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Abstract

Shape optimization is very important for many industrial applications. The
typical problem is to find the optimal shape of a machine such that it min-
imizes a certain cost functional while satisfying given constraints, see [1].

The practical problems in this thesis are given by the ACCM (Austrian
Center of Competence in Mechatronics). The task is to determine the design
of an electric drive such that a cost functional is minimized. Due to the
fact that the analytic definition of the cost functional is not available but
all function values can be computed, this thesis considers optimization by
black box simulations.

The model problem in this thesis is firstly considered with two design
parameters and it is described in detail. The mathematical background
for the optimization is presented. It is mainly based on the book Practical
Optimization by Philip E. Gill, Walter Murray and Margaret H. Wright. The
optimization programs are written in Matlab. This thesis presents different
numerical results by using a certain Matlab routine. Moreover, results are
shown with the availability of parallel processors and it is presented how this
would reduce the number of function evaluations in each optimization step.
A proposal is made at the end of the consideration of the problem with two
design parameters, how the whole procedure of optimizing the motor via
black box simulations can be automatized.

Finally, the gained knowledge is applied on real application problems
with more design parameters given by the ACCM and the results of the
optimization are presented. These results are compared to the results of a
different optimization method, a genetic algorithm from [7].
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Zusammenfassung

Formoptimierung ist sehr wichtig für viele Anwendungen in der Industrie.
Ein typisches Problem der Formoptimierung ist es die optimale Form einer
Maschine zu finden, sodass ein bestimmtes Gütefunktional mit gegebenen
Nebenbedingungen minimiert wird.

Die Anwendungsprobleme in dieser Diplomarbeit werden vom ACCM
(Austrian Center of Competence in Mechatronics) bereit gestellt. Das Ziel
ist es das Design eines elektrischen Motors zu bestimmen, sodass ein Güte-
funktional minimiert wird. Aufgrund der Tatsache, dass eine analytische
Definition des Gütefunktionals nicht verfügbar ist, aber alle Funktionswerte
berechnet werden können, beschäftigt sich diese Diplomarbeit mit der Op-
timierung mittels Black Box Simulationen.

Das Modellproblem dieser Arbeit wird zunächst mit zwei Designparam-
etern detailliert betrachtet. Der mathematische Hintergrund für die Opti-
mierung wird präsentiert, welcher sich hauptsächlich auf das Buch Practical
Optimization von Philip E. Gill, Walter Murray und Margaret H. Wright
stützt. Die Programme für die Optimierung sind in Matlab programmiert.
Diese Diplomarbeit liefert verschiedene numerische Ergebnisse unter Ver-
wendung einer bestimmten Matlab-Routine. Es werden auch Ergebnisse
präsentiert, die mit Hilfe von parallelen Prozessoren berechnet wurden und
es wird gezeigt, wie dies die Anzahl der Funktionsauswertungen in jedem
Optimierungsschritt reduziert. Am Ende der Betrachtung des Problems mit
zwei Designparametern wird ein Vorschlag dazu gegeben, wie das komplette
Optimierungsverfahren mittels Black Box Simulationen automatisiert wer-
den kann.

Schlussendlich wird das erreichte Wissen an Anwendungsproblemen vom
ACCM mit noch mehr Designparametern angewendet und die Ergebnisse
der Optimierungen werden präsentiert. Diese werden mit Ergebnissen einer
anderen Optimierungsmethode, einem genetischen Algorithmus aus [7], ver-
glichen.
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Chapter 1

Introduction

Optimization has always been a very important task in research and devel-
opment. There are various approaches to solve optimization problems in
theory as well as in application. Especially, shape optimization occurs in
many application problems.

1.1 Shape Optimization

A typical shape optimization problem is to determine the optimal shape such
that a certain cost functional is minimized while satisfying given constraints,
see [1]. A shape optimization problem can be formulated as

min
x∈Rn

f(x, u(x)) such that xi ≤ xi ≤ xi ∀i ∈ {1, 2, ..., n},

where f(x, u(x)) is the cost functional, u(x) solves an elliptic partial differ-
ential equation and x is the vector of n design parameters.

In the following, the goal of the application problems in this thesis will
be to determine the optimal design of an electric motor, which minimizes a
certain cost functional and satisfies some given constraints. The cost func-
tional f(x, u(x)) describes mainly the power output of the electric motor,
and the elliptic partial differential equation, which is solved by u(x), charac-
terizes the electromagnetic behavior. The real application problems in this
thesis occur in the field of electrical engineering and are provided by the
ACCM (Austrian Center of Competence in Mechatronics), where the group
for electric drives has developed a special tool for the simulation of electric
motors.

The optimization problems in the field of electric motors lead to cost
functionals which are very complex and consist of many different factors.
They can also depend on many different parameters. However, the function
values are computed by simulation and due to that they are available, but
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the exact analytical definition of the cost functional is not given. Therefore,
one natural approach is to use a black box method to optimize the shape of
the electric motor.

1.2 Black Box Optimization

Black box optimization is useful for problems, where the analytical definition
of the cost functional is unknown, but the function values can be computed
for all relevant parameter values. Black box methods are approximative
methods.

The black box in this thesis is represented by a certain Matlab routine,
which returns function values corresponding to given parameters. Using
black box optimization yields various problems and difficulties, such as the
need of derivative information of the cost functional. In this thesis, the
Matlab routine fmincon, a built-in function of the Matlab Optimization
Toolbox, is used for optimizing the cost functional. The main idea of the
Matlab routine fmincon is explained in the next section.

1.3 Optimization with Matlab

The Matlab command fmincon is used to solve constrained nonlinear op-
timization problems, see [2]. It finds the minimum of a nonlinear scalar
function f , which can be multivariable, subject to given constraints. In the
considered problems, the given constraints are box constraints. Lower and
upper bounds have to be specified to determine the variable range. More
precisely in this thesis, fmincon is used to find the minimum of a problem
specified by

min
x∈Rn

f(x) such that lb ≤ x ≤ ub,

where x, lb and ub are vectors. The command fmincon tries to find iteratively
a minimum starting at an initial estimate. Therefore, the user has to provide
a starting value x0 or it is automatically suggested in the middle of the box
constraints.

The Matlab routine fmincon uses a gradient based method. The opti-
mization requires that information about derivatives of the cost functional
have to be available. Therefore, the user has the possibility to supply g, the
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gradient of f(x),

g =



∂f
∂x1
∂f
∂x2
...
∂f
∂xn


or to supply g and H, the Hessian of f(x), which is

H =



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n


.

If this information is not provided, gradient and Hessian are approximated
by Matlab.

In real application problems, the cost functional f is very complex and
its analytical definition is not available. The function values are computed
by black box simulations. For the optimization, three Matlab files have
been written. In the main file named OptimizationQualityFunction.m
the routine fmincon is called. Here, the box constraints, options and the
initial value of the iterative method are specified. The cost functional named
fquality.m has to be called in fmincon. The Matlab function fmincon is
of the form

[x,fval,...] = fmincon(@fquality, x0, [ ], [ ], [ ], [ ], lb, ub, [ ], options),

where the left hand side specifies the output.
In fquality.m, the function values of the cost functional are computed.

Here, it is possible to supply the gradient or the Hessian as well. We do this
by approximating the derivatives by difference quotients. The thesis presents
various cases by supplying derivative information of the cost functional by
the user. If no derivative information is supplied, Matlab computes the
gradient and the Hessian approximatively. Analogously, if only the gradient
is supplied by the user, then Matlab approximates the Hessian internally.

The function values of the cost functional are called by the function sim-
ulate.m, the black box. This function, simulate.m, computes the function
values depending on the values of the parameters. Arbitrarily many param-
eters can be chosen, depending on the model problem. For the application
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problems in this thesis, the engineers of the ACCM limit the number of
design parameters to ten parameters.

Important optimization algorithms in fmincon

• Active-Set Optimization:
A sequential quadratic programming (SQP) method is used. In this
method, a quadratic programming (QP) subproblem is solved at each
iteration. Using the BFGS-formula (BroydenFletcherGoldfarbShanno-
formula), fmincon updates an estimate of the Hessian at each iteration.
This method is used in fmincon for computing the optimum, if no
information about the derivatives is provided by the user, see [2].

• Trust-Region-Reflective Optimization:
This method is based on the interior-reflective Newton method. At
each iteration, the solution of a linear system using the method of pre-
conditioned conjugate gradients (PCG) is approximatively computed.
This method is used, if the gradient is supplied and box constraints
are specified by the user. In general, this method is most effective
when the Hessian is computed as well, see [2].

The organization of the thesis

• Chapter 2:
The thesis deals with a model problem which provides a first insight
into the shape optimization of an electric motor. In chapter 2, this
model problem is explained and also the to be optimized parameters
of the cost functional.

• Chapter 3:
The numerical background for the optimization is shown. An im-
portant part will be the approximation of gradient and Hessian by
difference quotients. Moreover, a method will be considered how to
find the ”optimal” stepsizes for the difference quotients.

• Chapter 4:
The model problem from chapter 2 with two parameters is considered.
This problem shows the main challenges of optimizing by a black box
method. One of them is that derivative information is needed. It
is possible for the user to supply the Matlab routine fmincon with
derivative information. Therefore, numerical results of many different
cases are compared and it is shown in practice how to choose ”optimal”
stepsizes for the difference quotients. It is explained what ”optimal”
in this case means and which strategies for optimizing by black box
simulations are in general most efficient. There are possibilities how
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to speed up the optimization by parallelizing the optimization such
that in one optimization step the function evaluations are computed
by multiprocessor systems. At the end of chapter 4, it is explained
how the whole optimization process can be automatized.

• Chapter 5:
The model problem is extended such that the motor is optimized with
respect to five parameters. Here, the additional parameters are ex-
plained and the gained knowledge of the problem with two parameters
is applied on the one with five parameters. This leads to numerical
results, which are compared to the results obtained by optimizing with
a genetic algorithm from [7].

• Chapter 6:
The final problem is our model problem with eight parameters. By
applying the successful machinery, which one gets from the preceding
problems, especially from the problem with two parameters, it is finally
revealed whether the theoretical and well tested practical results hold
true for real application problems or not.

