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Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der Entwicklung von effizienten
numerischen Methoden zur Simulation von elastoplastischen Modellen
der Festkörper- und Strukturmechanik. Es werden nicht nur die mech-
anische Feldgrößen wie Verschiebungen, Verzerrungen und Spannungen
berechnet, sondern auch die Entwicklung der plastischen Zonen unter den
verschieden Beladungsfällen betrachtet. Diese plastischen Zonen sind vor
allem in der Praxis von großer Bedeutung.
Der Einfachheit halber werden nur zweidimensionale elastoplastische
Modelle mit isotroper Verfestigung betrachtet, die sich aud dem ebenen
Spannungszustand und dem ebenen Verzerrungszustand ergeben.
Die Zeitdiskretisierung erfolgt mittels dem impliziten Euler Schema und
die Ortsdiskretisierung mit linearen finiten Elementen in den jeweiligen
hierarchischen Netzen. Wir betrachten dabei in jedem Zeitschritt das
gleiche Basisgitter wobei sich durch mehrere automatisch generierte Ver-
feinerungen die Gitter in den höheren Ebenen voneinander unterscheiden
können.
In jedem Zeitschritt und jeder Hierarchiestufe müssen wir ein nichtlin-
eares System von finiten Elementgleichungen lösen. Aufgrund der Nicht-
differenzierbarkeit des Systems benutzen wir zur Lösung ein newtonähnliches
Verfahren, das eine gute Startnäherung benötigt. Diese Näherung für den
Startwert berechnen wir mittels Extrapolation der Näherungen aus dem
vorigen Zeitschritt sowie dem nächst gröberen Gitter im aktuellen Zeitschritt
und im vorigen Zeitschritt. Um diesen Extrapolationsalgorithmus zu im-
plementieren müssen angemessene Interpolationsperatoren zwischen den
verschiedenen Gittern gefunden werden.
Unsere numerischen Beispiele zeigen, dass diese Extrapolationstechnik
einen guten Starwert liefert und auch bei adaptiver Verfeinerung
funktioniert.



Abstract

This diploma thesis is devoted to the development of efficient numerical
methods for the simulation of the elastoplastic model in solid and struc-
tural mechanics. Beside the evolution of the mechanical field quantities
like displacements, strains and stresses, the development of the plastic
zones under different load regimes is of great practical interest. For the
sake of simplicity, we only consider two–dimensional elastoplastic model
with isotropic hardening arising from the state of plane stress or the state
of plane strain.
The time evolution is discretized by the backward Euler scheme, whereas
the spatial discretization is performed by means of linear finite elements
on hierarchical meshes. We keep the same coarse mesh for all time steps
respectively incremental steps, but we can use different finer meshes pro-
duced by some automatic mesh adaption procedure from one time step
to the next one. At each time step and at each nested mesh we have to
solve a non-linear system of finite element equations. Due to the non-
differentiability the finite element system is solved by a Quasi-Newton
method with a suitable initial guess. A good initial guess can be obtained
by extrapolation from the former time step and from the coarser mesh at
the current and the former time step. In order to handle this extrapola-
tion process, suitable transfer operators have to be defined. Our numeri-
cal experiments show that this extrapolation technique can accelerate the
solution procedure even on adaptively produced meshes.
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Chapter 1

Introduction, Preliminaries and
Notation

1.1 Introduction

This thesis is dealing with the problem of elastoplastic deformations which
occur by applying volume forces and/or surface tractions to a body. If the
loads are small enough only elastic deformation happens, but by increas-
ing the applied load also plastic deformation may occur. The main dif-
ference is that elastic deformation vanishes if the load is removed, while
plastic deformation remains.
A crucial problem is to identify the unknown interface between regions
of the elastic and the plastic deformation. Since the two regions vary for
different loads, it is also necessary to take a different mesh for each load to
garantee highest possible accuracy with the lowest calculation complexity.
The classical model of elastic deformations is based on the balance equa-
tion of force and angular momentum, the geometrical relation between
strains and displacements and material laws. For plastic deformation the
model is extended with a plastic flow law. This leads to a system of equa-
tion for the elastic behaviour and one inequality to describe the plastic
dependency. Existence and uniqueness of the solution to the variational
problem is shown in [11] for the geometrically linear case.
In [13] efficient algorithm for solving the elastoplastic problems are dis-
cussed. There the idea of time sequences and nested grids raises, which
will be implemented here.
In this thesis, we will mainly concentrate on another solution algorithm
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which can be found in [7]. This algorithm works with a Newton-like
solver, which will also be used in this thesis.
In Section 5 we will compare our numerical results with the ones in [7]
In this work an arbitrary time dependent load is considered. In each time
step a new mesh can be generated in an adaptive way starting with a fixed
coarse mesh which is the same for each time step. The displacement field
is calculated on different fineness levels. A further option is to do some
uniform refinements before starting adaptive refinements. This structure
leads to different meshes for every time step (incremental step) in which
the solution is calculated.
In a typical situation the meshes are different at two different time steps
i.e., there exist unique vertices in each of the meshes.

