It is called empty knot
span, if si = si+1. It is called an interior knot span, if both conditions s1 < si+1 and
si < sm hold true.

Definition 3.2. Let p be a non-negative degree and let s = (s1, . . . , sm) be a knot
vector where the multiplicity of any interior knot is at most p. The n = m − p − 1
univariate B-spline basis functions Bs

i,p : [s1, sm] → R, i = 1, . . . , n, are defined by
the Cox-de Boor recursion formula as follows.

Bs
i,0(ξ) =

{
1 for si ≤ ξ < si+1,
0 else.

(3.1)

Bs
i,p(ξ) =

ξ − si
si+p − si

Bs
i,p−1(ξ) +

si+p+1 − ξ

si+p+1 − si+1
Bs

i+1,p−1(ξ). (3.2)

At the endpoint sm, the function values are defined by

Bs
i,p(sm) = lim

ξ→sm
Bs

i,p(ξ) =

{
1, if k = n,

0, else.
(3.3)

Whenever a zero denominator appears in (3.2), the corresponding term is considered
to be zero.

The derivatives of B-spline basis functions are given by the following formula.

∂Bs
i,p

∂ξ
(ξ) =

p

si+p − si
Bs

i,p−1(ξ)−
p

si+p+1 − si+1
Bs

i+1,p−1(ξ). (3.4)

It easily follows from (3.4) and (3.3) that first derivatives at sm are given by

∂Bs
i,p

∂ξ
(sm) =

p

sm−1 − sm−p−1
, if k = n,

−p
sm−1 − sm−p−1

, if k = n− 1,

0, else.

Definition 3.3. A knot vector s is called open knot vector, if the multiplicity of a
knot is at most p, except for the first and last knot which have multiplicity p+ 1.

In Figure 3.1, B-spline basis functions of degree p = 1 to p = 5 defined on the
knot vectors

s = (0, . . . , 0︸ ︷︷ ︸
p+1-times

, 1
10 ,

2
10 ,

3
10 ,

4
10 ,

5
10 ,

6
10 ,

7
10 ,

8
10 ,

9
10 , 1, . . . , 1︸ ︷︷ ︸

p+1-times

) (3.5)

are presented.

16

3.1. B-spline basis functions

Figure 3.1: B-spline basis functions of degrees p = 1 (top) to p = 5 (bottom) defined on open
knot vectors with uniform spacing of the interior knots as in (3.5).

We explicitly mention two properties of B-spline basis functions defined on open
knot vectors. Firstly, the first and the last basis function are interpolatory at the
beginning and the end of the parameter interval, respectively, while all other basis
functions are zero there (as illustrated in Figure 3.1). This property will be relevant
in Section 4.2.3. Secondly, since the number of interior knot spans ν is given by

ν = m− 1− 2p,

the number of basis functions n = m − p − 1 can be expressed in terms of interior
knot spans by

n = ν + p. (3.6)

Assumption 3.4. Hereinafter, all used knot vectors will be open knot vectors.

Remark 3.5. Note that, under the premise of considering only open knot vectors,
the knot vector s also uniquely defines p and thus the basis.

3.1.1.2 Properties of basis functions

We list some properties of univariate B-spline basis functions

17

3.1. B-spline basis functions

1. The support of the basis function Bs
i,p is local and is contained in p + 1 knot

spans, namely

suppBs
i,p ⊆ (si, si+p+1), ∀i ∈ {1, . . . , n}.

2. On the knot span (si, si+1), only the p+1 basis functions with indices i−p, . . . , i
are nonzero.

Bs
k,p|(si,si+1) 6= 0 ⇔ k ∈ {i− p, . . . , i}.

3. The basis functions are non-negative,

Bs
i,p(ξ) ≥ 0, ∀i ∈ {1, . . . , n}, ∀ξ ∈ [s1, sm].

4. The basis functions form a partition of unity,

n∑

i=1

Bs
i,p(ξ) = 1, ∀ξ ∈ [s1, sm].

5. Basis functions are piecewise polynomials of degree p and, in general, globally
Cp−1 continuous. In the presence of multiple knots, the continuity reduces
according to the multiplicity, i.e., if a knot appears r times, the continuity of a
B-splines basis function at that knot is Cp−r.

These properties are also illustrated in Figures 3.1 and 3.2, where the B-spline basis
functions of degree p = 3 with the knot vector

s = (0, 0, 0, 0, 1
10 ,

2
10 ,

3
10 ,

4
10 ,

5
10 ,

6
10 ,

7
10 ,

7
10 ,

8
10 ,

8
10 ,

8
10 ,

9
10 , 1, 1, 1, 1)

are plotted. The knots at ξ = 7
10 and ξ = 8

10 are repeated. The functions are, in
general, C2-continuous, but the regularity is reduced at the repeated knots (C1 at
ξ = 7

10 and C0 at ξ = 8
10). Also, the support of the basis functions in the vicinity of

these repeated knots is smaller.

Figure 3.2: B-spline basis functions of degree p = 3 defined on the open knot vector s =
(0, 0, 0, 0, 1

10 ,
2
10 ,

3
10 ,

4
10 ,

5
10 ,

6
10 ,

7
10 ,

7
10 ,

8
10 ,

8
10 ,

8
10 ,

9
10 , 1, 1, 1, 1).

Properties 1 and 2 motivate the use of B-spline basis functions as ansatz functions
for the discrete solution. The high smoothness described in Property 5 is a special

18

3.1. B-spline basis functions

feature of B-spline basis functions and distinguishes these functions from the standard
C0-continuous FEM basis functions. Properties 3 and 4 are of particular importance
in the design process.

As we see from this list of properties, the knot vector plays an important role. It
not only defines a subdivision of the interval [s1, sm], but also the shape of the basis
functions as well as their smoothness.

Assumption 3.6. For simplicity, we assume for the remainder of this thesis that
s1 = 0 and sm = 1, which can be easily achieved by a suitable scaling.

3.1.1.3 Function evaluation via the inverted triangular scheme

As briefly mentioned in Section 2.2.4, stiffness matrix and load vector are assembled
element-wise. In the one-dimensional setting, the knots provide a decomposition of
the interval [s1, sm] into “elements”, namely the knot spans. As mentioned in Sec-
tion 3.1.1.2, the basis functions whose support intersect the knot span (si, si+1) are
given by the index set {i− p, . . . , i}. Obviously, a straightforward implementation of
the recursive formula (3.2) would be very inefficient. There are efficient alternative
procedures for the evaluation of B-spline functions and curves described in [76]. A
summary and comparison of various techniques can be found in [48]. For the numer-
ical tests presented in this thesis, the inverted triangular scheme was implemented,
which is described in Algorithm 3.1. Note that, in the presented algorithm, the in-
dices of the basis functions range from 1 to p + 1, i.e., their local indices are used.
The corresponding global indices are stored in the vector IB.

Algorithm 3.1 Inverted triangular scheme

Input: Knot vector s, degree p, knot span index i, evaluation points ξ.
Output: Values of local basis functions {Bs

i,p}p+1
i=1 ,

Vector of global indices of local basis functions IB.

Bs
1,0 = 1

for q = 1 to p do
αL = (ξ − si)/(si+q − si)
αR = (si+q+1 − ξ)/(si+q+1 − si+1)
Bs

1,q = αRB
s
1,q−1

for j = 2 to q do
Bs

j,q = αLB
s
j−1,q−1 + αRB

s
j,q−1

end for
Bs

q+1,q = αLB
s
q,q−1

end for
IB = (i− p, . . . , i)T

return IB, {Bs
i,p}p+1

i=1 .

From the definition (3.2) and from the presented Algorithm 3.1, it is obvious that
the computational cost for function evaluation increases with the degree p. This is

19

3.1. B-spline basis functions

not only due to the increased number of basis functions which have support on a
given knot span, but also due to the additional recursion levels or loops that need to
be computed.

3.1.1.4 Refinement

There are various options for refining a knot vector, and thereby, also the function
space spanned by the corresponding B-spline basis functions. Discussions can also
be found in [27, 45, 76], a paper with special focus and an extensive discussion on
refinement methods in IGA is [28].

We will now denote the original knot span by s0 and the knot vector after re-
finement by s1. Accordingly, the corresponding numbers of basis functions and knot
spans will be denoted by the respective upper indices 0 and 1. The number of non-
empty interior knot spans will be denoted by ν.

Knot insertion (h-refinement)

Knot insertion is the analogue of h-refinement in classical FEM analysis. Given the
knot vector s0, the refined knot vector s1 is obtained by copying s0 and inserting a
new knot in a non-empty knot span (s0i , s

0
i+1) of the original knot vector. This can

be done at the midpoint, but not necessarily. In the case of uniform h-refinement,
the number of new basis functions n1 depends on the number of non-empty interior
knot spans ν0 in s0,

n1 = n0 + ν0.

Example (uniform knot insertion):
s0 = (0, 0, 0, 1/4, 1/2, 1/2, 3/4, 1, 1, 1)
s1 = (0, 0, 0, 1/8, 1/4, 3/8, 1/2, 1/2, 5/8, 3/4, 7/8, 1, 1, 1)
ν0 = 5, ν0 = 4, p0 = 2, n0 = 7; ν1 = 9, ν1 = 8, p1 = 2, n1 = 11.

Degree elevation (p-refinement)

By degree elevation, we refer to an increase in the polynomial degree of the basis
functions while keeping the continuity at the knots (as in p-refinement known from
classical FEM). The multiplicity of each knot is increased by one (including the knots
at the beginning and the end of the interval). The number of new basis functions n1

depends on the number of non-empty interior knot spans ν0 in s0,

n1 = n0 + ν0.

Example:
s0 = (0, 0, 0, 1/4, 1/2, 1/2, 3/4, 1, 1, 1)
s1 = (0, 0, 0, 0, 1/4, 1/4, 1/2, 1/2, 1/2, 3/4, 3/4, 1, 1, 1, 1)
ν0 = 5, ν0 = 4, p0 = 2, n0 = 7; ν1 = 8, ν1 = 4, p1 = 3, n1 = 11.

Note that this method is also referred to as order elevation in the literature.

20

3.1. B-spline basis functions

k-refinement

By k-refinement, we refer to increasing both the polynomial degree and the smooth-
ness. This is very easily realized by increasing the multiplicity of the first and the
last knot by one. With this refinement method, the number of basis functions is only
increased by 1, i.e.,

n1 = n0 + 1. (3.7)

Example:
s0 = (0, 0, 0, 1/4, 1/2, 1/2, 3/4, 1, 1, 1)
s1 = (0, 0, 0, 0, 1/4, 1/2, 1/2, 3/4, 1, 1, 1, 1)
ν0 = 5, p0 = 2, n0 = 7; ν1 = 5, p1 = 3, n1 = 8.

Note that, when applying k-refinement, the “coarse” functions (defined via s0) are
not contained in the span of the “refined” functions (defined via s1). Also note
that k-refinement has no analogue in FEM and is a special property of B-spline
basis functions. We will exploit (3.7) in Chapter 5 for an efficient computation of
a functional-type a posteriori error estimator. For a detailed study of k-refinement,
see [28].

3.1.2 Bivariate B-spline basis functions

Bivariate B-spline basis functions are defined via the tensor product of univariate
B-spline basis functions.

Definition 3.7. Let {Bs
i,p}n1

i=1 and {Bt
j,q}n2

j=1 be two families of B-spline basis func-
tions defined by the degrees p and q, and the open knot vectors

s = (s1, . . . , sm1), t = (t1, . . . , tm2),

respectively, where m1 = n1 + p + 1 and m2 = n2 + q + 1. We denote the set of all
double-indices (i, j) by

I = {(i, j) : i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}}.

The bivariate B-spline basis functions B
(s,t)
(i,j),(p,q) : [s1, sm1] × [t1, tm2] → R, (i, j) ∈ I

are defined by

B
(s,t)
(i,j),(p,q)(ξ1, ξ2) = Bs

i,p(ξ1)B
t
j,q(ξ2). (3.8)

For better readability, we will use the shorter notation

B
(s,t)
(i,j),(p,q) = B(i,j)

when the context sufficiently clarifies the knot vectors and degrees. In some places, in
particular in Chapter 4, we will collapse the double index (i, j) into one multi-index
i for better readability. For example, a family of bivariate B-spline basis functions
can be described as {

B(i,j)

}
(i,j)∈I = {Bi}i∈I . (3.9)

21

3.2. Isogeometric single-patch discretizations

The knot vectors s and t define a tensor product mesh which divides the domain,

Ω̂ = (s1, sm1)× (t1, tm2),

into rectangular elements

Q̂(i,j) = (si, si+1)× (tj , tj+1), (3.10)

which we refer to as cells (cf. Remark 3.12 below). We denote this mesh of Ω̂ by

Q̂h =
{
(si, si+1)× (tj, tj+1)

∣∣∣ i ∈ {1, . . . ,m1 − 1}, j ∈ {1, . . . ,m2 − 1}
}
, (3.11)

where the parameter h indicates the typical cell-size of the particular mesh (see
Figure 3.4 for an illustration).

3.2 Isogeometric single-patch discretizations

3.2.1 B-spline geometry mappings

The B-spline basis functions discussed above are used to define the following geometry
mappings.

Definition 3.8. Let {Bs
i,p}ni=1 be a family of univariate B-spline basis functions.

Given a control polygon of control points Pi ∈ R2, i ∈ {1, . . . , n}, the B-spline curve
C : (s1, sm) → R2 is defined by

C(ξ) =
n∑

i=1

Bs
i,p(ξ)Pi. (3.12)

Definition 3.9. Let {B(s,t)
(i,j),(p,q)}(i,j)∈I be a family of bivariate B-spline basis func-

tions and let
Ω̂ = (s1, sm1)× (t1, tm2).

Given a control net of control points P(i,j) ∈ R2, (i, j) ∈ I, the two-dimensional

B-spline surface G : Ω̂ → R2 is defined by

G(ξ1, ξ2) =
∑

(i,j)∈I
B

(s,t)
(i,j),(p,q)(ξ1, ξ2)P(i,j). (3.13)

The domain of the mapping G, defined by Ω̂, is called the parameter domain, and
its image, defined by Ω = G(Ω̂) ⊂ R2, is called the physical domain. The Jacobian
of the geometry mapping is denoted by

∇G = ∇ξG =

(
∂G1
∂ξ1

∂G1
∂ξ2

∂G2
∂ξ1

∂G2
∂ξ2

)
,

22

3.2. Isogeometric single-patch discretizations

where Gk denotes the k-th component of G. The geometry mapping is called regular,
if det∇G > 0 on Ω̂.

Note that, as a consequence of Assumption 3.6, we have

Ω̂ = (0, 1)2.

The use of open knot vectors (see Assumption 3.4) ensures that a B-spline curve is
interpolatory at the first and last control point. In case of a B-spline surface, the
corners of the parameter domain are mapped to the coordinates of the control points
at the corners of the control net. We refer to the image of a corner of the parameter
domain as domain vertex (or vertex for brevity). For later reference, we formulate
the following observation as a remark.

Remark 3.10. At a given domain vertex of a B-spline surface, there is only one
basis function which has value 1 at this vertex, while all other basis functions are
zero there.

The geometry mapping (3.13) can be interpreted as a linear combination of control
points, weighted by the values of the respective B-spline basis functions at a given
point of the parameter domain. Due to the local support of the basis functions,
the position of any control point only has local influence on the geometry, which
allows easy local editing of the physical domain. In Figure 3.3, this is illustrated on
a B-spline curve.

Figure 3.3: Influence of position of control point P4 on the shape of the plotted B-spline
curve with knot vector s = (0, 0, 0, 15 ,

2
5 ,

3
5 ,

3
5 ,

4
5 , 1, 1, 1).

Assumption 3.11. A key assumption in IGA is that the geometry representation is
determined by some preceding design process, i.e., the geometry mapping is already
provided as an input to the numerical computation. Furthermore, we assume that
geometry mapping is continuous, regular, and bijective (i.e., not self-penetrating),
which are natural assumptions for CAD-applications.

The cells Q̂ of the mesh Q̂h of the parameter domain (see (3.10) and (3.11)) are
mapped to Ω by the geometry mapping G, thus defining cells and a mesh on the

23

3.2. Isogeometric single-patch discretizations

physical domain. We denote the cells in the physical domain by

Q(i,j) = G(Q̂(i,j)), Q̂(i,j) ∈ Q̂h, (3.14)

and the mesh by

Qh =
{
Q = G(Q̂)

∣∣∣ Q̂ ∈ Q̂h

}
.

See Figure 3.4 for an illustration.

Ω̂, mesh Q̂h

Q̂

V̂h = span{R(i,j)}

Ω, mesh Qh

Q

Vh = span{Ř(i,j)}

G

Figure 3.4: Illustration of the used notation.

Remark 3.12. Note that we use the term cell for the rectangular elements of the
parameter domain (see (3.10)), as well as for their images in the physical domain
(see (3.14)). We use the term knot span only in reference to the knot spans of a
(one-dimensional) knot vector (see Definition 3.1).

In Section 1.1, we have used the term “element” for easier understanding, since
this term is well known from classical FEM. Our use of the term “cell” of a mesh (and
“knot span” in a one-dimensional setting) is analogous to the “element” in classical
FEM. Due to the different nature and construction of the cells in IGA, however, we
will use the term “cell” in the remainder of this thesis.

Definition 3.13. A family of meshes {Qh}h is called shape-regular, if there exists a
constant Cr > 0, such that

max
Q∈Q

diam(Q)

|Q| < Cr, ∀Q ∈ {Qh}h,

where |Q| denotes the area of Q. It is called quasi-uniform, if the ratio of the sizes of
two neighbouring elements is uniformly bounded (note that shape-regularity follows
from quasi-uniformity).

Assumption 3.14. In addition to Assumption 3.11, we assume that the considered
meshes are quasi-uniform (and thus shape-regular).

References for discussion of geometry mappings which might not satisfy Assump-
tion 3.14 are mentioned in Section 3.3.2.

24

3.2. Isogeometric single-patch discretizations

3.2.2 Refinement of the geometry mapping

When knot vectors are refined as described in Section 3.1.1.4, the number of basis
functions is changed. Since the control points are closely linked to the basis functions,
the set of control points has to be adapted properly. Depending on the specific
refinement, the coordinates of some control points have to be re-computed in order
to ensure that the image of the geometry mapping, i.e., the phyiscal domain, remains
unchanged, and that the parameterization is preserved as well.

For simplicity, the descriptions below are given for (univariate) B-spline curves,
but the methods straightforwardly extend to the tensor product settings, and thus
to B-spline surfaces.

Knot insertion

Let a B-spline curve be defined by the family of B-spline basis functions {Bs
i,p}ni=1

and the corresponding set of control points {Pi}ni=1, where

s0 = (s1, . . . , sj , sj+1, . . . , sm).

By inserting the knot s̄ in the knot span (sj, sj+1), we obtain the refined knot vector

s1 = (s1, . . . , sj, s̄, sj+1, . . . , sm).

The n+1 new control points P̄i, i = 1, . . . , n+1, are formed from the original control
points as follows:

P̄i = αiPi + (1− αi)Pi−1,

where

αk =

1, 1 ≤ k ≤ j − p,
s̄−si

si+p−si
, j − p < k ≤ j,

0, j < k ≤ n+ p+ 2 = m+ 1.

Degree elevation

It is also possible to apply degree elevation while keeping the curve as well as its
parameterization intact. As described in [45], this involves subdividing the curve
into several Bézier curves, degree elevation of these segments, and re-combining the
segments to one B-spline curve. For details, see [27, 76].

k-refinement

We are not aware of a method that preserves the geometry and the parametrization
when k-refinement is performed. When k-refinement is applied in the numerical
examples presented herein, the geometry mapping and its Jacobian are computed
from the original geometry mapping. Since the original geometry mesh is typically
coarse compared to the meshes (on which numerical solutions are computed), this
requires only very little additional data to be stored.

25

3.2. Isogeometric single-patch discretizations

3.2.3 Non-uniform rational B-splines (NURBS)

With B-spline geometry mappings, a great variety of shapes can be represented very
accurately. However, the exact representation of conic sections, such as circles and
ellipses, is not possible using only B-splines. For this, we introduce non-uniform
rational B-spline (NURBS) basis functions.

Definition 3.15. Let {Bs
i,p}ni=1 be a family of B-spline basis functions, and let

{wi}ni=1 be positive weights. The univariate NURBS basis functions are defined by

Rs
i,p(ξ) =

wiB
s
i,p(ξ)∑n

j=1wjBs
j,p(ξ)

. (3.15)

Let {Bs
i,p}n1

i=1 and {Bt
j,q}n2

j=1 be two families of B-spline basis functions, and let
{w(i,j)}(i,j)∈I be positive weights. The bivariate NURBS basis functions are defined
by

R(i,j)(ξ1, ξ2) =
w(i,j)B(i,j)(ξ1, ξ2)∑

(k,ℓ)∈I w(k,ℓ)B(k.ℓ)(ξ1, ξ2)
. (3.16)

Definition 3.16. The NURBS curve and NURBS surface are defined analogously to
Definitions 3.8 and 3.9, where the B-spline basis functions Bs

i,p and B(i,j) are replaced
by the rational basis functions Rs

i,p and R(i,j), respectively.

Remark 3.17. The properties of B-spline basis functions listed in Section 3.1.1.2 are
inherited by their rational counterparts, i.e., the properties are also valid for rational
basis functions. Furthermore, B-splines can be seen as a special case of NURBS where
all weights are equal. Thus, hereinafter, we will only use the term NURBS to refer
to B-spline as well as NURBS functions, unless stated otherwise.

Note that one can write (3.16) in the form

R(i,j)(ξ1, ξ2) =
w(i,j)B(i,j)(ξ1, ξ2)

RD(ξ1, ξ2)
(3.17)

where the denominator is represented by one global function

RD(ξ1, ξ2) =
∑

(k,ℓ)∈I
w(k,ℓ)B(k.ℓ)(ξ1, ξ2).

In the literature, this function is also referred to as the weighting function.
If a refinement of the basis functions is carried out in such a way that the geometry

mapping is not changed (see Section 3.2.2), the denominator RD also remains un-
changed. Hence, it is possible to compute the denominator from the original, coarse
discretization, which can be advantageous in the implementation.

26

3.3. Further remarks regarding IGA

3.2.4 Isogeometric discretization

The isoparametric principle is applied by representing the discrete solution uh in
terms of the NURBS basis functions, which, in turn, are determined by the given
geometry mapping. These basis functions, which are defined on the parameter domain
Ω̂, are pushed-forward to the physical domain Ω by G, i.e., we define

Ř(i,j) = R(i,j) ◦G−1. (3.18)

In the scalar valued problem (I), the discrete solution uh is thus represented in the
form (2.9) as

uh(x) =
∑

(i,j)∈I
u(i,j)Ř(i,j)(x), (3.19)

and the discrete function space Vh is given by

Vh = span
{
Ř(i,j)

}
(i,j)∈I ⊂ H1(Ω). (3.20)

In some places, we will also refer to the span of the basis functions on the parameter
domain, which we denote by

V̂h = span
{
R(i,j)

}
(i,j)∈I ⊂ H1(Ω̂). (3.21)

In problem (II), where uh is vector-valued, we take the corresponding vector-
valued basis functions from (H1(Ω̂))2 and (H1(Ω))2, respectively. Hereinafter, how-
ever, we will not distinguish between these cases (unless explicitly stated) assuming
that the context sufficiently clarifies whether the considered basis functions are scalar
or vector valued.

Note that the NURBS basis is not a nodal basis. In IGA, the function value at
a given point of the domain is, in general, not determined by only one coefficient,
but is the sum of several coefficients u(i,j) multiplied with the values of the respective
basis functions at this point.