• Chapter 7:
The conclusions and an outlook of the thesis are presented.
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Chapter 2

The Model Problem

Electric motors are divided into Alternating Current (AC) types and Direct
Current (DC) types. The motor considered in the model problem is an AC
motor. More precisely, it is a permanent magnetic synchronous machine
(PMSM). A PMSM has two characteristics. Firstly, it is a synchronous
machine. Secondly, it is permanent magnetic excited. But what does these
all mean?

Synchronous machine: An electric synchronous motor is an AC motor
whose rotational frequency equals the air gap field frequency, i.e. the mag-
netic field rotates at the same speed as that created by the field current.
From that comes the name synchronous motor. Ideally, a steady torque
results. The air gap between rotor and stator is often larger in synchronous
machines as in asynchronous. This provision is made for the protection of
the permanent magnets from too large short-circuit currents, see [3].

Permanent magnetic excited: Permanent magnetic implies that the
exciting field of the rotor is generated by permanent magnets. In a PMSM,
the windings are located in the stator.

In the motor simulation, the magnetostatic problem is solved for every
rotor position relative to the stator depending on the angle. This is done
twice, once without current (I = 0), which is called the no-load case, and
once with current (I 6= 0), called the load case, and it is done through 360◦

or less depending on the number of pole pairs. As it will be shown later on,
the motor model has 2 pole pairs. Due to that it has to be done only through
180◦. For every angle of the 180◦, the motor is at rest and the torque and
other parameters, which will be explained in the following, are computed.
Moreover, either the whole motor or only half of it is simulated. This de-
pends on whether the motor shows field symmetries or not. If the motor
is field symmetric, then only half of it has to be simulated. Whether the

6



motor is symmetric or not depends on the design parameters. Concretely, in
the problem with 2 design parameters the motor is symmetric. Therefore,
only half of the motor has to be simulated. In the problems with 5 and 8
design parameters, the whole motor has to be simulated because of some of
the additional parameters.

Very important for the cost functional is the torque and the power output
of the machine. Torque, also called moment of force, is the tendency of a
force to rotate an object about an axis. The tangential shearing force is
essential for the torque. A torque can be thought of as a twist. Basically,
the torque measures how strong something is rotated. The torque τ on a
particle, which has the position r in some reference frame, is defined as

τ = r × F,

where F is the force acting on the particle, see [1].
Torque is very important for the description of an engine. It is part of its

basic specification. Namely, the power output P of an engine is expressed
as the scalar product of its torque and its angular speed ω

P = τ · ω.

Power is the work per unit time. Power injected by the torque depends only
on the current angular speed, not on whether the angular speed increases,
decreases, or remains constant while the torque is being applied. This is
equivalent to the linear case where the power injected by a force depends
only on the current speed and not on the resulting acceleration, see [1].

It is important to use consistent units. The SI unit of power is watt,
the one of torque is newton meter and that of angular speed is radians per
second. The unit newton meter is dimensionally equivalent to joule, which
is the unit of energy. In the case of torque, the unit is assigned to a vector.
In the case of energy, it is assigned to a scalar, see [1].

A conversion factor must be inserted into the equation because of the
different units of power, torque and angular speed. If rotational speed n
(revolutions per time) is used in place of angular speed ω (radians per time),
then n has to be multiplied by 2π such that it equals ω. This follows from
the fact that there are 2π radians in a revolution. Therefore, power can be
described by

P = τ · 2πn,

according to [1].
The balance of power classifies an AC machine. In [3] the following

equations are described in detail. For a synchronous machine, the power
Pel, which is electrically conducted to the stator, consists of the mechanical
power Pmech, the stator losses P statorloss and of the rotor losses P rotorloss , i.e.

Pel = Pmech + P statorloss + P rotorloss .
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A part of this sum is called the air-gap power Pδ. It consists of the mechan-
ical power and the losses of the rotor, i.e.

Pδ = Pmech + P rotorloss .

Hence, it follows for the electrically conducted power that

Pel = Pδ + P statorloss .

The appearing stator losses consist of copper losses PCuloss and iron losses
PFeloss,

P statorloss = PCuloss + PFeloss.

Losses are important for the complete power output of the motor. In the
model problem, a very important part of the cost functional are the copper
losses PCuloss, relative to the mechanical losses, but the iron losses will be not
considered.

Copper losses are heat produced by electrical currents in electrical de-
vices, i.e. ohmic resistances in the windings of an engine. Hence, copper
losses are an undesirable transfer of energy, see [1].

The cost functional in the model problem is based on 4 factors:

• the maximum square deviation of the cogging torque,

• the maximum square deviation of the load torque,

• copper losses, and

• the distortion factor of the induced voltage.

By reason of solving the magnetostatic problem for every rotor position
relative to the stator depending on the angle twice, the torque is also com-
puted twice for every angle, on the one hand for the no-load case, and on
the other hand for the load case. The torque for the no-load case is called
the cogging torque. It is also known as ”no-current” torque, see [1]. In the
case I 6= 0, the torque is computed for every angle as well. Here, the torque
consists of cogging and load torque. If we take out the cogging torque from
this torque, then we derive the load torque. The following two pictures
show the cogging and load torque during a simulation. The rotation angle
in degree is plotted on the x-axis and the torque in newton meter is on the
y-axis. Moreover, it has to be mentioned that the scaling of the two pictures
is different. In fact, the load torque is higher than the cogging torque. In
the optimization problems of this thesis, the task will be to minimize the
maximum square deviation of the cogging and the load torque.

8



Figure 2.1: Cogging and load torque

The last part of the cost functional is the distortion factor of the induced
voltage, also called the total harmonic distortion (THD) of the induced
voltage. The induced voltage is the time derivative of the flux ψ, which is
linked with the winding. The flux ψ depends on the rotation angle φ and
the current I, i.e. ψ(φ, I). Its time derivative is

dψ

dt
=
dψ

dφ

dφ

dt
+
dψ

dI

dI

dt
.

The first part of the sum corresponds to the voltage in the case where I = 0.
The second part is the additional voltage under current (I 6= 0). The time
derivative of the rotation angle is the angular speed ω, i.e.

ω =
dφ

dt
.

We consider the THD of the induced voltage. The THD is a measurement
of the harmonic distortion. In terms of voltages, the THD is often defined
as

THD =
V 2

2 + V 2
3 + ...+ V 2

n

V 2
1

,

which is the ratio of the squares of the root mean square voltages Vi for
i ∈ {2, ..., n} to the fundamental harmonic voltage V1, see [1].

The following two pictures show the difference between functions with a
larger and those with a smaller THD.
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Figure 2.2: The THD of the induced voltage

This is the PMSM of the model problem:

Figure 2.3: The complete motor model

The model PMSM has 6 stator cogs and 4 magnets in the rotor. Hence,
the motor has 2 pole pairs. The machine has 6 windings and 3 phases, and
between rotor and stator is the air gap.
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In detail, the stator and the rotor are:

Figure 2.4: Stator and rotor of the motor model

The optimization problem is formulated as

min
x∈Rn

f(x) such that xi ≤ xi ≤ xi ∀i ∈ {1, 2, ..., n}, (2.1)

where f is the cost functional, which has to be minimized. It is given as

f = qT ·W · q, (2.2)

where q is a vector consisting of the following 4 components: the maximum
square deviation of the cogging torque τcogg relative to the mean load torque
τmean, altogether called τ relcogg, the maximum square deviation of the load
torque τload relative to the mean load torque τmean, which is called τ relload, the
copper losses PCuloss relative to the mechanical power Pmech named P relloss and
the THD of the induced voltage. W is a matrix of weights, such that q can
be weighted by the engineer according to the significance of its components.
We have

q =


τ relcogg

τ relload

P relloss

THD

 (2.3)

with

τ relcogg =
τcogg
τmean

, τ relload =
τload
τmean

and P relloss =
PCuloss
Pmech

. (2.4)
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As mentioned at the beginning of this chapter, the power output P of
an engine is expressed as the scalar product of its torque τ and its angular
speed ω,

P = τ · ω. (2.5)

According to this equation and to [3], the mechanical power is given by

Pmech = τmean · ω, (2.6)

where ω is the angular speed (ω = 2πn with n as rotational speed).
The copper losses PCuloss are specified by

PCuloss = Nph ·Rph · I2
eff , (2.7)

where Nph = 3 is the number of phases, Rph the resistance in the phase and
Ieff equals Î/

√
2 with Î the maximum value of the amplitudes of the phase

currents.
According to the engineers, the copper losses have to be weighted higher

than the other factors. Hence, the matrix of weights is given by

W =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 . (2.8)

In the following chapters, firstly a numerical background for the opti-
mization is presented and then the problems with two, five and eight design
parameters are described and results are presented.
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Chapter 3

Numerical Differentiation

3.1 Approximation of Gradient and Hessian

In the optimization problems which are considered in this thesis, the function
values are computed by simulation and hence they are available. For the
optimization, the Matlab routine fmincon is used to compute a minimum
of the cost functional f , which is a scalar function. There are possibilities to
supply the gradient g and the Hessian H of f by the user. Hence, we need
a good strategy to approximate g and H well.

To start with, we will consider the one-dimensional case. Let f(x) be a
one-dimensional scalar function, which is n times continuously differentiable,
i.e.

f : R→ R with f ∈ Cn. (3.1)

Here, the gradient of f is f ′(x) and the Hessian is f ′′(x). According to [9], it
is possible to find a good approximation of f ′(x) by replacing f(x) with an
interpolation function ϕ(x). Therefore we use ϕ′(x) to approximate f ′(x).
If we use linear interpolation through the points x and x + h, then we get
the so called forward difference quotient, i.e.

f ′(x) ≈ f(x+ h)− f(x)
h

. (3.2)

Analogously, by using linear interpolation through the points x − h and x,
we derive the so called backward difference quotient, i.e.

f ′(x) ≈ f(x)− f(x− h)
h

. (3.3)
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If we use quadratic interpolation through the points x−h, x and x+h, then
we get the so called central difference quotient, i.e.

f ′(x) ≈ f(x+ h)− f(x− h)
2h

. (3.4)

The next step is to analyze these derivative approximations and to look on
their errors. By Taylor expansion it follows that

f(x+h) = f(x) +hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f (3)(x) +

h4

4!
f (4)(x) +O(h5) (3.5)

and

f(x−h) = f(x)−hf ′(x)+
h2

2!
f ′′(x)− h

3

3!
f (3)(x)+

h4

4!
f (4)(x)+O(h5). (3.6)

From that we get the following error estimates for difference quotients:

f(x+ h)− f(x)
h

− f ′(x) =
h

2
f ′′(x) +

h2

6
f (3)(x) +O(h3) (3.7)

for the forward difference quotient,

f(x)− f(x− h)
h

− f ′(x) = −h
2
f ′′(x) +

h2

6
f (3)(x) +O(h3) (3.8)

for the backward difference quotient and

f(x+ h)− f(x− h)
2h

− f ′(x) =
h2

6
f (3)(x) +O(h4) (3.9)

for the central difference quotient. The leading term of the errors of the
forward and the backward difference quotient is proportional to h, but the
central difference formula yields a more accurate approximation, i.e. its lead-
ing term is proportional to h2. Hence, we will choose the central difference
quotient to approximate the gradient of f .

