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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit der Lösung von linearen Gleichungs-
systemen, welche von der Finite-Elemente-Diskretisierung von partiellen Differential-
gleichungen stammen. Im Speziellen werden selbstadjungierte, elliptische partielle
Differentialgleichungen der Ordnung 2 betrachtet.

Die entstehenden linearen Gleichungssysteme sind typischerweise symmetrisch
und positiv definit und sollen mit einen Verfahren gelöst werden, welches effizient,
flexibel und robust ist. Eine Möglichkeit sind algebraische Mehrgittermethoden,
welche diesen Anforderungen gerecht werden. Diese Arbeit beschreibt einen all-
gemeinen Zugang zu algebraischen Mehrgitterverfahren, mit welchen die benötigten
Vergröberungs-, Interpolations- und Glättungsoperatoren konstruiert werden können.
Eine dafür eingeführte Hilfsmatrix repräsentiert eine ’virtuelle’ Gitterhierarchie, in
der Gitter- und Operatoranisotropien widergespiegelt werden, sodaß eine geometrische
Mehrgittermethode bestmöglich nachgeahmt werden kann. Die Hauptpunkte dabei
bestehen in der Erzeugung der benötigten virtuellen Gitterhierarchie und in der
richtigen Repräsentation der Freiheitsgrade des zu lösenden Gleichungssystems in
der Hilfsmatrix. Basierend auf diesem allgemeinen Konzept werden algebraische
Mehrgittermethoden für Matrizen konstruiert, welche von einer Finite-Elemente-
Diskretisierung mit Lagrange oder Nédélec Elementen stammen. Zusätzlich zu diesem
Konzept stellen wir eine notwendige Bedingung an den Interpolationsoperator, welche
garantiert, daß die Eigenschaften der Matrix (ohne wesentliche Randbedingungen)
auf gröberen Gittern sich nicht ändert. Die Grobgittermatrix wird mit Hilfe der
Galerkin Methode berechnet. Zur Glättung verwenden wir Punkt- oder Block Gauss-
Seidel Methoden. Für skalare, selbstadjungierte, elliptische Gleichungen bietet die
sogenannte ’Elementvorkonditionierungs-Technik’ eine Möglichkeit, die häufig für al-
gebraische Mehrgitterverfahren benötigte M-Matrix Eigenschaft der Systemmatrix
zu umgehen. Diese Methode ist wiederum ein Spezialfall des in dieser Arbeit präsen-
tierten allgemeinen Zugangs zu algebraischen Mehrgittermethoden.

Neben den diskutierten algebraischen Mehrgitterverfahren wird auch das ef-
fiziente Aufstellen der Matrixhierarchie näher beleuchtet. Insbesondere zeigen wir
Möglichkeiten auf, wie die CPU-Zeit für nichtlineare und zeitabhängige Probleme
möglichst gering gehalten werden kann. Desweiteren wird eine parallele Version von
algebraischen Mehrgittermethoden vorgestellt.

Die vorgestellten algebraischen Mehrgitterverfahren wurden in dem Programm-
packet PEBBLES implementiert. Einige numerische Beispiele aus Naturwissenschaft
und Technik zeigen das Potential von algebraischen Mehrgitterverfahren.

Diese Arbeit wurde vom Österreichischen ’Fonds zur Förderung der Wissenschaftlichen
Forschung’ (FWF) im Teilprojekt F1306 des Spezialforschungsbereichs SFB F013
’Numerical and Symbolic Scientific Computing’ unterstützt.





Abstract

In these theses the algebraic multigrid method is considered for several different
classes of matrices which arise from a finite element discretization of partial differen-
tial equations. In particular we consider system matrices that originate from a finite
element discretization of some self-adjoint, elliptic partial differential equations of
second order. Such matrices are typically symmetric and positive definite.

We are looking for an efficient, flexible and robust solution of the arising system of
equations. The algebraic multigrid method is adequate to fulfill these requirements.
A general concept to the construction of such multigrid methods is proposed. This
concept provides an auxiliary matrix that allows us to construct optimal coarsen-
ing strategies, appropriate prolongation and smoothing operators. The auxiliary
matrix mimics a geometric hierarchy of grids and comprehend operator- and mesh
anisotropies. The key point consists in constructing a ’virtual’ finite element mesh
and representing the degrees of freedom of the original system matrix on the virtual
mesh appropriately. Based on this concept we derive algebraic multigrid methods
for matrices stemming from Lagrange and Nédélec finite element discretizations. In
addition, we present a necessary condition for the prolongation operator that en-
sures that the kernel of the system matrix (without essential boundary conditions)
is resolved on a coarser level. The coarse grid operator is computed by the Galerkin
method as usual. For the smoothing operator standard methods are taken, i.e.,
point-, or block Gauss-Seidel methods. One remedy for the often required M-matrix
property of the system matrix is the so called ’element preconditioning technique’ for
scalar self-adjoint equations. It turns out that this method can be seen as a special
case of the general approach.

Apart from the discussed algebraic multigrid method approach a brief note on
the setup phase is given along with the optimization for the setup phase for nonlin-
ear, time-dependent and moving body problems. Furthermore, a parallel algebraic
multigrid algorithm is presented, which is applicable to problems originating from
Lagrange and Nédélec finite element discretizations.

All algebraic multigrid methods proposed in these theses are implemented in the
software package PEBBLES. Finally, numerical studies are given for problems in
science and engineering, which show the great potential of the proposed algebraic
multigrid techniques.

This work has been supported by the Austrian Science Found - ‘Fonds zur Förderung
der wissenschaftlichen Forschung’ (FWF) - within the subproject F 1306 of the Spe-
cial Research Program SFB F013 ‘Numerical and Symbolic Scientific Computing’
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Basic Notations

R, Rd – Set of real numbers and set of vectors x = (xi)
T
i=1,..,d, xi ∈ R,

i = 1, .., d.

u, u – Scalar valued function, vector valued function.
uh, uh – Finite element function and its vector representation.
Kh – System matrix Kh ∈ RNh×Nh .
(., .) – Euclidean inner product.
(., .)0 – L2-inner product.
〈., .〉 – Duality product.

Ω, Γ = ∂Ω – Bounded domain (open and connected subset of Rd, d =
1, 2, 3) with sufficiently smooth boundary Γ = ∂Ω.

n – Normal unit (outward) direction with respect to the bound-
ary Γ = ∂Ω of some domain Ω.

grad – Gradient, gradu(x) =
(

∂u(x)
∂xi

)T

i=1,..,d
for x ∈ Rd.

∆ – Laplace operator, ∆u(x) =
∑d

i=1
∂2u(x)

∂x2
i

for x ∈ Rd.

curl – curl–operator (also: rot),

curlu =
(

∂u
∂x2

,− ∂u
∂x1

)T
for a scalar function u = u(x1, x2),

curlu =
(

∂u3
∂x2
− ∂u2

∂x3
, ∂u1

∂x3
− ∂u3

∂x1
, ∂u2

∂x1
− ∂u1

∂x2

)T
, for a vector-

valued function u = (ui(x1, x2, x3))
T
i=1,2,3.

div – Divergence operator, divu =
∑d

i=1
∂ui

∂xi
for a vector-valued

function u = (ui(x1, x2, x3))
T
i=1,..,d.

Id – Identity operator.

rank(A) – Rank of a matrix A ∈ Rm×n.

iii



iv BASIC NOTATIONS

imA – Image of an operator A.
kerA – Kernel of an operator A.
dim(.) – Dimension of the argument.
meas(.) – Measure of the argument.

δij – Kronecker’s delta, δij = 1 for i = j, δij = 0 for i 6= j.

L2(Ω) – Space of scalar square–integrable functions on Ω.
(L2(Ω))d – Space of vector valued square–integrable functions on Ω.
H1(Ω) – H1(Ω) = {v ∈ L2(Ω) : ∇ v ∈ (L2(Ω))d}.

H1/2(∂Ω) – Trace space of H1(Ω).
H1

0 (Ω) – H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

(H1(Ω))d – (H1(Ω))d = {v ∈ (L2(Ω))d : ∂vi

∂xj
∈ L2(Ω) ∀i, j = 1, . . . , d}.

H(div,Ω) – H(div,Ω) = {v ∈ (L2(Ω))3 : divv ∈ L2(Ω)}.
H0(div,Ω) – H0(div,Ω) = {v ∈ H(div,Ω) : v · n = 0 on ∂Ω}.
H(curl,Ω) – H(curl,Ω) = {v ∈ (L2(Ω))3 : curlv ∈ (L2(Ω))3}.
H0(curl,Ω) – H0(curl,Ω) = {v ∈ H(curl,Ω) : v × n = 0 on ∂Ω}.

AMG – Algebraic Multi-Grid.
DOF – Degree Of Freedom.
FE – Finite Element.
IC – Incomplete Cholesky.
MG – Multi-Grid.
PCG – Preconditioned Conjugate Gradient.
PDE – Partial Differential Equation.
PMG – Parallel Multi-Grid.
PPCG – Parallel Preconditioned Conjugate Gradient.
SPD – Symmetric Positive Definite.
SPSD – Symmetric Positive Semi-Definite.



Chapter 1

Introduction

Many laws in physics are governed by a scalar partial differential equation (PDE)
or a system of PDEs with appropriate boundary conditions and initial conditions in
the case of time-dependent problems. Some important representatives of physical
models are:

1. Maxwell equations, e.g. [44, 59], which describe electromagnetic fields,

2. Cauchy-Navier equations, e.g. [17, 43], which model continuum mechanics,

3. Navier-Stokes equations, e.g. [24], which are related to fluid dynamics.

The above equations can be treated as they are, or they can be coupled. In the latter
case we speak about Coupled Field Problems.

The numerical simulation of physical models is of great interest. Instead of per-
forming experiments with a real life experimental setup, such an experiment can be
done virtually by computer simulation. For instance, for the development of elec-
trodynamic loudspeakers the experimental setup and the necessary measurements
for a new prototype take about 7 days. In contrast to that particular problem, the
numerical simulation for one prototype takes a few hours of CPU-time and moreover
all parameter settings can be arranged in principle. Consequently, the numerical
simulation technique saves a lot of development time and therefore saves money and
resources.

The solution of the general settings of the PDEs of item 1., 2., or 3. above is
not efficiently possible yet, but a reasonable down-sizing of the above equations is
admissible and sufficient for many applications. Down-sizing the problem complexity
makes it manageable by numerical methods even for nowadays computer resources.

In most cases the solution of the reduced physical models is only possible if
numerical discretization methods are used. The most common methods for elliptic
PDEs are the finite element (FE) method, the finite difference (FD) method and
the finite volume (FV) method, or alternatively for the Maxwell equations the finite
integration technique (FIT). For an overview see [27, 89]. For almost the rest of the
theses we are considering the FE-method for the discretization of elliptic, self-adjoint
second order PDEs. In particular we will concentrate on the robust, and efficient

1



2 CHAPTER 1. INTRODUCTION

solution of the arising linear system of equations

Khuh = f
h
, (1.1)

which is one key task in the overarching numerical simulation process for many ap-
plications appearing in science and engineering. For instance in the case of nonlinear,
time-dependent, or optimization problems such linear systems have to be solved re-
peatedly as part of an outer iteration loop, e.g. a Newton iteration or a fixed point
scheme for the case of nonlinear equations. Equation (1.1) is typical for numerical
discretization schemes, with Kh ∈ RNh×Nh is a symmetric positive definite (SPD)
sparse system matrix, f

h
∈ RNh is a given right-hand side and uh ∈ RNh is the solu-

tion vector. The number Nh of degrees of freedom (DOFs) in (1.1) behaves asymp-
totically as Nh = O(h−d) (with d = 1, 2, 3 the spatial dimension) with the mesh
size parameter h, and thus the linear system is usually very large. Moreover the
condition number κ(Kh) of the system matrix Kh is typically of order O(h−2). This
is the reason for exhibiting slow convergence in iterative solution methods (see e.g.
[4, 40, 68]). Consequently, the efficient, robust (e.g. with respect to the anisotropy)
and fast solution of (1.1) is an important aspect of the FE-method and therefore
optimal solvers (CPU-time and memory requirement are proportional to Nh) are of
interest. Krylov subspace methods [40] together with multigrid methods [39] fulfill
these requirements (see [47, 48]).

The geometric multigrid (MG) methods (e.g. [39, 15]) can be used if we have
a nested sequence of FE-spaces. These FE-spaces are usually constructed on a
hierarchy of conform FE-meshes. By defining appropriate transfer operators the FE-
spaces are linked together. For example, let Vh, VH (VH ⊂ Vh) be fine and coarse
FE-spaces, respectively, and Kh, KH the corresponding system matrices. Further
Ph : VH 7→ Vh is an appropriate prolongation operator. The two grid process
performs νF pre-smoothing steps on the fine system, then restricts the residuum on
the coarse space. On the coarse level the system is solved exactly and the defect is
prolongated on the fine level. Finally, νB post-smoothing steps are performed. A
recursive application leads to a general MG-cycle (see [39]). The effective interplay
of smoother and coarse grid correction results in an optimal solver (preconditioner),
see [39].

Algebraic multigrid (AMG) methods are of special interest if geometric multigrid
can not be applied, or if standard preconditioners (e.g. incomplete Cholesky (IC),
Jacobi) break down because of their non-optimality (see [40]). There are at least
two further reasons for using AMG:

1. The discretization provides no hierarchy of FE-meshes, so geometric MG can
not be applied.

2. The coarsest grid of a geometric multigrid method is too large to be solved
efficiently by a direct or classical iterative solver.

In contrast to geometric multigrid methods, where a grid hierarchy is required explic-
itly, AMG is able to construct the matrix hierarchy and the prolongation operators
by knowing at least the stiffness matrix. The first serious approach to AMG was
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made in 1982 by A. Brandt, S. McCormick, and J. W. Ruge in [12] and an improved
version of [12] can be found in [13] . This method is mainly concerned with SPD
matrices Kh, which are additionally M-matrices (or ’small perturbations’ of them).
In this approach the smoother is usually fixed (e.g. Gauss-Seidel point relaxation)
and the prolongation operator is constructed such that the error which is not affected
by the smoother is in the range of the prolongation operator. This objective can be
realized well for M-matrices [11, 77, 78, 81] but it turned out that it is hard to fulfill
for general SPD matrices. A review on this AMG method is made in [82, 83] includ-
ing also a proposal for the remedy for the M-matrix property. In spite of the fact
that this method works robust for M-matrices, the setup time (i.e., the construction
of the matrix hierarchy with corresponding transfer operators) and the application
as a preconditioner requires plenty of time for many practical problems.

To overcome these drawbacks D. Braess [9] suggested a quite simple AMG method,
where the preconditioner is constructed and applied very fast. The method benefits
from the piecewise constant interpolation and consequently there is less fill-in on
the coarser levels which in turn implies a fast application. On the other hand this
method fails at hand if anisotropic structures are considered due to the poor prolon-
gation operator. A related work is given by F. Kickinger in [57], where an improved
prolongation was proposed. In a subsequent work the agglomeration technique was
combined with a patch smoother [58].

A new technique was developed and analyzed by P. Vanek, J. Mandel, and
M. Brezina [84, 66] and a related work is found in [88]. The idea is to construct
a ’tentative’ prolongation operator which already takes care of the kernel of Kh

(without essential boundary conditions), and improve it by some smoothing steps
(usually one damped Jacobi step is used). The smoothing step provides to pull
energy out of the basis function. This approach is called ’smoothed aggregation’.

A completely new idea was realized by the workers at Lawrence Livermore Na-
tional Laboratory, which is called AMGe . This method basically assumes access to
the element stiffness matrices and is able to compute a measure for ’algebraically
smooth error’. In addition an improved prolongation operator can be constructed,
which does not rely on the M-matrix property. For the construction and analysis of
AMGe see [14, 45]. An element stiffness matrix free version, i.e., working with the
assembled system matrix, is given in [41].

Recently, C. Wagner [87] has developed an AMG method that is also applicable
for non-symmetric problems. The key point in this approach is to find the best pos-
sible two neighbors, which produce the best possible prolongation. The prolongation
weights are computed by local minimization problems and the coarsening is done in
a similar way. This approach provides a parallel AMG method in a natural way and
it can be used additionally for a scalar as well as for a block system of equations.

The above methods are partly able to deal with matrices Kh stemming from
an FE-discretization of a system of PDEs (see [84, 41, 57, 82]) and to handle
non-symmetric matrices Kh, e.g. arising from convection diffusion problems (see
[57, 82, 21, 76, 26, 87, 70]). Other interesting AMG approaches can be found in
[23, 20, 68, 86] and references therein. Applications of AMG methods in various
practical (engineering) areas are given in [25, 52, 53, 56, 26, 92, 82, 83, 55, 34, 51].
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All AMG methods inherently need the efficient interplay of smoothing and coarse
grid correction, which are the key ingredients for multigrid methods. The crucial
point in the construction of AMG methods is the numerical effort of the coarsening
process and the construction of appropriate transfer operators. The challenge is to
construct an AMG method with a good convergence rate but rather low costs in
the setup and the application. An AMG method always consists of four ingredients,
namely

1. the coarsening process,

2. the transfer operators,

3. the smoothing operators, and

4. the coarse grid operators.

In these theses we concentrate on the first two items, i.e., coarsening process and
transfer operators. The remaining ingredients, i.e., smoothing and coarse grid oper-
ators, are covered by standard methods. For example we use the point-, patch-, and
block Gauss-Seidel methods for smoothing operators and the Galerkin method for
the coarse grid operator. If it is not stated explicitly we describe the AMG method
by a two grid technique in these theses. Therefore we use the subscripts h and H
for fine and coarse grid quantities, respectively.

A common feature of all presented AMG methods is that they construct a precon-
ditioner out of the system (or the element matrices) exclusively. We will generalize
these AMG approaches in some directions in order to get them more flexible, robust
and efficient for certain classes of problems. Since we will apply the AMG method
to matrices arising from FE-discretizations our motivation is to construct a hierar-
chy of ’virtual FE-meshes’ comparable to the geometric counterpart. We need more
information on the finest grid besides the system matrix, which is usually available
in standard FE-codes. This can be achieved by introducing an auxiliary matrix Bh

which represents a virtual FE-mesh. For instance, Bh is a nodal distance matrix
which also reflects the underlying PDE and therewith Bh reflects anisotropies of the
FE-mesh and the PDE. In addition the auxiliary matrix Bh is constructed such that
it is an M-matrix. The idea is as follows: First of all, the diagonal entries of Bh are
interpreted as nodes and the off-diagonal entries as edges in the virtual FE-mesh.
Considering either a Lagrange FE-discretization or a Nédélec FE-discretization the
DOFs of Kh are related to the entries of Bh with a disambiguate mapping. Instead
of performing a coarsening on the system matrix Kh we perform it on the auxiliary
matrix Bh. Because Bh is an M-matrix this is a robust calculation and additionally
we are able to define a prolongation operator for the auxiliary system. After the def-
inition of an appropriate transfer operator for Bh a coarse matrix BH is constructed
by Galerkin’s method. The resulting coarse grid auxiliary matrix is again interpreted
as a virtual FE-mesh and the entries of BH represents the DOFs of the coarse sys-
tem matrix. Consequently, we use the coarsening of Bh also for the system matrix
Kh and therewith construct a transfer operator for the system matrix. It is worth
mentioning that the transfer operators for the auxiliary and the system matrix can
not be chosen independently, since the DOFs of the system matrix and the entries
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of the auxiliary matrix must fit together. Once the matrices are defined on a coarser
level, the setup process is applied recursively.

The second key point we interest in is the prolongation operator for the sys-
tem matrix Kh. It is obvious that the prolongation operators have to be chosen
problem depended in order to deal with the properties of the underlying PDE. We
assume throughout these theses the knowledge from which variational form and FE-
discretization the system matrix Kh stems from. Therewith we know the kernel
of the considered variational form (without essential boundary conditions). By this
knowledge, a necessary condition on the prolongation operator is posed. This knowl-
edge of the kernel is essential, because by the construction of a coarse grid operator
KH with Galerkin’s method it is necessary for the AMG method, that KH has the
’same’ properties as Kh. Especially, the kernel of both operators have to be ’equal’
in a certain sense.

First, the general AMG approach is applied to systems of equations that stem
from a Lagrange FE-discretization. We will consider three representatives, namely
the potential equation, standard solid mechanics and magnetostatic equations. While
for the first two examples the FE-discretization with nodal elements is standard, it
is more delicate for the magnetostatic problems. In this problem class the function
space H0(curl,Ω) is appropriate and it is known that a function u ∈ H0(curl,Ω) can
be split in the direct sum of a function (in case of convex Ω) v ∈ (H 1

0 (Ω))3 plus
a function gradφ, φ ∈ H1

0 (Ω), i.e., (H1
0 (Ω))3 ⊕ gradH1

0 (Ω). Loosely speaking, the
FE-discretization can be applied for the (H1

0 (Ω))3 and the H1
0 (Ω) part, separately.

As a consequence we arrive at a block system of linear equations. The auxiliary
matrix Bh is constructed such that the matrix pattern of Kh and Bh are the same,
i.e., |(Bh)ij | 6= 0 ⇔ ‖(Kh)ij‖ 6= 0. Notice, that an entry (Kh)ij ∈ Rp×p, p ≥ 1 is
matrix valued in general. The auxiliary matrix is constructed such that the distance
of two neighboring grid points as well as the operator type is reflected (see [37]). We
suggest the following matrix entry for (Bh)ij , i 6= j: Either there is no geometrical
edge connecting node i and j then (Bh)ij = 0, or there is a geometrical edge then
the entry is (Bh)ij = − 1

‖aij‖
, with aij is the distance vector connecting the nodes

with the indices i and j and ‖ · ‖ is an appropriate norm. The diagonal entry of
Bh is defined by (Bh)ii =

∑
j(Bh)ij . Then the coarsening process is performed on

Bh and the resulting partitioning in coarse and fine nodes is carried over to the
system matrix. With this knowledge we are able to construct transfer operators and
a block-smoother. The prolongation operator for block systems is computed as for
scalar systems, but the entries of the prolongation operator are matrix valued. The
prolongation operators are constructed by simple averaging, or more sophisticated,
by discrete harmonic extension. Moreover we are able to show in the considered
scalar case that the constructed prolongation operators fulfill the general assump-
tions which are necessary for the kernel of Kh. So far it is not possible to show these
preliminaries for the block case. Let us additionally mention that for Bh ≡ Kh in
the scalar case and (Bh)ij = −‖(Kh)ij‖, i 6= j the technique turns out to be the
classical AMG method.
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Numerical simulations based on the 3D Maxwell equations are important tools for
many applications in science and engineering. While the methods above are closely
related to H1(Ω)-based problems or problems with additional properties (e.g. M-
matrix), the matrices stemming from an FE-discretizations of the Maxwell equations
with Nédélec FE-functions causes additional difficulties. Hence a new AMG method
for this problem class is proposed. For the design of multilevel methods for the linear
system (1.1), the Helmholtz decomposition of the vector field into a solenoidal and
a gradient field is the key point. Especially the rotation free functions need special
treatment in the smoother. A geometric MG method was set up by R. Hiptmair [42]
the first time, a different multigrid approach is due to D. Arnold, R. Falk, R. Winther
[3]. Many references are found in [7]. For numerical results using geometric MG
methods we refer to [63, 79]. An algebraic multigrid (AMG) approach for the solution
of (1.1) requires, in addition to the geometric MG components, a proper coarsening
strategy. The transfer operators have to be designed with pure algebraic knowledge.
In spite of the fact that the FE-matrix Kh is SPD, the classical approaches of [9, 11,
12, 13, 57, 77, 78, 81, 84] and variants of them fail for problem (1.1) at hand. All these
methods are designed for SPD problems which either stem from FE-discretizations
of H1-based problems, or need beside the SPD property special characteristics of the
system matrix (e.g. M-matrix property). A first AMG approach to solve (1.1) arising
from an edge element discretization of the Maxwell equations was made by R. Beck in
[6]. The key idea there is to split an H0(curl,Ω) function into an (H1

0 (Ω))3 function
and a gradient function, and apply standard AMG for all components. This differs
from our approach, since we apply the coarsening directly for the H0(curl,Ω)-matrix.
The general AMG approach provides a possibility to cope with such a system. Again
an auxiliary matrix Bh is constructed which rather presents the FE-mesh than the
matrix pattern of the system matrix. Now, every off-diagonal entry of Bh can be
related to an edge (or degree of freedom) in the system matrix Kh. The challenge for
the construction of an AMG method is to cope with the kernel of the curl-operator.
Basically, we suggest the following strategy:

1. Identify connected pairs of nodes with the connecting edge, i.e., set up a ’node
to edge’ map.

2. Perform a coarsening technique such that the ’node to edge’ map hands over
to the coarse level.

3. Define a prolongation operator compatible with the Helmholtz decomposition.

A pivotal point consists in the construction of the ’node to edge’ map, to be able
to construct the prolongation operator, and the smoother for Kh. Since we are
concerned with an FE-discretization, a feasible ’node to edge’ map is given by an
auxiliary matrix Bh, which provides the opportunity to be interpreted as a virtual
FE-mesh as before. Consequently, a ’node to edge’ map of this virtual FE-mesh is
given in a natural way. If Bh is assumed to be an M-matrix and the prolongation
operators for the auxiliary matrix are appropriate, then a ’node to edge’ map on
the coarse level is given by BH . The resulting coarse edges on the virtual coarse
grid are degrees of freedom on that. An appropriate prolongation operator for the
edge FE-space and a suitable smoothing iteration will be defined with the benefit of
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the ’node to edge’ map. By recursion, the setup process and a multigrid method is
defined as usual.

Another method which fits in the general AMG concept is called element precon-
ditioning. The method was constructed in order to get rid of the M-matrix property
of the system matrix which is needed for the classical AMG method [12, 13, 81, 77,
78]. The basic ideas are depicted in [71, 73, 38] and read as follows: Sometimes
it is desirable to derive an AMG preconditioner for Kh from a nearby, spectrally
equivalent matrix Bh that is sometimes called regularizator [48]. Especially in our
case we need an M-matrix for applying the standard AMG efficiently. Thus, if we
are able to construct such an SPD regularizator Bh in the class of the M-matrices,
then we can derive a good preconditioner Ch for Kh by applying a symmetric AMG
cycle to Bh instead of Kh. We propose the element preconditioning method for the
construction of a spectrally equivalent M-matrix Bh and therefore we need access
to the element stiffness matrices. Additionally, the kernel of all element matrices
should be known, or must be calculated in advance. The numerical experiments
show that the standard AMG applied to Bh and used as a preconditioning step in
the conjugate gradient method results in a robust and efficient solution strategy.