V0h and Vgh are subsets of Vh. Homogeneous essential boundary conditions can be
incorporated exactly by setting all DOF to zero, which are associated with basis func-
tions at the boundary. In the case of inhomogeneous essential boundary conditions,
we assume that they can be represented by NURBS basis functions (see discussion
in Section 2.2.4).

3.3 Further remarks regarding IGA

We briefly mention some further aspects of IGA, which are not discussed in this
thesis, but for which some references shall be provided for the sake of completeness.

27

3.3. Further remarks regarding IGA

3.3.1 Approximation properties

The following a priori error estimate was shown in [8]. We will not discuss any
technical details, but only mention one of the main results. For details, the reader is
referred to [8].

We define the bent Sobolev space of order k ∈ N as follows.

Hk(Ω) =
{
v ∈ L2(Ω)

∣∣∣ v|Q ∈ Hk(Q), ∀Q ∈ Qh, and

∇α(v|Q1) = ∇α(v|Q2) on ∂Q1 ∩ ∂Q2,∀α multi-index with

|α| ≤ min{kQ1,Q2 , k − 1}∀Q1, Q2 ∈ Qh with ∂Q1 ∩ ∂Q2 6= ∅
}
.

Note that the notation in [8] differs from the notation used herein. In [8], Q and
Qh refer to the parameter domain. In this thesis, we use Q̂ and Q̂h referring to the
parameter domain, and Q and Qh referring to the physical domain. Also note that
the original definition of Hk in [8] is given on the parameter domain.

The space Hk(Ω) is a well-defined Hilbert space, endowed with the seminorms

|v|2Hi(Ω) =
∑

Q∈Qh

|v|2Hi(Q), 0 ≤ i ≤ k,

and the norm

‖v‖2Hk(Ω) =

k∑

i=0

|v|2Hi(Ω).

Theorem 3.18. Let ΠVh
: L2(Ω) → Vh be the projector to the NURBS space Vh. Let

k and ℓ be integer indices with 0 ≤ k ≤ ℓ ≤ p + 1. Then, under suitable conditions
(including, e.g, Assumption 3.14), for all v ∈ Hℓ(Ω),

∑

Q∈Qh

|v −ΠVh
v|2Hk

h(Q)
≤ Cshape

∑

Q∈Qh

h
2(ℓ−k)
Q

ℓ∑

i=0

‖∇G‖2(i−ℓ)
L∞(G−1(Q))

|v|2Hi(Q), (3.22)

where |·|Hk
h(Q) is the restriction of the seminorm to the cell Q, and where the constant

Cshape may depend on the shape of the geometry and the specific parameterization,
but not on the meshsize h.

As discussed in [8], this result shows that the same optimal rate of convergence is
achieved with NURBS space on the physical domain Ω as with classical finite element
spaces of degree p.

3.3.2 Singular and distorted geometry mappings

From (3.18), it is obvious that basis functions on the physical domain are directly
influenced by the geometry mapping G. Also in (3.22), the influence of the geometry
mapping is indicated by the explicitly appearing Jacobian ∇G in the estimate. Other

28

3.3. Further remarks regarding IGA

dependencies on the specific parameterization of the computational domain, however,
are hidden in the constant Cshape. In [77], the effect of distorted geometry mappings
on the condition number of the stiffness matrix are studied. The bounds presented
therein depend on the quality of the mesh, on the parameter domain and on the
physical domain, as well as the determinant of the Jacobian.

Singular geometry mappings can arise when non-quadrilateral domain are rep-
resented by a single NURBS geometry mapping, or as a result from isogeometric
shape optimization methods (see, e.g., [68]). Such singular mappings may lead to
discretizations where, on the physical domain, some basis functions are not properly
defined or do not fulfill regularity properties. Also, the mesh in the physical domain
may become heavily distorted, up to a point where quasi-uniformity is no longer en-
sured. In [91, 92, 93], the properties of the basis functions in such cases are studied.
Furthermore, sufficient conditions for guaranteeing the regularity of basis functions
are formulated, and a scheme for modifying the discrete function space to regain
regularity are presented.

For detailed discussion, the reader is referred to the above-mentioned references
and the references therein.

3.3.3 A posteriori error estimation

For the sake of completeness, we recall the discussion in Section 1.1, Task 3, regarding
the state of the art of a posteriori error estimation in IGA (see also Section 2.2.5). As
stated there, the only published results on a posteriori error estimation in IGA are,
to the best of our knowledge, [33, 49, 97, 98, 99]. The a posteriori error estimators
proposed in these references have in common that they contain generic/unknown
constants, resulting in possible quantitative over-estimation of the true error. In
this thesis, we consider quantitatively sharp error estimators in IGA, which will be
discussed in Chapter 5.

3.3.4 Local refinement

Local refinement can be motivated from the design process (in order to obtain a better
resolution of sharp, local features) or in the course of adapative mesh refinement (see
Section 2.2.5). In any case, it is obvious that local refinement in IGA cannot be
realized in a naive and straightforward manner due to the tensor product structure
of bivariate NURBS basis functions. Any refinement on one knot vector will be
extended throughout the whole domain.

While isogeometric local refinement methods are out of the scope of this thesis,
some current developments are mentioned for the sake of completeness.

• Analysis-suitable T-splines [9, 63, 64, 87, 88, 89, 90].

• Truncated Hierarchical B-splines (THB-splines) [44].

• Polynomial splines over hierarchical T-meshes (PHT-splines) [31, 70, 98].

29

3.3. Further remarks regarding IGA

• Splines over locally refined box-partitions [32].

The isogeometric tearing and interconnecting method presented in Chapter 4 provides
another, easy to implement alternative, if the global geometry is composed of several
subdomains. In Section 4.3, we discuss how refinement on a tensor product mesh can
be restricted to one subdomain (out of many) by proper coupling at the subdomain
interfaces.

30

Chapter 4

IETI - IsogEometric Tearing and
Interconnecting

In practical applications, the construction and design of geometric objects may re-
quire multi-patch parameterizations, i.e., the representation of the domain as a union
of several NURBS surfaces or volumes (see, e.g., [69]). While the overall geometry
may be complicated, the structure within one subdomain remains highly regular,
which opens new perspectives for the design of solvers in numerical simulation. This
will be studied in this chapter, and the results have been published in [57].

The model problems considered in this chapter are the scalar diffusion and the
linear elasticity problem, i.e., problems of type (I) and (II) in Section 2.2.1.

4.1 Multi-patch NURBS discretization

Recall the following notation from Section 2.1.1. Let the physical domain Ω ⊂ R2 be
represented by N single-patch NURBS geometry mappings G(k), k = 1, . . . , N , each
of which maps the parameter domain Ω̂ = (0, 1)2 to an open physical subdomain

Ω(k) = G(k)(Ω̂) ⊂ Ω, k = 1, . . . , N,

such that

Ω =

N⋃

k=1

Ω(k) and Ω(k) ∩ Ω(ℓ) = ∅ for k 6= ℓ.

We use the superscript (k) to indicate that knot vectors, degrees, NURBS basis
functions, index sets, DOF, etc. are associated with a mapping G(k). For example,
using the multi-index notation (see (3.9)) in the scalar-valued case, we denote the set

of NURBS basis functions of the geometry mapping G(k) by {R(k)
i }i∈I(k) . For each

subdomain Ω(k), the local function space is defined analogously to (3.18) and (3.20)
as

V
(k)
h = span

{
Ř

(k)
i

}
i∈I(k)

⊂ H1(Ω(k)),

31

4.1. Multi-patch NURBS discretization

where
Ř

(k)
i = R

(k)
i ◦G(k)−1

. (4.1)

We denote the space of functions that are locally in V
(k)
h by

ΠVh =
{
v ∈ L2(Ω) : v|Ω(k) ∈ V

(k)
h , ∀ k = 1, . . . , N

}
≡

N∏

k=1

V
(k)
h . (4.2)

Functions in ΠVh are not necessarily continuous across subdomain interfaces (for the
formal definition of interfaces, see (4.5) below). We choose the following subsets of
continuous functions in ΠVh:

Vh = ΠVh ∩ C(Ω), (4.3)

V0h = {v ∈ Vh : v|Γ0 = 0},
Vgh = ǧ + V0h.

A function uh ∈ Vh is represented subdomain-wise by

uh
∣∣
Ω(k) =

∑

i∈I(k)

u
(k)
i Ř

(k)
i . (4.4)

In the case of vector-valued basis functions, the corresponding spaces are defined
analogously.

We denote the interface of two subdomains Ω(k) and Ω(ℓ) (see Figure 4.1) by

Γ(k,ℓ) = ∂Ω(k) ∩ ∂Ω(ℓ). (4.5)

We collect the index-tupels of all interfaces that are non-empty

CΓ = {(k, ℓ) : Γ(k,ℓ) 6= ∅}, (4.6)

with k, ℓ ∈ {1, . . . , N}. For (k, ℓ) ∈ CΓ, we call Γ(k,ℓ) a subdomain vertex (or vertex
for brevity) if it consists of a single point, otherwise we call it an edge. For (k, ℓ) ∈ CΓ,
we collect the indices of those basis functions in Ω(k) whose support intersects the
interface Γ(k,ℓ):

B(k, ℓ) =
{
i ∈ I(k) : supp Ř

(k)
i ∩ Γ(k,ℓ) 6= ∅

}
. (4.7)

If i ∈ B(k, ℓ), we say that the DOF u
(k)
i is associated with the interface Γ(k,ℓ). In

case of a subdomain vertex, we have #B(k, ℓ) = #B(ℓ, k) = 1, where # indicates the
cardinality.

Definition 4.1. Let Γ(k,ℓ) be an edge. We say that the subdomains Ω(k) and Ω(ℓ)

are fully matching, if the following two conditions are fulfilled (see Figure 4.1 for an
illustration):

32

4.1. Multi-patch NURBS discretization

(i) The interface Γ(k,ℓ) is the image of an entire edge of the respective parameter
domains.

(ii) For each index i ∈ B(k, ℓ), there must be a unique index j ∈ B(ℓ, k), such that

Ř
(k)
i |Γ(k,ℓ) = Ř

(ℓ)
j |Γ(k,ℓ) . (4.8)

This is the case, if the two knot vectors are affinely related and the correspond-
ing weights and degrees are equal.

Ω̂(k)

G(k)

Ω(k)

Ω̂(ℓ)

G(ℓ)

Ω(ℓ)

Γ(k,ℓ)

Figure 4.1: Fully matching subdomains Ω(k) and Ω(ℓ):
All weights equal to 1,
p(k) = 2, s(k) = (0, 0, 0, 0.5, 0.75, 1, 1, 1),
q(k) = 2, t(k) = (0, 0, 0, 0.5, 1, 1, 1),
p(ℓ) = 1, s(ℓ) = (0, 0, 1, 1),
q(ℓ) = 2, t(ℓ) = (0, 0, 0, 0.25, 0.5, 1, 1, 1).

For an illustration of two fully matching subdomains, see Figure 4.1: The interface
Γ(k,ℓ) is the image of the entire northern edge of Ω̂(k) under the mapping G(k), and
the image of the entire western edge of Ω̂(ℓ) under G(ℓ). Furthermore, p(k) = q(ℓ) = 2.
The knot vectors s(k) and t(ℓ) are not equal, but due to the way they are mapped to
Γ(k,ℓ), condition (ii) is fulfilled. Hence, Ω(k) and Ω(ℓ) are fully matching.

The tensor-product structure of the NURBS basis functions is very convenient
for collecting/identifying the DOF associated with an interface, i.e., the index-set
B(k, ℓ). In particular, in combination with condition (i) for the fully matching case,
one only has to know which side (north, east, south or west) of the parameter domain

33

4.1. Multi-patch NURBS discretization

defines the interface to identify the associated DOF. For example, in Figure 4.1, using
the double-index notation, we have

B(k, ℓ) = {(i, j)}i=1,...,5
j=4

⊂ I(k),

B(ℓ, k) = {(i, j)}i=1
j=1,...,5

⊂ I(ℓ).

Assumption 4.2. Throughout Chapter 4, we assume that the representation of the
geometry as a composition of several subdomains (and thus also the initial discretiza-
tion) is given. We assume that Assumptions 3.4, 3.6, 3.11, and 3.14 hold for the
respective subdomains. Furthermore, we assume that the interfaces on the initial
discretization are fully matching.

Assume that the linear form 〈f, ·〉 can be assembled from contributions 〈f (k), ·〉 on
Ω(k), and let a(k)(·, ·) denote the restriction of a(·, ·) to Ω(k). Then, we can discretize
the original minimization problem (2.7) as a sum of local contributions:

Find uh such that

uh = argmin
vh∈Vgh

N∑

k=1

(
1
2a

(k)(vh, vh)− 〈f (k), vh〉
)
. (4.9)

Condition (ii) for the fully matching setting implies that each DOF u
(k)
i , i ∈ B(k, ℓ),

can be associated with a DOF u
(ℓ)
j , j ∈ B(ℓ, k), such that the corresponding basis

functions match as in (4.8). If we identify the DOF corresponding to these matching
basis functions, then, together with the remaining DOF, we get a representation of
the space Vh in (4.3). Employing a suitable global numbering for the identified DOF,
we can rewrite (4.9) in the form

Ku = f , (4.10)

as discussed in Section 2.2.4. This global system can be solved by standard sparse
LU -factorization, see, e.g., [30]. However, it is well known that for large problem
size, the memory requirement and the runtime complexity of direct solvers are ineffi-
cient. Alternatively, one can use efficient iterative solvers such as conjugate gradient
methods with appropriate preconditioners, see, e.g., [86]. In the case of standard
FEM discretizations, such preconditioners have been well studied in the literature,
see, e.g., [96] for geometric and algebraic multigrid methods, and see [95] for domain
decomposition methods.

It is important to note that by assembling the system matrix K from the sub-
domain contributions, the structural (subdomain-wise) properties of the problem are
lost, which are hard to regain from K alone. To alleviate this difficulty, in the follow-
ing section we present a solver (inspired by the FETI methods [35, 39, 40, 41, 72, 95])
which inherently uses the local structure of (4.9). This approach is very suitable for
parallelization, and moreover, since it mainly uses solvers on the local subdomains,
their tensor product structure can be exploited (e.g. using wavelets or FFT).

34

4.2. Solver design

4.2 Solver design

The techniques presented in this section follow FETI methods, see [35, 39, 40, 41, 72]
and the monographs [74, 95]. In the IETI method, we work in the space

ΠVh =

N∏

k=1

V
(k)
h

as defined in (4.2). Since these functions are, in general, discontinuous across sub-
domain interfaces, we need to impose the continuity conditions separately. In the
following, let v(k) denote the k-th component of a function v ∈ ΠVh.

4.2.1 Continuity constraints

Note that, in the index set CΓ, every interface Γ(k,ℓ) is represented twice. Therefore,
we define the set

C = {(k, ℓ) ∈ CΓ : k < ℓ}, (4.11)

where each interface is represented only once. For each pair (k, ℓ) ∈ C, we say that
Ω(k) is the master subdomain and Ω(ℓ) the slave subdomain. For all (k, ℓ) ∈ C and a
fixed index i ∈ B(k, ℓ), we can rewrite (4.8) in the following form:

Ř
(k)
i

∣∣
Γ(k,ℓ) =

∑

j∈B(ℓ,k)
z
(k,ℓ)
i,j Ř

(ℓ)
j

∣∣
Γ(k,ℓ) , (4.12)

where, for a fixed i ∈ B(k, ℓ), all coefficients z
(k,ℓ)
i,j are zero, except for one coefficient

which is 1. Note that the generalization of (4.8) given in (4.12) might seem superflu-
ous in the fully matching setting, but it will be needed in Section 4.3 in the context
of cases which are not fully matching. There, we will also adapt the definition of C.

Ω(1) Ω(2)

Ω(3) Ω(4)

(a) Fully redundant coupling at a
subdomain vertex.

Ω(1) Ω(2)

Γ0

(b) Incorporation of essential
boundary conditions by coupling
to virtual neighbour subdomains.

Figure 4.2: Illustration of fully redundant coupling and all floating setting. Arrows indicate
coupling conditions and point from master subdomain to slave subdomain.

35

4.2. Solver design

We can collect the coefficients z
(k,ℓ)
i,j in the permutation matrix

Z(k,ℓ) = (z
(k,ℓ)
i,j)i∈B(k,ℓ)

j∈B(ℓ,k)
. (4.13)

In the case of a subdomain vertex, where #B(k, ℓ) = 1, the matrix Z(i,j) has only one
entry which is 1. Figure 4.2(a) illustrates the coupling conditions between subdomains
and at subdomain vertices.

To guarantee the continuity of uh across all interfaces, we impose the following
condition on the DOF associated with interfaces, i.e., for all (k, ℓ) ∈ C:

u
(k)
i −

∑

j∈B(ℓ,k)
z
(k,ℓ)
i,j u

(ℓ)
j = 0, ∀i ∈ B(k, ℓ). (4.14)

The incorporation of essential boundary conditions is done in a similar way, see
the all-floating BETI method [72] and the total FETI method [35]. We denote the
interface between ∂Ω(k) and Γ0 by

Γ(k,0) = ∂Ω(k) ∩ Γ0.

Similar to (4.7), we collect the DOF of u(k) that are associated with Γ0, i.e., with the
interface Γ(k,0), in the following index set:

D(k) =
{
i ∈ I(k) : supp Ř

(k)
i ∩ Γ(k,0) 6= ∅

}
.

Recall from Section 2.2.4 that we assume that there exists a function ǧ ∈ Vh with
ǧ|Γ0 = g0|Γ0 . Hence, we can write

g0
∣∣
Γ(k,0) =

∑

i∈D(k)

g
(k)
i Ř

(k)
i

∣∣
Γ(k,0)

with real-valued coefficients g
(k)
i . We incorporate essential boundary conditions by

imposing the following constraints on the DOF that are associated with Γ0, i.e., for
all k such that Γ(k,0) 6= ∅:

u
(k)
i = g

(k)
i ∀i ∈ D(k). (4.15)

These constraints can be thought of as continuity between the physical subdomains
and a virtual neighbour subdomain (see Figure 4.2(b) for an illustration).

Let J denote the total number of constraints of the form (4.14) and (4.15):

J =
∑

(k,ℓ)∈C
#B(k, ℓ) +

N∑

k=1

#D(k).

We assume a fixed numbering of these constraints and introduce the following no-

tation. For a vector y ∈ RJ , y
(k,ℓ)
i denotes the component corresponding to the

36

4.2. Solver design

constraint (4.14), and y
(k,D)
i denotes the component corresponding to the constraint

(4.15). We define the jump operator B as follows:

B : ΠVh → RJ

(Bu)
(k,ℓ)
i = u

(k)
i −

∑

j∈B(ℓ,k)
z
(k,ℓ)
i,j u

(ℓ)
j (4.16)

(Bu)
(k,D)
i = u

(k)
i . (4.17)

Hence, the conditions for C0-continuity (4.14) and the incorporation of essential
boundary conditions (4.15) read

Bu = b, (4.18)

where the entry of the vector b ∈ RJ is zero when corresponding to an interface

condition (4.16), and it equals g
(k)
i when corresponding to an essential boundary

condition (4.17). For ǧ ∈ Vh with ǧ|Γ0 = g0|Γ0 , we have b = Bǧ. Note that the linear
operator B can be represented by a signed Boolean matrix. With (4.18), we obtain
the following restricted minimization problem which is equivalent to (4.9):

Find u such that

u = argmin
v∈ΠVh
Bv=b

N∑

k=1

(
1
2a

(k)(v(k), v(k))− 〈f (k), v(k)〉
)
. (4.19)

Remark 4.3. We assume that the computational domain is represented as a collec-
tion of several patches which are joined with C0-smoothness along their interfaces.
These patches simultaneously serve as the subdomains for the IETI method. The
approach can be extended to unstructured meshes, such as T-spline representations
[9, 87, 88], which are also used in isogeometric analysis. Similar to the case of clas-
sical FETI, a computational domain represented by a T-spline mesh can be split into
subdomains. The coupling of the DOF across the interfaces needs to take all test func-
tions into account that do not vanish on the interface. Typically, these DOF form a
strip whose width increases with the degree of smoothness of the T-spline representa-
tion. This is different both from the classical FETI method for piecewise linear finite
elements and from the multi-patch NURBS discretization with C0-continuity, where
these DOF are arranged along lines. Consequently, when extending the framework to
unstructured meshes in IGA, a larger number of Lagrange multipliers will be needed
as compared with the C0 case. Moreover, for general T-spline meshes, it is no longer
possible to benefit from the simple tensor-product structure of the subdomains.

4.2.2 Saddle point formulation

Using the local basis of each subdomain space V
(k)
h , each function v(k) ∈ V

(k)
h is

uniquely represented by a vector v(k). Correspondingly, each function v ∈ ΠVh has
a representation as a vector v of the form

v = (v(1), . . . ,v(N))T (4.20)

37

4.2. Solver design

whose blocks are the local vectors v(k). Let K(k) denote the stiffness matrix corre-
sponding to the local bilinear form a(k)(·, ·) and define

K =

K(1) 0
. . .

0 K(N)

 .

Analogously, let f denote the load vector whose blocks f (k) correspond to the local
subdomain load vectors, and let B be the matrix representation of the jump opera-
tor B.

The minimization problem (4.19) is then equivalent to the following saddle point
problem:

Find u ∈ ΠVh with the vector representation u as in (4.20) and Lagrange multi-
pliers λ ∈ RJ , such that

(
K BT

B 0

)(
u
λ

)
=

(
f
b

)
. (4.21)

We note that even though λ is only unique up to an element from kerBT , the solution
u is unique.

The common strategy of FETI-type methods is to reduce (4.21) to an equation
that involves only λ. This is not straightforward, since in the case of our model
problems (see Section 2.2.1) the local matrices K(k) are not invertible. More precisely,
in the scalar elliptic case (I) the kernel is spanned by the constant functions, and for
the two-dimensional linearized elasticity problem (II), the kernel is spanned by three
rigid body modes.

In the classical FETI methods [41] and the total FETI method [35], additional
unknowns are introduced that span the kernel. We will, however, follow the dual-
primal FETI (FETI-DP) method, see [39] and [95, Sect. 6.4], thus obtaining IETI-DP.

4.2.3 Dual-primal formulation

Recall that we only consider NURBS geometry mappings with open knot vectors.
Therefore, at every vertex of the parameter domain Ω̂, there is exactly one multi-

index i0 ∈ I(k), such that R
(k)
i0

at this vertex is 1, while all other basis functions are
zero (see Remark 3.10). Hence, we can distinguish DOF that are associated with the
vertices of the parameter domain. Such DOF that are associated with the vertices
of a parameter domain are called primal DOF. All other DOF are referred to as
non-primal or remaining DOF.

We define the following subset of ΠVh,

W̃h = {v ∈ ΠVh : v is continuous at all subdomain vertices}.

To achieve the continuity above, we identify all the primal DOF that are associated
with a common point in the physical domain, and we fix a global numbering of these

38

4.2. Solver design

primal DOF. Then, a function v ∈ W̃h can be uniquely represented by a vector ṽ of
the form

ṽ = (ṽP , ṽR)
T = (ṽP , ṽ

(1)
R , . . . , ṽ

(N)
R)T , (4.22)

where the subscripts P and R refer to primal and remaining DOF, respectively.
Note that v in (4.20) and ṽ in (4.22) are different vector representations of the same

function v ∈ W̃h ⊂ ΠVh.
Let B̃ denote the jump operator on W̃h defined by

B̃ũ = Bu,

where ũ is the representation of u in the form of (4.22). Analogously to (4.22), we
can write

B̃ = (B̃P , B̃R) = (B̃P , B̃
(1)
R , . . . , B̃

(N)
R).