Before approximating the Hessian, which is f ′′(x) in the one-dimensional
case, we want to introduce some operators.
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The forward difference operator 4 is defined as

4f(x) = f(x+ h)− f(x), (3.10)

and the backward difference operator ∇ as

∇f(x) = f(x)− f(x− h). (3.11)

The difference operators of n-th order are computed recursively by

4nf(x) = 4n−1(4f(x)) (3.12)

and

∇nf(x) = ∇n−1(∇f(x)). (3.13)

According to [1] the higher-order partial derivatives are approximated by

∂nf

∂xn
≈ 4

nf(x)
hn

(3.14)

for the n-th order forward difference quotient,

∂nf

∂xn
≈ ∇

nf(x)
hn

(3.15)

for the n-th order backward difference quotient and

∂nf

∂xn
≈ 1

2hn
(4nf(x− n

2
h) +∇nf(x+

n

2
h)), (3.16)

for the n-th order central difference quotient, if n is even, and

∂nf

∂xn
≈ 1

2hn
(4nf(x− n− 1

2
h) +∇nf(x+

n− 1
2

h)) (3.17)

if n is odd. It follows for the one-dimensional second-order forward difference
quotient that

f ′′(x) ≈ 1
h2

(f(x+ 2h)− 2f(x+ h) + f(x)), (3.18)

15



for the one-dimensional second-order backward difference quotient that

f ′′(x) ≈ 1
h2

(f(x)− 2f(x− h) + f(x− 2h)) (3.19)

and for the one-dimensional second-order central difference quotient that

f ′′(x) ≈ 1
h2

(f(x+ h)− 2f(x) + f(x− h)). (3.20)

Taylor expansion leads to the following error estimates:

1
h2

(f(x+ 2h)− 2f(x+ h) + f(x))− f ′′(x) = hf (3)(x) +O(h2) (3.21)

for the forward difference quotient,

1
h2

(f(x)− 2f(x− h) + f(x− 2h))− f ′′(x) = −hf (3)(x) +O(h2) (3.22)

for the backward difference quotient and

1
h2

(f(x+ h)− 2f(x) + f(x− h))− f ′′(x) =
h2

12
f (4)(x) +O(h3) (3.23)

for the central difference quotient. Again the central difference formula
yields a more accurate approximation of the second derivative. Therefore,
we will use central difference quotients to approximate gradient and Hessian
of f .

For the two-dimensional problem we have that

f : R2 → R. (3.24)

The partial derivatives of the gradient g are analogously approximated by
central difference quotients as the first derivative in the one-dimensional
case. Therefore, the gradient is approximated by

g =

(
∂f
∂x1
∂f
∂x2

)
≈
( 1

2h1
(f(x1 + h1, x2)− f(x1 − h1, x2))

1
2h2

(f(x1, x2 + h2)− f(x1, x2 − h2))

)
,
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where h1 and h2 denote the 2 different stepsizes of the central difference
quotients in the approximated gradient. The pure second partial derivatives
of the Hessian H, which is

H =

 ∂2f
∂x2

1

∂2f
∂x1x2

∂2f
∂x2x1

∂2f
∂x2

2

,
are approximated according to the second derivative in the one-dimensional
case, namely by

∂2f

∂x2
1

≈ 1
s21

(f(x1 + s1, x2)− 2f(x1, x2) + f(x1 − s1, x2)) (3.25)

and

∂2f

∂x2
2

≈ 1
s22

(f(x1, x2 + s2)− 2f(x1, x2) + f(x1, x2 − s2)), (3.26)

where s1 and s2 are the 2 different stepsizes of the central difference quotients
in the approximated pure second derivatives of the Hessian. Now we have
to approximate the mixed second derivative of the Hessian, i.e.

∂2f

∂x1∂x2
=

∂2f

∂x2∂x1
. (3.27)

According to [6], the mixed second derivative approximated by central dif-
ference quotients is

1
4l1l2

(f(x1+l1, x2+l2)−f(x1−l1, x2+l2)−f(x1+l1, x2−l2)+f(x1−l1, x2−l2))

(3.28)

with l1 and l2 denoting the 2 different stepsizes of the difference quotient.
By Taylor expansion and under the assumptions that the stepsizes l1 and
l2 are around of the same magnitude, it follows that the difference between
the exact derivative (3.27) and its approximation (3.28) is given by

l22
6

∂4

∂x1∂x3
2

f(x1, x2) +
l21
6

∂4

∂x3
1∂x2

f(x1, x2) +O(l31) +O(l32). (3.29)
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Since we have the approximations of the gradient g and the Hessian H of
a scalar function f by central difference quotients for two dimensions, these
approximations are derived analogously for higher dimensional cases.

For the problem with 2 design parameters there are altogether 13 func-
tion evaluations needed in each iteration step of the Matlab routine fmin-
con: 1 for the function value f(x1, x2), 4 additional for approximating the
gradient and 8 additional for approximating the Hessian. The following
complexity table illustrates the number of function evaluations, which are
needed in each iteration step, depending on the number n of design param-
eters:

f g f, g H f, g,H

n 1 2n 1 + 2n 2n2 1 + 2n+ 2n2

1 1 2 3 2 5
2 1 4 5 8 13
5 1 10 11 50 61
8 1 16 17 128 145

A very important part of approximating derivatives by difference quo-
tients is a good choice of the stepsizes because it is significant in finding
successfully an optimum of the cost functional. Here, it has to be men-
tioned that cancelation appears if a derivative is approximated. Hence, the
stepsizes should not be chosen too small, see [9].

As next, we will present an error analysis of the given problem and af-
terwards we will determine through that an optimal choice for the stepsizes,
which will be explained for a problem with 2 design parameters.

3.2 Error Analysis

In the error analysis of our problem we will consider the approximation error
and from that we will determine the optimal stepsizes.

To start with, let f(x) be the exact function value and f̄(x) be the
perturbed function value, where the perturbance is caused by computing the
function value by various methods as for example approximating an integral
by numerical methods and by discretization, which is needed for the finite
element method simulating the motor, and so on. In the following, we will
not consider the reason for this perturbance in our model problem. For
us, the function is a black box and hence we will try to derive the error
between f(x) and f̄(x) by some other techniques. The upper bound of the
absolute error between the exact and the perturbed function value is called
the accuracy εA, i.e. ∣∣f̄(x)− f(x)

∣∣ ≤ εA. (3.30)

18



The relative error εf is related to the accuracy by

εf =
εA
|f(x)|

. (3.31)

In practice, the relative error εf or also the accuracy εA can be chosen in
mainly three ways, i.e.

• known by the user,

• approximated by some techniques,

• computed by finite element error estimators.

In this thesis, results will be presented by either choosing the accuracy
εA or estimating it by some techniques from [6]. As next, we will consider
its estimation. Optimization algorithms utilize the values of the function at
many points. Therefore, the concern is to obtain a good bound on the error
in the computed function value for any point at which the function must
be evaluated during the optimization. A significant amount of computation
is needed in order to get a reasonably reliable estimate of the accuracy.
Therefore, a successful way of approximating the accuracy is needed which
does not require excessive computation. Such an approach is presented in
[6] and has turned out to be quite successful on practical problems. It will
be presented in the next subsection.

A good estimate of the accuracy for a given function f should be ob-
tained at a certain typical point, which is usually the initial point of the
optimization. If the accuracy can be estimated and a certain model of the
behavior of this error can be assumed, then it is possible to estimate the
accuracy of f at any point within the box constraints. It must be pointed
out that the mathematical model is only a perturbation of the real problem
because it is based on statistical assumptions about the error distribution.
The estimate of the accuracy can effect several aspects of an optimization
algorithm as the specification of the termination criteria or the minimal
distinction between the points which are imposed during the step length
procedure, see [6].

3.2.1 The estimation of the accuracy

The thesis considers a method from the book [6] to estimate the accuracy
εA. Here, the satisfaction of the associated assumptions is a crucial factor
for the quality of the estimate because the accuracy estimates rely on the
behavior of the function at the selected points.

For the case that the function is twice continuously differentiable and
univariate, the behavior of the function is considered naturally along the only
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one direction. Additionally, if certain assumptions can be made about the
behavior of the function, of its higher derivatives and about the statistical
distribution of the errors in the computed values of f , then an estimate of
the accuracy can be obtained.

We have to choose a set of values xi ∈ R as

xi = x0 + i · h (3.32)

with i ∈ {0, ...,m}, where m ∈ N. The equidistant step length h ∈ R should
have a small absolute value |h|, but not too small because then the noise
would be too strong. It is supposed that f has been computed at these
values. Moreover, it is assumed that each computed value f̄i is related to
the exact value f(xi) by the formula

f̄i = f(xi) + δi ≡ f(xi) + θiεA (3.33)

where δi and θi are random variables with |θi| ≤ 1. As [6] states, a difference
table for f̄i can be set up, where the difference operator 4 is the forward
difference operator. The difference table for 4kfi for the numbers i, k ∈
{0, ..., 4} has the form:

f̄0

4f̄0

f̄1 42f̄0

4f̄1 43f̄0

f̄2 42f̄1 44f̄0

4f̄2 43f̄1

f̄3 42f̄2

4f̄3

f̄4

where each difference is computed by subtracting the two entries of the
previous column. The already known values f̄i build the first column of
the table. From the difference table follows after k differences due to the
linearity of the difference operator that

4kf̄i = 4kfi +4kδi. (3.34)

As it is stated in [6], it can be shown that 4kf0 = hkf (k)(x) + O(hk+1).
Furthermore, |hkf (k)| → 0 for moderate values of k and for h small enough.
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Then the higher order differences of the computed function values should
reflect approximately the differences of the errors δi.

