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Exercise sheet 1

1. (a) For all f ∈ X∗, the sequence (⟨f, xn⟩X) is bounded because of the weak conver-
gence of (xn) we know that the sequence of real numbers ⟨f, xn⟩X converges to
⟨f, x⟩X . Therefore, we have supn |⟨f, xn⟩X | ≤ c(f). Using the canonical isom-
etry ι : X → X∗∗, given by ⟨ιx, f⟩X∗ = ⟨f, x⟩X , it follows that the sequence
(ιxn) ⊆ X∗∗ is pointwise bounded. The principle of uniform boundedness yields
supn ∥ιxn∥X∗∗ ≤ c. Using ∥ιxn∥X∗∗ = ∥xn∥X , the claim follows.

(b) We have:

|⟨fn, xn⟩X − ⟨f, x⟩X | ≤ |⟨fn, xn⟩X − ⟨f, xn⟩X |+ |⟨f, xn − x⟩X |
≤ ∥∥fn − f∥X∗∥∥xn∥X + |⟨f, xn − x⟩X |.

Now, due to the given conditions: ∥fn − f∥X∗ → 0 as n → ∞, |⟨f, xn −
x⟩X | → 0 as n → ∞, and ∥xn∥X ≤ c according to (i). Consequently, we have
|⟨fn, xn⟩X − ⟨f, x⟩X | → 0 as n → ∞.

(c) The proof is analogous to the proof of claim (ii).

(d) Proof by contradiction. If (xn) does not weakly converge to x, i.e., there exist
f ∈ X∗, ϵ > 0, and a subsequence (xnk

) such that |⟨f, xnk
⟩X−⟨f, x⟩X | ≥ ϵ for all

k ∈ N. According to the given assumption, the subsequence (xnk
) is bounded.

Therefore, by the Eberlein–Smulian theorem, there exists a sub-subsequence
(xnkl

) that weakly converges, and, as per the assumption, it converges weakly
to x. This leads to a contradiction. Hence, the claim holds.

2. If A is strictly monotone, we have

⟨A(u1)− A(u2), u1 − u2⟩X = ⟨f − f, u1 − u2⟩X = 0, (1)

which is possible only if u1 = u2. In other words, the equation Au = f has a unique
solution, so the inverse A−1 does exist. The mapping A−1 is strictly monotone: For
f1, f2 ∈ X∗, where f1 ̸= f2, put u1 = A−1(f1). Then u1 ̸= u2. As A is strictly
monotone, one has

⟨f1 − f2, A
−1(f1)− A−1(f2)⟩X = ⟨A(u1)− A(u2), u1 − u2⟩X > 0.

The mapping A−1 is bounded: by the coercivity of A, there is ζ : R+ → R such that
limξ→∞ ζ(ξ) = +∞, and ⟨A(u), u⟩X ≥ ∥u∥Xζ(∥u∥X). Therefore,

ζ(∥u∥X) ≤ ⟨A(u), u⟩X = ⟨f, u⟩X ≤ ∥f∥X∗∥u∥X ,

so that ζ(∥A−1(f)∥X) = ζ(∥u∥X) ≤ ∥f∥X∗ . Thus, A−1 maps bounded sets in X∗

into bounded sets in X. The mapping A−1 is demicontinuous: take fk → f in X∗.
As A−1 was shown to be bounded, the sequence (A−1(fk)) is bounded and (possibly
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up to a subsequence) uk = A−1(fk) ⇀ u in X by the Eberlein–Smulian theorem. It
remains to show A(u) = f . By the monotonicity of A, for any v ∈ V :

0 ≤ ⟨A(uk)− A(v), uk − v⟩X = ⟨fk − A(v), uk − v⟩X . (2)

Therefore, by the continuity of the duality pairing, passing to the limit with k → ∞
yields

0 ≤ lim
k→∞

⟨fk − A(v), uk − v⟩X = ⟨f − A(v), u− v⟩X . (3)

Then we apply the Minty’s trick again, which gives A(u) = f . Thus, even the whole
sequence (uk) converges weakly.

3. (a) Replace v with u+ ϵw with w ∈ X arbitrary. This gives

⟨f − A(u+ ϵw),−ϵw⟩X ≥ 0.

Divide it by ϵ > 0 and pass to the limit with ϵ by using the radial continuity
of A:

0 ≥ ⟨f − A(u+ ϵw), w⟩ → ⟨f − A(u), w⟩X .

As w is arbitrary, one gets A(u) = f.

(b) Take a sequence (uk) convergent to some u ∈ X. Then (A(uk)) is bounded in
X∗, and by the Eberlein-Smulian theorem, we can select a subsequence (A(ukl))
converging weakly to some f ∈ X∗. Then, by the monotonicity of A, we have

0 ≤ lim
l→∞

⟨A(ukl)− A(v), ukl − v⟩X = ⟨f − A(v), u− v⟩X .

As v is arbitrary, and we assume the radial continuity of A, Minty’s trick (i)
yields f = A(u). Since f is thus determined uniquely, even the whole sequence
(A(uk)) must converge to it weakly.

4. (a) Consider the case of p > 1. It always holds u ̸= v in the following. First, we
consider wlog u ̸= 0 and v = 0, which gives

(g(u)− g(0))u = |u|p−2u2 = |u|p > 0

for u ̸= 0. Next, we consider u ̸= 0 and v ̸= 0. By a direct computation,

⟨|u|p−2u− |v|p−2v, u− v⟩ = |u|p + |v|p − |u|p−2u · v − |v|p−2v · u.

By Young’s inequality, it holds

||u|p−2u · v| ≤ |u|p−1|v| ≤ |u|p

p′
+

|v|p

p
,

where p′ = p
p−1

. Similarly, ||v|p−2v · u| ≤ |v|p
p′

+ |u|p
p

. Hence,

−|u|p−2u · v − |v|p−2v · u ≥ −|u|p − |v|p,

from which we conclude

⟨|u|p−2u− |v|p−2v, u− v⟩ ≥ 1

p
|u|p + 1

p′
|v|p ≥ 0.
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(b) Consider p ≥ 2. If either u = 0 or v = 0, the result follows as shown in the
proof of (i). Thus, we assume u ̸= 0 and v ̸= 0. For p = 2 it yields

(g(u)− g(v))(u− v) = (u− v)(u− v) = |u− v|2.

In the case of p > 2, we make use of (i) to get

⟨|u|p−2u− |v|p−2v, u− v⟩ ≥ 1

p
|u|p + 1

p′
|v|p,

and at this point we use Jensen’s inequality 2p−1(|u|p + |v|p) ≥ |u − v|p to
conclude the statement.

(c) Already shown in the proof of (ii).
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