Remark 4.4. Note that we can distinguish between primal and remaining DOF in
such a straightforward manner only due to the fact that we are using open knot vectors
(see the discussion in Section 3.1.1.1 and Remark 3.10). Even though NURBS basis
functions are not a nodal basis in general, this special property makes the dual-primal
approach simple to implement and thus very appealing.

4.2.3.1 Setting up the global system

Since the solution u ∈ W̃h, we can replace the space ΠVh in (4.21) by W̃h. In the
following, we will derive an equivalent saddle point formulation.

By rearranging the local DOF u(k) in such a way that the primal DOF come first,
the subdomain stiffness matrix K(k) and the load vector f (k) take the form

K̃(k) =

(
K̃

(k)
PP K̃

(k)
PR

K̃
(k)
RP K̃

(k)
RR

)
, f̃ (k) =

(
f̃
(k)
P

f̃
(k)
R

)
. (4.23)

From these local contributions, we obtain the global stiffness matrix K̃ and the global
load vector f̃

K̃ =

(
K̃PP K̃PR

K̃RP K̃RR

)
, f̃ =

(
f̃P
f̃R

)
. (4.24)

Note that, due to the identification of the primal DOF, the components carrying a
subscript P in (4.24) are assembled from local contributions. K̃RR and f̃R have the
form

K̃RR =

K̃
(1)
RR 0

. . .

0 K̃
(N)
RR

 , f̃RR =

f̃
(1)
R
...

f̃
(N)
R

 .

The coupling conditions of the form (4.16) can be neglected at the primal DOF,
but it has no effect on the algorithm if they are included. Depending on the imple-
mentation of the jump operator, one might decide to keep them or not.

39

4.2. Solver design

With the same steps as before, we arrive at the following saddle point problem
which is equivalent to (4.21):

Find u ∈ W̃h, represented by ũ as in (4.22), and Lagrange multipliers λ ∈ RJ ,
such that (

K̃ B̃T

B̃ 0

)(
ũ
λ

)
=

(
f̃
b

)
. (4.25)

Note that the matrix K̃ in (4.25) is singular, because the space W̃h has no restric-
tions on Γ0 for our model problems. In the next section, we will incorporate essential
boundary conditions at those primal DOF that are associated with Γ0. This incor-
poration will lead to a non-singular matrix.

4.2.3.2 Essential boundary conditions

We distinguish between essential primal DOF associated with Γ0, and floating primal
DOF that are in the interior of Ω or associated with Γ1. We indicate this with the
subscripts d and f , respectively. We assume for simplicity that in the vector ũ the
essential primal DOF are listed first, i.e.,

ũ = (ũd, ũf , ũR)
T = (ũd, ũf , ũ

(1)
R , . . . , ũ

(N)
R)T (4.26)

and

K̃ =

K̃dd K̃df K̃dR

K̃fd K̃ff K̃fR

K̃Rd K̃Rf K̃RR

 , f̃ =

f̃d
f̃f
f̃R

 ,

B̃ =
(

B̃d B̃f B̃R

)
.

Let g̃d be the vector whose entries are the values of g0 at the essential primal DOF.
Since ũd = g̃d, the saddle point problem (4.25) is equivalent to the following problem:

Find u ∈ W̃h, represented by ũ as in (4.26), and Lagrange multipliers λ ∈ RJ ,
such that (

K B
T

B 0

)(
ũ
λ

)
=

(
f

b

)
, (4.27)

where

K =

I 0 0

0 K̃ff K̃fR

0 K̃Rf K̃RR

 , (4.28)

f =

g̃d
f̃f − K̃fdg̃d
f̃R − K̃Rdg̃d

 , (4.29)

B =
(

0 B̃f B̃R

)
, (4.30)

b = b− B̃dg̃d (4.31)

40

4.2. Solver design

and I is the identity matrix. We see that each entry of b corresponding to a multiplier
acting on an essential primal DOF vanishes. Also, these multipliers are superfluous
as they do not influence the solution ũ and can be left out completely.

As before, we denote the components of K, f , and B in (4.28)–(4.30) that cor-
respond to primal and remaining DOF with the subscripts P and R, respectively.
Hence,

KPP =

(
I 0

0 K̃ff

)
, KPR =

(
0

K̃fR

)
,

KRP =
(

0 K̃Rf

)
, KRR = K̃RR,

fP =

(
g̃d

f̃f − K̃fdg̃d

)
, fR = f̃R − K̃Rdg̃d,

BP =
(

0 B̃f

)
, BR = B̃R.

Again, the coupling conditions of the form (4.16) and (4.17) can be neglected at all
the essential primal DOF, but it has no effect on the algorithm if they remain.

Remark 4.5. Similar to the construction (4.28)–(4.31), we can also directly incor-
porate the essential boundary conditions at the remaining non-primal essential DOF.
If this is done, the corresponding multipliers can again be left out. This approach
would be closer to the original FETI-DP method as proposed in [39].

4.2.3.3 Dual problem

In our model problems the matrix K in (4.28) is invertible, and the first line of (4.27)
yields

ũ = K
−1

(f −B
T
λ). (4.32)

Inserting this identity into the second line of (4.27), we obtain the dual problem

Fλ = d (4.33)

with F = BK
−1

B
T
and d = BK

−1
f − b. To realize the application of K

−1
, we use

the block factorization

K
−1

=

(
I 0

−K
−1
RRKRP I

)(
S
−1
PP 0

0 K
−1
RR

)(
I −KPRK

−1
RR

0 I

)
(4.34)

where
SPP = KPP −KPRK

−1
RRKRP .

Recall that KRR is block diagonal. Hence, applying K
−1
RR corresponds to solving local

problems independently on each subdomain, e.g., by (sparse) LU -factorization [30].

Note that K
−1
RR appears three times in (4.34), but it has to be applied only twice,

because two of the applications of K
−1
RR are on the same vector.

41

4.2. Solver design

The matrix SPP can be assembled from local contributions

S
(k)
PP = K

(k)
PP −K

(k)
PR(K

(k)
RR)

−1K
(k)
RP .

It can be shown that SPP is sparse and that it can be factorized using standard
sparse LU -factorization [30]. The size of SPP is determined by the number of primal
DOF. Since we only have primal DOF at the subdomain vertices, their number is
bounded by 4N . Typically, the number of subdomains, and therefore the size of SPP ,

is much smaller than the size of K
(k)
RR, but even in the case of many subdomains SPP

is sparse.
We can solve the symmetric and positive definite system (4.33) for λ by a CG

algorithm. Once we have obtained λ, we can compute ũP as follows. We write (4.32)
in the form (

ũP

ũR

)
= K

−1

(
fP −B

T
Pλ

fR −B
T
Rλ

)
(4.35)

and see that ũP is given by the first component of the right-hand side in (4.35). Since

(
I 0

−K
−1
RRKRP I

)(
S
−1
PP 0

0 K
−1
RR

)
=

(
S
−1
PP 0
∗ ∗

)
,

we obtain from (4.34) and (4.35),

(
ũP

ũR

)
= K

−1

(
fP −B

T
Pλ

fR −B
T
Rλ

)

=

(
S
−1
PP 0
∗ ∗

)(
I −KPRK

−1
RR

0 I

)(
fP −B

T
Pλ

fR −B
T
Rλ

)

=

(
S
−1
PP 0
∗ ∗

)(
(fP −B

T
Pλ)−KPRK

−1
RR(fR −B

T
Rλ)

fR −B
T
Rλ

)
. (4.36)

The first component in (4.36), and thus ũP , is given by

ũP = S
−1
PP

(
(fP −B

T
Pλ)−KPRK

−1
RR(fR −B

T
Rλ)

)
. (4.37)

We write the first line of (4.27) in more detail,

(
KPP KPR

KRP KRR

)(
ũP

ũR

)
+

(
B

T
P

B
T
R

)
λ =

(
fP
fR

)
, (4.38)

and see from the second line of (4.38) that the equality

KRP ũP +KRRũR +B
T
Rλ = fR (4.39)

42

4.2. Solver design

holds. Hence, having computed ũP and λ, the remaining local solutions are then
given by

ũR = K
−1
RR

(
fR −B

T
Rλ−KRP ũP

)
. (4.40)

Again, since KRR is block-diagonal, the application of K
−1
RR corresponds to solving

independent local problems on each subdomain.
In [40], the unpreconditioned interface problem (4.33) is discussed for the classical

FETI method, and it is shown that the condition number is of order

κ(F) = O(H/h), (4.41)

where H and h denote the characteristic subdomain size and the finite element mesh
size, respectively. The numerical tests presented in Section 4.4 indicate that the IETI
method behaves similarly. In the next section, following [39], we define a precondi-
tioner for the interface problem which will be used for the numerical examples in
Section 4.4.

4.2.4 Preconditioner

Our construction follows the scaled Dirichlet preconditioner that was introduced in
[40, 53, 85] and extended to the dual-primal formulation in [39, 54]. We indicate
interior DOF with the subscript I, and the DOF associated with the boundary ∂Ω(k)

of a subdomain with the subscript B. Assume that the DOF are now numbered such
that the interior DOF are listed first, then the local stiffness matrix K(i) takes the
form

K(k) =

(
K

(k)
II K

(k)
IB

K
(k)
BI K

(k)
BB

)
. (4.42)

The dual-primal Dirichlet preconditioner is defined by

M−1 =

N∑

i=1

D(k)B(k)

(
0 0

0 S
(k)
BB

)
B(k) T D(k), (4.43)

where
S
(k)
BB = K

(k)
BB −K

(k)
BI (K

(k)
II)

−1K
(k)
IB .

Since K
(k)
II is the local stiffness matrix of Ω(k) with all boundary DOF fixed, it can be

factorized as easily and cheaply as K
(k)
RR. The matrix B(k) in (4.43) is the restriction

of B to the interface conditions associated with Ω(k). The matrix D(k) is a scaled
diagonal matrix of size J × J , where J is the number of Lagrange multipliers. Its
entries are

(D(k))ii = 1/mult(i),

where mult(i) is the number of subdomains which have interfaces associated with the
Lagrange multiplier λi. In particular, mult(i) takes the following values:

43

4.3. Refinement options

mult(i) = 1, if λi corresponds to an essential boundary condition.

mult(i) = 2, if λi corresponds to a coupling condition that does not involve a
subdomain vertex.

mult(i) = mi ≥ 2, if λi corresponds to a coupling condition that involves a sub-
domain vertex, and where mi denotes the number of subdomains which share
this vertex (i.e, mi ≤ N).

These scalings can, e.g., be found in [53, 54], where the authors show that certain
jumps in the diffusion coefficient (problem (I)) or the Lamé parameters (problem
(II)) can be treated robustly.

In [54], it was shown that the condition number of the preconditioned FETI-DP
interface problem behaves like

κ(M−1F) = O((1 + log(H/h)2),

where H and h are as defined at the end of Section 4.2.3. In [15], it was shown
that this bound also holds for isogeometric BDDC preconditioners. Since BDDC and
FETI-DP preconditioners have the same essential spectrum when the primal DOF
are chosen in the same way (see [20, 65]), it is expected that this bound also holds
for the IETI-DP method. This is confirmed by the numerical results presented in
Section 4.4.

4.2.5 Isogeometric tearing and interconnecting algorithm

To summarize, the overall IETI-DP algorithm is presented in Algorithm 4.1.

4.3 Refinement options

As briefly mentioned in Section 3.3.4, the tensor-product structure of NURBS basis
functions is inconvenient for local refinement. The insertion of a knot affects the
whole domain and may introduce superfluous DOF.

However, the IETI-approach introduces some possibilities for restricting the re-
finement to one or a few subdomains (of many), even when working with tensor-
product NURBS basis functions and straightforward knot insertion. We will sketch
two such methods: h-refinement on one subdomain and refinement by substructuring
(see Figure 4.3). Note that, in both cases, we assume that the initial setting is fully
matching.

4.3.1 h-refinement on one subdomain

Although a knot insertion affects the whole parameter domain due to the tensor-
product structure of the NURBS basis functions, we can limit the refinement to a
single subdomain, as depicted in Figure 4.3(b). Such a local refinement procedure
was already proposed in [28] in the context of multi-patch NURBS discretizations.

44

4.3. Refinement options

Algorithm 4.1 IETI-DP

Input: Local function spaces V
(k)
h , jump operator B, scaling matrices D(k), index

sets of dual, essential primal, floating primal, boundary, and interior DOF.

Output: Coefficient vectors ũP , ũ
(1)
R , . . . , ũ

(N)
R .

for each k = 1, . . . , N locally on each subdomain Ω(k) (in parallel) do
Assemble K(k) and f (k) using a fully local numbering of the DOF.

Partition K(k) and f (k) as in (4.24), factorize K
(k)
RR, compute S

(k)
PP .

Partition K(k) as in (4.42), factorize K
(k)
II .

end for
Assemble and factorize SPP , compute d.
Solve Fλ = d by PCG with preconditioner M−1 as in (4.43).
Compute ũP as in (4.37),

ũP = S
−1
PP

(
fP −B

T
Pλ−KPRK

−1
RR(fR −B

T
Rλ)

)
.

for each k = 1, . . . , N do obtain ũ
(k)
R as in (4.40) (in parallel),

ũ
(k)
R = K

(k)
RR

−1(
f
(k)
R − (B

(k)
R)Tλ−K

(k)
RP ũP

)
.

end for
return ũP , ũ

(1)
R , . . . , ũ

(N)
R .

We assume that on an interface, which is not fully matching, the knot vector
on one subdomain (the fine side) is a refinement of the knot vector on the other
subdomain (the coarse side), as in the example in Figure 4.3(b). In Figure 4.4, such
a case is illustrated schematically: The knot vector s(k) is obtained from s(ℓ) by one
step of uniform h-refinement. In contrast to the fully matching case, the numbers

of DOF of V
(k)
h and V

(ℓ)
h on the interface Γ(k,ℓ) are not equal, and condition (ii) in

Definition 4.1 for the fully matching case is not fulfilled. In reference to hanging
nodes in finite element methods, we call this a setting with hanging knots (note that
we still assume that the geometry is conforming). As a consequence, formulating a
coupling as in (4.14) is not straightforward. In particular, the matrix Z(i,j) in (4.13)
has to be modified accordingly.

The number of interface conditions on such an interface is determined by the fine
side, which is chosen as the master subdomain. Hence, we adapt the definition (4.11)
of C as follows.

If Γ(k,ℓ) is an interface with hanging knots, we define

(k, ℓ) ∈ C, if #B(k, ℓ) ≥ #B(ℓ, k),
(ℓ, k) ∈ C, otherwise.

If Γ(k,ℓ) is a fully matching interface, we follow the definition of C in (4.11), i.e.,

(k, ℓ) ∈ C, if k < ℓ,

(ℓ, k) ∈ C, otherwise.

45

4.3. Refinement options

(a) Shaded area marked for refinement.

(b) h-refinement of (a) on one subdomain (see Sec-
tion 4.3.1).

(c) Refinement of (a) by two steps of 1-level substructur-
ing (see Section 4.3.2).

Figure 4.3: Two options for refining the shaded area in (a).

For example, in Figure 4.4, the master subdomain is Ω(k), i.e., (k, ℓ) ∈ C.
Without loss of generality, we assume that s(k) is a refinement of s(ℓ) and that the

weights on the finer side are obtained by the knot insertion algorithm [76]. Hence,

on the interface Γ(k,ℓ), the coarse basis function Ř
(ℓ)
j |Γ(k,ℓ) , j ∈ B(ℓ, k) can be repre-

sented exactly as a linear combination of fine basis functions Ř
(k)
i |Γ(k,ℓ) , i ∈ B(k, ℓ).

Therefore, for each j ∈ B(ℓ, k), there exist coefficients ζj,i, such that

Ř
(ℓ)
j |Γ(k,ℓ) =

∑

i∈B(k,ℓ)
ζj,i Ř

(k)
i |Γ(k,ℓ) . (4.44)

The coefficients ζj,i can be obtained from well-known formulae for the refinement
of B-Spline basis functions [76]. We require C0-continuity of uh across the interface
Γ(k,ℓ), i.e., we require, using (4.44),

∑

i∈B(k,ℓ)
u
(k)
i Ř

(k)
i |Γ(k,ℓ) =

∑

j∈B(ℓ,k)
u
(ℓ)
j Ř

(ℓ)
j |Γ(k,ℓ)

=
∑

j∈B(ℓ,k)
i∈B(k,ℓ)

u
(ℓ)
j ζj,i Ř

(k)
i |Γ(k,ℓ) .

46

4.3. Refinement options

By comparing the coefficients, we obtain

u
(k)
i −

∑

j∈B(ℓ,k)
ζj,i u

(ℓ)
j = 0,

i.e., we obtain a continuity constraint in the same form as in (4.14) and (4.16), where
the coefficients of the coupling matrix Z(k,ℓ), see (4.13), are given by

z
(k,ℓ)
i,j = ζj,i.

Remark 4.6. In [50], the issue of coupling mortar discretizations in the FETI-DP
context was addressed. The procedure for formulating the jump operator given therein

would result in the same coefficients z
(k,ℓ)
i,j if it is applied to the setting considered here.

With the modified coupling matrices, one can then perform the same steps as in
Sections 4.2.3.2 to 4.2.5. Here we would like to point out that there are Lagrange
multipliers which connect primal essential DOF with a boundary condition as well
as multipliers connecting one and the same primal DOF (this is illustrated in Fig-
ure 4.2(a), where the redundant coupling conditions between the subdomain vertices
actually couple the same primal DOF). Both types of multipliers are superfluous and
can be left out. However, in the presence of an interface with hanging knots, there are
also multipliers that connect primal and remaining DOF. These multipliers cannot
be left out and the corresponding entries in the vector b do not vanish in general.

s(k)

s(ℓ)

Figure 4.4: Interface with hanging knots: p(k) = p(ℓ) = 2,
s(k) = {0, 0, 0, 1/8, 2/8, . . . , 7/8, 1, 1, 1} is a refinement of
s(ℓ) = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}.

4.3.2 Local refinement by substructuring

As an alternative, the number of DOF can be increased locally by subdividing one
subdomain into smaller subdomains as illustrated in Figure 4.3(c).

If one wanted to subdivide the NURBS geometry mapping, e.g., in order to be
able to edit the geometry locally, one would split the mapping and construct new
knot vectors, weights and control nets for the new geometry mappings. This is
not necessary in the IETI context, since we are not interested in actually splitting
the geometry representation. Instead, we split the parameter domain into smaller
subdomains which are mapped to the physical domain by the original (unchanged)
coarse geometry mapping.

47

4.3. Refinement options

A very simple method for substructuring the subdomain Ω(k) is the following: We
split the parameter domain Ω̂ = (0, 1)2 into four subdomains

Ω̂(k,1) = (0, 1/2) × (0, 1/2),

Ω̂(k,2) = (0, 1/2) × (1/2, 1),

Ω̂(k,3) = (1/2, 1) × (0, 1/2),

Ω̂(k,4) = (1/2, 1) × (1/2, 1).

We refer to this substructuring method as cross insertion. The basis functions of the
original parameter domain Ω̂ are pushed forward to the smaller subdomain Ω̂(k,k̄) by
a linear mapping G(k,k̄) : Ω̂ → Ω̂(k,k̄) and then transformed to the physical domain
by the original mapping G(k) (see Figure 4.5 for an illustration). The basis functions
on Ω(k,k̄) have the form

R
(k)
i ◦

(
G(k,k̄)−1 ◦G(k)−1

)
.

The domain decomposition obtained by substructuring is again a setting with hanging
knots. The matrix Z(k,ℓ) in the interface condition (4.14) is adapted as described in
Section 4.3.1.

G(k)
G(k,k̄) Ω(k,k̄)

Ω(k)

Ω̂(k,k̄)

Ω̂

Ω̂

Figure 4.5: Embedding smaller subdomains Ω̂(k,k̄) into the original parameter domain Ω̂.

When we refine by substructuring, we introduce situations where the vertex of
one subdomain lies on the edge of another subdomain. Such cases are illustrated
in Figure 4.3(c) and Figure 4.6(a). We call such a subdomain vertex a hanging
subdomain vertex (or short hanging vertex). Note that not every T-shaped subdomain
vertex is a hanging vertex, as illustrated in the example in Figure 4.6(b).

The choice of primal DOF in substructured subdomains, where we have hanging
vertices, is not as straightforward as in the fully matching case. In the example
of a hanging vertex in Figure 4.6(a), there is (in the scalar case) exactly one DOF
on Ω(2) that is associated with the hanging vertex marked by the dashed circle (cf.
Remark 3.10 and the discussion at the beginning of Section 4.2.3). While the same
applies to Ω(3), this is not true on Ω(1), where we have several NURBS basis functions
which are nonzero at the marked hanging vertex. Instead of incorporating a special
treatment of hanging vertices, we choose to omit primal DOF at hanging vertices
and discuss under which conditions this is possible.

48

4.3. Refinement options

Ω(1)

Ω(2)

Ω(3)

(a) Hanging subdomain ver-
tex marked by dashed circle.

Ω(1)

Ω(2)

Ω(3)

(b) T-shaped, but not hang-
ing subdomain vertex.

Figure 4.6: Examples for hanging and not hanging subdomain vertices.

For the scalar elliptic problem (I), the kernel of the stiffness matrix of a floating
subdomain is spanned by the constant function, i.e., the kernel has dimension one. In
this case, it is sufficient to have at least one primal DOF on each subdomain. This is
easily guaranteed, if we start from a fully matching setting, apply substructuring by
cross-insertion as described in Section 4.3.2, and select primal DOF at all subdomain
vertices which are not hanging. The example in Figure 4.7(a) shows the positions of
primal DOF after two cross insertions.

(a) Cross-insertion results in at
least one primal DOF on each sub-
domain.

(b) 1-level refinement (used for lin-
earized elasticity) results in at least
two primal vertices on each subdo-
main.

Figure 4.7: Subdomains refined by substructuring. Positions of primal vertices marked by ©.

For the two-dimensional linearized elasticity problem (II), where the kernel is
spanned by the three rigid body modes, we need at least three primal DOF per
subdomain. We call a subdomain vertex a primal vertex, if the two DOF associated
with this vertex are primal. Choosing at least two primal vertices per subdomain
results in four primal DOF per subdomain, which is one more than necessary for
fixing the kernel. However, as illustrated in Figure 4.7(a), this is not guaranteed if
we apply substructuring by cross-insertion without additional considerations.

For linearized elasticity problems, we introduce refinement levels and we assign
refinement level 0 to every subdomain in the initial setting. When a subdomain is
split into four smaller subdomains by cross insertion, the levels of the new, smaller

49

4.3. Refinement options

subdomains are increased by 1 (see Figure 4.8 for an illustration). We call the refine-
ment a 1-level substructuring, if the refinement levels of any two subdomains with an
edge as their interface differ by at most 1. If we start from a fully matching setting,
apply 1-level substructuring by cross-insertion, and choose all non-hanging vertices
as primal vertices, then it is guaranteed that there are at least two primal vertices,
i.e., at least four primal DOF, on each subdomain. The example in Figure 4.7(b)
illustrates the positions of primal vertices after two such 1-level substructuring steps.
Note that, depending on the location of the refined area, 1-level substructuring can
effect neighbouring subdomains. This disadvantage is accepted as a trade-off for
avoiding an involved treatment of hanging vertices.

00
1 1

11

1

2

Figure 4.8: Refinement levels of subdomains (initial stetting as in Figure 4.3(a)).

