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Beurteilung:

Priv. Doz. Dr. Johannes K. Kraus, Johann Radon Institute for Computational
and Applied Mathematics, ÖAW (Betreuung)
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Abstract

The framework of subspace correction methods describes approaches to solve finite element
discretizations of elliptic partial differential equations. Examples of efficient solution tech-
niques are multigrid methods, domain decomposition methods, and auxiliary space methods.

As a first result, we derive the error norm of the method of successive subspace corrections
in case of two subspaces using strengthened Cauchy-Bunyakovsky-Schwarz inequalities to
estimate energy minimizing restrictions of the operator on subspaces.

Next, we focus on the system of elliptic partial differential equations modeling the stresses and
displacements in linear elastic materials in primal variables. There are two basic approaches
to set up a variational framework for such models. On one hand there is a mixed formulation
resulting in indefinite linear systems of algebraic equations for the discrete solution. On the
other hand, there is a formulation in primal variables, which gives rise to a symmetric positive
(semi)-definite discrete problem.

First, we consider the standard discretization of the linear elasticity equations by means of
continuous piecewise linear finite elements. This discretization suffers from volume locking
as the material becomes nearly incompressible. We first consider the case in which such low
order conforming methods provide sufficiently accurate approximation to the displacement
field. It is well known that the classical algebraic multigrid (AMG) methods do not perform
well on this problem without modifications.

We study one competitive AMG method for solving the symmetric positive definite system
resulting from the discretization of the elasticity problem. In this method, the coarsening is
based on so-called edge matrices, which allows to generalize the concept of strong and weak
connections, as used in classical AMG, to “algebraic vertices” that accumulate the nodal
degrees of freedom in case of vector-field problems. The major contribution is devising a
measure for the nodal dependence which guides the generation of the edge matrices, which
are the basic building blocks of this method. A natural measure is the abstract angle between
the two subspaces spanned by the basis functions corresponding to the vertices forming an
edge in our finite element partition. Another original contribution of this work is a two-level
convergence analysis of the method. The presented numerical results cover also problems
with jumps in the Young’s modulus of elasticity and orthotropic materials, like wood or
cancellous bone.

In a second part, we investigate the equations of elasticity in primal variables for nearly
incompressible materials, like rubber. For such materials, i.e., when the first Lamé parameter
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tends to infinity this problem becomes ill-posed and the resulting discrete problem is nearly
singular.

Due to the locking of approximations using conforming, low order polynomial spaces, to
obtain any meaningful approximation to the displacement field, one has to use finite element
spaces of at least order four (or even higher). Alternatively, and this is what we are studying
here, one can consider stable nonconforming finite element discretizations based on reduced
integration. One main question which then arises, and which we address here is how to
construct a robust (uniform in the problem parameters, such as Lamé’s first parameter)
iterative solution method for the resulting system of linear algebraic equations. We introduce
a specific space decomposition into two overlapping subspaces that serves as a basis for
devising a uniformly convergent subspace correction algorithm. The first subspace consists of
weakly divergence-free functions. The second subspace is the complementary space which we
augment with a suitably chosen overlap by adding certain weakly divergence free components.
We solve the two subproblems exactly. This subspace correction method gives rise to a
preconditioner which is a convex combination of a multiplicative preconditioner (based on
the subspace splitting we mentioned above) plus a solution of a system equivalent to vector
Laplace equation (for which efficient methods exist). We present a pool of numerical tests
confirming the uniform convergence.



Zusammenfassung

Das Konzept der Unterraumkorrekturmethoden vereint verschiedene Ansätze um Finite Ele-
mente Diskretisierungen elliptischer partieller Differentialgleichungen zu lösen. Beispiele sol-
cher effizienter Lösungsstrategien sind Mehrgitter-, Gebietszerleguns- und Behelfsraumme-
thoden.

Als erstes Resultat dieser Arbeit wird die Norm des Fehlertransferoperators für die Methode
der sukzessiven Unterraumkorrektur im Fall von zwei überlappenden Unterräumen berech-
net. Dabei werden insbesondere Cauchy-Bunyakovsky-Schwarz Ungleichungen verwendet, um
energieminimierende Einschränkungen des Operators auf Unterräume abzuschätzen.

Als nächstes betrachten wir das System elliptischer partieller Differentialgleichungen welche
die Spannungen und Verschiebungen in linear elastischen Materialien modellieren. Hierzu
gibt es zwei grundsätzliche Ansätze, um die Variationsformulierung für solche Modelle auf-
zustellen. Zum einen kann man eine gemischte Formulierung verwenden, bei der die diskrete
Lösung ein indefinites System linearer algebraischer Gleichungen erfüllt. Zum anderen, kann
die variationelle Formulierung ausschließlich in den Verschiebungen (primäre Variablen) an-
gesetzt werden, was auf symmetrisch positiv definite diskrete Probleme führt. In dieser Arbeit
liegt der Fokus auf letzterem Ansatz.

Zuerst wird die Standardiskretisierung der linearen Elastizitätsgleichungen mit Hilfe von
stückweise linearen Finiten Elementen verwendet. Diese Diskretisierung leidet unter dem
Effekt des Volumen-Locking für fast inkompressible Materialien. In diesem Teil der Arbeit
werden Materialien betrachtet, für die konforme Diskretisierungen mit Elementen niedriger
Ordnung eine ausreichend genaue Approximation des Verschiebungsfeldes liefern. Es ist all-
gemein bekannt, dass klassische Algebraische Mehrgittermethoden (AMG-Methoden) ohne
Modifikationen für diese Problemklasse nicht ausreichend zufriedenstellend funktionieren.

In der vorliegenden Arbeit wird eine wettbewerbsfähige AMG-Methode vorgestellt, um das
symmetrisch positive definite System, welches aus der Diskretisierung des Elastizitätspro-
blems entsteht, zu lösen. In dieser Methode basiert die Auswahl der (algebraischen) groben
Gitter auf sogenannten Kantenmatrizen, die eine Verallgemeinerung des Konzepts von star-
ken und schwachen Verbindungen, die in klassischen AMG-Methoden verwendet werden, hin
zu “algebraischen Knoten” erlaubt. Für Vektorfeldprobleme vereinen algebraische Knoten die
Freiheitsgrade eines (Gitter-)Knotens. Die Kantenmatrizen sind der entscheidende Baustein
dieser Methode. Ein natürliches Maß für die Kopplung ist der abstrakte Winkel zwischen
den zwei Unterräumen, die von den Basisfunktionen zu den Knoten einer Kante in der Finite
Element Partition, aufgespannt werden. Eine weitere Neuerung ist eine Konvergenzanalyse
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dieser Methode im Falle von zwei Gitterebenen. Die präsentierten numerischen Resultate
decken Probleme mit Sprüngen im Elastizitätsmodul und orthotrope Materialien, wie zum
Beispiel Holz oder schwammartige Knochenstrukturen, ab.

In einem zweiten Abschnitt untersuchen wir die Elastizitätsgleichungen, formuliert in den
primären Variablen, für fast inkompressible Materialien wie zum Beispiel Gummi. Für solche
Materialien, d.h. wenn der erste Lamé Parameter extrem groß wird, geht das Problem in ein
schlecht gestelltes Problem über und dessen zugehöriges diskretes Gleichungssystem ist fast
singulär.

Approximationen mit konformen polynomialen Ansatzräumen von niedriger Ordnung weisen
Volumen-Locking auf. Daher muss man Finite Elemente von Ordnung 4 (oder höher) verwen-
den, um die Verschiebungen mit ausreichender Genauigkeit berechnen zu können. Alternativ,
kann man stabile nicht konforme Finite Elemente Diskretisierungen basierend auf reduzierter
Integration verwenden. In dieser Arbeit wird der nicht konforme Ansatz verfolgt. Eine Frage,
die dabei auftaucht und die hierin behandelt wird, ist, wie man eine robuste (gleichförmig in
den Problemparametern wie im Speziellen dem ersten Lamé Parameter) iterative Lösungs-
methode für das auftretende System linearer algebraischer Gleichungen konstruiert. Es wird
eine spezielle Aufteilung des Funktionenraumes in zwei überlappende Unterräume präsentiert,
welche die Basis für einen gleichmäßig konvergenten Unterraumkorrekturalgorithmus bildet.
Der erste Unterraum besteht aus schwach divergenzfreien Funktionen. Der zweite Unterraum
hingegen ist der Komplementärraum, der mit einer passend gewählten Überschneidung durch
Hinzunahme bestimmter schwach divergenzfreier Funktionen erweitert wird. Vorerst werden
die Probleme auf den Unterräumen exakt gelöst. Diese Unterraumkorrekturmethode führt
auf einen Vorkonditionierer der eine konvexe Kombination eines multiplikativen Vorkonditio-
nierers (basierend auf der oben erläuterten Unterraumaufspaltung) und der Lösungsprozedur
eines Systems, das zu den Vektor-Laplace-Gleichungen äquivalent ist (für die effiziente Me-
thoden existieren). Mehrere numerische Tests werden präsentiert, welche die gleichförmige
Konvergenz bekräftigen.
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Chapter 1

Introduction

1.1 State of the art

Nowadays, the simulation of mechanical problems arises in many different fields of research
and engineering. Examples are strength and stiffness calculations of certain (parts of) ma-
chines or devices, or crash simulations of cars. The system of mechanical equations might
also couple with other systems of physical equations. In medicine for instance, fluid structure
interaction is used to simulate the blood flow through blood vessels. There the forces acting
on the vessels stem from the flow of blood through the artery or vein.

Physical models are typically formulated in terms of Partial Differential Equations (PDEs).
The equations of elasticity describe the deformations and stresses of an elastic body under
applied volume and surface forces. The balance of momentum implies the steady state relation
between the stress field and the forces. Further, the stress and the strain are coupled via
material laws. The simplest one is Hooke’s law, which states a linear dependence of the stress
on the strain. This law is valid for elastic materials and small deformations, that is, as long
as the load does not exceed the material’s “elastic limit”. The arising equations are nonlinear.
Nevertheless, the assumption of small deformations allows for a linearization of the equations
and leads to the equations of linear elasticity. Note that even for larger deformations or
non-linear material laws an in-depth understanding of the linearized system is important.

In physics, PDEs often stem from a variational formulation, which arises from minimizing the
energy of a given system. Under suitable assumptions the equivalence of both descriptions
can be shown. If the system of linear elasticity equations is expressed solely in terms of
the displacements, its variational formulation is known as classical or pure displacement
formulation. Mathematically, the variational problem is set up in the Sobolev space H1.
If the material under consideration becomes almost incompressible, the compliance tensor,
which links stress and strain, deteriorates, i.e., it becomes ill-conditioned with increasing the
incompressibility. In the incompressible limit it is singular. In this case its inverse is not
well-defined. Since the inverse of the compliance tensor directly enters the pure displacement
formulation we observe instabilities in the incompressible limit. This effect is called volume
locking or sometimes simply locking. A remedy to locking is to pose the elasticity problem
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variationally via so-called mixed formulations. There, either the stress or the pressure enters
the model as an additional variable. These formulations can be shown to be stable with
respect to incompressibility. In the incompressible limit one still needs certain compatibility
conditions for mixed formulations due to the singularity of the compliance tensor.

In general, it is not possible to solve the considered equations in two or three dimensions and
on general domains analytically. Therefore, a numerical approximation of the solution is of
interest. The most commonly used method is the finite element method (FEM). Thereby,
the domain is partitioned into small, usually polygonal, subdomains. Those subdomains are
called elements of the mesh. The most common elements are triangles or quadrilaterals in two
space dimensions (2D) and tetrahedra or hexahedra in 3D. On each element we approximate
the solution by polynomials, leading to a global piecewise polynomial function. In the case
of conforming finite element spaces, the global functions have to be continuous. In this case
existence and uniqueness of the (numerical) solution of the discretized (finite dimensional)
problem directly follow from the existence and uniqueness of the solution of the (infinite-
dimensional) continuous problem.

If the pure displacement formulation is discretized by means of conforming piecewise polyno-
mials we observe a lack of accuracy with respect to the incompressibility when polynomials
of order less than four are used. However, if the finite element space is of order 4 or higher
optimal order estimates can be shown robustly with respect to incompressibility ([SV85]).
On the other hand, for lower order conforming spaces, employing the technique of reduced
integration (cf. [ESGB82, HLB79]) yields optimal order error estimates (see [Fal91]) for
isotropic materials in the case of plane stress (2D). Thereby, the integral involving the diver-
gence operator is approximated by a reduced order quadrature rule. In [Sch99b, Sch99a] it is
shown that this formulation using first-order elements is equivalent to a mixed formulation
for displacements and pressure in the spaces of piecewise P2- and P0-functions, respectively.
This pair of spaces is known to be stable for Stokes equations. Indeed, stable pairs of spaces
of mixed FEM for Stokes equations are usually locking free (see [GR86, BF91]).

An adaption of FEM is the so-called discontinuous Galerkin (DG) finite element method.
Thereby, the finite element spaces are nonconforming, i.e., they consist of piecewise polyno-
mial functions that do not have to be continuous. The discontinuities of the solution across
element interfaces, in short jumps, are penalized by adding certain penalty terms to the aris-
ing bilinear form which then do imply coercivity of the bilinear form. Note that due to the
discontinuity of the space the DG approximations involve a much higher number of degrees of
freedom as the related conforming approximations. There do exist stable DG discretizations
of the system of linear elasticity equations with respect to incompressibility (cf. [HL03]).

The discrete variational problem allows then to set up a system matrix A and right-hand side
vector. In our case they represent the mechanical properties of the deformed body and the
acting forces. Using specially constructed direct solution methods it requires at best O(n2)
(see [GL81]) floating point operations to solve the linear algebraic system of equations of size
n for problems in three dimensions, which is not desirable if n is extremely large. Therefore,
iterative solution methods are used. Thereby, we say that a method is of optimal order if it
reaches the desired accuracy with O(n) floating point operations. Quite often methods are
quasi-optimal which means that O(n log(n)) operations are needed. Solvers or precondition-
ers are said to be robust if problem as well as discretization parameters do not influence their
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convergence behavior qualitatively. In elasticity for instance, the problem parameters are the
Young’s modulus of elasticity and the Poisson ratio. Typically, discretization parameters are
the size of the triangulation and the used polynomial order.

The convergence rate of classical stationary iterative solution methods like Richardson, Jacobi
or Gauss-Seidel iteration deteriorates with decreasing mesh size. The method of conjugate
gradients (CG), see [HS52, Axe94], is a method of choice for solving large sparse symmetric
positive definite systems of linear algebraic equations. Its convergence rate depends on the
square root of the condition number of the considered matrix. Since the condition number for
the considered system of equations is of the order h−2, where h denotes the mesh size of the
triangulation, it is not robust. However, if we are able to find a spectrally equivalent precondi-
tioner for the (stiffness) matrix, such that the condition number of the preconditioned system
stays bounded when h tends to zero, we can solve the linear system up to any prescribed
(but fixed) accuracy with a bounded number of preconditioned CG iterations. Finally, the
total procedure is of optimal order if the setup and the application of the preconditioner are
of the complexity O(n).

The first developed solution procedures of optimal order are multigrid (MG) methods (see for
instance [HT82, Hac85, TOS01]). As the name indicates multigrid is based on a hierarchy of
grids. They rely on the two complementary concepts of smoothing and coarse grid correction.
First, a fast relaxation procedure is applied on the fine grid in order to eliminate the high
frequency components of the error. Then, the remaining smooth error can be accurately
represented on the next coarser grid. There, the coarse grid correction step removes the
remaining error components. This can be either done by solving the problem on the coarse
level exactly, or by applying the MG procedure recursively, i.e., error smoothing on the current
grid and coarse grid correction on the next coarser grid. The basis for the MG method to be
of optimal order is an excellent concurrence between smoothing and coarse grid correction.
That is, error components not being reduced by the relaxation have to be efficiently reduced
by the coarse grid correction and vice versa. This is reflected in the convergence analysis of
Hackbusch [Hac85] which is based on the smoothing and approximation property. Another
crucial point in the design of MG methods is a proper choice of the transfer operators.
Thereby, error components in the (near-)kernel of the system operator have to be represented
well on the coarser grids, that is, the transfer operator has to be kernel preserving.
Multigrid methods have been successfully applied to the pure displacement formulation of
linear elasticity (see [KM87] for instance). Additionally, in [Sch99b, Sch99a] a robust MG
method is constructed for the pure displacement problem based on reduced integration.

The algebraic multigrid (AMG) method has been developed aiming at the superior prop-
erties of MG methods, i.e, the optimality, but being not dependent on the existence of a
hierarchy of meshes. Usually, a smoother is chosen first. Then, a hierarchy of algebraic
meshes is set up based on algebraic considerations using the matrix A. In standard AMG
(e.g. [BMR82, RS87]) the coarse grid selection uses the strength of connectivity measuring
the rate of dependence of single DOF on each other. This measure is additionally used to
determine the interpolation operator. As for standard MG methods the smoother and the
coarse grid correction have to to complement each other. That is, algebraically smooth error,
i.e., error components that cannot be removed efficiently by the smoother have to be reduced
by coarse-grid correction. The classical AMG [RS87] does not perform well for elasticity
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problems, because its construction of the interpolation is based on the assumption of only
preserving constants.

Another, purely algebraic AMG variant is smoothed aggregation [VBM01, VMB96], which
uses aggregates of fine DOF as coarse of. The piecewise constant interpolation is improved
by a proper smoothing. The adaptive AMG [BFM+06] and adaptive smoothed aggregation
AMG [BFM+04] detect the smooth error, with respect to a certain smoother S, during the
process and improve their own components. In [BFM+04] the kernel of problem can be
a-priori be provided as an input which improves the convergence behavior. Additionally,
satisfactory results for linear elasticity problems have been reported in [BFM+04].

A different type of AMG methods uses certain additional information on the fe discretization
in the set-up phase. In the so-called AMGe methods this information is extarcted from the el-
ement stiffness matrices[BCF+01, HV01, JV01, CFH+03]. In the recent works [Kra08, KK10]
additionally the vertex coordinates of the triangulation are used to set up the coarse grids
and the interpolation operators for solving the pure displacement problem of linear elasticity.
Finally, the highly parallel and purely algebraic AMG variant BoomerAMG [HMY00] to-
gether with an improved parallel coarsening algorithm [DSMYH06] is one example of a highly
efficient linear solver for different types of elliptic problems.

Another type of methods that are applicable also to discretizations of linear elasticity prob-
lems is preconditioning by algebraic multilevel iteration (AMLI) [KM09, Vas08], or the original
papers [AV89, AV90]. Thereby, a hierarchical basis of the discrete space can be exploited
(similar to the hierarchical basis multigrid ([Yse86, BDY87]). In AMLI, the multilevel pro-
cedure is stabilized by employing certain polynomials, e.g., Chebyshev polynomials.

Finally, there is the class of domain decomposition (DD) methods for solving discretizations
of PDEs. The general framework of DD methods is a decomposition of the computational
domain into a set of much smaller subdomains. On each subdomain, the problem is easier
solvable due to the reduced size. If the subdomains are not disjoint, the DD methods are
referred to as Schwarz overlapping DD methods [TW05]. If the decomposition is a partition of
the domain the DDmethod is called substructuring DDmethod, for which the most prominent
procedures are Neumann-Neumann, finite element tearing and interconnecting (FETI), FETI-
DP and balancing domain decomposition by constraints (BDDC) methods. For more details
on DD methods and their application to linear elasticity we refer to [TW05, Pec08, Pec12]
and the references given therein.

All the previous methods belong to the class of subspace correction methods. The term sub-
space correction was introduced in [Xu92]. In general, subspace correction methods are deal-
ing with uniquely solvable variational problems on a Hilbert space V . This space is divided
into subspaces on which the residual equation is solved in parallel (method of parallel subspace
corrections (MPSC)) or sequentially (method of successive subspace corrections (MSSC)) in
each step. Those methods can be viewed as (overlapping) block-Jacobi or block Gauss-Seidel
methods. Their theoretical framework aligns with Schwarz methods (see [GO95, TW05]). In
[XZ02] an identity for the norm of the error propagation of MSSC is shown. The theory has
been further investigated in [Zik08, CXZ08].
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1.2 On this work

The aim of this thesis is to provide efficient preconditioners for the equations of linear elas-
ticity. Thereby, efficiency means that we target on robustness with respect to problem and
discretization parameters, and further on optimality with respect to the problem size. We
focus on the pure displacement variational formulation of linear elasticity. In this case the
problem parameters are the Lamé parameters λ and µ, whereas special attention has to be
drawn to λ. In the case of almost incompressible materials λ becomes very large, which
leads to an ill-conditioned system of algebraic equations. Since classical (conforming) finite
element approximations suffer from volume locking when used as a discretization tool for
approximating the displacement field of nearly incompressible elastic bodies we employ them
only in the compressible regime.

In the first part of this work we study a specific AMG method called algebraic multigrid based
on computational molecules (AMGm) which has been developed in [KS06] and enhanced in
[Kra08] for problems in linear elasticity discretized by piecewise linear elements. This method
uses so-called “edge matrices” in order to represent the coupling between the DOF of two
vertices. These matrices are used to set up “computational molecules” in order to determine
the strength of connectivity. Additionally, computational molecules, assembled from edge
matrices, are used to define interpolation.

We enhance and improve this procedure here as follows. First, we generalize the concept
and introduce “algebraic vertices” and “algebraic edges”. For each algebraic edge we set up
an edge matrix representing the dependence of the two algebraic vertices it connects. Then
we develop a refined measure for the strength of connectivity. For a given edge, the new
measure is defined as the energy cosine of the abstract angle between the two spaces spanned
by the respective basis functions associated with the two vertices that are connected via
the edge. While the interpolation routine remains the same, we use the knowledge of the
structure of the edge matrices to obtain better approximations via those matrices. We also
improve the computation of the coarse edge matrices which finally leads to a much better
convergence behavior of the improved method compared to the original AMGm procedure. In
the numerical experiments we apply AMGm to different types of elasticity problems showing
its robustness with respect to the specific parameters. Moreover, we compare the method
to its predecessor and to the state-of-the-art BoomerAMG [HMY00, DSMYH06]. In the
comparison we see that the method outperforms its predecessor as well as it outperforms
BoomerAMG in terms of convergence. Nevertheless, this has to be accounted for by a higher
complexity (and more expensive setup phase). Additionally, we discuss how to parallelize
AMGm and moreover, we provide theoretical insight to the method by investigating the
two-level method.. The main results have been published in [KK10].

In a second part, we focus on almost incompressible materials. As mentioned above, the
classical pure displacement formulation suffers from locking in this case. Therefore, we con-
sider a discretization of the pure displacement problem using reduced integration of the
divergence-term (cf. [Fal91, Sch99b]). This formulation is shown to result in optimal order
error estimates independently of the material parameters. Again we focus on piecewise linear
conforming finite elements. In [Sch99b, Sch99a] the equivalence of this problem to a stable
P2 − P0 mixed formulation for the Stokes problem is shown.



6 1.2 On this work

We decompose the space into the set of weakly divergence-free functions and its complement
for which the divergence term does not vanish, corresponding to algebraic gradients across
edges. The weakly divergence-free space can be further decomposed into proper subspaces.
We present locally supported basis functions for all those spaces. This space decomposition
is used to set up an overlapping decomposition of the vector space. The overlap is chosen
appropriately to be a subspace of weakly divergence-free functions in order to achieve good
convergence properties of the MSSC (see [Xu92, XZ02]). Then, the MSSC gives rise to a
stand-alone solver and to a uniform preconditioner. In both cases we use the fact that the
problem of linear elasticity in the compressible regime can be handled efficiently, which we
have demonstrated in the first part of this work! In the scope of this thesis the discussion
has been for exact solvers of the occurring subproblems. In general, the subproblems can be
solved by means of efficient preconditioners. On the first subspace, the divergence vanishes
and hence the problem is spectrally equivalent to the vector Laplacian problem, which is well-
understood. However, the second subproblem is much more difficult to solve since it involves
Lamé’s first parameter λ. We exploit the auxiliary space method (cf. [HX07]) to devise a
block-diagonal preconditioner on this subspace. The blocks correspond to a scaled zero-order
term and a second term involving the divergence of Raviart-Thomas functions. The zero-
order term is easily invertible and efficient solvers for the Raviart-Thomas part are considered
in [HX07, KT11]. Finally, this leads to an efficient preconditioner for the considered example.
We report the convergence properties of numerical examples. This method is discussed in
the accepted article [KKZ11].

Another (related) contribution of this thesis is the discussion of the convergence behavior
of MSSC in case of two overlapping subspaces. The analysis uses the XZ-identity of [XZ02]
stating an exact description for the norm of error propagation operator of a general MSSC.
We show that in our considered case, this norm is exactly given by the CBS constant of the
system operator after eliminating the overlap of the two subspaces. Further, the results are
confirmed by numerical tests.

The thesis is organized as follows:
In Chapter 2 we introduce the basic ingredients like function spaces and inequalities on
Sobolev spaces which are needed to prove uniqueness of solution of variational problems.
Further, we remark on the finite element method and shortly motivate the equations of lin-
ear elasticity for which different types of variational formulations are presented.
In Chapter 3 we introduce the framework of subspace correction methods and its basic con-
vergence results. Afterwards, different types of subspaces correction methods like (algebraic)
multigrid, the auxiliary space method and domain decomposition are briefly described within
the subspace correction framework. Finally, the convergence properties in the case of two
overlapping subspaces are investigated.
Chapter 4 deals with the new AMG variant for linear elasticity in the pure displacement
formulation. The concept of “algebraic vertices“ and “algebraic edges” is introduced. Then,
the properties on the edge matrices are discussed in order to yield a spectrally equivalent ap-
proximation. The basic building blocks of the procedure like the computation of the strength
of connectivity, the coarse grid selection process as well as the set up of interpolation operator
are discussed in detail. Further, the condition number of the preconditioned system operator
is investigated (in the two-level framework). We shortly address parallelization aspects of
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AMGm. Numerical results are presented for different types of problems and additionally, the
method is compared to its predecessor and to the state-of-the-art BoomerAMG. Finally, the
application of AMGm to a discontinuous Galerkin formulation of the linear elasticity problem
is studied.
In Chapter 5 we discuss MSSC applied to the problem stemming from the pure displacement
formulation using reduced integration. After introducing some notation and preliminary re-
sults, we present a specific splitting of the space of piecewise linear functions based on local
basis functions. We utilize this splitting to set up an overlapping space decomposition which
is the basis for an MSSC. Next, the preconditioner, which is naturally defined through the
MSSC, is introduced. Afterwards, we address how to solve the arising subproblems efficiently.
We suggest to use the auxiliary space method to derive a spectrally equivalent preconditioner
of one subproblem. Finally, numerical tests are performed to confirm the practicability and
efficiency of the proposed method.
Finally, in Chapter 6 we summarize the presented results, draw conclusions and give an
outlook on possible future work related to this thesis.

1.3 Notation

Now, let us introduce the symbols and notations we use in this thesis. Let Ω ⊂ Rd be an
open Lipschitz domain ([Gri85]) of dimension d = 2, 3. Bold face symbols denote tensors,
such as ε, σ, or vector-valued quantities like u and v.

d spatial dimension, d = 2, 3
x spatial coordinate, x ∈ Rd

v vector or vector-valued function of size l ∈ N, i.e., u = (ui)i=1, ..., l

vT , AT the transpose of a vector v or of a matrix A
n number of degrees of freedom (DOFs)
∂Ω boundary of the domain Ω; ∂Ω = Ω\Ω
ΓD, ΓN Dirichlet and Neumann boundary on ∂Ω; see pages 18 and 22
L2(D) space of square-integrable functions on the domain D, see (2.1)
C∞0 (Ω) space of analytical functions with compact support on Ω
D′(Ω) space of distributions on Ω, i.e., the dual space of C∞0 (Ω)
H1(Ω), H(div; Ω) Sobolev spaces of square-integrable ∇ or div, see (2.4)
H1

0 (Ω), H1
0,ΓD

subspaces of H1(Ω); the trace vanishes on ∂Ω or ΓD, see (2.7),(2.8)
HS(Ω) space of symmetric tensors of size d× d in L2(Ω)
V RBM, Ĥ1(Ω) space of rigid motions and its complementary space with respect

to [H1(Ω)]d, see (2.11), (2.12)
H, V general Hilbert spaces
(. , .)V inner product on V inducing a norm ‖v‖V :=

√
(v , v)V ; the sub-

script is skipped if the considered space follows from the context.
a(., .) bounded and coercive bilinear form; inducing the energy inner
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product (. , .)a; see (2.25) and (2.26)
A system operator/matrix corresponding to a(., .); see page 32
H ′ dual space of H, i.e., the space of linear functionals of H
L(.) linear functional and right-hand side of problem (2.24)
Bt adjoint of an operator B with respect to (., .)
B∗ adjoint of an operator B with respect to (., .)a
IV identity operator on a space V ; if V is clear from context

we simply write I, omitting the subscript
‖.‖B norm induced by a symmetric, coercive and bounded linear B
n unit normal vector to ∂Ω pointing outwards of Ω
Th simplicial regular triangulation of the domain Ω, that is, the set of

simplexes T , Definition 2.1.9
Eh, Vh set of edges or vertices of Th, respectively
ET set of edges of an element T ∈ Th
N Th
i , N Ei set of elements or edges sharing a common vertex vi; page 88

nT , nE , nv number of elements, edges and vertices of Th
h mesh size of a quasi-uniform triangulation; see Definition 2.1.10
ρ shape-regularity parameter; see (2.29)
C(Ω) space of continuous functions defined on Ω
Pk(D) space of polynomials on the domain of order ≤ k, see page 17
Sh the space of piecewise constant functions on Th; see (2.30)
V k
h the space of piecewise polynomials of order ≤ k on Th; see (2.31)
V RT
h,0 space of Raviart-Thomas functions on Th of order 0; see (2.32)

ϕi, ϕ
RT
E nodal basis functions of V 1

h and V RT
h,0 ;pages 18, 88

NRT
E (.) degree of freedom of V RT

h,0 corresponding to an edge E; see page 18
ΠRT (.) projection from H(div; Ω) to V RT

h,0 ; see equation (5.1)
nE globally predefined unit normal vector of E ∈ Eh
nE,T unit normal vector of E ∈ Eh, pointing outwards of T ∈ Th, E ∈ T
λmin(A), λmax(A) minimal/maximal eigenvalue of a symmetric operator A : V → V ;

then λmin(A):= infv∈V
(Av , v)
‖v‖ and λmax(A):= supv∈V

(Av , v)
‖v‖

κ(A) condition number of an SPD matrix A, i.e., κ(A) = λmax(A)
λmin(A)

σ, ε, u stress, strain and displacements in linear elasticity; Section 2.3
λ, µ, E, ν material parameters for isotropic, homogeneous materials; page 21
P0 L2-projection onto constants on T ∈ Th or E ∈ Eh; see (2.54), (2.59)
Ti, Pi projections onto a subspace Vi ⊂ V according to (3.5) and (3.15)
M, S smoother of (A)MG with error propagation operator S; page 36
P prolongation operator of (A)MG; Section 3.2
V, E set of algebraic vertices and edges in AMGm; see Definition 4.2.1
sij strength of connectivity between two algebraic vertices; Definition 4.3.1
Si set of strongly connected neighbors of vertex vi; page 64
Vf , Vc set of coarse and fine grid vertices; page 65
supp(v) support of a function v; supp(v):= {x : v(x) 6= 0}
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span{vi} span of the vectors/functions vi; span{vi}:= {
∑n

i=1 αivi : αi ∈ R}
a . b if there exists c > 0 such that a ≤ c b; c being independent of certain

parameters, or of the choice of a and b, if a ∈ V1 and b ∈ V2

a & b complementary to a . b

a ≈ b if a . b and a & b

For the following considerations, let A be a self-adjoint positive semidefinite operator on
V = V1 × V2 for some Hilbert spaces V1 and V2. It can be represented in matrix form

A =
(
A11 A12

A21 A22

)
. (1.1)

Then, the CBS constant γ(A) is defined as the minimal constant c for which the Cauchy-
Bunyakovsky-Schwarz inequality holds

|(A12v2 , v1)V1 |2 ≤ c2(A11v1 , v1)V1(A22v2 , v2)V2 ∀v1 ∈ V1∀v2 ∈ V2 . (1.2)

It can be shown, that γ(A) ∈ [0, 1] (see [Axe94, KM09]). Additionally, if A22 is invertible we
define the Schur complement of A with respect to V1 as

S11:= A11 −A12A
−1
22 A21 . (1.3)

If γ(A) < 1 is satisfied, γ(A) can be alternatively obtained from

1− γ(A)2 = inf
v1∈V1

(S11v1 , v1)V1

(A11v1 , v1)V1

, (1.4)

which is shown in [Axe94]. If A11 is invertible as well, we can exchange the indices in (1.4).
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Chapter 2

Problem setting

The main focus of this thesis lies in the construction of efficient preconditioners for the linear
system of equations arising from finite element discretizations of the steady state equations
of linear elasticity.