Under the assumption that the random variables {θi} are uncorrelated
and have the same variance, it is possible to estimate εA, if a specific pattern
can be observed in one column of the difference table, namely if the later
differences of 4kf̄i are similar in magnitude and they alternate in sign.
Typically, this pattern of behavior can be observed starting with k = 4 or
k = 5. More than k = 10 is usually not required. Furthermore, it can be
observed that the pattern of sign alternation does not have to occur in every
element but can also occur in groups of four or five rather than throughout
the entire column. As [6] states, experience shows that such a kind of pattern
is typical in practice.

For estimating εA, [6] suggests the following formula from the k-th col-
umn of the difference table:

ε
(k)
A ≈

maxi |4kf̄i|
βk

(3.35)

with

βk =

√
(2k)!
(k!)2

. (3.36)

As [6] states, practice shows that mostly k is chosen as 4 or 5. If it is
needed, then the relative error can be computed by the formula (3.31). For
computing the denominator |f(x)| of the relative error, we have to choose the
point x well. A natural choice would be the initial value x0. [6] states that it
is an effective strategy to use this initial estimate for the error. Nevertheless,
it has to be remarked that in most problems not only one estimate of εA
at one point is needed but it is required at more points. In this case, [6]
suggests a method for estimating the error efficiently.

In the following, we consider a two-dimensional problem. For more than
one dimension, [6] suggests that the function should be considered along a
normalized direction p for the accuracy error analysis, i.e. ||p|| = 1. For two
dimensions, the direction p is of the form

p =
(
p1

p2

)
(3.37)

with ||p|| = 1. The points

xi =
(
x1
i

x2
i

)
, (3.38)
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which are needed to compute the function values for the accuracy, are com-
puted by setting

xi = x0 + i · h · p, (3.39)

where x0 has to be an arbitrary starting value for the direction p and ||h||
should be chosen sufficiently small.

3.2.2 The total error

We will start by a consideration of the total errors of approximating the
first and second derivative of a one-dimensional function f and then we will
present the total errors and their upper bounds of approximating the partial
derivatives of a two-dimensional function.

The total error of the first derivative f ′(x) approximated by central dif-
ference quotient is

ex =
∣∣∣∣ f̄(x+ h)− f̄(x− h)

2h
− f ′(x)

∣∣∣∣ , (3.40)

where f̄(x) is the perturbed function value. Now, we use a trick by inserting
0, which leads to

ex =
∣∣∣∣ f̄(x+ h)− f̄(x− h)

2h
− f(x+ h)− f(x− h)

2h

+
f(x+ h)− f(x− h)

2h
− f ′(x)

∣∣∣∣ . (3.41)

By using the triangle inequality, we get that

ex ≤
∣∣∣∣ f̄(x+ h)− f̄(x− h)

2h
− f(x+ h)− f(x− h)

2h

∣∣∣∣
+
∣∣∣∣f(x+ h)− f(x− h)

2h
− f ′(x)

∣∣∣∣ . (3.42)

If we insert the accuracy εA defined by (3.30) and use the approximation
error (3.9), which follows from Taylor expansion, then we get the upper
bound

ex ≤
εA
h

+
h2

6

∣∣∣f (3)(x)
∣∣∣ (3.43)
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for the total error up to higher order terms. In the following, we will always
neglect the higher order terms for estimating the total errors.

Now, we want to derive an upper bound for the total error of the second
derivative f ′′(x) approximated by central difference quotient. The total error
here is

exx =
∣∣∣∣ 1
h2

(f̄(x+ h)− 2f̄(x) + f̄(x− h))− f ′′(x)
∣∣∣∣ . (3.44)

We use again the same trick as before and apply the triangle inequality,
which leads to

exx ≤
∣∣∣∣ 1
h2

(f̄(x+ h)− 2f̄(x) + f̄(x− h))− 1
h2

(f(x+ h)− 2f(x) + f(x− h))
∣∣∣∣

+
∣∣∣∣ 1
h2

(f(x+ h)− 2f(x) + f(x− h))− f ′′(x)
∣∣∣∣ . (3.45)

By inserting the accuracy εA and the approximation error (3.23) from Taylor
expansion, we get that

exx ≤
4εA
h2

+
h2

12

∣∣∣f (4)(x)
∣∣∣ . (3.46)

In the case with 2 design parameters, we get the similar upper bounds
for the total errors of the approximated first partial derivatives ∂f

∂x1
and ∂f

∂x2
:

ex1 ≤
εA
h1

+
h2

1

6

∣∣∣∣∂3f

∂x3
1

(x1, x2)
∣∣∣∣ (3.47)

and

ex2 ≤
εA
h2

+
h2

2

6

∣∣∣∣∂3f

∂x3
2

(x1, x2)
∣∣∣∣ , (3.48)

with the stepsizes h1 and h2. Moreover, we get for approximating the pure
second derivatives ∂2f

∂x2
1

and ∂2f
∂x2

2
the following upper bounds for the total

errors:

ex1x1 ≤
4εA
s21

+
s21
12

∣∣∣∣∂4f

∂x4
1

(x1, x2)
∣∣∣∣ (3.49)
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and

ex2x2 ≤
4εA
s22

+
s22
12

∣∣∣∣∂4f

∂x4
2

(x1, x2)
∣∣∣∣ (3.50)

with the stepsizes s1 and s2. Finally, we need the upper bound for the
total error of the mixed second partial derivative approximated by central
difference quotients. Here, we have the total error

ex1x2 =
∣∣∣∣ 1
4l1l2

(f̄(x1 + l1, x2 + l2)− f̄(x1 − l1, x2 + l2)

− f̄(x1 + l1, x2 − l2) + f̄(x1 − l1, x2 − l2))− ∂2f

∂x1∂x2
(x1, x2)

∣∣∣∣ (3.51)

with the stepsizes l1 and l2. By using the same trick as before, afterwards
applying the triangle inequality and then inserting the accuracy εA and the
approximation error from Taylor expansion, we get that

ex1x2 ≤
εA
l1l2

+
l22
6

∣∣∣∣ ∂4

∂x1∂x3
2

f(x1, x2)
∣∣∣∣+

l21
6

∣∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣∣ . (3.52)

3.3 Choice of the Stepsizes

In the two-dimensional case, 6 different stepsizes have to be chosen. For
approximating the gradient, 2 stepsizes are needed, h1 and h2. The Hessian
consists of two pure second derivatives and one mixed second derivative. The
difference quotients for approximating the Hessian need 4 different stepsizes.
They are denoted by s1 and s2 for the pure second and l1 and l2 for the mixed
second derivatives.

The goal is to choose the stepsizes such that the derivatives are approx-
imated as good as possible. The idea is to consider the upper bounds of the
total errors and to minimize these bounds, see [6]. The upper bound (3.47)
of the total error will be now denoted as

êx1 =
εA
h1

+
h2

1

6

∣∣∣∣∂3f

∂x3
1

(x1, x2)
∣∣∣∣ . (3.53)

Hence, this bound is a function depending on h1, x1 and x2 and we can
write (3.47) as

ex1 ≤ êx1(h1, x1, x2). (3.54)
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Analogously, we will denote the upper bounds (3.48), (3.49), (3.50) and
(3.52).

The following table illustrates the partial derivatives, which have to be
approximated, and the corresponding upper bounds of their total errors:

partial derivatives errors

∂f
∂x1

êx1

∂f
∂x2

êx2

∂2f
∂x2

1
êx1x1

∂2f
∂x2

2
êx2x2

∂2f
∂x1∂x2

êx1x2

3.3.1 The minimization of the total error

The upper bounds of the total errors will be now used to determine the
optimal stepsizes by differentiating them with respect to the stepsizes.

Here it has to be mentioned that the two approximation error parts of
the upper bound of the total error run contrary to each other. The first part
is decreasing with respect to the stepsize and the second part is increasing,
see [9]. The following picture is a sketch of how the errors behave.

Figure 3.1: Sketch of the approximation errors and the total error
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In order to get the optimal stepsizes, the upper bounds of the total errors
have to be minimized with respect to the stepsizes. Starting with h1,

êx1 =
εA
h1

+
h2

1

6

∣∣∣∣ ∂3

∂x3
1

f(x1, x2)
∣∣∣∣ (3.55)

is minimized by differentiating with respect to h1 and then setting the term
equal to 0. Altogether, this leads to

−εA
h2

1

+
h1

3

∣∣∣∣ ∂3

∂x3
1

f(x1, x2)
∣∣∣∣ = 0 (3.56)

and finally

h1 = 3

√√√√ 3εA∣∣∣ ∂3

∂x3
1
f(x1, x2)

∣∣∣ . (3.57)

Minimizing the upper bound of the total error with respect to h2 is done
analogously and leads to the optimal stepsize

h2 = 3

√√√√ 3εA∣∣∣ ∂3

∂x3
2
f(x1, x2)

∣∣∣ . (3.58)

As next, the stepsizes s1 and s2 of the second pure derivatives are determined
by firstly minimizing

êx1x1 =
4εA
s21

+
s21
12

∣∣∣∣ ∂4

∂x4
1

f(x1, x2)
∣∣∣∣ (3.59)

with respect to s1. As result of the minimization of this term, one gets

−8
εA
s31

+
s1
6

∣∣∣∣ ∂4

∂x4
1

f(x1, x2)
∣∣∣∣ = 0 (3.60)

and finally

s1 = 4

√√√√ 48εA∣∣∣ ∂4

∂x4
1
f(x1, x2)

∣∣∣ . (3.61)
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For s2, one gets the to s1 similar optimal stepsize

s2 = 4

√√√√ 48εA∣∣∣ ∂4

∂x4
2
f(x1, x2)

∣∣∣ . (3.62)

Now the determination of the last two stepsizes l1 and l2 has remained. The
upper bound for the total error of approximating the mixed second partial
derivative is