Note that the discretization is only C0-continuous along subdomain interfaces.
By substructuring a subdomain, new interfaces are introduced, thereby changing the
discretization.

Remark 4.7. Note that the refinement options discussed in Section 4.3.1 and Sec-
tion 4.3.2 can be combined by applying them one after the other. Furthermore, the
coupling methods described in this section can be combined with isogeometric local re-
finement methods such as those mentioned in Section 3.3.4. If such local refinement
methods are applied only in the interior of one or many subdomains, obviously, the
coupling at the subdomain interfaces is not influenced. If the refined areas extend to
subdomain boundaries, and one side is a refinement of the other, C0 coupling can be
done as described in this section.

4.3.3 Preconditioning in the presence of hanging knots

As mentioned in Section 4.3.1, when we have hanging knots, the coupling matrix
B(k) is not a signed Boolean matrix any more. The Dirichlet preconditioner defined
in (4.43) can still be applied with these more complicated coupling matrices. How-
ever, as already mentioned in [50] in the context of mortar discretizations, while
the asymptotic behaviour of the condition number remains the same, the condition
number itself increases. This can also be observed in the numerical tests with the
IETI-DP method (see Section 4.4 for the results).

We now adapt the preconditioner for settings with hanging knots by replacing

the scaling matrix D(k) in (4.43) by a modified diagonal matrix D
(k)
Z . Its entries are

defined as follows:

50

4.4. Numerical examples

(
D

(k)
Z

)
ii
= 1/mult(i), if λi corresponds to a fully matching interface. Here, mult(i)

is as defined in Section 4.2.4.

(
D

(k)
Z

)
ii
= 1, if λi corresponds to an interface with hanging knots and Ω(k) is the

master subdomain.

(
D

(k)
Z

)
ii
= 0, otherwise.

The preconditioner M−1
Z for the case with hanging knots is defined analogous to

(4.43) by

M−1
Z =

N∑

k=1

D
(k)
Z B(k)

(
0 0

0 S
(k)
BB

)
B(k)T D

(k)
Z .

As it will be reported in Section 4.4, this preconditioner leads to lower condition
numbers as compared to M−1 from Section 4.2.4 in settings with hanging knots.
Note that we have M = MZ in fully matching settings.

4.4 Numerical examples

In this section, we present three numerical test examples for the IETI-DP method.
We test the method and the refinement options presented in Section 4.3, and we study
the performance of the proposed preconditioners. The conjugate gradient method is
applied to solve the interface problem Fλ = d in (4.33), both without and with
the discussed preconditioners. In the following tables, we display the numbers of
iterations needed until the stopping criterion

‖ri‖ℓ2/‖r0‖ℓ2 < 10−8

is fulfilled, where r0 is the initial residual, ri is the residual in the i-th iteration, and
‖ · ‖ℓ2 denotes the Euclidean norm. Choosing the zero-vector as initial guess for λ,
we have r0 = d. The condition numbers in these tables are computed numerically
using the Lanczos method.

Note that the aim of these examples (due to their sizes, they could be solved by
direct solvers) is to illustrate the method and its potential. The true computational
advantage of the IETI method against direct solvers will become apparent in large
problem sizes and/or three-dimensional problems.

Example 4.1: Bracket under load

Our first example is a linearized elasticity problem (type (II) in Section 2.2.1). We
consider the two geometries displayed in Figure 4.9(a) and Figure 4.10(a), where the
first one, which is taken from an illustration in [29], has a rounded reentrant corner,
and the second one has a sharp reentrant corner. We refer to these geometries as
case (A) and case (B), respectively.

51

4.4. Numerical examples

Γ0

tN

n
(a) Setting in case (A).

0 3 7 10
0

3

7

10
1

0.5

0

−0.5

−1

−1.5

×104

(b) Stress component σ11.

Figure 4.9: Case (A), bracket with rounded reentrant corner.

Γ0

tN

n
(a) Setting in case (B).

0 3 7 10
0

3

7

10
1

0

−1

−2

−3
×104

(b) Stress component σ11.

Figure 4.10: Case (B), bracket with sharp reentrant corner.

condition numbers (P)CG iterations
Case n #λ F M−1F F M−1F

(A) 8 464 173.95 39.60 69 42
16 784 470.09 67.98 103 49
32 1424 1230.11 105.87 149 58
64 2704 3074.62 154.10 > 200 67

(B) 8 484 174.17 51.72 70 43
16 820 509.39 85.71 106 50
32 1492 1388.58 130.24 150 60
64 2836 3543.44 185.42 > 200 67

Figure 4.11: Condition numbers and (P)CG iterations for cases (A) and (B) of a bracket
under load, n denoting the number of knot spans in the direction indicated by arrows in the
above pictures.

In Figure 4.9(a) and 4.10(a), we show the subdomain decomposition and indicate
the boundary conditions. We fix the two lower holes by applying homogeneous es-
sential boundary conditions, while a constant downward pointing traction tN with
magnitude 1000N is applied at the walls of the rightmost hole. The remaining bound-
aries are free of traction. The material parameters are set to E = 3 · 107kPa and
ν = 0.3. Note that the circular holes contained in the domains are represented exactly

52

4.4. Numerical examples

Γ0

tN

ncoarse

nfine

(a) Setting in case (C).

condition numbers (P)CG iterations
ncoarse nfine #λ F M−1F M−1

Z F F M−1F M−1
Z F

4 16 428 469.89 344.72 86.40 71 69 45
8 32 708 1324.01 542.19 130.75 105 89 57

16 64 1268 3419.50 820.16 185.40 148 103 66
32 128 2388 8448.24 1170.29 258.89 > 200 120 75

(b) Condition numbers and (P)CG iterations for case (C).

Figure 4.12: Case (C), bracket with sharp reentrant corner and local h-refinement near the
corner. The ratio nfine/ncoarse = 4 is the same for all chosen meshes. The stress component
σ11 as as in Figure 4.10(b).

0.676

0.675

0.677

0.678

0.679

0 2 4 6 8 ×104

Case (C)
Case (B)

DOF

Figure 4.13: Comparison of the energy norms of the discrete solutions ‖uh‖E in cases (B)
and (C).

by NURBS geometry mappings of degree 2.
In Figure 4.9(b) and 4.10(b), the computed stress component σ11 is depicted for

cases (A) and (B), respectively. Note that the scales are different, and that the
scale in Figure 4.10(b) has been cutoff below for a better visibility of the stress
distribution. The results illustrate that the IETI-DP method can be applied to non-
trivial geometries including holes and consisting of numerous subdomains.

The condition numbers and the (P)CG iteration numbers for these fully match-
ing settings are given in the table in Figure 4.11. The column labeled n shows the
number of knot spans in the direction indicated by the small arrows at the bottom
in Figure 4.9(a) and 4.10(a). The column #λ shows the number of Lagrange mul-

53

4.4. Numerical examples

tipliers, i.e., the size of the interface problem (4.33). The columns labeled F and
M−1F display the condition numbers of the interface problems and the (P)CG it-
eration numbers without preconditioner, and with preconditioner M−1 as defined in
Section 4.2.4, respectively. The entry “> 200” indicates that the desired accuracy
was not reached after 200 iterations. The results show the expected, moderate growth
in the preconditioned case.

In Figure 4.10(b), the peak of the stress component σ11 near the reentrant corner
in case (B) is visible. As mentioned above, the scale has been cutoff below for
better visibility, and the stress component actually exceeds the value of −3 · 104 (the
lower limit of the colorscale). To obtain a better resolution of the peak stress, we
introduce case (C), which is indicated in Figure 4.12(a). Here, the subdomains near
the corner have a finer discretization than the subdomains which are far from the
corner, and we have interfaces with hanging knots. The number of knot spans on
the finest and coarsest subdomain discretizations are denoted by nfine and ncoarse,
respectively. These numbers are measured in the directions indicated by the small
arrows in Figure 4.12(a). The ratio nfine/ncoarse = 4 is the same for all chosen meshes.
The condition numbers and (P)CG iteration numbers for this setting with hanging
knots are presented in Figure 4.12(b). Clearly, the preconditioner M−1

Z defined in
Section 4.3.3 performs better than M−1 from Section 4.2.4. The stress component
σ11 is not plotted for case (C), since it is the same as in case (B), Figure 4.10(b).
The energy norm of the numerical solutions in case (B) and case (C) is compared in
Figure 4.13. It shows that for given DOF a faster convergence can be achieved by
local h-refinement.

Example 4.2: Bending of a Cantilever

We now consider a linearized elasticity problem (type (II) in Section 2.2.1) on a
cantilever of length L and thickness D. It is fixed at x = 0 and subject to a parabolic
traction at x = L with resultant P as illustrated in Figure 4.14(a). We choose the
parameters as follows: L = 48m, D = 12m, E = 3 · 107kPa, ν = 0.3, and P = 1000N.

An analytical solution for the displacement field u = (u1, u2)
T can be found, e.g.,

in [56, 70, 94]:

u1 =
Py

6E0I

(
(6L− 3x)x+ (2 + ν0)

(
y2 − D2

4

))
,

u2 =− P

6E0I

(
3ν0y

2(L− x) + (4 + 5ν0)x
D2

4
+ (3L− x)x2

)
,

where I = D3/12 is the moment of inertia of the cross section of the cantilever.
When we consider the plane stress problem, we set E0 = E and ν0 = ν. For the
plane strain problem, we set E0 = E/(1 − ν2) and ν0 = ν/(1 − ν). Then, in both

54

4.4. Numerical examples

L

D x

y

P

(a) Problem setting.

6

−6

0

0 48
(b) Stress component σ11.

Figure 4.14: Bending of a cantilever, problem setting.

cases, the resulting exact stress components are as follows:

σ11 =
P (L− x)y

I
,

σ12 = − P

2I

(
D2

4
− y2

)
,

σ22 = 0.

The stress component σ11 is plotted in Figure 4.14(b).
We apply the exact displacement as essential boundary conditions at the boundary

x = 0, and the exact traction tN at x = L. The remaining boundaries at y = ±D/2
are free of traction.

Note that the exact displacement field u = (u1, u2)
T is a cubic polynomial. By

using basis functions of degree 3 and due to the simple geometry mappings, the exact
solution u is in Vh. Although the exact solution does not have peaks or singularities,
we refine randomly chosen subdomains, in order to demonstrate the performance of
the IETI-DP method in settings with hanging knots. In Figure 4.15(a), the thick
lines indicate the subdomain decomposition, while the thin lines schematically indi-
cate how fine the discretizations of the respective subdomains are, and whether the
setting is fully matching or not. The numerical tests confirm that, for all consid-
ered discretizations, the computed numerical solution is exact (up to the accuracy to
which we solve (4.33) for λ).

The table presented in Figure 4.15(b) shows that the condition numbers behave
as expected. For cases which are not fully matching, the columns labeled ncoarse
and nfine indicate the number of knot spans in one direction on the coarse and fine
discretizations, respectively. The other columns are labeled as in the previous ex-
ample. In the settings (C), (D), and (E) with hanging knots, it can be observed
that the condition number of M−1F grows slower than in the unpreconditioned case.
However, on coarse discretizations, both the absolute value of the condition number
and the number of (P)CG iterations are larger in the preconditioned case than in
the unpreconditioned case (cf. the discussion in the beginning of Section 4.3.3). The
preconditioner M−1

Z performs better in all cases with hanging knots.

55

4.4. Numerical examples

Setting (A), 4 subdomains, fully
matching.

Setting (B), 18 subdomains, fully
matching.

Setting (C), 4 subdomains, 2 of which are
h-refined.

Setting (D), 18 subdomains, 5 of which
are h-refined.

Setting (E), 10 subdomains, with hanging
vertices.

(a) Illustration of the tested discretizations.

condition numbers (P)CG iterations
Setting ncoarse n, nfine #λ F M−1F M−1

Z F F M−1F M−1
Z F

(A) ∗ 8 88 33.80 11.81 † 24 15 †
∗ 16 152 77.02 14.99 † 33 16 †
∗ 32 280 170.81 18.38 † 40 18 †
∗ 64 536 378.38 23.49 † 50 20 †

(B) ∗ 8 700 53.87 13.50 † 48 24 †
∗ 16 1100 116.68 16.79 † 67 27 †
∗ 32 2140 264.72 20.38 † 85 30 †
∗ 64 4060 595.88 24.21 † 120 34 †

(C) 8 16 136 66.03 109.10 28.43 23 31 21
16 32 248 157.41 146.07 35.53 37 38 22
32 64 472 358.85 184.14 43.02 48 41 24
64 128 920 795.88 224.55 51.11 62 47 28

(D) 4 8 580 46.38 74.78 31.02 50 53 35
8 16 940 102.90 109.54 38.59 68 63 39

16 32 1660 231.74 142.50 47.01 93 71 43
32 64 3100 530.70 175.41 55.94 123 77 46

(E) ∗ 8 338 184.11 351.08 98.71 53 58 37
∗ 16 578 387.44 433.00 141.50 69 63 41
∗ 32 1058 813.77 532.37 194.07 90 69 46
∗ 64 2018 1733.71 647.72 257.28 119 73 52

(b) Condition numbers and (P)CG iterations of the unpreconditioned and the preconditioned
interface problem.

∗In cases (A), (B), and (E), the number of knot spans is the same on all subdomains.
†In fully matching settings, we have M−1

Z = M−1.

Figure 4.15: Bending of a cantilever, discussed cases.

56

4.4. Numerical examples

Example 4.3: Poisson Problem on Yeti’s Footprint

In our third example, we solve the Poisson problem−∆u = f (type (I) in Section 2.2.1
with A = I) on the physical domain Ω resembling the footprint of a Yeti. The domain
is shown in Figure 4.16(a) and consists of 21 subdomains. We set Dirichlet boundary
conditions at the big toe, and Neumann boundary conditions everywhere else. The
boundary conditions and the right hand side f are determined by the exact solution

u(x, y) =

{
(R− r(x, y))4 + y/10, if r(x, y) < R,

y/10, else,

where r(x, y) = |(x, y) − (x0, y0)|. The solution u is constructed in such a way that
it has a peak at (x0, y0). We set R = 1 and (x0, y0) = (2.6, 2.7) (see Figure 4.16(a)).

For simplicity, since we know the exact solution u, we apply adaptive refinement
based on the exact error. For each subdomain Ω(k), we compute the local error
in the energy norm η(k) = ‖u − uh‖E,Ω(k) . We use a marking criterion similar to
(2.13) in Section 2.2.5.2, where subdomains are marked instead of cells. We mark all
subdomains for refinement, for which

η(k) ≥ 0.1max{η(ℓ), ℓ = 1, . . . , N}

holds. In each such refinement step, we apply uniform h-refinement on the marked
subdomains. The global mesh after 5 such refinement steps is shown in Figure 4.16(b).
In Figure 4.16(c), we compare the error obtained by global uniform refinement and
by the described adaptive refinement. As expected, for a given number of DOF a
more accurate solution can be achieved by adaptive, local h-refinement, as compared
to global refinement in a fully matching setting.

In Figure 4.16(d), the condition numbers and the (P)CG iteration numbers for
the fully matching setting are presented. The column labeled “DOF” indicates the
global number of DOF. In Figure 4.16(e), the condition numbers and the (P)CG
iterations in the adaptive refinement are shown. As in the previous examples, these
numbers illustrate the good performance of the preconditioner M−1

Z in the setting
with interfaces, which are not fully matching. Note that applying the preconditioner
M−1 results in iteration numbers which are similar to those for the unpreconditioned
case (for the considered meshes). In contrast to this, the iteration numbers obtained
with M−1

Z are, for a given size of λ, comparable to the fully matching case.

57

4.4. Numerical examples

Γ0

(x0, y0)

1 2 3 40
0

1

2

3

4

5

(a) Problem setting on Yeti’s
footprint.

1 2 3 40
0

1

2

3

4

5

(b) Discretization after 5
refinement steps.

uniform ref.
adaptive ref.

DOF
103 104 105

100

10−1

10−2

10−3

10−4

(c) Exact errors in the energy norm
‖u− uh‖E vs. DOF.

condition numbers (P)CG iterations
n DOF #λ F M−1F F M−1F

4 852 180 16.26 5.52 29 17
8 2420 292 35.25 7.55 37 20

16 7956 516 81.37 9.90 46 23
32 28628 964 188.51 12.49 59 26
64 108372 1860 431.61 15.36 85 28

(d) Condition numbers and (P)CG iterations, fully matching setting with global refinement.

condition numbers (P)CG iterations
n DOF #λ F M−1F M−1

Z F F M−1F M−1
Z F

0 852 180 16.26 5.52 5.52 29 17 17
1 916 188 22.92 39.14 13.99 29 30 19
2 1204 212 51.94 68.62 19.63 31 33 20
3 2444 268 119.36 111.01 25.94 36 38 22
4 7196 384 272.22 174.72 33.13 44 44 23
5 25756 628 612.87 317.69 41.14 55 53 25

(e) Condition numbers and (P)CG iterations, adaptive refinement.

Figure 4.16: Yeti’s footprint with adaptive refinement.

58

Chapter 5

Functional-type a posteriori
error estimates

The theoretical foundation for the functional-type a posteriori error estimator pre-
sented in this chapter is well-known and well-studied, see, e.g., [79, 80, 81, 82], and
in particular the monograph [84] and the references therein.

The aim of this chapter is to discuss an efficient application of such error estima-
tors in IGA, taking advantage of some properties which are specific to NURBS. The
results presented in this chapter can be found in [58]. We mainly focus on guaranteed
upper bounds of the true error. Guaranteed and sharp functional-type lower error
bounds are briefly discussed and results are presented in Section 5.6.

Assumption 5.1. In this chapter, we discuss model problems of type (I) as defined
in Section 2.2.1 with Dirichlet boundary conditions (i.e., Γ0 = ∂Ω), and we only con-
sider single-patch geometry mappings. We assume that the matrix A is a symmetric
positive definite matrix and has a positive inverse A−1, and that there exist constants
c1, c2 > 0 such that

c1|ξ|2 ≤ Aξ · ξ ≤ c2|ξ|2, ∀ξ ∈ R2. (5.1)

Under these assumptions, the norms

‖v‖2A =

∫

Ω
Av · v dx, ‖v‖2Ā =

∫

Ω
A−1v · v dx, (5.2)

are equivalent to the L2-norm ‖v‖20 =
∫
Ω v · v dx, see Section 2.1.2.

5.1 Guaranteed upper bound of the error

The starting point for the proposed method is the following main result which gives
an upper bound for the error in the energy norm. It can be found, e.g., in [80, 82, 84].

59

5.1. Guaranteed upper bound of the error

Theorem 5.2. Let CΩ be the constant in the Friedrichs’ type inequality ‖v‖0 ≤
CΩ‖∇v‖A, ∀v ∈ V0. Let u be the exact solution of the model problem (I), and let
uh ∈ Vh be an approximate solution. Then, the following estimate holds.

‖∇u−∇uh‖A ≤ ‖A∇uh − y‖Ā + CΩ‖div y + f‖0, (5.3)

where y is an arbitrary vector-valued function in H(Ω,div).

The constant CΩ depends only on the domain Ω and the coefficient matrix A (but
not on the underlying mesh), see, e.g., [62, 84]. Note that CΩ can be computed either
numerically or, if one can find a domain Ω� ⊃ Ω, where Ω� is a square domain with
side-length ℓ, then CΩ ≤ c2

ℓ
π
√
d
, where d is the dimension and c2 is the constant

in (5.1).
Note that, if we choose y via the (unknown) exact solution y = A∇u, both sides

of (5.3) coincide. Hence, the estimate is sharp in the sense that, for any fixed uh,
we can find a function y such that the upper bound is as close to the exact error as
desired. The estimate given in Theorem 5.2 is a guaranteed and fully computable
upper bound for any conforming approximation uh ∈ Vg.

In the following, we describe some approaches to construct y and discuss their
relative merits.

5.1.1 Post-processing of uh

It is possible to obtain good error indicators by constructing functions y by some
post-processing of the discrete solution uh, see [62, 84] and the references therein.
Consider, for example, A = I and that uh ∈ Vh has been computed with NURBS
basis functions of degree p ≥ 2 with at least C1-continuity. Then, since uh ∈ Cp−1,
we have ∇uh ∈ (Cp−2)2 ⊂ H(Ω,div). Choosing y = ∇uh will thus result in

‖∇u−∇uh‖0 ≤ CΩ‖∆uh + f‖0. (5.4)

To show the efficiency of the estimator (5.4), we present an illustrative numerical
example. This example, referred to as Example 5.1 in the remainder, is chosen due
to a smoothly varying function (without any large gradients) in both directions.

Example 5.1 (Sinus Function on the Unit Square) In this numerical example,
the computational domain is the unit square Ω = (0, 1)2 and uh is piecewise
quadratic in both directions, i.e., p = q = 2. The coefficient matrix is constant,
A = I, and the exact solution is given by

u = sin(6πx) sin(3πy).

The right-hand-side f and the (homogeneous) boundary conditions g0 are de-
termined by the prescribed exact solution u.

60

5.1. Guaranteed upper bound of the error

The local error indicator ηQ is given by the localized version of the bound in (5.4),
i.e., by

ηQ = ‖∆uh + f‖0,Q, (5.5)

and we choose the fixed-percentile criterion (2.12) described in Section 2.2.5.1 for cell-
marking. In Figure 5.1, we present the cells marked for refinement by the exact error.
The cells marked for refinement by the error indicator given in (5.5) are presented in
Figure 5.2.

(a) 16× 16 (b) 32× 32 (c) 64× 64 (d) 128 × 128

Figure 5.1: Cells marked by exact error with ψ = 0.8 in Example 5.1.

(a) 16× 16 (b) 32× 32 (c) 64× 64 (d) 128 × 128

Figure 5.2: Cells marked by error estimator with ψ = 0.8 in Example 5.1, yh = ∇uh.

We see that starting from the mesh 32×32, the majorant is able to nicely capture
the refinement pattern of exact error. However, from a closer look at the convergence
of the exact error and the majorant, see Figure 5.3, we find that though such an
estimate is a guaranteed upper bound and very cheap to compute, it over-estimates
the exact error, and its convergence is slower than the exact error (due to different
operators acting on uh on both sides).

5.1.2 Cell-wise interpolation

We now discuss a quasi interpolation (cell-wise) approach. Considering the 1D
case first, we fix a certain DOF ui, and set up a local problem that involves only
those DOF/basis functions which have an influence on ui. As discussed in Sec-
tion 3.1.1.2, the support of a univariate NURBS basis function extends through p+1
knot spans (the interval (si, si+p+1)). The total number of basis functions whose

61

5.1. Guaranteed upper bound of the error

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

DOF

E
rr

or

True error
Majorant

Figure 5.3: Convergence of exact error and the majorant (5.4) for Example 5.1.

support intersect the support of the function Rs
i,p is 2p+1 (the functions with indices

k ∈ {i − p, . . . , i + p}). Considering only these basis functions, we obtain a local
system matrix which we denote by Li

h. This matrix is of size (2p+1)× (2p+1) and
has a bandwidth of 2p + 1. For example, if p = 3, the matrix Li

h is a 7 × 7-matrix,
and its structure is given by

∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗

.

For each DOF ui, such a system (with appropriate right hand side) needs to be
solved. The same principle applies for bivariate basis functions. Assume that the
polynomial degrees are same in both directions and are denoted by p. Due to the
tensor product structure, the support of a bivariate NURBS basis function R(i,j)

intersects the support of a total of (2p + 1)2 basis functions. Hence, the size of

the local system matrix L
(i,j)
h is (2p + 1)2 × (2p + 1)2. Furthermore, if the basis

functions are vector-valued with d components, the local system matrix is of size
d(2p + 1)2 × d(2p + 1)2. For example, for vector-valued functions of degree 3 with
two components, the local system size is 98 × 98. The solution of the corresponding
system will give two coefficients which can be used for both the components associated
with the double-index (i, j). Unfortunately, this approach is neither a cheap one (to
compute y), nor does it result in desired sharp error bounds, and therefore, we do

62

5.1. Guaranteed upper bound of the error

not present its results.