Therefore, let us first introduce some preliminary tools such as Sobolev spaces and inequal-
ities on Sobolev spaces, which are needed to prove existence and uniqueness of solutions
of variational problems being equivalent to certain PDEs. Since we use the finite element
method (FEM) to obtain approximations of the solution of variational problems, we also
address the basics of FEM. Then, we introduce a scalar elliptic model problem for which
the basic properties of FEM discretizations are shown in order to address the general diffi-
culties. In Section 2.3 we formulate the governing equations of linear elasticity. Afterwards,
in Section 2.4 we discuss some possible variational formulations of these equations. All of
them are solely in the primal variables u representing the displacement from the reference
configuration. The advantage of those formulations are, that, after discretization, we are
dealing with much less degrees of freedom (DOFs) than for discretizations of mixed varia-
tional formulations. Firstly, we show the classical formulation which is then discretized by
continuous piecewise linear finite elements. This variational problem suffers from so-called
locking as the material becomes almost incompressible. In order to circumvent this effect we
introduce two stable formulations. The first one uses a technique called reduced integration,
where the div-part is integrated by less accurate numerical integration techniques. This leads
to optimal order error approximations. The third discretization scheme uses discontinuous
finite elements. Using proper penalty terms, this formulation can be shown to be robust with
respect to the material parameters as well. Finally, in order to provide an almost complete
discussion on the possibilities to pose the equations of elasticity variationally, we shortly
address mixed formulations of the governing equations.

11
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2.1 Preliminaries

2.1.1 Function spaces

The variational formulations of partial differential equations (PDEs), which are the basis
for the finite element method, are posed in Sobolev spaces. Let us assume we are given a
bounded and connected Lipschitz domain Ω ⊂ Rd with d = 2, 3 (see [Gri85] for the definition
of Lipschitz domains) and we define

L2(Ω):=
{
v : Ω→ R :

∫
Ω
|v|2 dx <∞

}
, (2.1)

the space of square-integrable functions. It is equipped with an inner product, which induces
a norm,

(u , v)L2(Ω):= (u , v)0,Ω:=
∫

Ω
u v dx , ‖u‖L2(Ω):=

√
(u, u)L2(Ω) . (2.2)

If it follows from the context that we are dealing with the domain Ω we may replace the
subscripts “L2(Ω)” or “0,Ω” by a subscript “0”. In the vector-valued case the inner product
is defined by

(u , v)0:=
∫
Ω

u · v dx =
d∑
i=1

∫
Ω

uivi dx .

The definition of the spaces H1(Ω) and H(div; Ω) requires the notion of generalized or weak
derivatives, which we now introduce.

Definition 2.1.1. A distribution w ∈ D′(Ω) is called weak derivative in direction i of a
distribution z ∈ D′(Ω) if∫

Ω
wϕ dx = −

∫
Ω
z
∂ϕ

∂xi
dx ∀ϕ ∈ C∞0 (Ω) . (2.3)

In a similar manner one can define weak gradient “∇”, and divergence “div” operators, and
then introduce

H(D; Ω) := {v ∈ [L2(Ω)]k : Dv ∈ [L2(Ω)]l} , (2.4)

where k and l depend on the differential operator D, e.g., for D = ∇ the constants are k = 1
and l = d. Specifically, we denote H1(Ω):= H(∇; Ω). These spaces are equipped with the
inner products

(u , v)H1(Ω) := (u , v)0 + (∇u , ∇v)0 , (2.5)
(u , v)H(div;Ω) := (u , v)0 + (divu , div v)0 . (2.6)

Similar as in the L2-case we may replace the subscript “H1(Ω)” by the subscript “1,Ω” or
simply by “1”. Generally, functions u ∈ H1(Ω) are not defined pointwise on the boundary.



2. Problem setting 13

Nevertheless, we introduce boundary values of those functions in the sense of traces (cf.
[Cia78, Gri85, Bra01]) and define

H1
0 (Ω):= {u ∈ H1(Ω) : u|∂Ω = 0} , (2.7)

or for a subset ΓD ⊂ ∂Ω of the boundary

H1
0,ΓD

(Ω) := {u ∈ H1(Ω) : u|ΓD = 0} , (2.8)

H1
uD,ΓD

(Ω) := {u ∈ H1(Ω) : u|ΓD = uD} . (2.9)

If meas(ΓD) 6= 0 then theH1-norm onH1
0 (Ω) andH1

0,ΓD
(Ω) is equivalent to theH1-seminorm

given by
|u|H1(Ω):= (∇u , ∇v)0 , (2.10)

which is due to Friedrich’s inequality (Theorem 2.1.5 presented in the next subsection). For
the equations of linear elasticity the space of rigid body modes V RBM is important. The space
consists of all translations and rotations, that is

V RBM:=
{
{v : v = (a1 + by, a2 − bx)t a1, a2, b ∈ R} for d = 2 ,
{v : v = a+ b× x, a, b ∈ R3} for d = 3 .

(2.11)

Further, we define the space Ĥ1(Ω) of H1-functions complementary to V RBM
H , i.e.,

Ĥ1(Ω):= {v ∈ [H1(Ω)]d :
∫

Ω
v dx = 0 and

∫
Ω
∇× v dx = 0} , (2.12)

which is needed for the variational form of the equations of linear elasticity in the case of pure
traction boundary conditions (see subsections 2.4.1 and 2.4.2). For d = 2 the term ∇× v is
a scalar while for d = 3 it is a 3-dimensional vector. In the following, we prove that [H1(Ω)]d

can be uniquely decomposed into Ĥ1(Ω) and V RBM.

Lemma 2.1.2. We have that [H1(Ω)]d = Ĥ1(Ω)⊕ V RBM, d = 2, 3.

Proof. Note that for any v ∈ V RBM the condition v ∈ Ĥ1(Ω) holds only if v = 0. First,
let us consider the case d = 2. We introduce the projections Pc : [H1(Ω)]2 → V RBM and
Pr : [H1(Ω)]2 → V RBM via the following relations

Pc(v) :=
1
|Ω|

∫
Ω
v dx , (2.13)

Pr(v) :=
−1
2|Ω|

∫
Ω
∇× v dx

(
y
−x

)
. (2.14)

It can be easily seen that Pc(.) and Pr(.) are indeed projections, i.e., they are idempotent.
Now, let us define the total projection PRBM : [H1(Ω)]2 → V RBM through

PRBM(v):= Pr(v) + Pc(v − Pr(v)) . (2.15)

Note that Pc(PRBM(v)) = Pc(v) and Pr(PRBM(v)) = Pr(v). Now, every v ∈ V can be
decomposed as v = v−PRBM(v)+PRBM(v) = v̂+PRBM(v) with v̂:= v−PRBM(v) ∈ Ĥ1(Ω).
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The construction of the projections Pc and Pr can be easily extended for d = 3. Thereby, Pr
is set up from 3 single projections onto r1 = (0, z,−y)T , r2 = (−z, 0, x)T and r3 = (y,−x, 0)T

with a proper scaling. That is, Pr(v):=
∑3

i=1 Pri(v) with

Pri(v):=
−1
2|Ω|

∫
Ω

(∇× v)i dx ri .

Hence, this statement is valid for d = 3 too.

Moreover, the space
HS(Ω):= {τ ∈ [L2(Ω)]d×d : τT = τ a.e.} (2.16)

is needed in Subsection 2.4.4 for a mixed variational formulation of the equations of linear
elasticity.

2.1.2 Preliminary results (inequalities)

The following inequalities are useful in proving solvability of the system of PDEs. The proofs
of the first three theorems can be found in [TW05], and Theorems 2.1.6 and 2.1.7 are proven
in [BS07].

Theorem 2.1.3 (Poincarè inequality). Let u ∈ H1(Ω). Then there exist c1 and c2, depending
only on Ω, such that

‖u‖2L2(Ω) ≤ c1 |u|2H1(Ω) + c2

(∫
Ω
u dx

)2

. (2.17)

From the previous theorem we obtain by scaling arguments a dependence of the constant c1

on the diameter of the domain Ω.

Corollary 2.1.4. Let Ω be a Lipschitz domain with diameter H. Then, there exists a constant
ĉ1, that depends only on the shape of Ω but not on the size, such that

‖u‖2L2(Ω) ≤ ĉ1H
2 |u|2H1(Ω) , (2.18)

for u ∈ H1(Ω) with vanishing mean value on Ω.

Friedrich’s inequality yields the spectral equivalence of the H1-seminorm to the H1-norm on
H1

0,ΓD
.

Theorem 2.1.5 (Friedrich’s inequality). Let Γ ⊂ ∂Ω with meas(Γ) > 0. Then there exists a
cF > 0 depending only on Ω and Γ such that for all u ∈ H1(Ω)

‖u‖2H1(Ω) ≤ cF |u|
2
H1(Ω) + cF ‖u‖2L2(Γ) . (2.19)

The last type of inequality we need in this thesis is Korn’s inequality. It states that the
symmetrized gradient ε(u):= 1

2 [∇u+ (∇u)t] bounds the H1-norm from above under certain
assumptions. Note that the rigid modes span the kernel of ε(.). That is, we have ε(v) = 0 for
all v ∈ V RBM. For our purposes we need two different versions of the theorem (cf. [BS07]).
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Theorem 2.1.6. There exists a positive constant cK such that

‖ε(u)‖L2(Ω) ≥ cK ‖u‖H1(Ω) ∀u ∈ Ĥ1(Ω) . (2.20)

If we are dealing with mixed or pure displacement boundary conditions we need another
version of Korn’s inequality which takes care of the rigid modes, especially the rotations, by
a boundary part with zero trace.

Theorem 2.1.7. Let ΓD ⊂ ∂Ω with meas(ΓD) > 0. There exists a positive constant cK such
that

‖ε(u)‖L2(Ω) ≥ cK ‖u‖H1(Ω) ∀u ∈ [H1
0,ΓD

(Ω)]d . (2.21)

For a further discussion on Korn’s inequality see [DM04, KO89]. Therein, it is mentioned
that in the case ΓD = ∂Ω cK =

√
2 for any open set Ω. In [DM04] the inequality is discussed

for Jones domains, which are more general than Lipschitz domains (cf. [Jon81]). It is stated
that the constant cK in all cases does only depend on the shape of the domain Ω.

Lemma 2.1.8. Let V be a Banach space. Further, for finite J ∈ N, J ≥ 2 let Vi, i =
1, . . . , J , be closed subspaces of V such that

V =
J∑
i=1

Vi . (2.22)

Then, there exists a c > 0 such that for any v ∈ V there exist vi ∈ Vi, i = 1, . . . , J with

c

J∑
i=1

‖vi‖ ≤ ‖v‖ . (2.23)

Proof. Let us define the Banach space Ṽ = V1 × V2 × . . .× VJ with norm ‖ṽ‖Ṽ :=
∑J

i=1 ‖vi‖
and the mapping T : Ṽ → V defined by T (ṽ) =

∑J
i=1 vi. Condition (2.22) implies the

surjectivity of T . Hence, due to the open mapping theorem (cf. [RS80, p. 82]) T is open.
Equivalently, this means that for r > 0 and Ũr:= {ṽ ∈ Ṽ : ‖ṽ‖Ṽ < r} it holds that there
exists c > 0 with Uc ⊂ T (Ũ1) for Uc:= {v ∈ V : ‖v‖ < c}. Since T is linear, for any v ∈ U1

we find that v ∈ T (Ũ 1
c
). Finally,

sup
‖v‖<1

inf
ṽ : v=T (ṽ)

‖ṽ‖Ṽ = sup
‖v‖=1

inf
ṽ : v=T (ṽ)

‖ṽ‖Ṽ <
1
c
,

and hence, through scaling, we obtain

c inf
ṽ : v=T (ṽ)

‖ṽ‖Ṽ = c inf
ṽ : v=T (ṽ)

J∑
i=1

‖vi‖ < ‖v‖ ∀v ∈ V ,

which implies the statement.
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2.1.3 Finite element discretization

In this thesis we are concerned with the solution of linear systems of equations arising from
the finite element discretization of partial differential equations (PDEs). Therefore a short
summary on the Galerkin finite element method (FEM) is presented. More details on the
method and related issues can be found in various textbooks such as [Cia78, BS07, Bra01].
The details on mixed and hybrid finite element formulations are summarized for instance in
[BF91].

The FEM deals with variational formulations of boundary value problems. For this sake the
PDE is multiplied by a suitable test function (of a certain Sobolev space). Then we integrate
over the whole domain Ω and apply properly the integration by parts rule.

Viewed in an abstract setting we do have a Hilbert space H or a closed subspace V ⊂ H
equipped with an inner product (. , .). Further we are given a bilinear form a(., .) : H×H → R
and a linear functional L ∈ H ′ and consider the following problem:

Find u ∈ V such that
a(u, v) = L(v) ∀v ∈ V . (2.24)

It is well known that this problem has a unique solution if a(., .) is bounded and coercive,
i.e., if there exist c̄, c > 0 such that

|a(u, v)| ≤ c̄ ‖u‖ ‖v‖ ∀u, v ∈ V , (2.25)

|a(u, u)| ≥ c ‖u‖2 ∀u ∈ V , (2.26)

by the Theorem of Lax-Milgram.

In general the problem (2.24) cannot be solved exactly. For this reason the problem is
approximated. Usually the Hilbert space V is replaced by a finite dimensional subspace Vh.
The subscript h denotes the discretization parameter. In our case H is either of the Sobolev
spaces H1(Ω) or H(div; Ω).

For the construction of proper subspaces of finite dimension we subdivide the domain Ω into
triangles or quadrangles for d = 2. In the three-dimensional case the triangulation is based
on tetrahedra or hexagons. For the sake of simplicity we assume a polygonal or polyhedral
Lipschitz domain Ω ⊂ Rd, d = 2, 3, which is sufficient for our considerations.

We assume the triangulation T to be regular which is defined as

Definition 2.1.9 (regular triangulation). A triangulation T = {T} is called regular if it is
a non-overlapping decomposition of the domain Ω into open elements T of simple geometry,
i.e., triangles or quadrangles in 2D and tetrahedra or hexahedra in 3D. Further T has to fulfill
the following properties:

1. the elements T, T̃ ∈ T have to be non-overlapping, i.e., T ∩ T̃ = ∅ if T 6= T̃ ,

2. T has to cover the whole domain Ω =
⋃
T∈T T ,
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3. the intersection of the closure of two neighboring elements T and T̃ ∈ T is either a
common face, edge or vertex of both elements.

Such a triangulation is also referred to as mesh. As a measure for the element size we
use its diameter hT : = diamT . BT denotes the largest ball that can be inscribed into T .
Additionally, we denote the ratio diam(BT )/hT by ρT . Following [BS07] we define

Definition 2.1.10. Let {Th}, 0 < h ≤ 1 be a family of subdivisions with

h:= max{hT : T ∈ Th} . (2.27)

The family is said to be quasi-uniform if there exists a ρ > 0 for all h such that

min{diamBT : T ∈ Th} ≥ ρh . (2.28)

The family is called shape-regular if there is a ρ > 0 for all T ∈ Th and all h satisfying

ρT ≥ ρ . (2.29)

Note that quasi-uniformity implies shape-regularity. In a shape-regular mesh the interior
angles of all triangles and tetrahedra are bounded. This means that there is no element T for
which the ratio of minimal edge length to the diameter of the element hT deteriorates. For
shape-regular meshes Th the subscript h represents the mesh size, that is, h:= maxT∈Th hT .

For a certain Th we define the set of vertices of the elements by Vh. Moreover, Eh denotes
the set of edges of the mesh. If it is clear from the context that we do consider Th we may
skip the subscript h for all the mentioned sets.

Following [Cia78] a finite element consists of an element domain (usually T ∈ T ), a finite
dimensional space of functions {ϕj}, called shape functions and a basis for the dual of the
shape functions {Ni}, that is, the set of nodal variables or sometimes the set of degrees of
freedom. All three components together are called a finite element. If we have Ni(ϕj) = δij
the basis is called nodal basis.

In this thesis we only focus on polynomial shape functions. Furthermore we restrict ourselves
to a triangulation consisting only of triangles or tetrahedra and use only nodal basis functions.
By Pk(D) we denote the set of polynomials of degree less or equal to k on a domain D.
We need subspaces of L2(Ω), H1(Ω) and H(div; Ω). Therefore, let us define the space of
piecewise constant functions Sh, the continuous piecewise polynomial functions V k

h , k ≥ 1,
and the H(div; Ω)-conforming piecewise linear Raviart-Thomas space V RT

h,0 of order 0 on a
triangulation Th as follows

Sh := {v ∈ L2(Ω) : v|T ∈ P0(T ) ∀T ∈ Th} , (2.30)
V k
h := {v ∈ C(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th} , (2.31)

V RT
h,0 := {v ∈ H(div; Ω) : v|T = a+ bx ∀T ∈ TH , a ∈ Rd, b ∈ R} . (2.32)

Since C(Ω) ⊂ H1(Ω) we find that V k
h is H1-conforming. For k = 1 the piecewise linear

functions are defined via their values at the vertices of Th. For k > 1 evaluation points are
added properly.
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In the case of V RT
h,0 the degrees of freedom are defined by the normal flux across edges (d = 2)

or faces (d = 3), i.e.,

NRT
E (v):=

1
|E|

∫
E
v · nE ds.

Here nE denotes the unit normal vector of E, which is predefined (globally) on each edge/face.
On boundary faces E ⊂ ∂Ω we define nE to be the outward unit vector of the unique
element T associated with the face E. This implies that the space V RT

h,0 consists of piecewise
linear functions with continuous normal components in the edge/face midpoints. For more
information on Raviart-Thomas fe spaces see [BF91].

Now, let us come back to the abstract setting. In order to discretize the problem (2.24), we
are given a finite element space Vh:= span{ϕi} being the span of nodal basis functions. We
formulate the discrete problem as:

Find uh ∈ Vh such that
a(uh, vh) = L(vh) ∀vh ∈ Vh . (2.33)

Existence and uniqueness of the solution uh follow from the conformity of the finite element
space, Vh ⊂ V , and from the results on the original problem (2.24). We apply the isomorphism
from Vh to Rn with n = |Vh| to get uh = (ui) by uh =

∑n
i=1 uiϕi and arrive at the linear

system
Auh = fh (2.34)

where A = (aij) = (a(ϕj , ϕi)) and fh = (fi) = (L(ϕi)).

2.2 Scalar elliptic model problem

The standard example for an elliptic PDE is the diffusion problem

− div(Λ∇u) = f in Ω (2.35a)
u = gD on ΓD (2.35b)

∂u

∂n
= gN on ΓN . (2.35c)

Thereby ΓD and ΓN are subsets of the boundary ∂Ω = ΓD ∪ ΓN . Due to homogenization
considerations we may assume without loss of generality that gD = 0 on ΓD. Λ is a d × d-
tensor which generally depends on x. The variational form of this problem is given as:
Find u ∈ H1

0,ΓD
(Ω) such that∫

Ω
(Λ(x)∇u(x))·∇v(x) dx =

∫
Ω
f(x)v(x) dx+

∫
ΓN

gN (s)v(s) ds ∀v ∈ H1
0,ΓD

(Ω) . (2.36)

If we have c1, c2 > 0 such that

c1z
tz ≤ ztΛ(x)z ≤ c2z

tz ∀x ∈ Ω∀z ∈ Rd , (2.37)

the equation is coercive on H1
0,ΓD

(Ω) due to Friedrich’s inequality (Theorem 2.1.5) with
c = c1cF and bounded with c̄ = c2. Hence, the solution u does exist and it is unique. After



2. Problem setting 19

a proper triangulation Th is constructed, we seek for a discrete solution uh ∈ V k
h , which ends

up in the linear system
Auh = fh . (2.38)

Since the number of unknowns n might become huge, the system (2.38) cannot be solved
directly. This would require O(n3) floating point operations for a naive direct solve of the
sparse system. With nested dissection ordering one obtains a complexity of O(n3/2) floating
point operations for 2D problems and for d = 3 we have O(n2) operations when nested
dissection is used (cf. [GL81]). This is impractical and hence one needs to apply iterative
solution methods. Thereby, the condition number κ of the system matrix A usually plays
an important role. We find the following spectral bounds for Ah (cf. [Joh87] for d = 2) and
small k

λmax(Ah) . hd−2λmax(Λ) and λmin(Ah) & hdΛmin(Λ) . (2.39)

Consequently, the condition number κ(Ah) is of the order O( λmax(Λ)
h2λmin(Λ)

) for moderate polyno-
mial degree k. That is, we have for finer and finer meshes a strongly increasing factor h−2 and
additionally, for jumping or varying coefficients of the matrix Λ, the range of the spectrum
of Λ directly influences the condition number. For higher order polynomial approximations
k enters the condition number of Ah according to [MP96] with the factor k4(d−1) or with
k2(d−1) if diagonal scaling is used. Nevertheless, we focus on k ≤ 3.

Due to the bad condition number of the matrix Ah we additionally need efficient precon-
ditioners in order to solve the linear problem with a complexity of O(n). That is, because
the convergence of standard iterative procedures such as Richardson, Jacobi or Gauss-Seidel
iteration deteriorate when applied directly to such problems.

Another iterative solution method is the conjugate gradient (CG) method introduced in
[HS52], see also [Axe94, Vas08, KM09]. Its i-th iterate u(i) fulfills

‖u(i) − u‖Ah ≤ 2

(√
κ(Ah)− 1√
κ(Ah) + 1

)i
‖u(0) − u‖Ah , (2.40)

where u(0) is the initial guess and u is the exact solution. Even though one iteration is of
the order Ahu, that is O(n), the convergence factor tends to 1 for increasing n. A remedy to
this is to devise a uniform preconditioner Bh of Ah. Then, for the preconditioned CG (PCG)
method the convergence estimates are equivalent to (2.40), but now, κ(B−1

h Ah) enters. Hence,
if Bh is such that κ(B−1

h Ah) is uniformly bounded, the PCG solver is of optimal order.

2.3 The equations of linear elasticity

The field of continuum mechanics deals with the deformation of materials and different sub-
stances. Here, we are interested in the behavior of solids under certain loads or forces,
respectively. In the following, we briefly sketch the needed ingredients and equations which
finally yield the equations of linear elasticity. The focus of this work lies on the steady state
case and hence all considered variables are time-independent. For a thorough discussion see
[MH94] or the nice summary in [Bra01].
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Let us assume we are given a body (piece of material) Ω ⊂ Rd, d = 2, 3, also called reference
configuration. Later on, we need Ω to be a smooth and connected domain. Every pointX ∈ Ω
is called material point, whereas x ∈ Rd is called spatial point. A mapping Φ : Ω → Rd

which preserves the orientation and which is invertible, i.e.,

det(∇Φ(X)) > 0

for all X ∈ Ω is called deformation of Ω. x = Φ(X) denotes the deformed spatial point of
the material point X ∈ Ω. Further, we introduce the displacement U(X):= Φ(X)−X and
u(x) = U(X). The nonlinear Green’s strain tensor E(U) characterizes the local deformation
of the body. It vanishes if the motion is a rigid body transformation, given by

Φ(X) = QX + b

with b ∈ Rd and with an orthogonal tensor Q ∈ Rd×d (QtQ = I). Here Q represents the
rotations and b the translations. In 2 dimensions we have 3 rigid motions (2 translations and
1 rotation), while in 3D we do have 6 independent rigid body transformations (3 rotations
and 3 translations). Under the assumption that we are only dealing with small displacements,
the material points X can be replaced by the spatial points x, as well as the displacement
U(X) by u(x), and moreover, the Green strain tensor can be replaced by its linearization
ε(u), also called the symmetrized gradient, which is

ε(u)(x):=
1
2

(∇u(x) + [∇u(x)]t) , (2.41)

or equivalently, ε(u) = (εij(u))i, j=1, ..., d where εij(u) = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. The equations of

linear elasticity are based on balance equations. Therefore, the surface force density is intro-
duced. A basic axiom of continuum mechanics is the balance of momentum. It states that
this surface force density (stress) balances out the forces acting on every surface within Ω
(gravity and surface forces). Further, it can be shown (cf. [MH94]) that this force density
depends linearly on the normal vector of the specific surface. This is referred to as Cauchy’s
theorem and it implies the existence of a stress tensor field σ.

The balance of momentum yields the steady state Cauchy’s equation of motion

0 = divσ + f (2.42)

together with the condition that σ is symmetric. Thereby, f designates the body forces
acting on Ω.

Finally, material laws link the stress tensor σ and the linearized strain tensor ε to each other.
We consider only linear elastic materials which means that the strain depends linearly on
the stress. This is also referred to as Hooke’s law. It implies the existence of a fourth-order
tensor field C(x) such that

σ(u)(x) = C(x)ε(u)(x) in Ω. (2.43)

Moreover, if C does not depend on x the material is called homogeneous. A further material
property is isotropy. An isotropic material’s properties are direction-independent, i.e., in-
variant with respect to rotations. Otherwise the material is called anisotropic. For isotropic
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materials the relation between stress and strain simplifies to

σ =
E

1 + ν

(
ν

1− 2ν
tr(ε(u))I + ε(u)

)
, (2.44)

where the scalar E denotes the Young’s modulus and ν is the Poisson ratio. Their physically
reasonable values are

E > 0 and 0 < ν < 1/2 .

People sometimes use the Lamé constants λ and µ (also called shear modulus) to express the
stress-strain relation. With the transformation

λ =
Eν

(1− 2ν)(1 + ν)
and µ =

E

2(1 + ν)
(2.45)

we arrive at
σ = λ tr(ε(u))I + 2µε(u) . (2.46)

For ν < 1/2 or λ <∞, respectively, the tensor C is invertible. Since we know that σ and ε,
respectively, are symmetric we can write the tensors σ and ε in vector form of length 6 (d = 3)
or 3 (d = 2). Let us assume the following arrangement σ = (σ11, σ22, σ33, σ12, σ13, σ23)t

and ε = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23)t in 3D. In 2D we have σ = (σ11, σ22, σ12)t and
ε = (ε11, ε22, 2ε12)t. Then we can write for isotropic, homogeneous materials the tensor C
as second-order tensor. It is given by its inverse C−1

iso , called compliance tensor,

C−1
iso :=



1/E −ν/E −ν/E 0 0 0
−ν/E 1/E −ν/E 0 0 0
−ν/E −ν/E 1/E 0 0 0

0 0 0 1/µ 0 0
0 0 0 0 1/µ 0
0 0 0 0 0 1/µ

 , (2.47)

The subscript “iso” indicates the isotropic behavior.

In the case of an anisotropic body, which is the most general constitutive law for elastic
materials, the tensor C consists of 36 unknowns which is due to the symmetry of the tensors
σ and ε. If the material exhibits certain axes of symmetry, then C can be further simplified.
An orthotropic material behaves differently along certain orthogonal directions. Usually we
align them with the coordinate system. In that case the compliance tensor reads as

C−1
ortho:=



1/E1 −ν12/E1 −ν13/E1 0 0 0
−ν12/E1 1/E2 −ν23/E2 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/µ23 0 0
0 0 0 0 1/µ13 0
0 0 0 0 0 1/µ12

 . (2.48)

Ei is the Young’s modulus in the xi-direction, µij is the shear modulus in the xi-xj-plane
and νij is the major Poisson ratio. This constitutive law is determined by 9 unknowns.

Finally, in order to have a system with a unique solution we have to prescribe certain boundary
conditions. Then we end up with a boundary value problem. It is intuitionally apparent that
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when we fix some part of the boundary, that the deformation of a body under certain loads
is unique. This confirms the theory, because if we fix the displacement on some part of the
boundary with positive measure the rigid body transformations are excluded. On the other
hand for purely Neumann boundary conditions, i.e., for fixed forces on the whole boundary
the solution is unique up to rigid modes, which do not influence the stress and the strain,
respectively.

Let us denote by Γ: = ∂Ω the boundary of the domain Ω ⊂ Rd, d = 2, 3. We subdivide Γ
into two disjoint sets ΓD and ΓN . They fulfill Γ = ΓD ∪ ΓN . On ΓD we prescribe Dirichlet
boundary conditions where we fix the displacement u to some given value uD on the surface

u = uD on ΓD .

On the remaining part ΓN we set so-called Neumann boundary conditions. Thereby we impose
the surface traction on the boundary, i.e.,

σ · n = tN on ΓN .

One might consider additionally pressure boundary conditions which are a special case of the
Neumann boundary case.

2.4 Variational Formulations

In this section we address three different variational formulations of the equations of linear
elasticity (2.42), for which we discuss suitable preconditioners in the following chapters. The
first one is the standard pure displacement formulation for which we observe the effect of
locking. To overcome the problem of volume locking we introduce a bilinear form which uses
an approximative integration, called reduced integration. A discontinuous Galerkin (DG) for-
mulation of the governing equations is another possibility to have optimal error estimates
independently of the Poisson ratio. Finally, to complete the picture we discuss some mixed
formulations.
As discussed for the scalar model problem we assume homogeneous Dirichlet boundary con-
ditions uD = 0 on ΓD.

2.4.1 Pure displacement formulation

The first variational formulation is the simplest (cf. [Bra01, Section 6.3]). We multiply (2.42)
by a suitable test function and apply the integration by parts formula. Using the symmetry
of ε(u) we arrive at the following variational problem for meas(ΓD) > 0:

Find u ∈ [H1
0,ΓD

(Ω)]d such that (2.24) holds with

a(u, v) :=
∫

Ω
Cε(u) : ε(v) dx = (Cε(u) , ε(v))0 , (2.49)

L(v) = (f , v)0 −
∫

ΓN

tTNv ds , (2.50)
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and the test space V := [H1
0,ΓD

(Ω)]d. If ν < 1/2 and E > 0 on the whole domain Ω we find
due to Korn’s inequality (Theorem 2.1.7) that a(., .) is coercive on V . Moreover, the bilinear
form is bounded and hence we have existence and uniqueness of the solution.