êx1x2 =
εA
l1l2

+
l22
6

∣∣∣∣ ∂4

∂x1∂x3
2

f(x1, x2)
∣∣∣∣+

l21
6

∣∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣∣ . (3.63)

By minimizing (3.63) with respect to l1 and l2 it follows that

− εA
l21l2

+
l1
3

∣∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣∣ = 0 (3.64)

and

− εA
l1l22

+
l2
3

∣∣∣∣ ∂4

∂x1∂x3
2

f(x1, x2)
∣∣∣∣ = 0. (3.65)

By transforming the equations, one gets

l1 = 3

√√√√ 3εA

l2

∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣ (3.66)

and

l2 = 3

√√√√ 3εA

l1

∣∣∣ ∂4

∂x1∂x3
2
f(x1, x2)

∣∣∣ . (3.67)

To solve this system of equations, one method is to insert the second equation
into the first and to transform it with respect to l1. So, one gets

l31 =
3εA

3

√
3εA

l1

∣∣∣∣ ∂4

∂x1∂x3
2
f(x1,x2)

∣∣∣∣
∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣ , (3.68)

27



3

√√√√ 3εA

l1

∣∣∣ ∂4

∂x1∂x3
2
f(x1, x2)

∣∣∣
∣∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣∣ =

3εA
l31
, (3.69)

3εA

l1

∣∣∣ ∂4

∂x1∂x3
2
f(x1, x2)

∣∣∣
∣∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣∣3 =

27ε3A
l91

, (3.70)

and

l81 =
9ε2A

∣∣∣ ∂4

∂x1∂x3
2
f(x1, x2)

∣∣∣∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣3 . (3.71)

Finally, l1 is determined by

l1 = 8

√√√√√√9ε2A
∣∣∣ ∂4

∂x1∂x3
2
f(x1, x2)

∣∣∣∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣3 , (3.72)

and l2 is determined by inserting l1 into the formula (3.67).
Now, all formulas for the optimal stepsizes are derived. For computing

the stepsizes from these formulas, higher partial derivatives have to be com-
puted. The next question is, how to get this higher derivatives. The solution
is quite simple: the higher derivatives, which are of third- and fourth-order,
are computed approximatively by central difference quotients.

3.3.2 Approximation of higher derivatives

In the following, the partial derivatives of third- and fourth-order, which are
needed in the stepsize formulas, are presented and how they can be practi-
cally approximated by central difference quotients. The needed derivatives
are

• ∂3

∂x3
1
f(x1, x2) and ∂3

∂x3
2
f(x1, x2),

• ∂4

∂x4
1
f(x1, x2) and ∂4

∂x4
2
f(x1, x2),

• ∂4

∂x3
1∂x2

f(x1, x2) and ∂4

∂x1∂x3
2
f(x1, x2).

To show the concept of deriving the central difference quotients for higher
derivatives, the notation has to become more compact. This is done by
using the concept described in [8]. Now, the forward difference operator 4
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and the backward difference operator ∇ are used to derive the approximated
higher derivatives.

For the pure partial derivatives the idea of deriving the central difference
quotients can be easily shown through the one-dimensional case. If we as-
sume equidistant points xi with the step length h and i ∈ {0, ...,m},m ∈ N,

then the function value f(xi) is denoted as fi. So the difference operators
are now written as

4fi = fi+1 − fi (3.73)

and

∇fi = fi − fi−1. (3.74)

At the beginning of the chapter, Taylor expansion has been described and it
has been shown how to determine the difference quotients for estimating the
derivatives. By estimating all derivatives with the same difference quotients
- in our case by the central difference quotient - leads for the n-th derivative
of the function to the formulas (3.16) and (3.17).

Starting with the approximation of the third derivative by this proce-
dure, which is important for the computation of the optimal stepsizes, we
get that

∂3f

∂x3
≈ 4

3fi−1 +∇3fi+1

2h3
. (3.75)

For the third forward and backward difference operator one gets

43fi−1 = 42(4fi−1) = 4(42fi−1) = 4(fi+1 − 2fi + fi−1) =

= fi+2 − fi+1 − 2(fi+1 − fi) + fi − fi−1 = fi+2 − 3fi+1 + 3fi − fi−1

and

∇3fi+1 = ∇2(∇fi+1) = ∇(∇2fi+1) = ∇(fi+1 − 2fi + fi−1) =

= fi+1 − fi − 2(fi − fi−1) + fi−1 − fi−2 = fi+1 − 3fi + 3fi−1 − fi−2.
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Altogether it follows that

∂3f

∂x3
≈ 4

3fi−1 +∇3fi+1

2h3
=

1
2h3

(fi+2 − 2fi+1 + 2fi−1 − fi−2).

Hence, it follows the central difference quotient for approximating the one-
dimensional third derivative

∂3f

∂x3
≈ 1

2h3
(f(x+ 2h)− 2f(x+ h) + 2f(x− h)− f(x− 2h)). (3.76)

For the two-dimensional case, it is easy to apply the formula above on a
pure third derivative. This leads to the following approximations:

∂3f

∂x3
1

≈ 1
2h̃3

1

(f(x1+2h̃1, x2)−2f(x1+h̃1, x2)+2f(x1−h̃1, x2)−f(x1−2h̃1, x2))

(3.77)

and

∂3f

∂x3
2

≈ 1
2h̃3

2

(f(x1, x2+2h̃2)−2f(x1, x2+h̃2)+2f(x1, x2−h̃2)−f(x1, x2−2h̃2)),

(3.78)

where the stepsizes h̃1 and h̃2 in here can be chosen arbitrarily.
The next step is to find an appropriate approximation of the fourth -

pure and mixed - derivatives needed for the computation of the stepsizes.
The derivation of the fourth pure derivative can be again shown by looking
at the one-dimensional central difference quotient of fourth order. So one
has

∂4f

∂x4
≈ 4

4fi−2 +∇4fi+2

2h4
. (3.79)

The fourth forward difference operator in here is

44fi−2 = 43(4fi−2) = 43(fi−1 − fi−2) = 42(4fi−1 −4fi−2)

= 42(fi − fi−1 − (fi−1 − fi−2)) = 4(4fi − 24fi−1 +4fi−2))

= 4(fi+1 − fi − 2(fi − fi−1) + fi−1 − fi−2)

= 4(fi+1 − 3fi + 3fi−1 − fi−2)
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= fi+2 − fi+1 − 3(fi+1 − fi) + 3(fi − fi−1)− (fi−1 − fi−2)

= fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2.

For the backward difference operator in the formula above follows

∇4fi+2 = ∇3(∇fi+2) = ∇3(fi+2 − fi+1) = ∇2(∇fi+2 −∇fi+1)

= ∇2(fi+2 − fi+1 − (fi+1 − fi)) = ∇(∇fi+2 − 2∇fi+1 +∇fi)

= ∇(fi+2 − fi+1 − 2(fi+1 − fi) + fi − fi−1)

= ∇(fi+2 − 3fi+1 + 3fi − fi−1)

= fi+2 − fi+1 − 3(fi+1 − fi) + 3(fi − fi−1)− (fi−1 − fi−2)

= fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2.

Altogether it follows that

∂4f

∂x4
≈ 4

4fi−2 +∇4fi+2

2h4
=

1
2h4

(2(fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2))

and hence the central difference quotient for approximating the one-dimensional
fourth derivative is

∂4f

∂x4
≈ 1
h4

(f(x+ 2h)− 4f(x+ h) + 6f(x)− 4f(x− h) + f(x− 2h)). (3.80)

For two dimensions, the required pure fourth derivatives ∂4f
∂x4

1
and ∂4f

∂x4
2

are
approximated by

1
h̃4

1

(f(x1+2h̃1, x2)−4f(x1+h̃1, x2)+6f(x1, x2)−4f(x1−h̃1, x2)−f(x1−2h̃1, x2))

(3.81)

and

1
h̃4

2

(f(x1, x2+2h̃2)−4f(x1, x2+h̃2)+6f(x1, x2)−4f(x1, x2−h̃2)−f(x1, x2−2h̃2)),

(3.82)
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where the stepsizes h̃1 and h̃2 can be again chosen arbitrarily. For simplicity,
they are chosen the same as for the pure third derivatives before.

The last part is to approximate the mixed fourth derivatives ∂4f
∂x3

1∂x2
and

∂4f
∂x1∂x3

2
. Starting with ∂4f

∂x3
1∂x2

, the procedure leads to

∂4f

∂x3
1∂x2

=
∂

∂x2
(
∂3f

∂x3
1

) ≈ ∂

∂x2
(

1
2h̃3

1

(fi+2,j − 2fi+1,j + 2fi−1,j − fi−2,j))

=
1

2h̃3
1

(
∂fi+2,j

∂x2
− 2

∂fi+1,j

∂x2
+ 2

∂fi−1,j

∂x2
− ∂fi−2,j

∂x2
).

With approximating ∂
∂x2

again by central differences, it follows

∂4f

∂x3
1∂x2

≈ 1
2h̃3

1

(
fi+2,j+1 − fi+2,j−1

2h̃2

− 2
fi+1,j+1 − fi+1,j−1

2h̃2

+2
fi−1,j+1 − fi−1,j−1

2h̃2

− fi−2,j+1 − fi−2,j−1

2h̃2

)

=
1

4h̃3
1h̃2

(fi+2,j+1 − fi+2,j−1 − 2(fi+1,j+1 − fi+1,j−1)

+2(fi−1,j+1 − fi−1,j−1)− (fi−2,j+1 − fi−2,j−1)). (3.83)

Analogously, follows for ∂4f
∂x1∂x3

2

∂4f

∂x1∂x3
2

≈ 1
4h̃1h̃3

2

(fi+1,j+2 − fi−1,j+2 − 2(fi+1,j+1 − fi−1,j+1)

+2(fi+1,j−1 − fi−1,j−1)− (fi+1,j−2 − fi−1,j−2)). (3.84)

The stepsizes h̃1 and h̃2 are chosen again the same as in the derivatives
before because they are arbitrary.