5.1.3 Global minimization

In order to obtain a sharp estimate (and not just an error indicator), one has to
find a function y which minimizes the right-hand-side of (5.3). For minimizing this
estimate numerically, we first modify (5.3). Recall the algebraic Young’s inequality

2ab ≤ βa2 + 1
β b

2

which holds for any a, b ∈ R and β > 0. From this, it easily follows that

(a+ b)2 ≤ (1 + β)a2 + (1 + 1
β)b

2. (5.6)

Applying (5.6) to (5.3), we obtain the following corollary from Theorem 5.2 (see
also [84]).

Corollary 5.3. For any uh ∈ Vgh, the upper bound of the error is given by the
estimate

‖∇uh −∇u‖2A ≤M2
⊕(y, β), (5.7)

where
M2

⊕(y, β) = (1 + β)‖∇uh − y‖2Ā + (1 + 1
β)C

2
Ω‖div y + f‖20, (5.8)

and where y is an arbitrary function in H(Ω,div), β is an arbitrary positive number,
and CΩ is as in Theorem 5.2.

Hereinafter, for simplicity, we will refer to M2
⊕(y, β) as majorant. Introducing

b1 = 1 + β, b2 = (1 + 1
β)C

2
Ω,

U1 = ‖A∇uh − y‖2Ā, U2 = ‖div y + f‖20,
(5.9)

we can briefly write the majorant as

M2
⊕(y, β) = b1U1 + b2U2.

Note that the bound in (5.8) holds for any positive β and any function y ∈
H(Ω,div). The technique for finding such parameters y and β will be discussed in
Sections 5.2 and 5.4. Before proceeding, we show Lemma 5.5 below, which ensures
that the majorant is indeed a sharp bound. The Lemma and the proof, which we
sketch for later reference, can be found in [84].

Definition 5.4. A sequence of finite-dimensional subspaces {Yj}∞j=1 of a Banach-
space Y is called limit dense in Y , if for any ε > 0, there exists an index jε, such
that infpk∈Yk

‖pk − v‖Y < ε for all k > jε.

Lemma 5.5. Let the spaces {Yj}∞j=1 be limit dense in H(Ω,div). Then

lim
j→∞

inf
yj∈Y,β>0

M2
⊕(yj, β) = ‖∇u−∇uh‖2A (5.10)

63

5.2. Steps involved in minimizing the majorant

Proof. Recall that the H(Ω,div)-norm ‖ · ‖div is defined by ‖v‖2div = ‖v‖20 + ‖div v‖20.
Let ε > 0 be arbitrarily small, but fixed. Let jε be the index such that, for all k > jε,
there exists a pk ∈ Yk with ‖A∇u− pk‖div < ε. Then,

inf
yj∈Yj ,β>0

M2
⊕(yj, β) ≤ M2

⊕(pk, ε), (5.11)

where

M2
⊕(pk, ε) = (1 + ε)‖A∇uh − pk‖2Ā + (1 + 1

ε)C
2
Ω‖f + div pk‖20. (5.12)

Since ‖Av‖Ā = ‖v‖A, we can write

‖A∇uh − pk‖Ā ≤ ‖A∇uh −A∇u‖Ā + ‖A∇u− pk‖Ā
= ‖∇uh −∇u‖A + ‖A∇u− pk‖Ā.

The norm ‖ ·‖Ā is equivalent to the L2-norm, so there exists a constant cA, such that
the second term in the right-hand side can be bounded by

‖A∇u− pk‖Ā ≤ cA‖A∇u− pk‖0 ≤ cA‖A∇u− pk‖div ≤ cAε.

Hence, we obtain the following estimate for the first term in (5.12):

‖A∇uh − pk‖Ā ≤ ‖∇u−∇uh‖A +O(ε). (5.13)

Since f = − divA∇u, we can bound the second term in (5.12) as follows:

‖div pk + f‖0 = ‖div pk − divA∇u‖0 ≤ ‖pk −A∇u‖div ≤ ε. (5.14)

With (5.13) and (5.14), we can rewrite (5.12) as

M2
⊕(pk, ε) ≤ (1 + ε)(‖∇u −∇uh‖2A +O(ε)) + (1 + 1

ε)C
2
Ωε

2

= ‖∇u−∇uh‖2A +O(ε). (5.15)

Hence, the bound M2
⊕(pk, ε) → ‖∇u−∇uh‖2A as ε→ 0.

Remark 5.6. Note that ‖∇u−∇uh‖2A also converges to zero as uh converges to the
exact solution u. From (5.15), one can see that it is necessary to choose Yh such
that ε → 0 faster than ‖∇u − ∇uh‖2A, i.e., such that Yh has better approximation
properties than Vh, in order to get a sharp bound.

5.2 Steps involved in minimizing M2
⊕(y, β)

As mentioned above, we need to find parameters y and β which minimize the majo-
rant. To do this, we apply an interleaved iteration process in which we alternately
fix one of the variables and minimize with respect to the other. This process, which
we summarize in the following, has been described, e.g., in [59, 62].

64

5.2. Steps involved in minimizing the majorant

Step 1 Minimization with respect to y: Assume that β > 0 is given and fixed, either
by an initial guess or as a result of Step 2 below. Thereby, the majorant M2

⊕(y)
is a quadratic function of y and we calculate its Gateaux-derivative M2

⊕(y)
′

with respect to y in direction ỹ. Setting M2
⊕(y)

′ = 0, we obtain

b1

∫

Ω
A−1y · ỹ dx+ b2

∫

Ω
div y div ỹ dx

= b1

∫

Ω
∇uh · ỹ dx− b2

∫

Ω
f div ỹ dx,

(5.16)

where b1 = 1 + β and b2 = (1 + 1
β)C

2
Ω, as defined in (5.9). In order to solve

(5.16), we choose a finite-dimensional subspace Yh ⊂ H(Ω,div) and search for
a solution yh ∈ Yh. Testing in all directions ỹ ∈ Yh leads to a linear system of
equations which we write as

Ly = r. (5.17)

Here, L and r are the matrix and the vector induced by the left hand side
and the right hand side of equation (5.16), respectively. By solving (5.17), we
obtain the coefficient vector y for the discrete function yh minimizingM2

⊕(y) in
Yh ⊂ H(Ω,div). Note that this process requires non-negligible cost as we need
to assemble L and r and solve the system (5.17).

Step 2 Minimization with respect to β: Assume that yh is given from Step 1. By
direct calculation, we see that M2

⊕(β) is minimized with respect to β by setting

β = CΩ

√
U2

U1
, (5.18)

where U1 and U2 are as defined in (5.9). Note that the evaluation of U1 and
U2 (and thus β) requires only the evaluation of integrals, and thus involves
negligible cost.

Steps 1 and 2 are repeated iteratively. We will refer to one loop of applying Step 1
and Step 2 as one interleaved iteration. Once we have computed minimizers yh and
β, the computation of the majorant M2

⊕(yh, β) is straightforward as it requires only
the evaluation of the integrals.

Note that the matrix L can be written as

L = b1L1 + b2L2, (5.19)

where L1 and L2 correspond to the terms
∫
ΩA

−1y · ỹ dx and
∫
Ω div y div ỹ dx in

(5.16), respectively. Since the matrices L1 and L2 in (5.19) do not change in the
interleaved iteration process, they need to be assembled only once. Analogously to
(5.19), we can write r as

r = b1r1 − b2r2, (5.20)

65

5.3. Quality indicator and local error indicator

where r1 and r2 correspond to the terms
∫
Ω∇uh · ỹh dx and

∫
Ω f div ỹ dx in (5.16),

respectively. The terms r1 and r2 also need to be assembled only once since they also
do not change in the interleaved iteration process. The full matrix L and vector r,
however, do change in each iteration, because of the change in β and yh. Based on
past numerical studies, see, e.g., [59, 62], and the results presented in Sections 5.4 and
5.5, it has been found that for linear problems, one or two such interleaved iterations
are enough for obtaining a sufficiently accurate result.

To recapitulate, we summarize the steps for computing the majorant in Algo-
rithm 5.1.

Algorithm 5.1 Computation of the majorant M⊕
Input: uh, f , CΩ, Yh
Output: M⊕

β := initial guess
Assemble and store L1, L2, r1, r2
while convergence is not achieved and maximum number of interleaved iterations
is not reached do

L := (1 + β)L1 + (1 + 1
β)C

2
ΩL2

r := (1 + β)r1 − (1 + 1
β)C

2
Ωr2

Solve Ly = r for y
U1 := ‖A∇uh − yh‖2Ā
U2 := ‖div yh + f‖20
β := CΩ

√
U2/U1

end while
M⊕(y, β) :=

√
(1 + β)U1 + (1 + 1

β)C
2
ΩU2

Remark 5.7. Note that the space H(Ω,div), where the auxiliary quantity y is sought,
is a global space, and for a general complicated problem, it is not immediately clear
how to locally compute y without global effect. That being said, a local version of
our estimator can be devised for specific problems and data (like equilibration of flux
approach), however, that will restrict its generality, which is not very appealing to us.
Therefore, we focus on computing the majorant from the global minimization problem.

5.3 Quality indicator and local error indicator

So far, we have defined the majorant and discussed how we minimize (numerically)
the majorant over Yh. Another important question, especially in the light of adaptive
local refinement, is whether a calculated majorant does correctly capture the error
distribution. In order to have an indication for how close the computed majorant is

66

5.3. Quality indicator and local error indicator

to the exact error, we define the efficiency index I⊕ by

I⊕ =
M⊕(y, β)

‖∇u−∇uh‖A
. (5.21)

Obviously, the closer I⊕ is to 1, the better the estimate. From the proof of Lemma 5.5,
we recall the following observation:

b1U1 → ‖∇u−∇uh‖A and b2U2 → 0,
as yh ∈ H(Ω,div) → A∇u. (5.22)

From this, we deduce the following quality indicator.

Proposition 5.8. The distribution of the exact error is captured correctly, if

b1U1 > C⊕ b2U2 (5.23)

with some constant C⊕ > 1.

This criterion is easy to check numerically, since the terms appearing in (5.23)
are evaluated in the process of minimizing M2

⊕(y, β). It was found in the numerical
examples presented in Sections 5.4 and 5.5 that a correct distribution of the error is
obtained, if C⊕ ≥ 5, even if this choice may be conservative in some cases.

Remark 5.9. For the choice of C⊕ ≥ 5, we have b2U2 < 1/5 b1U1, and there-
fore, ‖∇u − ∇uh‖A ≤

√
1.2 b1U1. One can see from all the tables in Sections 5.4

and 5.5, that whenever this criterion is satisfied, we have I⊕ ≤ 1.2 (the ratio of√
b1U1/‖∇u−∇uh‖A is of the same magnitude as

√
1 + 1/C⊕. Note that this crite-

rion does not require b2U2 to be close to zero, but just less than 1/5 of b1U1. Since
these approximations (of the original problem and the auxiliary problem in H(Ω,div))
are monotonically convergent, the approximation at any level will only improve at the
next refinement level, and this is why the results get better for any further refinement.
Clearly, all the terms are fully computable, and thus, usable in an algorithm.

We define the local error indicator ηQ on a cell Q as the restriction of the first
component of the majorant to the cell Q, i.e., by

η2Q(yh) =

∫

Q
(∇uh −A−1yh)(A∇uh − yh) dx. (5.24)

The factor (1 + β) is omitted, since this scalar factor is the same for all cells of the
domain. As remarked in the observation (5.22), the first component will converge to
the exact error, thus providing a good indicator for the error distribution. A more
detailed discussion of this indicator, including a proof of the convergence to the true
error distribution, can be found in [84, Sec. 3.6.4].

67

5.4. Efficient computation/implementation

5.4 Efficient computation/implementation

We now discuss the efficiency and the computational cost of the proposed estimator
based on the global minimization steps presented in Section 5.2. We again consider
Example 5.1 from Section 5.1. All the computations for this example and the exam-
ples presented in Section 5.5 are performed in MATLABr, and the linear systems
(2.10) and (5.17) are solved using the in-built direct solver. One can, however, also
use efficient iterative solvers, see, e.g., [42, 43] for (2.10). The right-hand-side f and
the boundary conditions g0 are determined by the prescribed exact solution u.

We study the efficiency of the majorant based on straight forward computational
procedure, as discussed in Section 5.4.1, and based on cost-efficient procedure, as
discussed in Section 5.4.2, which coarsens the mesh and increases the polynomial
degree simultaneously. This alternative cost-efficient procedure will then be used in
Section 5.5 for further numerical examples. In all the numerical results of Example 5.1
in this Section, the initial guess for β is 0.01.

In the tables, we indicate the mesh-size by the number of interior knot spans of
the knot vectors s and t, respectively. Recall from Definition 3.1 that by this, we
mean the number of knot spans without counting the vanishing knot spans at the
beginning and the end of the open knot vectors. For example, if

s = (0, 0, 0, 14 ,
1
2 ,

3
4 , 1, 1, 1)

t = (0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1),

then the mesh-size is 4× 3, since the empty knot span (12 ,
1
2) in t is also counted as

an interior knot span.
We compare the timings for assembling and for solving the linear systems (2.10)

and (5.17), as well as the total time for assembling and solving. In the presented
tables, these timings are shown in the columns labelled “assembling-time”, “solving-
time”, and “sum”, respectively. The label “pde” indicates that the column corre-
sponds to solving the partial differential equation (2.10), i.e., to assembling K and
solving (2.10) for u. The label “est.” indicates that the timings correspond to the
estimator, i.e., assembling L and solving (5.17) for y. In the column labelled “ est.

pde”,
we present the ratio of these timings. Note that these timing ratios were computed
before rounding the numbers, i.e., taking the ratios of the reported numbers may
result in slightly different values.

The efficiency indices I⊕ (see (5.21)) computed in the numerical examples are
presented in tables. In order to check the quality criterion discussed in Section 5.3,
we present the values of b1U1, b2U2, and C⊕ and see whether the inequality (5.23)
is fulfilled or not. To indicate the quality of the error distribution captured by the
majorant, we plot which cells are marked for refinement based on the exact local
error and the fixed-percentile criterion (2.12) (plotted in black), and compare this to
the refinement marking based on the criterion (2.12) applied to the computed error
estimate (plotted in magenta).

68

5.4. Efficient computation/implementation

5.4.1 Straightforward procedure

Analogously to Vh in (3.20), we choose a function space Ŷh on the parameter domain
and we define the function space Yh by the push-forward

Yh = Ŷh ◦G−1.

Example 5.1 (Straightforward Procedure) For our first choice for Ŷh, we use
the same mesh as for V̂h, and we choose

Ŷh = Sp+1,p
h ⊗ Sp,p+1

h , (5.25)

where Sp,q
h denotes the space of NURBS functions of degree p and Cp−1-

continuity in the first coordinate, and degree q and Cq−1-continuity in the
second coordinate (cf. [21, 23, 24, 38]). The parameter h indicates the charac-
teristic cell-size of the mesh for V̂h.

We consider the same setting as presented in Example 5.1 in Section 5.1. In
Table 5.1, we present the computed efficiency indices obtained with this choice of Yh,
which show that upper bound approaches 1 (representing exact error) as the mesh
is refined. The dashed line in Table 5.1 indicates that the criterion (5.23) is fulfilled
with C⊕ 5 (actually 4.94) starting from the mesh 64× 64.

The cells marked by the error estimator are shown in Figure 5.4. When comparing
these plots to those presented in Figure 5.1, we see that the error distribution is
captured accurately starting from the mesh 16 × 16.

The timings presented in Table 5.2, however, show that the computation of the
error estimate is costlier (about 4.5 times) than assembling and solving the original
problem. This is not surprising, since, when Nu denotes the number of degrees of
freedom (DOF) of uh, the number of DOF of yh, which is vector-valued, is asymptot-
ically 2Nu. This results in higher assembly time and the solution time for the linear
system (where a direct solver is used). Clearly, this straightforward approach is not
cost-efficient.

mesh-size I⊕ b1U1 b2U2 C⊕
8× 8 3.43 2.62e+01 1.17e+02 0.2
16× 16 1.92 6.07e-01 6.19e-01 1.0
32× 32 1.41 2.29e-02 9.71e-03 2.4

64× 64 1.20 1.15e-03 2.33e-04 4.9
128 × 128 1.10 6.51e-05 6.54e-06 10.0
256 × 256 1.05 3.87e-06 1.95e-07 19.8
512 × 512 1.03 2.36e-07 5.94e-09 39.7

Table 5.1: Efficiency index and components of the majorant in Example 5.1, Ŷh as in (5.25).

69

5.4. Efficient computation/implementation

(a) 16× 16 (b) 32× 32 (c) 64× 64 (d) 128 × 128

Figure 5.4: Cells marked by error estimator with ψ = 0.8 in Example 5.1, Ŷh as in (5.25).

mesh-size #DOF assembling-time solving-time sum
uh yh pde est. “ est.

pde” pde est. “ est.
pde” pde est. “ est.

pde”

8× 8 100 220 0.04 0.17 4.39 <0.01 <0.01 5.16 0.04 0.17 4.40
16× 16 324 684 0.14 0.59 4.25 <0.01 0.01 5.39 0.14 0.60 4.26
32× 32 1156 2380 0.46 2.17 4.70 0.01 0.03 4.71 0.47 2.20 4.70
64× 64 4356 8844 1.82 8.51 4.68 0.03 0.20 6.15 1.85 8.70 4.70
128× 128 16900 34060 7.38 34.19 4.63 0.15 0.87 5.70 7.54 35.06 4.65
256× 256 66564 133644 33.30 149.78 4.50 0.84 5.66 6.78 34.14 155.44 4.55
512× 512 264196 529420 191.11 766.10 4.01 3.77 33.92 9.00 194.88 800.03 4.11

Table 5.2: Number of DOF and timings in Example 5.1, Ŷh as in (5.25).

5.4.2 Alternative cost-efficient procedure

Recall that the cost of Step 1 of the algorithm presented in Section 5.2 depends on
the choice of Yh ⊂ H(Ω,div). As shown in Lemma 5.5, we can make the estimate as
sharp as we desire by choosing a suitably large space Yh. However, the larger Yh is
chosen, the more costly setting up and solving the system (5.17) becomes. Clearly,
it is highly desirable to keep the cost for error estimation below the cost for solving
the original problem.

As discussed above, choosing Ŷh as in (5.25) does not result in a cost-efficient
method. Apart from the fact that yh is vector-valued while uh is scalar, another
aspect contributes to the high cost for the procedure presented in Section 5.4.1.
Recall that, by choosing Ŷh as in (5.25), we have

y1 ∈ Sp+1,p
h ,

y2 ∈ Sp,p+1
h ,

i.e., the components of yh are in different spline spaces. Hence, we have to compute
different basis functions for y1 and y2 (note that this can be a costly procedure for
higher polynomial degrees). Furthermore, when assembling, for example, the matrix
L1, we need to compute integrals over products of basis functions of the form

∫

Ω
RiRj dx.

70

5.4. Efficient computation/implementation

With Ŷh as in (5.25), the product RiRj of basis functions of y1 is different than the
product of basis functions of y2, hence, the integrals have to be evaluated indepen-
dently for y1 and y2.

Example 5.1 (Case 1) In the light of these observations, we study the following
alternative choice for Ŷh.

Ŷh = Sp+1,p+1
h ⊗ Sp+1,p+1

h . (5.26)

We refer to this setting as Case 1 in the remainder of the paper. With this choice,
y1 and y2 are contained in the same spline spaces. Hence, the basis functions need
to be computed only once, and any computed function values can be used for both
components of yh.

The computed efficiency indices are presented in Table 5.3, which show that we
obtain even better (i.e., sharper) upper bounds for the exact error with Ŷh as in
(5.26) than with the choice (5.25). When we compare the plots of the cells marked
by the error estimator in Figure 5.5 to the plots in Figure 5.1, we see that the error
distribution is again captured accurately starting from the mesh 16×16. The dashed
line in Table 5.3 indicates that the criterion (5.23) is fulfilled with C⊕ ≥ 5 starting
from the mesh 64×64. Note that we also have C⊕ = 6.5 > 5 on the mesh 8×8. Since
this mesh is too coarse to resolve the highly oscillating gradients of the considered
exact solution u, this result is considered as an outlier.

The timings obtained with this method are presented in Table 5.4. This approach
reduces the total time needed for computing the majorant from a factor of about 4.5
to a factor of approximately 3 compared to the time for assembling and solving the
original problem. Nevertheless, a factor of 3 in the timings is still not very appealing,
and demands further reduction in cost.

mesh-size I⊕ b1U1 b2U2 C⊕
8× 8 2.77 8.08e+01 1.24e+01 6.5
16× 16 1.71 5.75e-01 3.96e-01 1.5
32× 32 1.32 2.14e-02 7.05e-03 3.0

64× 64 1.16 1.11e-03 1.78e-04 6.2
128 × 128 1.08 6.39e-05 5.08e-06 12.6
256 × 256 1.04 3.83e-06 1.53e-07 25.0
512 × 512 1.02 2.35e-07 4.69e-09 50.1

Table 5.3: Efficiency index and components of the majorant in Example 5.1, Case 1.

Remark 5.10. Note that the use of equal degree polynomials for both the components
of Ŷh is only possible because of extra regularity readily available from NURBS basis
functions. A counter-part is not possible in FEM case simply because the derivatives
of FEM basis functions (with C0 regularity) is only in L2, and hence, one can not

71

5.4. Efficient computation/implementation

(a) 16× 16 (b) 32× 32 (c) 64× 64 (d) 128 × 128

Figure 5.5: Cells marked by error estimator with ψ = 0.8 in Example 5.1, Case 1.

mesh-size #DOF assembling-time solving-time sum
uh yh pde est. “ est.

pde” pde est. “ est.
pde” pde est. “ est.

pde”

8× 8 100 242 0.04 0.11 2.78 <0.01 <0.01 1.51 0.04 0.11 2.76
16× 16 324 722 0.12 0.34 2.86 <0.01 0.01 5.33 0.12 0.35 2.90
32× 32 1156 2450 0.46 1.35 2.94 0.01 0.05 7.69 0.47 1.40 3.01
64× 64 4356 8978 1.77 5.30 2.99 0.03 0.27 8.02 1.80 5.57 3.09
128× 128 16900 34322 7.39 21.89 2.96 0.16 1.45 9.26 7.55 23.34 3.09
256× 256 66564 134162 33.00 94.69 2.87 0.84 8.83 10.54 33.84 103.52 3.06
512× 512 264196 530450 191.59 498.20 2.60 3.83 61.45 16.06 195.42 559.65 2.86

Table 5.4: Number of DOF and timings in Example 5.1, Case 1.

avoid using proper subspaces of H(Ω,div), e.g., Raviart-Thomas space (with unequal
degree polynomials in both the dimensions for both the components). It is further
important to note from a close inspection of Tables 5.1 and 5.3 that equal degree
components of vector-valued quantity outperformed the unequal degree case.

In order to further reduce the computational cost, we reduce the number of DOF
of yh by coarsening the mesh by a factor K in each dimension. The number of DOF of
yh is thus reduced to 2Nu/K

2 (asymptotically). The larger K is chosen, the greater
the reduction of DOF will be. At the same time, if the coarsening is done too aggres-
sively, sharp features might not be detected properly on coarse meshes. We counter
the reduction in accuracy due to mesh-coarsening by increasing the polynomial degree
of yh by some positive integer k, i.e., we choose

Ŷh = Sp+k,p+k
Kh ⊗ Sp+k,p+k

Kh . (5.27)

Note that, if desired, one could also choose different factors K1 and K2 and different
degree increases k1 and k2 for the first and second component, respectively.