In the pure traction boundary case we have to alter V and choose V := Ĥ1(Ω) and obtain
the coercivity of a(., .) due to Theorem 2.1.6. Existence and uniqueness of the solution follow
if the right-hand side L(.) fulfills the compatibility condition

L(r) = 0 ∀v ∈ V RBM , (2.51)

which is due to Fredholm’s theorem (see e.g. [Fal91, BS07, KO89] for a proof).

For the discretization we choose a triangulation Th of the domain and use the piecewise
polynomial space [V k

h ]d. Due to the conformity we do have a unique solution uh.

Having a closer look at the coercivity and boundedness of (2.49) we observe for an isotropic
material c = cKλmin(C) = cK

E
1+ν and c̄ = λmax(C) = E

1−2ν . Hence, we find a deterioration
of the discretization which results in a ill-conditioned problem as the material parameter ν
tends to 1/2. People in finite element community call this phenomenon locking, or in this
case volume locking.

Locking has been theoretically considered in [Arn81, BS92b, BS92a] and nicely summarized
in [Bra01]. The basic message is that we observe locking if the error approximation

‖u− uh‖1 = O(h)

is not uniform with respect to a small parameter t → 0, which is in our case ν → 1/2 or
equivalently λ→∞.

Contrary to the locking due to the Poisson ratio there is shear locking. This occurs if the
shape-regularity deteriorates, i.e. if ρ in (2.29) tends to zero. Especially in thin structures
such as beams or shells the triangulation might become anisotropic from which the accuracy
suffers . Especially the constant in Korn’s inequality tends to zero for meshes that are not
shape-regular. Such examples have been considered for instance in [Sch99b].

The discretization of (2.49) with piecewise polynomial functions suffers from volume locking
for a degree k ≤ 3. For k ≥ 4 one obtains optimal error estimates on quasi-uniform meshes
as shown in [SV85]. In Figure 2.1 the the effect of locking is demonstrated for k = 1, 2, 3
and k = 4.

2.4.2 Reduced Integration

In the following we provide a bilinear form for which one can show optimal order error
estimates uniformly in the Poisson ratio ν for continuous piecewise linear finite elements.
This approach uses the so-call reduced integration technique, which goes back to [ESGB82] and
[HLB79]. We treat a variational formulation of the equations of linear elasticity introduced
in [Fal91] for elements of order k = 1 up to k = 3. We focus here on the case k = 1, namely,
piecewise linear shape functions. In [Sch99b, Sch99a] its equivalence to a mixed formulation
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(a) order 1 (b) order 2

(c) order 3 (d) order 4

Figure 2.1: Beam for ν = 0.4999.

using P2−P0 finite elements is shown. It is known, that this pair of spaces is stable for Stokes
equations ([GR86]). Moreover, stable pairs of finite elements spaces for the Stokes equations
are usually locking-free when they are applied to an appropriate mixed formulation of linear
elasticity problems (see [GR86, BF91]).

Let us consider a quasi-uniform triangulation TH of the domain Ω into d-simplices. For
convenience we describe the method for the case d = 2 in which we subdivide each of the
elements T ∈ TH into four congruent triangles by adding the midpoints of the edges to the set
of vertices. The obtained refined triangulation Th of Ω has a meshsize h = H/2. We introduce
the vector spaces V = [H1(Ω)]2 and the discrete subspace Vh:= [V 1

h ]2 of vector-valued nodal
piecewise linear basis functions on the fine mesh Th. By V̂h we designate Vh ∩ Ĥ1(Ω). Then
we derive the discrete variational problem (2.33) from (2.42) with

a(uh, vh):= 2µ
{

(ε(uh) , ε(vh))0 +
ν

1− 2ν
(P0 divuh , P0 div vh)0

}
, (2.52)

and

L(vh):= (f , vh)0 +
∫
∂Ω
tN · vh ds (2.53)

where f ∈ [L2(Ω)]2 and tN ∈ [L2(∂Ω)]2. Moreover, the solution uh is sought in the space
V̂h. The operator P0 is the L2-projection onto SH , that is,

P0(v)|TH =
1
|TH |

∫
TH

v dx ∀TH ∈ TH , (2.54)

for any scalar function v ∈ L2(Ω). This form goes back to [Fal91]. In [Fal91] it is shown that
we obtain optimal order error estimates.

For d = 3, in [GR86, Subsection II.2.3] it is shown that piecewise P1-functions together
with face bubbles (subset of piecewise P3-functions) for the velocities and piecewise constant
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pressure yield stable discretization schemes for Stokes equations, and hence, a locking-free
discretization for linear elasticity problems.

2.4.3 Discontinuous Galerkin formulations

Another possible variational formulation of the equations (2.42) using only the displacement
u is given in [HL03]. By means of a discontinuous Galerkin (DG) approximation using a
penalty term which penalizes the discontinuities in a special way one obtains a-priori error
estimates of optimal order which are uniform in the Poisson ratio ν and hence, locking is
avoided. More specifically, the approach is an interior penalty approach (IPDG), whereas we
are only interested in the symmetric case, the Symmetric Interior Penalty Galerkin (SIPG)
method yielding positive definite stiffness matrices. For a summary on DG methods we
may refer to the book [HW08] or the article [ABCM01], which summarizes the basic IPDG
approaches and some more.

We consider problem (2.42) in dimension d = 2, 3 with uD = 0. The triangulation Th is
assumed to be regular. The set of faces (faces for d = 3 and edges for d = 2) Eh is subdivided
into

Eh = Eoh ∪ EDh ∪ ENh with Eoh = Eh ∩ Ω, EDh = Eh ∩ ΓD, ENh = Eh ∩ ΓN .

As the name of the DG method suggests we use, instead of functions in [H1(Ω)]d, the space
of piecewise H1-functions, called broken spaces. For more details on the general variational
form we refer to [AGKZ11]. We immediately switch to the finite dimensional case and define
the space V DG

h of piecewise linear functions

V DG
h := {v ∈ [L2(Ω)]d : v|T ∈ [P1(T )]d ∀T ∈ Th} . (2.55)

As in the definition of V RT
h,0 we regard for each face E a fixed unit normal vector nE . Let

T+
E be the element for which nE is the outward vector at face E, while for the element T−E
nE is directed inwards. Similarly, we define the traces of a function v at E with v+ or v− if
the values belong to T+

E or to T−E . Now, let us define the jump and the average operator for
a given function w, for which the traces on the single elements T+

E and T−E at the face E are
properly defined (piecewise H1-functions for instance), as

[[w]]:=
(
w+ −w−

)
and {{w}}:=

(
w+ +w−

2

)
. (2.56)

On boundary faces E ∈ EDh ∪ ENh we specify [[w]]:= w and {{w}}:= w. Following [HL03] we
define

a(uh, vh) :=
∑
T∈Th

(Cε(uh) , ε(vh))0,T

−
∑

E∈Eoh∪E
D
h

{
({{Cε(uh) · nE}} , [[vh]])0,E + ({{Cε(vh) · nE}} , [[uh]])0,E

}
+(2µ+ λ)γ0

∑
E∈Eoh∪E

D
h

(
1
h

[[P0uh]] , [[P0vh]])0,E

+2µγ1

∑
E∈Eoh∪E

D
h

(
1
h

[[uh]] , [[vh]])0,E (2.57)
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together with the linear functional

L(vh):= (f , vh)0,Ω +
∑
E∈ENh

(tN , vh)0,E . (2.58)

The last two terms of (2.57) penalize the jumps across the interior and Dirichlet faces. The
operator P0 is the L2-projection onto constants along an edge E ∈ Eh, that is

P0(v)|E =
1
|E|

∫
E
v dx ∀E ∈ Eh . (2.59)

The parameters γ0 > 0 and γ1 > 0 have to be chosen properly to prove stability. In [AGKZ11]
it is shown that this bilinear form is consistent in the sense that

a(u− uh,vh) = 0 ∀vh ∈ V DG
h ,

with u being the exact solution of (2.42) with (2.43). For a-priori error estimates a mesh
dependent energy norm is used which is defined by

|||v|||2 :=
∑
T∈Th

(Cε(v) , ε(v))0,T +
∑

E∈EIh∪E
D
h

(
1
h

[[v]] , [[v]])0,E . (2.60)

With this energy norm it can be shown, using an elliptic regularity estimate, that the method
does not lock due to

|||u− uh|||+ ((2µ+ λ)(γ0 − c0))1/2

∑
E∈Eh

‖h−1/2 [[P0uh]]‖20,E

1/2

≤ Ch(‖f‖L2(Ω) + ‖tN‖H1/2(ΓN )) , (2.61)

from which the L2-estimate

‖u− uh‖L2(Ω) ≤ Ch(‖f‖L2(Ω) + ‖tN‖H1/2(ΓN )) (2.62)

follows. In either of the estimates (2.61) and (2.62) the constant C is independent of the
Poisson ratio ν or the Lamé constant λ. For the first estimate we need that γ0 > c0 with c0

sufficiently large and additionally, γ1 ≥ c1 > 0 is necessary.

2.4.4 Mixed formulations

Finally, we consider some mixed formulations of (2.42) in order to give a complete picture
of possible variational formulations of the system (2.42). We state 3 standard formulations.
When considering mixed formulations of the equations of linear elasticity an additional un-
known is introduced. The new unknown can be interpreted as a pressure p or it is given by
the stress tensor σ. The relation between the displacement u and the extra unknown supplies
us with another equations. Generally, the elasticity system in mixed form (see [BF91]) looks



2. Problem setting 27

as:
Find (u, p) ∈ Vg ×Qg such that

a(u, v) + b(v, p) = 〈F1, v〉 for all v ∈ V0 ,
b(u, q) − c(p, q) = 〈F2, q〉 for all q ∈ Q0 ,

(2.63)

with Vg, V0 ⊂ V and Qg, Q0 ⊂ Q where V and Q are suitable Hilbert spaces.

The first system is obtained if one introduces a new variable p:= λ divu. Then the bilinear
forms a(., .), b(., .) and c(., .) of (2.63) are provided by

a(u, v):= 2µ (ε(u) , ε(v))0,Ω , b(u, q):= (q , divu)0,Ω , c(p, q):=
1
λ

(p , q)0,Ω , (2.64)

together with the linear functionals

〈F1, v〉:= (f , v)0,Ω + (tN , v)0,ΓN
(2.65)

and F2 = 0. The involved spaces are Vg = [H1
uD,ΓD

(Ω)]d, V0 = [H1
0,ΓD

(Ω)]d and Q0 = Qg =
L2(Ω).

Another possibility is to handle the stress σ as a separate variable. Thence, we end up with
(2.63) where

a(σ, τ ):=
(
C−1σ , τ

)
0,Ω

, b(τ , u):= − (ε(u) , τ )0,Ω (2.66)

and c(., .) = 0. The right-hand sides are given by F1 = 0 and

〈F2, v〉:= − (f , v)0,Ω − (tN , v)0,ΓN
. (2.67)

In this case we have to choose the spaces V = Vg = V0 = HS(Ω), Qg = [H1
uD,ΓD

(Ω)]d and
Q0 = [H1

0,ΓD
(Ω)]d.

When applying integration by parts in b(., .) we arrive at (2.63) with a(., .) as in (2.66),

b(τ , u):= (u , div τ )0,Ω (2.68)

and c(., .) = 0. Moreover, we find the right-hand sides

〈F1, τ 〉:= (τn , uD)0,ΓD
and 〈F2, v〉:= − (f , v)0,Ω . (2.69)

The involved spaces have to be chosen as V = {τ ∈ HS(Ω) : div τ ∈ [L2(Ω)]d} andQ = Q0 =
Qg = [L2(Ω)]3 . The solution σ is sought in the space Vg = {τ ∈ V : τ · n = tN on ΓN},
while V0 is given by the homogeneous version of Vg. Note that in this case the Dirichlet
boundary condition turns out to be the natural one, i.e., the one which occurs directly in the
right-hand side of the problem, while the Neumann boundary conditions have to be imposed
as essential boundary conditions.

After homogenization, i.e., if Vg = V0 and Qg = Q0, we find that due to the theorem of Brezzi
[Bre74] (or in [BF91, Theorem 1.1]) there exists a unique solution (u, p) to the saddle point
problem (2.63) for c(., .) = 0, if
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1. the bilinear forms a(., .) and b(., .) are bounded,

2. a(., .) is coercive on kerB = {q ∈ Q0 : b(v, q) = 0 ∀v ∈ V0},

3. the so-called inf-sup condition holds. That is, there exists a β > 0 such that

inf
q∈Q0

sup
v∈V0

b(q, v)
‖q‖Q ‖v‖V

≥ β . (2.70)

In the case of c(., .) 6= 0 we have a unique solution (see [BF91, Proposition 1.4]) if a(., .)
and c(., .) are symmetric, bounded and coercive on V0 and Q0, respectively. Moreover, the
inf-sup condition has to hold for b(., .).
When discretizing the problem by conforming finite element spaces Vh and Qh one has to
verify the inf-sup condition (2.70) since it does not follow from the conformity of the spaces.

For the first choice it can be shown ([BF91, Proposition II.4.1]) that the solution is unique
and uniform with respect to λ. But, in order to verify (2.70) for the discretized system,
linear continuous finite elements are not sufficient for the displacement (cf. [BF91, IV.3]). In
[Fal91] it was shown that for piecewise quadratic non-conforming displacements (or higher
order) one finds optimal a priori error estimates uniform in λ.

For the other two possibilities we observe that

a(τ , τ ) ≥ c ‖τ‖0,Ω . (2.71)

with c = Λmin(C−1) = 1−2ν
E for isotropic materials (2.47). Thus we do not have coercivity

on V uniformly in ν ∈ [0, 1/2). Since ε(u) ∈ HS(Ω) for u ∈ [H1(Ω)]d it follows from the
first equation of (2.63) with the setting (2.66) that σ = Cε(u) ∈ HS(Ω) and thence, setting
(2.66) is equivalent to the pure displacement formulation (2.49). This is why we do except
volume locking for the second formulation in the case of low order finite elements. Due to
the equivalence we immediately obtain stability for ansatz spaces of order greater or equal
to 4.

For b(., .) as in (2.68) the inf-sup stability can be found in [BF91, Bra01]. Since kerB consists
exactly of those functions that are divergence-free the coercivity constant in (2.71) does not
depend on ν and hence it can be used to analyze the almost incompressible case. The
construction of a compatible pair of finite element spaces is a sophisticated task, especially
due to the symmetry condition of the stress field. Stable piecewise polynomial finite elements
were developed in [AW02, AC05] for 2D and 3D, respectively. Note that the space used for
the displacements is at least of order 2 and it is additionally enriched by some higher order
functions, i.e., it is not piecewise linear.

Let us have a closer look at b(., .) of the last two mixed formulations. If v ∈ H1
0 (Ω) and

div τ ∈ H−1(Ω), which is fulfilled for τ ∈ HS(Ω), both bilinear forms are equal. If one
now chooses the displacements to be only in H(curl,Ω) we need for the stresses τ that
div div τ ∈ H−1(Ω). In [SS07] this setting was introduced and the solvability and uniqueness
of the solution was analyzed. Moreover, finite elements have been constructed with optimal
order error estimates. These elements do not suffer from locking, even not for lowest order.
Lowest order means that one has piecewise linear Nédélec elements (cf. [Néd80, Néd86]) for
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the displacements and the related normal components of the normal-stresses are given by
linear functions on the faces, i.e., for each face we have d DOFs.
Additionally, in [Sin09] a hybridized version has been introduced and an additive Schwarz
block preconditioner was developed for the Schur complement equation.

In [MW11] the authors treat preconditioners for (systems of) PDEs in mixed form, i.e. in
indefinite form. Additionally in the report [MW10] a preconditioner for the Stokes equations
is posed which shows a uniform convergence behavior in a numerical example. The same
preconditioner turns out to be robust for a stable mixed formulation of elasticity using lowest
order Tailor-Hood elements.
In [AFW07] a stable mixed formulation is discussed, where the symmetry of σ is only weakly
imposed. The authors provide stable mixed finite elements for this formulation.
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Chapter 3

Subspace correction methods

The framework of subspace correction methods was introduced by J. Xu in [Xu92]. It deals
with variational problems on a Hilbert space V . The considered bilinear form naturally
introduces the system operator A. The general methods are based on a decomposition of V
into a finite number of subspaces that may overlap but do sum up to V . On each subspace
an operator Ãi, represented through a bilinear form, is chosen to approximate A on the
subspace. The general method of subspace correction methods solves the residual equation
on each subspace by means of Ãi approximately. Furthermore, the correction steps may
be applied in parallel or successively, leading to the method of parallel subspace corrections
(MSSC) or successive subspace corrections (MSSC). Most of the known iterative solution
methods to solve linear variational problems efficiently, can be considered to be subspace
correction methods. In this chapter we present different iterative procedures for solving
discretizations of PDEs in terms of subspace correction methods.

In Section 3.1 we provide the general framework of subspace correction methods and the
related convergence theory. Afterwards, (A)MG is considered in terms of this framework.
We present the general MG algorithms, shortly address the convergence investigations and
finally provide a convergence estimate for a specific example employing the theory of MSSC.
Then, in Section 3.3 attention is drawn to two-level convergence of MG in terms of an
estimate on the condition number of the preconditioned system. In Section 3.4 the auxiliary
space method based on the fictitious space lemma is addressed. Next, the framework of
domain decomposition methods is discussed. Thereby, especially the Schwarz overlapping
DD methods align to the framework of subspace corrections. A convergence estimate in
terms of the theory of MSSC is stated for a specific example and moreover, it is compared
to classical convergence results of Schwarz methods. Finally, in Section 3.6 the convergence
properties of MSSC in the case of two overlapping subspaces are derived and numerical results
are presented for a specific test case.

3.1 General framework

The general framework of subspace correction aligns to the theory and notation of general
Schwarz methods. The first unifying papers are [Xu92] and also corresponding to Schwarz
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methods [GO95]. The theory of [Xu92] has been further investigated in [XZ02, CXZ08]. In
here, we follow the notation of the works by Xu and Zikatanov.

Let us assume we are given a variational problem: Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V , (3.1)

with V ⊂ H being a closed subset of the Hilbert space H with the standard inner product
(. , .). Moreover, we assume that a(., .) : H×H → R is a SPD and continuous bilinear form,
which therefore defines an inner product. If f is a continuous linear functional in H∗ the
problem is well-posed. Since a(., .) defines an inner product it naturally defines a self-adjoint
operator A : V → V , such that

(Av , w) = a(v, w) ∀v, w ∈ V . (3.2)

Now, let us split V into a, not necessarily direct, sum of closed subspaces Vi ⊂ V , i = 1, . . . , J ,
with

V =
J∑
i=1

Vi . (3.3)

With each subspace Vi we associate a bilinear form ai(., .) that should be an approximation
of a(., .) on Vi. Contrary to the setting used in [XZ02] where all occurring bilinear forms only
have to satisfy the inf-sup condition on the corresponding spaces, we devise that all ai(., .) are
coercive on Vi. Moreover, in [XZ02] the original bilinear form a(., .) has to fulfill the inf-sup
condition on each of the subspaces Vi, which follows automatically from the coercivity on V .
If one wants to include mixed problems then we would have to switch to the inf-sup setting.
But since we are only dealing with SPD bilinear forms we can simplify those conditions.

In general we consider an iterative procedure for solving (3.1). That is, we provide an initial
guess u0 and the iterative method produces a sequence of ul (l = 0, 1, 2, . . .) that should
approximate the exact solution u better and better. For each ul−1 we obtain ul by updating
with e, ul = ul−1 + e, solving approximately the residual equation

a(e, v) = f(v)− a(ul−1, v) ∀v ∈ V , (3.4)

which is as difficult to solve as the original equation (3.1). One has to find now an efficient
way to compute a good approximation to e.

Subspace correction methods solve (3.4) approximately on each subspace. Those sub-solutions
are added up in a certain way in order to obtain the full approximate error. Therefore, we
distinguish between a successive approximation of the actual update or a parallel update
leading to the method of successive subspace correction (MSSC) or to the method of parallel
subspace corrections (MPSC), respectively.

In order to analyze Algorithm 3.1.1 we introduce the class of linear operators Ti : V → Vi.
They are defined through

ai(Tiv, vi) = a(v, vi) ∀vi ∈ Vi . (3.5)
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Algorithm 3.1.1: MSSC(a(., .), f(.), u0)
for l = 1, 2, . . . do

ul = ul−1

for i = 1 to J do
Let ei ∈ Vi solve

ai(ei, vi) = f(vi)− a(ul, vi) ∀vi ∈ Vi
ul ← ul + ei

Since we assumed ai(., .) to be SPD Ti is well-defined and R(Ti) = Vi. Further, Ti : Vi → Vi
is isomorphic. A closer look at Algorithm 3.1.1 yields for the error propagation

u− ul = E(u− ul−1) = . . . = El(u− u0) , (3.6)

with
E = (I − TJ)(I − TJ−1) · · · (I − T1) . (3.7)

The method of parallel subspace corrections looks as follows.

Algorithm 3.1.2: MPSC(a(., .), f(.), u0)
for l = 1, 2, . . . do

for i = 1 to J do
Let ei ∈ Vi solve

ai(ei, vi) = f(vi)− a(ul−1, vi) ∀vi ∈ Vi
ul = ul−1 +

∑J
i=1 ei

Let us define the operator T : V → V as

T =
J∑
i=1

Ti , (3.8)

with which it is easy to see that for Algorithm 3.1.2 we have u−ul = (I −T )(u−ul−1). Due
to (3.3), i.e., the sum is closed, we can apply the open mapping theorem (see Lemma 2.1.8)
and obtain the stability of the decomposition

sup
‖v‖=1

inf
v=

P
i vi

J∑
i=1

‖vi‖2 <∞ . (3.9)

Since the Ti : Vi → Vi are SPD isomorphisms on Vi, with (3.3) it can be shown that
T : V → V is an isomorphism on V (cf. [XZ02]). Moreover, in [XZ02] it was shown that
the norm of T−1 is given by an infimum over all decompositions of the sum of norms of the
single T−1

i , i.e., (
T−1v , v

)
= infP

i vi=v

J∑
i=1

(
T−1
i vi , vi

)
. (3.10)
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This yields to a useful result in order estimate the condition number of the operator, namely

(λmin(T ))−1 = sup
‖v‖=1

infP
vi=v

J∑
i=1

(T−1
i vi , vi) .

For the analysis of MSSC we also follow [XZ02]. Let us denote by T ∗i : Vi → Vi the a-adjoint
operator of Ti defined by a(Tiui, vi) = a(ui, T ∗i vi) for all ui, vi ∈ Vi. Additionally, we define
the symmetrization of Ti

T̄i:= Ti + T ∗i − T ∗i Ti . (3.11)

In the case of MSSC we find the following useful result in [XZ02].

Theorem 3.1.1. Suppose that (3.3) holds. Assume also that for all i = 1, . . . , J , Ti : Vi →
Vi are isomorphic and that there exists a constant ω ∈ (0, 2) such that

‖Tiv‖2a ≤ ω (Tiv , v)a ∀v ∈ V . (3.12)

Then the following relation holds

‖E‖2a = ‖(I − TJ)(I − TJ−1) · · · (I − T1)‖2a =
c0

1 + c0
(3.13)

where

c0 = sup
‖v‖=1

infP
i vi=v

J∑
i=1

(
TiT̄

−1
i T ∗i wi , wi

)
a
<∞ with wi =

J∑
j=i

vj − T−1
i vi . (3.14)

If the solution operators Ti on each subspace are exact solves, that is ai(., .) = a(., .) on Vi
and therefore Ti reduces to the idempotent and a-adjoint operator Pi defined by

a(Piv, vi) = a(v, vi) ∀vi ∈ Vi . (3.15)

Note that Pi restricted to Vi yields the identity. In the following, let us denote by Πi : V → Vi
the orthogonal projection from V to Vi, with respect to (. , .), given by

(Πiv , vi) = (v , vi) ∀v ∈ V ∀vi ∈ Vi . (3.16)

Using Πi, the relation (3.15) can be rewritten as

a(Piv, Πiw) = a(v, Πiw) ∀w ∈ V . (3.17)

The operator Pi can be written as

Pi = (ΠiAΠi)−1ΠiA i = 1, . . . , J . (3.18)

Note that since A is an isomorphism on V and since Vi is a closed subspace of V the operator
Ai:= ΠiAΠi is an isomorphism on Vi.

For the analysis of MSSC with exact solvers for the subproblems we find the following result
in [XZ02].
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Theorem 3.1.2. Suppose that (3.3) holds. Then the following relation holds

‖E‖2a = ‖(I − PJ)(I − PJ−1) · · · (I − P1)‖2a =
c0

1 + c0
(3.19)

where

c0 = sup
‖v‖a=1

infP
i vi=v

J∑
i=1

‖Pi
J∑

j=i+1

vj‖2a <∞ . (3.20)

Note that the factor ω of (3.12) does not occur in the identity (3.13). This is somehow hidden
in the derivation of c0. However, in the results derived in [Xu92] and [GO95] ω enters the
estimates of the norm of the error propagation operator.

3.2 (A)MG viewed as subspace correction

Multigrid is a very powerful tool in order to solve discretizations of PDEs approximately.
Their investigation goes back to the 60s by Fedorenko and Bakhvalov. In the 70s Brandt
further investigated the method and in the work of Hackbusch, beginning in the late 70s,
a lot has been done on the convergence theory of multigrid methods. Since then a lot of
people have contributed to this topic. Information about multigrid methods can be found in
[TOS01, HT82, Hac85, Bra01, . . . ].

Generally a multigrid method is a multilevel method, with a nested sequence of subspaces of
the whole space V , given by,

V1 ⊂ V2 ⊂ . . . ⊂ VJ = V , (3.21)

which are in the simplest case finite element spaces according to a nested sequence of trian-
gulations Tk = Thk . The method aims in the solution uh ∈ Vh of

a(uh, vh) = f(vh) ∀vh ∈ VJ . (3.22)

Multigrid is based on the concepts of smoothing and coarse grid correction. That is, we apply
a fast relaxation procedure on the fine grid and on the coarse grid we correct the remaining
error by a more advanced method. The basis for the multigrid method to work is an excellent
concurrence between those two parts. That is, an error that is not reduced by the relaxation
has to be efficiently dealt with by the coarse grid part and vice versa.

Smoothing procedures are for example damped Jacobi or Gauss-Seidel iteration. In a two-
level setting (with the spaces VH ⊂ Vh) the smoother acts on the fine grid approximation by
means of the affine linear operator S : Vh → Vh. One might apply several pre- and post-
smoothing steps ν1 and ν2. In terms of finite element spaces or vector-valued representation
of the functions, respectively, we do have a basis transformation P : VH → Vh, being for
nested subspaces simply the embedding from VH into Vh. P is often called prolongation. We
also need a restriction operator R : Vh → VH that we choose to be R = P T , since otherwise
the coarse grid operator AH = RAhP would be non-symmetric which would not align with
the assumptions made so far. The 2-grid algorithm written in terms of operators reads: Its
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Algorithm 3.2.1: 2-grid algorithm: y = MG2(b,x)

x← Sν1(x) // apply ν1 pre-smoothing steps
dh = b−Ax // compute defect
dH = P Tdh // restrict defect to coarse level
vH = (P TAP )−1dH // solve the defect equation on the coarse grid
vh = PvH // prolongate the coarse grid update to the fine level
x← x+ vh // update the solution
y = Sν2(x) // apply ν2 post-smoothing steps

error propagation is given by e(k+1) = (I −B−1
MG,2A)e(k). We want to consider only the case

ν1 = ν2 = 1 of a single pre- and post-smoothing step. The error propagation is defined via
the composition of pre-smoothing, the coarse grid correction and post-smoothing. The error
propagation operator of the coarse grid correction step is given by

I − PA−1
H P TA (3.23)

and the error propagation operator of the smoothing (relaxation) process is

S = I −M−1A . (3.24)

Here M−1 is an approximation to A−1. In order to obtain a symmetric method, the matrices
for the pre- and post-smoothing steps are adjoint to each other. Thence, we find B−1

MG,2 from

EMG,2 = I −B−1
MG,2A = (I −M−1A)(I − PA−1

H P TA)(I −M−TA) . (3.25)

Similarly to the computation in [Not05], we find with C = (I −M−1A)(I −PA−1
H P TA) that

‖EMG,2‖A = ‖C(I −M−TA)‖A = ‖CA−1CTA‖A
= ‖A1/2CA−1CTA1/2‖ = ‖(A1/2CA−1/2)(A1/2CA−1/2)T ‖
= ‖(A1/2CA−1/2)‖2 = ‖C‖2A . (3.26)

That is, in order to investigate the error propagation we can neglect pre-smoothing. Written
in terms of the subspace correction framework E looks like

E = (I − T )(I − PH) (3.27)

with T2 = T = M−1A. T1 = PH is the a-orthogonal projection onto VH , that is, a1(., .) =
a(., .). According to Theorem 3.1.1 in [Zik08] it was shown that

c0 = sup
v∈V

‖(I − Π̄H)v‖2
M̄

‖v‖2A
− 1 , (3.28)

where Π̄H is an (., .)M̄ -orthogonal projection onto VH with the symmetrization M̄ of M as
in 3.11. With K = c0 + 1 one can show that (3.28) is equivalent to the K derived in [FVZ05,
Theorem 4.1] which has been proven by direct algebraic computations. Similar derivations
have been conducted in [Vas08, Section 6.6]. There, the effect of coarsening by compatible
relaxation has been investigated. In AMG compatible relaxation means that the coarsening
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is solely based on the smoother M , and hence, a coarse grid correction which is orthogonal
to the (symmetrized) smoother is somehow optimal.

In order to set up a multilevel procedure, let us consider the nested sequence of spaces
(3.21). Therefore, we identify the components of level l with subscript (l). That is A(l−1):=
P T(l)A(l)P(l) for l = 2, . . . , J with A(J):= A. By nL = J − 1 we denote the number of coarse
levels. Additionally, let η be an integer parameter that determines the (A)MG cycle. The
multigrid algorithm, defining the preconditioner B−1

MG, is as follows. The choice η = 1 results

Algorithm 3.2.2: multigrid algorithm: y = MG(b, x, l)

if l = 1 then
x = A−1

(l) b // solve exactly on the coarsest level

else
for s = 1 to η do // perform η cycles

x← Sν1(x) // apply ν1 pre-smoothing steps
d(l) = b−A(l)x // compute defect
d(l−1) = P T(l)d(l) // restrict defect to coarse level
v(l−1) = MG(d(l−1), 0, l − 1) // solve coarse defect equ. recursively
v(l) = P(l)v(l−1) // prolongate the coarse grid update
x← x+ v(l) // update the solution
y = Sν2(x) // apply ν2 post-smoothing steps

in the so-called V-cycle while η = 2 is typically referred to as W-cycle. Moreover, we use the
notation V(ν1, ν2) for a V-cycle with ν1 pre-smoothing steps and ν2 post-smoothing steps.
An equivalent notation is used for the W-cycle.

The analysis of multigrid was formerly done by two different approaches. The first one, yield-
ing sharp estimates, is the rigorous or local Fourier analysis (LFA). Therefore, quadrilateral
uniformly refined meshes are used for the analysis. Another approach, in order to have a
general convergence theory is based on two properties of the multigrid procedure, to be spe-
cific, the smoothing property and the approximation property. The approximation property
tells us how well the finer space can be approximated by the coarser space. On the other
hand, the smoothing property determines the quality of the smoothing process, especially on
functions being only slightly affected by the coarse grid correction.