If additional speedup is required, the use of parallel computers is the only way
to overcome the limitations. Hereby, distributed memory computers, e.g. PC clus-
ters, are of special practical interest because of the availability and low costs of such
machines see [60, 87, 35]. The parallelization based on domain decomposition ideas
has been proved to be very efficient. Efficient domain decomposition methods and
parallel geometric multigrid methods, both requiring a hierarchy of meshes, have
been investigated in [32, 33, 46]. In these theses we apply similar ideas for the de-
sign of a general parallel AMG method. There are several sequential versions of
AMG methods like [9, 57, 78, 84, 87]. The methods mainly differ in the setup phase,
i.e., construction of the matrix hierarchy and prolongation operators. The multi-
level cycle is then realized in the classical way and performs well if all components
are properly chosen. Parallel versions of AMG are rather rare. Some of them are
[22, 60, 87]. In contrast to the parallelization approaches in [22], we base our paral-
lelization strategy for AMG on the non-overlapping domain decomposition. Special
attention is paid to a modular implementation of our parallel code, such that other
AMG codes fit in the parallelization concept as well. The parallelization was done for
scalar and block problems with Lagrange FE-discretization [35] and for the Nédélec
FE-discretization [34, 33].

The implementation was done in the algebraic multigrid package PEBBLES
(Parallel Element Based grey Box Linear Equation Solver). The name originates
from the subsequent items.

1. Parallel: The package should provide a parallel AMG preconditioner in order
to be able to solve really large-scale problems arising from real life applications.

2. Element Based: Using PEBBLES in a standard FE-code, the system matrix
has to be moved to PEBBLES. In order to do this efficiently, an interface
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based on element matrices is appropriate and thus the matrix is stored just
once. Moreover the knowledge of element stiffness matrices can be used to
construct an efficient and robust preconditioner (see Chapter 5).

3. grey Box: We do not claim to construct an optimal and robust solver for
general SPD matrices. But we are able to construct preconditioners for certain
well defined classes of problems stemming from an FE-, FD-, FV-, or FIT-
discretization.

4. Linear Equation Solver: The task of solving a linear equation system arises in
non-linear, time-dependent or optimization problems. In all these applications
the solution of a linear system is an important ingredient.

All these objectives are realized in PEBBLES and up to now the interface is used
for the FE-codes FEPP [63], CAPA [65], CAUCHY [91] and MAFIA [19].

Using AMG as a preconditioner we have to expect a relative high setup time
(i.e., for the construction of the preconditioner) . This is of special interest if a
sequence of linear equations has to be solved, arising from non-linear iteration, time-
dependent problems or moving body problems. According to [48] it is sufficient
to use a spectrally equivalent matrix (for a definition of spectrally equivalent see
Chapter 2) Bh with respect to the original system matrix Kh for the preconditioned
conjugate gradient (PCG) method. Thus for solving the current equation, we apply
the preconditioner constructed from Bh for several steps. The convergence rate of
the PCG method depends on the spectral equivalence constants between Kh and Bh,
which can be controlled, e.g. in the case of nonlinear problems via the nonlinearity
ν(uh). In other words, the management of a new setup is done automatically. This
can be used in order to minimize the overall computation time. Similar strategies
are presented for time-dependent and moving body problems.

The remainder of the work is organized as follows: In Chapter 2 we present a brief
overview on the considered problem classes (PDEs), appropriate FE-discretizations
and some basics on iterative solvers. In addition the properties of the resulting FE-
system matrix are repeated. Our general approach to AMG is given in Chapter 3.
Chapter 4 applies the general results to three particular problem classes. Chapter 5
is concerned with the element preconditioning technique. Chapter 6 is related to
the parallel version of AMG. In Chapter 7 the AMG program package PEBBLES
is presented. Moreover the setup phase is discussed. In particular we show the
possibilities for the reduction of the CPU-time for time-dependent, non-linear and
moving body problems. Finally, numerical studies are given in Chapter 8.



Chapter 2

Preliminaries

2.1 Sobolev Spaces

Sobolev spaces [1] play an important role in the modern treatment of PDEs. This
concerns the right variational formulation as well as the numerical analysis of its FE-
discretization. Before we present a brief overview on the required Sobolev spaces,
we describe the computational domain Ω. We always assume Ω ⊂ Rd (with d =
1, 2, 3 the spatial dimension) be a bounded domain with Lipschitz-boundary Γ, see
Fig. 2.1. We assume the boundary Γ to be split in Γ1 and Γ2, with Γ1 ∩ Γ2 = ∅ and
meas(Γ1) 6= 0, which correspond to a Dirichlet and Neumann boundary condition
for further discussion. Additionally, the domain Ω is split into disjoint subdomains
Ω = Ω1∪Ω2, corresponding to different material parameters. The interface boundary
ΓI is given by ΓI = Ω1 ∩ Ω2. For reasons of simplicity only two subdomains are
illustrated, but the theory can readily be extended to an arbitrary finite number of
subdomains. Finally, n denotes the unit outward normal vector.
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Figure 2.1: Principle structure of the computational domain.

A scalar, measurable function u(·) : Ω 7→ R is called square integrable on Ω, if

∫

Ω
|u(x)|2 dx <∞

9
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holds. The space of all square integrable functions on Ω is denoted by L2(Ω), which
is a Hilbert space with inner product and norm

(u, v)0 =

∫

Ω
u · v dx and ‖u‖20 = (u, u)0 ,

respectively. The derivatives of functions are defined in the generalized sense of
distributions (see [1]). The gradient of a scalar function u(·) is a vector denoted by

gradu =

(
∂u

∂xi

)T

i=1,... ,d

, (2.1)

the divergence of a vector valued function u(·) = (u1(·), . . . , ud(·))
T is given by

divu =

d∑

i=1

∂ui

∂xi
(2.2)

and the curl of a vector valued function for d = 3 reads as

curlu =

(
∂u3

∂x2
−
∂u2

∂x3
,
∂u1

∂x3
−
∂u3

∂x1
,
∂u2

∂x1
−
∂u1

∂x2

)T

. (2.3)

Finally, the product space Xp (for X being a Hilbert space and p ∈ N) is defined by

Xp = X × . . .×X

with the norm

‖ · ‖2Xp = ‖ · ‖2X + . . .+ ‖ · ‖2X .

For the further discussion we need the following function spaces:

H1(Ω) = {u ∈ L2(Ω) : gradu ∈ L2(Ω)} , (2.4)

H(curl,Ω) = {u ∈
(
L2(Ω)

)d
: curlu ∈

(
L2(Ω)

)d
} , (2.5)

H(div,Ω) = {u ∈
(
L2(Ω)

)d
: div u ∈

(
L2(Ω)

)d
} . (2.6)

These function spaces are Hilbert spaces equipped with the inner products and norms

(u, v)1 = (u, v)0 + (grad u, grad v)0 and ‖u‖21 = (u, u)1 , (2.7)

(u,v)curl = (u,v)0 + (curlu, curlv)0 and ‖u‖2curl = (u,u)curl , (2.8)

(u,v)div = (u,v)0 + (divu,div v)0 and ‖u‖2div = (u,u)div , (2.9)

respectively. Boundary conditions, which are essential for our problem class, are
introduced in the sense of the trace operator. The following lemma is valid.

Lemma 2.1.1. The trace operator

T : H1(Ω) 7→ H
1
2 (∂Ω)

is a continuous linear mapping from H1(Ω) onto H
1
2 (∂Ω).
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Proof. A proof can be found in [1].

Similar to the space H1(Ω) a trace operator can be defined for the spaces H(curl,Ω)

and H(div,Ω) with traces of u × n and u · n in H− 1
2 (∂Ω), respectively (for more

details see [24]). A Sobolev space Hs(∂Ω) of fractional order s ∈ R is defined as in
[1]. In this context the spaces

H1
0 (Ω) = {u ∈ H1(Ω) : u|Γ ≡ 0} , (2.10)

H1
Γ1

(Ω) = {u ∈ H1(Ω) : u|Γ1
≡ 0} , (2.11)

H0(curl,Ω) = {u ∈ H(curl,Ω) : (u× n)|Γ ≡ 0} , (2.12)

H0(div,Ω) = {u ∈ H(div,Ω) : (u · n)|Γ ≡ 0} (2.13)

are introduced with the same norms defined before for the corresponding spaces
without boundary conditions.

The following results can be found in [24].

Theorem 2.1.2. Every function v ∈ (L2(Ω))3 has the orthogonal decomposition
(Helmholtz Decomposition)

v = curlu + gradφ , (2.14)

with respect to the L2-inner product, where φ ∈ H1(Ω)|R is the unique solution of

(gradφ, gradψ)0 = (v, gradψ)0

and u ∈ (H1(Ω))3 satisfies divu = 0 in Ω, curlu · n = 0 on Γ.

Proof. A proof is given in [24], Chapter 1, Corollary 3.4.

Lemma 2.1.3. For any v ∈ H0(curl,Ω), there exists a function w ∈ H0(curl,Ω)
and φ ∈ H1

0 (Ω) such that

v = w + gradφ

and

(w, gradψ)0 = 0 ∀ψ ∈ H1
0 (Ω) .

Remark 2.1.4. In the case of convex Ω, the splitting

H0(curl,Ω) = (H1
0 (Ω))3 ⊕ gradH1

0 (Ω)

of the space H0(curl,Ω) is valid. Here the space gradH1
0 (Ω) is defined by

gradH1
0 (Ω) =

{
gradψ : ψ ∈ H1

0 (Ω)
}
.
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2.2 Classical Formulations

2.2.1 Maxwell Equations

The Maxwell equations [44, 59], which are given by differential equations

curlH = J +
∂D

∂t
, (2.15)

curlE = −
∂B

∂t
, (2.16)

divD = q , (2.17)

divB = 0 , (2.18)

are the mathematical model of magnetic and electric fields in a continuum. Therein,
H denotes the magnetic field strength, E the electric field strength, D the electric
field density, B the magnetic induction, J the current density and q the charge
carrier density. In addition the boundary and interface conditions are defined on
∂Ω = Γ1 ∪ Γ2 and ΓI , respectively (see Fig. 2.1), i.e.,

X · n = 0 , (2.19)

Y × n = 0 , (2.20)[
X · n

]
ΓI

= X2 · n−X1 · n = 0 , (2.21)
[
Y × n

]
ΓI

= Y2 × n−Y1 × n = 0 . (2.22)

In the last formulae (X,Y) stands either for the pair (B,H) or (D,E). Further the
material relations

J = JI + σ · E = JI + JE , (2.23)

D = ε ·E , (2.24)

B = µ ·H (2.25)

must hold, with JI and JE are called the impressed and eddy currents. The non-
linear, time-dependent rank two tensors σ, ε and µ are assumed to be piecewise
constant functions with σ ≥ 0, ε > 0 and µ > 0 (ν = µ−1) if it is not stated differ-
ently. In practice the whole set of the Maxwell equations can often be reduced. For
the rest we always assume the displacement current density ∂D

∂t equal to zero, where
∂
∂t denotes the time derivative.

Electric Field Problem: In this case we assume a pure electric field prob-
lem and consequently H ≡ B ≡ 0. Because of (2.16) a scalar potential φ can be
introduced for E , i.e.,

E = − gradφ ,

and therefore we obtain with (2.17)

−div(ε gradφ) = q in Ω (2.26)

∂φ

∂n
= 0 on Γ (2.27)

[
ε · gradφ · n

]
ΓI

= 0 on ΓI . (2.28)
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The general interface condition (2.21) and boundary condition (2.19) results in (2.28)
and the Neumann boundary condition (2.27). This boundary value problem will also
be called ’potential equation’ further.

For instance, in the case of a capacitor we assume the following conditions on a
inner surface Γe = Γe,0 ∪Γe,1 (see Fig. 2.2) : Γe,1 is the surface of given potential φ0
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Figure 2.2: Principle structure of a capacitor.

(e.g. potential of voltage loaded capacitor) and Γe,0 is the surface of zero potential
(grounded electrode). Thus the potential φ on Γe,0 is equal zero and the potential
on Γe,1 has a constant value φ0.

Magnetic Field Problem: The second case is related to the so called qua-
sistatic case (eddy current problem). Because of (2.18) a vector potential A can be
introduced for B, i.e.,

B = curlA ,

and consequently we arrive at

σ ·
∂A

∂t
+ curlµ−1 curlA = JI in Ω , (2.29)

A× n = 0 on Γ , (2.30)[
µ−1 ·A× n

]
ΓI

= 0 on ΓI (2.31)

by assuming E = − ∂A

∂t . The boundary (2.30) and interface (2.31) conditions are
consequences of the corresponding general conditions, i.e., (2.20) and (2.22). Appro-
priate initial conditions are assumed. Furthermore, the gauge condition

divA = 0 (2.32)

can be assumed because J is conservative for our applications. This gauge condition
is useful to gain uniqueness of the boundary value problem. The special case of a
static magnetic field problem (2.29) reduces to

curlµ−1 curlA = JI . (2.33)
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2.2.2 Cauchy-Navier Equations

An other important set of physical equations model solid mechanical problems.
We assume the dynamic, linearized elasticity equations for small deformations and
Hook’s law. This reads as

ρ ·
∂2u

∂t2
− div σ = f in Ω , (2.34)

σ = Dε , (2.35)

εij =
1

2
·
(∂ui

∂xj
−
∂uj

∂xi

)
, (2.36)

u = 0 on Γ1 , (2.37)

σ · n = g on Γ2 , (2.38)

with appropriate initial conditions. Therein

u = (u1, u2, u3)
T , σ =



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 and ε =



ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33




denote the displacement vector, the stress tensor and the strain tensor, respectively.
The material density is given by ρ and D is the tensor of elastic coefficients. Further
the div-operator is defined component-wise, i.e.,

(div σ)i =
3∑

j=1

∂σij

∂xj
.

A special case of the above equations are the static Lamé equations, which are valid
for an isotropic material, i.e.,

−µ∆u− (λ+ µ) grad divu = f (2.39)

and µ , λ > 0 are called the Lamé parameters.

2.2.3 Coupled Field Problems

Apart from the single field problems we have a focus on coupled field problems, which
occur when at least two physical fields interact on a given domain Ω. At this point
we concentrate on a simple coupled field problem that connects an electric field and
mechanical field (see [50, 49, 2, 64, 85]). The essential part is the coupling which is
modeled as a simple right hand side coupling, i.e.,

−µ∆u− (λ+ µ) grad div u = fE in Ω , (2.40)

u = 0 on Γ1 , (2.41)

σ · n = g on Γ2 , (2.42)

and the electric part is given by

−div(ε gradφ(u)) = q(u) in Ω , (2.43)

∂φ

∂n
= 0 on Γ , (2.44)

[
ε gradφ · n

]
ΓI

= 0 . (2.45)
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The electrostatic force fE is calculated by

fE =

∫

ΣI

TE · n dΣ ,

with the electrostatic force tensor

TE =



εE2

x −
1
2ε|E|

2 εExEy εExEz

εEyEx εE2
y −

1
2ε|E|

2 εEyEz

εEzEx εEzEy εE2
z −

1
2ε|E|

2


 ,

E = (Ex, Ey, Ez) and ΣI the surface on which the force acts.

2.3 Primal Variational Formulation

The last section gave some examples of PDEs which have to be solved in an appro-
priate numerical way. It is hardly possible to solve such boundary value problems
in a classical analytic way. Thus we are using the FE-method for the approximate
solution of the boundary value problems discussed in Section 2.2. In order to be able
to apply the FE-technique, the variational formulation is used, see e.g. [16]. We
consider only the primal variational formulation for second order self-adjoint elliptic
PDEs. The subsequent examples are obtained by partial integration and appropriate
incorporation of the boundary conditions. Moreover appropriate Sobolev spaces are
defined and a potential homogenization of the essential boundary conditions is made.
Therefore, all variational problems to be considered can be written in the abstract
setting:

find u ∈ VB : a(u, v) = 〈f, v〉 ∀v ∈ VB , (2.46)

with the Hilbert space V and V ⊃ VB , the bilinear form a(·, ·) : V×V 7→ R and the
duality product 〈·, ·〉 : V∗

B × VB 7→ R with V∗
B the dual space of VB .

An important property is the kernel of the bilinear form a(·, ·), i.e.,

V0 = {u ∈ V | a(u, v) = 0 ∀v ∈ V} , (2.47)

can be expressed as

V0 = ΛQ = {Λu |u ∈ Q} ,

by introducing a bounded, linear operator Λ : Q ⊂ V 7→ V. Note, the kernel of the
bilinear form is of special interest for the construction of an AMG method.

Electrostatic Field Problem: In a first case we consider the potential equa-
tion, where we can usually use the spaces V = H1(Ω) and VB = H1

Γ1
(Ω). The

bilinear form is given by

a(u, v) =

∫

Ω
grad vT ε gradu dx (2.48)
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and f ∈ L2(Ω) is assumed. Furthermore with

Λ = Id and Q = {u ∈ V | gradu = 0} = {b | b ∈ R}

the kernel is described. This result follows immediately by the mean value theorem.
In the latter formula Id is the abbreviation for the identity operator.

Linearized Elasticity: In these theses we are neither considering geometric nor
material locking effects and therefore we use the Sobolev spaces V = (H 1(Ω))d and
VB = (H1

Γ1
(Ω))d. Consequently the bilinear form for (2.49) reads as

a(u,v) =

∫

Ω
ε(v)TDε(u) dx . (2.49)

Moreover a right-hand side f ∈ (L2(Ω))d is assumed. With the definition

Λ = Id and Q = {u ∈ V | ε(u) = 0} =
{
a× x + b |a, b ∈ Rd

}
,

the kernel is described (see e.g. [10], Chapter 6, Remark 3.2).

Magnetostatic Field Problem I: Let us consider the linear, static equation
(2.33) with the function spaces V = H(curl,Ω) and VB = H0(curl,Ω). In Section 2.1
the splitting VB = H0(curl,Ω) = (H1

0 (Ω))3 ⊕ gradH1
0 (Ω) was presented. This fact

and the gauge condition (2.32) imply the bilinear form

a(u,v) =

∫

Ω
curlvTµ−1 curlu dx+

∫

Ω
divvµ−1 divu dx , (2.50)

by adding the term
∫
Ω divvTµ−1 divu dx (which vanishes in the continuous solution)

to (2.33) (see [8, 54]). This can be seen as a penalty formulation where the gauge
condition (2.32) is penalized by µ−1 and added to the original equation. Further
we assume a right-hand side f ∈ (L2(Ω))d. If no essential boundary conditions are
imposed then

Λ = Id and Q = {gradu ∈ V | div grad u = 0}

represent the kernel of (2.50). The relation ΛQ ⊆ V0 is obvious. On the other hand
the inclusion V0 ⊆ ΛQ can be seen as follows: Let the variational form (2.50) be
equal zero and set especially v = u, i.e.,

∫

Ω
curluTµ−1 curlu dx+

∫

Ω
divuµ−1 divu dx = 0 .

Since both terms of the above integral are positive, each of them must vanish. The
kernel of the curl-operator is the space of all gradient fields for convex Ω (see below).
Therefore the relation div gradφ = 0 must hold, with gradφ being in the kernel of
the curl-operator. This ensures the second term to be equal zero. This variational
formulation is especially suited for Lagrange FE-functions (see Section 2.4).



2.3. PRIMAL VARIATIONAL FORMULATION 17

Magnetostatic Field Problem II: Let us again consider the linear, static
Maxwell equation (2.33) with the function spaces V = H(curl,Ω) and VB = H0(curl,Ω).
Because the resulting variational form has a non-trivial kernel we add the term∫
Ω σ · uv dx (with σ > 0 be an artificial conductivity) in order to ensure uniqueness

of the boundary value problem, i.e., the bilinear form results in

a(u,v) =

∫

Ω
curlvTµ−1 curlu dx+

∫

Ω
σ · uv dx (2.51)

and the right-hand side f ∈ (L2(Ω))d is assumed. For σ = 0 the kernel is non-trivial
and consists of all gradient fields if the domain Ω is simply connected (see e.g. [24],
Chapter 1, Theorem 2.9). By defining

Λ = grad and Q = H1
0 (Ω)

the kernel fits into our general representation scheme. This formulation is suited for
Nedéléc FE-discretization (Section 2.4).

The Lax-Milgram Lemma is the basic tool which provides the existence and
uniqueness of the solution of the variational forms above under appropriate assump-
tions.

Lemma 2.3.1. Let VB be a real Hilbert space and a(·, ·) : VB×VB 7→ R an elliptic,
bounded bilinear form, i.e., there exist positive constants µ1 and µ2 such that

|a(u, v)| ≤ µ2 · ‖u‖VB
· ‖v‖VB

and

a(u, u) ≥ µ1 · ‖u‖
2
VB

,

respectively. Further let f ∈ V∗
B. Then the equation

find u ∈ VB : a(u, v) = 〈f, v〉 ∀v ∈ VB

has an unique solution and

‖u‖VB
≤

1

µ1
· ‖f‖V∗

B
.

Proof. The proof can be found in [10], Chapter 2, Theorem 2.5.

The same result carries over to boundary value problems where a(·, ·) is semi-elliptic
in V, if f ∈ V⊥

0 , i.e.,

〈f, v〉 = 0 ∀v ∈ V0 .

The latter condition follows from the Fredholm Theory (see e.g. [61], Chapter 8).
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2.4 Finite Element Method

The variational forms (2.48), (2.49), (2.50), and (2.51) of Section 2.3 are the starting
point for the FE-discretization. Let us consider the general variational problem
(2.46). In order to get a finite substitution of the original equation, the space V is
approximated by a sequence of subspaces {Vh}h>0 ⊂ V with h being the mesh-size
parameter. The FE-discretization is based on a regular partition τh of the domain
Ω into, e.g. tetrahedral, finite elements T [16]. In addition we impose on the FE-
discretization

h1 < h2 ⇒ Vh2 ⊂ Vh1

and in the limit case h → 0 we require Vh = V. The same properties are assumed
on the subspace VB. Thus we require a sequence of finite dimensional subspaces
{VBh}h>0 ⊂ VB in order to approximate the space VB. Then (2.46) changes to

find uh ∈ VBh : a(uh, vh) = 〈f, vh〉 ∀vh ∈ VBh (2.52)

which is equivalent to the linear system of equations

Khuh = f
h
, (2.53)

by the FE-isomorphism

Gsys
h : Vh 7→ Vh ,

with Vh = RNh . The FE-spaces specified for our particular model problems are
pretty much standard.

1. For the scalar problem of the potential equation (2.48) the standard nodal FE-
functions are used [16] which are H1(Ω)-conforming. For each element T ∈ τh

we define the space

Vh,T = {(a · x + b)|T : a ∈ Rd, b ∈ R},

and set

Vh = {v ∈ H1(Ω) : v|T ∈ Vh,T} .

In an analogous way we define a conforming (H1(Ω))3 FE-space [10, 43], which
is used for the variational form (2.49).

2. For the weak formulation (2.50), the spaceH0(curl,Ω) is split into the (H1
0 (Ω))3

and the gradH1
0 (Ω) part due to Remark 2.1.4. Consequently we can use again

the Lagrange FE-functions of item 1. for both parts.

3. The canonical finite elements for the approximation of H(curl,Ω) of (2.51) are
Nedéléc FE-functions [69]. For each element T ∈ τh we define the space

Vh,T = {(a× x + b)|T : a,b ∈ Rd},
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and set

Vh = {v ∈ H(curl,Ω) : v|T ∈ Vh,T} .

The integrals of the tangential components along edges give the proper degrees
of freedom. The edge elements have the property that the tangential compo-
nent is continuous while the normal component is free to jump, i.e., an edge
element discretization is H(curl,Ω)-conforming. This is important for (2.51)
in the case of non-convex domains Ω, or if the coefficient function ν has jumps
to get a ’good approximation’ of the continuous solution.

The ’kernel’ space Q ⊂ V is assumed to be approximated by a finite space Qh such
that

‖q − qh‖V ≤ O(h) ∀q ∈ Q ,

if h tends to zero. In addition we define an FE-isomorphism

Gker
h : Qh 7→ Qh ,

with Qh being an appropriate parameter space.

After the definition of FE-spaces the discrete mapping Λh : Qh 7→ Vh, which
maps the discrete kernel into the discrete space, is defined by

Λhqh
= (Gsys

h )−1 ΛGker
h q

h
∀q

h
∈ Qh

and thus the discrete kernel reads as

V0h = {uh ∈ Vh | a(G
sys
h uh, G

sys
h vh) = 0 ∀vh ∈ Vh}

= {q
h
∈ Qh | a(ΛG

ker
h q

h
, Gsys

h vh) = 0 ∀vh ∈ Vh} = ΛhQh .

By defining coarser spaces VH ⊂ Vh and QH ⊂ Qh (which is explained in more detail
in Chapter 4) and the appropriate FE-isomorphisms Gsys

H and Gker
H , the operator

ΛH : QH 7→ VH is defined by

ΛHqH
= (Gsys

H )−1 ΛGker
H q

H
q
H
∈ QH .

Next, we assume a transfer operator P sys
h : VH 7→ Vh to be given with full rank, then

the kernel of the coarse space is given by

V0H = {vH |P
sys
h vH ∈ V0h} , (2.54)

in the case of using Galerkin’s method for the coarse grid operator, i.e.,

KH = (P sys
h )T Kh P

sys
h .

Remark 2.4.1. In the subsequent items we presented the discrete kernels of the
considered problem classes. We use the vector of coordinates (x,y, z)T ∈ RNh and
therewith x, y and z ∈ RMh are the x−, y− and z-coordinates of the grid points,
respectively. The vector 1 ∈ RMh denotes the constant vector.
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1. The discrete kernel arising from (2.48) is given by

V0h =
{
vh ∈ Vh | gradG

sys
h vh = 0

}
= Qh (2.55)

and

Qh = span{1}

holds.

2. The discrete kernel stemming from (2.49) reads as follows

V0h =
{
vh ∈ Vh | ε(G

sys
h vh) = 0

}
= Qh (2.56)

and we have

Qh = span








1

0

0


 ,




0

1

0


 ,




0

0

1


 ,




0

z

−y


 ,



−z

0

x


 ,




y

−x

0





 .

3. The discrete kernel of (2.50) is given by

V0h =
{
(Gsys

h )−1 gradGsys
h vh ∈ Vh | div gradGsys

h vh = 0
}

= Qh . (2.57)

4. The discrete kernel of the curl-operator for (2.51) is defined by

V0h = {vh ∈ Vh | curlGsys
h vh = 0} = gradhQh , (2.58)

with the ’discrete’ gradient operator gradh : Qh → V0h

gradh qh
= (Gsys

h )−1 gradGker
h q

h
∀q

h
∈ Qh . (2.59)

5. The challenging task is to ensure ΛHQH = V0H under the assumption that
ΛhQh = V0h. This property is closely related to the transfer operators P sys

h :
VH 7→ Vh and P ker

h : QH 7→ Qh.