Remark 5.11. With these choices of Ŷh, we take advantage of the following spe-
cific property of univariate NURBS basis functions. For Cp−1 regularity, increasing
the polynomial degree by k only adds a total of k additional basis functions (see k-
refinement in Section 3.1.1.4). In other words, the global smoothness can be increased

72

5.4. Efficient computation/implementation

at the cost of only a few additional DOF. Coarsening the mesh by a factor K, how-
ever, will reduce the number of DOF by the same factor K (asymptotically).

Moreover, as we will see from the three cases of Example 5.1, we get better effi-
ciency indices with higher degree p and coarser meshes as compared to lower degree p
and finer meshes. This phenomenon is similar to the p finite element discretization
for problems with smooth solutions.

Note that Case 1 discussed above fits into this framework, since Case 1 corre-
sponds to the choice K = k = 1.

Example 5.1 (Case 2) For the next setting, we apply moderate mesh-coarsening
by choosing

K = k = 2 (i.e., Ŷh = Sp+2,p+2
2h ⊗ Sp+2,p+2

2h).

This setting will be referred to as Case 2 in the remainder of this thesis. The
computed efficiency indices along with the magnitudes of the terms b1U1 and b2U2

and their ratio C⊕ = b1U1/b2U2 for Case 2 are presented in Table 5.5, and the
marked cells are plotted in Figure 5.6. Both indicate that a good upper bound of
the error and the correct error distribution are computed on fine meshes. On coarse
meshes, however, the efficiency index is larger than in Case 1, which is due to the
boundary effects. The timings presented in Table 5.6 show that, even though Case 2
is faster than Case 1, this approach still costs roughly as much as solving the original
problem. This is due to the costlier evaluation of the higher degree basis functions,
as well as the increased support and overlap of the basis functions, which results in
more non-zero entries in L than in K.

mesh-size I⊕ b1U1 b2U2 C⊕
8× 8 14.19 1.59e+03 8.53e+02 1.9

16× 16 8.49 1.97e+01 4.32e+00 4.6
32× 32 1.82 3.05e-02 2.41e-02 1.3

64× 64 1.16 1.12e-03 1.76e-04 6.4
128× 128 1.04 6.14e-05 2.24e-06 27.4
256× 256 1.01 3.72e-06 3.32e-08 112.0
512× 512 1.00 2.31e-07 5.13e-10 450.3

Table 5.5: Efficiency index and components of the majorant in Example 5.1, Case 2.

Example 5.1 (Case 3) To further improve the timings, we coarsen the mesh more
aggressively by a factor of 4 and, at the same time, increase the polynomial
degree of yh by 4, as compared to uh, i.e.,

K = k = 4 (i.e., Ŷh = Sp+4,p+4
4h ⊗ Sp+4,p+4

4h).

73

5.4. Efficient computation/implementation

(a) 16× 16 (b) 32× 32 (c) 64× 64 (d) 128 × 128

Figure 5.6: Cells marked by error estimator with ψ = 0.8 in Example 5.1, Case 2.

mesh-size #DOF assembling-time solving-time sum
uh yh pde est. “ est.

pde” pde est. “ est.
pde” pde est. “ est.

pde”

8× 8 100 128 0.03 0.05 1.39 <0.01 <0.01 1.16 0.04 0.05 1.39
16× 16 324 288 0.14 0.18 1.29 <0.01 <0.01 0.92 0.14 0.18 1.28
32× 32 1156 800 0.54 0.59 1.10 0.01 0.02 2.32 0.55 0.61 1.11
64× 64 4356 2592 1.91 2.33 1.22 0.04 0.08 2.09 1.95 2.40 1.23
128× 128 16900 9248 7.46 9.54 1.28 0.19 0.51 2.75 7.64 10.05 1.32
256× 256 66564 34848 33.93 39.02 1.15 0.90 2.59 2.88 34.82 41.60 1.19
512× 512 264196 135200 196.23 177.98 0.91 4.08 15.91 3.90 200.31 193.89 0.97

Table 5.6: Number of DOF and timings in Example 5.1, Case 2.

We refer to this setting as Case 3 in the remainder of this thesis. This aggressive
coarsening notably affects the efficiency index on coarse meshes, see Table 5.7. On
fine meshes, however, the efficiency indices are close to 1 in all presented cases. The
number of DOF of yh in Case 3 is only Nu/8 (asymptotically). The timings presented
in Table 5.8 show that this setting results in a method which can be performed
significantly faster (at almost half of the cost) than solving the original problem.
The more aggressive reduction of DOF outweighs the additional costs mentioned
above, even though the polynomial degree is now increased by 4.

mesh-size I⊕ b1U1 b2U2 C⊕
8× 8 11.28 5.38e+02 1.01e+03 0.5

16 × 16 36.43 2.83e+02 1.60e+02 1.8
32 × 32 12.63 2.04e+00 5.81e-01 3.5

64 × 64 1.17 1.13e-03 1.88e-04 6.0
128 × 128 1.01 5.98e-05 3.79e-07 157.8
256 × 256 1.00 3.70e-06 1.24e-09 > 103

512 × 512 1.00 2.31e-07 5.32e-12 > 104

Table 5.7: Efficiency index and components of the majorant in Example 5.1, Case 3.

We now comment on the interleaved iterations. The results in the Tables 5.1, 5.3,

74

5.4. Efficient computation/implementation

(a) 16× 16 (b) 32× 32 (c) 64× 64 (d) 128× 128

Figure 5.7: Cells marked by error estimator with ψ = 0.8 in Example 5.1, Case 3.

mesh-size #DOF assembling-time solving-time sum
uh yh pde est. “ est.

pde” pde est. “ est.
pde” pde est. “ est.

pde”

8× 8 100 128 0.04 0.03 0.76 <0.01 <0.01 1.09 0.04 0.03 0.76
16× 16 324 200 0.14 0.10 0.69 <0.01 <0.01 0.61 0.14 0.10 0.69
32× 32 1156 392 0.54 0.31 0.57 0.01 <0.01 0.34 0.55 0.31 0.57
64× 64 4356 968 1.90 1.19 0.63 0.04 0.01 0.26 1.94 1.20 0.62
128× 128 16900 2888 7.49 4.86 0.65 0.16 0.14 0.84 7.66 4.99 0.65
256× 256 66564 9800 33.90 20.15 0.59 0.91 0.82 0.91 34.81 20.98 0.60
512× 512 264196 35912 194.25 84.70 0.44 4.10 5.45 1.33 198.35 90.15 0.45

Table 5.8: Number of DOF and timings in Example 5.1, Case 3.

5.5, and 5.7 were obtained by applying only two interleaved iterations, as described in
Section 5.2. As mentioned there, a sufficiently accurate result can be obtained already
after the first such iteration. To illustrate this, we present the efficiency indices
for Case 3 in Table 5.9, which were obtained after one, two, and four interleaved
iterations, respectively. The efficiency index does vary notably on the coarser meshes,
but since all of these values greatly overestimate the exact error, they do not correctly
capture the error distribution. On meshes, where the criterion (5.23) is fulfilled,
and thus the error distribution is correctly recovered, the differences due to more
interleaved iterations are insignificant.

Remark 5.12. The observations discussed above illustrate that one has to balance
the sharpness of the majorant on the one hand, and the required computational effort
on the other hand. Note that in typical practical applications, the exact solution (and
thus the sharpness of the majorant) is not known. Therefore, to address the balancing
between sharpness and required computational effort, we propose the following strat-
egy. If the mesh is coarse and the total computational cost for the error estimate is
moderate, we apply no (or only moderate) coarsening. When the original mesh is
fine (problem size being large), we coarsen the mesh more aggressively, and thereby,
profit from the fast computation of the estimate. While exercising this strategy it is
important to enforce the criterion (5.23) with C⊕ ≥ 5.

75

5.5. Numerical examples for the upper bound

mesh-size interleaved iterations
1 2 4

8× 8 11.84 11.28 11.25
16× 16 80.31 36.43 33.78
32× 32 17.36 12.63 10.11

64× 64 1.20 1.17 1.17
128 × 128 1.01 1.01 1.01
256 × 256 1.00 1.00 1.00
512 × 512 1.00 1.00 1.00

Table 5.9: Comparison of I⊕ for different numbers of interleaved iterations, Example 5.1,
Case 3.

5.5 Numerical examples for the upper bound

We now present further numerical examples which illustrate the potential of the
proposed a posteriori error estimator. We will discuss the following three settings
that were also discussed in Section 5.4. Case 1: K = k = 1, Case 2: K = k = 2, and
Case 3: K = k = 4. As in Example 5.1, the initial guess for β is 0.01.

As discussed in Section 3.2.1, the parameter domain in all presented examples is
the unit square Q = (0, 1)2. The mesh-sizes in the two coordinate directions, which
will be presented in the tables, are determined by the respective initial meshes, which
in turn, are determined by the geometry mappings. The data presented in the tables
is as described in the beginning of Section 5.4.

The figures plotted in black represent the computations based on the exact error,
and the figures plotted in magenta represent the computations based on the majorant.
In all examples presented in this section, cell-marking is based on the fixed-percentile
criterion (2.12) from Section 2.2.5.1.

Example 5.2: Sinus Function on the Unit Square with p = q = 4

In this example, we consider a discretization with reduced regularity Cp−r, r > 1. We
consider the same exact solution and the same physical domain as in Example 5.1,
i.e.,

u = sin(6πx) sin(3πy),

Ω = (0, 1)2.

However, we now use B-splines of degree p = q = 4 to represent Ω, and we add a
triple knot at the coordinates x = 0.5 and y = 0.5. The initial knot vectors are thus
given by

s = t = (0, 0, 0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1),

and the geometry mapping is only C1-continuous at the coordinate 0.5.

76

5.5. Numerical examples for the upper bound

mesh-size I⊕ b1U1 b2U2 C⊕
Case 1

18× 18 1.84 1.04e-03 9.00e-04 1.6
34× 34 1.40 1.78e-06 7.23e-07 2.5

66× 66 1.20 5.09e-09 1.00e-09 5.1
130× 130 1.10 1.77e-11 1.74e-12 10.2
258× 258 1.05 6.61e-14 3.25e-15 20.3

Case 2

18× 18 15.43 7.95e-02 5.75e-02 1.4
34× 34 6.04 1.14e-05 3.53e-05 0.3
66× 66 1.76 7.52e-09 5.69e-09 1.3

130× 130 1.16 1.87e-11 3.01e-12 6.2
258× 258 1.04 6.54e-14 2.49e-15 26.3

Case 3

18× 18 132.77 7.38e+00 2.76e+00 2.7
34× 34 148.41 1.86e-02 9.53e-03 2.0
66× 66 6.42 5.49e-08 1.21e-07 0.5

130× 130 1.13 1.83e-11 2.39e-12 7.7
258× 258 1.01 6.34e-14 3.78e-16 167.7

Table 5.10: Efficiency index and components of the majorant in Example 5.2.

(a) 18× 18. (b) 34× 34. (c) 66× 66. (d) 130× 130.

Figure 5.8: Cells marked by exact error with ψ = 0.8 in Example 5.2.

(a) 18× 18, Case 1. (b) 34× 34, Case 1. (c) 66× 66, Case 2. (d) 130×130, Case 3.

Figure 5.9: Cells marked by error estimator with ψ = 0.8 in Example 5.2.

77

5.5. Numerical examples for the upper bound

The computed efficiency indices are presented in Table 5.10. The dashed lines,
which correspond to criterion (5.23) being fulfilled with C⊕ ≥ 5, again show that
more aggressive mesh-coarsening requires a finer initial mesh. By this criterion, we
get a good quality of the estimate and the indicated error distribution starting from
the mesh 66× 66 in Case 1, and from 130 × 130 in Cases 2 and 3.

We present the cells marked for refinement by the exact error in Figure 5.8, and the
cells marked by the error estimator in Figure 5.9. Figure 5.9(a) shows that the error
distribution is already captured on the mesh 18× 18 in Case 1. In Case 2, we obtain
a good indication of the error distribution on the mesh 66× 66, i.e., before criterion
(5.23) with C⊕ ≥ 5 is fulfilled. Once the error distribution is captured correctly on a
certain mesh, it is also captured on all finer meshes (as in Example 5.1). Hence, we
do not show all plots for all meshes and cases, but only the first meshes, on which
the error distribution is captured correctly. Also, we omit the presentation of the
timings, since the overall behaviour is as in Example 5.1.

Example 5.3: Quarter Annulus

0

0.2

0

1

2

0 1 2

(a) Example 5.3.a (α = 20).

0

0.2

0

1

2

0 1 2

(b) Example 5.3.b (α = 50).

Figure 5.10: Exact solutions u on Ω, Example 5.3.

In this example, we consider a domain with a curved boundary (requiring a
NURBS mapping for exact representation) and a problem whose solution has sharp
peaks. The domain Ω represents a quarter annulus, which, in polar coordinates, is
defined by (r, φ) ∈ (1, 2)×(0, π2). Note that the circular parts of the domain boundary
are represented exactly by the NURBS geometry mapping of degree 2, i.e., we have
p = q = 2. We set A = I, and we prescribe the exact solution

u = (r − 1)(r − 2)φ(φ − π
2)e

−α(r cos φ−1)2 .

We test our method with two values of α, namely,

Example 5.3.a: α = 20, Example 5.3.b: α = 50.

In both examples, this function has zero Dirichlet boundary values and a peak at
x = 1, the sharpness of which is determined by the value of α. The exact solutions

78

5.5. Numerical examples for the upper bound

are depicted in Figure 5.10. This example is chosen because of sharp peaks (large
gradients) and curved boundary (requiring NURBS mapping for exact representa-
tion).

mesh-size I⊕ b1U1 b2U2 C⊕
Case 1

16× 8 1.83 9.98e-04 3.59e-04 2.8
32× 16 1.29 2.08e-05 6.51e-06 3.2

64× 32 1.13 1.04e-06 1.44e-07 7.2
128 × 64 1.07 5.95e-08 4.00e-09 14.9
256 × 128 1.03 3.58e-09 1.20e-10 29.8
512 × 256 1.02 2.20e-10 3.67e-12 59.9

Case 2

16× 8 13.99 4.44e-02 3.51e-02 1.3
32× 16 4.17 2.00e-04 8.43e-05 2.4
64× 32 1.31 1.20e-06 3.66e-07 3.3

128 × 64 1.06 5.91e-08 3.36e-09 7.4
256 × 128 1.01 3.51e-09 4.60e-11 76.3
512 × 256 1.00 2.17e-10 6.96e-13 311.8

Case 3

16× 8 24.87 1.09e-01 1.42e-01 0.8
32× 16 56.02 2.92e-02 2.22e-02 1.3
64× 32 10.42 7.81e-05 2.16e-05 3.6

128 × 64 1.11 6.21e-08 6.61e-09 9.4
256 × 128 1.00 3.49e-09 1.02e-11 342.2
512 × 256 1.00 2.17e-10 3.27e-14 > 103

Table 5.11: Efficiency index and components of the majorant in Example 5.3.a (α = 20).

In Tables 5.11 and 5.12, the efficiency index I⊕, the magnitudes of b1U1 and b2U2,
and their ratio C⊕ are presented for both examples. The dashed lines indicate the
mesh-size after which criterion (5.23) with C⊕ ≥ 5 is fulfilled. The distribution of
the marked cells is depicted in Figures 5.11 and 5.12. As before, we observe that
the error distribution is represented correctly if the criterion (5.23) is fulfilled with
C⊕ ≥ 5.

When comparing Tables 5.11 and 5.12, as well as Figures 5.11 and 5.12, we notice
the following. The more aggressive the mesh coarsening, and the sharper the peak,
the more refinements are needed before criterion (5.23) is fulfilled and the error
distribution is captured correctly.

Since the timings in Example 5.3.a and Example 5.3.b show the same behaviour
as in the previous examples, both regarding assembling-time and solving-time, we
omit the presentation of these numbers. Clearly, Case 3 outperforms Cases 1 and 2
in terms of cost-efficiency.

79

5.5. Numerical examples for the upper bound

(a) Exact,
mesh 32× 16.

(b) Case 1,
mesh 32× 16.

(c) Case 2,
mesh 32× 16.

(d) Case 3,
mesh 32× 16.

(e) Exact,
mesh 64× 32.

(f) Case 1,
mesh 64× 32.

(g) Case 2,
mesh 64× 32.

(h) Case 3,
mesh 64× 32.

(i) Exact,
mesh 128× 64.

(j) Case 1,
mesh 128× 64.

(k) Case 2,
mesh 128× 64.

(l) Case 3,
mesh 128× 64.

Figure 5.11: Marked cells with ψ = 0.8 in Example 5.3.a (α = 20).

Example 5.4: Adaptive Refinement

We now test a basic adaptive refinement scheme based on the proposed error indica-
tor. The exact solution for this example example is given by

u = (x2 − x)(y2 − y)e−100|(x,y)−(0.8,0.05)|2−100|(x,y)−(0.8,0.95)|2 .

The computational domain is again the unit square Ω = (0, 1)2, and is represented by
B-splines of degree p = q = 2. The function u, which is illustrated in Figure 5.13, has
zero Dirichlet boundary values and has two peaks at the coordinates (0.8, 0.05) and
(0.8, 0.95). Since the discussion of isogeometric local refinement schemes is out of the
scope of this thesis (see Section 3.3.4 for an overview on local refinement methods),
we apply adaptive refinement using tensor-product B-splines.

We apply adaptive refinement based on cell-marking with ψ = 0.75, starting on
an initial mesh 16 × 16. On the first four steps, we apply Case 1, then Case 2 on

80

5.5. Numerical examples for the upper bound

mesh-size I⊕ b1U1 b2U2 C⊕
Case 1

16× 8 3.02 2.94e-02 1.78e-02 1.7
32× 16 1.92 3.57e-04 1.83e-04 2.0
64× 32 1.34 9.15e-06 3.22e-06 2.8

128× 64 1.16 4.67e-07 7.56e-08 6.2
256× 128 1.08 2.67e-08 2.12e-09 12.6
512× 256 1.04 1.60e-09 6.32e-11 25.3

Case 2

16× 8 13.84 3.45e-01 6.49e-01 0.5
32× 16 16.76 2.58e-02 1.53e-02 1.7
64× 32 3.16 4.10e-05 2.80e-05 1.5
128× 64 1.25 5.04e-07 1.24e-07 4.1

256× 128 1.05 2.61e-08 1.33e-09 19.6
512× 256 1.01 1.56e-09 1.89e-11 82.5

Case 3

16× 8 17.20 4.24e-01 1.11e+00 0.4
32× 16 76.95 3.24e-01 5.41e-01 0.6
64× 32 83.72 3.02e-02 1.83e-02 1.7
128× 64 4.19 4.64e-06 2.44e-06 1.9

256× 128 1.04 2.59e-08 1.02e-09 25.4
512× 256 1.00 1.55e-09 2.22e-12 698.2

Table 5.12: Efficiency index and components of the majorant in Example 5.3.b (α = 50).

mesh-size I⊕ b1U1 b2U2 C⊕ Case

16× 16 3.77 9.39e-05 3.49e-05 2.7 1
25× 26 2.06 8.62e-07 8.11e-07 1.1 1
38× 44 1.69 4.30e-08 2.35e-08 1.8 1
64× 74 1.47 2.79e-09 1.19e-09 2.3 1
92× 136 2.82 8.19e-10 4.87e-10 1.7 2
184× 256 1.30 2.05e-11 4.55e-12 4.5 2
341× 492 1.11 1.45e-12 1.47e-13 9.9 2
652× 934 1.84 2.55e-13 1.07e-13 2.4 3

1304 × 1868 1.09 7.40e-15 3.63e-16 20.4 3

Table 5.13: Efficiency index, components of the majorant and applied cases in Example 5.4,
adaptive refinement.

the next three steps, and thereafter Case 3. The efficiency indices and the applied
cases are shown in Table 5.13. In Figure 5.14, the meshes and the marked cells are
shown for steps 4, 7, and 9. Clearly, the correct areas of the domain are identified and

81

5.5. Numerical examples for the upper bound

(a) Exact,
mesh 64× 32.

(b) Case 1,
mesh 64× 32.

(c) Case 2,
mesh 64× 32.

(d) Case 3,
mesh 64× 32.

(e) Exact,
mesh 128× 64.

(f) Case 1,
mesh 128× 64.

(g) Case 2,
mesh 128× 64.

(h) Case 3,
mesh 128× 64.

(i) Exact,
mesh 256× 128.

(j) Case 1,
mesh 256× 128.

(k) Case 2,
mesh 256× 128.

(l) Case 3,
mesh 256× 128.

Figure 5.12: Marked cells with ψ = 0.8 in Example 5.3.b (α = 50).

1

0

1

0

Figure 5.13: Exact solution, Example 5.4.

82

5.5. Numerical examples for the upper bound

(a) Mesh 4. (b) Cells marked
by exact error on
mesh 4.

(c) Cells marked by
estimator on mesh 4.

(d) Mesh 7. (e) Cells marked
by exact error on
mesh 7.

(f) Cells marked by
estimator on mesh 7.

(g) Mesh 9. (h) Cells marked
by exact error on
mesh 9.

(i) Cells marked by
estimator on mesh 9.

Figure 5.14: Meshes and marked cells in Example 5.4, ψ = 0.75.

marked for refinement, and the error plots in Figure 5.15 show that the adaptive re-
finement converges faster than uniform refinement. Since the solution of the problem
is sufficiently regular, the error plots in Figure 5.15 show that the adaptive refinement
converges with the same rate as the uniform refinement, but with a better constant.
Note that, due to the tensor-product structure of the mesh, many superfluous DOF
are inserted outside of the marked areas, which worsens the rate of convergence for
given total DOF.

83

5.5. Numerical examples for the upper bound

10
2

10
3

10
4

10
5

10
6

10
7

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

DOF

E
rr

or

uniform refinement
adaptive

Figure 5.15: Error convergence, Example 5.4.

Example 5.5: L-shaped Domain

This example is a classical example for a posteriori error estimation and adaptive
refinement studies (see, e.g., [25, 33, 34, 37, 56]). We consider the Laplace equation

∆u = 0 (5.28)

with Dirichlet boundary conditions on the L-shaped domain Ω = (−1, 1)2\[0, 1]2. In
this example, we use a bilinear geometry mapping, i.e., p = q = 1. The function

u(r, φ) = r
2
3 sin((2φ − π)/3)

solves (5.28) and is used to prescribe Dirichlet boundary conditions. The solution has
a singularity at the re-entrant corner at (0, 0). We compare uniform refinement and
adaptive refinement in the tensor-product setting. In this example, we only apply
Case 1, and we use ψ = 0.9 for cell-marking.

The magnitudes of the components b1U1 and b2U2, which are presented in Ta-
ble 5.14 for uniform refinement, and in Table 5.15 for the adaptive refinement, show
that criterion (5.23) with C⊕ ≥ 5 is fulfilled on all the considered meshes.

The error plots presented in Figure 5.16 show the expected faster convergence on
the adaptively refined mesh, even though we are only using tensor-product splines.
In Figure 5.17, meshes and marked cells are shown for steps 2 and 6, again indicating
that the error indicator correctly identifies the corner singularity.