We focus on the qualitative convergence results. Therefore, we need the properties mentioned
above. The approximation property is that there exists a c1 > 0 such that

‖(I − Pi−1)vi‖2 ≤
c1

λi
a(vi, vi) ∀vi ∈ Vi , (3.29)

where λi = ρ(Ai) being the spectral radius of the system operator Ai on level i. The second
one, the smoothing property can be written as

c2

λi
(vi , vi) ≤

(
M̄−1
i vI , vI

)
∀vi ∈ Vi , (3.30)
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for c2 > 0. There, M̄−1
i denotes the special symmetrization, with respect to the standard

inner product, of M−1
i , that is

M̄−1
i = M−Ti +M−1

i −M
−T
i AiM

−1
i = M−Ti (Mi +MT

i −Ai)M−1
i ,

which is the smoothing operator when applying the transposed and the usual relaxation
consecutively, i.e., I − M̄−1

i Ai = (I −M−Ti Ai)(I −M−1
i Ai) .

The purely algebraic smoothing property according to [Stü01, p. 434] is given by

‖Sv‖2A ≤ ‖e‖2A − σ‖Ae‖2D−1 , (3.31)

with σ > 0 and D being the diagonal of the operator A. Viewing (3.30) in terms of matrix
operators, we find that (3.31) implies the weaker property (3.30) with c2 = σ. Equivalence
between (3.30) and (3.31) cannot be shown in general.

In [XZ02] the case of a general number of smoothing steps ν1 has been considered. In this
paper no post-smoothing has been discussed, which can be argued by considerations like
(3.26) above. In here, we shortly mention the case ν1 = 1. On each of the subspaces Vi
we apply one smoothing step and on the coarsest level(space), here denoted by V0, we do
exactly invert the operator A0 and therefore, this step is neglected in the error propagation.
For i = 1, . . . , J we find

Ti = (I − Si)P(i) , (3.32)

where P(i) might be an arbitrary projection operator onto Vi and the relaxation error propa-
gator Si is equivalently to (3.24) given by Si = I −M−1

i Ai. Again, Mi is an easily invertible
approximation to Ai. In [XZ02] P(i) was chosen to be Pi, that is, the A orthogonal projection
onto Vi. With this projection and a special choice for the decomposition of v, vi = (Pi−Pi−1)v,
in [XZ02] it was shown that c0 can be bounded by

c0 ≤
c1

c2
, (3.33)

which leads to the following convergence estimate

‖E‖2 ≤ c1

c1 + c2
. (3.34)

Note that the use of Pi as the projection is a severe restriction, which leads to a uniform
convergence result for the V-cycle. Usually, having only the smoothing property and the
approximation property on each level, i.e., uniform two-grid convergence on each level, does
not imply uniform convergence for γ = 1, whereas for γ = 2 the (A)MG method converges
uniformly (cf. [TOS01, Theorem 3.2.1] for instance). In [BPWX91] it is shown that the
V(1, 1)-cycle depends on the number of coarse levels nL, which is the number of subspaces J
if no assumptions on the regularity are used (see also [Vas08, Theorem 5.7]). Using stronger
regularity assumptions, that is, if a strong approximation property holds, level-independent
convergence can be proven for the V-cycle (see [Vas08, Chapter 5]). Furthermore, the vari-
able V-cycle with a variable number of smoothing steps, usually higher for smaller subspaces,
on each level i ν1,i = ν2,i shows a level-independent convergence behavior ([Vas08, Theo-
rem 5.24]) under weak regularity assumptions.



3. Subspace correction methods 39

3.3 Two-level convergence

In this section we investigate the convergence properties of the two-level MG method, see
Algorithm 3.2.1, if it is used as a preconditioner for the conjugate gradient (CG) method,
and hence the condition number of B−1

MG,2A, i.e., κ(B−1
MG,2A), is the decisive measure for

the convergence rate. The derivations in this section are based on the results in References
[Not05] and [FV04].

First, let us assume to have a splitting of the n DOFs into fine and coarse DOFs, or we
split the DOFs corresponding to the coarse mesh and the set of fine nodes is given by its
complement. Alternatively, one may think of splitting the function space V into two disjoint
subspaces. Hence, we can rearrange the matrix A, or set up the matrix A with respect to
the space-splitting, to come up with the following block structure

A =
[
Aff Afc
Acf Acc

]
. (3.35)

Usually, the interpolation from coarse space to whole set of DOFs has the form

P =
[
Pfc
Ic

]
(3.36)

where Ic is the identity corresponding to the coarse DOFs and Pfc is a mapping from the
coarse to the fine DOFs. Using this interpolation operator P , we compute the coarse grid
matrix

Âc:= AH = P TAP = Acc +AcfPfc + P TfcAfc + P TfcAffPfc . (3.37)

The error propagation matrix I − B−1
MG,2A is given by (3.25) from which we gain B−1

MG,2.
Using the interpolation (3.36), we set up a basis transformation matrix

J =
[
If Pfc

Ic

]
. (3.38)

In view of (3.35) the system matrix A in a hierarchical basis reads

Â:= JTAJ =
[

Aff Afc +AffPfc
Acf + P TfcAff Âc

]
. (3.39)

Note that this basis transformation leaves the ff-block unchanged, while the cc-block is equal
to the Galerkin coarse grid matrix Âc.

Now, let us introduce the measure µ, defined by

µ := max
z 6=0

(zf − Pfczc)TXff(zf − Pfczc)
zTAz

, (3.40)

where Xff is the ff-block corresponding to the fine-coarse partitioned matrix

X:= M(M +MT −A)−1MT , (3.41)
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see [Not05], which is also called the symmetrized smoother. Note that the quantity µ is closely
related to the choice of the interpolation matrix Pfc of AMGm (see Chapter 4) according to
(4.30). Moreover, the smoothing process enters (3.40) via the matrix Xff. Since A−1−X−1 =
(I −M−TA)A−1(I − AM−1) is SPSD it follows that X − A ≥ 0 in a positive semidefinite
sense. Reformulating (3.40) then yields

µ = max
(dTf ,z

T
c )6=0

dTf Xffdf[
df
zc

]T
Â

[
df
zc

] ≥ max
(dTf ,z

T
c )6=0

dTf Affdf[
df
zc

]T
Â

[
df
zc

] ≥ 1 , (3.42)

where df = zf − Pfczc is the defect of the interpolation. It is usually assumed that M fulfills
the smoothing property (see (3.30) or (3.31)) which implies thatX is SPD (see [FV04] or more
generally [TOS01]). Standard computations show that for instance, Gauss-Seidel relaxation
has this property.

After this short summary, we recall the following theorem, cf. [Not05].

Theorem 3.3.1 (Analysis of MG,2). Let A be an SPD matrix partitioned into 2×2 block form
(see (3.35)) and let Pfc be some interpolation matrix. Let BMG,2 be the MG preconditioner
defined by (3.25), with non-singular and symmetric smoother M such that ‖I−M−1A‖A < 1.
Let Â be the matrix defined by (3.39), and let γ̂ be the CBS constant associated with Â. Let
X and µ be defined by (3.41) and (3.40) respectively. Then, we have

κ(B−1
MG,2A) ≤ µ

≤ 1
(1− γ̂2)λmin(X−1

ff Aff)

≤ 1
(1− γ̂2)(2− λmax(M−1A))λmin(M−1

ff Aff)

Note that Theorem 3.3.1 is the restriction of Theorem 12 in [Not05] to symmetric smoothers.
Additionally we have omitted the lower bounds on the condition number, since those expres-
sions are quite involved. For instance, Jacobi relaxation is a symmetric smoother as well as
the Gauss-Seidel method is if it is applied in a symmetric way, i.e., consecutive forward and
backward smoothing.1

The requirement ‖I −M−1A‖A < 1 is equivalent to the condition that the error propagation
operator S of the smootherM has to define a convergent iterative process. The CBS constant
γ̂ determines the abstract angle between the subspaces corresponding to the 2×2 partitioning
of Â. Mind that therein also the quality of interpolation is taken into account.

Remark. The best possible–in view of convergence–choice Pfc = −A−1
ff Afc results in a

block-diagonal matrix Â and therefore γ̂ = 0. However, this choice is computationally far
too expensive in most practical applications.

Since in general it is difficult to determine µ, Theorem 3.3.1 provides further condition number
bounds that involve the quality of interpolation via γ̂ and spectral relations between the
(sub)matrices (of) A, M and X.

1The smoothing property holds for any composed relaxation process for which each component fulfills this
property.
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3.4 Auxiliary space preconditioning viewed as subspace cor-
rection

The auxiliary space method as used here, was introduced by J. Xu in [Xu96]. This method is
related to the fictitious space method (FSM) and the fictitious domain method (see [Nep07,
Nep91, Nep92]). The FSM was introduced in [Nep91, Nep92]. The main tool in the analysis
of these methods is the fictitious space lemma (cf. [Nep92, GO95, HX07]). In our presentation
we follow the notation of [HX07] and we consider problem (3.1) on the Hilbert space V . The
SPD bilinear form a(., .) defines an inner product on V . Additionally, let us assume to have
the following building blocks:

1. a fictitious space V̄ being a Hilbert space with energy inner product ā(., .) ,

2. a continuous and surjective transfer operator Π : V̄ → V .

Now, with the operator representations , i.e., the isomorphisms, A : V → V ′ and Ā : V̄ →
V̄ ′ associated with a(., .) and ā(., .), respectively, we define the fictitious (auxiliary) space
preconditioner by

B:= Π ◦ Ā−1 ◦Πt : V ′ → V . (3.43)

The operator B is related to a symmetric bilinear form b(., .). With the assumptions made
so far in [HX07] it was easily shown that B is an isomorphism.

Theorem 3.4.1 (Fictitious space lemma). Assume that Π is surjective and that the following
conditions are fulfilled:

1. ∃c0 > 0 ∀v ∈ V ∃v̄ ∈ V̄ : Πv̄ = v and ‖v̄‖Ā ≤ c0‖v‖A .

2. ∃c1 > 0∀v̄ ∈ V̄ : ‖Πv̄‖A ≤ c1‖v̄‖Ā .

Then
c−2

0 ‖v‖A ≤ a (BAv , v) ≤ c2
1‖v‖A ∀v ∈ V . (3.44)

The proof of the theorem in this form can be found in [HX07]. This immediately implies that
the spectral condition number is bounded by

κ(BA) =
λmax(BA)
λmin(BA)

≤ (c0c1)2 . (3.45)

So basically the idea of the auxiliary space method is to replace the problem (3.1) in the space
V by a similar problem on another space V̄ . As it is always the case in the framework of
preconditioning, this similar problem, determined by ā(. , .), should be much easier to solve
than the original problem and on the other hand it should approximate problem (3.1) as
good as possible. Note that the auxiliary space method allows for much more freedom than
conventional preconditioning, since one could approximate a(., .) in a completely different
space V̄ by ā(., .).
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In the article [HX07] the authors were aiming at the solution of H(div)- and H(curl)-
equations. Therefore, their auxiliary space was a product space.

If one is able to split the space into subspaces that are related to known problems The-
orem 3.4.1 may be used as the general theoretical framework to prove convergence. This
results in the necessary condition of a stable splitting.

Generally spoken, V̄ may be given by

V̄ = W1 ×W2 × . . .×WJ , (3.46)

with the Hilbert spaces Wj and the inner product āj(., .). Then, ā(., .) is given by

ā(v̄, v̄):=
J∑
j=1

āj(wj , wj) where v̄ = (w1, . . . , wJ) , (3.47)

and the transfer operator Π consists of the single transfer operators Πj : Wj → V , namely

Πv̄ =
J∑
j=1

Πjwj , (3.48)

and hence, with the operators Āj : Wj →W ′j associated with ā(., .) the preconditioner B is
given by

B =
J∑
j=1

Πj ◦ Ā−1
j ◦Πt

J . (3.49)

In [HX07] it is pointed out that the special choice W1 = V and Āj being a kind of smoother
is the special feature of the specific auxiliary space method. However, this is only a special
case of the general case which has been described above. Clearly, from Theorem 3.4.1 we find
that the following conditions have to be fulfilled.

1. There have to exist bounds cj > 0 that bound the norms of the single transfer operators
Πj , that is

‖Πjwj‖A ≤ cj‖wj‖Āj ∀wj ∈Wj . (3.50)

2. Verify that there is a c0 > 0, such that for every v ∈ V there exists a v̄ ∈ V̄ with
v = Πv̄ and

‖v̄‖Ā ≤ c0‖v‖A . (3.51)

Thence, Theorem 3.4.1 implies that

κ(BA) ≤ c2
0(c2

1 + . . .+ c2
J) .

Obviously, the preconditioner (3.49) is an additive (parallel) subspace correction method, as
can be seen from the update in each step, given by

u←− u+B(f −Au) = u+
J∑
j=1

ΠjĀ
−1
j Πt

j(f −Au) ,
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whereas, when applying successively for each j = 1, . . . , J

u←− u+ ΠjĀ
−1
j Πt

j(f −Au) ,

we arrive at the multiplicative version of auxiliary space method using the auxiliary space V̄
given by (3.46).

3.5 Domain decomposition

The set of domain decomposition (DD) methods is a quite general framework for solving
discretizations of elliptic PDEs. DD methods are considered for instance in [TW05, DW90,
Pec08, Pec12, Vas08]. A very good general characterization is given in [TW05, Preface, p. V]:

“Domain decomposition generally refers to the splitting of a partial differential
equation, or an approximation thereof, into coupled problems on smaller subdo-
mains forming a partition of the original domain.”

In general we split the domain Ω into J open subdomains {Ωi}i=1, ..., J , such that Ω =⋃J
i=1 Ωi. Now, there exist a lot of different variants of DD methods. The most important

characterization is, if the method is an overlapping or a non-overlapping method. That is, we
distinguish between the case where {Ωi}i=1, ..., J defines a partition of Ω or if there exist i 6= j
such that Ωi ∩Ωj 6= ∅. The latter scheme is also referred to substructuring DD methods, for
which Neumann-Neumann, finite element tearing and interconnecting (FETI), FETI-DP and
balancing domain decomposition by constraints (BDDC) methods are the most prominent
examples (see [TW05, Pec08, Pec12] and the references therein). More classical approaches
are overlapping methods aligning to the framework of alternating Schwarz methods. Let us
focus on those methods in the following.

The analysis of Schwarz overlapping DD methods follows the abstract theory of Schwarz
methods (cf. [TW05, XZ02]). Therefore, associated with the splitting {Ωi}Ji=1 we are given
spaces Vi, which might be subspaces of V , and interpolation operators Rti : Vi → V being
the adjoints of restriction operators Ri. Additionally, as in Section 3.1, we do assume SPD
bilinear forms ai(., .) on Vi, which approximate a(., .) on RtiVi.

We aim at solving problem 2.24 by means of Algorithm 3.1.1 or Algorithm 3.1.2. In the
abstract theory an important condition on the setting is that {Vi}i=1, ..., J admits a stable
decomposition. That is, there exists a constant cs, such that for every v ∈ V there exist
{vi ∈ Vi}i=1, ..., J such that v =

∑J
i=1R

t
ivi and

J∑
i=1

ai(vi, vi) ≤ c2
sa(v, v) . (3.52)

In the case of exact subsolves, i.e., Vi ⊂ V and ai(., .) = a(., .) we are in the setting of
Lemma 2.1.8, i.e., (3.52) is fulfilled due to Lemma 2.1.8. Nevertheless, the main difficulty
lies in finding a general splitting such that the constant c0 is independent of the number of
DOFs n, i.e., the mesh size h and the number of subdomains J or, equivalently, the sizes Hi

of the subdomains Ωi.
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Now, let us focus on a quasi-uniform triangulation Th of the domain Ω into simplexes and
let us consider the scalar problem (2.36) with ΓD = ∂Ω, gD = 0. Additionally, let us focus
on the specific splitting Ωi:=

⋃
T∈NThi

T for each vertex vi ∈ Vh.

For illustration purposes only, we choose V = V 1
h , and Vi = span{ϕi} with ϕi being the basis

function corresponding to vertex vi. Clearly, a(ϕi, ϕi) ≈ |ϕi|21 ≈ h−2‖ϕi‖20 holds, where we
have omitted the constants, especially on the bounds c1 and c2 of (2.37). Now we consider
a smooth function v ∈ V for which we find a(v, v) ≈ ‖v‖20. Hence, the constant c2

0 is of the
order h−2. The previous considerations show that one has to add a global space V0, called the
coarse space, to take care of such cases. This means, that the stability condition is extended
by V0.

Another important ingredient for the analysis of overlapping DD methods is the partition of
unity {θi}i=1, ..., J defined through

0 ≤ θi(x) ≤ 1 ∀x ∈ Ω (3.53a)
supp(θi) ⊂ Ωi , (3.53b)∑J
i=1 θi(x) = 1 ∀x ∈ Ω (3.53c)

supx∈Ωi |∇θi(x)| ≤ cθ
δi
, (3.53d)

where δi denotes the thickness of the overlaps of Ωi with other Ωj and cθ is a constant being
independent of δi and Hi. Additionally, the finite covering property means that there exists
Nc ∈ N such that at most Nc subdomains overlap each other.

Let us come back to the setting discussed above. There, Nc = 3 for d = 2 and Nc = 4 in the
three-dimensional case. Now, we choose the spaces V = H1

0 (Ω), V0 = V 1
h and the subspaces

Vi for i = 1, . . . , J are chosen as

Vi = {v ∈ H1
0 (Ω) : v(x) = 0 for x ∈ Ω\Ωi} .

This example is discussed in [XZ02]. As partition of unity we choose the basis functions of
V0, i.e., θi = ϕi, which fulfills conditions (3.53). Since the overlap is of size h we obtain
maxx∈Ωi

|∇θi(x)| ≤ cθh−1. A final ingredient for the set up and analysis is the Clément-type
L2-projection Q0 : V → V0 (cf. [BS07, Section 4.8]) satisfying

h−1‖v −Q0v‖0 + |v −Q0v|1 ≤ cI |v|1 . (3.54)

The following decomposition is used in [XZ02]

v0 = Q0v0 , vi = θi(v −Q0v) , ∀i = 1, . . . , J ,

and additionally, exact solutions of the subproblems are considered. The MSSC is analyzed,
for which the authors show that c0 defined by (3.20) satisfies the bound

c0 ≤
c2

c1
c̃ , (3.55)

where c1 and c2 (see (2.37)) are the bounds of the diffusion parameter. One may compute
the constant c̃, given by

c̃ = cI max{1 + 2Nc, 2c2
θNc} . (3.56)
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Now, let us verify condition (3.52) for the considered setting. We find

J∑
i=0

‖vi‖2a,Ω = ‖Q0v‖2a,Ω +
J∑
i=1

‖θi(v −Q0v)‖2a,Ωi ≤ c2

(
|Q0v|21,Ω +

J∑
i=1

|θi(v −Q0v)|21,Ωi

)

≤ c2

(
|Q0v|21,Ω + 2

J∑
i=1

‖(∇θi)(v −Q0v)‖20,Ωi + 2
J∑
i=1

‖θi∇(v −Q0v)‖20,Ωi

)

≤ c2

(
|Q0v|21,Ω + 2c2

θh
−2

J∑
i=1

‖v −Q0v‖20,Ωi + 2
J∑
i=1

|v −Q0v|21,Ωi

)
≤ 2c2

(
(1 + c2

I)|v|21,Ω + c2
θh
−2Nc‖v −Q0v‖20,Ω +Nc|v −Q0v|21,Ω

)
≤ 2c2

(
1 + c2

I + c2
INc max{c2

θ, 1}
)
|v|21,Ω

≤ 2c2

c1

(
1 + c2

I + c2
INc max{c2

θ, 1}
)
‖v‖2a,Ω ,

that is, c2
s = 2c2

c1

(
1 + c2

I + c2
INc max{c2

θ, 1}
)
. Now, from Theorem 2.9 in [TW05] we obtain for

the error propagation operator EDD of the actual DD method according to Algorithm 3.1.1
that

‖EDD‖2a ≤ 1− 1
(2N2

c + 1)c2
s

.

When comparing the latter result we find that it is slightly worse due to factor in front of c2
s,

because c2
s is of the same order than the bound (3.55) with (3.56) for c0.

The previous computations where computed for Vi being the restriction of H1
0 (Ω) to Ωi.

Nevertheless, we want to solve problem (2.36) and hence, we have to discretize H1
0 (Ω). Due

to the analysis every possible discretization ma be employed as long as V0 = V 1
h . That is,

the fine discretization has to align with Th. One possibility for doing so is to use higher order
polynomials on T ∈ Th. Alternatively, we could refine the mesh.

In [XZ02] it is observed that high oscillations of the diffusion tensor Λ(x) do not influence the
estimate and hence, they do not significantly alter the convergence behavior of the method.
Nevertheless, both estimates depend on c2

c1
which might be very high for problems with highly

heterogeneous coefficients. The aim is to get efficient methods for which the convergence is
independent of oscillations in the parameter and of the ratio c2

c1
(see for instance [Pec12,

TW05]).

Finally, note that when using DD methods in an additive form they allow for an parallel
implementation. When using exact subspace solvers the operator T defined in (3.8) fulfills
([TW05, Theorem 2.7])

κ(T ) ≤ c2
s(Nc + 1) .

Hence, if the decomposition is stable with respect to h and J the operator T defined through
Algorithm 3.1.2 can be used to devise an efficient PCG iteration.



46 3.6 Convergence of MSSC with two overlapping subspaces

3.6 Convergence of MSSC with two overlapping subspaces

Let us consider the problem (3.1). We investigate the convergence behavior of the MSSC in
the case of two overlapping subspaces, i.e., V = VI + VII with

VI := V0 ⊕ V1 (3.57a)
VII := V1 ⊕ V2 , (3.57b)

where V0, V1 and V2 being non-overlapping closed subspaces such that the above sums are
direct sums, that is, V = V0 ⊕ V1 ⊕ V2. Therefore, any v ∈ V can be uniquely decomposed
into v =

∑2
i=0 vi with vi ∈ Vi, i = 0, 1, 2. Thereby, vi is determined by a suitable projection

operator Qi : V → Vi, i.e., vi = Qiv. Note that in the case of orthogonal subspaces Vi the
operator Qi would be given by the orthogonal projection Πi.

We get

v =
2∑
i=0

Qiv ∀v ∈ V . (3.58)

Having this decomposition in mind, we define the space V̄ := V0 × V1 × V2 endowed with the
inner product

(v̄ , w̄)V̄ :=
2∑
i=0

(vi , wi) , (3.59)

for v̄, w̄ ∈ V̄ . Further, let Q̄ : V̄ → V be the mapping defined by Q̄v̄ =
∑2

i=0 vi, i.e.,
Q̄ = (I, I, I). This mapping is bijective. Its inverse is given by Qv:= (Q0v, Q1v, Q2v)T for
v ∈ V . Now, let us define Q̄t : V → V̄ by Q̄t = (Π0, Π1,Π2)T . Indeed, Q̄t is the adjoint of
Q̄, because (

Q̄v̄ , w
)

=
2∑
i=0

(vi , w) =
2∑
i=0

(vi , Πiw) =
(
v̄ , Q̄tw

)
V̄
,

for arbitrary v̄ ∈ V̄ and w ∈ V . The inner product on each subspace Vi is naturally given by
(. , .).

So far, we find that any v ∈ V corresponds to exactly one v̄ ∈ V̄ , where v̄ = Qv. If the
operator A is set up in terms of this space splitting we obtain Ā : V̄ → V̄ , where Ā is the
operator representation of the bilinear form ā : V̄ × V̄ → R defined by

ā(., .):= a(Q̄., Q̄.) . (3.60)

Ā can be written as

Ā =

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 , (3.61)

where any Aij , i, j = 0, 1, 2 is defined by the operator Aij : Vj → Vi with

(Aijvj , vi) = a(vi, vj) = (ΠiAΠjvj , vi) ∀vi ∈ Vi ∀vj ∈ Vj , (3.62)



3. Subspace correction methods 47

i.e., Aij = ΠiAΠj . Further, we use (. , .)ā:= ā(., .). Note that

(Āū , v̄)V̄ =
2∑

i,j=0

(Aijuj , vi) =
2∑

i,j=0

(ΠiAΠjuj , vi) =
2∑

i,j=0

(AΠjuj , Πivi)

=
2∑

i,j=0

(Auj , vi) = (AQ̄ū , Q̄v̄) = (Q̄tAQ̄ū , v̄)V̄ .

Hence, the operator Ā is determined by Ā = Q̄tAQ̄. Equivalently, A = QtĀQ with the
adjoint Qt = (Q̄t)−1 of the operator Q. The space splittings of V̄ corresponding to (3.57) are
V̄I := V0 × V1 and V̄II := V1 × V2. The embedding operators Ēl : V̄l → V̄ for l = I, II are
given by

ĒI =

 I 0
0 I
0 0

 and ĒII =

 0 0
I 0
0 I

 .

Similarly to (3.59) we define for any v̄l, w̄l ∈ V̄l for l = I, II

(v̄l , w̄l)V̄l :=
(
Ēlv̄l , Ēlw̄l

)
V̄
. (3.63)

For all inner products defined so far we also use the corresponding norms denoted by the
same subscript. Moreover, let us define the sub-operators ĀI and ĀII by

ĀI =
(
A00 A01

A10 A11

)
and ĀII =

(
A11 A12

A21 A22

)
.

In the following we devise (3.20) with respect to the operator representation (3.61) of A. We
find

Lemma 3.6.1. Let J = 2 and let the subspaces be given by (3.57). Then in the case of exact
subsolves c0, defined by (3.20), is given by

c0 = sup
‖v̄‖ā=1

inf
v1=vi,I+vi,II

‖ĒI P̄IĒII v̄II‖2ā , (3.64)

with P̄I = Ā−1
I ĒTI Ā.

Proof. Since J = 2 we do have

c0 = sup
‖v‖a=1

inf
v=vI+vII

‖PIvII‖2a . (3.65)

Since V and V̄ are isomorphic, we can choose a v̄ ∈ V̄ instead of v ∈ V , such that ‖Q̄v̄‖a =
‖v̄‖ā = 1. Straightforward computations lead to

A−1
I = (ΠIAΠI)−1 = (ΠIQ

tĀQΠI)−1

= (ΠIQ
t
IĀIQIΠI)−1 = (QIΠI)−1Ā−1

I (QIΠI)−t = Q̄IĀ
−1
I Q̄tI . (3.66)
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Thereby, the subscript I denotes the restriction to the subspace V̄I of the corresponding
operators. Moreover, we find

‖PIvII‖2a = (APIvII , vII) = (ĀQPIvII , QvII)V̄
(3.18)

= (ĀQA−1
I ΠIAvII , QvII)V̄

(3.66)
= (ĀQQ̄IĀ−1

I Q̄tIΠIQ
tĀQvII , QvII)V̄ = (ĀĒIĀ−1

I ĒTI ĀQvII , QvII)V̄ ,

which is due to QQ̄I = (Q0, Q1, Q2)T (I, I) = EI and Q̄tIΠI = Q̄tI = (Π0, Π1)T , since for all
v, w ∈ V

(ΠiΠIv , w) = (ΠIv , Πiw) = (v , Πiw) = (Πiv , w) , (3.67)

for i = 0, 1, because Πiw ∈ VI . One can easily verify that P̄I is Ā-orthogonal and hence
we have ‖PIvII‖ = ‖ĒI P̄IQvII‖. Since the overlap is simply given by V1, the desired result
follows.

In the analysis of c0, defined by (3.64), we use the properties of Schur complements and
the respective CBS constant. Therefore, let us define the Schur complement between VI (V̄I
respectively) and V2 in terms of V2

S
(2)
I,2 := A22 − (A20, A21) Ā−1

I

(
A02

A12

)
. (3.68)

Additionally we need the Schur complements S(j)
i,j between Vi and Vj , i, j = 0, 1, 2 and i < j,

with respect to Vj , that is

S
(j)
i,j := Ajj −AjiA−1

ii Aij . (3.69)

With SI,2 and Si,j the CBS constants γI,2 and γi,j can be found through (see (1.4) or [Axe94])

1− γ2
I,2 = inf

v2∈V2

(S(2)
I,2v2 , v2)V2

(A22v2 , v2)V2

, (3.70)

1− γ2
i,j = inf

vj∈Vj

(S(j)
i,j vj , vj)Vj

(Ajjvj , vj)Vj
. (3.71)

Note that in [Axe94] (Section 9.1) the CBS constant is defined in the finite dimensional
setting for a block-partition of a matrix A. Through a careful look one finds, that the theory
holds also true in our setting, i.e., a SPD operator A on a Hilbert space V or on one of its
subspaces Vi, i = 0, 1, 2.

Now, we find that the constant c0 of Theorem 3.1.1 is given by the following identity.

Theorem 3.6.2. The constant c0 in (3.64) is given by

c0 = sup
v2∈V2

(S(2)
1,2v2 , v2)V2

(S(2)
I,2v2 , v2)V2

− 1 . (3.72)



3. Subspace correction methods 49

Proof. Straightforward calculation leads to

ĒI P̄I =

 Ā−1
I

0
0

0 0 0

 ·
 ĀI

A02

A12

A20 A21 A22

 =

 I 0
Ā−1
I

(
A02

A12

)
0 I
0 0 0

 ,

and hence, we arrive at

ĀĒI P̄I =

 ĀI
A02

A12

A20 A21 A22

 ·
 I 0

Ā−1
I

(
A02

A12

)
0 I
0 0 0



=


A00 A01 A02

A10 A11 A12

A20 A21 (A20, A21) Ā−1
I

(
A02

A12

)
 .

Finally, using that A and Ā are self-adjoint, we find

P̄ TI Ē
T
I ĀĒI P̄I =

 I 0 0
0 I 0
(A20, A21) Ā−1

I 0

 · ĀĒI P̄I = ĀĒI P̄I .

Now, let us define the operator

ÃII := ĀII −

(
0 0
0 S

(2)
I,2

)
. (3.73)

ÃII is the block of ĀĒI P̄I corresponding to V̄II . Then, equation (3.64) reduces to

c0 = sup
‖v̄‖ā=1

inf
v1=vi,I+vi,II

(ÃII v̄II , v̄II)V̄II . (3.74)

Next, using the minimization property of the Schur complement, that is, for fixed v2 ∈ V2 we
have

inf
v1,II∈V1

(ĀII v̄II , v̄II)V̄II = (S(2)
1,2v2 , v2)V2 ,

we find that for any v2 ∈ V2

inf
v1=vi,I+vi,II

(ÃII v̄II , v̄II)V̄II = ((S(2)
1,2 − S

(2)
I,2)v2 , v2)V2

holds. Now, the constant c0 can be alternatively written as the infimum of all λ > 0 satisfying

((S(2)
1,2 − S

(2)
I,2)v2 , v2)V2 ≤ λ(Āv̄ , v̄)V̄ ∀v̄ ∈ V̄ . (3.75)

In terms of a generalized eigenproblem, we have to find the supremal λ, such that there exists
a v̄ ∈ V̄ with  0

0
(S(2)

1,2 − S
(2)
I,2)v2

 = λĀv̄ . (3.76)
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Clearly, we do have dim(V̄I) generalized eigenvalues that are 0, which might be infinitely
many. We need λ 6= 0 satisfying (3.76). As a side equation we get

ĀI

(
v0

v1

)
+
(
A02

A12

)
v2 =

(
0
0

)
⇔
(
v0

v1

)
= −Ā−1

I

(
A02

A12

)
v2 . (3.77)

Inserting (3.77) in (3.76) yields the reduced generalized eigenvalue problem: Find (λ, v2) with
maximal λ such that

(S(2)
1,2 − S

(2)
I,2)v2 = λS

(2)
I,2v2 , (3.78)

or, equivalently,
S

(2)
1,2v2 = (1 + λ)S(2)

I,2v2 . (3.79)

This finally leads to

c0 = sup
v2∈V2

(S(2)
1,2v2 , v2)V2

(S(2)
I,2v2 , v2)V2

− 1 . (3.80)

In the following, we show that c0 is related to the CBS constant γ̂0,2 of an operator Â, which
is obtained by an elimination of the components corresponding to V1 of the operator Ā.
Therefore, let us introduce the operator Â : V0 × V2 → V0 × V2 with

Â:=

(
S

(0)
0,1 A02 −A01A

−1
11 A12

A20 −A21A
−1
11 A10 S

(2)
1,2

)
, (3.81)

and denote the corresponding CBS constant by γ̂0,2. With X210: = A20 − A21A
−1
11 A10 and

its adjoint X012 the Schur complement Ŝ(2) of Â is given by Ŝ(2) = S
(2)
1,2 −X210(S(0)

0,1)−1X012,
and hence γ̂0,2 is defined through (compare with (1.4))

1− γ̂2
0,2 = inf

v2∈V2

(Ŝ(2)v2 , v2)V2

(S(2)
1,2v2 , v2)V2

. (3.82)

Lemma 3.6.3. c0 given by (3.64) fulfills the identity

c0 =
γ̂2

0,2

1− γ̂2
0,2

, (3.83)

with γ̂0,2 specified through (3.82).