Now we have determined all approximations for the third- and fourth-
order derivatives and so everything is complete to derive the optimal step-
sizes. Altogether they are computed by

h1 = 3

√√√√ 3εA∣∣∣ ∂3

∂x3
1
f(x1, x2)

∣∣∣ , (3.85)
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h2 = 3

√√√√ 3εA∣∣∣ ∂3

∂x3
2
f(x1, x2)

∣∣∣ , (3.86)

s1 = 4

√√√√ 48εA∣∣∣ ∂4

∂x4
1
f(x1, x2)

∣∣∣ , (3.87)

s2 = 4

√√√√ 48εA∣∣∣ ∂4

∂x4
2
f(x1, x2)

∣∣∣ , (3.88)

l1 = 8

√√√√√√9ε2A
∣∣∣ ∂4

∂x1∂x3
2
f(x1, x2)

∣∣∣∣∣∣ ∂4

∂x3
1∂x2

f(x1, x2)
∣∣∣3 , (3.89)

l2 = 3

√√√√ 3εA

l1

∣∣∣ ∂4

∂x1∂x3
2
f(x1, x2)

∣∣∣ , (3.90)

where the accuracy εA is either chosen by the user because of more infor-
mation available or estimated by the method explained in this chapter.

Now, we have completed the analysis for approximating the gradient and
the Hessian of f such that we can use the Matlab routine fmincon and also
choose the stepsizes differently. To start with, we will consider the model
problem from chapter 2 with two design parameters.
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Chapter 4

A Problem with 2 Design
Parameters

4.1 Problem Description

The optimization problem with 2 design parameters for the model PMSM
is stated by

minx∈R2 f(x)(
x1

x2

)
≤ x ≤

(
x1

x2

)
.

(4.1)

The parameters

x =
(
x1

x2

)

are the outer diameter of the rotor (x1 = dra) and the width of the stator
cog (x2 = bst). The box constraints x = (x1, x2) and x = (x1, x2) are given
by

x =
(

23
6.5

)
, x =

(
37

10.5

)
. (4.2)

The following pictures show the whole motor, the rotor with the drawn
in outer diameter of the rotor and the stator with the drawn in width of the
stator cog, whereas the last two pictures have a different scaling.
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Figure 4.1: The outer diameter of the rotor and the width of the stator cog

To visualize the 2-dimensional cost functional in the feasible region, two
plots were made in Matlab. First, the surf plot shows, in which area the
minimum is located.

Figure 4.2: 2-dimensional surf plot of the cost functional f in the feasible
region
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The next figure, the pcolor plot, shows the cost functional from the bird’s
eye view. The darker the blue parts are, the smaller are the function values
and the smaller is the distance to the minimum of the cost functional.

Figure 4.3: 2-dimensional pcolor plot of the cost functional f in the feasible
region

The minimum is approximately in the area near the left lower corner of
the 2-dimensional feasible region.

4.2 Numerical Results

4.2.1 Optimizing with the Matlab routine fmincon

The Matlab command fmincon is of the form

[x,fval,...] = fmincon(@fquality, x0, [ ], [ ], [ ], [ ], lb, ub, [ ], options),

where the left hand side specifies the output. The starting value x0 is chosen
by taking the middle point of the box, i.e.

x0 =
(

30
8.5

)
,

and the box constraints are

lb =
(

23
6.5

)
, ub =

(
37

10.5

)
.
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By specifying the options, the user has the possibility to limit the maxi-
mum number of function evaluations MaxFunEvals and the maximum num-
ber of iterations MaxIter. Moreover, there are also possibilities to vary the
optimization algorithm and to specify other stopping criteria for the opti-
mization. In the following, the values of the options are the default values -
the shortcut dv stands for default value - besides MaxFunEvals and MaxIter,
which are both chosen for all problems as 20. In all computations, more has
never been necessary. Wherever the options are changed will be mentioned
in this thesis. Furthermore and what is currently most important, the op-
tions of fmincon are used to supply gradient g and Hessian H of the cost
functional by the user, by defining g and H in the file fquality.m, which
computes the current function value fi of the iteration as well. Basically,
three cases arise by supplying

• only f

• f and the gradient g

• f , g and the Hessian H.

4.2.2 First results

Firstly, fmincon has to be used basically to get a better understanding of
the problem and to get also an idea what could be improved.

In the problem with 2 design parameters, if all derivative information is
supplied by the user, there are altogether 13 function evaluations needed in
each iteration step. This follows from approximating gradient and Hessian
by central difference quotients as it has been done at the beginning of chapter
3, where we have altogether 6 different stepsizes in the difference quotients
denoted by h1, h2, s1, s2, l1 and l2.

The Matlab routine fmincon is first run with setting the stepsizes as
h1 = 0.3, h2 = 0.2, s1 = 0.7, s2 = 0.5, l1 = 0.4, l2 = 0.3 to get a basic idea
of how fmincon works and which strategy is better, to supply only f , f and
g or f , g and H. As the intuition leads, supplying all derivative information
should have the best results. With the initial value x0 = (30, 8.5), the fol-
lowing results are obtained, where x is the value at which Matlab stopped
the optimization algorithm and f(x) is its function value. Moreover, niter is
the number of iterations, funcCount is the number of the function evalua-
tions fi - without the function evaluations needed for approximating g and
H in each iteration step - and time is the CPU (central processing unit)
time of the optimization.

The first result is for the case, where g and H are not provided by the
user. In this case, Matlab has chosen the SQP (Quasi-Newton, line-search)
algorithm for computing the minimum.
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case only fi computed
x (30.0000, 8.5000)
f(x) 0.1089
niter 1
funcCount 6
time 0.25 h
reason algorithm terminated first order optimality measure and maxi-

mum constraint violation less than dv

The next result is for the case, where only the gradient is provided by the
user. In the following, the algorithm chosen by Matlab is the Trust-Region-
Reflective algorithm, if nothing else is mentioned.

case fi computed and g approximated
x (29.8125, 8.8295)
f(x) 0.1067
niter 12
funcCount 13
time 11 h
reason algorithm terminated norm of the current step less than dv

The last result is for the case, where gradient and Hessian are supplied by
the user.

case fi computed, g and H approximated
x (24.0028, 7.1505)
f(x) 0.0955
niter 13
funcCount 14
time 11 h
reason algorithm terminated relative function value changing by less

than dv

It is important to describe these results. Although the first case seems to
be very efficient because Matlab’s reason for terminating the algorithm
was that the first-order optimality measure was less than the termination
tolerance that had been specified for the function values and the one for the
constraint violation, the final function value was the starting value. To the
contrary, the second and the third case obtained a better result for the final
function value. Especially the third case, where all derivative information
had been supplied by the user, obtained a very good result according to the
plots in Figure 4.2 and Figure 4.3, where the minimum is approximately
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in the area near the left lower corner of the 2-dimensional feasible region.
Hence, supplying all derivative information should be the best strategy.

So far, the stepsizes have been chosen, but now we want to compute
the optimal stepsizes according to the formulas (3.85) - (3.90) of chapter
3, where the accuracy εA is estimated as it has been explained and the
approximations of the higher derivatives are computed as well by central
difference quotients.

4.2.3 Computing the minimum with optimal stepsizes

In this subsection, we will compute the minimum by estimating the accuracy,
computing the optimal stepsizes and approximating gradient and Hessian of
our problem with two design parameters. The options and the algorithm of
fmincon are again the same as stated in the subsection before.

For estimating the accuracy, we choose firstly a set of values xi ∈ R2 as

xi = x0 + i · h · p

with x0 = (23, 6.5), i ∈ {0, ..., 14}, h = 1 and p = (0.96, 0.28). All function
values f̄i are computed at these values. A part of the difference table for f̄i
according to chapter 3 for the k-th difference with k ∈ {0, ..., 5} is:

0.10123
0.00110

0.10234 -0.00328
-0.00218 0.01205

0.10016 0.00877 -0.02973
0.00660 -0.01767 0.05907

0.10676 -0.00890 0.02934
-0.00230 0.01166

0.10445 0.00276
0.00046

0.10491

As it is seen in the difference table above, the later differences of 4kf̄i are
similar in magnitude and they alternate in sign. Hence, it is possible to
estimate εA. We have computed the differences for k ∈ {0, ..., 5}. According
to chapter 3, [6] suggests the following formula from the k-th column of the
difference table:

ε
(k)
A ≈

maxi |4kf̄i|
βk
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with

βk =

√
(2k)!
(k!)2

.

In our problem, we obtain for k = 5 the accuracy

εA = 0.00375.

For the stepsizes h̃1 and h̃2, which we need for approximating the third and
fourth derivatives in the formulas of the optimal stepsizes, we have chosen

h̃1 = h̃2 =
x1 − x1

100
,

which leads to the optimal stepsizes:

h1 = 0.5885773
h2 = 0.1862061
s1 = 0.4111084
s2 = 0.1226490
l1 = 0.5531660
l2 = 0.0872923

With these stepsizes the following result is obtained:

case fi computed, g and H approximated
with optimal stepsizes

x (25.4556, 7.8108)
f(x) 0.0987
niter 16
funcCount 17
time 11.5 h

The reason the algorithm terminated was that the relative function value
changed by less than the default termination tolerance on the function value.
As we see in the plots of the cost functional, a good approximation of the
minimum was found. In the following, we will call this case the case 1.

The next subsection presents results from different cases, which come
from changing some values for computing the stepsizes and finally varying
the stepsizes for computing the minimum, to see the robustness of our chosen
method.
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4.2.4 Robustness

One way to change parameter values of the optimization method would be
to choose the starting value x0 for the optimization differently, but if the
user does not exactly know which starting value would be good, a natural
way of choosing x0 is in the middle of the box constraints, which has been
already stated.

Besides the fact that the starting value can be chosen differently, there
are other possibilities to vary the optimization method by changing some
parameter values. We will take the case from the chapter above and we will
change different values, which are needed for computing the minimum, to
observe the robustness of our method for obtaining the minimum of the cost
functional. From that arise different cases, which will be considered in this
subsection. They come from the choice of the error εA and from the choice
of the stepsizes h̃1 and h̃2 for the third and fourth derivatives in the formulas
of the optimal stepsizes h = (h1, h2), s = (s1, s2) and l = (l1, l2). Finally,
after computing the stepsizes from that, these stepsizes will be made smaller
and larger to analyze the results of our optimization method.