Example 5.6: Advection-Dominated Advection-Diffusion-Equation

In our last example, we consider an advection-diffusion equation in a setting which
results in sharp layers, and we test the ability of the error estimator to detect these

84

5.5. Numerical examples for the upper bound

mesh-size I⊕ b1U1 b2U2 C⊕
16× 8 1.18 5.67e-02 1.71e-03 > 30
32× 16 1.14 3.44e-02 8.98e-04 > 30
64× 32 1.11 2.09e-02 4.72e-04 > 30
128× 64 1.09 1.28e-02 2.49e-04 > 30
256× 128 1.07 7.87e-03 1.32e-04 > 30
512× 256 1.06 4.86e-03 7.01e-05 > 30
1024 × 512 1.05 3.01e-03 3.73e-05 > 30

Table 5.14: Efficiency index and components of the majorant in Example 5.5, uniform refine-
ment.

mesh-size I⊕ b1U1 b2U2 C⊕
16× 8 1.18 5.67e-02 1.71e-03 > 30
22× 11 1.18 2.68e-02 8.66e-04 > 30
30× 16 1.17 1.37e-02 4.32e-04 > 30
39× 23 1.16 7.22e-03 2.24e-04 > 30
55× 37 1.16 3.52e-03 1.10e-04 > 30
87× 60 1.16 1.75e-03 5.41e-05 > 30
133× 101 1.15 9.25e-04 2.69e-05 > 30

Table 5.15: Efficiency index and components of the majorant in Example 5.5, adaptive
refinement with ψ = 0.9.

layers. Note that this type of problem was not specified in Section 2.2.1, because
only one example of this type is presented. For details, the reader is referred to the
references given at the beginning of Section 2 and, in particular, [78]. The phyiscal
domain in this example is the unit square Ω = (0, 1)2, with p = q = 2, and the
considered problem is formulated as follows.

Find a function u ∈ C2(Ω) ∩ C(Ω), u : Ω → R, such that

−κ∆u+ b · ∇u = 0 in Ω,
u = g0 on Γ0 = ∂Ω,

}
(5.29)

where κ = 10−6 is the diffusion coefficient and b = (cos π
3 , sin

π
3)

T the (vector-valued)
advection velocity. The Dirichlet boundary conditions are given as

g0 =

{
1, if y = 0,
0, else.

The terms of the variational form (see Section 2.2.2) of (5.29) are given by

a(u, v) =

∫

Ω
κ∇u · ∇v + (b · ∇u) v dx,

〈f, v〉 =

∫

Ω
f v dx.

85

5.5. Numerical examples for the upper bound

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

DOF

E
rr

or

uniform refinement
adaptive

Figure 5.16: Error convergence, Example 5.5.

(a) Mesh after 2 refine-
ments.

(b) Cells marked by exact
error on mesh 2.

(c) Cells marked by estima-
tor on mesh 2.

(d) Mesh after 6 refine-
ments.

(e) Cells marked by exact
error on mesh 6.

(f) Cells marked by estima-
tor on mesh 6.

Figure 5.17: Meshes and marked cells in Example 5.5, ψ = 0.9.

86

5.5. Numerical examples for the upper bound

The Peclet number Pe is defined by Pe = L · |b|/κ, where L is the length of
the domain. If Pe > 1, which is clearly the case here with Pe ≈ 106, the diffusion
is dominated by the advection (see, e.g., [78]). The dominating advection and the
discontinuous boundary conditions result in the above-mentioned sharp layers. In
Figure 5.18(a), the expected positions of the layers are indicated by dashed lines.

We use the standard streamline upwind Petrov-Galerkin (SUPG) scheme for sta-
bilization. The stabilization parameter τ is set to τ(Q) = hb(Q)/2|b|, where hb(Q) is
the diameter of the cell Q in direction of the flow b, and |b| is the magnitude of the
vector b.

For advection-diffusion problems, we have to adapt the majorant. Since the prin-
ciple method is the same, we refer the reader to [84, Section 4.3.1] for a detailed
discussion. In this special case, where the second-order term is given by −κ∆u with
κ≪ |b|, and with constant velocity vector b, the majorant M2

⊕,adv for the advection-
diffusion problem is given by

M2
⊕,adv = (1 + β)‖A∇uh − y‖2Ā + (1 + 1

β)C
2
Ω‖div y + f − b · ∇uh‖2.

mesh-size b1U1 b2U2 C⊕
Case 1

16× 16 1.98e-07 3.18e-10 > 102

64× 64 6.45e-07 1.15e-09 > 102

256 × 256 2.28e-06 4.33e-09 > 102

Case 2

16× 16 1.83e-06 9.66e-10 > 103

64× 64 6.50e-06 3.65e-09 > 103

256 × 256 1.86e-05 1.24e-08 > 103

Case 3

16× 16 3.24e-06 1.29e-09 > 103

64× 64 2.07e-05 6.52e-09 > 103

256 × 256 6.86e-05 2.38e-08 > 103

Table 5.16: Comparison of terms b1U1 and b2U2 in Example 5.6.

The magnitudes of b1U1 and b2U2 presented in Table 5.16 indicate that the crite-
rion (5.23) with C⊕ ≥ 5 is fulfilled on all the considered meshes. The distribution of
the marked cells presented in Figures 5.18(b) and 5.18(c) provides the visual indica-
tion that the expected layers are detected by the error estimate.

In Table 5.17, the timings are presented. Note that, unlike the previous examples,
assembling and solving the system for the estimator is faster than for the original
problem not only in Case 3, but also in Case 2. This is due to the SUPG stabilization
which is costlier than computing the additional term b ·∇uh in the majorant M2

⊕,adv.

87

5.6. Guaranteed lower bound of the error

0 1
0

1

x

y

60◦

(a) Expected posi-
tions of sharp layers.

(b) Marked cells with
ψ = 0.8, mesh-size
64× 64.

(c) Marked cells with
ψ = 0.9, mesh-size
256× 256.

Figure 5.18: Expected layers and marked cells in Example 5.6, Case 3.

mesh-size #DOF assembling-time solving-time sum
uh yh pde est. “ est.

pde” pde est. “ est.
pde” pde est. “ est.

pde”

Case 1
16× 16 324 722 0.25 0.39 1.56 <0.01 0.01 6.38 0.25 0.40 1.59
64× 64 4356 8978 3.25 5.32 1.63 0.03 0.26 8.64 3.28 5.58 1.70
256× 256 66564 134162 51.22 94.15 1.84 0.85 8.84 10.35 52.07 102.99 1.98

Case 2
16× 16 324 288 0.21 0.14 0.67 <0.01 <0.01 0.50 0.21 0.14 0.67
64× 64 4356 2592 3.26 2.10 0.64 0.03 0.06 2.01 3.29 2.16 0.66
256× 256 66564 34848 50.83 35.58 0.70 0.85 2.30 2.70 51.68 37.87 0.73

Case 3
16× 16 324 200 0.26 0.10 0.39 <0.01 <0.01 0.58 0.26 0.10 0.40
64× 64 4356 968 3.41 1.21 0.35 0.04 0.01 0.26 3.44 1.22 0.35
256× 256 66564 9800 52.40 19.83 0.38 1.02 0.91 0.89 53.42 20.74 0.39

Table 5.17: Timings in Example 5.6.

5.6 Guaranteed lower bound of the error

As mentioned in the introduction and at the beginning of this chapter, functional-
type a posteriori error estimates can be derived for upper as well as for lower bounds
of the unknown true error. In this section, we briefly discuss a guaranteed lower
bound which we will denote by M2

⊖ and refer to as minorant. Together with the
majorant M2

⊕, we have a two-sided estimate of the true error in the form

M2
⊖ ≤ ‖∇u−∇uh‖2A ≤ M2

⊕, (5.30)

i.e., it is possible to provide a guaranteed and fully computable interval containing
the true error.

5.6.1 Definition and computation

The following theorem, which provides a guaranteed lower bound of the unknown
error can be found in, e.g., [83, 84].

88

5.6. Guaranteed lower bound of the error

Theorem 5.13. Let u be the exact solution of the model problem (I) with homoge-
neous Dirichlet boundary conditions. Then, the following estimate holds.

M2
⊖(w) ≤ ‖u− uh‖2A, (5.31)

where

M2
⊖(w) =

∫

Ω
2f w − 2A∇uh · ∇w dx− ‖∇w‖2A, (5.32)

and where w is an arbitrary funtion in V0.

The sharpness of the bound in Theorem 5.13 is guaranteed by the following the-
orem, which can be found in [84].

Theorem 5.14. Let the sequence of spaces {Wj}∞j=1 be limit dense in V0, then

lim
j→∞

sup
wj∈Wj

M2
⊖ = ‖uh − u‖2A. (5.33)

Proof. Let ε be arbitrarily small, but fixed. Let jε be the index such that, for all
k > jε, there exists a wk, such that ‖∇(u− uh − wk)‖A < ε. Then,

M2
⊖(wk) = −‖∇wk‖2A − 2

∫

Ω

(
A∇uh · ∇wk − f wk

)
dx

= −‖∇wk‖2A + 2

∫

Ω
A(∇u−∇uh) · ∇wk dx

= ‖∇u−∇uh‖2A − ‖∇wk − (∇u−∇uh)‖2A
= ‖∇u−∇uh‖2A −O(ε2).

Hence, M2
⊖(wk) → ‖∇u−∇uh‖2A, as ε→ 0.

In contrast to the upper boundM2
⊕(y, β), we have only one free parameter in the

lower bound, namely the scalar-valued function w. In order to minimize M2
⊖(w) with

respect to w, we proceed analogously to Step 1 in Section 5.2. Let M2
⊖(w)

′ denote
the derivative of M2

⊖(w) with respect to w. Setting M2
⊖(w)

′ = 0, we obtain

∫

Ω
∇w · ∇w̃ dx =

∫

Ω
f w̃ −∇uh · ∇w̃ dx. (5.34)

We choose a finite-dimensional subspace Wh of V0 and search for a solution wh for
(5.34) in Wh (note that there is no connection between the space W̃h as used in
Section 4.2.3 and the spaceWh used here). With the same argument as in Remark 5.6,
we have to choose Wh such that it has better approximation properties than Vh.

89

5.6. Guaranteed lower bound of the error

5.6.2 Numerical examples for the lower bound

In this section, we present lower bound computations for the examples discussed in
Sections 5.1 and 5.5 (except the advection-diffusion-equation Example 5.6). Due to
time-constraints, we shall not discuss a cost-efficient computation of the minorant in
detail, and only present first results as a proof-of-concept. We consider a straightfor-
ward approach where Wh is obtained from V0 by applying one step of p-refinement
(see Section 3.1.1.4). In this setting, the size of the discretized problem for comput-
ing wh is larger than the original problem for uh. Since this set-up is costlier, the
presented results are not computed on very fine meshes.

To measure the efficiency of the computed lower bounds, we define the efficiency
index of the minorant analogously to (5.21) as follows.

I⊖ =
M⊖(w)

‖∇u−∇uh‖A
. (5.35)

The computed efficiency indices I⊖ are presented in Tables 5.18–5.24 for Exam-
ples 5.1–5.5, respectively, along with the previously presented efficiency indices of
the majorant I⊕. The results clearly show that the obtained bounds are very sharp
on the considered meshes.

mesh-size I⊕ I⊖
Case 1 Case 2 Case 3

8× 8 2.77 14.19 11.28 0.9924
16× 16 1.71 8.49 36.43 0.9918
32× 32 1.32 1.82 12.63 0.9966
64× 64 1.16 1.16 1.17 0.9990

128 × 128 1.08 1.04 1.01 0.9997

Table 5.18: Efficiency indices of the majorant and the minorant in Example 5.1 (Sinus-
function on unit square with p = q = 2, cf. Tables 5.3, 5.5, and 5.7).

mesh-size I⊕ I⊖
Case 1 Case 2 Case 3

18× 18 1.84 15.43 132.77 0.9976
34× 34 1.40 6.04 148.41 0.9975
66× 66 1.20 1.76 6.42 0.9990

130 × 130 1.10 1.16 1.13 0.9997

Table 5.19: Efficiency indices of the majorant and the minorant in Example 5.2 (Sinus-
function on unit square with p = q = 4 and only C1-continuity at x = 0.5 and y = 0.5, cf.
Table 5.10).

90

5.6. Guaranteed lower bound of the error

mesh-size I⊕ I⊖
Case 1 Case 2 Case 3

16× 8 1.83 13.99 24.87 0.9922
32× 16 1.29 4.17 56.02 0.9953
64× 32 1.13 1.31 10.42 0.9985
128× 64 1.07 1.06 1.11 0.9996

Table 5.20: Efficiency indices of the majorant and the minorant in Example 5.3.a (peak on
quarter annulus, α = 20, cf. Table 5.11).

mesh-size I⊕ I⊖
Case 1 Case 2 Case 3

16× 8 3.02 13.84 17.20 0.9928
32× 16 1.92 16.76 76.95 0.9926
64× 32 1.34 3.16 83.72 0.9967
128× 64 1.16 1.25 4.19 0.9990

Table 5.21: Efficiency indices of the majorant and the minorant in Example 5.3.b (peak on
quarter annulus, α = 50, cf. Table 5.12).

mesh-size I⊕ I⊖
16× 16 3.77 0.9911
25× 26 2.06 0.9947
38× 44 1.69 0.9971
64× 74 1.47 0.9983
92× 136 2.82 0.9989
184 × 256 1.30 0.9985

Table 5.22: Efficiency indices of the majorant and the minorant in Example 5.4, adaptive
refinement (two peaks on unit square, cf. Table 5.13).

mesh-size I⊕ I⊖
16× 8 1.18 0.9692
32× 16 1.14 0.9809
64× 32 1.11 0.9880
128× 64 1.09 0.9925

Table 5.23: Efficiency indices of the majorant and the minorant in Example 5.5, uniform
refinement (L-shaped domain, cf. Table 5.14).

91

5.6. Guaranteed lower bound of the error

mesh-size I⊕ I⊖
16× 8 1.18 0.9692
22× 11 1.18 0.9729
30× 16 1.18 0.9784
39× 23 1.16 0.9829
55× 37 1.16 0.9850
87× 60 1.16 0.9896

133 × 101 1.15 0.9923

Table 5.24: Efficiency indices of the majorant and the minorant in Example 5.5, adaptive
refinement (L-shaped domain, cf. Table 5.15).

92

Chapter 6

Summary and discussion

The main work presented in this thesis is divided into two main parts, the isogeometric
tearing and interconnecting method, and functional-type a posteriori error estimation
in IGA. These two parts will be discussed separately at first, before discussing possible
combinations and extensions.

6.1 Isogeometric tearing and interconnecting method

The IETI-DP method presented and discussed in Chapter 4 (see also [57]) is a first
step towards efficient numerical computations on isogeometric multi-patch geometries
without the need of merging subdomains into one global mesh. By combining the
concepts of IGA and FETI methods, one can profit from the advantages of both
fields. On the one hand, the exact geometry representation is preserved, even in the
case of complicated multi-patch domains (possibly including holes). The need for
data transformation and possible consequent approximation errors in the geometry
are thus eliminated. Furthermore, one can benefit from the good approximation
properties of NURBS basis functions and isogeometric solvers which are currently
being studied. On the other hand, well-developed techniques from FETI methods can
be applied in IGA, such as solver and preconditioner design, and the parallelization
of the subdomain solvers. Multi-patch geometries can be treated directly without
the need for finding a global representation of the given mesh.

While the IETI approach closely follows established FETI methods, there are
some principle differences. In the isogeometric setting, we assume that the domain
is already given by a multi-patch geometry mapping, i.e., the domain is decomposed
from the beginning. As a requirement, for the presented straightforward C0-coupling
(see Section 4.2.1), we have to assume that the given setting has fully matching in-
terfaces (see Definition 4.1 and Assumption 4.2). This requirement is relaxed in the
context of local refinement options introduced by the IETI method (see Section 4.3),
where coupling of interfaces with hanging knots is discussed. However, it is still re-
quired that the initial configuration is fully matching. While fully matching interfaces
allow a very simple identification of interfaces and associated DOF, and are thus very

93

6.2. Functional-type a posteriori error estimators in IGA

convenient for implementation, this requirement can be restrictive in practical appli-
cations. For example, from the design point of view, in general, it may not be natural
to require fully matching interfaces. Note that, in FETI methods, the starting point
typically is a global mesh of the global domain. When this mesh is decomposed into
subdomains, the fully matching property follows naturally.

For the treatment of floating subdomains, the dual-primal approach was followed
for two reasons. Firstly, this approach is very general in the sense that this method
can be applied to problems with different kernels. The only requirement is to have suf-
ficient primal DOF per subdomain such that the local kernel on floating subdomains
is fixed (in the classical FETI and the total FETI approach, additional unknowns are
introduced to span the kernel, the formulation thus depends on the specific kernel and
has to be adapted to the considered problem). Secondly, in the case of fully matching
interfaces, the dual-primal approach is very natural due to the property of NURBS
that, in two dimensions, only one basis function has value 1 at a subdomain vertex,
while all other basis functions are zero there (see Remark 4.4). Furthermore, in the
presented tensor product setting, it is very simple to identify the DOF at subdomain
vertices, which makes the dual-primal approach even more attractive and simple to
implement. It has to be mentioned, however, that these advantages result from the
fully matching setting, and that they cannot necessarily be extended to more general
settings in a straightforward manner. While a possible method of handling situa-
tions where subdomain vertices lie on edges of neighbouring domain was discussed in
Section 4.3.2, the principle problem is not avoided in this straightforward approach.

The performance of the presented method and the discussed preconditioner is
very satisfactory in the considered settings. This is illustrated by the numerical
examples presented in Section 4.4. The extension to some more general settings,
however, may not be straightforward due to the aspects discussed above. While the
C0-coupling across fully matching interfaces can be extended to three-dimensional
problems in a straightforward manner, the required fully matching setting may be
even more restrictive in three dimensions. Preconditioners from FETI-DP methods
can also be applied to a three-dimensional IETI method. The solver design and the
choice of primal DOF (including edge averages, which have been proven necessary in
three dimensions [54, 95]) are more involved, in particular in the presence of hanging
vertices.

6.2 Functional-type a posteriori error estimators in IGA

The results presented in Chapter 5 (see also [58]) show the great potential of func-
tional-type a posteriori error estimators in IGA. The underlying theory is well-
studied and the presented application in IGA is very promising. The combination of
functional-type a posteriori error estimators and NURBS basis functions is motivated
by several aspects, which we recollect here.

The presented method for computing the majorant relies only on the use of
NURBS basis functions, for which we assume that an efficient implementation is

94

6.3. Subjects for further studies

available. This is a reasonable assumption, since we are working in the isogeomet-
ric framework. The need for constructing a separate, complicated basis functions of
H(Ω,div) is thus eliminated.

Special properties of NURBS basis functions make it possible to increase the
polynomial degree and smoothness with adding only few additional DOF. Due to
this property, it is possible to formulate the time-efficient approaches referred to as
Case 2 and Case 3 in Sections 5.4.2 and 5.5. It is important to note that this cannot
be obtained from the classical FEM discretizations based on C0 basis functions (see
Remarks 5.10 and 5.11).

The estimator for the upper bound of the error is fully computable, and provides a
guaranteed and sharp bound for the true error, as well as an error indicator which can
be used for adaptive refinement. The quality criterion presented in Proposition 5.8
has been derived from the theoretical studies on the sharpness of the majorant.
The numerical tests presented in Section 5.5 indicate that this criterion can be used
to assess the quality of the computed majorant (see Remark 5.9). This criterion
involves only terms that have to be evaluated in the course of computing the majorant.
Together with the minorant discussed in Section 5.6, the presented estimates provide
not only qualitative, but sharp two-sided quantitative bounds for the unknown true
error. Such bounds can be very important for the quality assurance in practical
applications. This, of course, is a general feature of functional-type a posteriori error
estimates and not specific to IGA. Nevertheless, we believe efficient computations of
these estimates, as discussed in this thesis, and their applicability for any of the IGA
approximations make them a valuable tool within IGA.

6.3 Subjects for further studies

Both the IETI-DP method presented in Chapter 4 (based on [57]) and the functional-
type error estimators in IGA presented in Chapter 5 (based on [58]) mark starting
points and open several subjects which need to be studied further.

Open issues in the IETI method, which are of particular interest, include the
treatment of more general interfaces, including interfaces that are not necessarily
geometrically conforming (i.e., that may have small gaps or overlaps), and the incor-
poration of fast iterative subdomain solvers, such as geometric multigrid solvers and
solvers exploiting the tensor product structure, e.g., wavelet solvers.

Combining the isogeometric local refinement methods mentioned in Section 3.3.4
with the IETI method (see Remark 4.7) and with functional-type a posteriori error
estimators is, in theory, straightforward. The actual performance and efficiency of
the presented methods, however, are the subject of further studies.

Another important open issue is the efficient computation of the lower bound
discussed in Section 5.6. While the presented straightforward approach is very costly,
exploiting NURBS-specific properties (in a similar fashion as in Section 5.4.2) could
lead to more cost- and time-efficient lower bound computations in IGA.

95

List of Figures

3.1 B-spline basis functions of degrees p = 1 to p = 5. 17
3.2 B-spline basis functions of degree p = 3. 18
3.3 Influence of a control point on the shape of a B-spline curve. 23
3.4 Illustration of the used notation. 24

4.1 Fully matching subdomains and their interface. 33
4.2 Illustration of fully redundant coupling and all floating setting. 35
4.3 Two options for refining a marked area. 46
4.4 Illustration of an interface with hanging knots. 47
4.5 Embedding subdomains into the original parameter domain. 48
4.6 Examples for hanging and not hanging subdomain vertices. 49
4.7 Subdomains refined by substructuring and positions of primal vertices. 49
4.8 Refinement levels of subdomains. 50
4.9 Case (A), bracket with rounded reentrant corner. 52
4.10 Case (B), bracket with sharp reentrant corner. 52
4.11 Condition numbers and (P)CG iterations for cases (A) and (B). 52
4.12 Case (C), bracket with sharp reentrant corner and local h-refinement. 53
4.13 Comparison of the energy norms of uh in cases (B) and (C). 53
4.14 Bending of a cantilever, problem setting. 55
4.15 Bending of a cantilever, discussed cases. 56
4.16 Yeti’s footprint with adaptive refinement. 58

5.1 Marked cells, exact error, ψ = 0.8, Example 5.1. 61
5.2 Marked cells, error indicator, ψ = 0.8, Example 5.1. 61
5.3 Convergence of exact error and the majorant (5.4) for Example 5.1. . 62
5.4 Cells marked with ψ = 0.8 in Example 5.1, Ŷh as in (5.25) 70
5.5 Marked cells, error indicator, ψ = 0.8, Example 5.1, Case 1. 72
5.6 Marked cells, error indicator, ψ = 0.8, Example 5.1, Case 2. 74
5.7 Marked cells, error indicator, ψ = 0.8, Example 5.1, Case 3. 75
5.8 Marked cells, exact error, ψ = 0.8, Example 5.2. 77
5.9 Marked cells, error indicator, ψ = 0.8, Example 5.2. 77
5.10 Exact solutions u on Ω, Example 5.3. 78
5.11 Marked cells, error indicator, ψ = 0.8, Example 5.3.a. 80

96

List of Figures

5.12 Marked cells, error indicator, ψ = 0.8, Example 5.3.b. 82
5.13 Exact solution, Example 5.4. 82
5.14 Meshes and marked cells, ψ = 0.75, Example 5.4. 83
5.15 Error convergence, Example 5.4. 84
5.16 Error convergence, Example 5.5. 86
5.17 Meshes and marked cells, ψ = 0.9, Example 5.5. 86
5.18 Expected layers and marked cells, Example 5.6. 88

97

List of Tables

5.1 Efficiency index, Example 5.1, Ŷh as in (5.25). 69
5.2 Number of DOF and timings in Example 5.1, Ŷh as in (5.25). 70
5.3 Efficiency index, Example 5.1, Case 1. 71
5.4 Number of DOF and timings in Example 5.1, Case 1. 72
5.5 Efficiency index, Example 5.1, Case 2. 73
5.6 Number of DOF and timings in Example 5.1, Case 2. 74
5.7 Efficiency index, Example 5.1, Case 3. 74
5.8 Number of DOF and timings in Example 5.1, Case 3. 75
5.9 Comparison of I⊕ for different numbers of interleaved iterations. . . . 76
5.10 Efficiency index, Example 5.2. 77
5.11 Efficiency index, Example 5.3.a. 79
5.12 Efficiency index, Example 5.3.b. 81
5.13 Efficiency index, Example 5.4, adaptive refinement. 81
5.14 Efficiency index, Example 5.5, uniform refinement. 85
5.15 Efficiency index, Example 5.5, adaptive refinement. 85
5.16 Terms b1U1 and b2U2, Example 5.6. 87
5.17 Timings in Example 5.6. 88
5.18 Efficiency indices of the minorant, Example 5.1. 90
5.19 Efficiency indices of the minorant, Example 5.2. 90
5.20 Efficiency indices of the minorant, Example 5.3.a. 91
5.21 Efficiency indices of the minorant, Example 5.3.b. 91
5.22 Efficiency indices of the minorant, Example 5.4, adaptive refinement. . 91
5.23 Efficiency indices of the minorant, Example 5.5, uniform refinement. . 91
5.24 Efficiency indices of the minorant, Example 5.5, adaptive refinement. . 92

98

Bibliography

[1] M. Ainsworth and J. Oden. A posteriori error estimation in finite element anal-
ysis. Computer Methods in Applied Mechanics and Engineering, 142(1-2):1–88,
1997.