2.5 Iterative Solvers

Before we recall the basic theory of iterative solvers (e.g. Richardson and Conjugate
Gradient iteration), we give some notations and results. For a detailed discussion we
refer to e.g. [4, 40, 68]. In spite of the fact that some results hold for more general
matrices we assume the matrices A,B ∈ RN×N to be symmetric and positive (semi)
definite (SP(S)D) . In addition the entries of a matrix and a vector are given by

A = {aij}i,j=1,... ,N u = {ui}i=1,... ,N .

Remark 2.5.1.

1. The transposed of A is denoted by AT . The dimension of A is given by
dim(A) = N and the rank of A is equal to rank(A) = N − dim(ker(A)), where
ker(A) = {u ∈ RN : Au = 0} is the kernel of A. The matrix A is called
definite iff rank(A) = dim(A) = N . The matrix A is called semi-definite iff
dim(ker(A)) 6= 0.
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2. The eigenvalues {µi(A)}i=1,... ,N with corresponding eigenvectors {φi(A)}i=1,... ,N

of A are assumed to fulfill the following two properties

0 ≤ µ1(A) ≤ . . . ≤ µN (A) and (φi(A), φj(A)) = δij ,

where (·, ·) is the Euclidean inner product and δij is the Kronecker symbol. The
maximal and minimal non-zero eigenvalue (and the corresponding eigenvector)
are denoted by µmax(A) = µN (A) (φmax(A) = φN (A)) and µmin(A) = µk(A)
(φmin(A) = φk(A)), with k = min{i : µi(A) 6= 0}.

3. The generalized condition number of A is given by

κ(A) =
µmax(A)

µmin(A)
.

If A is regular we call it condition number .

4. A and B are called spectrally equivalent if

∃c1, c2 ∈ R+ : c1 · (Bu, u) ≤ (Au, u) ≤ c2 · (Bu, u) ∀u ∈ RN ,

which is briefly denoted by

c1 ·B ≤ A ≤ c2 · B

and we use the fact that

κ(B†A) ≤
c2
c1
,

where B† is the pseudo-inverse of B.

5. The spectral radius ρ(A) of A is given by

ρ(A) = µmax(A) .

6. The Nh ×Nh identity matrix is denoted by Ih.

7. Finally, we define the set of matrices ZN by

ZN = {A ∈ RN×N : akk > 0, aij ≤ 0∀i 6= j i, j, k = 1, . . . , N} .

In the case A ∈ ZN is regular, the matrix A is called M-matrix.

Remark 2.5.2. For our applications the resulting system matrices Kh ∈ RNh×Nh

have the following properties:

1. Kh is SP(S)D.

2. dim(Kh) = Nh = O(h−d), where h denotes the typical average mesh size, i.e.,
the system matrix can be a large scale matrix.
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3. κ(Kh) = O(h−2), i.e., the generalized condition number is very large as h tends
to zero.

4. The system matrix Kh has a sparse pattern, i.e., the number of non-zero entries
(NNEh) is of order O(h−d). In addition the average number of non-zero entries
per row is given by

NMEh =
NNEh

Nh
.

5. The system matrix is stored in such a way, that the p unknowns related to a
node (edge) are stored in a sub-matrix kij, i.e.,

Kh = (kij)i,j=1,... ,Mh
, kij ∈ Rp×p

with Mh the number of nodes (edges). Thus the number of unknowns is given
by Nh = Mh · p.

Before we proceed, a preconditioner C−1
h which is spectrally equivalent to Kh

(i.e. c1 · Ch ≤ Kh ≤ c2 · Ch) is assumed. We call

‖uh‖
2
Kh

= (Khuh, uh)

the Kh-energy norm of uh and

‖uh‖
2
KhC−1

h
Kh

= (KhC
−1
h Khuh, uh)

the KhC
−1
h Kh-energy norm of uh.

Now, let us consider the linear equation (2.53) with the properties given in Re-
mark 2.5.2. Further we assume the right-hand side f

h
∈ ker(Kh)⊥ in order to gain

solvability. First the Richardson iteration scheme (Alg. 1) is considered with a pre-
conditioner C−1

h . The iteration matrix is given by

Rh = Ih − τ · C
−1
h ·Kh ,

and the spectral radius of Rh is bounded by

ρ(Rh) ≤ max{|1 − τ · c1|, |1− τ · c2|} .

It is well known that the optimal damping parameter is given by τ = 1
c1+c2

and
therewith the convergence rate is bounded by

ρ(Rh) ≤
κ(C−1

h Kh)− 1

κ(C−1
h K

)
h + 1

The second case is the preconditioned conjugate gradient (PCG) method with
preconditioner C−1

h . In Alg. 2 the algorithm is presented. The PCG-method is a
nonlinear iteration scheme. The advantage of this method consists in the fact that we
do not need to compute the damping parameter, i.e., the spectral constants are not
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Algorithm 1 Richardson Iteration (Kh,Ch,uh,f
h
)

define the damping parameter 0 < τ < 2
c2

define the relative error bound ε > 0
u0

h ← uh get the start vector
while ‖f

h
−Khuh‖ > ε · ‖f

h
−Khu

0
h‖ do

uh ← uh + τ · C−1
h · (f

h
−Khuh)

end while

Algorithm 2 Preconditioned conjugate gradient method(Kh,Ch,uh,f
h
)

define the relative error bound ε > 0
u0

h ← uh get the start vector
rh ← f

h
−Khu

0
h

dh ← C−1
h · rh

sh ← dh

while ‖f
h
−Khuh‖ > ε · ‖f

h
−Khu

0
h‖ do

γ ← (sh, rh)
α← γ

(Khdh,dh)

uh ← uh + α · dh

rh ← rh − α ·Khdh

sh ← C−1
h · rh

β ← γ
(sh,rh)

dh ← sh + β · dh

end while

required in order to get an optimal convergence rate. The error in the lth iteration
step of the PCG method in the Kh-energy norm is bounded by (see e.g. [40])

‖ul
h − u

∗
h‖Kh

≤ ql · ‖u
0
h − u

∗
h‖ (2.60)

with

ql =
2ql

1 + q2l
, q =

√
κ(C−1

h Kh)− 1
√
κ(C−1

h Kh) + 1
.

Further, ul
h denotes the lth iterate of the PCG iteration step, u∗h is the exact solution

of (2.53) and u0
h is the given start vector. An acceleration of the convergence by the

square root is given.

For both iteration schemes the stopping criterion is based on the Euclidean norm
of the residual. Let us mention that especially for the PCG method the stopping
criterion based on the KhC

−1
h Kh-energy norm is favorable compared to other norms

since this norm is automatically calculated by the PCG iteration.

The solution strategies motivate us to construct preconditioners Ch with the
following properties:
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1. The condition number κ(C−1
h Kh) is as small as possible (close to one), but at

least independent of the mesh-size h, i.e., κ(C−1
h Kh) = O(1) if h tends to zero.

2. The condition number κ(C−1
h Kh) is independent of parameter jumps or other

’bad’ parameters.

3. The preconditioner C−1
h is easy to realize, i.e., the arithmetic costs of applying

C−1
h are about the same as applying Kh.

4. The application of C−1
h is easy to parallelize.

5. The memory requirement for the preconditioning process is of optimal order,
i.e., it is about the same as for Kh.

Example 2.5.3.

1. The classical Richardson iteration is given by defining Ch = Ih, which results in
a condition number κ(C−1

h Kh) = O(h−2), i.e., the condition number asymptot-
ically behaves like κ(Kh). By using the symmetric Gauss-Seidel or the Jacobi
method as a preconditioner instead we get the same result.

2. If we define a preconditioner by Ch = Kh then it results in a direct method
with κ(C−1

h Kh) = 1, but the application of the preconditioner and the memory
requirement is not of optimal order.

3. Multigrid methods used as a preconditioner are of optimal order (see e.g. [39,
48, 47]).



Chapter 3

General Approach to AMG
Methods

3.1 Motivation for AMG Methods

In Section 2.5 a brief motivation was given for optimal iterative solvers and precon-
ditioners, i.e., the arithmetic costs are of order O(Nh). For further discussion we
will use solver and preconditioner in a synonymous way. One advantage of iterative
solvers compared to direct ones is the required memory, which is O(Nh). But the
convergence rate of a classical iterative solver depends on the condition number of
the linear system. Therefore, optimal solvers are of interest, i.e., the convergence
rate is independent of the mesh-size parameter h and other ’bad’ parameters of the
system. The solution of linear systems is an essential aspect of the FE-method. MG
methods (geometric and algebraic versions) and Krylov subspace methods together
with MG preconditioners fulfill the requirements of an optimal solver. Because of
robustness and efficiency, the latter are prior to be used [48, 47].

The key point in MG methods is the efficient interplay of smoothing and coarse
grid operators. The error which is not efficiently reduced by the smoothing operator
has to be well approximated by a coarser system. The error on the coarse system,
which is smooth on the fine level, turns out to contain again high frequency error
with respect to the coarser system. That means that a certain spectrum of error
frequencies is effectively reduced on each level by the smoother. On the coarsest grid
a direct solver is often applied. While the construction is rather simple if a hierarchy
of grids is available, the construction of a matrix hierarchy is not an easy task if
either the matrix only or information on the finest grid are available. Thus AMG
methods are of special interest if geometric multigrid can not be applied. There are
at least two situations where AMG is needed:

1. The discretization provides no hierarchy of FE-meshes, which is essential for
the geometric MG method. This is the case for many FE-codes, especially
commercial ones.

2. The coarsest grid of a geometric multigrid method is too large to be solved
efficiently by a direct or classical iterative solver.

25
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The classical AMG approach assumes an SPD system matrix which is additionally
an M-matrix (see e.g. [78]). For such matrix classes a matrix hierarchy can be
constructed, mimicking the geometric counterpart well. It can easily be shown,
that the information of an SPD system matrix is not enough in order to construct
an efficient and robust AMG method. Therefore, we assume the knowledge of the
underlying PDE, the FE-discretization scheme and additional information on the
given FE-mesh. In this way the kernel and other useful properties can be extracted
before an AMG method is assembled. By this knowledge the AMG technique is able
to mimic a geometric MG method for certain classes of matrices. Subsequently, a
general approach to AMG methods is discussed.

3.2 Components of an AMG Method

3.2.1 Auxiliary Matrix (’virtual’ FE-mesh )

Let us assume the system matrix Kh stems from an FE-discretization on the FE-
mesh ωh = (ωn

h , ω
e
h), with ωn

h , |ωn
h | = Mh being the set of nodes and ωe

h being the
set of edges (see Fig. 3.1). An edge is defined as a pair of indices for which the
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Figure 3.1: Clipping of an FE-mesh in 2D.

connection of the two points is a geometric edge. For instance, let i, j ∈ ωn
h be the

indices of the nodes xi, xj ∈ Rd then the edge is given by

eij = (i, j) ∈ ωe
h

and the corresponding geometric edge vector can be expressed by

aij = xi − xj ∈ Rd .

The first task we are concerned with is the construction of an auxiliary matrix
Bh ∈ RMh×Mh with the following properties:

(Bh)ij =

{
bij ≤ 0 i 6= j

−
∑

j 6=i bij ≥ 0 i = j .

The entries of Bh should be defined in such a way that
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1. the distance between two geometric grid points is reflected and

2. the operator D(x) from the variational forms (2.48), (2.49), (2.50), or (2.51) is
reflected.

Remark 3.2.1.

1. Bh ∈ ZMh
by construction.

2. The matrix pattern of Bh can be constructed via several objectives:

(a) Bh reflects the geometric FE-mesh, i.e., |bij | 6= 0 ⇔ (i, j) is an edge in
the FE-mesh.

(b) Bh has the same pattern as Kh, i.e., ‖kij‖ 6= 0⇔ |bij| 6= 0, where ‖ · ‖ is
an appropriate matrix norm.

Example 3.2.2. Let D(x) ∈ Rd×d (d = 1, 2, 3), the coefficient matrix of the varia-
tional form (2.48), (2.50), or (2.51) be SPD. Further let aij ∈ Rd be the geometric
vector that connects node i with node j for i 6= j, i.e., aij is a geometric edge in the
FE-mesh (see Fig. 3.1). Note, that ‖aij‖

2
D represents the length of aij with respect

to the ‖ · ‖D-norm. By defining bij = − 1
‖aij‖2

D

for i 6= j, Bh results in an appropriate

auxiliary matrix (see Example 3.2.3).

Example 3.2.3. Let us consider the variational form (2.48) with

D(x) =

(
1 0
0 ε

)
,

ε > 0 and a quadratic finite element with side length h = 1 (see Fig. 3.2) with bilinear
FE-functions.
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Figure 3.2: Quadratic finite element.

The element stiffness matrix Kr
h is given by

Kr
h =

1

ε
·




2 + 2 · ε2 1− 2 · ε2 −2 + ε2 −1− ε2

1− 2 · ε2 2 + 2 · ε2 −1− ε2 −2 + ε2

−2 + ε2 −1− ε2 2 + 2 · ε2 1− 2 · ε2

−1− ε2 −2 + ε2 1− 2 · ε2 2 + 2 · ε2



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and it can be seen that for ε � 1 positive off diagonal entries appear which may
cause difficulties in classical AMG methods. With an auxiliary matrix, presenting
the same non-zero pattern as the system matrix, the problem is better reflected. The
element matrix Br

h (using the method of Example 3.2.2) becomes

Br
h =

1

ε2 + ε
·




ε2 + ε+ 1 −ε2 − ε −ε− 1 −ε
−ε2 − ε ε2 + ε+ 1 −ε −ε− 1
−ε− 1 −ε ε2 + ε+ 1 −ε2 − ε
−ε −ε− 1 −ε2 − ε ε2 + ε+ 1


 .

Now, the FE-mesh and the operator anisotropy are represented in the auxiliary matrix
and a standard coarsening is appropriate.

Example 3.2.4. Let us consider a stiffness matrix arising from linear elasticity
(2.49), thus (Kh)ij = kij ∈ Rp×p (p = 2, 3). Then bij = −‖kij‖ for i 6= j is
an appropriate auxiliary matrix. In this particular case it is not possible to use the
material parameter D(x) of (2.49) in a straight forward way for the auxiliary matrix.

Example 3.2.5. The last example is related to the Maxwell equations (2.51) and an
edge element discretization. In this case the FE-mesh has to be represented by the
auxiliary matrix. Using the method of Example 3.2.2 and D(x) of Example 3.2.3 we
get the following element matrix

Br
h =

1

ε
·




ε+ 1 −ε −1 0
−ε ε+ 1 0 −1
−1 0 ε+ 1 −ε
0 −1 −ε ε+ 1


 .

The entries (Br
h)14, (Br

h)23, (Br
h)41 and (Br

h)32 are zero, i.e., there is no diagonal
edge in the virtual FE-mesh related to Fig. 3.2.

Remark 3.2.6.

1. We can think of Bh as related to elements, such that an element agglomeration
is performed (see [45]). This can be realized by defining a distance between two
elements, e.g. one over the geometric distance of the barycenter for elements
in a neighborhood (see Fig. 3.3).
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Figure 3.3: Element agglomeration technique.
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2. The geometric information is required on the finest grid only. By Galerkin’s
method we get a coarse auxiliary matrix if the transfer operators for the auxil-
iary matrix are defined properly.

3.2.2 Coarsening Process

The auxiliary matrix may look artificial but a closer look shows that Bh represents
a virtual FE-mesh in the following sense:

1. If a point j is ’far’ away from i, then the auxiliary matrix has a small negative
entry (Bh)ij .

2. On the other hand if a point j is ’close’ to i, then the auxiliary matrix has a
large negative entry (Bh)ij .

As it was mentioned above the matrix Bh ∈ ZMh
and therefore the coarsening process

for Bh is straight forward. Let us remind the necessary steps for a matrix Bh ∈ ZMh
.

We know that such a matrix represents a virtual FE-mesh ωh = (ωn
h , ω

e
h). Such a

virtual FE-mesh can be split into two disjoint sets of nodes, i.e.,

ωn
h = ωn

C ∪ ω
n
F , ω

n
C ∩ ω

n
F = ∅

with sets of coarse grid nodes ωn
C and fine grid nodes ωn

F . The splitting is usually
performed such that

1. No coarse grid nodes are connected directly.

2. The coarse grid nodes should be as many as possible.

Let us introduce the following sets:

N i
h = {j ∈ ωn

h : |bij | 6= 0 , i 6= j} ,

Si
h = {j ∈ N i

h : |bij| > coarse(Bh, i, j) , i 6= j} ,

Si,T
h = {j ∈ N i

h : i ∈ Sj} ,

where N i
h is the set of neighbors, Si

h denotes the set of ’strong connections’ and S i,T
h

is related to the set of nodes with a strong connection to node i, respectively. The
cut-off (coarsening) function is taken by, e.g.

coarse(Bh, i, j) =





θ ·
√
|bii||bjj | see [84]

θ ·maxl 6=i |bil| see [78]

θ see [57]

(3.1)

with an appropriate θ ∈ [0, 1] (see also Section 3.3). In addition, we define the local
sets

ωi
C = ωn

C ∩N
i
h , ωi

F = ωn
F ∩N

i
h

and

Ei
h = {(i, j) ∈ ωe

h : j ∈ N i
h} .
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Further we call (I i
h)MH

i=1 (|ωn
C | = MH < Mh) a ’disjoint’ splitting for the agglomeration

method if

Ii
h ∩ I

j
h = ∅,

MH⋃

i=1

Ii
h = ωn

h ,

is valid. If an appropriate prolongation P B
h for Bh is defined then a coarse auxiliary

matrix is computed by

BH = (PB
h )TBhP

B
h

and BH represents a virtual FE-mesh ωH = (ωn
H , ω

e
H), with ωn

H = ωn
C . It can be

shown that BH ∈ ZMH
if the prolongation operator PB

h fulfill certain criteria (see
[78]). In addition it is assumed that the degrees of freedom on the coarse grid are
numbered first. For instance the nodes are reordered like

ωn
h = (ωn

C , ω
n
F )

and as a consequence the system matrix can be written as

Kh =

(
KC KCF

KT
CF KF

)
.

Remark 3.2.7.

1. The auxiliary matrix Bh represents a virtual FE-mesh and therefore it can be
related to the degrees of freedom in the original matrix. Consequently it is very
important that the prolongation operators P B

h (see above), P sys
h and P ker

h (see
Section 2.4) are consistent, i.e.,

(a) if Lagrange FE-functions are used, then ‖kij‖ 6= 0 ⇔ |bij | 6= 0 for i 6= j
on all levels (see Section 4.1 and 4.2).

(b) if Nédélec FE-functions are used then bij, with i > j (or i < j), represents
an edge in a virtual FE-mesh (see Section 4.3).

2. If Kh ∈ ZNh
stems from a scalar problem then we can take Bh ≡ Kh which

results in a classical AMG method, e.g. [78] (small positive off-diagonal entries
of Kh are admissible).

3. If Kh stems from a scalar case and we construct a preconditioner Bh such that
γ1 · Bh ≤ Kh ≤ γ2 · Bh, 0 < γ1 ≤ γ2, based on the element stiffness matrices,
then the technique is equivalent to the element preconditioning technique (see
Chapter 5).

3.2.3 Prolongation Operators

In most AMG approaches the kernel of the underlying operator (see Section 2.3) is
disregarded, or it is only implicitly considered. Many AMG approaches preserve the
constant functions, which is closely related to the variational form (2.48). But this
prerequisite is not sufficient for (2.49), (2.50), or (2.51). It is of great importance for
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multigrid methods that the characteristics of the discretized operator are the same
on all levels, e.g. the kernel has to be preserved. Consequently, AMG-methods have
to meet this requirement too. The following theorem provides a necessary condition
for the prolongation operator.

Theorem 3.2.8. Let VH , Vh, QH , Qh, ΛH and Λh be defined as in Section 2.4.
Moreover, P sys

h : VH 7→ Vh and P ker
h : QH 7→ Qh are matrices with full rank. If the

equation

P sys
h ΛHqH

= ΛhP
ker
h q

H
∀q

H
∈ QH (3.2)

holds and additionally

∀q
h
∈ Qh ∃q

H
∈ QH : q

h
= P ker

h q
H

(3.3)

is fulfilled, then

V0H = ΛHQH

is valid.

Proof. The proof splits into two parts:

1. We show that ΛHQH ⊆ V0H . Let us take an arbitrary but fixed q
H
∈ QH and

recall the definition of V0H (2.54). Thus we get

P sys
h ΛHqH

= ΛhP
ker
h q

H
,

which is true because of (3.2). Consequently we obtain ΛHqH
∈ V0H .

2. We show that V0H ⊆ ΛHQH . We take a vH ∈ V0H and perform the following
calculation

P sys
h vH = Λhqh

= ΛhP
ker
h q

H
= P sys

h ΛHqH
.

Because P sys
h is assumed to have full rank we conclude that vH = ΛHqH , which

is the desired result.

Finally we want to mention that for a given splitting ω = ωC ∪ ωF the optimal
prolongation operator is given by the Schur-complement approach, i.e.,

KH = KC −KFCK
−1
F KCF = P̃ T

h KhP̃h

with

P̃h = (IH ,−KCFK
−1
F )T .

The prolongation operator P̃h can hardly be realized in practice since −KCFK
−1
F

involves the inverse ofKF , which in turn implies a global transport of information. In
addition the coarse grid operator KH becomes dense. The goal of an AMG method
is to approximate P̃h by some prolongation operator Ph which acts only locally and
therewith produces a sparse coarse grid matrix.
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3.2.4 Smoother and Coarse Grid Operator

Smoothing Operator: An essential point in MG methods is the smoothing oper-
ator Sh ∈ RNh×Nh which reduces the high frequency error components. Typically,
a particular smoother works for certain classes of matrices. It can easily be shown
that the smoother is closely related to the underlying system matrix. It is shown
in [11] that a point Gauss-Seidel or point Jacobi smoother are appropriate for FE-
discretizations with Lagrange FE-functions for scalar elliptic PDEs of second order.
Analogously, the block Gauss-Seidel and block Jacobi smoother hold for the block
counterpart, e.g. for moderate linear elasticity problems. A patch smoother is dis-
cussed in [58] and other smoothers are represented by the incomplete Cholesky,
conjugate gradient, and related methods. A general and more rigorous discussion is
given in Section 3.4.

Coarse Grid Operator: Subsequently the superscript ’sys’ is suppressed. The
coarse grid operator KH is usually constructed by Galerkin’s method , i.e.,

KH = P T
h KhPh . (3.4)

This can be motivated in two ways. We note that the coarse grid correction is given
by

uh ← uh + PhK
−1
H P T

h (f
h
−Khuh) . (3.5)

Let eh = uh− u
∗
h be the error vector with u∗h being the exact solution of (2.53) then

(3.5) can be rewritten as

eh ← Theh with Th = Ih − PhK
−1
H P T

h Kh , (3.6)

where Th is called the two grid correction operator .

1. The task of the correction step is roughly to eliminate the error in im(Ph).
Thus if eh = PhvH for some vH ∈ VH it is desirable that

Theh = ThPhvH = (Ih − PhK
−1
H P T

h Kh)PhvH = 0 ,

or, since Ph has full rank, that (3.4) is valid. Note, that with this setting Th

becomes a projection (see Section 3.4).

2. Equation (3.4) can also be derived by considering the variational principle on

‖eh − PhvH‖Kh
7→ min .

Again we find that the restriction operator has to be defined by Rh = P T
h and

the coarse grid operator should fulfill (3.4). This is possible if the underlying
system matrix Kh is SPD (see Corollary 3.4.1).

The consequences of Galerkin’s method are well known. Because we are considering
SPD problems and prolongation operators with full rank the coarse grid operator is
again SPD.
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3.3 Routines and Algorithms

For the implementation of AMG-methods a concept is necessary which is general
and flexible with respect to the following items:

1. sequential and parallel versions,

2. coarsening strategies,

3. prolongation operators,

4. smoothing operators.

We will see later (Chapter 4) that for all particular AMG-methods only a small
amount of implementational work has to be done, since the general coarsening algo-
rithm is the same for all problems. In addition this approach saves time during the
development and keeps the AMG-code as compact as possible. The routine

({N i
h}, {S

i,T
h })← GetStrong(Bh) ,

provides the local sets {N i
h} and {Si,T

h } of neighbors and strong connections for
all i ∈ ωn

h with an appropriate cut-off function, e.g. (3.1). A coarsening, i.e., a
splitting in coarse and fine grid nodes, can be calculated with methods described in
[9, 25, 57, 78, 84]. The corresponding general routine is

(ωn
C , ω

n
F )← Coarse({Si,T }, ωn

h) ,

which is depicted in Alg. 3. Therein the function

i← Pick(ωn
` \ (ωn

C ∪ ω
n
F ))

returns a node i where the number |S i,T
h |+ |S

i,T
h ∩ω

n
F | is maximal. The prolongation

Algorithm 3 Coarsening phase Coarse({S i,T
h }, ω

n
h)

ωn
C ← ∅, ωn

F ← ∅

while ωn
C ∪ ω

n
F 6= ωn

h do

i← Pick(ωn
h \ (ωn

C ∪ ω
n
F ))

if |Si,T
h |+ |S

i,T
h ∩ ωn

F | = 0 then

ωn
F ← ωn

h \ ω
n
C

else

ωn
C ← ωn

C ∪ {i}

ωn
F ← ωn

F ∪ (Si,T
h \ ωn

C)
end if

end while

operator is computed for the system and the auxiliary problem by the routines called

P sys
h ←Weights({Si,T

h },Kh, ω
n
C , ω

n
F ) and PB

h ←Weights({Si,T
h }, Bh, ω

n
C , ω

n
F ) .
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We refer to [9, 57, 78, 87] and to Chapter 4 for particular transfer operators and their
implementations. The coarse grid matrices KH and BH are defined by the Galerkin
method (3.4). The according routines are denoted by

KH ← Galerkin(Kh, P
sys
h ) and BH ← Galerkin(Bh, P

B
h ) .

Finally a pre- and post-smoothing operator is required for a MG-cycle. In spite of
the fact that for standard point relaxation methods no preliminary work has to be
done, there is some work for the block-variants. The routine is given by

Sh ← SMOOTH(Kh, {S
i,T
h }) .

