Exercise sheet 1

1. (a) For all $f \in X^{*}$, the sequence $\left(\left\langle f, x_{n}\right\rangle_{X}\right)$ is bounded because of the weak convergence of $\left(x_{n}\right)$ we know that the sequence of real numbers $\left\langle f, x_{n}\right\rangle_{X}$ converges to $\langle f, x\rangle_{X}$. Therefore, we have $\sup _{n}\left|\left\langle f, x_{n}\right\rangle_{X}\right| \leq c(f)$. Using the canonical isometry $\iota: X \rightarrow X^{* *}$, given by $\langle\iota x, f\rangle_{X^{*}}=\langle f, x\rangle_{X}$, it follows that the sequence $\left(\iota x_{n}\right) \subseteq X^{* *}$ is pointwise bounded. The principle of uniform boundedness yields $\sup _{n}\left\|\iota x_{n}\right\|_{X^{* *}} \leq c$. Using $\left\|\iota x_{n}\right\|_{X^{* *}}=\left\|x_{n}\right\|_{X}$, the claim follows.
(b) We have:

$$
\begin{aligned}
\left|\left\langle f_{n}, x_{n}\right\rangle_{X}-\langle f, x\rangle_{X}\right| & \leq\left|\left\langle f_{n}, x_{n}\right\rangle_{X}-\left\langle f, x_{n}\right\rangle_{X}\right|+\left|\left\langle f, x_{n}-x\right\rangle_{X}\right| \\
& \leq\| \| f_{n}-f\left\|_{X^{*}}\right\|\left\|x_{n}\right\|_{X}+\left|\left\langle f, x_{n}-x\right\rangle_{X}\right| .
\end{aligned}
$$

Now, due to the given conditions: $\left\|f_{n}-f\right\|_{X^{*}} \rightarrow 0$ as $n \rightarrow \infty, \mid\left\langle f, x_{n}-\right.$ $x\rangle_{X} \mid \rightarrow 0$ as $n \rightarrow \infty$, and $\left\|x_{n}\right\|_{X} \leq c$ according to (i). Consequently, we have $\left|\left\langle f_{n}, x_{n}\right\rangle_{X}-\langle f, x\rangle_{X}\right| \rightarrow 0$ as $n \rightarrow \infty$.
(c) The proof is analogous to the proof of claim (ii).
(d) Proof by contradiction. If $\left(x_{n}\right)$ does not weakly converge to x, i.e., there exist $f \in X^{*}, \epsilon>0$, and a subsequence $\left(x_{n_{k}}\right)$ such that $\left|\left\langle f, x_{n_{k}}\right\rangle_{X}-\langle f, x\rangle_{X}\right| \geq \epsilon$ for all $k \in \mathbb{N}$. According to the given assumption, the subsequence ($x_{n_{k}}$) is bounded. Therefore, by the Eberlein-Smulian theorem, there exists a sub-subsequence $\left(x_{n_{k_{l}}}\right)$ that weakly converges, and, as per the assumption, it converges weakly to x. This leads to a contradiction. Hence, the claim holds.
2. If A is strictly monotone, we have

$$
\begin{equation*}
\left\langle A\left(u_{1}\right)-A\left(u_{2}\right), u_{1}-u_{2}\right\rangle_{X}=\left\langle f-f, u_{1}-u_{2}\right\rangle_{X}=0, \tag{1}
\end{equation*}
$$

which is possible only if $u_{1}=u_{2}$. In other words, the equation $A u=f$ has a unique solution, so the inverse A^{-1} does exist. The mapping A^{-1} is strictly monotone: For $f_{1}, f_{2} \in X^{*}$, where $f_{1} \neq f_{2}$, put $u_{1}=A^{-1}\left(f_{1}\right)$. Then $u_{1} \neq u_{2}$. As A is strictly monotone, one has

$$
\left\langle f_{1}-f_{2}, A^{-1}\left(f_{1}\right)-A^{-1}\left(f_{2}\right)\right\rangle_{X}=\left\langle A\left(u_{1}\right)-A\left(u_{2}\right), u_{1}-u_{2}\right\rangle_{X}>0 .
$$

The mapping A^{-1} is bounded: by the coercivity of A, there is $\zeta: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that $\lim _{\xi \rightarrow \infty} \zeta(\xi)=+\infty$, and $\langle A(u), u\rangle_{X} \geq\|u\|_{X} \zeta\left(\|u\|_{X}\right)$. Therefore,

$$
\zeta\left(\|u\|_{X}\right) \leq\langle A(u), u\rangle_{X}=\langle f, u\rangle_{X} \leq\|f\|_{X^{*}}\|u\|_{X},
$$