Firstly, we choose the accuracy as εA = 1
100 · |f(x0)| with |f(x0)| =

0.1089, i.e. εA = 0.00109, which is around one third of our estimated ac-
curacy from case 1 in the subsection before. With the chosen accuracy
εA = 0.00109, the optimal stepsizes are computed the same as in case 1 and
lead to the following result:

case εA chosen as εA = 0.00109
x (28.5684, 8.1705)
f(x) 0.1035
niter 19
funcCount 20
time 13.5 h

The algorithm terminated because the norm of the current step was less
than the default termination tolerance on x. The result is not as good as
before.

Now, we use the estimated accuracy εA = 0.00375 as before, but we vary
the stepsizes h̃1 and h̃2. Making them smaller by a factor of 10, we get the
result:

case h̃1 and h̃2 smaller
x (28.6234, 8.5287)
f(x) 0.1043
niter 14
funcCount 15
time 10.25 h
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Now, we make the stepsizes h̃1 and h̃2 larger by a factor of 10 and obtain
the result:

case h̃1 and h̃2 larger
x (26.0876, 8.0454)
f(x) 0.1000
niter 15
funcCount 16
time 11.5 h

In both cases, the algorithm terminated because the norm of the current
step was less than the termination tolerance on x. The method is robust
with respect to changes in h̃1 and h̃2.

As next, we want to consider the stepsizes h, s, l from case 1 and we
want to make them smaller and larger by a factor of 10. This leads to the
following results:

case h, s, l smaller
x (29.1991, 8.4048)
f(x) 0.1049
niter 15
funcCount 16
time 11 h

The algorithm terminated because the maximum number of function evalu-
ations was exceeded.

case h, s, l larger
x (26.5018, 8.2689)
f(x) 0.1016
niter 20
funcCount 21
time 15 h

Now, the algorithm terminated because the norm of the current step was
less than the specified termination tolerance on x.

The results show that supplying all derivative information and also choos-
ing optimal stepsizes for approximating gradient and Hessian by difference
quotients are a good strategy for computing the minimum of the cost func-
tional, which is done through case 1.

As next, some pictures of the shape optimized motor of case 1 follow.
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4.2.5 The shape optimized motor for the problem with 2
design parameters

The following pictures show the motor for the initial value and the shape
optimized motor such that we can visualize our final result of case 1 in
comparison with the motor for the initial value. Firstly, we get the following
motors in the case without current, where the cogging torque is computed.

Figure 4.4: The motor for the initial value and the shape optimized motor
for the problem with 2 design parameters with I = 0

The following picture shows the winding function and the torque of the
motor for the initial value and of the shape optimized motor for the problem
with 2 design parameters with I = 0.

Figure 4.5: Winding function and torque of the motors above

For the shape optimized motor, the maximum square deviation of the
cogging torque is smaller than for the initial value. The next picture shows
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the motor in the case with current. Hence, the load torque is computed.

Figure 4.6: The motor for the initial value and the shape optimized motor
for the problem with 2 design parameters with I 6= 0

The following picture shows the winding function, the torque and the
winding currents of the motors above for the problem with 2 design param-
eters with I 6= 0.

Figure 4.7: Winding function, torque and winding currents of the motors
above
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Now, the shape optimized motor has a smaller mean value of the load
torque and also its maximum square deviation is smaller than at the be-
ginning for the initial value. Moreover, the winding function, which is the
function considered for the distortion factor and which has the title ”Wind-
ing 1 [V]”, has now much more the form of a harmonic function than it has
had before.

4.2.6 Parallelization

Another way of reducing the computation time is to use parallel processors
for computing all needed function values in every iteration step. For example
in the case with 2 design parameters, if 13 parallel processors are available
in every iteration step, then altogether one iteration step seems as expensive
as the computation of one function value.

4.3 Automation of the Optimization

After all observations and computations, this section will recommend how
shape optimization by a black box method can be automatically established
according to case 1 of subsection 4.2.3.

In a Matlab file named precomputation.m, a precomputation is
made by approximating the accuracy and computing the optimal stepsizes,
which is described in chapter 3 and in subsection 4.2.3. After the precompu-
tation, the optimal stepsizes are inserted into the Matlab file fquality.m,
where all function values, which are needed in each iteration step, are com-
puted. A function value is computed by the file simulate.m, the black box.
The optimization is started by the file OptimizationQualityFunction.m,
where the Matlab routine fmincon is called. The initial value for fmincon
is chosen in the middle of the box constraints. The last three Matlab files
are described in section 1.3.

Altogether the automatic optimization process consists of the four Mat-
lab files:

• precomputation.m, which approximates the accuracy and computes
the optimal stepsizes,

• simulate.m, which is the black box,

• fquality.m, which computes all needed the function values, and

• OptimizationQualityFunction.m, where the Matlab routine fmincon
is called.

Of course, the user can interfere into the optimization process by choos-
ing another initial value or the accuracy, which is needed for computing the
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optimal stepsizes. Furthermore, the user can set the stepsizes for approxi-
mating gradient and Hessian as well.

In the following two chapters, problems with more design parameters
will be optimized by the best working strategy, which is the one of case
1. The two problems will be one with five design parameters and then one
with eight design parameters. The design parameters will be described at
the beginning of each chapter. In both problems, the motor model is the
same and therefore the cost functional will be the same, which is described
in chapter 2.

Finally, results will be presented and they will be also compared with
the results from optimizing the motor by another method, by a genetic
algorithm. Usually, this method yields the global minimum of the cost
functional, but there are much more function evaluations needed to reach
it. After presenting both results, the advantages and disadvantages of the
black box optimization method will be explained at the end.
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Chapter 5

A Problem with 5 Design
Parameters

5.1 Problem Description

The optimization problem with 5 design parameters is stated by

minx∈R5 f(x)
x1

x2

x3

x4

x5

 ≤ x ≤


x1

x2

x3

x4

x5

 .
(5.1)

The parameters

x =


x1

x2

x3

x4

x5

 =


dra
bst
hm

phiMagnet
exs


are the outer diameter of the rotor (x1 = dra), the width of the stator cog
(x2 = bst), the height of the rotor magnet (x3 = hm), the angle of the rotor
magnet (x4 = phiMagnet) and the excentricity of the stator (x5 = exs).
The outer diameter of the rotor and the width of the stator cog are the
already described parameters from the problem with 2 design parameters.
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The height of the rotor magnet is illustrated by the following picture:

Figure 5.1: The height of the rotor magnet hm

The next picture illustrates the angle of the rotor magnet:

Figure 5.2: The angle of the rotor magnet phiMagnet

The excentricity of the stator is the distance between the center point
of the stator and the center point of the inner circles of the pole shoes. It is
illustrated in the next picture.
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Figure 5.3: Sketch of the excentricity of the stator exs

The following picture shows the motor model with marked excentricity:

Figure 5.4: The motor model with exs = 10
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The box constraints are given by

x =


23
6.5
1
70
0

 and x =


37

10.5
4
90
20

 . (5.2)

The figure 5.4 shows the motor for the initial value right in the middle of
the box constraints for the five parameters, i.e.

x0 =


30
8.5
2.5
80
10

 .

Moreover, it has to be mentioned that instead of the problem with 2
design parameters, the problem with 5 design parameters requires the con-
sideration of the whole motor (360◦), what comes from changing the excen-
tricity and the angle phiMagnet. Nevertheless, the motor has to be turned
only 180◦ in the motor simulation because the motor has still two pole pairs.

The following pictures show the motor for the problem with 5 design
parameters for the initial value, once for the case I = 0 and then for I 6= 0.

Figure 5.5: The motor for the initial value of the problem with 5 design
parameters with I = 0

Its winding function and torque is illustrated in the next picture.
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Figure 5.6: Winding function and torque of the motor above

The following picture shows the motor for the case I 6= 0.

Figure 5.7: The motor for the initial value of the problem with 5 design
parameters with I 6= 0

Figure 5.8: Winding function, torque and winding currents of the motor
above
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5.2 Numerical Results

The following results are the one using the strategy of the black box opti-
mization, which has been described in the problem with 2 design parameters
and has attained the best result. Hence, the options in fmincon are the same
as in chapter 4. Altogether for the problem with 5 design parameters, 15
stepsizes are needed: 5 for the central difference quotients, which approxi-
mate the gradient,

h =


h1

h2

h3

h4

h5


and analogously, there are the 5-dimensional vectors s, which contains the
stepsizes for the pure second derivatives, and l containing the stepsizes for
the mixed second derivatives of the Hessian. The additional shortcut timepar
stands for the time, where 61 parallel processors are available, and the short-
cut funevals stands for the total number function evaluations. This leads to
the result:

εA 0.00545
h (0.6854, 0.1044, 0.1744, 2.6347, 1.2715)
s (0.6204, 0.0985, 0.1553, 0.8334, 0.6314)
l (0.2297, 0.2081, 0.1510, 0.7385, 0.8909)
x (30.0279, 7.9960, 3.8748, 72.1918, 10.2572)
f(x) 0.0273
niter 4
time 21 h
timepar 20 min
funevals 244

The optimization algorithm was stopped after the fourth iteration because
this iteration step lasted too long.

If we assume that the optimization process is computed with parallel
processors, then we can determine timepar by dividing time by the number
of available processors. In each iteration step of the black box optimization,
61 processors are needed to compute all function values - the function value
itself and the function values for the approximation of gradient and Hessian
for this value - simultaneously.
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To compare the results from the black box optimization, results by using
other methods are needed. For that, we choose a genetic algorithm from the
book [7]. This optimization process is computed with parallel processors.

By optimizing with the genetic algorithm, we have got the following
results, where firstly 40 and secondly 2000 function evaluations have been
obtained:

x (25.6617, 8.8089, 1.6726, 75.4927, 2.3989)
f(x) 0.0325
timepar 30 min
funevals 40

x (25.6617, 7.3959, 2.1001, 83.1461, 6.0644)
f(x) 0.0208
timepar 25 h
funevals 2000

Although the final value of the cost functional of the black box optimiza-
tion is not as good as the one from optimizing with the genetic algorithm,
compared to the 2000 function evaluations of the genetic algorithm, the
number of function evaluations is only about a tenth of this number. Alto-
gether the black box optimization has been less costly and hence this is an
advantage of using this method. Moreover, if there are 61 parallel proces-
sors available, then the computation time is only about 20 minutes, which is
much faster then the 25 hours of the optimization by the genetic algorithm.
Compared to the genetic algorithm, where only 40 function evaluations have
been computed and which have lasted only 30 min, then the black box op-
timization has obtained a better result in 20 min, but with more function
evaluations.