With the functions defined we are able to assemble the Setup Algorithm 4. Therein
the parameter CoarseGrid is an appropriately chosen coarse-grid size for which a
direct solver is applicable. The variable CoarseLevel stores the number of levels
generated by the coarsening process until the size of the system is smaller than
CoarseGrid. Initially, the setup function Setup(K,B, ω, `) is called for ` = 1 with
the system matrix Kh, the auxiliary matrix Bh and the set ωn

h . For an illustration

Algorithm 4 Sequential Setup Setup(K,B, ω, `)

if |ω| > CoarseGrid then

K` ← K, B` ← B , ω` ← ω
({Si,T

` }, {N
i
`})← GetStrong(B`)

(ωC , ωF )← Coarse({Si,T
` }, ω`)

Sh ← Smooth(K`, {S
i,T
` })

PB
` ←Weights(

{
Si,T

`

}
, B`, ωC , ωF )

B`+1 ← 0
B`+1 ← Galerkin(B`, P

B
` )

P sys
` ←Weights(

{
Si,T

`

}
,K`, ωC , ωF )

K`+1 ← 0
K`+1 ← Galerkin(K`, P

sys
` )

ω`+1 ← ωC

Setup(K`+1, B`+1, ω`+1, `+ 1)
else

CoarseLevel← `
L`L`T ←Factorization(K`)

end if

of the two grid method see Fig. 3.4.

Remark 3.3.1. In contrast to the geometric MG method, the levels in the AMG
matrix hierarchy are numbered in the opposite direction. Hence the finest level is
related to ` = 1 and the coarsest level is given by ` = CoarseLevel.

After a successful setup a MG-cycle can be performed as usual (e.g. see [39]).
For instance in Alg. 5 a V (νF , νB)-cycle with variable pre- and post-smoothing steps
is depicted.
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Figure 3.4: Illustration of the general AMG setup.

Algorithm 5 Sequential V-cycle MGStep(K,u, f , `)

K` ← K, f
`
← f , u` ← u

if ` == CoarseLevel then

u` ← CoarseGridSolver (L`L
T
` , f `

)
Return

else

d` ← 0, w`+1 ← 0
u` ← SνF

` (u`, f `
)

d` ← f
`
−K`u`

d`+1 ← (P sys
` )Td`

MGStep(K`+1, w`+1, d`+1, `+ 1)
w` ← P sys

` w`+1

u` ← u` +w`

u` ← SνB

` (u`, f `
)

end if
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3.4 Convergence Theory and Limitations

In the following section we give a brief overview on the convergence theory of AMG
methods and their limitation. Since our general approach is mainly concerned with
the prolongation operator and the smoother the subsequent theory proposed by J.
Ruge and K. Stüben in [78] can be applied. Thus the main results are recalled.
Until now it is not clear whether there exists a satisfying proof for the V-cycle or
not. Before we discuss this in detail we present the preliminaries for the convergence
theory. Let us consider the following problem setting of an AMG method.

1. The system matrix Kh stems from an FE-, or FD-discretization of an elliptic
self-adjoint linear PDE, i.e., Kh is SPD.

2. The transfer operators Ph are assumed to have full rank.

In literature many different AMG approaches are discussed for this task e.g. [9, 14,
57, 78, 84, 87]. All these methods can be seen in one of the 3 items. In addition
we have to mention that these AMG techniques are well suited for H 1(Ω)-elliptic
problems and some of them also for (H1(Ω))p-elliptic problems. Besides, R. Beck
proposed in [6] a preconditioner for H(curl,Ω)-elliptic problems.

1. The AMG techniques in [78, 14, 87] fix a point relaxation method (e.g. Gauss-
Seidel smoother) and construct the best possible prolongation operator in or-
der to reduce both error components effectively. In this case the so called
algebraically smooth error is introduced, which is the error that can not be
efficiently reduced by the smoother.

2. A completely different approach to AMG is to use a simple prolongation and
improve the convergence rate by a patch smoother [58] or by scaling the residual
[9].

3. A method related to both approaches is to use a standard Gauss-Seidel smoother
and to construct a tentative prolongation operator. In a second step the pro-
longation operator is improved by some smoothing steps [84].

Our attempt is to use an appropriate smoother and prolongation operator for an
AMG method such that the convergence rate is as good as possible and the appli-
cation of the AMG method is still cheap. It gets quite clear that a universal AMG
method can not be constructed, but necessary conditions for classes of problems can
be analyzed and also realized in algorithms (see Chapter 4).

Before we propose special AMG methods for different classes of matrices we pre-
pare some general theory. Most of the theory can be found in [67] by S. McCormick
and in [78, 82, 83] by J.W. Ruge and K. Stüben. For the rest of this thesis we
assume to work with FE-discretization and we recall the definition of the coarse grid
correction operator

Th = Ih − PhK
−1
H P T

h Kh .

Further, we use the inner products and corresponding norms

(uh, vh)1 = (Khuh, vh) and (uh, vh)2 = (Khuh,Khvh) ,
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where the diagonal entries of the system matrix Kh are assumed to be equal to one
throughout this section. In addition the superscript ’sys’ is suppressed.

Corollary 3.4.1. Let Kh be SPD and a full rank prolongation Ph be given. Then
the coarse grid correction operator Th is an orthogonal projector with respect to the
energy inner product, which in particular results in:

1. (Thvh, PhuH)1 = 0 for all vh ∈ Vh and for all uH ∈ VH .

2. For all uh ∈ im(Th) and vh ∈ im(Ph) we have ‖uh + vh‖
2
1 = ‖uh‖

2
1 + ‖vh‖

2
1.

3. The energy operator norm is equal one, i.e., ‖Th‖1 = 1.

4. For all eh we have ‖Theh‖1 = mineH
‖eh − PheH‖1.

Proof. The proof can be found in [82].

Item 4. of the corollary expresses the variational principle (see Subsection 3.2.4),
i.e., Galerkin based coarse grid correction minimizes the energy norm of the error
with respect to all variations in im(Ph). Further we pinpoint that

Vh = im(Ph)⊕ ker(P T
h ) ,

since Ph has full rank and Vh has finite dimension. In addition we notice the useful
relations

im(Ph) ≡ (kerP T
h )⊥ and ker(P T

h ) ≡ ker((Ih − Th)K−1
h ) ,

and as a consequence

1. the error components in ker(P T
h ) have to be efficiently reduced by the smoother

and

2. the error components in im(Ph) have to be treated by the coarse grid correction.

This already implies two important consequences.

1. The coarse grid correction terms are in im(Ph) and such error components are
orthogonal to ker(P T

h ). Consequently, the coarse grid correction term does not
influence relaxation.

2. On the other hand high frequency error components are amplified by the coarse
grid correction. This can be seen as follows: Let en

h be the error in the nth

iteration and in addition assume that enh = en
R + en

S, with enR ∈ ker(P T
h ) and

en
S ∈ im(Ph). The new iterate en+1

h is given by

en+1
h = (Ih − PhK

−1
H P T

h Kh)(en
R + en

S) .

Because of enS = PhvH for some vH ∈ VH and the Galerkin method, we are
faced with

en+1
h = (Ih − PhK

−1
H P T

h Kh)en
R ,

which means that if the high frequency component enR is made sufficiently small
by the smoother, then these components are magnified by a factor bounded by

max ‖PhK
−1
H P T

h Khzh‖ ∀zh ∈ ker(P T
h ), ‖zh‖ = 1 .
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Up to now, we were not considering the convergence and the convergence rate of
an AMG method. To get some insight we follow [78] and prepare the main results.
At the end we give some comments and useful consequences. First of all we give a
general result on a quantitative estimate of the V-cycle convergence rate.

Theorem 3.4.2. Let Kh be SPD and assume the prolongation operator Ph to have
full rank. Further suppose for all eh ∈ Vh

‖Sheh‖
2
1 ≤ ‖eh‖

2
1 − δ1 · ‖Theh‖

2
1 (3.7)

‖Sheh‖
2
1 ≤ ‖eh‖

2
1 − δ2 · ‖ThSheh‖

2
1 (3.8)

hold for some δ1, δ2 > 0 independent of eh and h (where h denotes the discretization
parameter of the considered level). Then the following is valid.

1. If at least one smoothing step is performed after each coarse grid correction
step, then δ1 < 1 and the V-cycle convergence factor is bounded from above by√

(1− δ1).

2. If at least one smoothing step is performed before each coarse grid correction
step, then the V-cycle convergence factor is bounded from above by

√
1/(1 + δ2).

3. If at least one smoothing step is performed before and after each coarse grid
correction step, then δ1 < 1 and the V-cycle convergence factor is bounded from
above by

√
(1− δ1)/(1 + δ2).

Proof. The proof can be found in [78].

Theorem 3.4.3. Let δ1 = α1
β1

and δ2 = α2
β2

. Then the conditions

‖Sheh‖
2
1 ≤ ‖eh‖

2
1 − α1 · ‖eh‖

2
2 (3.9)

‖Theh‖
2
1 ≤ β1 · ‖eh‖

2
2 (3.10)

imply (3.7). In a similar way the conditions

‖Sheh‖
2
1 ≤ ‖eh‖

2
1 − α2 · ‖Sheh‖

2
2 (3.11)

‖Theh‖
2
1 ≤ β2 · ‖eh‖

2
2 (3.12)

imply (3.8).

Proof. The proof can be found in [78].

Remark 3.4.4.

1. The two separated inequalities for Sh and Th are called smoothing property and
approximation property .

2. We say that the relaxation operator Sh satisfies the smoothing property with
respect to a matrix Kh being SPD if

‖Sheh‖
2
1 ≤ ‖eh‖

2
1 − σ · ‖eh‖

2
2

holds for some σ > 0 independent of eh. This implies that Sh is efficient in
reducing the error eh as long as ‖eh‖2 is relatively large compared to ‖eh‖1.
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3. The approximation property can hardly be used because of the unhandy char-
acterization of a prolongation operator. Theorem 3.4.5 gives a more practical
characterization.

Theorem 3.4.5. Let Kh ∈ RNh×Nh be SPD and Sh satisfies the smoothing property.
Further suppose the prolongation operator Ph has full rank and for every eh ∈ Vh

min
eH

‖eh − PheH‖
2
0 ≤ β · ‖eh‖

2
1 (3.13)

holds for some β > 0 independent of eh. Then β > α1 and the two level convergence
factor satisfies

‖ShTh‖1 ≤

√
1−

α1

β
.

Proof. The proof can be found in [78].

Unfortunately, we can not prove a level independent V-cycle convergence with Theo-
rem 3.4.5. Clearly this dependency could be overcome by a W-, or F-cycle but these
cycles suffer from the high costs of an application. The problem we are faced with
is the lack of the approximation property. A better prolongation operator could be
constructed by the following lemma. Unfortunately in this case the prolongation
operator can hardly be realized with pure algebraic information.

Lemma 3.4.6. If

‖Theh‖
2
1 ≤ β · ‖eh‖

2
2

holds, then we also have

min
eH

‖eh − PheH‖
2
0 ≤ β

2 · ‖eh‖
2
2 .

Proof. The proof can be found in [78].

Equation (3.13) is a necessary condition for the approximation property. This con-
dition implies a useful property for the prolongation operator to be constructed.
Suppose Kh has a non-trivial kernel V0h. Then the whole theory is valid if the it-
eration is performed orthogonal to the kernel, i.e., in the space V ⊥

0h. Consequently,
equation (3.13) must be exact on the kernel, i.e., the prolongation operator has to
preserve the nullspace. Let us suppose a prolongation operator of the form

Ph = P opt
h − P ε

h .

The first part of Ph is an optimal prolongation operator P opt
h : V ⊥

0H 7→ V ⊥
0h, which is

exact on the kernel. The second part is some perturbation of the null operator, i.e.,
P ε

h : VH 7→ Vh. In general Ph does not preserve the kernel of Kh. Consequently we
get

min
eH

‖eh − PheH‖
2
0 = min

eH

‖eh − (P opt
h − P ε

h)eH‖
2
0 ≤ β · ‖eh‖

2
1 = 0 ,

and thus P ε
h ≡ 0 must hold. On the other hand the coarse grid operator KH has to

have the same properties as the fine grid operator Kh. For instance the kernel has
to be preserved. This is already depicted in Theorem 3.2.8.
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Chapter 4

Special Algebraic Multigrid
Methods

4.1 Symmetric H1(Ω)-based Equations

In this subsection we discuss a problem setting arising from an FE-discretization
of a second order elliptic self-adjoint scalar PDE. An FE-discretization with linear
Lagrange FE-functions of the variational form (2.48) is taken as a representative.
Actually the main results carry over to more general H 1(Ω)-elliptic equations (e.g.
[82]).

Construction of ’virtual’ FE-meshes: First of all we mention that the clas-
sical AMG methods fit perfectly into our scheme by defining the auxiliary matrix

Bh ≡ Kh .

In the case of Kh ∈ ZNh
, i.e., Kh is an M-matrix, the classical AMG methods result

in a robust and efficient solver. However, it can easily be seen that the drawback of
the M-matrix property might result in a ’bad’ splitting (coarsening).

Example 4.1.1. Let us consider (2.48) with linear Lagrange FE-functions on a
rectangle (see Fig. 4.1). Then node 1 is strongly connected to nodes 3 and 4. From

P
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ts1234
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Figure 4.1: (a) Standard coarsening using the system matrix. (b) Standard coars-
ening using the auxiliary matrix.

geometric MG we know that this is ’wrong’ in the sense that node 1 should only be
strongly connected to node 3.

41
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To overcome this problem we suggest to construct an auxiliary matrix Bh as
depicted in Example 3.2.2. In this way the matrix pattern of Kh and Bh are the
same, i.e.,

|(Kh)ij | 6= 0⇔ |(Bh)ij | 6= 0 .

Since the ith-row of Kh has only entries which stem from neighboring FE-functions,
the construction for Bh is valid. By considering the same coarsening strategy for Bh

as in the example above, we obtain that only 3 is strongly connected to 1, which is
the correct coarsening (see Fig. 4.1). Note, in order to construct such an auxiliary
matrix we need access to the coordinates on the finest grid, which should be avail-
able in all FE-codes. Another possibility to construct an auxiliary matrix Bh is the
element preconditioning method discussed in Chapter 5.

Construction of coarse FE-spaces: In Subsection 3.2.3 we discussed the best
possible prolongation operator, which is not realizable. In spite of this fact we can
approximate it by local calculations. The simplest prolongation operator is given by
the piecewise constant interpolation (e.g. see [9]). A better one is discussed in [57],
which is given by

(P sys
h )ij =





1 i = j ∈ ωn
C

1

|Si,
h
∩ωn

C
|

i ∈ ωn
F , j ∈ S

i,T
h ∩ ωn

C

0 else .

(4.1)

For instance, Ruge and Stüben proposed in [78] the discrete harmonic extension for
a prolongation operator. This prolongation operator is the best of those proposed
for many applications and it reads as

(P sys
h )ij =





1 i = j ∈ ωn
C

−
kij+cij

kii+cii
i ∈ ωn

F , j ∈ ω
i
C

0 else

(4.2)

with

cij =
∑

p∈ωi
F

kip · kpj∑
q∈ωi

C
kpq + kpi

.

As it was mentioned in Subsection 3.2.3 we have to show that the proposed prolon-
gation operators verifies the preliminaries of Theorem 3.2.8.

Corollary 4.1.2. Let us consider the scalar variational problem (2.48) and further
assume the prolongation operators P sys

h , P ker
h and PB

h to be equal, i.e., P sys
h ≡ P ker

h ≡
PB

h = Ph ∈ RNh×NH , with full rank and Ph satisfies

NH∑

j=1

(Ph)ij = 1 ∀i = 1, . . . , Nh . (4.3)

Then the preliminaries of Theorem 3.2.8 are valid. The piecewise constant prolon-
gation operator, and the operators given in (4.1) and (4.2) fulfill the requirements
above.
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Proof. Since Λh = Idh, ΛH = IdH and the prolongation operators P sys
h , P ker

h and
PB

h are equal with full rank, the first condition of Theorem 3.2.8 is valid. The second
condition (3.3) is true because of

Qh = span{1h} and QH = span{1H}

with 1h = (1, . . . , 1)T ∈ RNh , and (4.3).

Smoothing operator: For the smoothing operator we usually use a point
Gauss-Seidel method, e.g. [11], or a patch Gauss-Seidel method, e.g. [58]. The
latter one is taken for (strong) anisotropic problems.

4.2 Symmetric (H1(Ω))p-based Equations

(H1(Ω))p-elliptic equations are more delicate because of the block structure of the
PDEs. Such problems arise from an FE-discretization of the bilinear forms (2.49) or
(2.50), which are taken as representatives for this subsection. The main problem in
the construction of an AMG method for such PDEs is the kernel of the underlying
operator. For instance in the linear elasticity case (2.49) we are concerned with the
rigid body modes, that form a six dimensional subspace. Even more difficult is the
linear magnetic case (2.50) where we are faced with a kernel containing the harmonic
functions, i.e., the kernel is an infinite dimensional subspace.

Construction of ’virtual’ FE-meshes: The definition of the auxiliary matrix
Bh plays an important role for this problem class. The classical approach uses

(Bh)ij = −‖kij‖ for i 6= j

with an appropriate matrix norm ‖ · ‖, e.g. ‖ · ‖ = ‖ · ‖∞. But with this setting we
get less information on the underlying operator and FE-mesh and this might cause
problems similar to the scalar case. Instead we can define an auxiliary matrix in the
same way as for the scalar case. Now the degrees of freedom per node of the system
matrix have to be related to an entry in the auxiliary matrix, which in turn implies
that the matrix pattern of Kh and Bh has to be equal, i.e.,

‖(Kh)ij‖ 6= 0⇔ |(Bh)ij | 6= 0 .

Construction of coarse FE-spaces: The prolongation operators of the system
matrix are defined in the same way as for the scalar problem. Thus the simplest one
is given by interpolating all components piecewise constant. An improved version
reads as (analoguely to prolongation (4.1))

(P sys
h )ij =





Ip i = j ∈ ωn
C

1

|Si,T

h
∩ωn

C
|
· Ip i ∈ ωn

F , j ∈ S
i,T
h ∩ ωn

C

0 else .

(4.4)



44 CHAPTER 4. SPECIAL ALGEBRAIC MULTIGRID METHODS

The AMG method shows a better convergence behavior with the subsequent discrete
harmonic extension (in analog to prolongation (4.2)) compared to (4.4), i.e.,

(P sys
h )ij =





Ip i = j ∈ ωn
C

−k−1
ii

(
kij + cij

)
i ∈ ωn

F , j ∈ ω
i
C

0 else

(4.5)

with

cij =
∑

p∈ωi
F

( ∑

q∈ωi
C

kpq

)−1
kipkpj .

Note, the entries of the prolongation operators are matrix valued, e.g. (P sys
h )ij ∈

Rp×p, as the entries of the system matrix Kh. We assume the prolongation opera-
tors P sys

h and P ker
h to be equal, i.e., P sys

h ≡ P ker
h = Ph ∈ RNh×NH and the suggested

prolongation operator for the auxiliary problem P B
h ∈ RMh×MH . In order to get

the same matrix pattern for the system matrix and the auxiliary matrix we choose
a piecewise constant prolongation operator for both, or the combination (4.4) and
(4.1), or (4.5) and (4.2) for the prolongation operators P sys

h and PB
h , respectively.

The preliminaries for Theorem 3.2.8 can neither be shown for linear elasticity nor
for linear magnetics.

Smoothing operator: Similar to the scalar equations we use a block Gauss-
Seidel method as smoothing operator, e.g. [11], or a patch-block Gauss-Seidel
method, e.g. [58]. Again, the latter one is taken for anisotropic problems.

4.3 Symmetric H(curl, Ω)-based Equations

The third class originates from an FE-discretization with Nédélec FE-functions of
the variational form (2.51). As it was depicted in Section 2.3 the kernel is given by
the gradient fields, i.e., it is infinite dimensional.

Construction of ’virtual’ FE-meshes: It was motivated by R. Hiptmair in
[42] for geometric MG methods that for such class of problems a refinement of the FE-
mesh can be performed on the nodes of an FE-mesh as it is usually done for Lagrange
FE-functions. We use this fact and base our coarsening on an auxiliary matrix Bh

which is constructed for instance by the method discussed in Example 3.2.2 for
general FE-meshes or from an FE-discretization of (2.48) on a tetrahedra FE-mesh.
Let us recall that an FE-mesh is represented by

ωh = (ωn
h , ω

e
h) ,

i.e., the set of nodes ωn
h and the set of edges ωe

h (see Subsection 3.2.1) and a coarsening
is performed as usual (see Subsection 3.2.2). The coarse grid is defined by identifying
each coarse grid node j ∈ ωn

C with an index k ∈ ωn
H . This is expressed by the index

map ind(.) as

ωn
H = ind(ωn

C) .
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A ’useful’ set of coarse grid edges ωe
H can be constructed if we invest in a special

prolongation operator PB
h ≡ P ker

h : QH 7→ Qh for the auxiliary matrix Bh. The
prolongation operator PB

h is constructed such that each fine grid variable prolongates
exactly from one coarse grid variable. We extend the index map ind : ωn

C 7→ ωn
H

defined above onto the whole fine set ωn
h by assigning the coarse grid index of the

representative of the cluster

ind : ωn
h → ωn

H .

A consequence is that ind(i) = ind(j) iff i, j ∈ ωn
h prolongate from the same coarse

grid variable. We define an agglomerate (cluster) I i
h of a grid point i ∈ ωn

h (see
Fig. 4.2 and Subsection 3.2.2) by

Ii
h = {j ∈ ωn

h | ind(j) = ind(i)} ⊂ N i
h

and hence the set of coarse grid nodes can be written as

ωn
H = {ind(i) | i ∈ ωn

h} .

The prolongation operator PB
h has only 0 and 1 entries by construction, i.e.,

(PB
h )ij = pn

ij =

{
1 i ∈ ωn

h , j = ind(i)

0 otherwise .
(4.6)

The coarse grid matrix BH is calculated by Galerkin’s method (3.4), which is equiv-
alent to the formula

(BH)kl =
∑

i∈I k̃
h

∑

j∈I l̃
h

pn
ik · (Bh)ij · p

n
il (4.7)

with k = ind(k̃), l = ind(l̃), and k̃, l̃ ∈ ωn
H . BH has useful properties, which originate

in the prolongation operator defined in (4.6). This is the content of the next lemma.

Lemma 4.3.1. Let k̃, l̃ ∈ ωn
C, k̃ 6= l̃ and k = ind(k̃) ∈ ωn

H , l = ind(l̃) ∈ ωn
H .

Furthermore, Bh stems from an FE-discretization of (2.48) with linear nodal FE-

functions and PB
h is defined by (4.6). BH = (PB

h )TBhP
B
h . If for all i ∈ I k̃

h and for

all j ∈ I l̃
h

(Bh)ij = 0

then

(BH)kl = 0 .

Proof. The proof follows immediately by using (4.7).

Remark 4.3.2.

1. The essence of Lemma 4.3.1 is, that a coarse grid edge only exists if there is
at least one fine edge connecting the agglomerates I i

h and Ij
h (i 6= j), i.e.,

∃r ∈ I i
h,∃s ∈ I

j
h such that (r, s) ∈ ωe

h

(see Fig. 4.2).
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Figure 4.2: ’Virtual’ FE-mesh with a feasible agglomeration.

2. A decrease of the number of edges in the coarsening process is not proofed in
general, but a decrease is heuristically given, if the average number of nonzero
entries of Bh does not grow too fast.

Construction of coarse FE-spaces: The construction of the prolongation
operator P sys

h : VH 7→ Vh, is delicate because of the kernel of the curl-operator. P sys
h

is defined for i = (i1, i2) ∈ ω
e
h, j = (j1, j2) ∈ ω

e
H as

(P sys
h )ij =





1 if j = (ind(i1), ind(i2)),
−1 if j = (ind(i2), ind(i1)),
0 otherwise ,

(4.8)

by assuming a positive orientation of an edge j = (j1, j2) from j1 to j2 if j1 < j2
holds. The constructed prolongation operator P sys

h has full rank, because the coarse
grid edges prolongate to NH distinct fine grid edges by construction.

Next we note that the operator gradh : Qh 7→ Vh defined in (2.59) has the
representation (with i = (i1, i2) ∈ ω

e
h and q

h
∈ Qh)

(gradh qh
)i = qh,i2 − qh,i1 . (4.9)

This can be seen by evaluating (2.59) for a q
h
∈ Qh and using the fact that Qh is a

piecewise linear FE-space and the degree of freedom of the edge element discretization
is the path integral on the edge (i1, i2). In analogy, we define gradH : QH 7→ VH

on the coarse level. Since we use a Galerkin approach, the coarse grid kernel V0H

defined in (2.54) is a subspace of the fine grid kernel V0h given by (2.58). The crux is
that P sys

h prolongates discrete gradients of the coarse space to discrete gradients of
the fine space, which is generally shown in Theorem 3.2.8. The following two lemmas
provide the preliminaries for that theorem.
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Lemma 4.3.3. For q
H
∈ QH there holds

P sys
h gradH q

H
= gradh P

B
h qH

. (4.10)

This means, the commuting diagram

QH
gradH−→ VHyPB

h

yP sys
h

Qh
gradh−→ Vh

is valid.

Proof. We consider the edge i = (i1, i2) ∈ ωe
h. We have to distinguish two cases.

First, let us assume the edge is inside one agglomerate, i.e., ind(i1) = ind(i2). Then
both sides of (4.10) vanish. The left hand side vanishes by definition of the prolon-
gation operator P sys

h , the right hand side vanishes since (P B
h qH

)i1 = (PB
h qH

)i2 .
Now, we assume that ind(i1) 6= ind(i2). Thus, there exists a coarse grid edge

j = (j1, j2) such that either j1 = ind(i1), j2 = ind(i2) or j1 = ind(i2), j2 = ind(i1).
In both cases there holds (gradH q

H
)j = ±(qH,j1 − qH,j2). The sign in the prolon-

gation compensates, such that (P sys
h gradH q

H
)i = qH,ind(i1) − qH,ind(i2). Evaluating

(gradh P
B
h qH

)i gives the same result.

Lemma 4.3.4. For every q
h
∈ Qh there exists a q

H
∈ QH such that

q
h

= PB
h qH

.

Proof. Let vH ∈ V0H . Since the kernels are nested we get that

vh = PB
h vH ∈ V0h

and thus there exists a q
h
∈ Qh such that

vh = gradh qh
.

By the definition of P sys
h the values inside an agglomerate vanish, i.e., (vh)i = 0 for

i = (i1, i2) and ind(i1) = ind(i2). Because

(vh)i = qh,i1 − qh,i2

the potential q
h

is constant inside an agglomerate. Thus there exists a q
H
∈ QH

such that q
h

= PB
h qH

, that concludes the proof.

Corollary 4.3.5. Under the preliminaries of Theorem 3.2.8

V0H = gradH QH ,

holds.

Proof. The proof follows immediately by combining Lemma 4.3.3 and 4.3.4.
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Figure 4.3: Detail view of a virtual FE-mesh.