so that $\zeta\left(\left\|A^{-1}(f)\right\|_{X}\right)=\zeta\left(\|u\|_{X}\right) \leq\|f\|_{X^{*}}$. Thus, A^{-1} maps bounded sets in X^{*} into bounded sets in X. The mapping A^{-1} is demicontinuous: take $f_{k} \rightarrow f$ in X^{*}. As A^{-1} was shown to be bounded, the sequence $\left(A^{-1}\left(f_{k}\right)\right)$ is bounded and (possibly
up to a subsequence) $u_{k}=A^{-1}\left(f_{k}\right) \rightharpoonup u$ in X by the Eberlein-Smulian theorem. It remains to show $A(u)=f$. By the monotonicity of A, for any $v \in V$:

$$
\begin{equation*}
0 \leq\left\langle A\left(u_{k}\right)-A(v), u_{k}-v\right\rangle_{X}=\left\langle f_{k}-A(v), u_{k}-v\right\rangle_{X} \tag{2}
\end{equation*}
$$

Therefore, by the continuity of the duality pairing, passing to the limit with $k \rightarrow \infty$ yields

$$
\begin{equation*}
0 \leq \lim _{k \rightarrow \infty}\left\langle f_{k}-A(v), u_{k}-v\right\rangle_{X}=\langle f-A(v), u-v\rangle_{X} \tag{3}
\end{equation*}
$$

Then we apply the Minty's trick again, which gives $A(u)=f$. Thus, even the whole sequence (u_{k}) converges weakly.
3. (a) Replace v with $u+\epsilon w$ with $w \in X$ arbitrary. This gives

$$
\langle f-A(u+\epsilon w),-\epsilon w\rangle_{X} \geq 0
$$

Divide it by $\epsilon>0$ and pass to the limit with ϵ by using the radial continuity of A :

$$
0 \geq\langle f-A(u+\epsilon w), w\rangle \rightarrow\langle f-A(u), w\rangle_{X}
$$

As w is arbitrary, one gets $A(u)=f$.
(b) Take a sequence $\left(u_{k}\right)$ convergent to some $u \in X$. Then $\left(A\left(u_{k}\right)\right)$ is bounded in X^{*}, and by the Eberlein-Smulian theorem, we can select a subsequence $\left(A\left(u_{k_{l}}\right)\right)$ converging weakly to some $f \in X^{*}$. Then, by the monotonicity of A, we have

$$
0 \leq \lim _{l \rightarrow \infty}\left\langle A\left(u_{k_{l}}\right)-A(v), u_{k_{l}}-v\right\rangle_{X}=\langle f-A(v), u-v\rangle_{X} .
$$

As v is arbitrary, and we assume the radial continuity of A, Minty's trick (i) yields $f=A(u)$. Since f is thus determined uniquely, even the whole sequence $\left(A\left(u_{k}\right)\right)$ must converge to it weakly.
4. (a) Consider the case of $p>1$. It always holds $u \neq v$ in the following. First, we consider wlog $u \neq 0$ and $v=0$, which gives

$$
(g(u)-g(0)) u=|u|^{p-2} u^{2}=|u|^{p}>0
$$

for $u \neq 0$. Next, we consider $u \neq 0$ and $v \neq 0$. By a direct computation,

$$
\left.\left.\langle | u\right|^{p-2} u-|v|^{p-2} v, u-v\right\rangle=|u|^{p}+|v|^{p}-|u|^{p-2} u \cdot v-|v|^{p-2} v \cdot u .
$$

By Young's inequality, it holds

$$
\left||u|^{p-2} u \cdot v\right| \leq|u|^{p-1}|v| \leq \frac{|u|^{p}}{p^{\prime}}+\frac{|v|^{p}}{p}
$$

where $p^{\prime}=\frac{p}{p-1}$. Similarly, $\left||v|^{p-2} v \cdot u\right| \leq \frac{|v|^{p}}{p^{\prime}}+\frac{|u|^{p}}{p}$. Hence,

$$
-|u|^{p-2} u \cdot v-|v|^{p-2} v \cdot u \geq-|u|^{p}-|v|^{p},
$$

from which we conclude

$$
\left.\left.\langle | u\right|^{p-2} u-|v|^{p-2} v, u-v\right\rangle \geq \frac{1}{p}|u|^{p}+\frac{1}{p^{\prime}}|v|^{p} \geq 0 .
$$

(b) Consider $p \geq 2$. If either $u=0$ or $v=0$, the result follows as shown in the proof of (i). Thus, we assume $u \neq 0$ and $v \neq 0$. For $p=2$ it yields

$$
(g(u)-g(v))(u-v)=(u-v)(u-v)=|u-v|^{2}
$$

In the case of $p>2$, we make use of (i) to get

$$
\left.\left.\langle | u\right|^{p-2} u-|v|^{p-2} v, u-v\right\rangle \geq \frac{1}{p}|u|^{p}+\frac{1}{p^{\prime}}|v|^{p},
$$

and at this point we use Jensen's inequality $2^{p-1}\left(|u|^{p}+|v|^{p}\right) \geq|u-v|^{p}$ to conclude the statement.
(c) Already shown in the proof of (ii).