Now, some pictures of the shape optimized motor for the problem with
5 design parameters follow. In comparison with the motor for the initial
value, the maximum square deviation of the cogging and the load torque
has again become smaller.
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Figure 5.9: The shape optimized motor for the problem with 5 design pa-
rameters with I = 0

Figure 5.10: Winding function and torque of the motor above
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Figure 5.11: The shape optimized motor for the problem with 5 design
parameters with I 6= 0

Figure 5.12: Winding function, torque and winding currents of the motor
above

Finally, the problem with 8 design parameters is described and numerical
results from the black box optimization are presented and are also compared
to the results of optimizing with the genetic algorithm.
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Chapter 6

A Problem with 8 Design
Parameters

6.1 Problem Description

Finding the optimal shape of a given motor by optimizing the cost func-
tional with respect to 8 parameters is a problem from real application. The
optimization problem with 8 design parameters, which describes our model
PMSM, is stated by

minx∈R8 f(x)

x1

x2

x3

x4

x5

x6

x7

x8


≤ x ≤



x1

x2

x3

x4

x5

x6

x7

x8


.

(6.1)

Now we have the already known 5 parameters and 3 new parameters. Alto-
gether they are 8 parameters, with respect to whom the cost functional f is
optimized. Finally, the parameters

x =



x1

x2

x3

x4

x5

x6

x7

x8


=



dra
bst
hm

phiMagnet
exs
bsj
phisz
hs
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are the outer diameter of the rotor (x1 = dra), the width of the stator cog
(x2 = bst), the height of the rotor magnet (x3 = hm), the angle of the rotor
magnet (x4 = phiMagnet), the excentricity of the stator (x5 = exs), the
minimal yoke width of the stator (x6 = bsj), the pole shoe angle of the
stator (x7 = phisz) and the slot height of the stator (x8 = hs).

The three new parameters are illustrated by the following pictures:

Figure 6.1: The minimal yoke width of the stator bsj

Figure 6.2: The pole shoe angle of the stator phisz
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Figure 6.3: The slot height of the stator hs

The box constraints are again chosen by the engineers. They are

x =



23
6.5
1
70
0

3.25
100
1


and x =



37
10.5

4
90
14

5.25
130
3


. (6.2)

The initial value chosen in the middle of the box constraints is

x0 =



30
8.5
2.5
80
7

4.25
115
2


.

With the initial value we get the following motor, which will be shown in
the next pictures.
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Figure 6.4: The motor for the initial value of the problem with 8 design
parameters with I = 0

Figure 6.5: Winding function and torque of the motor above
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Figure 6.6: The motor for the initial value of the problem with 8 design
parameters with I 6= 0

Figure 6.7: Winding function, torque and winding currents of the motor
above

Now, the final numerical results of the problem with 8 design parameters
are presented and they are compared to results which come from optimizing
by the genetic algorithm from [7], which has been also done for the problem
with 5 design parameters.
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6.2 Numerical Results

Starting with the results of the black box optimization, this section considers
also the results from the genetic algorithm in comparison with the results
of the black box optimization. It is again important to compare the total
number of function evaluations of both methods.

The optimization process of the genetic algorithm is computed parallel
and therefore these results will be compared with the results from the black
box optimization assuming to have the best number of parallel processors
available. In the case with 8 design parameters, 145 parallel processors are
the best number of available parallel processors such that in each iteration
step all needed function values can be computed - also the one for the differ-
ence quotients for approximating gradient and Hessian - at the same time.

Now, we come to the black box optimization. The stepsizes were chosen
again by the strategy, which has been explained in the problem with 2 design
parameters, and all options in fmincon are set according to chapter 4 as
well. Altogether for the problem with 8 design parameters, 24 stepsizes are
needed to approximate the gradient and the Hessian: 8 for approximating
the gradient h = (h1, h2,h3, h4, h5, h6, h7, h8), 8 for the pure second
derivatives s = (s1, s2, s3, s4, s5, s6, s7, s8) and 8 for the mixed second
derivatives l = (l1, l2, l3, l4, l5, l6, l7, l8).

The options were chosen such that the optimization algorithm stops after
maximal 10 iterations. Now, the shortcut timepar stands for the time, if we
assume to have 145 parallel processors available. This strategy leads to the
following result:

εA 0.00272
h (0.7116, 0.1560, 0.2262, 0.1617, 0.1037, 0.0717, 0.2863, 0.0781)
s (0.4098, 0.1298, 0.1037, 1.4346, 1.3824, 0.0682, 1.1687, 0.0604)
l (1.7536, 0.0505, 0.0823, 0.5719, 0.2193, 0.0359, 0.4591, 0.0416)
x (23.0007, 6.7256, 2.8955, 74.8980, 10.7795, 3.2518, 127.516, 2.6902)
f(x) 0.0146
niter 10
time 144.5 h
timepar 1 h
funevals 1450

The algorithm terminated because the maximum number of function evalu-
ations had been exceeded.
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By optimizing with the genetic algorithm, the following results have
been obtained, where firstly 1500 and secondly 4000 function evaluations
are computed:

x (24.3335, 7.3769, 3.9965, 80.7409, 1.0108, 4.4074, 125.7691, 1.4003)
f(x) 0.0185
timepar 18.75 h
funevals 1500

x (23.9132, 7.1836, 3.4304, 77.0381, 12.1216, 3.3553, 128.5629, 2.5719)
f(x) 0.0137
timepar 50 h
funevals 4000

Comparing the result of the black box optimization to the result of
the genetic algorithm with an approximate number of function evaluations,
namely 1450 and 1500, we obtain a better result with the black box opti-
mization because its final value of the cost functional is 0.0146, but the one
of the genetic algorithm is 0.0185. Moreover, optimizing with the genetic
algorithm lasted 18.75 hours by using parallel processors. The time of the
black box optimization was 144.5 hours, but if there were 145 parallel pro-
cessors available, the optimization would last only 1 hour. Even if there
were not 145 parallel processors available but 50 - a reasonable number of
available parallel processors, then the time of the black box optimization
would be 3 hours, a sixth of the optimization time with the genetic algo-
rithm. Altogether, we have shown by comparing our results from black box
optimization to the one of the genetic algorithm that the black box method
is a good choice for the shape optimization of a motor.

Now, some pictures of the final results from black box optimization fol-
low.
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Figure 6.8: The shape optimized motor for the problem with 8 design pa-
rameters
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The next picture shows the mesh:

Figure 6.9: The mesh of the shape optimized motor during the FE-
simulation

Every motor simulation consists of two important parts. Firstly, the
magnetostatic problem is solved for every rotor position relative to the stator
depending on the angle for the case I = 0 and then for the case I 6= 0.
Again as for the problem with 5 design parameters, this has to be done only
through 180◦. The following pictures show the motor during the simulation,
once in the case I = 0 and then in the case I 6= 0. Here, it is important
to look again at the torque and how it has changed after comparing it to
the motor at the beginning of the problem with 8 design parameters for the
initial value.

In the case I = 0 as well as in the case I 6= 0, the maximum square
deviation of the torque of the shape optimized motor is much more smaller
than the torque of the motor for the initial value. The function seems to
be almost constant. According to the engineers the result for the shape
optimized motor is a reasonable one.
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Figure 6.10: The shape optimized motor for the problem with 8 design
parameters with I = 0

Figure 6.11: Winding function and torque of the motor above
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Figure 6.12: The shape optimized motor for the problem with 8 design
parameters with I 6= 0

Figure 6.13: Winding function, torque and winding currents of the motor
above
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Chapter 7

Conclusion and Outlook

The thesis describes the shape optimization of a motor by black box sim-
ulations. The practical problems in this thesis are given by the ACCM
(Austrian Center of Competence in Mechatronics), where the task was to
determine the design of a motor such that a cost functional, which has been
given by the engineers from the group of electric drives, is minimized while
satisfying given constraints. The analytic definition of the cost functional is
not available but all function values can be computed. Hence, the choice of
optimizing by black box simulations is a natural one.

Firstly, the numerical background for a problem with n design param-
eters was described by developing it for problems with one and two design
parameters. The mathematical background for the optimization was mainly
based on the book Practical Optimization by Philip E. Gill, Walter Murray
and Margaret H. Wright, which is [6], and also on [9] and [8]. For the opti-
mization, the Matlab routine fmincon was used together with a software
from the group of electric drives.

As next, we tried to find the optimum of a real application problem with
2 design parameters. Various numerical results were presented, which arise
from the use of fmincon. Results were shown with the availability of parallel
processors as well. After the detailed treatment of the problem with 2 design
parameters, there was made a proposal how to automatize the whole black
box optimization process.

After the consideration of the problem with 2 design parameters, the
shape optimization of the already given motor was extended to an optimiza-
tion with respect to 5 parameters. The results were compared to results
from optimizing with a genetic algorithm.

Finally, the motor was optimized with respect to 8 design parameters.
The motor was again optimized by the genetic algorithm as well. Altogether
for the problems with 5 and 8 design parameters, the outcome was very
good. With the availability of parallel processors the time by optimizing
with black box simulations would be less than by optimizing with the genetic
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algorithm. If we compare the results of both methods by assuming to have
around the same number of function evaluations and parallel processors,
then the results of the problems with 5 and 8 design parameters are better.
Nevertheless, the disadvantage of the black box optimization method in this
thesis is that this method uses a Trust-Region-Reflective algorithm, which
is based on the interior-reflective Newton method. That means that the
optimization is gradient based and local. Although the shape optimization
based on black box simulations worked quite well in this thesis and provided
good results, one has never to forget that the method generally determines
a local optimum.

Altogether, this thesis covers the most important parts of optimizing the
shape of a motor by black box simulations. The conclusion of optimizing
with a black box method is that this procedure works well and can be used
for real application problems. It is a method, which can be applied on
different problems and provides good results in the field of electric drives.
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