Smoothing operator: To complete the ingredients for an AMG method for
edge element FE-discretizations, we need an appropriate smoother. We consider
two different types of smoothers for Kh. The first one was suggested by D. Arnold,
R. Falk and R. Winther in [3]. This is a block Gauss-Seidel smoother where all edges
are smoothed simultaneously which belong to E i

h for all i ∈ ωn
h (see Fig. 4.3).

Another kind of smoother was suggested by R. Hiptmair in [42]. A mathematical
equivalent formulation is outlined in Alg. 6. Therein the vector ge,i

h ∈ Vh is defined

Algorithm 6 Hybrid smoother of Hiptmair: Smooth(Kh,f
h
,uh)

uh ← GaussSeidel(Kh, fh
, uh)

for all i ∈ ωn
h do

uh ← uh +
((f

h
−Khuh),ge,i

h )
(Khge,i

h
,ge,i

h )
· ge,i

h

end for

by

ge,i
h

= gradh g
n,i
h

=





1 j < i (i, j) ∈ Ei
h

−1 j > i (i, j) ∈ Ei
h

0 otherwise

with a vector gn,i
h ∈ Qh, (gn,i

h )j = δij .



Chapter 5

Element Preconditioning
Technique

5.1 Motivation

It is well known that the AMG method of J. W. Ruge and K. Stüben [78] is robust
and efficient for M-matrices and ’small perturbations’ of that class (i.e., small positive
off-diagonal entries are admissible). For many applications in science and engineering
the M-matrix property is not given, e.g. in anisotropic problems or by using higher
order FE-functions. To overcome this remedy we can use the element preconditioning
method, which can be embedded in the general approach of Chapter 3. This can be
seen in the following way. Let us assume that Kh is SPD and that Kh has no M-
matrix property. Further, let Bh be an M-matrix that is spectrally equivalent to
Kh. Bh can be seen as an auxiliary problem which represents the grid but could
also be taken as a preconditioner for Kh. Furthermore, the classical AMG applied
to Bh (which is robust and efficient) turns out to be a good preconditioner for Kh

if Bh is close to Kh in the spectral sense. Consequently, the aim is to construct
an SPD M-matrix Bh, that has a small condition number with respect to Kh, i.e.,
κ(B−1

h Kh) is small. It might be clear that the construction of a spectrally equivalent
M-matrix Bh out of Kh is numerically too expensive. The element preconditioning
technique is able to construct Bh based on the element matrices of Kh, which are
usually available in FE-codes before the assembling process.

Subsequently, we present the theoretical background and propose an algorithm
which can be used in any FE-code. The original works are given in [71, 73, 38] and
applications can be found in [52, 53, 56].

5.2 Basic Concept

To cope with the kernel in the generalized eigenvalue problem and with the classifi-
cation of element matrices introduced later, we need some well-known results from
linear algebra which are summarized in the following lemma.

49
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Lemma 5.2.1. Let A ∈ Rn×n be SPSD, rank(A) = n−m, n > m and

A =

(
A11 A12

A21 A22

)
= Q−1 ·

(
A11 0
0 0

)
·Q−T , (5.1)

where A11 ∈ R(n−m)×(n−m), A12 = AT
21 ∈ R(n−m)×m and A22 ∈ Rm×m. Further,

QT ∈ Rn×n is a matrix of the form

QT =

(
In−m φ1

0 φ2

)
with φ =

(
φ1

φ2

)
∈ Rn×m

a basis of ker(A). Then for every SPSD matrix B ∈ Rn×n with ker(B) = ker(A) the
generalized eigenvalue problem

Au = λBu

can be written as

A11v1 = λB11v1, v2 = 0

with the notation
(
v1

v2

)
= Q−Tu

and regular sub-matrices A11, B11.

Proof. The proof of these elementary results is left to the reader.

In order to get a robust AMG method we propose a technique to produce a spectrally
equivalent M-matrix Bh from the stiffness matrix Kh. This is important because if
the non-negative values in the stiffness matrix Kh get too large, then AMG will lose
robustness and efficiency. For instance, the M-matrix property of Kh can be lost if
higher order (e.g. quadratic) FE-functions are used, or if long thin rectangles or flat
prisms are taken for an FE-discretization. One method to get a spectrally equivalent
M-matrix is to exploit information from the element stiffness matrices. A part of
the following lemma can be found already in [5].

Lemma 5.2.2. Let the stiffness matrix Kh ∈ RNh×Nh be SPD, and Kh be assembled
from SPSD element matrices K (r) ∈ Rnr×nr , r ∈ τh, i.e., Kh can be represented in
the form

Kh =
∑

r∈τh

AT
r K

(r)Ar ,

where τh denotes the index set of all finite elements, and Ar ∈ Rnr×Nh are the
element connectivity matrices. Further let us suppose that, for all r ∈ τh, there are
SPSD matrices B(r) ∈ Znr such that the spectral equivalence inequalities

c
(r)
1 · B

(r) ≤ K(r) ≤ c
(r)
2 ·B

(r) ∀r ∈ τh (5.2)
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hold, with h-independent, positive spectral equivalence constants c
(r)
1 and c

(r)
2 . Then

the matrix

Bh =
∑

r∈τh

AT
r B

(r)Ar (5.3)

is spectrally equivalent to the stiffness matrix Kh, i.e.,

c1 ·Bh ≤ Kh ≤ c2 · Bh, (5.4)

with the spectral equivalence constants

c1 = min
r∈τh

{c
(r)
1 } and c2 = max

r∈τh

{c
(r)
2 } .

Additionally, the matrix Bh is SPD and an element of ZNh
. If Kh is only SPSD,

then the spectral equivalence inequalities (5.4) remain valid, Bh ∈ ZNh
and SPSD,

and ker(Bh) = ker(Kh).

Proof. Let us suppose that Kh is SPSD (Note, the SPD case is included.). It is easy
to see that

(
∑

r∈τh

AT
r K

(r)Aru, u

)
=
∑

r∈τh

(K(r)Aru,Aru) .

It follows from (5.2) that

∑

r∈τh

c
(r)
1 · (B

(r)Aru,Aru) ≤
∑

r∈τh

(K(r)Aru,Aru) ≤
∑

r∈τh

c
(r)
2 · (B

(r)Aru,Aru) .

By taking the minimum c1 = minr∈τh
{c

(r)
1 } on the left side and the maximum

c2 = maxr∈τh
{c

(r)
2 } on the right side, the result follows immediately, i.e.,

c1 ·Bh ≤ Kh ≤ c2 · Bh .

Finally, every spectrally equivalent element matrix B (r) ∈ Znr and thus Bh ∈ ZNh
.

We note that in the 2D case nr = 3 and nr = 4 represent linear and bilinear elements,
respectively. Similarly, linear and trilinear elements for the 3D case are represented
by nr = 4 and nr = 8, respectively. Lemma 5.2.2 is the theoretical background for
Alg. 7. This algorithm returns the best SPSD B (r) ∈ Znr from the element matrix

K(r) with respect to the ratio
c
(r)
2

c
(r)
1

of the spectral equivalence constants.

5.3 Optimization Procedure

In Alg. 7 a restricted optimization problem has to be solved. The optimization
routine currently used is based on an SQP (sequential quadratic programming) al-
gorithm using a Quasi-Newton update formula for estimating the Hessian of the
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Algorithm 7 GeneralSpectralMatrix (K (r))

nr ← dim(K(r))
if K(r) 6∈ Znr then

if K(r) is SPSD then

Transform K(r) by Remark 5.2.1 to K
Update nr

else

K ← K(r)

end if

Calculate B from the restricted minimization problem
X ← K−1/2BK−1/2

µmax(X)
µmin(X) → min subject to B ∈ Znr and B is SPD

if K(r) is SPSD then

Transform B back by Remark 5.2.1 to B̃
else

B̃ ← B
end if

else

B̃ ← K(r)

end if

ReturnB̃

objective (see [80]). Therefore we should find a good initial guess for the solu-
tion of the optimization problem and determine the gradient of the objective func-
tion. For simplicity we restrict ourself to the important cases ker(K (r)) = {0} and
ker(K(r)) = span{1} (i.e.,

∑nr

j=1(K
(r))ij = 0 for all i = 1, . . . , nr). Additionally we

omit the index r ∈ τh for further discussion (i.e., K = K (r), B = B(r), and n = nr).
First, we calculate the gradient of the objective function for the case of SPD element
matrices K.

Lemma 5.3.1. Let us consider the generalized eigenvalue problem

Ku = λBu (5.5)

with some given SPD matrix K ∈ Rn×n and an SPD matrix B ∈ Rn×n. Equation
(5.5) is equivalent to the standard eigenvalue problem (see Section 2.5)

Xφ = µφ (5.6)

with X = K−1/2BK−1/2, µ = µ(X) = 1
λ and φ = φ(X) = K−1/2u denote the

eigenvalues and the normalized eigenvectors of X, respectively. The partial derivative
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of the condition number

κ(X) =
µmax(X)

µmin(X)
(5.7)

with respect to bij (i, j ∈ {1, . . . , n}) is given by

∂κ(X)

∂bij
= κ(X) ·

(
ζmax
ij (X) − ζmin

ij (X)
)
,

with

ζ∗ij(X) = (φ∗(X))j · (φ∗(X))i ·
1

µ∗(X)
and ∗ ∈ {min,max} . (5.8)

Proof. First, (5.6) is multiplied with φT and we get

µ =
(Xφ, φ)

(φ, φ)
. (5.9)

By using the chain rule and (5.6), the derivative of (5.9) with respect to bij, i.e.,

µ̇ = ∂µ
∂bij

, reads as

µ̇ =
((Ẋφ, φ) + 2 · (Xφ, φ̇)) · (φ, φ)− 2 · (φ, φ̇) · (Xφ, φ)

(φ, φ)2
= (Ẋφ, φ) = φi · φj .

(5.10)

In the last formula we used that (φ, φ) = 1. With a straight forward calculation
involving (5.10) and (5.6) we get with (5.8)

∂κ(X)

∂bij
=
µmax(X)

µmin(X)
·
(
ζmax
ij (X) − ζmin

ij (X)
)
,

which is the desired result.

Remark 5.3.2. Lemma 5.3.1 gives a result for the gradient of the objective function
if the underlying matrices K and B are SPD. If K and B are SPSD with ker(K) =
ker(B) then Remark 5.2.1 has to be applied first.

A good choice for the initial guess is very important for the efficiency of the
optimization problem. As it was mentioned above, two important cases of element
stiffness matrices are considered. First, the case K ∈ Rn×n, ker(A) = {0}. Alg. 8
constructs an appropriate initial guess and Lemma 5.3.3 gives the spectral equiva-
lence constants.

Lemma 5.3.3. Let K ∈ Rn×n be SPD, K /∈ Z and let B ∈ Rn×n be the matrix
produced by Alg. 8. Then B ∈ Z, B is SPD and B = K +M with

M =

{
mii ≥ 0 i = 1, . . . , n

mij ≤ 0 i 6= j .
(5.11)

M is weakly diagonally dominant, i.e.,
∑

j=1,... ,nmij ≥ 0 for all i = 1, . . . , n. More-

over c1 · B ≤ K ≤ c2 · B with spectral equivalence constants c1 = µmin(K)
µmin(K)+µmax(M)

and c2 = 1, respectively.



54 CHAPTER 5. ELEMENT PRECONDITIONING TECHNIQUE

Algorithm 8 StartMatrix SPD(K)

n← dim(K)
B ← 0
for all i=1,n do

for all j=i,n do

if kij > 0 and i 6= j then

bii ← bii +
kij

2

bjj ← bjj +
kij

2
else

bij ← kij

end if

end for

end for

return B

Proof. It is obvious that B ∈ Z andB is symmetric. Next, we investigate the spectral
equivalence constants. Because K /∈ Z there exists at least one positive off diagonal
element. Therefore M 6= 0, i.e., M can not be the zero matrix. Additionally, the
matrix B produced by Alg. 8 can be written as B = K + M . The matrix M is
weakly diagonally dominant by construction. This is easy to see because for every
positive off diagonal element kij Alg. 8 updates the diagonal elements mii and mjj

with
kij

2 , and the off diagonal entries mij and mji with the value −
kij

2 . We have by
construction

∑
j=1,... ,nmij = 0 for all i = 1, . . . , n. Therefore

(Mu, u) ≥ 0 ∀u ∈ Rn.

Thus, on one hand we get

(Ku, u) ≤ (Ku, u) + (Mu, u) = (Bu, u) ∀u ∈ Rn .

On the other hand we can write

(Bu, u) = (Ku, u) + (Mu, u) = (Ku, u) ·

(
1 +

(Mu, u)

(Ku, u)

)
∀u ∈ Rn \ {0}

which results in

(Bu, u) ≤ (Ku, u) ·

(
1 +

µmax(M)

µmin(K)

)
∀u ∈ Rn \ {0} .

The result follows by defining c1 = µmin(K)
µmin(K)+µmax(M) and c2 = 1. We have shown that

B is SPD and thus B is an admissible initial guess for the optimization problem.

Let us mention that the lower bound c1 of Lemma 5.3.3 can be supposed to be
uniformly bounded away from zero as h tends to zero.

The second case, i.e., K ∈ Rn×n SPSD, ker(K) = span{1}, requires some extra
work. We define ψij ∈ Rn by

(ψij)l =





1 if l = i

−1 if l = j

0 else

l = 1, . . . , n .
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Actually ψij and ψij · ψijT
look like

ψij =




0
1
0
−1
0




← i

← j
∈ Rn ψij · ψijT

=




0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0



∈ Rn×n .

Further, we define Kij ∈ R2×2 by

Kij =

(
kii kij

kji kjj

)
∀i, j = 1, . . . , n i 6= j (5.12)

and a permutation matrix Pij ∈ Rn×n such that

K̃ = P T
ijKPij =

(
Kij CT

ij

Cij Dij

)
(5.13)

holds, where Cij ∈ R(n−2)×2 andDij ∈ R(n−2)×(n−2). In addition a Schur-complement
Sij ∈ R2×2 of K̃ is calculated which is given by

Sij = Kij − C
T
ijD

−1
ij Cij =

(
βij −βij

−βij βij

)
(5.14)

with a value βij ∈ R+.

Remark 5.3.4.

1. The regularity of Dij can be seen in the following way: Let us assume that Dij

is not regular, i.e., ∃v ∈ Rn−2 such that (Dijv, v) = 0. Further define

ṽ =

(
0
v

)
∈ Rn .

Applying (5.13) to ṽ results in

(K̃ṽ, ṽ) = (Dijv, v) = 0 .

The last result implies ṽ ∈ ker(K̃), which is a contradiction to ker(K̃) =
span{1} and consequently Dij has to be regular.

2. The special structure of the Schur-complement (5.14) is given, because the null-
space of K implies that

n∑

j=1

Kij = 0 ∀i = 1, . . . , n .

The Schur-complement preserves the weak diagonal dominance and the SPSD
property. Therefore βij has to be positive.
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Algorithm 9 StartMatrix SPSD(K)

n← dim(K)
B ← 0
for all i=1,n do

for all j=1,n do

if i 6= j then

Calculate the Schur-complement Sij and get parameter βij

B ← B + βij · ψ
ij · ψijT

end if

end for

end for

return B

With the definitions above, Alg. 9 produces a good initial guess for Alg. 7 can
be written in the following form:

The following Lemma provides the corresponding spectral constants.

Lemma 5.3.5. Let K ∈ Rn×n be SPSD with ker(K) = span{1}, K /∈ Z and let B ∈
Rn×n be the matrix produced by Alg. 9. Then B ∈ Z, B is SPSD and c1 · B ≤ K ≤
c2 ·B holds with spectral equivalence constants c1 = 1

n·(n−1) and c2 = 1

mini,j;i6=j{
βij

αij
,1}

,

where αij =
kij

2 and βij is defined by (5.14).

Proof. Alg. 9 results in

B =
∑

i

∑

j 6=i

βij · ψij · ψ
T
ij (5.15)

and therefore

(Bu, u) =
∑

i

∑

j 6=i

βij · (ui − uj)
2 ≥ 0 ∀u ∈ Rn ,

because of βij > 0. As a consequence we get

ker(B) = span{1} = ker(K) .

Thus B ∈ Z and SPSD. Next, the spectral equivalence constants are determined.
We observe, that

(βij · ψij · ψ
T
iju, u) ≤ (Ku, u) ∀u ∈ Rn . (5.16)

This is valid because the Schur-complement produces an orthogonal splitting of Rn

with respect to the energy inner product, i.e., (Ku, u). The necessary transformation
is given by

Tij =

(
I2

−D−1
ij Cij

)
∈ Rn×2 .
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The Schur-complement (5.14) can be written as

Sij = T T
ij K̃Tij .

Each vector u ∈ Rn can be expressed as u = Tijw+ v with w ∈ R2 and v ∈ Rn, such
that (KTijw, v) = 0. By using (K̃u, u) = (Ku, u) we get

(K̃u, u) = (K̃(Tijw + v), Tijw + v) = (T T
ij K̃Tijw,w) + (K̃v, v) + 2 · (K̃Tijw, v) .

(5.17)

The orthogonality (KTijw, v) = 0 and the semi-definiteness of K (5.17) yields

(Ku, u) = (K̃u, u) ≥ (T T
ij K̃Tijw,w) = (Sijw,w) , (5.18)

which is the desired result. The lower bound follows with (5.15), (5.16), and (5.18),
i.e.,

(Bu, u) ≤ n · (n− 1) · (Ku, u) ∀u ∈ Rn .

Further, we can express K as K =
∑

i

∑
j 6=i αij · ψij · ψ

T
ij , with αij =

kij

2 . By
comparing components we get

(βij · ψij · ψ
T
iju, u) ≥ ch · (αij · ψij · ψ

T
iju, u) ∀u ∈ Rn ,

with ch = mini,j;i6=j{
βij

αij
, 1}. Define c1 = 1

n·(n−1) and c2 = 1
ch

to complete the

proof.

Again we mention that the upper bound c2 of Lemma 5.3.5 can be supposed to be
uniformly bounded from above as h tends to zero. Therefore our spectral equivalence
constants for the stiffness matrix Kh with respect to the constructed M-matrix Bh

are independent of the discretization parameter h.

Remark 5.3.6.

1. In practice the generalized condition number κ(B†K) of the original matrix K
and the initial guess B produced by Alg. 8 and Alg. 9 is approximately between
10 and 100. Applying a few optimization steps (i.e., approximately 10 steps)
we achieved κ ≤ 10 for many examples (see Chapter 8).

2. Let us consider the element stiffness matrices K arising from the bilinear and
the linear FE-discretization of the Laplace operator on an anisotropic rect-
angular element and on an anisotropic triangular element, respectively (see
Fig. 5.1). In these two cases, we can establish the explicit dependence of the
generalized condition number κ(K †B) on the anisotropy parameter q.

Indeed, the element stiffness matrix of the rectangle has the form

K =
1

6q




2 + 2q2 1− 2q2 −2 + q2 −1− q2

1− 2q2 2 + 2q2 −1− q2 −2 + q2

−2 + q2 −1− q2 2 + 2q2 1− 2q2

−1− q2 −2 + q2 1− 2q2 2 + 2q2


 . (5.19)
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For 0 < q < 1, K /∈ Z. Already Alg. 9 produces a matrix B, for which the
estimate

κ(K†B) ≤ 8

holds, i.e., the generalized condition number is independent of q. We recall that
the matrix B produced by Alg. 9 is the initial guess for Alg. 7 that minimizes
the general condition number.

In the case of an anisotropic triangle, the element stiffness matrix K has the
form

K =
1

4q




1 + q2 1− q2 −2
1− q2 1 + q2 −2
−2 −2 4


 . (5.20)

Again, for 0 < q < 1, K /∈ Z. The best matrix B ∈ Z in the sense of Alg. 7 is

B =
1

4q




2 0 −2
0 2 −2
−2 −2 4


 . (5.21)

Solving the generalized eigenvalue problem, we get

κ(K†B) =
1

q2
.

Thus, if q tends to zero then the generalized condition number grows very fast.
Anyway, in case of an isotropic differential operator it is not advisable to use
such elements for an FE-discretization because of their poor approximation
property. Nevertheless, this technique is successful for many examples (see
Chapter 8).
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Figure 5.1: Thin FE-structures.

5.4 Classification Strategy

In many cases the element stiffness matrices K (r) ∈ Rnr×nr , r ∈ τh, are ’similar’
up to a factor in the sense of spectral equivalence. In other words only some of the
element matrices have to be optimized. We use the following procedure in practice.
First, we classify which element stiffness matrices are ’similar’ in the sense of spectral
equivalence. Then one matrix of each class is optimized and the remaining matrices
of this class have the same spectrally equivalent matrix. This method saves a huge
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amount of computational work. The next lemma shows that this technique works.
We re-scale every element matrix K (r) as follows

K̃(r) =
1

maxi=1,... ,nr{k
(r)
ii }
·K(r) ∀r ∈ τh. (5.22)

Lemma 5.4.1. Let K (r),K(s) ∈ Rn×n (nr = ns = n) be SPD. Assume that K (r),K(s)

are scaled as in (5.22) and that

K(s) = K(r) + ∆ (5.23)

where ∆ ∈ Rn×n is symmetric. Moreover let B(r) ∈ Rn×n, B(r) ∈ Zn be SPD and
c1 ·B

(r) ≤ K(r) ≤ c2 ·B
(r) . If there exist δ1, δ2, λ1 ∈ R+ such that

−δ1 ≤
(∆u, u)

(u, u)
≤ δ2 ∀u ∈ Rn \ {0} (5.24)

λ1 ≤
(B(r)u, u)

(u, u)
∀u ∈ Rn \ {0} (5.25)

and c1 >
δ1
λ1

hold, then K(s) is spectrally equivalent to B(r), i.e.,

(
c1 −

δ1
λ1

)
·B(r) ≤ K(s) ≤

(
c2 +

δ2
λ1

)
·B(r) .

Proof. Starting with

c1 · (B
(r)u, u) ≤ (K(r)u, u) ≤ c2 · (B

(r)u, u) ∀u ∈ Rn \ {0}

we get for all u ∈ Rn \ {0}

c1 · (B
(r)u, u) + (∆u, u) ≤ (K (s)u, u) ≤ c2 · (B

(r)u, u) + (∆u, u) ,

or equivalently,

(B(r)u, u) ·

(
c1 +

(∆u, u)

(B(r)u, u)

)
≤ (K(s)u, u) ≤ (B(r)u, u) ·

(
c2 +

(∆u, u)

(B(r)u, u)

)
.

With assumptions (5.24), (5.25) we conclude the proof.

Remark 5.4.2.

1. Lemma 5.4.1 gives a result for the classification of SPD matrices. SPSD matri-
ces K(r) and K(s) (r 6= s) can only be in the same class if ker(K (r)) = ker(K(s)).
If this is the case, K (r) and K(s) are transformed into (5.1) and we can work
with the regular parts of K (r) and K(s). Note that in view of the conditions
c1 > δ1

λ1
and (5.25), relation (5.24) turns into a necessary condition which

∆ ∈ Rn×n is admissible.

2. Practically, the matrix norm ‖∆‖∞ = maxi
∑n

j=1 ∆ij is calculated and δ1 is

set sufficiently small (e.g. δ1 = 10−1).
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Chapter 6

A Parallel Version of AMG

6.1 A Unified Data Distribution Concept

The parallelization of AMG is essentially done by using ideas of domain decomposi-
tion methods and apply them carefully to the AMG method. The method presented
here relies on ideas presented by G. Haase in [29, 30].

6.1.1 Notations

We use a non-overlapping domain decomposition for our approach, i.e., we decompose
Ω into P subdomains Ωs such that

Ω =

P⋃

s=1

Ωs with Ωs ∩ Ωq = ∅, ∀q 6= s, s, q = 1, . . . , P

holds. Each subdomain Ωs is discretized by a mesh Th,s, such that the whole trian-

gulation Th =
P⋃

s=1
Th,s of Ω is conform. A global FE-space Vh is defined with respect

to Th and the local spaces Vh,s are restrictions of Vh onto Th,s. The index set of
nodes in Ωs is denoted by ωn

s . Note, that

ωn
h =

P⋃

s=1

ωn
s but Nh = |ωn

h | ≤
P∑

s=1

|ωn
s | =:

P∑

s=1

Ns

holds, i.e., different subdomains may share unknowns although elements from differ-
ent subdomains do not overlap.

The mapping of a vector uh ∈ RNh in global numbering onto a local vector
us ∈ RNs in subdomain Ωs (s = 1, . . . , P ) is represented symbolically by subdomain
connectivity matrices As : RNh 7→ RNs with entries

(As)ij :=

{
1 if j=̂global number of i

0 else
∀i ∈ ωn

s , ∀j ∈ ω
n
h . (6.1)

The transpose AT
s of these binary matrices As maps a local vector back to the global

one. The index set of all those subdomains containing a grid point xj, j ∈ ωn
h is

61
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denoted by

σ[j] := {s |xj ∈ Ωs} = {s | ∃i ∈ ωn
s : (As)ij 6= 0} . (6.2)

6.1.2 Vector and Matrix Types

We store the data of a vector component ui on processor s if s ∈ σ[i] . There are
(at least) two opportunities to store those components and consequently that vector
(see also Fig. 6.1).

1. A vector u is called an accumulated vector if each vector component ui is stored
in all subdomains Ωs, s ∈ σ

[i] with its full value. The local vectors us can be
represented as

us := As · u . (6.3)

2. A vector r is called a distributed vector if it is decomposed into local vectors rs

such that

r =

P∑

s=1

AT
s · rs (6.4)

holds, i.e., all subdomains Ωs, s ∈ σ
[i] store only rs and possess a portion of the

full vector value ri which can be determined only by taking the sum in (6.4).

The conversion of a distributed vector v into an accumulated vector w can be done
by evaluating the sum in (6.4) followed by the restriction (6.3), i.e.,

w ← v : ws := As · w = As ·
P∑

s=1

AT
s · vs . (6.5)

The conversion in the other direction is not unique - we prefer an equally weighted
distribution of the accumulated vector. A matrix weighted distribution is also feasible
in case of varying coefficients. The weights are chosen such that the re-conversion
(6.5) will result in the original vector :

v ← w : vs := (Rs)
−1 · ws , (6.6)

with

Rs = diag
i∈ωn

s

{|σ[i]|} ,

i.e., (Rs)ii stores the number of subdomains the component i belongs to. The system
matrix defined in (2.53) can also be stored in two ways. With respect to an element-
wise domain decomposition, we can store the FE-matrix accumulated or distributed.

1. A matrix M is called accumulated if its local restrictions Ms possess the full
entries of it, and we can write

Ms := As ·M · A
T
s . (6.7)
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Figure 6.1: Illustration for accumulated (a) and distributed (b) vectors and matrices.