Proof. First of all, note that S(2)
I,2 = Ŝ(2), which follows from the following derivations. We

have

ĀI =
(
A00 A01

A10 A11

)
=
(
I A01A

−1
11

0 I

)(
S

(0)
0,1 0
0 A11

)(
I 0

A−1
11 A10 I

)
.
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Hence,

Ā−1
I =

(
I 0

−A−1
11 A10 I

)(
(S(0)

0,1)−1 0
0 A−1

11

)(
I −A01A

−1
11

0 I

)
,

and thus, with (3.68) it follows that

S
(2)
I,2 = A22 − (A20, A21) Ā−1

I

(
A02

A12

)
= A22 −

(
A20 −A21A

−1
11 A10, A21

)( (S(0)
01 )−1 0
0 A−1

11

)(
A02 −A01A

−1
11 A12

A12

)
= Ŝ(2) .

Now, we use expression (3.72), where c0 is expressed as a supremum, together with (3.82).

c0 = sup
v2∈V2

(S(2)
1,2v2 , v2)V2

(S(2)
I,2v2 , v2)V2

− 1

=
1

infv2∈V2

(Ŝ(2)v2 , v2)V2

(S
(2)
1,2v2 , v2)V2

− 1 =
1

1− γ̂2
0,2

− 1 =
γ̂2

0,2

1− γ̂2
0,2

.

Using (3.83), we are able to show

Corollary 3.6.4. For the setting (3.57) the error propagation operator E satisfies

‖E‖2a = γ̂2
0,2 . (3.84)

Proof. Plugging (3.83) into (3.19) yields the desired result.

Summarizing, we have that the a-norm of the error propagation operator in case of two
overlapping subspaces is given by the CBS constant between V0 and V2 of the operator A
where V1 is eliminated in A. This coincides with the theory obtained in [KW88]. Since in
the case of no overlap we do have a-orthogonal projections I − Pi and therefore, the MSSC
coincides with the method of alternating projections (cf. [Deu01]). In this case, (3.84) yields
that the norm of the error propagation operator is γ0,2. This aligns with [KW88], where this
convergence result was obtained for the method of alternating projections if two subspaces
are considered.
Note that all considerations so far work for the general case of infinite dimensional spaces.

3.6.1 The finite dimensional case

If V is finite dimensional, the operator A can be represented in matrix form. Therefore,
without loss of generality, we do have V := V = Rn, n ∈ Z. The inner product is the standard
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l2-inner product. Further, let Vi = Vi ⊂ V be the closed subspaces with dimVi = ni and a
linear independent basis {vij}j=1,...,ni for i = 0, 1, 2. The dimensions ni sum up to n. Let us
denote by Bi = (vi1, . . . ,v

i
ni) ∈ Rn×ni the basis transformation matrices from Ṽi:= Rni to

Vi and moreover, B = (B0, B1, B2) is the global basis transformation. The transformations
BI = (B0, B1) and BII = (B1, B2) denote the transformations of the subspaces VI and VII ,
respectively.

Now, let us reconsider the operators Πi and Q. Every vi ∈ Vi may be be represented via
ṽi ∈ Ṽi, such that vi = Biṽi and hence relation (3.16) transforms to

(Πiv , Biṽi) = (v , Biṽi) ∀v ∈ V ∀ṽi ∈ Ṽi ,

which finally leads to Πi = Bi(BT
i Bi)

−1BT
i . In this case the enlarged space V̄ is given by

V̄ := V̄ = V0 × V1 × V2 ⊂ R3n. The operator Q : V → V̄ is

Q =

 B0 0 0
0 B1 0
0 0 B2

 ·B−1 . (3.85)

Now, let us introduce the operator Ã: = BTAB being the operator A defined in terms of
the basis B. Additionally, with Π = (Π0, Π1, Π2) the operator Ā ∈ R3n×3n is given by
Ā = ΠTAΠ. Since, ΠiBi = Bi we find that

Ã =

 BT
0 0 0

0 BT
1 0

0 0 BT
2

 Ā

 B0 0 0
0 B1 0
0 0 B2

 . (3.86)

That is, the matrix Ã represents exactly the matrix Ā used to derive the constant c0 in
Lemma 3.6, but already in the basis {vij}i=0, 1, 2; j=1,...,ni . With this setting the error propa-
gation matrix is given by

E = (I − CIIA)(I − CIA) = (I −BII(BT
IIABII)

−1BT
IIA)(I −BI(BT

I ABI)
−1BT

I A) . (3.87)

Therefore, γ̂0,2, defined in (3.82), is given by

1− γ̂2
0,2 = λmin(S(2)

1,2

−1
Ŝ(2)) , (3.88)

where we start with Ã in order to compute the matrices S(2)
1,2 and Ŝ(2).

In order to confirm the results of Corollary 3.6.4 let us consider the following example. Let
n,m, k ∈ N0 and let Ω be the domain Ω: = (0, 2m + k + 2) × (0, n + 2). Further, let us
consider the Laplace problem (2.35), i.e., f = 0, with Λ = IR2 , ΓD = ∂Ω, ΓN = ∅ and
gD = 0 on ΓD. We subdivide Ω according to Figure 3.1 into triangles with side length 1 and
approximate the PDE by piecewise linear elements, that is, Vh = V 1

h . We neglect the DOFs
on the boundary and numerate the DOFs from top to bottom and left to right. Then, A can
be written in block-form as in (3.61) with

A00 = A22 = Dn ⊗ IRm + IRn ⊗Dm ,

A11 = Dn ⊗ IRk + IRn ⊗Dk ,

A01 = AT10 = −E1
m,k ⊗ IRn ,

A12 = AT21 = −Ekm,k ⊗ IRn ,

A02 = AT20 = 0 .
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Figure 3.1: Mesh of the general test case for the MSSC.

Thereby, we use the matrices Dl ∈ Rl×l (l ∈ N), E1
m,k ∈ Rm×k and Ekm,k ∈ Rm×k given by

Dl :=


2 −1 0−1 2 −1

. . . . . . . . .

0 −1 2 −1
−1 2

 ,

E1
m,k :=

(
1 0 . . . 0

0

)
,

Ekm,k :=
(

0 . . . 0 1
0

)
.

In the following tables we compare ‖E‖2a and the number of iterations of the MSSC for a
reduction of the energy-norm of the error by a factor of ε = 10−10 for varying n and m with
fixed k. In Table 3.1 no overlap was used, i.e., k = 0, while in Table 3.2 and Table 3.3 the
overlap was chosen to be k = 1 and k = 4, respectively. Contrary, in Figure 3.2 the decrease
of ‖E‖2a is depicted for fixed ratios n

m = 1, n = m = 4, 8, 16, 32, for varying k. Note that
the norm of the error propagator for increasing k is exponentially decreasing. From those
observations, we see that in order to get a bounded convergence rate, the overlap would have
to depend on m and especially on n, which is not a desired property.

k = 0 m

n 1 2 4 8 16 32
1 0.06 9 0.07 9 0.07 9 0.07 9 0.07 9 0.07 9
2 0.11 11 0.14 11 0.15 12 0.15 12 0.15 12 0.15 12
4 0.18 14 0.26 18 0.29 19 0.30 19 0.30 18 0.30 18
8 0.22 16 0.37 23 0.47 29 0.50 31 0.50 32 0.50 30
16 0.24 17 0.42 26 0.58 40 0.67 53 0.69 56 0.69 55
32 0.25 17 0.44 27 0.62 46 0.75 73 0.81 98 0.83 105

Table 3.1: ‖E‖2a and iteration number for ε = 10−10.
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k = 1 m

n 1 2 4 8 16 32
1 0.00 5 0.01 5 0.01 5 0.01 5 0.01 5 0.01 5
2 0.02 6 0.02 6 0.02 7 0.02 7 0.02 6 0.02 6
4 0.05 8 0.07 9 0.09 10 0.09 10 0.09 10 0.09 10
8 0.08 10 0.16 13 0.23 16 0.25 16 0.25 16 0.25 16
16 0.10 11 0.22 15 0.36 22 0.45 27 0.48 29 0.48 28
32 0.11 11 0.24 16 0.42 25 0.58 39 0.66 50 0.68 52

Table 3.2: ‖E‖2a and iteration number for ε = 10−10.

k = 4 m

n 1 2 4 8 16 32
1 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3
2 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3
4 0.00 4 0.00 5 0.00 4 0.00 4 0.00 4 0.00 4
8 0.01 6 0.02 6 0.03 7 0.03 7 0.03 7 0.03 7
16 0.02 6 0.05 8 0.10 10 0.14 12 0.16 12 0.16 12
32 0.03 7 0.08 9 0.16 13 0.28 17 0.36 21 0.39 22

Table 3.3: ‖E‖2a and iteration number for ε = 10−10.

Figure 3.2: ‖E‖2a for varying k and fixed ratio of n and m, that is n = m.

However, the numerical experiments reveal that it actually holds

‖Euk‖a
‖uk‖a

≤ ‖E‖2a , (3.89)

for k ≥ 1, which is surprising since one would expect ‖E‖a instead of the bound given above.
Finally, we show the following result.

Lemma 3.6.5. For E defined in (3.87) the following holds

λmax(E) = ‖E‖2a . (3.90)
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Proof. Standard calculations yield that ‖E‖2a = λmax(A−1ETAE) and further, using the
matrices PI = CIA and PII = CIIA defined in (3.87), we find

A−1ETAE = A−1(I − P TI )(I − P TII)A(I − PII)(I − PI)
= A−1(I −ACI)(I −ACII)A(I − CIIA)(I −ACI)
= A−1A(I − PI)(I − PII)(I − PII)(I − PI) = (I − PI)E . (3.91)

Straightforward calculations lead to

(I − PI) =

 0 0 −Ā−1
I

(
A02

A12

)
0 0
0 0 I

 ,

(I − PII) =

 I 0 0

−Ā−1
II

(
A10

A20

)
0 0
0 0

 .

Summarizing the eigenvalue problems we find that for λ 6= 0 the condition v2 6= 0 holds.
There are nI = n0 + n1 zero eigenvalues and n2 nonzero ones. The (sub)eigenvalue problem
for all λ 6= 0 is [

Ā−1
II

(
A10

A20

)]
2

[
−Ā−1

I

(
A02

A12

)]
0

v2 = λv2 ,

which is the same for E and (I − PI)E. The corresponding components v0 and v1 might
differ, but the eigenvalues of both operators are the same and therefore, the largest eigenvalue
of both matrices coincide.
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Chapter 4

AMG for linear elasticity (AMGm)

We are concerned with the solution of large-scale systems of linear equations

Ax = b (4.1)

arising from first-order finite element discretization of linear elasticity problems (see Subsec-
tion 2.4.1). In this case the system matrix A is symmetric and positive definite (SPD). It
is well known that algebraic multigrid (AMG) methods can serve as efficient linear solvers
or preconditioners for this type of problems. In particular, AMG using element interpo-
lation (AMGe), see, e.g., [BCF+01, HV01, JV01], AMG based on smoothed aggregation
[VMB96, VBM01], and generalized aggregation multilevel solvers [FB97] provide powerful
solution tools. Adaptive algebraic multigrid methods [BFM+06] use an adaptive process in
which the evolving solver improves its own components. In this way they remove the need
to make any specific assumptions on the near null space of the matrix A. The generalized
global basis method provides a technique to accelerate a multigrid scheme by an additional
coarse grid correction that filters out slowly converging modes [WFTS04, WFTS05]. While
these methods in general increase the robustness of classical (algebraic) multigrid algorithms,
they also increase, sometimes even substantially, the set-up costs. Recently, in [ZSTB10] an
AMG method has been developed for elasticity problems. Thereby, the inherent structure of
the elasticity problem is used to set up the AMG components.

A variant of AMGe, called algebraic multigrid based on computational molecules (AMGm),
has been proposed in [Kra08] (see also its predecessor [KS06]). The goal of this modification of
AMGe is to combine the favorable properties of classical AMG [RS87], such as an inexpensive
set-up phase due to a simple coarsening procedure based on strong connections, with the
superior convergence properties of AMGe, which are achieved by local harmonic interpolation.

A basic step in the construction of this method, is the computation of so-called “edge matri-
ces”, which represent the nodal dependence, and, when assembled globally, define a spectrally
equivalent auxiliary problem. This auxiliary problem determines the coarsening process.
Our approach originates in so-called element preconditioning techniques first introduced in
[HLRS01, LRS00]. The computation of edge matrices has initially been considered in [KS06]
for scalar problems, and has then been generalized to problems in linear elasticity in Refer-
ence [Kra08].

57
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In this chapter we offer an alternative way to compute edge matrices in linear elasticity that
improves the approximation properties of the auxiliary problem. Moreover, we propose a nat-
ural measure for the strength of nodal dependence defined via the constant in the strength-
ened Cauchy-Bunyakowski-Schwarz inequality associated with local (vertex) subspaces, and
provide a two-level convergence analysis of the obtained AMGm method. Furthermore, we
comment on parallelization aspects of the presented method. Towards the end of the chap-
ter, in Section 4.8 we present several numerical experiments summarizing convergence results
for reference configurations of three-dimensional bodies, including the cases of orthotropic
materials, e.g., cancellous bone, hard wood, or soft wood, and problems with jumps in the
Young’s modulus of elasticity. Additionally, we present an example in which we compare the
modified AMGm method, as described in this chapter, with the original method in [Kra08]
and also with BoomerAMG ([HMY00]). Finally, in Section 4.9 we address the application of
AMGm to the stable DG discretization being presented in Subsection 2.4.3.

4.1 Simple reformulation of the linear elasticity system

The focus of this work is on problems arising in linear elasticity. Therefore, let the reference
configuration of an elastic body Ω be a bounded, connected and open subset of Rd, d = 2, 3.
From Subsection 2.3 we know that the governing equations of our problem are given by

− divσ = f in Ω, (4.2a)
u = 0 on ΓD, (4.2b)

σ · n = tN on ΓN . (4.2c)

These equations describe the deformation of the body under the influence of body and surface
forces f and tN , respectively. The Dirichlet boundary conditions u = uD = 0 on ΓD
guarantee the uniqueness of the solution if meas(ΓD) > 0 .

We focus on linear elastic materials and hence the stress-strain relation by Hooke’s law
(2.43). First of all, we consider St. Vernant-Kirchhoff-materials (homogeneous and isotropic),
whereas the stress-strain matrix Ciso is defined by (2.47). In this case (4.2a) yields the classical
Lamé differential equation

− 2µdiv ε(u)− λ grad divu = f , (4.3)

based on which we derive the following weak formulation of the boundary-value problem
(4.2): Find u ∈ V := [H1

0,ΓD
(Ω)]d such that

a(u, v) = L(v) ∀v ∈ V (4.4)

with a(., .) defined by (2.49) where C = Ciso. Alternatively, this can be written as

aiso(u, v):= a(u, v) = 2µ(ε(u) , ε(v)) + λ (divu , div v) . (4.5)

The right-hand side L(v) is given by (2.50), where f ∈ [L2(Ω)]d and tN ∈ [L2(ΓN )]d.
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To investigate the robustness of the proposed method we also consider orthotropic materials
(cf. [Kik86, YKvR+99]). In this case Hooke’s law is given by σ = Cortho · ε where Cortho is
defined by (2.48). Hence, using (2.48) in (4.2a) yields the bilinear form (2.49) with C = Cortho,
i.e.,

aortho(u, v):=
∫

Ω
Cortho · ε(u) : ε(v) dx . (4.6)

The existence and uniqueness of the solution of the variational problem (2.24) for both bilinear
forms, (4.5) and (4.6), is discussed in Section 2.4.1

In order to solve this system numerically we use finite elements. Therefore, we consider a
shape-regular triangulation Th = {T} of the d-dimensional (here d = 3) domain Ω. We use
tetrahedral meshes. Furthermore, we restrict all our considerations to first-order schemes in
this chapter. That is, we use the space Vh:= [V 1

h ]d.

We focus on linear systems (4.1) that stem from the following finite element problem.

Problem 4.1.1. Let us consider problem (2.33), where the bilinear form a(·, ·) is either given
by (4.5) or by (4.6) and the linear form L(·) is defined by (2.50).

When employing the bilinearform aiso(·, ·) and aortho(·, ·) we refer to the problem as isotropic
or orthotropic (linear elasticity) problem, respectively.

4.2 Approximation via edge matrices

The AMGm method, introduced in [KS06] for scalar problems and extended to problems
in linear elasticity in [Kra08], is based on the construction of edge matrices, which can be
used for measuring the nodal dependence. In the following we briefly describe this approach
thereby taking it to a more abstract level.

We therefore introduce the terms of algebraic vertices and algebraic edges. Let D:= {di : i ∈
{1, . . . , n}} be the set of n degrees of freedom (DOF).

Definition 4.2.1 (algebraic vertex, algebraic edge and edge matrix). An algebraic ver-
tex vi is an accumulation of nvd vertex degrees of freedom (VDOF), i.e., vi = {dij : j ∈
{1, . . . , nvd}}. Furthermore for any vi and vj with i 6= j it holds that vi ∩ vj = ∅. Let V
denote the set of all vertices and nv its cardinality, that is nv = |V|.
An algebraic edge eij is the union of VDOF of a pair of vertices vi and vj. Moreover,
E := {eij : 1 ≤ i < j < nv} denotes the set of all nE edges1.
An edge matrix Eij is an 2nvd × 2nvd-matrix associated with the edge eij which represents
the relation between the algebraic vertices vi and vj2.

Definition 4.2.1 is rather general and allows us to extend the following concept to different
discretizations or finite elements, respectively. In our particular situation, we identify the

1Note that we do not distinguish between eij and eji in general since we are dealing with symmetric
problems.

2Aligning with the convention of the edges we have Eji:= Eij for i < j.
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algebraic vertices with the nodes of the mesh and assume that nvd = d. Since we restrict
ourselves to continuous, piecewise linear shape functions this choice is quite natural.

Aligning with Definition 4.2.1 we define the set of neighbors Ni of a vertex vi, that is Ni:=
{vj : eij ∈ E}.

Our aim is to determine the nodal dependence by means of edge matrices. For this sake we
first have to investigate their desired properties. Following [Kra08], let A = {AT : T ∈ Th}
bet the set of element matrices AT corresponding to our FE discretization of our problem
based on the triangulation Th of the d-dimensional domain Ω. From the coercivity of the
bilinearform a(·, ·) it follows that AT ≥ 0, that is, AT is symmetric positive semidefinite
(SPSD).

We target in approximating each single element matrix AT by a sum of corresponding edge
matrices Eij . That is, we want a set of edge matrices BT associated with the set of algebraic
edges ET of T , such that AT ≈ BT :=

∑
Eij∈BT Eij . Here summation has to be understood

in the sense of assembling. Note that BT contains only one matrix Eij corresponding to each
edge eij ∈ ET . This setting aligns with our general adjustment to set up one edge matrix
for each algebraic edge. We want to compute an approximation BT of AT via a set of SPSD
matrices BT such that BT is spectrally as close as possible to AT . This idea has already been
considered in [HLRS01]. For a more detailed discussion for systems of equations as in our
case see [Kra08].

In the following part of this section, we characterize such approximate splittings. First, we
note that an approximate splitting yields a finite (effective) condition number, i.e.

κ(AT , BT ):=
inf
{
λ : xTATx ≤ λxTBTx ∀x ∈ Rd

}
sup {λ : xTATx ≥ λxTBTx ∀x ∈ Rd}

<∞ , (4.7)

if the splitting BT is kernel preserving. In other words, for every splitting BT with SPSD
edge matrices Eij ∈ BT , we have

κ(AT , BT ) <∞ ⇔ ker(BT ) = ker(AT ) ⇒ ker(Eij) = ker(AT )|(ij) ∀Eij ∈ BT (4.8)

For a proof see [Kra08]. Being aware of the necessity of kernel preservation, one can investigate
the required properties of the edge matrices. In [Kra08] the following theorem has been shown.

Theorem 4.2.2 (characterization of semipositive splittings). Let AT be an SPSD element
matrix arising form the (first-order) FE discretization of the 3D elasticity problem, Prob-
lem 4.1.1, using a (shape-regular) tetrahedral triangulation Th. Further, let BT = {Eij :
Eij ≥ 0 ∧ 1 ≤ i < j ≤ 4} be a set of SPSD matrices providing the splitting BT =

∑
Eij∈BT Eij.

Then κ(AT , BT ) < ∞ if and only if the 2nvd × 2nvd (nonzero) edge matrices Eij have the
form

Eij = cij

(
vTijvij −vTijvij
−vTijvij vTijvij

)
with vij =

 xj − xi
yj − yi
zj − zi

 1 ≤ i < j ≤ 4, (4.9)

and cij > 0, where (xk, yk, zk), 1 ≤ k ≤ 4, denote the vertices of the tetrahedron T .
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It is obvious that the edge matrices in Theorem 4.2.2 are of rank one. Additionally the exact
representation of each Eij is given by (4.9), which is determined up to the scalar constant cij
since the vector vij is the directional vector of the edge eij .

As compared to the method presented in [Kra08] we modify the construction of the edge
matrices Eij . This modification has several advantages, e.g., the computation of the constants
cij is simple and computationally inexpensive. Let us consider the matrix Gh, which is
assembled from all element stiffness matrices AT of our problem. That is, we neglect all
boundary terms. Hence, we have

A = Ah =
∑
T∈Th

AT + Fh = :Gh + Fh , (4.10)

where Fh contains the boundary terms. The matrix Gh can be represented in the form

Gh =



. . .
...

...
...

...
...

...
. . . Gij +Gik + . . . . . . −Gij . . . −Gik . . .
...

...
. . .

...
...

...
...

. . . −GTij . . . GTij + . . . . . . . . . . . .
...

...
...

...
. . .

...
...

. . . −GTik . . . . . . . . . GTik + . . . . . .
...

...
...

...
...

...
. . .


(4.11)

with nv × nv blocks of size nvd × nvd. Based on the off-diagonal blocks of Gh we want to
determine the contribution of the edge connecting the vertices vi and vj (algebraic edge eij).
One possible choice is to use

Ẽ
(1)
ij =

(
Gij −Gij
−GTij GTij

)
, (4.12)

which is a unsymmetric matrix in general because Gij is not necessarily symmetric. On the
other hand, since the diagonal blocks of Gh are symmetric Ẽij can also be chosen according
to

Ẽ
(2)
ij =

( 1
2(Gij +GTij) −Gij
−GTij 1

2(Gij +GTij)

)
. (4.13)

Note that Ẽ(2)
ij is symmetric. Now, we aim at approximating Ẽ(p)

ij , p = 1, 2, by

Eij := arg min
E

∥∥∥E − Ẽ(p)
ij

∥∥∥2
. (4.14)

Since we know the form of Eij (cf. Theorem 4.2.2) we only have to determine cij . The
solution of (4.14) is much easier when using the Frobenius norm instead of the l2-norm.
With this choice we arrive at

cij = arg minc
∥∥∥Eij(c)− Ẽ(p)

ij

∥∥∥2

F
(4.15)

with

Eij(c) = c

(
vTijvij −vTijvij
−vTijvij vTijvij

)
,

where vij is the directional vector of the edge eij .
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Theorem 4.2.3. Let Ẽ(p)
ij , p = 1, 2, be defined by (4.12) or (4.13). Then the minimization

problem (4.15) has the solution

cij =
vTijGijvij

‖vij‖42
. (4.16)

Proof. For simplicity we neglect the subscripts ij of the occurring vectors and matrices. From
the representation of the Frobenius norm via the trace-operator we obtain

‖E(c)− Ẽ(p)‖2F = tr(E(c)2) + tr((Ẽ(p))2)− 2 tr(E(c) Ẽ(p)) . (4.17)

Thus we have

tr(E(c)2) = tr
(
c2

[
2vvTvvT −2vvTvvT

−2vvTvvT 2vvTvvT

])
= 4c2‖v‖42 , (4.18)

and (for p = 1)

tr(E(c) Ẽ(1)) = tr
(
c

[
vvT (G+GT ) −vvT (G+GT )
−vvT (G+GT ) vvT (G+GT )

])
= 2c tr(vvT (G+GT )) = 2c(tr(vvTG) + tr(vvTGT ))
= 4cvTGv . (4.19)

For p = 2 the matrix product looks different, but its trace is identical to (4.19). In summary,
by plugging (4.18) and (4.19) into (4.17) we obtain

ζ(c):= ‖E(c)− Ẽ(p)‖2F = 4c2‖v‖42 + tr((Ẽ(p))2)− 8cvTGv .

Then, solving ζ ′(c) = 0 for c results in (4.16). Since ζ ′′(c) is positive, the solution is a unique
minimum.

Considering Problem 4.1.1 it is possible that the off-diagonal submatrices Gij of the matrix
Gh are indefinite and hence it might happen that (4.16) yields cij < 0. In this case we set
cij = −cij . Finally, note that we have cij ≥ 0 if Gij is positive semidefinite which is the usual
case.

4.3 Detection of strong couplings (nodal dependence)

In any multigrid method the error is reduced by relaxation on the one hand and by coarse-
grid correction on the other hand. These two components should complement each other
which means that error modes not effected by one of these two components should be treated
efficiently by the other component. In AMG one first chooses the smoother M , e.g., Gauss-
Seidel relaxation, and then constructs a coarse-grid correction that is capable of reducing
algebraically smooth error modes, namely errors e for which

‖Se‖A ≈ ‖e‖A (4.20)
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holds (cf. [RS87]), where S = I−M−1A is the error propagation matrix (iteration matrix) of
the relaxation process. This leads, for Gauss-Seidel-smoothers among others, to the condition
that the residual r = Ae has to be small as compared to the error itself, which means that

(ri =)aiiei +
∑

aijej ≈ 0 . (4.21)

In other words, the i-th error-component ei is mainly determined by those ej for which the
corresponding |aij | are large. In standard AMG methods (cf. [RS87, CFH+98, TOS01]), the
coarse grid is selected based on a measure for the strength of nodal dependence. According
to Reference [RS87] point i strongly depends on j if

−aij ≥ θmax
l 6=i
{−ail} ,

with some threshold θ ∈ (0, 1], e.g., θ = 0.25. This concept works very well for M-matrices
(and for small perturbations of M-matrices), but for non-M-matrices it is not clear how to
take into account positive and negative off-diagonal entries. As a remedy, proposed in [CV00],
for finite element problems, strong connections (i, j) can be selected based on the criterion

|aij |√
aii ajj

≥ θ . (4.22)

Thereby, the entries of the local stiffness matrices AT are used. Note that (4.22) measures
the energy-cosine of the abstract angle between the i-th and the j-th nodal basis function.
While this approach has no difficulties with non-M-matrices, it is not directly applicable in the
multilevel setting because the element stiffness matrices are usually not available on all levels.
Another disadvantage of measure (4.22) is that it is not obvious what its generalization is for
vector-field problems. Considering each DOF for its own typically yields more connections
than desired and does not result in a reliable measure in general (cf. [TOS01, Cho01]).

Therefore, we propose the following approach to measure the strength of an algebraic edge
eij connecting the algebraic vertices vi and vj . We collect all edges ekl, i.e., edge matrices
Ekl, building a loop of length 3 which contains the edge eij . By assembling all these matrices
Ekl we get an SPSD so-called computational molecule M(i, j).

M(i, j) = Eij +
∑

k∈Ni∩Nj

(Eik + Ejk) =

 Mii Mij Mik

Mji Mjj Mjk

Mki Mkj Mkk

 (4.23)

with Mii, Mjj ∈ Rnvd×nvd and Mkk ∈ R|Ni∩Nj |nvd×|Ni∩Nj |nvd . Now, we consider the subma-
trix of (4.23) corresponding to the unknowns of vi and vj based on which we shall measure
the cosine of the angle between the subspaces related to vi and vj , which is given by the
smallest possible constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality (CBS
constant).

Definition 4.3.1 (strong connection via CBS constant). Let the computational molecule be
defined as in (4.23). Then the strength sij of the algebraic edge eij is defined by

sij :=

√
1− inf

x

xtSiix

xtMiix
, (4.24)

where Sii:= Mii −MijM
−1
jj Mji.
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Note that in Definition 4.3.1 we implicitly assume that Mjj is regular. If this is not the
case, the Schur complement Sii is replaced by the generalized Schur complement introduced
in [Kra08] (Algorithm 3.9). Nevertheless, if Mii and Mjj both are regular, the strength sij of
the edge eij is independent of the order of i and j and thus sij can equivalently be computed
according to

sij =

√
1− inf

x

xtSjjx

xtMjjx
,

with the Schur complement Sjj := Mjj−MjiM
−1
ii Mij . This follows directly from the definition

of the CBS constant (cf. [Axe94]).

Now, according to (4.22), we say a connection between the vertices vi and vj is strong, vi
strongly depends on vj , or the edge eij is strong, iff

sij ≥ θ , (4.25)

with θ ∈ (0, 1]. In other words, a connection between two algebraic vertices is strong if
the angle between their respective subspaces, generated by M(i, j), is less than a certain
threshold arccos(θ). In the following, let Si denote the set of strongly connected neighbors
of a vertex vi, i.e., Si:= {vj : vj ∈ Ni ∧ sij ≥ θ}.

It is reasonable to choose θ ∈ (0, 1] in order to control the fraction Θ · nE of weak edges.
Later, in the numerical examples (see Section 4.8) we choose Θ = 0.08 (or Θ = 0.06 in
Subsection 4.8.2). These settings have shown to be appropriate in case of the considered
examples. Note that increasing the number of strong edges, i.e., decreasing Θ, typically
results in a faster coarsening.

4.4 Coarse-grid selection

Based on the strength of connectivity sij , associated with the algebraic edges eij , we select
our coarse grid. Following the recent articles [Kra08, KS06] the same coarsening strategy
as explained in [KS06] is used, which is a slight modification of the coarse-grid selection
procedure proposed by Ruge and Stüben in [RS87].