[2] M. Ainsworth and J. Oden. A Posteriori Error Estimation in Finite Element
Analysis. Pure and Applied Math. Wiley, 2000.

[3] F. Auricchio, L. Beirão da Veiga, A. Buffa, C. Lovadina, A. Reali, and G. San-
galli. A fully “locking-free” isogeometric approach for plane linear elasticity
problems: A stream function formulation. Computer Methods in Applied Me-
chanics and Engineering, 197(1-4):160–172, 2007.

[4] F. Auricchio, L. Beirão da Veiga, T. Hughes, A. Reali, and G. Sangalli. Isoge-
ometric collocation for elastostatics and explicit dynamics. Computer Methods
in Applied Mechanics and Engineering, 249-252(0):2–14, 2012.

[5] F. Auricchio, L. Beirão da Veiga, C. Lovadina, and A. Reali. The importance
of the exact satisfaction of the incompressibility constraint in nonlinear elastic-
ity: mixed FEMs versus NURBS-based approximations. Computer Methods in
Applied Mechanics and Engineering, 199(5-8):314–323, 2010.

[6] F. Auricchio, F. Calabrò, T. Hughes, A. Reali, and G. Sangalli. A simple al-
gorithm for obtaining nearly optimal quadrature rules for NURBS-based iso-
geometric analysis. Computer Methods in Applied Mechanics and Engineering,
249-252(0):15–27, 2012.

[7] R. Bank and R. Smith. A posteriori error estimates based on hierarchical bases.
SIAM Journal on Numerical Analysis, 30(4):921–935, 1993.

[8] Y. Bazilevs, L. Beirão da Veiga, J. Cottrell, T. Hughes, and G. Sangalli. Iso-
geometric analysis: approximation, stability and error estimates for h-refined
meshes. Mathematical Models and Methods in Applied Sciences, 16(7):1031–
1090, 2006.

[9] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott,
and T. Sederberg. Isogeometric analysis using T-splines. Computer Methods in
Applied Mechanics and Engineering, 199(5-8):229–263, 2010.

99

Bibliography

[10] Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, and G. Scovazzi. Varia-
tional multiscale residual-based turbulence modeling for large eddy simulation of
incompressible flows. Computer Methods in Applied Mechanics and Engineering,
197(1-4):173–201, 2007.

[11] Y. Bazilevs, V. Calo, T. Hughes, and Y. Zhang. Isogeometric fluid-structure
interaction: theory, algorithms, and computations. Computational Mechanics,
43:3–37, 2008.

[12] Y. Bazilevs, V. Calo, Y. Zhang, and T. Hughes. Isogeometric fluid-structure
interaction analysis with applications to arterial blood flow. Computational Me-
chanics, 38:310–322, 2006.

[13] L. Beirão da Veiga, A. Buffa, D. Cho, and G. Sangalli. IsoGeometric analysis us-
ing T-splines on two-patch geometries. Computer Methods in Applied Mechanics
and Engineering, 200(21-22):1787–1803, 2011.

[14] L. Beirão da Veiga, A. Buffa, J. Rivas, and G. Sangalli. Some estimates for h-
p-k-refinement in isogeometric analysis. Numerische Mathematik, 118:271–305,
2011.

[15] L. Beirão da Veiga, D. Cho, L. Pavarino, and S. Scacchi. BDDC preconditioners
for isogeometric analysis. Mathematical Models and Methods in Applied Sciences,
23(06):1099–1142, 2013.

[16] L. Beirão da Veiga, D. Cho, L. Pavarino, and S. Scacchi. Isogeometric schwarz
preconditioners for linear elasticity systems. Computer Methods in Applied Me-
chanics and Engineering, 253(0):439–454, 2013.

[17] D. Benson, Y. Bazilevs, M. Hsu, and T. Hughes. Isogeometric shell analysis:
The ReissnerMindlin shell. Computer Methods in Applied Mechanics and Engi-
neering, 199(5-8):276–289, 2010.

[18] D. Braess. Finite Elemente. Springer, 3rd edition, 2003.

[19] S. Brenner and L. Ridgeway Scott. The Mathematical Theory of Finite Element
Methods. Springer, 3rd edition, 2008.

[20] S. C. Brenner and L.-Y. Sung. BDDC and FETI-DP without matrices or vectors.
Computer Methods in Applied Mechanics and Engineering, 196(8):1429–1435,
2007.

[21] A. Buffa, C. de Falco, and G. Sangalli. IsoGeometric Analysis: Stable elements
for the 2D Stokes equation. International Journal for Numerical Methods in
Fluids, 65(11-12):1407–1422, 2011.

[22] A. Buffa, H. Harbrecht, A. Kunoth, and G. Sangalli. BPX-preconditioning for
isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
265(0):63–70, 2013.

100

Bibliography

[23] A. Buffa, J. Rivas, G. Sangalli, and R. Vázquez. Isogeometric discrete differential
forms in three dimensions. SIAM Journal on Numerical Analysis, 49(2):818–844,
2011.

[24] A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromag-
netics: B-splines approximation. Computer Methods in Applied Mechanics and
Engineering, 199(17-20):1143–1152, 2010.

[25] C. Carstensen. Some remarks on the history and future of averaging techniques
in a posteriori finite element error analysis. ZAMM - Journal of Applied Math-
ematics and Mechanics / Zeitschrift fr Angewandte Mathematik und Mechanik,
84(1):3–21, 2004.

[26] P. Ciarlet. The Finite Element Method for Elliptic Problems. Studies in Math-
ematics and its Applications. Elsevier Science, 1978.

[27] J. Cottrell, T. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integra-
tion of CAD and FEA. Wiley, Chichester, 2009.

[28] J. Cottrell, T. Hughes, and A. Reali. Studies of refinement and continuity in
isogeometric structural analysis. Computer Methods in Applied Mechanics and
Engineering, 196:4160–4183, 2007.

[29] J. Cottrell, A. Reali, Y. Bazilevs, and T. Hughes. Isogeometric analysis of
structural vibrations. Computer Methods in Applied Mechanics and Engineering,
195:5257–5296, 2006.

[30] T. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006.

[31] J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, and Y. Feng. Polynomial
splines over hierarchical T-meshes. Graphical Models, 70:76–86, 2008.

[32] T. Dokken, T. Lyche, and K. F. Pettersen. Polynomial splines over locally refined
box-partitions. Computer Aided Geometric Design, 30(3):331–356, 2013.

[33] M. Dörfel, B. Jüttler, and B. Simeon. Adaptive isogeometric analysis by lo-
cal h-refinement with T-splines. Computer Methods in Applied Mechanics and
Engineering, 199(5-8):264–275, 2010.

[34] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM
Journal on Numerical Analysis, 33(3):1106–1124, jun 1996.

[35] Z. Dostál, D. Horák, and R. Kučera. Total FETI – An easier implementable vari-
ant of the FETI method for numerical solution of elliptic PDE. Communications
in Numerical Methods in Engineering, 12:1155–1162, 2006.

[36] T. Elguedj, Y. Bazilevs, V. Calo, and T. Hughes. B̄ and F̄ projection meth-
ods for nearly incompressible linear and nonlinear elasticity and plasticity using

101

Bibliography

higher-order NURBS elements. Computer Methods in Applied Mechanics and
Engineering, 197(33-40):2732–2762, 2008.

[37] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to Adaptive
Methods for Differential Equations. Acta Numerica, 4:105–158, 1 1995.

[38] J. Evans and T. Hughes. Isogeometric Divergence-conforming B-splines for the
Darcy-Stokes-Brinkman equations. Mathematical Models and Methods in Ap-
plied Sciences, 23(04):671–741, 2013.

[39] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: a
dual-primal unified FETI-method – part I: A faster alternative to the two-level
FETI method. International Journal for Numerical Methods in Engineering,
50:1523–1544, 2001.

[40] C. Farhat, J. Mandel, and F. Roux. Optimal convergence properties of the FETI
domain decomposition method. Computer Methods in Applied Mechanics and
Engineering, 115:265–385, 1994.

[41] C. Farhat and F. Roux. A method of finite element tearing and interconnecting
and its parallel solution algorithm. International Journal for Numerical Methods
in Engineering, 32:1205–1227, 1991.

[42] K. Gahalaut, J. Kraus, and S. Tomar. Multigrid methods for isogeomet-
ric discretization. Computer Methods in Applied Mechanics and Engineering,
253(1):413–425, 2013.

[43] K. Gahalaut, S. Tomar, and J. Kraus. Algebraic multilevel preconditioning in
isogeometric analysis: Construction and numerical studies. Computer Methods
in Applied Mechanics and Engineering, 266(0):40–56, 2013.

[44] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis for
hierarchical splines. Computer Aided Geometric Design, 29(7):485–498, 2012.

[45] T. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Computer Methods in
Applied Mechanics and Engineering, 194(39-41):4135–4195, 2005.

[46] T. Hughes, A. Reali, and G. Sangalli. Duality and unified analysis of discrete
approximations in structural dynamics and wave propagation: Comparison of
p-method finite elements with k-method NURBS. Computer Methods in Applied
Mechanics and Engineering, 197(49-50):4104–4124, 2008.

[47] T. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-based
isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
199(5-8):301–313, 2010.

102

Bibliography

[48] K. Jankauskas. Time-efficient NURBS curve evaluation algorithms. In 16th
International Conference on Information and Software Technologies (IT 2010,
Kaunas, Lithuania), 2010.

[49] K. A. Johannessen. An adaptive isogeometric finite element analysis. Disserta-
tion, Norwegian University of Science and Technology, June 2009.

[50] H. Kim and C.-O. Lee. A preconditioner for the FETI-DP formulation with
mortar methods in two dimensions. SIAM Journal on Numerical Analysis,
42(5):2159–2175, 2005.

[51] A. Klawonn, L. Pavarino, and O. Rheinbach. Spectral element FETI-DP and
BDDC preconditioners with multi-element subdomains. Computer Methods in
Applied Mechanics and Engineering, 198:511–523, 2008.

[52] A. Klawonn and O. Widlund. A domain decomposition method with Lagrange
multipliers and inexact solvers for linear elasticity. SIAM Journal on Scientific
Computing, 22(4):1199–1219, 2000.

[53] A. Klawonn and O. Widlund. FETI and Neumann-Neumann iterative substruc-
turing methods: Connections and new results. Communications on Pure and
Applied Mathematics, 54(1):57–90, 2001.

[54] A. Klawonn, O. Widlund, and M. Dryja. Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients. SIAM Journal on
Numerical Analysis, 40:159–179, 2002.

[55] A. Klawonn and O. B. Widlund. Dual-primal FETI methods for linear elasticity.
Communications on Pure and Applied Mathematics, 59(11):1523–1572, 2006.

[56] S. Kleiss, B. Jüttler, and W. Zulehner. Enhancing isogeometric analysis by a
finite element-based local refinement strategy. Computer Methods in Applied
Mechanics and Engineering, 213-216(0):168–182, 2012.

[57] S. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. IETI – Isogeometric tearing
and interconnecting. Computer Methods in Applied Mechanics and Engineering,
247-248(0):201–215, 2012.

[58] S. Kleiss and S. Tomar. Guaranteed and sharp a posteriori error estimates in
isogeometric analysis. Technical Report RICAM Report 2013-06, Radon Insti-
tute for Computational and Applied Mathematics (RICAM) Austrian Academy
of Sciences (ÖAW). Also available at arXiv:1304.7712.

[59] J. Kraus and S. Tomar. Algebraic multilevel iteration method for lowest order
Raviart-Thomas space and applications. International Journal for Numerical
Methods in Engineering, 86(10):1175–1196, 2011.

103

Bibliography

[60] U. Langer and C. Pechstein. Coupled finite and boundary element tearing and
interconnecting solvers for nonlinear potential problems. ZAMM - Journal of
Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik
und Mechanik, 86(12):915–931, 2006.

[61] U. Langer and O. Steinbach. Boundary element tearing and interconnecting
methods. Computing, 71(3):205–228, 2003.

[62] R. Lazarov, S. Repin, and S. Tomar. Functional a posteriori error estimates for
discontinuous Galerkin approximations of elliptic problems. Numerical Methods
for Partial Differential Equations, 25(4):952–971, 2009.

[63] X. Li and M. Scott. On the nesting behavior of T-splines. Technical Report
ICES Report 2011-13.

[64] X. Li, J. Zheng, T. Sederberg, T. Hughes, and M. Scott. On linear independence
of T-spline blending functions. Computer Aided Geometric Design, 29(1):63–76,
2012.

[65] J. Mandel, C. R. Dohrmann, and R. Tezaur. An algebraic theory for primal and
dual substructuring methods by constraints. Applied Numerical Mathematics,
54(2):167–193, 2005.

[66] J. Mandel and R. Tezaur. Convergence of a substructuring method with La-
grange multipliers. Numer. Math., 73:473–487, 1996.

[67] J. Mandel and R. Tezaur. On the convergence of a dual-primal substructuring
method. Numerische Mathematik, 88:543–558, 2001.

[68] N. D. Manh, A. Evgrafov, A. R. Gersborg, and J. Gravesen. Isogeometric shape
optimization of vibrating membranes. Computer Methods in Applied Mechanics
and Engineering, 200(1316):1343–1353, 2011.

[69] T. Martin and E. Cohen. Volumetric parameterization of complex objects by
respecting multiple materials. Computers & Graphics, 34(3):187–197, 2010.

[70] N. Nguyen-Thanh, H. Nguyen-Xuan, S. Bordas, and T. Rabczuk. Isogeometric
analysis using polynomial splines over hierarchical T-meshes for two-dimensional
elastic solids. Computer Methods in Applied Mechanics and Engineering, 200(21-
22):1892–1908, 2011.

[71] P. Nielsen, A. Gersborg, J. Gravesen, and N. Pedersen. Discretizations in isoge-
ometric analysis of Navier-Stokes flow. Computer Methods in Applied Mechanics
and Engineering, 200(45-46):3242–3253, 2011.

[72] G. Of and O. Steinbach. The all-floating boundary element tearing and inter-
connecting method. Journal of Numerical Mathematics, 17(4), 2009.

104

Bibliography

[73] C. Pechstein. Boundary element tearing and interconnecting methods in un-
bounded domains. Applied Numerical Mathematics, 59(11):2824–2842, 2009.

[74] C. Pechstein. Finite and Boundary Element Tearing and Interconnecting Solvers
for Multiscale Problems, volume 90 of Lecture Notes in Computational Science
and Engineering. Springer-Verlag, Berlin Heidelberg, 2013.

[75] C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs.
Numerische Mathematik, 111(2):293–333, 2008.

[76] L. Piegl and W. Tiller. The NURBS book. Springer Berlin Heidelberg, 2 edition,
1997.

[77] E. Pilgerstorfer. Construction and analysis of volume parameterizations for iso-
geometric analysis. Dissertation, Johannes Kepler University Linz, Austria, June
2013.

[78] O. Pironneau. Finite element methods for fluids. Wiley, 1989.

[79] S. Repin. A posteriori error estimation for nonlinear variational problems by
duality theory. Zapiski Nauchnych Seminarov POMI, 243:201–214, 1997.

[80] S. Repin. A posteriori error estimates for approximate solutions to variational
problems with strongly convex functionals. Journal of Mathematical Sciences,
97:4311–4328, 1999.

[81] S. Repin. A posteriori error estimation for nonlinear variational problems by
duality theory. Journal of Mathematical Sciences, 99:927–935, 2000. See Also:
Zapiski Nauchnych Seminarov POMI, 243:201–214, 1997.

[82] S. Repin. A posteriori error estimation for variational problems with uniformly
convex functionals. Mathematics of Computation, 69(230):481–500, 2000.

[83] S. Repin. Two-sided estimates of deviation from exact solutions of uniformly
elliptic equations. In N. Uraltseva, editor, Proceedings of the St. Petersburg
Mathematical Society, Volume IX, American Mathematical Society Translations:
Series 2, volume 209, pages 143–171, 2003.

[84] S. Repin. A Posteriori Estimates for Partial Differential Equations. Walter de
Gruyter, Berlin, Germany, 2008.

[85] D. Rixen and C. Farhat. Preconditioning the FETI method for problems with
intra- and inter-subdomain coefficient jumps. In P. E. Bjørstad, M. Espedal, and
D. E. Keyes, editors, Proceedings of 9th International Conference on Domain
Decomposition, pages 472–479, 1998.

[86] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia,
2003.

105

Bibliography

[87] M. Scott, M. Borden, C. Verhoosel, T. Sederberg, and T. Hughes. Isogeometric
finite element data structures based on Bézier extraction of T-splines. Interna-
tional Journal for Numerical Methods in Engineering, 88:126–156, 2011.

[88] M. Scott, X. Li, T. Sederberg, and T. Hughes. Local refinement of analysis-
suitable T-splines. Computer Methods in Applied Mechanics and Engineering,
213-216:206–222, 2012.

[89] T. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCs.
ACM Transactions on Graphics, 22(3):161–172, 2003.

[90] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and
T. Lyche. T-spline simplification and local refinement. ACM Transactions on
Graphics, 23(3):276–283, aug 2004.

[91] T. Takacs. Regularity and approximation power of isogeometric discretizations
for parametrizations with singularities. Dissertation, Johannes Kepler University
Linz, Austria, July 2013.

[92] T. Takacs and B. Jüttler. Existence of stiffness matrix integrals for singularly
parameterized domains in isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering, 200:3568–3582, 2011.

[93] T. Takacs and B. Jüttler. Regularity properties of singular parameterizations in
isogeometric analysis. Graphical Models, 74(6):361–372, 2012.

[94] S. Timoshenko and J. Goodier. Theory of Elasticity, 3rd edition. McGraw-Hill
Book Company, New York, 1970.

[95] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and
Theory. Springer-Verlag, Berlin, 2005.

[96] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.

[97] A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach to
adaptive local refinement in isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering, 200(49-52):3554–3567, 2011.

[98] P. Wang, J. Xu, J. Deng, and F. Chen. Adaptive isogeometric analysis using
rational PHT-splines. Computer-Aided Design, 43(11):1438–1448, 2011.

[99] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. Parameterization of compu-
tational domain in isogeometric analysis: Methods and comparison. Computer
Methods in Applied Mechanics and Engineering, 200(23-24):2021–2031, 2011.

106

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich
gemacht habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdoku-
ment identisch.

Linz, am 20. Dez. 2013,

Stefan K. Kleiss

107

Curriculum Vitae

Affiliation and address

Dipl.-Ing. Stefan K. Kleiss Bakk. techn.

Radon Institute for Computational and Applied Mathematics (RICAM),
Austrian Academy of Sciences (ÖAW)

c/o Johannes Kepler University Linz (JKU)
Altenbergerstr. 69
4040 Linz, Austria

e-mail: stefan.kleiss@ricam.oeaw.ac.at

URL: http://www.ricam.oeaw.ac.at

Personal data

Date of birth: 05. Jan. 1982
Place of birth: Linz, Austria
Nationality: Austria

Education

since 2010 PhD study “Technische Wissenschaften” at JKU, supported by
Austrian Science Fund (FWF), project P21516-N18, and European
Union, 7th Framework Programme, project 218536 “EXCITING”

2006 - 2010 Master study “Industriemathematik” at JKU
2001 - 2005 Bachelor study “Technische Mathematik” at JKU
2000 High School Diploma (Matura)

108

Bibliography

Publications

S. Kleiss and S. Tomar. Guaranteed and sharp a posteriori error estimates in isoge-
ometric analysis. RICAM Report 2013-06, Radon Institute for Computational and
Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW). Also avail-
able at arXiv:1304.7712.

S. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. IETI - Isogeometric tearing and
interconnecting. Computer Methods in Applied Mechanics and Engineering, 247-
248(0):201–215, 2012.

S. Kleiss, B. Jüttler, and W. Zulehner. Enhancing isogeometric analysis by a finite
element-based local refinement strategy. Computer Methods in Applied Mechanics
and Engineering, 213-216(0):168–182, 2012.

S. Kleiss. Enhancing Isogeometric Analysis by a Finite Element-Based Local Refine-
ment Strategy. Master’s thesis, Institute of Computational Mathematics, JKU, 2010.

S. Kleiss. Computing Real Inflection Points of Cubic Algebraic Curves. Bachelor’s
thesis, Institute of Applied Geometry, JKU, 2004.

S. Kleiss. Beschreibung zur Implementierung eines vereinfachten Modells des Kredit-
risikomanagementsystems CreditMetrics von J.P. Morgan in Mathematica. Bache-
lor’s thesis, Institut für Finanzmathematik, JKU, 2003.

Activities

11. - 13. Oct. 2008 EXCITING Kick-off meeting. Strobl, Austria.

11. - 13. Oct. 2010 EXCITING consortium meeting. Strobl, Austria.

14. - 16. Jun. 2011 EXCITING consortium meeting. Nice, France.

20. - 24. Jun. 2011 Conference on Geometry - Theory and Application.
Vorau, Austria.

12. - 17. Feb. 2012 NTAG, New Trends in Applied Geometry 2012.
Villa Cagnola, Italy.

12. - 16. Mar. 2012 IGAA, Conference on Isogeometric Analysis and Applications,
and EXCITING, final consortium meeting. Linz, Austria.

10. - 11. May 2012 8th Austrian Numerical Analysis Day. Vienna, Austria.

109

Bibliography

25. - 29. Jun. 2012 DD21, The Twenty First International Conference on Domain
Decomposition Methods. Rennes, France.

16. - 18. Jul. 2012 Geometry + Simulation Kick-off meeting. Vorau, Austria.

08. - 12. Jul. 2013 AANMPDE-6-13, 6th Workshop on Analysis and Advanced
Numerical Methods for Partial Differential Equations (for
Junior Scientists). Strobl, Austria.

26. - 30. Aug. 2013 ENUMATH 2013, European Conference on Numerical Mathe-
matics and Advanced Applications. Lausanne, Switzerland.

110