2. We call a matrix K distributed if we have locally stored matrices Ks such that

K :=

P∑

s=1

AT
s · Ks ·As (6.8)

holds, i.e., each subdomain Ωs stores only a part of its full entries.

We obtain distributed matrices Ks automatically after the local FE-accumulation
with respect to Vh,s, due to our non-overlapping construction principle. The sum in
(6.8) is equivalent to a global matrix accumulation which will not be carried out in
the parallel case.

6.1.3 Basic Operations

This section collects some results from the papers [28, 29, 30, 36]. It is trivial that
additive combinations of vectors from the same type do not require any communica-
tion. The inner product of different type vectors requires one global reduce operation
of the local inner products:

(w, r) = wT
r = wT

P∑

s=1

AT
s rs =

P∑

s=1

(Asw)T rs =

P∑

s=1

(ws, rs) . (6.9)

Any other combination of vector types requires more effort. The multiplication of a
distributed matrix K with an accumulated vector w

Kw =
P∑

s=1

AT
s KsAs · w =

P∑

s=1

AT
s (Ksws) =

P∑

s=1

AT
s vs = v , (6.10)

results in a distributed vector. The realization requires no communication at all
because we only have to compute locally vs = Ksws.
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The situation changes if we use an accumulated matrix M. Here we have to
ensure that the pattern of M fulfills the condition

∀i, j ∈ ωn
h : σ[i] 6⊆ σ[j] =⇒ Mij = 0 . (6.11)

If the pattern condition (6.11) holds, then the operations

w = Mu and d = MT
r (6.12)

can be performed locally without any communication, i.e.,

ws = Msus and ds = MT
s rs ∀s = 1, . . . , P . (6.13)

Under the assumption (6.11), a special product of three matrices can be performed
locally without communication (see also [30]),

K̃ = MT
KM , (6.14)

i.e.,

K̃s = MT
s Ks Ms .

6.1.4 Basic Algorithms

The operations (6.9) and (6.10) already allow to formulate a parallel preconditioned
conjugate gradient (PPCG) algorithm for solving the matrix equation (2.53), i.e.,

Khuh = f
h
,

with a preconditioner Ch.

Algorithm 10 Parallel PCG algorithm ppcg(Kh, Ch, uh, fh)

while no convergence do

vh ← Kh · sh

α⇐ σ/(sh, vh)
uh ← uh + α · sh

rh ← rh − α · vh

wh ⇐ C−1
h · rh

σ ⇐ (wh, rh)
β ← σ/σold , σold ← σ
sh ← wh + β · sh

end while

Besides the inner products, only the preconditioning step

wh ⇐ C−1
h · rh

involves communication indicated by using ⇐ instead of ←. In the case of Ch =
Ih, i.e., no preconditioning, this step reduces to a type conversion (6.5) involving
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communication. We require that the communication costs for applying any other
preconditioner C−1

h are of the same order.

One possible choice for the preconditioner is C−1
h = (Ih−MGh)K−1

h , with MGh

being the multigrid iteration operator for Kh. The parallel multigrid iteration is
presented in Alg. 11, where ` denotes the level such that ` = 1 stands for the finest
grid. The algorithm applies the parallel version of the smoother Sh(Kh, uh, fh) and its
transpose, e.g. a block Jacobi smoother with Gauss-Seidel smoothing in the blocks
containing interior unknowns of the subdomains, see also [46]. Furthermore, the
interpolation Ph has to fulfill the pattern condition (6.11). The coarse grid system
can be solved directly (either in parallel or sequentially on one processor) or again
by some iterative method similar to the ppcg in Alg. 10. Besides the coarse grid

Algorithm 11 Parallel multigrid pmg(Kh, uh, fh, `)

if ` == CoarseLevel then

uh ⇐ Solve (
P∑

s=1
AT

s KsAs uh = fh )

else

ũh ⇐ Spre
h (Kh, uh, fh)

dh ← fh − Kh ũh

dH ← PT
h dh

wH ← 0
wH ⇐ pmg(KH ,wH , dH , `+ 1)
wh ← Ph wH

ûh ← ũh + wh

uh ⇐ Spost
h (Kh, ûh, fh)

end if

solver, only the smoothing sweeps require communication.

6.2 The Parallel AMG Algorithm and Its Implementa-

tion

It follows from Alg. 11, the Galerkin approach (3.4) and rule (6.14) that the crucial
point for a recursive parallel AMG algorithm consists in guaranteeing the pattern
condition (6.11) for the interpolation matrix Ph. This pattern is controlled by the
strong connections {Si,T

h } as input parameters in Weights (see Subsection 3.3,
page 33). Therefore, we have to control the sets of strong connections in the coars-
ening step to ensure the required interpolation pattern (see also [30]).

6.2.1 Communication Groups and Node Sets

Besides the global inner products in ppcg (Alg. 10) any other communication is only
next neighbor communication involving a subset of all processors. The model ex-
ample in Fig. 6.2 possesses by definition (6.2) the communication groups {1, 2, 3, 4},
{1, 2}, {1, 3}, {2, 4}, {3, 4} and trivially {1}, {2}, {3}, {4}. These communication
groups σk are uniquely ordered with the rules
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Figure 6.2: Non-overlapping subdomains with triangulation and row-wise number-
ing.

1. |σk| > |σ`| ⇒ k > ` ,

2. |σk| = |σ`| and σk lexicographically larger than σ` ⇒ k > ` .

This ordering guarantees the consistency of local and global ordering and prevents
communication deadlocks in the algorithm. Furthermore, let mcs denote the number
of communication groups of subdomain Ωs.

Remark 6.2.1. We get for subdomain 1 (i.e., Ω1) in our example mc1 = 4 groups
where σ1 = {1, 2, 3, 4}, σ2 = {1, 2}, σ3 = {1, 3} and σ4 = {1}. The last one does not
require any communication but simplifies the algorithms. It is obvious from Fig. 6.2,
that σ1 = σ[25], σ2 = σ[18], σ3 = σ[24] and σ4 = σ[1].

The definition of communication groups lead directly to the idea to group locally
the nodes ωn

s of subdomain Ωs into four classes with respect to a certain communi-
cation group σk :

1. active nodes: ωn
a := {i ∈ ωn

s : σ[i] ≡ σk} ,

2. visible nodes: ωn
v := {i ∈ ωn

s : σ[i] ⊂ σk} ,

3. grouped nodes: ωn
g := {i ∈ ωn

s : σ[i] ⊃ σk} ,

4. invisible nodes : ωn
s \
(
ωn

a ∩ ω
n
v ∩ ω

n
g

)
.

This results, e.g. for subdomain Ω1 and σ3 = {1, 3} in ωn
a = {22, 23, 24}, ωn

g = {25}
and ωn

v = {1, 2, 3, 8, 9, 10, 15, 16, 17}.
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6.2.2 Parallel Coarsening

For the determination of strong connections as well as for the calculation of interpola-
tion weights we need the accumulated system matrix instead of the given distributed
one.

1. A first step to control the admissible interpolation pattern consists in a special
accumulated matrix

K̃ =
P∑

s=1

AT
s K̃sAs

with

(K̃s)ij =

{
(Ks)ij iff σ[i] ⊆ σ[j] ∨ σ[i] ⊇ σ[j]

0 else
, (6.15)

which is locally stored as K̃s = AsK̃A
T
s . This means for Fig. 6.2, that the

resulting matrix K̃ does not contain entries K18,26, K24,32, K26,18 and K32,24.

2. The second step takes advantage of the fact that our ordering of the com-
munication groups from Subsection 6.2.1 already provides the correct relation
between the nodes due to ωn

a , ωn
v and ωn

g . The local coarsening will be done
subsequently on the active sets of all communication groups σk. We have to
guarantee coherency of the resulting coarse and fine nodes for active sets shared
by more than one subdomain. The easiest way consists in a coarsening only
on the root process of communication group σk, then broadcasting the result
to the group and finally doing the coarsening with the marked coarse nodes
ωn

m on the remaining processes. The two coarsening parts before and after the
communication can be handled by the same routine

({Si,T
h }, ωC , ωF )← CoarseP({Si,T

h }, ω
n
m, ω

n
a , ω

n
v ) ,

which can be derived from the sequential routine Coarse (see Section 3.3,
page 33). The sequential routine is contained in the parallel one via the call

({Si,T
h }, ωC , ωF )← CoarseP({Si,T

h }, ∅, ω
n
h , ω

n
h) ,

with ωC = ωF = ∅ as initial parameters.

3. A third step has to restrict the strong connections such that no fine node from
the active set ωn

a has connections to the visible nodes from ωn
v .

These three steps guarantee the admissible pattern (6.13) for interpolation and re-
striction. Algorithm 12 presents the routine for parallel coarsening on each sub-
domain Ωs. The modified strong connections {S i,T

h } ensure together with K̃ the
admissible matrix pattern for the interpolation. Therefore, we call

Ps ←Weights({Si,T
h }, K̃, ωC , ωF )

on each processor s without any communication.
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Algorithm 12 Parallel coarsening ParCoarse({S i,T
h }, ω

n
s )

Determine list [σk]k=1,... ,mcs
(= communicator groups).

ωC ← ∅, ωF ← ∅
for all k = 1, . . . ,mcs do

ωn
a ← {i ∈ ω

n
s : σ[i] ≡ σk}, ωn

v ← {i ∈ ω
n
s : σ[i] ⊂ σk}

ωn
g ← {i ∈ ω

n
s : σ[i] ⊃ σk}, ωn

m ← ∅
if s ==Root(σk) then

(ωC , ωF ) ← CoarseP ({Si,T
h }, ω

n
m, ω

n
a , ω

n
v , ωC ,ΩF )

end if

ωn
m ← Broadcast (σk, ωC ∩ ω

n
a , ωC ,ΩF )

if s 6=Root(σk) then

(ωC , ωF ) ← CoarseP ({Si,T
h }, ω

n
m, ω

n
a , ω

n
v )

end if

for all i ∈ ωn
a do

if i ∈ ωF then

Si,T
h ← Si,T

h ∩
(
ωn

a ∪ ω
n
g

)

else

Si,T
h ← Si,T

h ∩ (ωn
a ∪ ω

n
v )

end if

end for

end for

6.2.3 Coarse Grid Matrix and Parallel Setup

The pattern condition (6.13) for the interpolation matrix Ph is fulfilled by construc-
tion in Alg. 12. Therefore, we can apply (6.14) with the distributed fine grid matrix
Kh so that the coarse matrix KH is again distributially stored and it can be calculated
completely in parallel without any communication, i.e., we call

KH,s ← Galerkin(Ks,Ps)

locally on each processor s.

The parallel setup (Alg. 13) collects the subroutines of Section 3.3. The coarsen-
ing part in Alg. 13 terminates if the global number of coarse nodes becomes smaller
than CoarseGrid, cf. the sequential part.

6.2.4 Object Oriented Approach

The implementation of the parallel code exploits the C++ principles of overloading
and inheritance. Given a class hierarchy with several types (e.g. SparseMatrix,
BlockMatrix) derived from the base class (e.g. BaseMatrix), we introduce an
additional ’parallel’ class (e.g. ParallelMatrix) derived from the base class. The
parallel class has a reference to some object of the base class and has access to ad-
ditional ’parallel’ data structures (see Fig. 6.3). The method GetObject() (e.g.
GetMatrix()) of the base class returns the reference of the object itself. For the
parallel class, this method returns the reference of the ’sequential’ object. This con-
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Algorithm 13 Parallel Setup ParSetup(Kh, ω, `)

if |ω| > CoarseGrid then

for all s = 1, . . . , P do

K̃←
(∑P

i=1A
T
i K̃iAi

)
pattern

, K̃s ← AsK̃A
T
s

({N i
h}, {S

i,T
h })← GetStrong(K̃s)

ωC ← ∅ , ωF ← ∅
({Si,T

h }, ωC,s, ωF,s) ← ParCoarse({Si,T
h }, ω

n
s )

Ph,s ← Weights(
{
Si,T

h

}
, K̃s, ωC,s, ωF,s)

KH,s ← 0
KH,s ← Galerkin(Kh,s,Ph,s)
ωn

H,s ← ωC,s

ParSetup(KH, ω
n
H , `+ 1)

end for

else

CoarseLevel← `
end if

cept allows to switch easily between the sequential and parallel methods depending
on the requirements of the algorithm. For example, the function

GetDiag(i)

returns the accumulated diagonal element of row i as required for the Jacobi iteration
within the smoother. On the other hand,

GetMatrix().GetDiag(i)

accesses the diagonal element of the distributed matrix.
Using this approach, the changes in the sequential code are minimal as long as

the existing code is well structured and global methods, including input and out-
put, have already been implemented as methods of appropriate class variables. Of
course, additional parallel-specific code sequences have to be added. This includes
the interfaces to the parallel library DDComm [62] by M. Kuhn for the setup of the
communication. In particular, access to the topology of the mesh has to be provided.
Furthermore, the methods which are to be overloaded have to be supplied. In the
example given above, this includes the initialization of the accumulated diagonal:

for(i=1; i<=n; i++)

accumulated diag.Elem(i) = matrix->Get(i,i);

accumulator.MultInline(accumulated diag);

The diagonal is being accumulated using the methods of the Distributed Data Com-
munication library DDComm [62].
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// Class hierarchy: BaseMatrix, SparseMatrix, ParallelMatrix

class BaseMatrix

virtual double GetDiag(int i) const = 0;

virtual BaseMatrix & GetMatrix() { return *this; };

class SparseMatrix :: BaseMatrix

virtual double GetDiag(int i) const {return Get(i,i); };

class ParallelMatrix :: BaseMatrix

BaseMatrix * matrix;

Vector accumulated diag;

Accumulator * accumulator;

ParallelMatrix(BaseMatrix * am) { matrix = am; };
virtual double GetDiag(int i) const

{ return accumulated diag.Get(i); };
virtual BaseMatrix & GetMatrix() { return *matrix;};

Figure 6.3: Example for a class hierarchy of matrices in C++.



Chapter 7

AMG Software Package
PEBBLES

7.1 Requirements and Implementation

The goal of the implementation of the AMG software package PEBBLES is to pro-
vide an efficient, robust and flexible solver kernel which additionally fulfills certain
requirements. The main application areas are:

1. PEBBLES can be used as a coarse grid solver within a geometric MG code.

2. PEBBLES can be used as a solver in standard FE-codes, which do not support
a hierarchical grid structure.

Since different FE-codes support different data structures for the system matrix, we
need an interface such that the matrix is not stored twice. For that reason we decided
to construct an interface which is based on element matrices and thus the matrix
management is exclusively done in PEBBLES. This is illustrated in Fig. 7.1. Such
an interface structure is possible for almost all FE-codes, because the assembling
process simply has to be redirected. Finally, the solution vector is returned to the
FE-code (see Fig. 7.1 for an illustration). Analogously an interface is defined for the
right-hand side. In addition, the element based interface is essential for the element
preconditioning technique (see Chapter 5). So far we have an interface structure
for the matrix and right-hand data. Furthermore, PEBBLES provides the following
routines:

1. Essential boundary conditions, i.e., Dirichlet conditions, can be easily defined.
In addition, the updating of the values of the Dirichlet nodes is possible for
time-dependent problems.

2. The definition of constraints is possible, i.e., one node is the master node and
predefined slave nodes share the same unknown solution value. This is of
special importance for electrostatic problems, e.g. Section 2.2.

3. The preconditioner can also be kept constant by PEBBLES for several outer
iteration steps. This is the case for many different right-hand sides, time-
dependent problems, or nonlinear problems. Furthermore PEBBLES can be

71
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Figure 7.1: Information flow for an interface to PEBBLES.

instructed to construct a new preconditioner from the calling FE-code, in order
to apply the strategy of Section 7.2.

4. In case of coupled field problems PEBBLES is able to support different matrices
stemming from distinct FE-discretizations.

5. Finally, PEBBLES provides an interface for matrices stored in a given file
format.

A more rigorous explanation of the interface routines and detailed examples are
found in the ’PEBBLES - User’s Guide’ [74].

The implementation of PEBBLES has been done in C++ in order to use the
concepts of overloading and inheritance. In addition to that we use sophisticated
data structures and memory management to obtain a good performance. There are
at least two objectives which have to be achieved:

1. The memory requirement is of optimal order, i.e., O(Nh) as h tends to zero.

2. The number of necessary operations is of optimal order, i.e., O(Nh · NMEp
h)

with 1 < p ≤ 2. NMEh denotes the average number of nonzero entries per row
of the system matrix Kh.

The first item can be reached in an easy way: We use a compact row storage of
the required matrices, i.e., system and auxiliary matrix, and appropriate prolonga-
tion operators. By additionally defining appropriate data structures the memory
requirement is of order O(Nh ·NMEh).

The second item can be achieved by a careful implementation of the setup phase,
i.e., coarsening and construction of the coarse grid and prolongation operators. In
addition the prolongation operators have to be constructed such that the number of
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nonzero entries per row NMEH on the coarse level does not grow too fast. Otherwise
the numerical effort on the coarse level grows and the optimal complexity of the
algorithm gets lost. For example, if

NMEH ∼ NH

then the complexity of the algorithm exhibits a complexity O(N p
H) with p ≥ 2.

Furthermore, the memory consumption would be non optimal, i.e., O(N 2
H). The

operator complexity , i.e.,

OC(Kh) =

∑`
k=1 NMEk ·Nk

NME1 ·N1
, (7.1)

with Nk, NMEk and ` are the number of unknowns, the average number of non zero
entries per row on level k and the number of constructed levels, respectively, which
gives a good idea of arithmetic costs and memory storage relative to the finest grid
for the coarser grids. Another measure is the grid complexity , i.e.,

GC(Kh) =

∑`
k=1Mk

M1
, (7.2)

that presents how quick ’virtual’ FE-meshes are reduced in size. Mk denotes the
number of nodes on level k.

7.2 Setup Phase

7.2.1 General Relations

The aim of this section is to provide general tools for the construction of an (almost)
optimal solution strategy for nonlinear, time-dependent and moving body problems
(with respect to CPU-time). The three problem classes have in common that a
sequence of SPD problems has to be solved in order to get the final solution, e.g.
according to a fixed point iteration scheme of the linearized systems within nonlinear
equations. Furthermore we can assume that the arising system matrices change little
in the spectral sense during several outer iterations. A particular linear equation
(2.53), i.e.,

Khuh = f
h
,

can be solved with the PCG method. According to [40] it is enough to use an SPD
preconditioner Ch in the PCG method in order to solve (2.53). In addition to this it
is sufficient to assemble Ch from a spectrally equivalent matrix Bh with respect to
Kh.

Let us make the theory more rigorous. Therefore let Kh be the current matrix
of an outer iteration step and Bh be the matrix of a previous step. Furthermore
let Ch be the constructed preconditioner for Bh (e.g. Ch is realized by k steps of a
V (νF , νB)-cycle, k = 1 or k = 2). We can assume that Kh and Bh are SPD, and
therewith spectrally equivalent with lower and upper constants α and α, respectively.
The first lemma shows that the preconditioner Ch is also spectrally equivalent to Kh,
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with a condition number bounded by α · κ(C−1
h Bh), α ≥ 1. This condition number

is the basic convergence measure for the iterative methods given by Alg. 1 or Alg. 2,
see Section 2.5.

Lemma 7.2.1. Let Kh, Bh ∈ RNh×Nh be SPD and let Kh be spectrally equivalent
to Bh with spectral constants α and α. Further let Ch ∈ RNh×Nh be an SPD precon-
ditioner for Bh with lower and upper spectral constants γ and γ, respectively. Then
the relations

α · γ · Ch ≤ Kh ≤ γ · α · Ch

are valid and consequently

κ(C−1
h Kh) ≤ κ(C−1

h Bh) ·
α

α
.

Proof. By assumption we know that

α ·Bh ≤ Kh ≤ α · Bh

and by using the spectral equivalence inequality

γ · Ch ≤ Bh ≤ γ · Ch

we consequently obtain the desired result, i.e.,

α · γ · Ch ≤ Kh ≤ γ · α · Ch .

Remark 7.2.2.

1. The underlying strategy is based on the PCG method (Alg. 2), where the error
in the Kh-energy norm is given by (2.60). For an outer solution strategy we
can assume that the iterative solution ul

i−1 of step i− 1 is a good initial guess
for the ith outer iteration step (for an initial guess u0

1 ≡ 0 is usually taken).

2. The objective is to keep the overall numerical costs as small as possible. There-
fore we try to keep the preconditioner Ch constant as long as possible (in order
to keep the setup costs low), while the condition number κ(C−1

h Kh) is bounded
by a given constant αmax · κ(C

−1
h Bh).

3. Equation (2.60) reflects the fact that the convergence rate of the PCG method
deteriorates if κ(C−1

h Kh) becomes too large, i.e., κ(C−1
h Kh) has to be kept

small. In practice we calculate the spectral constants α and α and we require

α =
α

α
≤ αmax ,

with αmax ∈ (1, 10).
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For further discussion we denote by i the outer iteration index, e.g. K i
h is the system

matrix in the ith nonlinear step. The same is assumed for the other variables. In
addition, we define the actual system matrix of the ith step and a previous system
matrix of the jth step by

Kh = Ki
h and Bh = Kj

h ,

respectively, with j ≤ i. The general outer iteration algorithm Alg. 14 is used for
further discussion. For instance, Alg. 14 can be seen as a fixed point iteration in the
nonlinear case.

Algorithm 14 General outer iteration outer(K 0
h, u

0
h, f

0
h)

f
h
← f0

h
get the right-hand side

wh ← u0
h get the start solution

Kh ← K0
h(wh) get the system matrix

dh ← dh(f
h
, wh) calculate the defect

Ch ← Ch(Kh) calculate a new preconditioner
while no convergence do

Khwh = dh solve with PCG
uh ← uh(wh) update solution
f

h
← f

h
(uh) update right-hand side

Kh ← Kh(uh) update system matrix
dh ← dh(f

h
, uh) calculate the defect

α← α
α calculate the spectral constants

if α > αmax then

Ch ← Ch(Kh) calculate a new preconditioner
end if

end while

7.2.2 Special Examples

Nonlinear equation: Let us consider the nonlinear variational form

find u ∈ V : a(ν(w);u, v) = 〈f, v〉 ∀v ∈ V

with ν(w) being a scalar, continuous nonlinearity, e.g.

w = ‖ grad u‖ and a(ν(w);u, v) =

∫

Ω
ν(‖ gradu‖) · gradu grad v dx .

The FE-discretization is done as usual and the subsequent assumptions are made for
the discretization of ν(·):

1. The discrete nonlinearity is abbreviated by ν i
h in the ith nonlinear step.

2. νi
h is piecewise constant, i.e., ν i,r

h ≡ const on each element r ∈ τh.
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We know that the stiffness matrix can be expressed in terms of element stiffness
matrices, i.e.,

Ki
h =

∑

r∈τh

AT
r K

i,r
h Ar , (7.3)

where K i,r
h ∈ Rnr×nr is the element stiffness matrix, and Ar ∈ RNh×nr is the element

connectivity matrix of the finite element r ∈ τh. Since νi
h has the special structure

νi,r
h ≡ const on each r ∈ τh the element stiffness matrices have the special form

Ki,r
h = νi,r

h ·K
r
h ∀r ∈ τh.

The spectral equivalence constants α and α are given by

α = min

{
min
r∈τh

νj,r
h

νi,r
h

, 1

}
and α = max

{
max
r∈τh

νj,r
h

νi,r
h

, 1

}
, (7.4)

for i ≥ j.

Remark 7.2.3. A generalization to the case of a tensor valued ν(·) is straightfor-
ward. For the discrete case we assume the matrices

νi,r
h =



ν11 ν12 ν13

ν21 ν22 ν23

ν31 ν32 ν33


 ∀r ∈ τh

to be SPD. Consequently, the constants of (7.4) change to

α = min

{
min
r∈τh

µmin(ν
j,r
h )

µmin(ν
i,r
h )

, 1

}
and α = max

{
max
r∈τh

µmax(ν
j,r
h )

µmax(ν
i,r
h )

, 1

}
,

where µmin(ν
i,r
h ) and µmax(ν

i,r
h ) denote the minimal and the maximal eigenvalue of

νi,r
h , respectively.

Moving body problem: Next we look at a special moving body problem. Let
us consider the variational form (2.48) on the domain given by Fig. 7.2. Further we
assume inside the domain a unit which is driven by a rigid body mode for instance.
This is a coupled field problem, see Subsection 2.2.3. Since only a few element system
matrices change a little bit during one outer iteration step, we can assume that the
global system matrix does not change essentially in the spectral sense. For instance,
this can be seen as follows: Let us assume that

Kh = Ki
h =

∑

r∈τh

AT
r K

i,r
h Ar and Bh = Kj

h =
∑

r∈τh

AT
r K

j,r
h Ar

are the system matrices for the ith an the jth step, respectively. Since K i,r
h and Kj,r

h
are spectrally equivalent, the spectral constants are given by

α = min
r∈τh

{µmin(Jr)} and α = max
r∈τh

{µmax(Jr)} ,
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Figure 7.2: Sequence of a moving body problem.

with

Jr =
(
Kj,r

h

)−1/2
Ki,r

h

(
Kj,r

h

)−1/2
.

Time-dependent equation: This class of problems can often be written as

Ki
h = Mh + ν(t,∆ti) ·Kh

where Mh is a mass matrix, t describes the preceding time and ∆ti the increment of
the ith time-step. For instance

ν(t,∆ti) = ∆ti

for standard FE-discretizations of a parabolic PDE. With a straight forward calcu-
lation we obtain

α = min

{
1,
νj

νi

}
and α = max

{
1,
νj

νi

}

for the spectral constants, with νl = ν(t,∆tl).

7.3 Applications

In order to test the proposed interface and the AMG implementation PEBBLES
itself, our attempt was to use PEBBLES as a solver in various FE-codes. Before we
present the FE-codes we mention that the current version is able to deal with the
FE-discretizations proposed in Chapter 4. Since other discretization schemes yield
system matrices with the same properties as for FE-discretizations, it is possible to
apply PEBBLES even to more general SPD systems (e.g. SPD matrices stemming
from a finite difference discretization). In the subsequent discussion we present
four codes which are completely different from the task of applications and their
implementations.

1. FEPP1 [32] is an FE-code with a geometric MG solver. This FE-code is able to
deal with Lagrange as well as Nédélec FE-discretizations. We use PEBBLES
as a preconditioner for the solution of the arising system matrices. This code
is mainly well suited for elliptic problems. Some results can be found in [37,
38, 75].