For the sake of completeness, we depict the procedure in this work. The selection process
is guided by two criterions that can be found for instance in [KS06], or originally in [RS87].
They are

C1: Vc should be a maximum independent set, which means that no strong connections are
allowed within Vc.

C2: Each vertex vj being strongly connected to a fine-vertex vi is either contained in Vc or
it strongly depends on at least one coarse node vk that itself is strongly connected to
vertex vi.
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We partition the set of vertices V into a set of fine vertices Vf , nvf := |Vf |, and a set of coarse
vertices Vc, nvc:= |Vc|. Corresponding to this partitioning we define the set of fine neighbors
N f
i := {vj : vj ∈ Ni ∩ Vf} and the set of coarse neighbors N c

i := {vj : vj ∈ Ni ∩ Vc} of a
vertex vi. Moreover, let the sets of strongly connected fine and coarse neighbors be denoted
by Sfi := {vj : vj ∈ Si ∩ Vf} and Sci := {vj : vj ∈ Si ∩ Vc}, respectively.

The selection process is executed in a fast two-stage process. First, by a simple Greedy-
algorithm, Algorithm 4.4.1, criterion (C1) is fulfilled. This is because if a vertex is selected
to be a coarse node, all its strongly connected neighbors are added to the set of fine vertices
Vf . Second, Algorithm 4.4.2 enforces (C2). It successively checks for each fine vertex vi if
all of their strongly connected fine neighbors vj are strongly connected to a strong coarse
neighbor of vi. If this is not the case, either vi is added to Vc if |Vc ∩ Si| < |Vc ∩ Sj | or if
n1 ≤ n2, vj is switched to be coarse.

Algorithm 4.4.1: Coarse-grid selection
Vf = Vc = ∅ and Ṽ = V
for i = 1, . . . , nv do

λi = |Si| // initial number of strongly connected neighbors
m = 0
while m < nv do

find i such that λi = max
m∈Ṽ

λm

Vc ← Vc ∪ {vi}
Ṽ ← Ṽ\{vi}
m← m+ 1
forall vj ∈ Si ∩ Ṽ do
Vf ← Vf ∪ {vj}
Ṽ ← Ṽ\{vj}
m← m+ 1
forall vk ∈ Sj ∩ Ṽ do

λk ← λk + 1

When we have selected the coarse grid, we can set up a prolongation operator P and compute
the coarse grid matrix AH via the Galerkin approach, i.e., AH : = P TAhP . In the case of
a two-level method, the knowledge of Ah and P is sufficient to set up the whole procedure.
However, in the multilevel setting we need edges ecij and their corresponding matrices Ecij on
the coarse level. Those can be constructed in a straightforward way.

We consider the matrix Gh (see (4.11)). Via the Galerkin approach we compute GH =
P TGhP . Then, if we know the coordinates of the coarse vertices we can proceed in the
following way. We construct a coarse edge ecij connecting the coarse vertices vi and vj if
they are strongly connected on the fine grid via at most two edges. The respective edges
can be determined via the adjacency matrix product Ac = ((Asfc)T × Asfc) ∨ Acc. Here,
Asfc denotes the adjacency matrix of the strong connections between fine and coarse vertices,
Acc represents the coarse-to-coarse adjacency on the fine mesh, and Ac is the coarse-level
adjacency matrix. Alternatively, one could add coarse edges between any pair of coarse
vertices vi and vj if there exists a strong path of length three between them. However,
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Algorithm 4.4.2: Coarse grid refinement
for i = 1, . . . , nv do

λi = 0 // initialize
m = 0
while m < nv do

m← m+ 1
if vi ∈ Vf then

n1 = 0
forall vk ∈ Si ∩ Vc do

n1 ← n1 + 1
λk = 1

forall vj ∈ Si ∩ Vf do
n2 = n3 = 0
forall vk ∈ Sj ∩ Vc do

n2 ← n2 + 1
if λk = 1 then

n3 ← n3 + 1 // vj has a strong coarse neighbor in Si ∩ Vc

if n3 < 1 then
if n1 < n2 then
Vc ← Vc ∪ {vi}
Vf ← Vf\{vi}

else
Vc ← Vc ∪ {vj}
Vf ← Vf\{vj}
n1 ← n1 + 1
λj = 1

forall vk ∈ Ni do
λk = 0

if these latter mentioned coarse edges are added the coarse-grid operators of our method
typically become significantly denser.

As can be seen later (in Section 4.5), we use a locally energy-minimizing interpolation that
involves the inverse of a small-sized matrix Mff (cf. (4.27)–(4.29)). The regularity of Mff
demands a proper selection of coarse vertices locally, which in practice can be achieved by
enriching Vc.

To illustrate the effect of the coarsening process let us consider Problem 4.1.1 on the unit
square Ω in 2D. We examine the effect of varying the stress-strain matrix C and also the
influence of changing the mesh.

Figure 4.1(a) shows the fine grid and the first four coarse grids for an isotropic constitutive
law when originating from a uniform mesh. As is reasonable the coarsening ratio is ap-
proximately the same in each direction. In Figure 4.1(b) we see the desired semi-coarsening
for an orthotropic material with a different Young’s modulus in x- and y-direction, namely
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Ey/Ex = 30. As Figure 4.1(c) shows, the situation is similar when using an unstructured
mesh, which, however, results in a smaller grid complexity σΩ in this example.

(a) (b)

(c)

Figure 4.1: The coarse grid for different types of the stress-strain matrix on different meshes:
isotropic material on a uniform gird (upper left); orthotropic material with Ey/Ex = 30 on
a uniform mesh (upper right); unstructured mesh (lower picture)

4.5 Interpolation and smoothing

The interpolation we are using here does not differ from the one used in References [Kra08,
KS06]. After reordering the vertices such that we have first the fine and then the coarse
vertices, the prolongation operator P ∈ R(nvnvd)×(nvcnvd) is given by

P =
[
Pfc
Ic

]
, (4.26)
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where Ic is the identity corresponding to the coarse vertices and Pfc is a mapping from the
(nvcnvd)-dimensional coarse space onto the (nvfnvd)-dimensional fine space. In order to set
up the interpolation for the DOF of a fine vertex vi, we define the so-called interpolation
molecule

M(i):=
∑

vk∈Sci

Eik +
∑

vj∈Sfi :∃vk∈Sci ∩Scj

Eij +
∑

vk∈Sci ,vj∈S
f
i : vk∈Scj

Ekj . (4.27)

The molecule M(i) emerges from the assembling of different edge matrices. The first sum

Figure 4.2: Sketch, visualizing the chosen connections for setting upM(i) according to (4.26).

in (4.27) comprises all edges connecting vi strongly to a coarse vertex vk. Further, all strong
fine edges eij are added if there exists a strong connection from vj to one strong coarse
neighbor vk of vi. Additionally, all connections between the strong fine neighbors vj ∈ Sfi
and the strong coarse neighbors vk ∈ Sci are taken into account. In Figure 4.2, a sketch of the
selection process in (4.26) is provided. Thereby, the circles denote fine vertices while squares
designate coarse algebraic vertices. Thick lines represent strong connections. Therefore, the
blue coarse vertices k correspond to the first part of (4.26). The red connection is related to
the second part, while the green edge belongs to the third sum in (4.26). Contrary, the fine
vertex m is not chosen since its connection to i (depicted in brown) is not strong. Hence,
M(i) has the following block-structure

M(i) =
[
Mff Mfc
Mcf Mcc

]
. (4.28)

Moreover, M(i) is SPSD by construction. Following the ideas of AMGe (cf. [BCF+01, FV04,
KV06]) the optimal interpolation coefficients P ∗fc,i with respect to the molecule M(i) are
given by

P ∗fc,i:= −(M−1
ff Mfc)i , (4.29)

where P ∗fc,i denotes the nvd rows of the local interpolation matrix Pfc corresponding to the fine
vertex vi. Note that this choice minimizes the following measure for the defect df:= ef−Pfcec
of the local interpolation, i.e.,

P ∗fc:= arg min
P

max
e⊥ ker(M)

(ef − Pec)T (ef − Pec)
eTMe

. (4.30)

For further details we refer to [FV04, KS06]. Additionally note the similarity of the above
measure to the measure µ, (3.40), which is used to quantify the condition number κ(B−1

MG,2A).
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So far, we have collected all ingredients that are required to set up an AMG algorithm. As
it is quite common, we use AMG to precondition the conjugate gradient (CG) method. Our
choice of the smoothing operator S is Gauss-Seidel iteration with a certain number of pre-
and post-smoothing steps ν1 and ν2. The 2-grid algorithm is depicted in Algorithm 3.2.1.
with the error propagation e(k+1) = (I − B−1

AMG,2A)e(k). On the other hand, for higher nL,
we arrive at he multigrid algorithm 4, which defines the preconditioner B−1

AMG.

4.6 Two-level convergence

In this section we investigate the convergence properties of the two-level AMGm method, see
Algorithm 3.2.1. As mentioned in the previous section we use AMG as a preconditioner for
CG and hence κ(B−1

AMG,2A), is the decisive measure for the convergence rate. The derivations
in this section are based on Section 3.3 and on the results in References [Not05] and [FV04].

Let us reconsider the setting of Section 3.3. Especially, the splitting (3.35) is used and we
exploit the results of Theorem 3.3.1. In the following, we examine the CBS constant γ̂ for
our method AMGm. Therefore, we use the spectral equivalence of the element matrices AT
and the molecule matrices BT assembled from the set BT (see Section 4.2). That is, for each
element T ∈ Th, there exist constants cT , cT > 0, such that

cT (BTv , v) ≤ (ATv , v) ≤ cT (BTv , v) ∀v . (4.31)

Summing up the contributions Eij,T of all elements T that share a given edge eij , finally
yields the edge matrix Eij , i.e., Eij =

∑
T : eij∈ET Eij,T . Using G =

∑
T∈Th AT (see (4.10))

and B:=
∑

eij∈E Eij =
∑

T∈Th BT gives

c(Bv , v) ≤ (Gv , v) ≤ c(Bv , v) ∀v (4.32)

with c:= minT∈Th cT and c:= maxT∈Th cT .

Now, let us examine the prolongation we are using according to Section 4.5. For simplicity
in the following we assume that for interpolation of a fine vertex vi ∈ Vf the computational
molecule consists of all coarse-neighbor connections of vertex vi, i.e., M(i): =

∑
vj∈N ci

Eij .
Then the matrix B can be rewritten in the form

B =
∑

vi∈Vf

M(i) +
∑

vi,vj∈Vf∧eij∈E
Eij +

∑
vi,vj∈Vc∧eij∈E

Eij = :M +H , (4.33)

where

M :=
∑

vi∈Vf

M(i) and H:= B −M =
[
Hff 0
0 Hcc

]
.

Hence, B is the sum of all interpolation molecules M plus a block-diagonal remainder H. In
the following we estimate the CBS constant γ(B̂) of the matrix B̂:= JTBJ . Since JTM(i)J is
a block diagonal matrix3 for all vi ∈ Vf it follows that γ(JTM(i)J) = 0. Thus γ(JTMJ) = 0,

3This is due to the special form of Pfc, see (4.29).
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cf. Lemma 5.1 in [LM07]. For the examination of γ(Ĥ) = γ(JTHJ) we write B̂ = JTBJ in
the form

B̂ = M̂ − c0T + Ĥ + c0T

with c0 > 0 and the block-diagonal matrix T := diag(0, P TfcHffPfc). If Mcc − c0P
T
fcHffPfc is

SPSD and does not vanish, we have γ(M̂ − c0T ) = 0. These requirements are fulfilled for
sufficiently small c0 > 0 due to the construction of Pfc.

On the other hand, with J given by (3.38), we get

H̄:= Ĥ + c0T = JTHJ + c0T =
[

Hff HffPfc
P TfcHff Hcc + (1 + c0)P TfcHffPfc

]
.

Since Hff and Hcc are SPSD we have (Hcc + (1 + c0)P TfcHffPfc)vc = 0 for all (vTf , v
T
c )T ∈

ker(H̄), which implies that γ(H̄) < 1, cf. Lemma 9.1 in [Axe94]. Now with the basis
matrices Bf and Bc of ker(Hff)⊥ and ker(Hcc + (1 + c0)P TfcHffPfc)⊥ = ker(P TfcHffPfc)⊥ we set
up the l2-orthogonal projections Pf = Bf(BT

f Bf)−1BT
f and Pc = Bc(BT

c Bc)−1BT
c (compare

Subsection 3.6.1). Since γ(H̄) < 1 we can view the matrices in terms of the bases and we
arrive at

γ(P TH̄H̄PH̄) = γ(H̄) ,

with PH̄ = diag(Bf, Bc). Further, using P̄fc:= PfcBc the Schur complement Scc of P T
H̄
H̄PH̄

is given by

Scc = BT
c HccBc + (1 + c0)P̄ TfcHffP̄fc − P̄ TfcHffBf(BT

f HffBf)−1BT
f HffP̄fc

= BT
c HccBc + c0P̄

T
fcHffP̄fc

because Bc(BT
c Bc)−1BT

c Hff = PfHff = Hff, since Hff is symmetric. Thence, with ¯̄Hcc: =
BT
c HccBc we obtain

γ(H̄)2 = 1−min
v

vTSccv

vT (P T
H̄
H̄PH̄)ccv

= 1−min
v

vT ( ¯̄Hcc + c0P̄
T
fcHffP̄fc)v

vT ( ¯̄Hcc + (1 + c0)P̄ TfcHffP̄fc)v

= 1− 1

1 + maxv
vT P̄TfcHffP̄fcv

vT ( ¯̄Hcc+c0P̄TfcHffP̄fc)v

= 1− 1
1 + 1

c0+minv
vT ¯̄Hccv

vT P̄TfcHffP̄fcv

=
1

1 + c0 + ‖ ¯̄H−1
cc P̄fcHffP̄fc‖2

≤ 1

1 + ‖ ¯̄H−1
cc P̄fcHffP̄fc‖2

.

The previous equations hold true if Hcc 6= 0 and Hff 6= 0. For Hcc ≡ 0 we conclude γ(H̄)2 =
1

1+c0
. On the other hand, if Hff ≡ 0 we have γ(H̄) = 0 and hence γ(B̂) = 0. Moreover, note

that ‖ ¯̄H−1
cc P̄fcHffP̄fc‖2 = λmax(PfcHffPfc, Hcc), which is the maximal generalized eigenvalue

of PfcHffPfc with respect to Hcc.

Summarizing,
γ(B̂) ≤ γ(H̄(c0)) < 1 . (4.34)

For further discussions we need the following lemma, which states the spectral equivalence
of the Schur complements of spectrally equivalent matrices.
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Lemma 4.6.1. Let A, B be Rn×n matrices, n ∈ N, partitioned into 2× 2 blocks, see (3.35).
Further, let Aff and Bff be regular and let A and B be spectrally equivalent, i.e.,

c(Av , v) ≤ (Bv , v) ≤ c(Av , v) ∀v ∈ Rn (4.35)

for some c > c > 0. Then the Schur complement SBcc is spectrally equivalent to SAcc with the
same constants c and c.

Proof. The bounds follow from the minimization-property of the Schur complement and the
spectral equivalence of A and B. For the upper bound we get

vTc S
B
ccvc = min

vf

[
vf
vc

]T
B

[
vf
vc

]
≤ cmin

vf

[
vf
vc

]T
A

[
vf
vc

]
= cvTc S

A
ccvc .

The lower bound is obtained in an analogous manner.

In view of the previous observations we are able to derive the following upper bound for γ(Ĝ).

Theorem 4.6.2. Let Ĝ = JTGJ and B̂ = JTBJ be defined by (4.10) and (4.33) using (3.38).
Further, let (4.32) be satisfied. Then, we get the following bound for the CBS constant γ(Ĝ):

γ(Ĝ) ≤
√

1− (1− γ(H̄)2)
c

c
. (4.36)

Proof. First, note that (4.32) implies the spectral equivalence of Ĝ and B̂ with the same
constants c and c. Now, let Bf : Rdim(ker(Ĝff)⊥) → ker(Ĝff)⊥ and Bc : Rdim(ker(Ĝcc)⊥) →
ker(Ĝcc)⊥ denote basis matrices, mapping onto the orthogonal complements of the kernels of
Ĝff and Ĝcc, respectively. Then we conclude for γ(Ĝ)

γ(Ĝ) = sup
vf /∈ ker(Ĝff)

vc /∈ ker(Ĝcc)

vTf Ĝfcvc√
vTf Ĝffvf · vTc Ĝccvc

= sup
ṽf, ṽc 6=0

ṽTf B
T
f ĜfcBcṽc√

ṽTf B
T
f ĜffBfṽf · ṽTc BT

c ĜccBcṽc

= γ(P̂ T ĜP̂ ) ,

with P̂ : = diag(Bf, Bc). Analogously, we get γ(B̂) = γ(P̂ T B̂P̂ ). Now, we obtain with
Lemma 4.6.1 (using also Lemma 9.2 in [Axe94])

1− γ(Ĝ)2 = 1− γ(P̂ T ĜP̂ )2 = inf
vc 6=0

vTc S
P̂T ĜP̂
cc vc

vcP Tc ĜccPcvc

≥ c

c
inf

vc 6=0

vTc S
P̂T B̂P̂
cc vc

vcP Tc B̂ccPcvc
=
c

c
(1− γ(P̂ T B̂P̂ )2) =

c

c
(1− γ(B̂)2)

≥ (1− γ(H̄)2)
c

c
,

from which (4.36) follows.
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Remark. So far we have investigated the CBS constant of Ĝ = JTGJ , where G is defined
by (4.10). From Â = Ĝ+ F̂ we conclude that

γ(Â) ≤ max{γ(Ĝ), γ(F̂ )} .

Hence, assuming that γ(F̂ ) ≤ γ(Ĝ) we obtain with (4.36)

γ(Â) ≤
√

1− (1− γ(H̄)2)
c

c
. (4.37)

In the remainder of this section we study by means of an example the spectral equivalence of
AT and BT , i.e., the evaluation of γ(Ĝ). We know from Theorem 4.2.2 that the edge matrices
Eij are of the form (4.9), that is, only cij is left to be determined. Therefore, we investigate
the minimal relative condition number κ(AT , BT ) for the reference element, see Figure 4.3. In
the two-dimensional case we compare the best possible κ(AT , BT ),4 depicted by the solid line,
to the relative condition number that is obtained when choosing cij according to (4.16). The
latter curve is dotted. We see that using (4.16) yields a condition number which is quite close
to the optimum. Additionally to the condition numbers in 2D, the dashed line in Figure 4.3
describes κ(AT , BT ) obtained for the reference tetrahedron in 3D. For reasonable ν we still
get acceptable results. Furthermore we observe the large slope of κ when ν approaches 1/2.
This is due to the ill-posedness of the system (4.2) in the limit case ν = 1/2. For instance,
we have κ(AT , BT ) = 11.2 (22.6) for ν = 0.45 in 2D (3D).

Figure 4.3: The general condition numbers κ(AT , BT ) for optimal constants cij (solid line)
and for the constants according to AMGm in 2D (dotted line) and 3D (dashed line).

4.7 Aspects on parallelizing AMGm

In the following we briefly address some implementation issues related to a parallelization of
the proposed method.

1. The mesh has to be partitioned into a set of submeshes using a mesh-partitioning
software. Further we need an overlap of the distributed mesh. The overlap of submeshes
has to contain all elements that share an edge with the boundary of any subdomain.

4The best possible κ was computed by minimizing κ(AT , BT ) with respect to the cij .
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2. After setting up the matrices Ah,p, Gh,p and Fh,p, the edge matrices on each processor
p can be computed independently. Note that the edge matrices of any edge on the
subdomain boundary coincide on each of the corresponding processors due to the over-
lap. The edge matrices of the elements belonging to the overlap have to be distributed.
Thereby, only the single values cij need to be broadcasted for each edge.

3. The computation of the strength of connectivity sij for each edge eij of a subdomain
can be preformed without communication, due to the knowledge of the edge matrices
of the overlap.

4. The partition into strong and weak edges on each processor is quite simple. Only the
choice of strong and weak edges on the subdomain boundary needs to be synchronized.
The reason for this are the different threshold values θp on different subdomains since
the ratio Θ of weak and strong edges is computed separately on each subdomain or
processor. A similar problem occurs in the coarse-grid selection step where one can
define a vertex on the subdomain boundary to be coarse if it has been select as a coarse
vertex on at least one subdomain.

5. The interpolation of fine interior points is as explained in Section 4.5. For fine bound-
ary vertices we can use solely strong fine-coarse connections for interpolation. This
guarantees a uniquely defined global interpolation.

6. After building the coarse matrices AH,p by the Galerkin product the coarse edges have
to be determined. First each processor determines the interior coarse edges. At a second
stage those coarse edges for which at least one vertex is in the overlap of two subdomains
are computed. They are distributed to the corresponding processors. There will never
be an edge connecting an interior vertex of one subdomain with an interior vertex of
another subdomain!

The smoother in a parallel version could be a symmetric Gauss-Seidel iteration within each
subdomain completed by a global block Jacobi-type smoothing, which is a standard option
in BoomerAMG (see [HMY00]).

4.8 Numerical results

In the final section we discuss the numerical results obtained by applying the proposed (modi-
fied) AMGm method to selected linear elasticity problems. Basically, we consider three types
of test problems. The first one is a composite material consisting of two different matters
which differ in their Young’s modulus. The second example is a three-dimensional beam. On
this example we also present a comparison of methods including the original AMGm method
(as proposed in [Kra08]) and the BoomerAMG ([HMY00]). In the last part of this section
we are dealing with orthotropic materials, such as wood and cancellous bones.

AMGm has been implemented as a preconditioner for the preconditioned conjugate gradient
(PCG) method in the finite element software package NGSolve (see [Sch97]). As a smoother
we use a symmetric block Gauss-Seidel method. We perform tests with the V- and with
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the W-cycle AMGm preconditioner with one pre- and one post-smoothing step, denoted by
V(1,1) and W(1,1). The convergence properties of the solver are presented in tabular form
by listing the average convergence factor (ρ) as well as the number of iterations (#it) that
are required to reduce the initial residual in the norm ‖ ·‖B−1

AMG
by a factor 108. The numbers

in parenthesis refer to edge matrices that are computed directly from A instead of G whereas
the numbers without parenthesis are the results obtained when using the auxiliary matrix
G for the computation of the edge matrices, as used in the two-level convergence analysis
(in Section 4.6). Further, we report the grid and operator complexities σΩ and σA.5 All
the computations are performed on three different meshes; The two finer meshes have been
generated from the coarsest mesh by uniform refinement. Finally, we mention that we use a
fraction Θ = 0.08 of weak edges.

4.8.1 Composite material

In this example we consider a composite material, which is distributed in the unit cube
Ω = (0, 1)3 according to a checkerboard pattern, as depicted in Figure 4.4(a). We solve
Problem 4.1.1 where the same Poisson ratio ν, but different moduli of elasticity E, referred
to as E0 and E1, are used. Note that only the ratio E1/E0 is of importance in this example.

We fix the displacement u = 0 at the bottom face ΓD: = [0, 1] × [0, 1] × {0}. Further, we
apply a force in the negative z-direction on the top face ΓN,1: = [0, 1] × [0, 1] × {1} and
impose homogeneous Neumann boundary conditions on the remaining part of the boundary
ΓN,0:= ∂Ω\(ΓD ∪ ΓN,1), which results in

tN =
{

0 on ΓN,0
(0, 0, −tz)T on ΓN,1

. (4.38)

The computations are performed for varying ratio E1/E0, ranging from 1 to 1 000, on three
different meshes. Additionally, we choose two values for the Poisson ratio ν, namely ν = 0.2
and ν = 0.4. In Figure 4.4(b) the solution for ν = 0.2 and E1/E0 = 10 is illustrated.

In Table 4.1 and Table 4.2 the convergence properties and complexities of the method are
reported for ν = 0.2 and ν = 0.4, respectively. At first we observe that the W-cycle AMGm
preconditioner results in convergence rates that are independent of the mesh size h. The
operator complexity σA is almost constant. For the V-cycle method, we observe a dependence
of the iteration count on the mesh size h, i.e., on the number of levels nL. Under weak
assumptions the general condition number for the V -cycle preconditioner typically depends
on the number of levels nL, see, e.g., [Vas08].6 For a detailed discussion we refer to [Vas08].
The second important result is the robustness with respect to the ratio E1/E0. Throughout
both tables we can clearly see that this quotient has almost no influence on the convergence of
the method. Thirdly, when comparing Table 4.1 to Table 4.2 we observe a moderate increase
of the number of iterations for ν = 0.4. This is due to the deterioration of κ(AT , BT ) defined
by (4.7), which can be seen in Figure 4.3.

5σΩ denotes the ratio of the total number of vertices (nodes) on all levels and the number of vertices on
the finest grid; σA, on the other hand, is the total number of nonzeros in the matrices (on all levels) divided
by the number of nonzeros in the fine-grid matrix.

6Only under a stronger “smoothing property” an h- and nL-independent convergence rate can be proven.
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(a) geometry (b) solution for E1/E0 = 10 and nu = 0.2

Figure 4.4: Geometry and solution for the composed cube.

#elements (#DOF) 22 043 (14 028) 176 344 (99 639) 1 410 752 (750 135)
#levels 4 6 8
ν = 0.2 #it. ρ #it. ρ #it. ρ
E1/E0 = 1: V(1,1) 38 (28) 0.61 (0.51) 56 (42) 0.72 (0.64) 68 (50) 0.76 (0.69)

W(1,1) 18 (13) 0.33 (0.24) 21 (13) 0.40 (0.24) 19 (14) 0.36 (0.24)
σΩ 1.56 (1.59) 1.50 (1.50) 1.48 (1.48)
σA 3.38 (3.49) 3.41 (3.45) 3.58 (3.56)

E1/E0 = 10: V(1,1) 44 (39) 0.65 (0.62) 66 (59) 0.76 (0.73) 88 (60) 0.81 (0.73)
W(1,1) 20 (17) 0.37 (0.31) 20 (17) 0.40 (0.31) 18 (14) 0.34 (0.25)
σΩ 1.57 (1.56) 1.50 (1.50) 1.48 (1.48)
σA 3.41 (3.31) 3.38 (3.44) 3.58 (3.57)

E1/E0 = 100: V(1,1) 51 (39) 0.70 (0.62) 71 (70) 0.77 (0.76) 77 (73) 0.79 (0.78)
W(1,1) 19 (15) 0.38 (0.27) 19 (17) 0.36 (0.33) 17 (14) 0.32 (0.25)
σΩ 1.56 (1.56) 1.50 (1.50) 1.48 (1.48)
σA 3.33 (3.34) 3.44 (3.43) 3.58 (3.57)

E1/E0 = 1 000: V(1,1) 42 (36) 0.64 (0.60) 78 (75) 0.79 (0.78) 79 (84) 0.79 (0.80)
W(1,1) 16 (14) 0.31 (0.25) 19 (18) 0.36 (0.35) 15 (15) 0.28 (0.27)
σΩ 1.58 (1.57) 1.50 (1.50) 1.48 (1.48)
σA 3.45 (3.38) 3.40 (3.43) 3.58 (3.58)

Table 4.1: Comparison of V (1, 1) and W (1, 1)-cycle AMGm-PCG for ε = 10−8 and ν = 0.2:
Composite material.

4.8.2 3D beam

Now, we investigate the influence of the shape of the reference configuration by considering a
beam, i.e., Ω = (0, 20)× (0, 2)× (0, 1) consisting of an isotropic material (C = Ciso defined
by (2.47)). We fix the deformation on both ends of the beam to be zero, that is,

u = 0 on ΓD:= {0, 20} × [0, 2]× [0, 1] .
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#elements (#DOF) 22 043 (14 028) 176 344 (99 639) 1 410 752 (750 135)
#levels 4 6 8
ν = 0.4 #it. ρ #it. ρ #it. ρ
E1/E0 = 1: V(1,1) 46 (33) 0.67 (0.57) 63 (53) 0.74 (0.70) 73 (61) 0.78 (0.74)

W(1,1) 22 (16) 0.42 (0.31) 23 (17) 0.44 (0.33) 22 (16) 0.42 (0.31)
σΩ 1.56 (1.58) 1.51 (1.51) 1.48 (1.48)
σA 3.35 (3.45) 3.45 (3.43) 3.49 (3.49)

E1/E0 = 10: V(1,1) 52 (44) 0.70 (0.65) 83 (56) 0.80 (0.71) 78 (68) 0.79 (0.76)
W(1,1) 23 (20) 0.45 (0.38) 25 (16) 0.47 (0.30) 20 (17) 0.39 (0.32)
σΩ 1.56 (1.57) 1.50 (1.50) 1.48 (1.48)
σA 3.34 (3.44) 3.42 (3.41) 3.51 (3.49)

E1/E0 = 100: V(1,1) 58 (50) 0.73 (0.69) 81 (68) 0.79 (0.76) 97 (86) 0.83 (0.81)
W(1,1) 23 (20) 0.43 (0.39) 22 (17) 0.42 (0.34) 19 (16) 0.36 (0.31)
σΩ 1.56 (1.57) 1.51 (1.51) 1.48 (1.48)
σA 3.37 (3.41) 3.45 (3.44) 3.50 (3.49)

E1/E0 = 1000: V(1,1) 45 (40) 0.66 (0.63) 84 (55) 0.80 (0.71) 110 (97) 0.84 (0.83)
W(1,1) 18 (15) 0.35 (0.29) 21 (15) 0.40 (0.28) 19 (17) 0.38 (0.30)
σΩ 1.56 (1.57) 1.51 (1.51) 1.48 (1.48)
σA 3.34 (3.41) 3.47 (3.47) 3.51 (3.49)

Table 4.2: Comparison of V (1, 1) andW (1, 1)-cycle of PCG for ε = 10−8 and ν = 0.4 applied
to a composite material.

Moreover, we apply a force in negative z-direction on a circle ΓN,1:= {x : (x1− 10)2 + (x2−
1)2 ≤ 0.25 ∧ x3 = 1}. On the remaining part of the boundary ΓN,0:= ∂Ω\{ΓD ∪ ΓN,1} we
impose homogenous Neumann boundary conditions. Hence tN is given by (4.38) for some
tz > 0. In Figure 4.5 the solution of the system (4.2) is shown (for the smallest problem size).
The shading indicates the absolute value of the stress.

In order to demonstrate the improvement of the method from [Kra08] by the modifications
that have been presented in this chapter,i.e., in [KK10], the results of the original AMGm
version are listed for comparison. Further, to have a comparison with another state-of-the-art
method, the results obtained with BoomerAMG (see [HMY00]) are included.

We report the convergence history of the three methods in Table 4.3 for ν = 0.1, 0.25, 0.4.
The considered examples contain up to 6 million DOF on the finest level in order to show
scalability of AMG in terms of the problem size. The parameters of the old AMGm version
have been chosen according to [Kra08] (example reported in Table 5.7). BoomerAMG was
used in the system’s version with the PMIS coarsening (see [DSMYH06]), which typically
results in a low operator complexity.

One can clearly see the improvement of the (new) AMGm method in terms of convergence
rates. The operator complexity is also slightly reduced as compared to the original (old)
version. When we compare AMGm to BoomerAMG we find that while the W-cycle of AMGm
is stable the iteration count of BoomerAMG’s W-cycle slightly increases with respect to the
mesh size and that the numbers of iterations which are needed are significantly higher than
those of AMGm. This might be due to the much lower operator complexity of BoomerAMG.