1Courtesy of J. Schöberl et al., University of Linz
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2. CAPA2 [65] is an FE-code written in Fortran 77 which is especially suited for
coupled field problems. In this case we apply PEBBLES as a solver for the
arising system matrices stemming from nonlinear, time-dependent or moving
body problems and test the proposed ’setup-strategy’ of Section 7.2. According
to the coupled field problems we use the fact that PEBBLES can handle various
system matrices. In addition, a lot of calculations can be found in [52, 53, 54,
56, 55].

3. CAUCHY3 [91] is a tool-box which deals with the inverse source reconstruc-
tion of the current distribution in a human head. The kernel of CAUCHY is
written in Fortran 77, whereas the memory management is done by a C++
implementation. We use PEBBLES as a solver tool for the solution of the re-
quired 10000 different right-hand sides for a linear static electric field equation.
The obtained solutions are used for the inverse calculation. First calculations
and comparisons with other solvers are presented in [92].

4. MAFIA4 [19] is a code for solving the Maxwell equations based on the finite
integration technique (FIT). Since the arising matrices are similar to an FE-
discretization based on Nédélec FE-functions we are able to apply the method
of Section 4.3 to these matrices. MAFIA is written in Fortran 77 and is able
to deal with nonlinear and time-dependent problems. First calculations with
PEBBLES are found in [18].

Several other matrices were tested, which stem from different fields of application.
Moreover a parallelization of the sequential code PEBBLES was done using the
domain decomposition communication library DDComm [62], see Chapter 6.

2Courtesy of M. Kaltenbacher et al., University of Erlangen
3Courtesy of C. Wolters et al., MPI Leipzig
4Courtesy of M. Clemens et al., University of Darmstadt



Chapter 8

Numerical Studies

In order to demonstrate the numerical efficiency of the proposed AMG methods we
present several examples from natural and engineering sciences. Before the examples,
corresponding to the variational forms of Chapter 2, are presented some abbrevia-
tions and notations are provided. The components of the AMG method are chosen
as follows: The coarsening is done by Alg. 3 and the prolongation operator is defined
for each particular example. Further we use a V (1, 1)-cycle. The AMG method is
applied as a preconditioner in the PCG method and the PCG iteration is stopped
if the error in the KhC

−1
h Kh-energy norm was reduced by a factor of ε (see Alg. 2).

All calculations were done with the AMG software package PEBBLES described in
Chapter 7. In order to assess the robustness and efficiency of PEBBLES, we com-
pare our AMG with the geometric MG (represented by FEPP) and with the the IC
preconditioned PCG for some examples.

All sequential calculations were done on an SGI Octane, 300 MHz, R12000 work-
station, and the parallel computations were either made on an SGI ORIGIN 2000,
300 MHz, R12000 or on a PC LINUX cluster. For the rest of this chapter we use
the following notations and abbreviations.

1. The preconditioners are denoted by

(a) ’AMG’: standard algebraic multigrid.

(b) ’AMG with AUX’: algebraic multgrid with auxiliary matrix.

(c) ’AMG with EP’: algebraic multigrid with element preconditioning.

(d) ’IC’: incomplete Cholesky without fill in and with zero threshold.

(e) ’MG’: geometric multigrid.

2. ’Nh’ denotes the number of unknowns, i.e., DOFs.

3. ’solver’ gives the CPU-time for the solution process in seconds.

4. ’setup’ gives the CPU-time for the setup process in seconds.

5. ’solution’ is the sum of ’solver’ and ’setup’ in seconds.

6. ’it’ number of PCG iterations.

79
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7. ’κ = κ(C−1
h Kh)’ denotes the condition number of the preconditioned system.

8. ’OC = OC(Kh)’ is related to the operator complexity defined by (7.1).

9. ’GC = GC(Kh)’ is related to the grid complexity defined by (7.2).

10. For the nonlinear studies (realized by the fixed point iteration) we use addi-
tionally

(a) ’nit’: number of fixed point iterations.

(b) ’sit’: sum of required PCG iterations in the fixed point iteration.

(c) ’precond’: number of generated preconditioners during the fixed point
iteration.

11. For the parallel computations we use

(a) ’matrix’: CPU-time for the parallel system matrix generation in seconds.

(b) ’proc’: number of used processors.

(c) ’1 it’: speedup with respect to one iteration.

8.1 Symmetric H1(Ω)-based Equations

We begin with the simplest problem class for AMG, namely Poisson like problems
related to the variational form (2.48). The success of AMG is well documented in
[9, 13, 12, 14, 25, 57, 78, 81, 82, 83] for this problem class, however, we will show that
our AMG methods are the favorite choice if anisotropic equations are considered.

8.1.1 Element Preconditioning Studies

The first and the second example (shielding and boundary layer problem) were cal-
culated within FEPP up to a relative accuracy ε = 10−8. Our purpose for these
examples is to assess the condition number of the overall preconditioner using the
element preconditioning technique discussed in Chapter 5. The third example (piezo-
electric transducer) was calculated within CAPA up to a relative accuracy ε = 10−5.
We used the harmonic extension based prolongation (4.2) in all cases.

Shielding problem in 2D: Let us consider an isotropic, homogeneous magnetic
field B = (Bx, By) in a given domain Ω ⊂ R2 (e.g. bounded area of the earth) and
no further source. In addition we place a shielding unit in Ω (see Fig. 8.1). This
shielding object is assumed to be a hole square with thin wall thickness such that the
diameter of the unit is large compared to the wall thickness. By introducing a scalar
potential for the magnetic induction B in the Maxwell equations the problem is re-
duced to the variational form (2.48) with zero right-hand side and Dirichlet boundary
conditions are prescribed (see e.g. [72]). The subsequent calculations are done with
parameters µ1 = 1, µ2 = 1000, Bx = 21, By = 45 and domain Ω = (−6, 6)2 ⊂ R2,
Ω2 = (−0.5, 0.5)2 \ (−0.5 + ε, 0.5 − ε)2, as shown in Fig. 8.1. The shielding unit is
anisotropic and hence we use long thin quadrilaterals for an FE-discretization with



8.1. SYMMETRIC H1(Ω)-BASED EQUATIONS 81

bilinear FE-functions. If we would discretize the shielding unit with a graded mesh,
e.g. with triangles, then the number of unknowns would be much larger.
Table 8.1 displays the results for 3 different FE-discretizations and 3 different pre-
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Figure 8.1: Sketch of the shielding problem in 2D with two materials.

conditioners. It can be seen that ’AMG with EP’ improves the condition number κ
considerably and κ appears to be unaffected by the problem size Nh and the wall
thickness ε. Due to the anisotropy ε the condition numbers of the other proposed
preconditioners grow with the number of unknowns Nh and the anisotropy ε. Let us
further mention that the operator complexity OC is slightly worse for ’AMG with
EP’ compared to the standard AMG, however, the entire matrix hierarchy can be
stored in just over three times the storage for the fine grid matrix. The grid complex-
ity GC hovers between 1.47 and 1.52 for both methods, which indicates a reduction
of unknowns of approximately 2 of two consecutive levels. Because of the classifica-

AMG with EP AMG MG

ε Nh κ OC GC κ OC GC κ

10−1 10.51 2.11 1.47 59.26 2.54 1.51 25.42
10−3 9345 10.23 2.14 1.47 1009.13 2.59 1.52 56258.9
10−5 7.28 2.14 1.47 202095 2.59 1.52 1.9e+7

10−1 11.91 2.27 1.49 170.83 2.60 1.51 24.14
10−3 37121 12.21 2.84 1.51 834.23 2.78 1.52 54174.4
10−5 8.88 2.83 1.51 - 2.75 1.51 479076

10−1 12.19 2.34 1.50 230.63 2.69 1.51 26.33
10−3 147969 13.84 3.18 1.52 123491 2.84 1.52 53051
10−5 11.57 3.16 1.52 - 2.84 1.52 874875

Table 8.1: Shielding problem in 2D for different thickness parameters and DOFs.

tion strategy the numerical work for the element preconditioning part is negligible
for the shielding problem. A spectrally equivalent matrix B (r) in the set Znr had to
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be only calculated for about 16 element stiffness matrices K (r).

Boundary layer problem in 2D: A problem related to the variational form
(2.48) is the bilinear form

∫

Ω
ε2 grad u grad v dx+

∫

Ω
uv dx =

∫

Ω
1v dx ,

where a mass term is added to (2.48) and homogeneous Dirichlet boundary conditions
are assumed. We consider a domain Ω = (0, 1)2 and a discretization as depicted in
Fig. 8.2, where the discretization is known to be optimal for this kind of problem.
Again, if we use a graded mesh for resolving the boundary layer then the number of
unknowns is very large. The FE-discretization is done with bilinear FE-functions.

In Tab. 8.2 the numerical robustness of the element preconditioning technique
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Figure 8.2: Sketch of the boundary layer problem in 2D.

is presented. The condition number κ for ’AMG with EP’ does neither depend
significantly on the number of unknowns Nh nor on the anisotropy ε, whereas if
we use standard AMG or geometric MG, then κ grows as ε gets small. For this
example the operator complexity OC is not satisfactory small. Indeed, for larger
problem sizes the operator complexity gets worse if the anisotropy ε tends to zero.
In addition the grid complexity GC rises, which indicates a non sufficient decrease of
the unknowns. The examination of these numbers reveals a high application time and
a large amount of memory requirement. In the case of the boundary layer problem
the numerical work for the element preconditioning method consists in constructing
3 different spectrally equivalent matrices and is therefore negligible.

Piezoelectric Transducer: Finally, the numerical calculation of the electric
field within a piezoelectric transducer (material PZT 5A) with partial electrodes
is studied. This is a 3D problem where the element preconditioning technique is
applied. The electrodes of the transducer are squares with length 10mm and have
a distance of 0.5mm (for a detailed discussion see e.g. [53]). The FE-discretization
has been performed by brick elements (Fig. 8.3) and the maximal ratio of the
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AMG with EP AMG MG

ε Nh κ OC GC κ OC GC κ

10−1 7.83 1.64 1.36 11.21 1.66 1.37 13.51
10−3 2401 7.96 2.51 1.64 41.67 2.40 1.67 47.94
10−5 4.68 2.50 1.64 28.12 2.38 1.66 42.86

10−1 8.90 2.42 1.52 17.91 2.82 1.57 18.69
10−3 9409 11.38 4.41 1.88 178.49 3.66 1.92 203.89
10−5 7.16 4.48 1.89 99.96 3.54 1.88 164.66

10−1 8.95 2.54 1.52 24.71 3.30 1.59 20.84
10−3 37249 11.20 8.54 2.68 632.86 7.73 2.80 829.17
10−5 10.78 8.38 2.67 145.52 6.83 2.75 573.99

Table 8.2: Boundary layer problem in 2D for different anisotropic parameters and
DOFs.

longest to the shortest side of a brick was approximately 50. The top electrode

Figure 8.3: FE-discretization of the piezoelectric transducer.

of the piezoelectric actuator has been loaded by a voltage. Table 8.3 presents the
CPU-time of the overall solution time and the number of PCG iterations for both,
the ’AMG with EP’ and the AMG preconditioner as a function of unknowns for a
relative accuracy of ε = 10−5. It can be seen that ’AMG with EP’ has a much better
performance than the standard AMG method. In addition this examples requires
approximately 100 spectrally equivalent matrices to be calculated which is again
negligible with respect to the overall computation time.
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AMG with EP AMG

Nh it solution it solution

18965 18 5.75 44 12.07
67088 21 23.95 42 43.59
147930 28 69.42 44 102.49

Table 8.3: Total CPU-times (in seconds) and number of iterations of the piezoelectric
transducer.

We note that the element preconditioning technique appears to work well in 2D as
well as for 3D. This conclusion is fairly predictable since the element preconditioning
method is based on pure algebraic information of the element matrices.

8.1.2 Anisotropic Studies with an Auxiliary Matrix

So far the element preconditioning technique was used in order to get a robust pre-
conditioner with respect to the considered anisotropy. Subsequently we study the
properties of an AMG method which is explicitly constructed with an auxiliary ma-
trix. We consider the variational form (2.48) in 2D and 3D and apply the average
based prolongation (4.1). The numerical studies were done within PEBBLES up to
a relative accuracy ε = 10−8.

We start with the 2D problem (2.48) with Ω = (0, 1)2 ⊂ R2 and the material
tensor

D =

(
1 0
0 ε

)
,

where ε will be varied with three different values. We assume homogeneous Dirichlet
and Neumann boundary conditions on [0, 1]×{0} and ∂Ω \ [0, 1]×{0}, respectively.
The FE-discretization was done with bilinear FE-functions.

The arising linear equation is solved on one hand by the new method based on
an auxiliary matrix constructed via the method given in Example 3.2.2, and on the
other hand by the standard AMG method. The results for both are displayed in
Tab. 8.4. It can be seen that the performance of the auxiliary matrix based method
is much better than the standard AMG method. In addition, the new method is rel-
atively insensitive with respect to the anisotropic parameter ε, whereas the standard
method fails in the sense of the required PCG iterations for all cases ε ≤ 10−2. Both
AMG methods works well if the anisotropy is moderate (ε = 10−1). We detect minor
variations in the operator and grid complexity for both methods, but the operator
complexity is significantly less for the auxiliary based method than for the standard
approach. This in turn implies a fast application of the ’AMG with AUX’ precon-
ditioner. The amount of work and memory requirement entailed for the auxiliary
matrix is of optimal order, but has to be regarded. However, the auxiliary matrix
based method pays off for anisotropic equations which are aligned with the grid and
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AMG with AUX AMG

Nh ε it setup solver OC GC it setup solver OC GC

10201 20 1.08 1.12 1.90 1.91 30 1.26 2.01 3.11 1.79
40401 10−1 21 4.32 5.63 1.91 1.92 38 5.55 12.36 3.14 1.79
90601 33 9.78 20.83 1.91 1.92 47 12.20 34.75 3.16 1.80

10201 20 1.14 1.16 1.96 1.97 206 1.26 13.79 3.11 1.79
40401 10−2 19 4.41 5.21 1.98 1.99 248 5.57 80.05 3.13 1.79
90601 19 10.20 12.25 1.99 2.00 269 12.22 198.56 3.16 1.80

10201 25 1.13 1.45 1.96 1.99 442 1.26 29.81 3.11 1.79
40401 10−3 26 4.41 7.18 1.97 1.99 - 5.57 - 3.14 1.79
90601 25 10.22 16.19 1.98 2.00 - 12.22 - 3.16 1.80

Table 8.4: Number of iterations, CPU-times (in seconds), grid- and operator com-
plexity for the anisotropic problem in 2D.

seems to be quit effective.

Turning our attention to the 3D case with Ω ⊂ R3 be an L-shaped domain and
the material tensor given by

D =




2 + ε −ε 2− ε
−ε 2 + ε −2 + ε

2− ε −2 + ε 4 + ε


 .

We assume homogeneous Dirichlet boundary conditions on ∂Ω. Since we use a
tetrahedra FE-mesh with linear FE-functions we are faced with a problem featuring
a non-aligned anisotropic operator. For the smoother we use an overlapping patch
Gauss-Seidel smoother with maximal patch size 10 instead the standard Gauss-Seidel
method. The smoother is applied in a V (2, 2)-cycle. The auxiliary matrix is con-
structed as suggested in Example 3.2.2.
The results for different ε are given in Tab. 8.5. The performance of both methods
are similar compared to each other. The reason therefore is that they detect approx-
imately the same strong connections, i.e., the nodes which are potential candidates
for prolongation. In this case, where the anisotropy is not aligned with the grid, an
optimal solver is hard to realize.

8.1.3 Nonlinear Studies

The next series of problems deals with nonlinear version of the variational form (2.48)
where we assume a nonlinear, scalar material parameter, i.e.,

ν = ν(‖ grad u‖) .

The nonlinear (electrostatic and magnetostatic) equations are solved via a fixed
point method, see e.g. [93] within CAPA. The outer nonlinear iteration stopped if
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AMG AMG with AUX

Nh ε it setup solver it setup solver

2025 5 0.37 0.70 5 0.53 0.72
14161 10−3 9 3.45 15.28 9 4.09 14.55
105633 16 32.65 242.19 14 35.53 195.67

2025 5 0.35 0.69 5 0.50 0.75
14161 100 8 3.32 12.49 8 4.05 12.47
105633 11 28.92 156.09 10 34.52 137.66

2025 6 0.41 0.81 7 0.63 1.29
14161 10+3 11 3.58 18.77 13 5.15 24.68
105633 19 32.99 291.36 23 43.18 372.02

Table 8.5: Number of iterations and CPU-times (in seconds) for the anisotropic
problem in 3D.

the relative error of the residuum

r(ui
h) = fh −Kh(ui

h)

is smaller than 10−4 and the PCG iteration in each nonlinear step terminated if the
error was reduced by a factor of ε = 10−5. All calculations have been performed by
using the element preconditioning method (see Chapter 5). Comparisons are made
for the required setup and solver CPU-times in the cases of the AMG and IC pre-
conditioner. In addition the suggested ’setup control’ of Section 7.2 is studied.

Electrostatic: The first numerical study is due to the nonlinear version of the
piezoelectric transducer (Fig. 8.3) with the nonlinearity given in Fig. 8.4. In the

Figure 8.4: Nonlinear function of the relative permittivity.

nonlinear case the top electrode is loaded by an electric charge. To define an equipo-
tential, surface constraints are applied to the FE-nodes within the area of the top
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electrode (cf. Fig. 2.2).

The performance of AMG for the linear case was already reported in Subsec-
tion 8.1.1. The nonlinear case reflects the results of the linear case, which is illus-
trated in Tab. 8.6 and Tab. 8.7.

AMG with EP IC

Nh nit precond sit solution sit solution

18964 5 5 111 33.57 271 35.28
67088 5 5 125 136.39 418 197.89
147930 5 5 142 348.11 536 565.42

Table 8.6: Electrostatic: nonlinear case with αmax = 1 and CPU-times in seconds.

Regarding the performance of the preconditioners with the ’setup control’ of
Section 7.2 we observe that the best results are obtained for αmax = 2, but it does
not save much CPU-time. This is also displayed in Tab. 8.6 and Tab. 8.7. Thus the
’setup control’ does not significantly gain speedup, which can be explained by the
moderate nonlinearity.

AMG with EP IC

Nh nit precond sit solution sit solution

18964 5 1 119 30.77 324 37.38
67088 5 2 125 124.28 419 187.42
147930 5 2 151 338.55 541 546.34

Table 8.7: Electrostatic: nonlinear case with αmax = 2 and CPU-times in seconds.

Magnetostatic: In the magnetostatic case a magnetic assembly with an air-
gap, driven by a permanent magnet, has been considered (Fig. 8.5). As for the
piezoelectric transducer, brick elements are used for the FE-discretization. The
considered nonlinearity is given in Fig. 8.6. Compared to the nonlinearity of the
piezoelectric transducer this one is more difficult to handle. As we will see later,
the number of nonlinear iterations is larger than for the electrostatic case. In the
linear case the performance of the AMG preconditioner and the IC preconditioner
is shown in Tab. 8.8. Up to about 50000 unknowns the IC-PCG is faster than
the AMG-PCG. However, practical important discretizations consists of up to 106

number of unknowns. The results of the nonlinear case are given in Tab 8.9, Tab 8.10
and Tab 8.11. It is important to notice that the fastest strategy for the nonlinear
case is given for αmax = 2. Thus by applying the ’setup control’ we definitely save
CPU-time in the overall computation.
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Figure 8.5: FE-discretization of the magnetic circuit

AMG with EP IC

Nh it solution it solution

9102 29 3.86 42 2.64
65846 35 37.03 82 37.74
149625 40 97.00 112 118.85

Table 8.8: Magnetostatic: Linear case and CPU-times in seconds.

AMG with EP IC

Nh nit precond sit solution sit solution

9102 14 14 309 43.05 575 35.01
65846 15 15 503 525.15 1194 544.31
149625 18 18 705 1683.18 1944 2021.15

Table 8.9: Magnetostatic: nonlinear case with αmax = 1 and CPU-times in seconds.

AMG with EP IC

Nh nit precond sit solution sit solution

9102 14 5 315 39.73 598 32.96
65846 15 5 498 478.98 1237 532.32
149625 18 5 706 1570.17 2053 2046.85

Table 8.10: Magnetostatic: nonlinear case with αmax = 2 and CPU-times in seconds.
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Figure 8.6: Nonlinear function of the permeability.

AMG with EP IC

Nh nit precond sit solution sit solution

9102 14 4 336 41.58 610 34.10
65846 15 4 524 500.49 1294 558.90
149625 18 4 747 1638.70 2264 2249.87

Table 8.11: Magnetostatic: nonlinear case with αmax = 4 and CPU-times in seconds.

8.1.4 Coupled Field Problems

Concerning coupled field problems of Subsection 2.2.3 we apply AMG exclusively as
a solver for the magnetic or electric field equation. Since the magnetic system matri-
ces changes permanently during the outer iteration, while the mechanical (acoustic)
system matrix remains constant, it is advisable to solve the magnetic (electric) part
by AMG with an appropriate ’setup control’ and the mechanical (acoustic) part via
a direct method. The subsequent computations were carried out with CAPA up to a
relative accuracy of ε = 10−4 for the loudspeaker, and ε = 10−6 for the electrostatic
driven bar. For both examples the element preconditioning technique was applied.

The loudspeaker: We start with the electrodynamic loudspeaker (see Fig. 8.7).
The computational domain can be reduced to an axisymmetric problem. The dis-
cretization of the computational domain was done by rectangles, with maximal ratio
of the longest to the shortest side of about 20 (see Fig. 8.8). The number of unknowns
for the magnetic, mechanical and acoustic parts are 14738, 31071 and 154191, re-
spectively. Quadratic FE functions are used. We have to perform 5000 time steps
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Figure 8.7: The principle structure of the electrodynamic loudspeaker.

Figure 8.8: The FE-discretization of the electrodynamic loudspeaker.

for the transient analysis of the electrodynamic loudspeaker (one time step 20 ns) in
order to get the desired accuracy. The AMG preconditioner of the first time step is
kept constant throughout all 5000 time steps and applied in the PCG iteration. For
a detailed discussion on the solution process see [52]. The amount of work entailed
for the element preconditioning method is negligible since we only have to produce
about 190 spectrally equivalent element stiffness matrices. The AMG preconditioner
appears to work well for this problem, although quadratic FE-functions are used.

Table 8.12 presents the CPU-time for the electrodynamic loudspeaker for one
time step for computations with ’AMG with EP’ and the standard AMG. It can be
seen that the CPU-time for the setup phase as well for the solution phase is essen-
tially less for ’AMG with EP’ than for the standard AMG.

Electrostatic driven bar: Next, we consider the coupled field problem of a
typical voltage driven micromechanical bar (see e.g. [50]) with a length of 1mm,
thickness of 1µm and an air-gap of 3µm (distance between the two electrodes).
The devices are operated near the snap in point in order to gain a maximum on
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it setup solver

AMG with EP 68 2.38 6.46
AMG 77 13.42 11.40

Table 8.12: CPU-time (seconds) for the electrodynamic loudspeaker.

efficiency. The electrostatic transducer has been loaded by 0.1V and the mechanical
deformation of the bar has been calculated. The FE-discretization was done with
hexahedra elements. Again, the mechanical part is solved via a direct method,
whereas the electric field is solved by the AMG method. Table 8.13 displays the
results for the electric field computation performed by the AMG solver of one single
nonlinear iteration. The results of the coupled field computation required 6 nonlinear

Nh setup solver

25505 1.8 3.8
50355 3.5 7.2
127368 10.7 25.3

Table 8.13: Electrostatic driven bar: CPU-times of the AMG-PCG for setup and
solution phase in seconds.

iterations. The total CPU-time for different discretizations is shown in Tab. 8.14.

Nh solution

25505 42.1
50355 103.9
127368 240.7

Table 8.14: Electrostatic driven bar: Total CPU-time in seconds.

8.1.5 Inverse Source Reconstruction

One application in inverse source reconstruction is used in medical applications in
order to reconstruct current distributions in the human brain by knowing magnetic
and electric field measurements around the head [90]. This is actually an inverse
problem. However, in order to recover the current distribution, we have to solve
several forward problems of (2.48) with different right-hand sides. The engineers
assume Neumann boundary conditions and they fix one node with zero potential
(reference electrode). A realistic head model has about Nh ∼ 300000 DOFs and ap-
proximately 10000 different right-hand sides which are in general linear independent.
Additionally, the material tensor of the brain is anisotropic. The challenging task is
to solve this system for all given right-hand sides within 6 hours in order to make
it applicable to clinical use. The calculations were done within the inverse source
reconstruction program CAUCHY.
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The first tests1 with a single processor machine are displayed in Fig. 8.9. Therein

Figure 8.9: Comparison of different solvers.

the AMG method is compared with standard preconditioners like IC. Up to a relative
accuracy of ε = 10−3 all preconditioners are quite similar with respect to CPU-time.
For a relative accuracy ε < 10−3 the AMG method appears to work much better
than the other preconditioners. The experiments were repeated for several different
FE-meshes, number of unknowns and brain anisotropies. AMG maintains robust
and efficient for all test cases and is the favorite choice in that application. However,
in order to solve the whole problem setting in the prescribed CPU-time of 6 hours,
the problem with about 10000 right-hand sides has to be solved by a parallel version.
In Fig. 8.10 a typical solution of a given dipole in the brain is shown.

Figure 8.10: Typical solution of a dipole in the brain.

1Courtesy of A. Basermann (NEC), C. Wolters (MPI Leipzig) and the Simbio Project.
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8.2 Symmetric (H1(Ω))p-based Equations

8.2.1 Linear Elasticity Problems

The robust and efficient solution of SPD matrices arising from an FE-discretization
of the variational form (2.49) is a challenging task for AMG. The reason therefore is
the nontrivial kernel of the corresponding operator which can not be approximated
well enough yet. However, we present some numerical studies for the new AMG
method based on an auxiliary matrix and compare it to standard AMG. We restrict
our studies to the cantilever beam in 2D and to the crank shaft in 3D. For both
examples we assume a Poisson ratio 0.3 and a standard FE-discretization. The re-
lated calculations were done within FEPP up to a relative accuracy of ε = 10−8. A
V (2, 2)-cycle is used in the AMG preconditioners with a block Gauss-Seidel smoother.

For the cantilever beam we assume an FE-discretization with bilinear FE-functions
on a uniform rectangular grid with ratio ε : 1. Additionally, homogeneous Dirichlet
boundary conditions are assumed on one side of the beam and free boundary condi-
tions on the rest of the boundary, see Fig 8.11. The parameter ε is employed with
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Figure 8.11: Cantilever Beam in 2D.

two different values. First, we consider the isotropic case for ε = 1. The results
are presented in Tab. 8.15. The performance of the standard AMG with harmonic
extension based prolongation (4.5) performs best, whereas the average based pro-
longation (4.4) performs comparably well. There are only minor variations in the
number of iterations and CPU-times in Tab. 8.15. The results for the cantilever

AMG with AUX1 AMG1 AMG2

Nh it setup solver it setup solver it setup solver

20402 15 1.79 3.67 12 1.11 3.00 11 1.28 2.77
80802 21 7.21 21.57 14 4.48 14.61 11 5.11 11.64
181202 22 16.29 51.29 15 9.96 35.40 12 11.44 28.70

Table 8.15: CPU-times (seconds) and number of iterations for the cantilever beam
in 2D with ε = 1. 1prolongation (4.4), 2prolongation (4.4).

beam with ε = 10−1 are displayed in Tab. 8.16. In this case the standard AMG
method with harmonic extension based prolongation operator is much better than
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AMG with AUX1 AMG2

Nh it setup solver it setup solver

20402 113 7.00 54.74 50 1.58 15.68
80802 109 30.80 224.27 65 6.26 87.71
181202 140 71.57 654.36 81 13.57 244.43

Table 8.16: CPU-times (seconds) and number of iterations for the cantilever beam
in 2D with ε = 10−1. 1prolongation (4.4), 2 prolongation (4.5).

the new AMG method. Heuristically, this can be explained as follows: While the av-
erage based prolongation only preserves constant functions, the harmonic extension
based prolongation is able to approximate more than constant functions. Since the
constant functions are only a subspace of the current kernel we can neither expect an
optimal preconditioner for the harmonic extension prolongation nor for the average
based prolongation. This is the reason that the efficiency generally degrades for this
problem class.

We continue this subsection with a 3D crank shaft with geometry given in
Fig. 8.12 and the input data is the same as for the cantilever beam, except the
Dirichlet boundary data that is prescribed on the hole surface for simplicity. This
experiment is run for an uniform tetrahedra FE-mesh. The results are listed in

Figure 8.12: Crank Shaft in 3D.

Tab. 8.17 and show that both methods perform comparably well. As for the can-
tilever beam the standard AMG method with the harmonic extension based pro-
longation is the best method in that comparison. The above considerations on the
prolongation operators apply also in the 3D case.
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AMG with AUX1 AMG1 AMG2

Nh it setup solver it setup solver it setup solver

3039 8 2.45 0.89 8 0.63 0.82 7 0.67 0.73
17769 16 12.98 10.63 16 6.18 10.63 11 2.18 7.38
118359 23 110.0 118.86 23 13.52 118.75 19 17.53 96.83

Table 8.17: CPU-times (seconds) and number of iterations for the crank shaft in 3D.
1prolongation (4.4), 2prolongation (4.5).

8.2.2 Magnetic Field Equations in 3D with Nodal Elements

Let us turn our attention to the FE-discretization of the variational form (2.50)
with Lagrange FE-functions. In particular we consider TEAM Problem 20 and 27
and perform a full numerical simulation of them. Therefore we solve the nonlinear
equation up to a relative error of the residual r(ui

h) of 10−3 and the PCG iteration
stopped if the error was reduced by a factor of ε = 10−5. For comparison the IC
preconditioner is presented. The following computations are done within CAPA.

TEAM Problem 20: TEAM 20 defines a 3D nonlinear magnetostatic field
problem consisting of a yoke with center pole and a coil for excitation (see Fig. 8.13).
In a first step we performed a linear analysis using different meshes consisting of

Figure 8.13: TEAM 20: FE-mesh of yoke, center pole and coil.

hexahedra and tetrahedra finite elements. In Tab. 8.18 the CPU-times for the setup
and solver as well as the number of PCG-iterations for the AMG-PCG solver are
displayed.
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Nh it setup solver

91260 37 34.3 78.2
136620 53 46.3 163.8
175329 59 55.6 229.9
241368 49 81.9 269.4

Table 8.18: CPU-times (seconds) and number of iterations of the AMG-PCG solver
in the linear case for TEAM 20.

The comparison of the AMG- and the IC-PCG solver is given in Tab. 8.19 and
shows the strong dependences of the IC-PCG method on the number of unknowns.

AMG IC

Nh it solution it solution

91260 37 112.5 81 184.8
136620 53 210.1 112 353.6
175329 59 285.5 122 487.1
241368 49 351.3 150 795.9

Table 8.19: Comparison of AMG- and IC-PCG method in the linear case for TEAM
20. CPU-times in seconds.

By using the ’setup control’ proposed in Section 7.2 the total CPU-time for the
nonlinear computation can be reduced. It is important to notice, that the fastest
strategy for the nonlinear case is given for αmax = 4.

αmax nit setups solution sit

1 18 18 6736 913
2 18 13 6279 959
4 18 4 5832 1009
8 18 3 6193 1213

Table 8.20: Nonlinear case on the finest mesh (Nh = 241368) and 4000 ampere-turns
excitation for TEAM 20. CPU-times in seconds.

The comparison of measured and simulated magnetic induction is given in Tab. 8.21.
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Bz (P2)
ampere-turns simulated measured

1000A 23.7mT 24.0mT
3000A 65.8mT 63.0mT
4500A 73.6mT 72.0mT
5000A 75.3 mT 74.0mT

Table 8.21: Measured and simulated magnetic induction of TEAM 20 at location P2

(12.5mm,5mm,25.75mm).

TEAM Problem 27: TEAM 27 defines a 3D linear eddy current problem,
where a deep flaw in an aluminum cylinder leads to an asymmetry in the magnetic
field. This asymmetry is detected by the difference signal of the two Hall Effect
Sensors (HES1 and HES2), which measure the horizontal flux density. The principle
setup is shown in Fig. 8.14. The begin of the measurement is the current turn-off in
the coil. For the simulations a time step of 10µs has been used.

Figure 8.14: TEAM 27: a) Coil with Hall effect sensors (HEF1 and HEF2) and
aluminum cylinder b) Detail of aluminum cylinder to see the flaw.

In Tab. 8.22 the CPU-times as well as the number of PCG iterations of the
AMG-PCG solver are displayed for different fine grids. Since the performance (i.e.,
the CPU-time) is quite constant for all time steps, the results of just one time step
are shown.

Nh it setup solver

110432 56 37.0 180.3
174824 46 62.2 240.1
311360 60 110.9 559.5

Table 8.22: Performance of the AMG-PCG solver for one time step. CPU-times in
seconds.

In Tab. 8.23 the comparison between the AMG- and IC-PCG solver is displayed.
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AMG IC

Nh it solution it solution

110432 56 217.3 60 291.3
174824 46 302.3 66 490.5
311360 60 670.4 75 1233.8

Table 8.23: Comparison of AMG- and IC-PCG method for one time step. CPU-times
in seconds.

As in the 3D nonlinear magnetostatic case, the efficiency of the AMG-PCG solver
is demonstrated. In Fig. 8.15 the measured and the simulated data are compared. It

Figure 8.15: Measured and simulated data of the HDFD.

has to be noticed, that this problem is very sensitive to the quality of the FE-mesh,
since the measured quantity (flux density) is very small. Any asymmetry in the mesh
leads to additional differences between the flux densities of the HEFs, which is of
course a pure numerical effect.

The results of TEAM 20 in Tab. 8.18 and TEAM 27 in Tab. 8.22 indicate that
the domain configuration generally has again little affect on AMG behavior while
the structure of the mesh is more important. This explains the minor variations in
the number of iterations.

8.3 Symmetric H(curl, Ω)-based Equations

8.3.1 Magnetic Field Equations in 3D with Edge Elements

Let us consider the variational form (2.51) and an appropriate edge FE-discretization.
Our purpose here is to assess the method proposed in Section 4.3 for that particu-
lar problem class. Regarding the AMG performance we can not expect an optimal
solver since the used prolongation is non optimal. The subsequent calculations were
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done within FEPP.

Unit cube: We start with a fairly simply example, namely the unit cube with
an uniform tetrahedra FE-mesh. The relative error is given by ε = 10−6. Every row
of Tab. 8.24 and Tab. 8.25 consists of two sub-rows. The first one is directed to a
V (2, 2)-cycle and the second one to a generalized V-cycle with 2s smoothing steps
on level s (s = 1, . . . , ` and s = 1 is the finest level). On the boundary ∂Ω of Ω
Dirichlet boundary conditions are prescribed. We use the parameter setting ν = 1
and σ = 10−4 in Ω.

Although the system matrix is SPD we show that all suggested ingredients of the
new AMG method are necessary. Therefore we solve this problem with Nh = 4184
with different preconditioners. The results depicted in Fig. 8.16 reveal that only the
new AMG method appears to be an appropriate preconditioner. It can be seen that

Figure 8.16: Comparison of different solvers.

the standard AMG, which was constructed for H1(Ω)-based problems fails as well as
the IC preconditioner in the sense of robustness. An interesting observation is that
an AMG method with the correct prolongation operator (defined in Chapter 4), but
with a point Gauss-Seidel smoother fails as well.

Let us continue this study by testing the two suggested smoothers. Results are
displayed in Tab. 8.24 for the smoothing iteration proposed by D. Arnold, R. Falk,
R. Winther in [3] and in Tab. 8.25 for the smoother proposed by R. Hiptmair in [42].
In both cases a slight increase can be detected in the number of iterations with respect
to the number of unknowns. This might be an effect of the designed prolongation
operator. As it can be expected the generalized V-cycle performs better for both
smoothers compared to the V (2, 2)-cycle. Actually there are only minor variations
with respect to CPU-time of the used smoothers.

Magnetic valve: Let us turn our attention to an example from engineering.
We consider the magnetic valve as it is depicted in Fig. 8.17. The simulation of the
magnetic valve requires a nonlinear, time dependent study, but for test reasons we
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Nh it setup solver

4184 9 0.24 0.23
9 0.27

31024 14 1.98 4.76
12 4.56

238688 20 16.83 58.15
16 53.59

Table 8.24: CPU-times (seconds) and number of iterations for the unit cube with
the smoother of Arnold, Falk, Winther.

Nh it setup solver

4184 12 0.15 0.30
11 0.31

31024 17 1.32 6.29
15 6.21

238688 21 11.39 67.98
17 63.93

Table 8.25: CPU-times (seconds) and number of iterations for the unit cube with
the smoother of Hiptmair.

are simply considering one linear step to show the performance of AMG. The given
FE-mesh contains a lot of flat tetrahedra due to the small airgaps of the magnetic
valve, which in turn explains the relative large iteration numbers in Tab. 8.26. The
results are computed for the relative accuracy of ε = 10−8 and the V (2, 2)-cycle with
the Arnold, Falk, Winther smoother.

Nh it setup solver

8714 14 0.53 2.49
65219 28 4.17 44.01
504246 63 34.49 792.49

Table 8.26: CPU-times (seconds) and number of iterations for the magnetic valve
with the smoother of Arnold, Falk, Winther.

The key observation is that the suggested AMG method proposed here can deal
with system matrices stemming from an edge FE-discretization without too much
degradation in efficiency. This carries over to the next discretization scheme.

8.3.2 FIT Discretization

Another discretization method for the Maxwell equations is the so called FIT (finite
integration technique) scheme (see [89, 18]). We don’t want to go into detail for
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Figure 8.17: The magnetic valve without surrounding air.

this discretization scheme, but we test the AMG preconditioner for the arising SPD
matrices. Therefore we choose the smoother of D. Arnold, R. Falk, R. Winther and a
V (1, 1)-cycle. The calculations were done within MAFIA on a SUN Enterprise 3500,
336MHz. Further the AMG preconditioner is compared to a highly tuned SSOR
preconditioner which takes care of the special tensor product mesh. The relative
accuracy is given by ε = 10−8.

The C-magnet (see Fig. 8.18) is taken as an example. The whole simulation
requires a time dependent calculation, but for test reasons only one linear time step
is regarded. The results2 are depicted in Fig. 8.19 and it can be seen that AMG

Figure 8.18: The C-magnet without surrounding air.

shows an almost optimal CPU-time behavior. The AMG preconditioner is not the
fastest method, but this might be due to a non optimal C++ compiler. Nevertheless,
the cross-over can be extrapolated from Fig. 8.19.

2Courtesy of T. Weiland and M. Clemens (University of Darmstadt).
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Figure 8.19: Results for different solvers for the C-magnet.

8.4 Parallel Results

The following examples were computed within FEPP and make extensive use of the
Distributed Data Communication Library DDComm [62] by M. Kuhn, i.e., PEB-
BLES and FEPP contain parallel versions which are realized by DDComm. A par-
tition of a given FE-mesh is computed by the modified recursive spectral bisection
method with interface smoothing [31]. This algorithm produces an almost uniform
distribution of the elements to the subdomains for any number of subdomains. We
run the experiments on an SGI ORIGIN 2000 with R12000, 300MHz processors and
overall 20 GB of main memory. We investigate the speedup for 1 up to 32 processors.
MPI is used as message passing library. In a second run we repeat some experiments
on a PC cluster with 4 double processor machines with INTEL Pentium 500 MHz
processors and at least 256 KB of main memory. The machines are running under
SUSE LINUX 6.3 and are connected via fast Ethernet. The LAM-distribution of
MPI is used for the PC cluster.

8.4.1 Symmetric H1(Ω)-based Equations

Let us consider the variational form (2.48) with Dirichlet boundary conditions on
the domain of a simplified crank shaft (see Fig. 8.12). We solve the resulting matrix
equation by the AMG-PCG solver (Alg. 10 together with Alg. 11). In particular, we
apply AMG with element preconditioning (see Chapter 5). The CPU-time required
for generating spectrally equivalent M-(element-)matrices is contained in the matrix
generation CPU-time given below. The prolongation operator is given by the average
based prolongation (4.1) and we apply a V (2, 2)-cycle in one preconditioning step.
The smoother is a block Jacobi smoother with Gauss-Seidel smoothing in blocks
containing interior unknowns of the subdomains. We choose a relative accuracy of
ε = 10−4 as stopping criterion.

Table 8.27 shows the number of iterations, the wall clock-time (measured by
MPI WTIME) required for the AMG setup, matrix generation and solver for a
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problem size of 3227648 elements and 576833 global unknowns. The CPU-time
for partitioning as well as for the communication setup is not included. Since both,

proc it matrix setup solver solution

1 31 211.9 184.2 383.4 779.3
2 33 106.5 94.5 223.7 424.7
4 33 51.0 50.4 111.5 219.9
8 24 24.6 22.5 29.3 76.4
16 25 12.6 12.2 13.3 38.1
24 25 9.0 10.2 9.5 28.7
32 26 7.3 8.4 7.0 22.7

Table 8.27: Number of iterations and CPU-times (seconds) for the crank shaft on
the SGI 2000.

coarsening and smoother depend on the decomposition into subdomains, we observe
that the number of iterations depends on the number of processors. That is the
reason for considering the speedup with respect to 1 iteration. The corresponding
speedup results are found in Tab. 8.28. The matrix generation is purely local and

proc 1it matrix setup solver solution

1 1.0 1.0 1.0 1.0 1.0
2 1.8 2.0 1.9 1.7 1.8
4 3.7 4.1 3.6 3.4 3.5
8 10.1 8.6 8.2 13.1 10.2
16 23.2 16.8 15.1 28.8 20.4
24 32.5 23.5 18.0 40.3 27.2
32 45.9 29.0 21.9 54.8 34.3

Table 8.28: Speedups for one iteration of the considered crank shaft.

gives the reference value for the quasi optimal speedup. Looking at the speedup of
the setup phase, we observe some kind of saturation effects which are due to the in-
creasing communication effort. In contrast to the solver, these communication steps
have to be synchronized. Hence, increasing the number of processors for a fixed
problem size increases the sequential overhead. However, in many applications, e.g.
transient or nonlinear problems, a fixed setup can be used for repeated calls of the
solver. Then the speedups for the solver alone are of interest. Here we observe op-
timal speedups. Moreover we profit from cache effects since the local problem size
decreases.

Now we repeat our experiments on a PC cluster. Because of memory limitations
we reduce the problem size down to 403456 elements and 77153 nodes. The results
are presented in the same way as above in Tab. 8.29. We consider speedup for 1
up to 8 processors in Tab. 8.30. As expected we observe lower efficiency compared
to the computations on the ORIGIN 2000. However, the PC cluster caused almost
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proc it matrix setup solver solution

1 23 20.0 10.4 24.0 54.4
2 23 9.9 5.4 12.0 27.3
4 23 5.0 3.4 6.4 14.8
6 22 3.4 2.5 4.9 10.8
8 18 2.5 2.3 3.4 8.2

Table 8.29: Number of iterations and CPU-times (seconds) for the crank shaft on a
PC cluster.

proc 1it matrix setup solver solution

1 1.0 1.0 1.0 1.0 1.0
2 2.0 2.0 1.9 2.0 2.0
4 3.7 4.0 3.0 3.7 3.7
6 4.7 5.9 4.1 4.9 5.0
8 5.5 8.0 4.5 7.1 6.6

Table 8.30: Speedups for one iteration for the crank shaft on a PC cluster.

no additional costs for the network since the standard fast Ethernet has been used.
Table 8.31 shows the overall CPU-times on the ORIGIN 2000 and the PC cluster

proc ORIGIN 2000 PC Cluster

1 59.6 54.4
2 31.1 27.3
4 15.6 14.8
8 7.1 8.2

Table 8.31: Total CPU-times (seconds) on the ORIGIN 2000 and the PC Cluster.

for the same (smaller) problem size. For very few processors the faster processors of
the PC cluster give lower computation time in comparison with the ORIGIN 2000.
If the effort for communications grows with the number of processors, the ORIGIN
2000 outperforms the PC Cluster due to the superior network.

8.4.2 Symmetric H(curl, Ω)-based Equations

In principle the parallelization of edge FE-discretizations can be done as for the nodal
FE-discretization, but special attention has been taken to the smoother. Again a
V (2, 2)-cycle is used and we use a relative accuracy of ε = 10−6 as stopping criterion.
The artificial conductivity is σ = 10−6 in all cases.

Figure 8.20 shows the geometry and the mesh of a C-magnet being considered
now. The problem has 180426 unknowns and a material parameter ν ≡ 1. The field
is generated by a current in the coil. In order to analyze the parallel performance
we again consider the following components of the algorithm: generation of the
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Figure 8.20: C-Magnet: geometry and mesh with 153408 elements and 206549 nodes.

system matrix, setup and solver, see Tab. 8.32 and Tab. 8.33 for the absolute CPU-
time and for the speedup, respectively. In addition the parallel versions of AMG
and geometrical MG are compared. In the case of geometric MG the setup phase
involves the setup of the smoother and the LU-decomposition of the coarse-grid
system matrix with 2907 unknowns. Since the setup is dominated by the sequential
LU-decomposition, only low speedups can be observed. In the case of AMG the setup
involves the coarsening itself and the LU-decomposition of the coarse-grid system
which has less than 500 unknowns. Hence, the setup shows reasonable speedups
since it is dominated by the coarsening of the inner nodes. In both cases (AMG and
geometric MG) the solver shows a similar speedup behavior. Although most of the
gain is due to the additional CPU capacity, the additional cache which comes with
each processor also contributes to the acceleration. A closer look at Tab. 8.32 shows
that whereas the solver CPU-time is only 2 times larger for AMG, the number of
iterations is approximately 4 times larger for AMG compared with geometric MG.
There might be several reasons for this effect (e.g. different implementation of the
AMG and the geometric MG code, different complexities of the coarse grid systems).
However, the main reason is that the prolongation operator is very simple in the case
of AMG, which explains the fast application. But this prolongation suffer from the
non-optimality. On the other hand, we have an optimal prolongation operator for
the geometric MG, which in turn is more expensive.

AMG MG

proc matrix it setup solver it setup solver

1 40.3 60 44.4 247.3 13 13.1 99.4
2 19.6 52 24.4 127.1 13 10.8 69.2
4 9.7 52 12.6 48.9 13 9.1 31.8
8 4.7 58 7.6 28.2 13 8.8 16.2

Table 8.32: Comparing AMG and MG for edge FE-discretization in the parallel case.
CPU-times in seconds.
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AMG MG

proc matrix 1it setup solver setup solver

1 1 1 1.0 1.0 1.0 1.0
2 2 1.7 1.8 1.9 1.2 1.4
4 4.1 4.3 3.5 5.0 1.4 3.1
8 8.5 8.4 5.8 8.8 1.5 6.1

Table 8.33: Speedups for the C-magnet: AMG and MG for edge FE-discretization
in the parallel case.

8.5 Other Comparisons

Since our attempts are closely related to the Maxwell equations we present two fur-
ther studies. Therefore we assume the geometry of TEAM 20 (see Subsection 8.2.2).

In a first test, a pure tetrahedra FE-mesh and edge FE-functions are used for the
bilinear form (2.51). The geometric MG as well as the AMG preconditioner has been
applied for the solution of the algebraic system. We use a V (2, 2)-cycle for the AMG
method and a V (1, 1)-cycle for the geometric MG method. The iteration was stopped
if an error reduction has been achieved by a factor ε = 10−6. The comparison is
shown in Tab. 8.34 for two different FE-meshes. Because of the optimal prolongation

AMG MG

Nh it solution it solution

108552 26 74.82 8 37.4
237893 32 188.55 10 89.6

Table 8.34: Comparison of geometric MG and AMG solver for one nonlinear iteration
with edge FE-functions of TEAM 20. CPU-times in seconds.

operator for the MG method the number of iterations stays essentially constant while
for the AMG method the number of iterations grows again. It is worth to mention
that in both cases (nodal and edge FE-discretizations) good agreement between
measured and simulated data has been achieved as shown in Tab. 8.35. In addition
AMG appears as an efficient preconditioner for both FE-discretizations. This leads
us to our final studies. We compare the AMG method itself with the two proposed
FE-discretizations of variational forms (2.50) and (2.51) on the same FE-mesh, i.e.,
we use nodal (Lagrange) and edge (Nédélec) FE-functions for the discretization,
respectively. In Tab. 8.36 the results for 3 different FE-meshes and one nonlinear
iteration step are presented. As expected, we observe that the number of iterations
are slightly growing in both cases. This is due to the non-optimal prolongation
operators, mentioned several times before. Nevertheless the AMG preconditioner
performs well for both FE-discretizations.
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Bz (P2)
ampere-turns nodal edge measured

1000A 23mT 24mT 24mT
3000A 65mT 58mT 63mT
4500A 73mT 66mT 72mT
5000A 75 mT 70mT 74mT

Table 8.35: TEAM 20: Measured and simulated results of the magnetic induction
at location P2 (12.5mm,5mm,25.75mm).

nodal edge

Nh it setup solver Nh it setup solver

1114 8 0.10 0.18 2018 11 0.10 0.30
7203 15 0.80 3.30 14408 17 0.87 5.72
50427 27 7.97 48.34 108552 26 7.02 67.80

Table 8.36: TEAM 20: Number of iterations and CPU-times (seconds) for AMG-
PCG with node and edge FE-discretization.
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algebraic multigrid, Tech. Report 00-33, Johannes Kepler University Linz, SFB
”Numerical and Symbolic Scientific Computing”, 2000.

[38] G. Haase, U. Langer, S. Reitzinger, and J. Schöberl, Algebraic multigrid meth-
ods based on element preconditioning, International Journal of Computer Math-
ematics 80 (2001), no. 3–4, accepted for publication.

[39] W. Hackbusch, Multigrid methods and application, Springer Verlag, Berlin, Hei-
delberg, New York, 1985.

[40] , Iterative Lösung großer schwachbesetzter Gleichungssysteme, BG Teub-
ner, Stuttgart, 1991.

[41] V.E. Henson and P.S. Vassilevski, Element-free AMGe: General algorithms for
computing interpolation weights in AMG, Tech. report, Center for Applied Sci-
entific Computing, Lawrence Livermore National Laboratory, 2000, submitted.



112 BIBLIOGRAPHY

[42] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal.
36 (1999), no. 1, 204–225.

[43] T. J. R. Hughes, The finite element method, New Jersey, Prentice-Hall, 1987.

[44] N. Ida and P.A. Bastos, Electromagnetics and calculation of fields, Springer,
1997.

[45] J.E. Jones and P.S. Vassilevski, AMGe based on element agglomeration, SIAM
J. Sci. Comp. (2000), accepted for publication.

[46] M. Jung, On the parallelization of multi-grid methods using a non-overlapping
domain decomposition data structure, Appl. Numer. Math. 23 (1997), no. 1,
119–137.

[47] M. Jung and U. Langer, Applications of multilevel methods to practical problems,
Surveys Math. Indust. 1 (1991), 217–257.

[48] M. Jung, U. Langer, A. Meyer, W. Queck, and M. Schneider, Multigrid precon-
ditioners and their application, Proceedings of the 3rd GDR Multigrid Seminar
held at Biesenthal, Karl-Weierstraß-Institut für Mathematik, May 1989, pp. 11–
52.

[49] M. Kaltenbacher, H. Landes, R. Lerch, and F. Lindinger, A finite-
element/boundary-element method for the simulation of coupled electrostatic-
mechanical systems, J. Phys. III France 7 (1997), 1975–1982.

[50] M. Kaltenbacher, H. Landes, K. Niederer, and R. Lerch, 3D simulation of
controlled micromachined capacitive ultrasound transducers, Proceedings of the
IEEE Ultrasonic Symposium 1999 (Lake Tahoe), accepted for publication.

[51] M. Kaltenbacher, H. Landes, S. Reitzinger, and M. Schinnerl, Multigrid methods
for the efficient computation of electromagnetic fields, Proceedings CADFEM
Meeting (Friedrichshafen), 2000.

[52] M. Kaltenbacher and S. Reitzinger, Algebraic multigrid for solving electrome-
chanical problems, Multigrid Methods VI (E. Dick, K. Rienslagh, and J. Vieren-
deels, eds.), Lecture Notes in Computational Science and Engineering, vol. 14,
2000, pp. 129–135.

[53] , Algebraic multigrid for static nonlinear 3D electromagnetic field compu-
ations, Tech. Report 00-07, Johannes Kepler University Linz, SFB ”Numerical
and Symbolic Scientific Computing”, 2000.

[54] , Nonlinear 3D magnetic field computations using Lagrange FE-functions
and algebraic multigrid, IEEE Trans. on Magn. (2000), submitted.

[55] M. Kaltenbacher, S. Reitzinger, M. Schinnerl, J. Schöberl, and H. Landes, Multi-
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[75] S. Reitzinger and J. Schöberl, Algebraic multigrid for edge elements, Tech. Re-
port 00-15, Johannes Kepler University Linz, SFB ”Numerical and Symbolic
Scientific Computing ”, 2000, submitted.

[76] A. Reusken, On the approximate cyclic reduction preconditioner, Bericht 144,
Rheinisch-Westfälische Technische Hochschule Aachen, Institut für Geometrie
und Praktische Mathematik, 1997.
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