In Table 4.4 we depict the time needed for the single methods to set up its preconditioner
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and additionally, how long it took to converge for the two considered cycles. We see that
BoomerAMG sets up much faster, but due to the increased number of iterations it needs much
longer to solve the problem. In total, BoomerAMG is still faster than AMGm. Nevertheless,
for the considered example BoomerAMG scales worse than our method as can be seen in
Table 4.5. Thereby, the ratios of set up and solution time between the three different meshes
are shown. Especially the set up of our procedure shows a very good performance with
respect to this measure.

Figure 4.5: The deformed beam.

4.8.3 Orthotropic materials

In our last example we treat orthotropic materials with C = Cortho defined by (2.48). We
consider system (4.2) for three different materials, which are cancellous bone, hard and soft
wood. The parameter settings for these materials are taken from [YKvR+99] and for the
cancellous bone additionally from [KvRD+99]. As in Subsection 4.8.1 we consider as the
reference configuration the unit cube Ω:= (0, 1)3, which is fixed on the bottom face ΓD:=
[0, 1]2 × {0} and to which a force is applied on the top face ΓN,1:= [0, 1]2 × {1}. Moreover,
we have homogeneous Neumann boundary conditions on the remaining part of the boundary
ΓN,0:= ∂Ω\(ΓD ∪ ΓN,1), which yields

tN =
{

0 on ΓN,0
tN · (1, 1, −1)T on ΓN,1

,

with tN > 0. In Table 4.6 we list the parameters for Cortho as given in [YKvR+99]. Thereby
φ denotes the volume fraction of the cancellous bone, that is, the ratio between the volume
of the solid phase of the bone and its total volume. Additionally, we identify Et with the
isotropic tissue modulus. We choose Et = 5.4GPa throughout all computations, which is
an average value of different types of bones (cf. [KvRD+99]). According to [YKvR+99], the
apparent density ρ of wood is related to φ via ρ = γ φ with γ ≈ 1.9 g/cm3.
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# elements (#DOF) 175 637 (109 533) 1 405 096 (785 676) 11 240 768 (5 945 445)
ν = 0.10 #it. ρ #it. ρ #it. ρ

AMGm: V(1,1) 68 0.76 121 0.86 136 0.87
W(1,1) 17 0.32 18 0.34 15 0.27
σA (σΩ) 3.33 (1.55) 3.34 (1.49) 3.31 (1.46)

AMGm ([Kra08]): V(1,1) 118 0.86 216 0.92 - -
W(1,1) 32 0.56 33 0.57 - -
σA (σΩ) 3.50 (1.55) 3.54 (1.50) -

BoomerAMG: V(1,1) 59 0.73 69 0.76 84 0.80
W(1,1) 45 0.66 48 0.68 54 0.71
σA (σΩ) 1.91 (1.30) 1.88 (1.27) 2.08 (1.30)

ν = 0.25 #it. ρ #it. ρ #it. ρ

AMGm: V(1,1) 61 0.74 107 0.84 117 0.85
W(1,1) 15 0.29 17 0.33 16 0.29
σA (σΩ) 3.29 (1.54) 3.32 (1.48) 3.27 (1.46)

AMGm ([Kra08]): V(1,1) 122 0.86 233 0.92 - -
W(1,1) 33 0.57 35 0.59 - -
σA (σΩ) 3.50 (1.55) 3.54 (1.50) -

BoomerAMG: V(1,1) 57 0.72 70 0.77 82 0.80
W(1,1) 49 0.68 52 0.70 56 0.72
σA (σΩ) 1.96 (1.32) 1.95 (1.28) 2.15 (1.32)

ν = 0.40 #it. ρ #it. ρ #it. ρ

AMGm: V(1,1) 70 0.77 124 0.86 146 0.88
W(1,1) 18 0.35 18 0.35 18 0.35
σA (σΩ) 3.29 (1.54) 3.29 (1.49) 3.25 (1.46)

AMGm ([Kra08]): V(1,1) 145 0.88 133 0.87 - -
W(1,1) 40 0.63 43 0.65 - -
σA (σΩ) 3.51 (1.55) 3.51 (1.49) -

BoomerAMG: V(1,1) 61 0.74 74 0.78 90 0.81
W(1,1) 51 0.69 52 0.70 62 0.74
σA (σΩ) 2.13 (1.35) 2.13 (1.32) 2.32 (1.35)

Table 4.3: Comparison of AMGm (old and new) and BoomerAMG; V (1, 1)- andW (1, 1)-cycle
PCG for ε = 10−8: 3D beam.

In the following we examine the influence of the degree of anisotropy ω, which we define as the
maximum ratio of the Young’s moduli, that is, ω:= maxi 6=j∈{1, 2, 3}Ei/Ej . In Figure 4.6(a) ω
is depicted for varying volume fraction φ. For soft wood we find an increase of the anisotropy
for decreasing φ. For φ→ 0 the degree of anisotropy ω converges to infinity for all materials
due to different exponents of φ and ρ in the expressions for Ei, see Table 4.6. For comparison,
in Figure 4.6(b) the relative condition number κ(AT , BT ) on the reference element is plotted
against φ. Note that the experimental data, used in [YKvR+99] to derive the model (see
Table 4.6), was available only for φ ∈ (0.05, 0.40).

For the numerical tests, we use two values of φ, i.e., φ = 0.3 and φ = 0.1. The corresponding
values of Cortho are listed in Table 4.7. The solution of Problem 4.1.1 for φ = 0.1 on a mesh
of approximately 33 000 vertices is shown in Figure 4.7 for soft and hard wood, as well as in
Figure 4.8 for cancellous bone. We choose tN = 2 kN for a cube with a side length of 1 cm.
One can clearly see a stronger deformation of the hard wood, while the cancellous bone does
almost not deform due to the higher Young’s moduli Ei.

Finally, in Table 4.8 and Table 4.9 the computational results are listed. First we note the
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# elements (#DOF) 175 637 (109 533) 1 405 096 (785 676) 11 240 768 (5 945 445)
ν = 0.10 setup solve setup solve setup solve
AMGm: V(1,1) 44.0 13.1 387 243 3 142 3 003

W(1,1) 15.7 176 1 671
AMGm ([Kra08]): V(1,1) 24.5 72.6 283 937 - -

W(1,1) 47.1 493 -
BoomerAMG: V(1,1) 3.3 21.4 37.3 254 442 3 363

W(1,1) 21.1 226 2 993
ν = 0.25

AMGm: V(1,1) 43.2 11.6 373 214 3 032 2 583
W(1,1) 13.7 167 1 758

AMGm ([Kra08]): V(1,1) 25.1 65.8 281 1 062 - -
W(1,1) 61.9 564 -

BoomerAMG: V(1,1) 3.3 21.3 38.5 268 450 3 407
W(1,1) 22.2 253 3 268

ν = 0.40

AMGm: V(1,1) 43.1 13.4 364 245 2 988 3 164
W(1,1) 16.1 172 1 949

AMGm ([Kra08]): V(1,1) 24.7 69.7 270 574 - -
W(1,1) 59.3 685 -

BoomerAMG: V(1,1) 3.4 23.1 41.1 304 481 4 190
W(1,1) 25.5 283 4 206

Table 4.4: Timing of AMGm (old and new) and BoomerAMG in seconds; V (1, 1)- and
W (1, 1)-cycle PCG for ε = 10−8: 3D beam.

ratio of #DOF of consecutive meshes 7.17 7.57

setup solve setup solve
ν = 0.10 AMGm: V(1,1) 8.8 18.5 8.11 12.4

W(1,1) 11.2 9.5
AMGm ([Kra08]): V(1,1) 11.6 12.9 - -

W(1,1) 10.5 -
BoomerAMG: V(1,1) 11.3 11.9 11.8 13.2

W(1,1) 10.7 13.2
ν = 0.25 AMGm: V(1,1) 8.6 18.4 8.13 12.1

W(1,1) 12.2 10.5
AMGm ([Kra08]): V(1,1) 11.2 16.1 - -

W(1,1) 9.1 -
BoomerAMG: V(1,1) 11.7 12.6 11.7 12.7

W(1,1) 11.4 12.9
ν = 0.40 AMGm: V(1,1) 8.4 18.3 8.21 12.9

W(1,1) 10.7 11.3
AMGm ([Kra08]): V(1,1) 10.9 8.2 - -

W(1,1) 11.6 -
BoomerAMG: V(1,1) 12.1 13.2 11.7 13.8

W(1,1) 11.1 14.9

Table 4.5: Scaling of AMGm (old and new) and BoomerAMG with respect to consecutive
meshes; V (1, 1)- and W (1, 1)-cycle PCG for ε = 10−8: 3D beam.

stable operator complexity σA. Furthermore we observe uniform convergence with respect to
the mesh size h and the number of levels nL for all considered materials when employing the
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cancellous bone hard wood soft wood

E1 1 240Et φ
1.80 1.307 ρ0.89 GPa 2.05 ρ1.71 GPa

E2 885Et φ
1.89 2.97 ρ1.50 GPa 3.14 ρ1.59 GPa

E3 528.8Et φ
1.92 27.63 ρ1.41 GPa 32.01 ρ1.01 GPa

µ12 486.3Et φ
1.98 0.4125 ρ1.21 GPa 0.083 ρ0.66 GPa

µ13 316.65Et φ
1.97 1.57 ρ1.37 GPa 2.05 ρ1.36 GPa

µ23 266.65Et φ
2.04 1.97 ρ1.23 GPa 2.28 ρ1.27 GPa

ν12 0.176Et φ
−0.25 0.724 ρ0.90 0.269 ρ−0.17

ν13 0.316Et φ
−0.19 0.016 ρ−0.76 0.019 ρ0.10

ν23 0.256Et φ
−0.09 0.024 ρ−0.73 0.028 ρ0.18

Table 4.6: Parameters for the stress-strain matrix Cortho for three different materials.

(a) the anisotropy ω (b) the relative condition number κ(AT , BT )

Figure 4.6: Anisotropy and the relative condition number for the 3 materials and varying φ.

φ = 0.3 φ = 0.1
cancel. bone hard wood soft wood cancel. bone hard wood soft wood

E1 766.7 0.793 0.784 106.1 0.298 0.120
E2 491.0 1.278 1.285 61.57 0.246 0.224
E3 283.0 12.51 18.14 34.33 2.657 5.982
µ12 242.1 0.209 0.057 27.50 0.055 0.028
µ13 159.6 0.727 0.954 18.32 0.161 0.214
µ23 123.5 0.987 1.117 13.13 0.255 0.277
ν12 0.238 0.437 0.296 0.313 0.162 0.357
ν13 0.397 0.025 0.018 0.489 0.057 0.016
ν23 0.285 0.036 0.025 0.315 0.081 0.021

Table 4.7: Parameters for the stress-strain matrix Cortho for three different materials. The
moduli Ei and µij are given in GPa. Et = 5.4GPa and ρ = γ φ with γ = 1.9g/cm3 (constant).

W (1, 1)-cycle preconditioner. The convergence behavior is reflected in the relative condition
numbers of the edge matrix approximations, see Figure 4.6(b). For the cancellous bone the
number of iterations slightly increases when changing φ from 0.3 to 0.1. On the other hand,
the convergence in the latter case is even faster for hard wood. The results for soft wood are
similar for both settings.
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(a) soft wood (b) hard wood

Figure 4.7: The deformed cube using the stress-strain matrix of two different orthotropic
materials, i.e., two types of wood. The color corresponds to the absolute value of the stress.

Figure 4.8: The deformed cube for cancellous bone.

#elements (#DOF) 21 473 (13 992) 171 784 (98 259) 1 374 272 (735 303)
#levels 4 6 8

#it. ρ #it. ρ #it. ρ

bone: V(1,1) 34 (32) 0.58 (0.56) 49 (51) 0.68 (0.69) 57 (58) 0.72 (0.73)
W(1,1) 16 (14) 0.30 (0.24) 16 (15) 0.30 (0.27) 14 (13) 0.26 (0.22)
σΩ 1.58 (1.58) 1.51 (1.51) 1.48 (1.48)
σA 3.41 (3.49) 3.42 (3.42) 3.39 (3.39)

hard wood: V(1,1) 42 (35) 0.64 (0.59) 65 (61) 0.75 (0.74) 78 (67) 0.79 (0.76)
W(1,1) 19 (15) 0.36 (0.29) 24 (20) 0.45 (0.40) 21 (18) 0.41 (0.34)
σΩ 1.59 (1.58) 1.51 (1.51) 1.48 (1.49)
σA 3.54 (3.42) 3.46 (3.44) 3.47 (3.47)

soft wood: V(1,1) 51 (44) 0.69 (0.65) 81 (75) 0.79 (0.78) 100 (86) 0.83 (0.81)
W(1,1) 24 (22) 0.46 (0.41) 30 (29) 0.53 (0.52) 29 (27) 0.53 (0.50)
σΩ 1.60 (1.59) 1.52 (1.52) 1.49 (1.49)
σA 3.57 (3.51) 3.58 (3.54) 3.57 (3.58)

Table 4.8: Comparison of V (1, 1)- and W (1, 1)-cycle AMGm-PCG for ε = 10−8: Different
orthotropic materials and a volume fraction φ = 0.3.
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#elements (#DOF) 21 473 (13 992) 171 784 (98 259) 1 374 272 (735 303)
#levels 4 6 8

#it. ρ #it. ρ #it. ρ

bone: V(1,1) 37 (34) 0.61 (0.57) 58 (51) 0.73 (0.70) 71 (61) 0.77 (0.74)
W(1,1) 17 (15) 0.34 (0.28) 20 (16) 0.37 (0.32) 19 (15) 0.36 (0.28)
σΩ 1.59 (1.58) 1.51 (1.51) 1.48 (1.48)
σA 3.59 (3.41) 3.44 (3.41) 3.37 (3.38)

hard wood: V(1,1) 41 (34) 0.63 (0.58) 63 (54) 0.74 (0.71) 79 (63) 0.79 (0.74)
W(1,1) 18 (16) 0.36 (0.30) 23 (18) 0.45 (0.36) 22 (17) 0.43 (0.33)
σΩ 1.58 (1.59) 1.51 (1.52) 1.49 (1.49)
σA 3.39 (3.48) 3.51 (3.53) 3.53 (3.53)

soft wood: V(1,1) 46 (44) 0.67 (0.66) 83 (76) 0.80 (0.78) 103 (80) 0.84 (0.79)
W(1,1) 21 (21) 0.40 (0.40) 30 (26) 0.53 (0.49) 26 (25) 0.49 (0.47)
σΩ 1.59 (1.59) 1.52 (1.52) 1.50 (1.50)
σA 3.46 (3.49) 3.60 (3.57) 3.63 (3.61)

Table 4.9: Comparison of V (1, 1)- and W (1, 1)-cycle AMGm-PCG for ε = 10−8: Different
orthotropic materials and a volume fraction φ = 0.1.

4.9 Application to DG discretizations

Now, let us investigate the problem discussed in Subsection 2.4.3. Therefore, we consider
problem (2.24) with V = V DG

h and a(., .) given by (2.57).

4.9.1 Setup

For any face E ∈ Eh we denote by TE,1 ∈ Th and TE,2 ∈ Th its adjacent elements. If
E ∈ EDh ∪ ENh we set TE,2 = ∅. From (2.57) it easily follows that a(., .) can be rewritten as

a(uDG, vDG) =
∑

E∈Eoh∪E
D
h

aE(uDG, vDG) ∀uDG, vDG ∈ V DG
h ,

with

aE(uDG, vDG) =
1

δTE,1
(σ(uDG) , ε(uDG))0,TE,1 +

1
δTE,2

(σ(uDG , ε(uDG))0,TE,2

−
[
({{σ(uDG) · nE}} , [[vDG]])0,E + ({{σ(vDG) · nE}}, [[uDG]])0,E

]
+(2µ+ λ)γ0

(
h−1 [[P0uDG]] , [[P0vDG]]

)
0,E

+2µγ1

(
h−1 [[uDG]] , [[vDG]]

)
0,E

,

where E ∈ Eoh ∪ EDh . The constant δT is defined by

δT = |ET | − |ET ∩ ENh | = 1 + d− |ET ∩ ENh | ,
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i.e., the number of faces of T minus the number of edges of T belonging to the Neumann
boundary ΓN . This induces a splitting of the matrix A into SPSD “edge matrices”7 AE with

A =
∑

E∈Eoh∪E
D
h

AE .

Finally, we want to shift the matrices AE , belonging to E ∈ EDh , to edge matrices AE
corresponding to interior edges. That is, for every E ∈ EDh we adapt all AE′ for E′ ∈ Eoh∩ETE,1
according to

AE′ = AE′ +
1

|Eoh ∩ ETE,1 |
AE . (4.39)

Those matrices turn out to be SPD. We arrive at the decomposition of A through A =∑
E∈Eoh

AE . Now, let us revisit the setting of Section 4.2. Let us define the set V to contain
nT algebraic vertices vi. Each vi contains all DOF of the element Ti. Hence, the number
of VDOF is nvd = 6 for d = 2 and nvd = 12 in the three-dimensional case. The algebraic
edges on the fine level are naturally defined through E = eij ∈ E if T i ∩ T j 6= ∅. Then,
for any E ∈ E the edge matrices Eij are naturally chosen to be AE . That is, we have a
direct decomposition of A without any approximation involved. Additionally, note that this
splitting also takes care of the boundary terms.

The detection of strong and weak connections via the strength of connectivity is deter-
mined exactly as in Definition 4.3.1 via the computational molecules M(i, j) given by (4.23).
Thereby, note that Mii as well as Mjj is always SPD due to construction.

The set up of coarse edges aligns on the discussion of Section 4.4. We choose the set of coarse
edges according to Ac = ((Asfc)T ×Asfc) ∨Acc, from which we obtain the set of coarse edges
Ec. Now, for any eij ∈ Ec let Pij denote the set of all algebraic edges which are contained
in a strong path of length 2 connecting vi and vj . If there exists a fine edge eij it is added
to Pij as well. Furthermore, let αkl be the number how often the fine edge ekl is used to set
up a coarse edge, i.e., αkl = |{eij ∈ Ec : ekl ∈ Pij}|. Using the interpolation matrix P , the
coarse edge matrix Ecij is set up via

Ecij = P T

 ∑
ekl∈Pij

1
αkl

Ekl

P .

For the following discussion let us introduce the set of strong fine-to-coarse vertex connections
Esfc: = {ekl ∈ E : vk ∈ Vf ∧ vl ∈ Vc ∧ skl ≥ θ} and the set of coarse-to-coarse edges
Ecc: = {ekl ∈ E : vk,vl ∈ Vc}. Since our coarse-grid selection process meets the criterions
(C1) and (C2) of Section 4.4 the following holds

∑
eij∈Ec

Ecij = P T

 ∑
eij∈Ec

∑
ekl∈Pij

1
αkl

Ekl

P = P T

 ∑
eij∈Esfc

Eij +
∑

eij∈Ecc

Eij

P . (4.40)

This means that the sum of all coarse edge matrices is equal to the Galerkin product of P
with the sum of all strong fine-to-coarse and all coarse-to-coarse edge matrices. Therefore,

7Their kernel is given by the rigid body motions.
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the sum (4.40) is sparser than the coarse-grid operator AH = P TAP . This keeps the operator
complexity lower on coarser levels, which is determined by the interpolation. The interpola-
tion itself depends on the number of (strong and weak) connections of the algebraic mesh.
It is set up exactly as discussed in Section 4.5. Finally, the smoothing is again chosen to be
Gauss-Seidel smoothing.

4.9.2 Discussion

As it has been mentioned in the previous subsection, the number of VDOF is nvd = 6 and
nvd = 12 for d = 2 and d = 3, respectively. This leads to edge matrices of the size 12 × 12
or 24 × 24. Those corresponding to interior edges without any Dirichlet boundary attached
to one of the elements (see above) are SPSD. The other Eij are SPD. That is, the general
element matrix has rank 9 or 18, respectively. Hence, we have to store the whole matrix. In
the following we neglect the symmetry of the problem, i.e, that all matrices can be stored
more efficiently. Using the number of interior faces nE,o: = |Eoh|, we find that we require
122nE,o or 242nE,o of double precision memory entries for all edge matrices on one level. On
the other hand, we obtain for the system matrix:

Lemma 4.9.1. The system matrix A has in the case of full coupling between neighboring
elements the following number of non-zero entries #nze(A):

#nze(A) =
{

12nE + 84nE,o d = 2 ,
36nE + 324nE,o d = 3 ,

(4.41)

where nE,o:= |Eoh| is the number of interior faces.

Proof. Let us define the number of boundary faces nE,∂Ω: = |EDh ∪ ENh |. First we consider
the case d = 2. For every T ∈ Th we have 6 DOF, hence, the total number of DOF is
#DOF= 6nT . Since every element T contains 3 edges we find 3nT = 2nE − nE,∂Ω, because
all interior edges are counted twice and the boundary edges correspond only to one element.
Every inner element has 3 adjacent T ∈ Th leading to 24 non-zero entries for each DOF
belonging to an interior element. For every boundary element, each DOF creates 24 non-zero
entries minus 6 times the number of boundary edges the element belongs to. In total, we
arrive at

#nze(A) = 24 · 6nT − 6 · 6nE,∂Ω = 96nE − 48nE,∂Ω − 36nE,∂Ω

= 96nE − 84nE,∂Ω = 12nE + 84nE,o .

For d = 3 it holds that every element has 4 faces which leads to 4nT = 2nE − nE,∂Ω. In
total there are 12nT degrees of freedom. Now, every interior element has 12 DOF and 4
neighboring elements Hence, for each interior DOF A has 60 non-zero entries. Similar to the
two-dimensional case, we find

#nze(A) = 60 · 12nT − 12 · 12nE,∂Ω = 360nE − 180nE,∂Ω − 144nE,∂Ω

= 360nE − 324nE,∂Ω = 36nE + 324nE,o .
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Hence, the memory consumption for setting up all Eij is less than (d = 2) or less than two
times (d = 3) the amount of memory we require for storing the system matrix A.

A real practical limitation is the size of the subproblems we have to solve for finding the
strength of connectivities sij , see Definition 4.3.1. This procedure involves the solutions of
generalized eigenvalue problems of size nvd. Even though nvd is relatively small, the total
complexity for setting up all strengths of connectivity is still of order O(nv) but with a high
constant.

Finally, in the set up of the interpolation according to (4.29) we have to invert the matrix
Mff, which is of the size nvd(1+ |Sfi |), again leading to a very high constant in the complexity
considerations.

In summary, we may conclude that the AMGm method will provide a uniform (with respect
to number of DOFs and Poisson ratio) preconditioner for the DG discretization of linear
elasticity equations. Clearly, achieving such robustness comes at the price of increasing
the computational complexity of the algorithm. For values of the Poisson ratio that are
far from the critical one, the AMGm method requires more computational work than the
standard MG solvers for DG discretizations of elliptic problems, such as the ones developed
in [AdDZ09, GK03].
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Chapter 5

A subspace correction method for
nearly singular linear elasticity
problems

The focus of this chapter is on constructing a robust (uniform in the problem parameters)
iterative solution method for the system of linear algebraic equations arising from a noncon-
forming finite element discretization based on reduced integration. We introduce a specific
space decomposition into two overlapping subspaces that serves as a basis for devising a
uniformly convergent subspace correction algorithm. We consider the equations of linear
elasticity in primal variables. For nearly incompressible materials, i.e., when the Poisson
ratio ν approaches 1/2, this problem becomes ill-posed and the resulting discrete problem is
nearly singular.

Subspace correction methods for nearly singular systems have been studied in [LWXZ07].
Therein the authors show that a space decomposition has to fulfill a local kernel preservation
property in order to set up a robust MSSC on top of this splitting. This leads to robust
multigrid methods for planar linear elasticity problems (see [LWC09]). In [Sch99a, Sch99b] a
multigrid method has been presented for a finite element discretization with P2−P0 elements.
This approach relies on a local basis for the weakly divergence-free functions.

In this setting, presently known (multilevel) iterative solution methods are optimal or nearly
optimal for the pure displacement problem only, i.e., when Dirichlet boundary conditions
are imposed on the entire boundary, see, e.g., [BS07, GKM10]. For pure traction or mixed
boundary conditions the problem gets more involved. It is known, that standard (conforming
and nonconforming) finite element methods then require certain stabilization techniques, see,
e.g., [HL03, Fal91]. We employ the discretization scheme introduced in Subsection 2.4.2,
which achieves the stabilization via reduced integration. Note that optimal error estimates
have been shown for this method (see [Fal91]).

The remainder of this chapter is organized as follows: The problem formulation of the linear
elasticity problem with pure traction boundary conditions and its finite element discretization
are recalled in Section 5.1. Additionally, the necessary ingredients for the discussion in

87
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this chapter are introduced. In Section 5.2 we present a specific space decomposition, with
newly derived, locally supported basis functions, which is the basis for an MSSC solver
being discussed in Section 5.3. Afterwards, we introduce the preconditioner that is naturally
defined by the MSSC. In Section 5.5 it is explained how to solve the subproblems efficiently.
Finally, we present numerical tests illustrating the optimal performance of the preconditioner
in Section 5.6. Additionally, results for the direct application of the MSSC are shown.

5.1 Preliminaries

For the sake of simplicity we consider only two-dimensional problems (d = 2) in this chapter.
Let us focus on problem (2.33), with a(., .) and L(.) given by (2.52) and (2.53). The space
Vh is given by V̂h according to Subsection 2.4.2. This problem is stable with respect to the
first Lamé parameter and therefore, it may be exploited to investigate almost incompressible
materials. In this chapter, we use the notation introduced in Subsection 2.4.2.

Let EH be the set of edges of TH and VH be the set of (coarse) vertices of the mesh TH .
Then for any vertex vi ∈ VH we denote the set of edges sharing vi by N Ei , and by N THi
we designate the set of elements T ∈ TH for which vi is a vertex. The set ET contains all
edges of an element T ∈ TH . For any edge E = (vE,1, vE,2) ∈ EH by ϕE we designate the
scalar nodal basis function of V 1

h corresponding to the midpoint of the edge E, and by ϕE,1
and ϕE,2 the nodal basis functions corresponding to the vertices vE,1 and vE,2 of E. The
corresponding vector-valued DOFs of any function vh ∈ Vh:= [V 1

h ]d are labeled by vE , vE,1
and vE,2, respectively. We further use ϕi and vi to denote the basis functions and DOFs
associated with the vertices from VH .

For any edge E ∈ EH we assume that vE,1 < vE,2 and that the globally defined tangential
vector τE points from vE,1 to vE,2. The global edge normal vector nE is orthogonal to τE
and is obtained from τE by a clockwise rotation. Especially, we need the space V RT

H,0 of lowest
order Raviart Thomas functions (2.32). The basis functions ϕRTE corresponding to an edge
E of an element T ∈ TH are such that NRT

E′ (ϕRTE ) = δEE′ , according to the definition of a
nodal basis in Subsection 2.1.3. We also use the projection ΠRT : H(div; Ω) 7→ V RT

H,0 defined
by

ΠRT (v) =
∑
E∈EH

NRT
E (v)ϕRTE , (5.1)

for which the commuting property P0 div v = div ΠRT (v) holds for any v ∈ H(div; Ω)
(cf. [BF91, p. 131]).

Lemma 5.1.1. For any v ∈ H(div; Ω) we have

P0 div v = div ΠRT (v) . (5.2)

In [BF91] Lemma 5.1.1 is proven. For a better understanding we add a proof of the previous
lemma for functions vh ∈ Vh.
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Proof. Let us consider a single triangle T ∈ TH and let us denote by nE,T the local unit
normal vector pointing outwards on T . Then for any vh ∈ Vh we have

div ΠRT (vh)
∣∣
T

= div

∑
E∈ET

NRT
E (vh)ϕRTE

 =
∑
E∈ET

NRT
E (vh) divϕRTE

=
∑
E∈ET

(nE · nE,T )
|E|

∫
E
vh · nE ds

|E|
|T |

=
1
|T |

∫
∂T
vh · nE,T ds

=
1
|T |

∫
T

div vh dx = P0(div vh)|T ,

by using the relation divϕRTE = (nE · nE,T ) |E||T | , which follows from

|T |divϕRTE =
∫
T

divϕRTE dx =
∑
E′∈ET

∫
E′

ϕRTE · nE′,T ds

= (nE · nE,T )
∫
E

ϕRTE · nE ds = (nE · nE,T )|E| ,

since divϕRTE is constant on an element T ∈ TH . Summation over all elements yields the
desired result.

Additionally, let us designate by nE,H , nT,H and nV,H the cardinalities of the sets EH , TH
and VH . That is, those values refer to the number of coarse edges, coarse elements (triangles)
and to the number of coarse vertices.

5.2 Space decomposition

In the following we present innovative results that have not been published before by another
author. Let us consider the following unique decomposition of any function vh ∈ Vh:

vh =
∑
vi∈VH

ϕivi +
∑
E∈EH

ϕEvE

=
∑
vi∈VH

[
ϕivi −

1
2

∑
E∈NEi

(vi · nE)ϕEnE
]

︸ ︷︷ ︸
=:vV

+
∑
E∈EH

(vE · τE)ϕEτE︸ ︷︷ ︸
=:vτ

+
∑
E∈EH

([
vE +

1
2

(vE,1 + vE,2)
]
· nE

)
ϕEnE︸ ︷︷ ︸

=:v1

.
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Next we define the splitting Vh = VV ⊕ Vτ ⊕ Vn , where

VV := {vh ∈ Vh : vh =
∑
vi∈VH

[
ϕivi −

1
2

∑
E∈NEi

(vi · nE)ϕEnE
]
} , (5.3)

Vτ := {vh ∈ Vh : vh =
∑
E∈EH

αEϕEτE} , (5.4)

Vn := {vh ∈ Vh : vh =
∑
E∈EH

αEϕEnE} . (5.5)

Note that ΠRT (VV) = ΠRT (Vτ ) = {0} . In addition, let us introduce the spaces

Vcurl := {vh ∈ Vh : vh =
∑
vi∈VH

βi
∑
E∈NEi

δE,i
|E|

ϕEnE} ,

V∇h := {vh ∈ Vh : vh =
∑
T∈TH

γT
∑
E∈ET

(nE · nE,T )ϕEnE} .

Here δE,i is defined by

δE,i =
{
−1 if i = vE,1
1 if i = vE,2

. (5.6)

Note that Vcurl ⊂ Vn, and V∇h ⊂ Vn, and the following properties hold:

Lemma 5.2.1. The space Vcurl is “weakly divergence-free”, while V∇h is its complement, i.e.,

P0 div(vcurl) = div ΠRT (vcurl) = 0 ∀vcurl ∈ Vcurl , (5.7)
P0 div(v∇h) = div ΠRT (v∇h) 6= 0 ∀v∇h ∈ V∇h . (5.8)

Furthermore, it holds that dim(Vcurl) = nv,H − 1 and dim(V∇h) = nT,H , and thus, we find
Vn = Vcurl ⊕ V∇h.

Proof. We observe that ΠRT (ϕEnE) = 1
2ϕ

RT
E for any E ∈ EH .

In the proof of Lemma 5.1.1, we have seen, that divϕRTE = (nE · nE,T ) |E||T | . Now, let for any
vRT ∈ V RT

H,0 , i.e., vRT =
∑

E∈EH αEϕ
RT
E , be α = (αE)E∈EH ∈ RnE,H the corresponding vector

of DOFs to vRT . Since div vRT is piecewise constant, it is given by div vRT =
∑

T∈TH βTχT
with β = (βT )T∈TH specifying its vector of DOFs. In the latter statement χT denotes the
characteristic function of an element T ∈ TH . For each T ∈ TH we obtain

βT =
∑
E∈ET

αE divϕRTE
∣∣
T

=
∑
E∈ET

αE(nE · nE,T )
|E|
|T |

.

In the following, let DEH : RnE,H → RnE,H and DTH : RnT,H → RnT,H be the diagonal
matrices of face (edge) and element measures, i.e., DEH = diag(|E|) and DTH = diag(|T |).
Additionally, let B : RnE,H → RnT,H be defined by B = (BTE)E∈EH , T∈TH where

BTE :=
{

0 if E /∈ ET
nE,T · nE if E ∈ ET

.
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With those matrices, we find that

β = D−1
THBDEHα .

That is, div vRT = 0 if and only if β = 0. Hence, we have to show that for every α
corresponding to a basis function of Vcurl the relation β = D−1

THBDEHα = 0 is valid. Let us
consider αi being the vector representation of a basis function in Vcurl of an arbitrary vertex
vi ∈ VH . For any T /∈ N THi we immediately see that βT = 0. For all other T , α contains two
non-vanishing values. They belong to the edges E1, E2 ∈ ET being adjacent to the actually
considered vertex vi. We find that βT = |T |(nE1 · nE1,T δE1,i + nE2 · nE2,T δE2,i). Due to the
special choice of δE,i and because nE1,T as well as nE2,T point outwards of T , βT vanishes.
Hence β = 0 follows, which implies statement (5.7).

In order to show (5.8) first note that for every T ∈ TH we find

div
∑
E∈ET

(nE · nE,T )ϕRTE =
∑
E∈ET

(nE · nE,T ) divϕRTE

=
∑
E∈ET

(nE · nE,T )2 |E|
|T |

=
∑
E∈ET

|E|
|T |
6= 0 .

Next we show that the α corresponding to the basis functions of V∇h are linearly independent,
which implies that div v∇h 6= 0 for all v∇h ∈ V∇h . Therefore, note that all αT corresponding
to an element T ∈ TH on the boundary of the domain are linearly independent because
they are the only ones to contain an entry for the boundary edges. If we continue with this
argument, excluding the vectors already treated, we conclude that all αT are indeed linearly
independent.

This implies that B has full rank, i.e., dimV∇h = nT,H and on the other hand that dimVcurl =
nV,H − 1, since nE,H = nT,H + nV,H − 1 due to Euler’s formula. From (5.6) we find nV,H
possible basis functions of Vcurl. Actually, one may prove with similar arguments as above,
that nV,H − 1 of them, each corresponding to a vertex vi ∈ VH , are linearly independent.
Summarizing we have shown that Vn = Vcurl ⊕ V∇h .

Lemma 5.2.2.
Vh = VV ⊕ Vτ ⊕ Vcurl ⊕ V∇h . (5.9)

Proof. Clearly, from (5.3) we see that dimVV = 2nV,H corresponding to the coarse vertices
VH . Moreover, for any vertex E ∈ EH the vectors τE and nE are linearly independent.
Hence, Vn ∩ Vτ = ∅ which in the end implies (5.9).

We want to decompose the space Vh into two overlapping subspaces such that the problem
on the subspaces is somehow “easier” solvable than on the whole space. Additionally, in
Section 3.6 we have seen that a proper choice of the overlap is crucial for the convergence
performance of the MSSC method. Numerical experiments show that the CBS constant
between VV and V∇h is bounded away from 1. Hence, we decompose Vh into two overlapping
subspaces VI and VII :

VI = VV ⊕ Vτ ⊕ Vcurl (5.10)
VII = Vτ ⊕ Vcurl ⊕ V∇h (5.11)
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The overlap of VI and VII is given by Vτ ⊕Vcurl, and any element vII ∈ VII can be uniquely
decomposed into vII = vτ+vcurl+v∇h , with vτ ∈ Vτ , vcurl ∈ Vcurl and v∇h ∈ V∇h . However,
finding the components vcurl ∈ Vcurl and v∇h ∈ V∇h for a given function vn ∈ Vn requires a
solution of a system with an M -matrix corresponding to the lowest order mixed method for
the Laplace equation with lumped mass [BF91].

Note that since P0 div(VI) = div ΠRT (VI) = {0} the bilinear form a(., .) satisfies

a(uI , vI) = 2µ(ε(uI) , ε(vI))0 ∀uI , vI ∈ VI . (5.12)

On the other hand, in the limit case ν = 0 we have a(uh,vh) = 2µ(ε(uh) , ε(vh))0 for all
uh, vh ∈ Vh.

5.3 MSSC as a solver

The bilinear form 2µ(ε(uh) , ε(vh))0 is spectrally equivalent to the vector Laplace equation
because of Korn’s inequality. It is well-known how to solve or precondition this term effi-
ciently. Therefore, we add another correction step and choose VIII = Vh and aIII(., .): =
2µ(ε(.) , ε(.))0, with its operator representation 2µAε. Let A denote the operator corre-
sponding to the bilinear form a(., .) given by (2.52). In order to get a non-expansive error
propagation operator we add the update with a suitable factor cIII(ν). Now, this MSSC is
defined through

EMSSC = (I − cIII(ν)
2µ

A−1
ε A)(I − PII)(I − PI) (5.13)

where Pi is defined by (3.15) for i = I, II. The factor cIII(ν) can be defined by

cIII(ν):=
1
cIII

min{1, 1− 2ν
ν
} , (5.14)

where cIII is chosen properly depending on the maximal eigenvalue of A−1
ε A. In order to

assure that the operator I − cIII(ν)
2µ A−1

ε A is non-expansive we require

0 ≤ cIII(ν)
2µ

A−1
ε A ≤ 2I .

With the operator form Adiv corresponding to (P0 div ., P0 div .)0 we arrive at

cIII(ν)
µ

(
µI +

µν

1− 2ν
A−1
ε Adiv

)
≤ 2I . (5.15)

Overall, we find that the operator is non-expansive for all ν ∈ [0, 1/2], if cIII fulfills

cIII ≥
1
2
(
1 + λmax(A−1

ε Adiv)
)
. (5.16)

Finally, we estimate λmax(A−1
ε Adiv).
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Lemma 5.3.1. Let d = 2, Aε and Adiv be the operators corresponding to the bilinear forms
(ε(.) , ε(.))0 and (P0 div . , P0 div .)0, with respect to the space V̂h. Then, we find

λmax(A−1
ε Adiv) ≤ 2

cK
(5.17)

with cK being the constant in the Korn inequality (Theorem 2.1.6).

Proof. First, note that div vh ∈ Sh and hence, for arbitrary sh ∈ Sh we have

‖P0sh‖20 =
∫
Ω

 ∑
TH∈TH

χTH (y)
1
|TH |

∫
TH

sh(x) dx


2

dy

=
∑

T ′H∈TH

∫
T ′H

 ∑
TH∈TH

χTH
1
4

∑
Th⊂TH

sh,Th

2

dx

=
1
16

∑
TH∈TH

∫
TH

 ∑
Th⊂TH

sh,Th

2

dx

C.S.
≤ 1

16

∑
TH∈TH

|TH |4
∑

Th⊂TH

s2
h,Th

=
∑

TH∈TH

∑
Th⊂TH

|Th|s2
h,Th

= ‖sh‖20 , (5.18)

where we have used Cauchy-Schwarz inequality (C.S.). Thus, we find with Cauchy-Schwarz
inequality and Theorem 2.1.6 for arbitrary vh ∈ V̂h

‖P0 div vh‖20
(5.18)
≤ ‖div vh‖20 =

∫
Ω

(
2∑
i=1

∂ui
∂xi

)2

dx
C.S.
≤ 2

2∑
i=1

∫
Ω

(
∂ui
∂xi

)2

dx

≤ 2‖∇vh‖20 ≤ 2‖vh‖21
Theorem 2.1.6

≤ 2
ck
‖ε(vh)‖20 .

Finally, we arrive at

λmax(A−1
ε Adiv) = sup

vh∈V̂h

(Adivvh , vh)0

(Aεvh , vh)0
= sup

vh∈V̂h

‖P0 div vh‖0
‖ε(vh)‖0

≤ 2
ck
.

The latter lemma implies that if cIII is chosen such that

1
2
(
1 + λmax(A−1

ε Adiv)
)
≤ 1

2

(
1 +

2
ck

)
≤ cIII ,

it is guaranteed that EMSSC is non-expansive. In order to assure that such a property holds
one needs to have the precise value of the Korn’s constant for the domain Ω. In general,
this constant is not known and to make the method practical we need to modify it so that
this unknown constant is not used in the algorithm. In order to do this we will relax the
requirement that the iteration is a convergent one and in the next section we show how to
use the multiplicative method as a preconditioner.
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5.4 MSSC as a preconditioner

The error propagation operator EMSSC, given by (5.13), automatically defines a convergent
procedure if condition (5.15) is fulfilled. If this condition is satisfied with even stronger
bounds, i.e., some uniform bounds away from 0 and 2, we would have a uniformly convergent
method. Thereby, as we have explained above, a serious problem is the right choice of cIII .
Since its estimate depends on Korn’s constant it is very hard to meet the criterion in general.

However, the upper bound 2I can be relaxed. If we would have instead of (5.15) a condition
like

0 < α0I ≤
cIII(ν)
µ

(
µI +

µν

1− 2ν
A−1
ε Adiv

)
≤ α1I , (5.19)

for some 0 < α0 < α1, EMSSC would naturally define a uniform unsymmetric preconditioner
BMSSC, through

EMSSC = I −BMSSCA .

Therefore, let us start with the MSSC for J = 2, i.e., the spaces VI and VII defined by
(5.10) and (5.11), respectively. If we symmetrize this procedure, we obtain the following
error propagation ĒMSSC, compare with (3.7) in case of J = 2 and exact subsolves, i.e.,

ĒMSSC = (I − PI)(I − PII)(I − PI) .

The error propagation operator can be rewritten as ĒMSSC = I − B̄MSSCA, with symmetric
B̄MSSC. Further, B̄MSSC is positive definite, since ĒMSSC is non-expansive. Note that even
though B̄MSSC = (I − ĒMSSC)A−1 formally involves the inverse of A, we do not need A−1 in
order to apply B̄MSSC.

If ν is bounded away from the incompressible limit 1/2, we know that Aε is spectrally
equivalent to A. Further, there are efficient preconditioners for Aε. Therefore, w define the
additive preconditioner B by

B:=
1− 2ν
1− ν

A−1
ε +

ν

1− ν
B̄MSSC . (5.20)

Note that B is a convex combination of A−1
ε and B̄MSSC.

5.5 Solution of the subproblems

In order to solve the problem (2.33), either by means of Algorithm 3.1.1 in the setting of
Section 5.3 or by using the preconditioner (5.20) of Section 5.4 in a PCG iteration, we have
to solve the three subproblems. So far, we have assumed to solve those problems exactly.
However, from the results in [Xu92, XZ02] we know that under certain conditions an inexact
solution of problem (3.4) on each subspace results in a uniform preconditioner. Equivalently,
if the conditions on Ti of Theorem 3.1.1 are fulfilled uniformly, the method according to the
error propagation (5.13) is uniformly convergent.
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The subproblems on the spaces VI and VIII = Vh involve the bilinear form

ã(ui, vi) = 2µ(ε(ui) , ε(vi))0 ∀ui, vi ∈W = VI , Vh . (5.21)

Any efficient preconditioning technique for the vector Laplace equation may be employed in
these steps, e.g., classical AMG (see [RS87]) or AMGm (see Chapter 4 or [KK10]).

The problem on VII = VE := {vh ∈ Vh : vh(xi) = 0 vi ∈ VH} is more involved. In order to
solve it one can exploit two equivalence relations. Intuitively, one might think it is obvious
that Korn’s inequality holds on VE because of the high oscillatory behavior of functions in
VE . Nevertheless, we provide a proof in the next theorem. The proof follows the proof of
Theorem 11.2.16 in [BS07].

Theorem 5.5.1 (Korn’s inequality on VE). There exists a positive constant cK > 0 such
that

‖ε(vE)‖L2(Ω) ≥ cK‖vE‖H1(Ω) ∀vE ∈ VE . (5.22)

Proof. Due to Lemma 2.1.2 every vE ∈ VE can be uniquely decomposed into vE = v̂+vRBM
with v̂ ∈ Ĥ1(Ω) and vRBM ∈ V RBM. Now, Lemma 2.1.8 implies the existence of a C > 0
such that

C (‖v̂‖1 + ‖vRBM‖1) ≤ ‖vE‖1 , (5.23)

for every vE = v̂ + vRBM ∈ VE . Let us assume that (5.22) does not hold for any positive
constant c > 0. Then, there exists a sequence {vE,n}n∈N ⊂ VE such that

‖vE,n‖1 = 1 and ‖ε(vE,n)‖0 <
1
n
. (5.24)

For each vE,n we find v̂n ∈ Ĥ1(Ω) and vRBM,n ∈ V RBM with vE,n = v̂n + vRBM,n. It holds
that

‖ε(v̂n)‖0 = ‖ε(vE,n)‖0 <
1
n
.

With Theorem 2.1.6 we conclude that v̂n → 0 in [H1(Ω)]2. Since V RBM is three-dimensional,
and since (5.23), implies the boundedness of vRBM,n, there exists a convergent subsequence
{vRBM,nj}j∈N. Hence, the subsequence {vE,nj = v̂nj + vRBM,nj}j∈N ⊂ VE converges to some
vE ∈ V RBM, which implies that vE = 0 because VE ∩ V RBM = {0}. This is a contradiction
to the assumptions (5.24).

Now, by using Korn’s inequality, Poincarè’s inequality and the inverse inequality we can show
that

Lemma 5.5.2. For all vE ∈ VII = VE it holds that

‖ε(vE)‖20 ≈ ‖∇vE‖20 ≈ H−2‖vE‖20 . (5.25)
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Proof. The first equivalence follows from Korn’s inequality on the space VE , Theorem 5.5.1,
and from

‖ε(v)‖0 = ‖1
2

[∇v + (∇v)T ]‖0 ≤
1
2
‖∇v‖0 +

1
2
‖(∇v)T ‖0 = |v|1 ∀v ∈ [H1(Ω)]2.

The second equivalence is shown in two parts. First, we exploit Corollary 4.4.24 of [BS07].
It states that for any v ∈ H1(Ω) ∑

T∈TH

‖v − Ih(v)‖20,T

1/2

≤ C1H|v|1,Ω

holds with Ih being a suitably element-wise defined interpolation operator and C1 depending
on ρ, being the constant of shape-regularity (see page (2.29)). Since we have that VE ⊂
[H1(Ω)]2 and that IH(vE) = 0, with the nodal linear interpolation IH on TH , i.e., taking the
nodal values at the vertices vi ∈ VH , we arrive at ∑

T∈TH

‖vE − IH(vE)‖20,T

1/2

=

 ∑
T∈TH

‖vE‖20,T

1/2

= ‖vE‖0,Ω ≤ C1H|vE |1,Ω .

In order to show the the second direction of the equivalence statement we make use of
Theorem 4.5.11 in [BS07], i.e., an inverse estimate. We get for any vh ∈ Vh

|vh|1 ≤ ‖vh‖1 ≤ C2h
−1‖vh‖0 = 2C2H

−1‖vh‖0 , (5.26)

with C2 mainly depending on ρ.

Next, note that any function vE ∈ VE can be uniquely decomposed into vE = vn +vτ where
vn ∈ Vn and vτ ∈ Vτ .

Lemma 5.5.3. Let vE ∈ VE be given by vE = vn + vτ with vn ∈ Vn and vτ ∈ Vτ . The
following holds

‖vE‖20 = ‖vn + vτ‖20 ≈ ‖vn‖20 + ‖vτ‖20 (5.27)

with the constants 1− γ̄ and 1+ γ̄, where γ̄ = 3
7 . The equivalence holds uniformly with respect

to the mesh size h (without assuming shape-regularity of Th).

Proof. We estimate the CBS constant γ between the spaces Vn and Vτ measured in the L2-
norm. By solving a generalized eigenvalue problem (see [KM09] for instance), we get for an
arbitrary element T ∈ TH

|(vn , vτ )0,T | ≤ γT ‖vn‖0,T ‖vτ‖0,T (5.28)

with γT ≤ 3
7 . Further from [KM09, Lemma 2.5] we obtain

γ ≤ max
T∈TH

γT ≤
3
7

= γ̄ . (5.29)
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Finally, the inequality on the right-hand side of (5.27) follows from

‖vn + vτ‖20 = ‖vn‖20 + ‖vτ‖20 + 2(vn , vτ )0

(5.28),(5.29)
≤ ‖vn‖20 + ‖vτ‖20 + 2γ‖vn‖0‖vτ‖0
≤ (1 + γ)(‖vn‖20 + ‖vτ‖20) ,

where we have used that 2ab ≤ a2 + b2 for a, b ∈ R. Similarly the left-hand side of (5.5.3)
can be shown.

Now, let IhRT : V RT
H,0 → Vh be the interpolation operator from the Raviart-Thomas space

V RT
H,0 to Vh, defined by IhRT (ϕRTE ) = 2ϕEnE ∈ Vn. Note that ΠRT (IhRT (vRT )) = vRT for all
vRT ∈ V RT

H,0 and additionally, note that IhRT (ΠRT (vn)) = vn for all vn ∈ Vn. That is, V RT
H,0

and Vn are isomorphic through IhRT and ΠRT .

Lemma 5.5.4. For all uh ∈ Vh and all uRT ∈ V RT
H,0 we have

‖ΠRTuh‖20 ≤ cRT,1‖uh‖20 , (5.30)
‖IhRTuRT ‖20 ≤ cRT,2‖uRT ‖20 , (5.31)

with cRT,1 > 0 and cRT,2 > 0 being independent of h.

Proof. First, we consider the l2-norm of the operator ΠRT with respect to the space Vn,
represented through the matrix ΠRT

h . That is

‖ΠRT
h ‖2l2 := sup

‖u‖l2=1
‖ΠRT

h u‖2l2 = sup
‖u‖l2=1

∑
E∈EH

[(
uE,1 + uE,2

4
+
uE
2

)
· nE

]2

C.S.
≤ sup

‖u‖l2=1

∑
E∈EH

∥∥∥∥uE,1 + uE,2
4

+
uE
2

∥∥∥∥2

l2

∆−inequ.
≤ sup

‖u‖l2=1

∑
E∈EH

1
2
‖uE‖2l2 +

1
4

∑
vi∈VH

m(i) ‖vi‖2l2 ≤
1
4

max{m, 2} .

Thereby, m(i) denotes the vertex degree of vertex vi and m is the maximum over all m(i).
Now, let Mh and MRT denote the mass matrices with respect to Vn and V RT

H,0 . Then, we
obtain (5.30) through

‖uh‖20 = uTMhu ≥ λmin(Mh)uTu ≥ λmin(Mh)
‖ΠRT

h ‖2l2
(ΠRT

h u)TΠRT
h u

≥ λmin(Mh)
λmax(MRT )‖ΠRT

h ‖2l2
(ΠRT

h u)TMRTΠRT
h u ≥ 4λmin(Mh)

mλmax(MRT )
‖ΠRTuh‖20 ,

and since both, Mh and MRT , are assembled from element matrices that have eigenval-
ues of the order O(H2) on a quasi-uniform mesh. With u = (uE)E∈EH , where uRT =
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∑
E∈EH uEϕ

RT
E , statement (5.31) follows from

‖IhRTuRT ‖20 = ‖
∑
E∈EH

uE2ϕEnE‖20 = 4uTMhu ≤
4λmax(Mh)
λmin(MRT )

uTMRTu

=
4λmax(Mh)
λmin(MRT )

‖uRT ‖20 ,

and from the same arguments as above.

Now, let us define an auxiliary space V̄ := Vτ ×V RT
H,0 with elements v̄ = (vτ , vRT ). Further,

we designate an auxiliary bilinear form ā(., .) on V̄ , that is, for ū, v̄ ∈ V̄ we define

ā(ū, v̄)) := 2µ
{
H−2(uτ , vτ )0

+H−2(uRT , vRT )0 +
ν

1− 2ν
(divuRT , div vRT )0

}
. (5.32)

Additionally, we set up the projection Π : V̄ → VE by

Π(v̄) = vτ + IhRT (vRT ) . (5.33)

With this, we are able to show the conditions of Theorem 3.4.1.

Theorem 5.5.5. Let V̄ be defined by V̄ := Vτ×V RT
H,0 together with the auxiliary bilinear form

ā(., .) given by (5.32) and the projection operator (5.33). In this setting, the preconditioner
(3.43) satisfies (3.44).

Proof. For B satisfying (3.44) we have to show the two conditions of the fictitious space
lemma, Theorem 3.4.1. First, let vE = vτ + vn ∈ VE be arbitrary but fixed. Then, with
v̄ =

(
vτ , ΠRT (vE)

)
=
(
vτ , ΠRT (vn)

)
it follows that Πv̄ = vE and

‖v̄‖2Ā = 2µ
{
H−2‖uτ‖20 +H−2‖ΠRT (un)‖20 +

ν

1− 2ν
‖ div ΠRT (uE)‖20

}
.

Now, condition 1 of Theorem 3.4.1 follows from

H−2
(
‖uτ‖20 + ‖ΠRT (un)‖20

) (5.30)
. H−2

(
‖uτ‖20 + ‖un‖20

)
Lemma 5.5.3

. H−2‖uE‖20
Lemma 5.5.2

. ‖ε(uE)‖20 .

Second, let v̄ ∈ V̄ be arbitrary. Then

‖Πv̄‖2A = 2µ
{
‖ε(Πv̄)‖20 +

ν

1− 2ν
‖ div ΠRT (Πū)‖20

}
.

Since ΠRT (Πv̄) = ΠRT (vτ + IhRT (vRT )) = vRT , condition 2 of Theorem 3.4.1 is satisfied
through

‖ε(Πv̄)‖20
Lemma 5.5.2

. H−2‖Πv̄‖20 = H−2‖vτ + IhRT (vRT )‖20
Lemma 5.5.3

. H−2
(
‖vτ‖20 + ‖IhRT (vRT )‖20

) (5.31)
. H−2

(
‖vτ‖20 + ‖vRT ‖20

)
.
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Hence, the conditions of Theorem 3.4.1 are satisfied and therefore, the preconditioner B,
given by (3.43), satisfies (3.44).

From the previous theorem we see how to solve the (3.1) on the subspace VII . The inverse of
Ā reduces to inverting a mass term, which can be done by preconditioning with its diagonal.
However, the inverse of Ā on V RT

H,0 is the problem of inverting

aRT (uRT , vRT ):= µ

{
H−2(uRT , vRT )0 +

ν

1− 2ν
(divuRT , div vRT )0

}
, (5.34)

An efficient solver for the latter problem can be designed by using the auxiliary space pre-
conditioner of [HX07], or by using the robust algebraic multilevel iteration method developed
in [KT11].

5.6 Numerical experiments

In order to confirm the convergence of the procedure corresponding to the error propagation
(5.13) we perform the following numerical experiment. Consider the unit square Ω = (0, 1)2

and the right-hand side L(.) = 0. We start the subspace correction algorithm with a random
initial guess u0

h. In Table 5.1 we report the iteration count and the average convergence rate
ρ that reduced the A-norm of the error by a factor of 108.

To come up with a reasonable choice for cIII in (5.13) we have computed λmax(A−1
ε Adiv)

on small meshes and found it was bounded by 1.5. In order to satisfy condition (5.16), we
choose cIII = 2 in all test cases. However, as we have discussed in Section 5.3 one usually
needs some experimental data or an educated guess to choose cIII properly.

#DOF 98 338 1230 4 802 18 818

#it. ρ #it. ρ #it. ρ #it. ρ #it. ρ

ν = 0: 19 0.37 20 0.39 15 0.28 14 0.27 17 0.34
ν = 0.25: 8 0.09 9 0.12 7 0.07 7 0.07 15 0.28
ν = 0.4: 9 0.12 10 0.15 7 0.06 7 0.07 14 0.27
ν = 0.45: 7 0.07 9 0.12 8 0.09 8 0.09 15 0.28
ν = 0.49: 5 0.02 7 0.05 6 0.04 8 0.09 12 0.21
ν = 0.499: 4 0.00 4 0.01 4 0.00 4 0.01 7 0.07
ν = 0.4999: 3 0.00 3 0.00 3 0.00 3 0.00 4 0.01

Table 5.1: Iteration numbers (#it.) and convergence rates (ρ) of MSSC according to (5.13).

Additionally, we perform a numerical test to show that the preconditioner (5.20) is an efficient
and robust preconditioner. We consider the problem with homogenous Dirichlet boundary
conditions on the unit square Ω = (0, 1)2. The number of PCG iterations for a residual
reduction by a factor 108 are shown in Table 5.2. All subproblems are solved exactly. Addi-
tionally, we list the estimated condition numbers κ(BA), obtained from the Lanczos process.
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#DOF 242 1 058 4 418 18 050 72 962 293 378

#it. κ #it. κ #it. κ #it. κ #it. κ #it. κ

ν = 0: 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
ν = 0.25: 8 1.41 8 1.48 8 1.53 9 1.55 9 1.57 9 1.57
ν = 0.4: 10 1.90 11 2.19 12 2.38 12 2.49 13 2.57 13 2.62
ν = 0.45: 11 2.11 12 2.61 14 3.01 15 3.25 15 3.41 15 3.52
ν = 0.49: 10 1.90 11 2.54 14 3.31 16 3.97 17 4.39 17 4.69
ν = 0.499: 9 1.98 10 1.98 11 2.13 14 2.99 15 3.83 17 4.51
ν = 0.4999: 9 1.99 9 1.99 9 1.99 10 1.99 12 2.43 13 3.34
ν = 0.49999: 9 1.99 9 1.99 9 2.00 9 2.00 9 2.00 10 2.00

Table 5.2: Iteration numbers (#it.) and condition numbers (κ(BA)) of the PCG-cycle with
the preconditioner (5.20).



Chapter 6

Conclusion

6.1 Summary

In this thesis, the equations of linear elasticity are considered for which the focus lies on
the pure displacement formulation. In order to complete the picture on possible variational
formulations of the governing equations, also other possibilities to pose the problem in vari-
ational form are discussed. After discretization, the aim is to solve the arising linear system
robustly with respect to mesh size and problem parameters such as incompressibility. The
framework of subspace correction methods unites most of the state-of-the-art methods or
concepts for solving discretizations of PDEs. Therefore, some known procedures are pre-
sented and their convergence properties are shortly addressed in terms of subspace correction
methods.

In Section 3.6 innovative computations on the convergence of MSSC for two overlapping
subspaces are derived. There, it is shown that the energy norm of the error propagation
operator is given by the CBS constant of the operator with respect to the non-overlapping
parts after an elimination of the overlap. The presented numerical results clearly underline
the theoretical observations.

The AMG procedure based on computational molecules, which is presented in Chapter 4, is
based on the concept of algebraic edges and vertices. Edge matrices determine the relation
between the algebraic vertices and give rise to an approximation of the system matrix. In this
chapter, a new measure for the strength of connectivity is introduced which reveals better
insight on the nodal dependence. Additionally, a new way of computing the edge matrices
is presented and the obtained approximation properties with respect to the element stiffness
matrices are computed showing satisfying results. Further, the convergence of AMGm is in-
vestigated through an approximation of the condition number of the preconditioned operator.
Thereby, it turns out that the CBS constant of the obtained space splitting is bounded under
certain assumptions. If the smoother, which is in practical tests the Gauss-Seidel smoother,
is compatible with the space splitting, the two-level procedure gives rise to a uniformly spec-
trally equivalent preconditioner. Remarks on an efficient parellelization of AMGm are made
and finally numerical tests give evidence that the convergence of PCG using the W-cycle
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of AMGm is uniform. The experiments testify that AMGm outperforms its predecessor,
published in [Kra08]. Further it outperforms BoomerAMG (see [HMY00, DSMYH06]), a
state-of-the-art AMG solver, in terms of the convergence rate, which is due to a higher oper-
ator complexity of AMGm. At the end of this chapter, it is explained how to apply AMGm
to stable DG discretizations of the linear elasticity equations in order to design an optimal
solver, which is robust with respect to incompressibility. However, this is paid off by a higher
computational complexity than standard MG for DG discretizations. The main results of
this chapter have already been published in [KK10]

In Chapter 5 almost incompressible linear elastic materials are considered. Therefore, a
locking-free discretization scheme based on reduced integration is utilized to obtain stable
approximations of the solution. Based on an innovative space decomposition of the discrete
space, an overlapping space decomposition using two subspaces is set up. Thereby, the
subspaces are shown to be spanned by local basis functions leading to sparse representations of
the system operator on the subspaces. An MSSC based on the subspace splitting is employed
to define a preconditioner which shows optimal convergence properties in the case where
the subproblems are solved exactly. However, since in practical applications the subspace
problems have to be solved efficiently this issue is addressed as well. The first subproblem is
independent of the problem parameters and therefore, it can be efficiently solved by means
of any optimal order method for vector Laplace equations. The main problem is to devise
a robust solution procedure for the second subproblem. In this work, an auxiliary space
preconditioner is set up for this problem. The preconditioner is shown to be spectrally
equivalent to the original operator by means of the fictitious space lemma. Finally, since for
this preconditioner there do exist efficient and optimal solution procedures, one is able to
implement efficient solvers for the subproblems which are of optimal order. The discussion
on the preconditioner of this chapter has been recently published in the accepted article
[KKZ11].

6.2 Outlook

Since there is always some work left over, we state some interesting open issues

• In Section 4.9 the application of AMGm to the DG formulation introduced in Subsec-
tion 2.4.3 is discussed. These considerations indicate that AMGm leads to a robust and
optimal solution procedure. In order to find out about its practical properties and also
possible limitations, the method has to be applied to the considered DG discretizations
in numerical tests.

• In Section 5.4 the preconditioner (5.20) is introduced. The numerical results in Sec-
tion 5.6 indicate an optimal convergence behavior of the PCG method. However, a
theoretical confirmation of the robustness with respect to h and λ or ν, respectively, is
an open issue. Based on the property of stable splittings, like (3.52), one could show
convergence results. Therefore, one has to verify a condition similar to (3.52). If this
can be achieved uniformly with respect to the considered parameters, a robust bound
on the preconditioner would follow.
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• In the numerical examples in Section 5.6 exact solutions of the subproblems are used.
Nevertheless, numerical implementations of the preconditioners presented in 5.5 are of
practical interest for the overall solution procedure derived in Chapter 5.

• Finally, note that the discussion in Chapter 5 is for plain strain elasticity problems,
that is, for two-dimensional problems. The generalization of this for three-dimensional
problems is an interesting issue.
Note that, in [GR86] it is shown that a discretization of the mixed formulation of elas-
ticity problems using piecewise linear functions plus face bubbles (cubic functions) for
the velocities and piecewise constant pressure functions is stable for Stokes equations.
Hence, this formulation can be used to set up a stable discretization scheme for linear
elasticity problems posed purely in the displacements. There, the same space, as used
for the velocities in the Stokes setting, is utilized for the FE discretization. Using again
P0 in the div-term yields an equivalent form to the mixed formulation, for which one
might be able to show robust error estimates. Then, in order to devise a suitable over-
lapping space splitting, one has to find the equivalent subspaces to the ones presented
in Chapter 5. Thereby, one can use that the commuting property P0 div = div ΠRT

(see Lemma 5.1.1) holds also true for d = 3.
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