Figure 1.1: Two different adaptive meshes at the same refinement level
and at different time steps resulting in different deformations of the plate

with the hole.
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Since the nested iteration technique is used, not only the solution on
the finest mesh per time step is calculated, but rather a series of solutions
on each refinement level in every time step. For such nested meshes in
every time step the same coarse mesh is used.

The main advantage of building up such structures is that now an ex-
trapolation of the starting value for the Newton-like solver can be used.
It is generally known that a Newton-like method converges only locally
quadratically or superlinear. However the quality of a Newton-like method
is intrinsically depending on the choice of a proper initial value. As it is
shown in [14] for nested grids, under some stronger assumptions (regular-
ized elastoplastic model and H2-regularity) the iteration number do not
depend neither on the number of refinement levels nor on the time step
width. For that reason the solution can be calculated very fast in higher
levels and every time step. We only have to calculate once all levels in the
first time step and calculate the solution on every coarse mesh.

These thesis is organized as follows:

• The following section gives a short introduction to the notations, the
used function spaces and the basic instruments of convex analysis
which will be used in the following chapters.

• Chapter 2 provides the mathematical modelling, first the elastic
model and then the elastoplastic model with hardening. In these
thesis isotropic hardening is assumed.
Also the time discretization is done to get the minimization problem
which can be solved by Newton-like methods.

• Space discretization as well as the implementation in Matlab is de-
scribed and the extrapolation of the solution is done.

• The numerical results for some test problems (plate with a hole, wrench
and a L-shape domain) are presented and discussed.

• The last chapter gives a conclusion summing up all important re-
sults and provides an outlook for a further improvement of dynamic
nested FEM discussed in this thesis.
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1.2 Preliminaries

1.2.1 Notations

There are two different types of coordinates to describe continuum me-
chanics problems:

• Lagrange coordinates

• Eulerian coordinates

Lagrange coordinates consider a reference configuration and calculate
everything as an image of the reference configuration.

Figure 1.2: Lagrange coordinates

The Eulerian coordinates fix a space point and look which particle stays
there at time t.

Figure 1.3: Eulerian coordinates
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For elastoplastic problems the Lagrange coordinates are preferred. To dis-
tinguish between the two systems of notation all Lagrange variables are
denoted by capital letters, while Eulerian variables are denoted by small
letters.

The acceleration in Eulerian coordinates a(x, t) describes the time
change of velocity of a fixed particle which is at time t in the space point
x. For the calculation of the acceleration, the derivative of the velocity
v(Φ(X, t), t) with respect to t has to be build, where v = ∂u

∂t
(x, t).

Definition 1.1 (Material derivative)
The differential operator D

Dt
is defined as follows

D

Dt
=

∂

∂t
+ v · ∂

∂x
(1.1)

and is called total or material derivative.

The acceleration a(x, t), as it is described above, is defined by the material
derivative Dv

Dt
.

Theorem 1.1 (Reynolds‘ transport theorem)
Let t ∈ (T1, T2), let ω ⊂ Rd be a bounded domain. ωt is the deformed body at time
t with ω̄0 ⊂ Rd. Let v and F be continously differentable. Then

∫
ωt

F (x, t)/dx
is well-defined and continuously differentiable in an interval (t1, t2) ⊂ (T1, T2)
with t ∈ (t1, t2). By (1.1) it follows

d

dt

∫
ωt

F (x, t) dx =

∫
ωt

[
∂F

∂t
(x, t) + div(Fv)(x, t)] dx

=

∫
ωt

[
DF

Dt
(x, t) + F div(v)(x, t)] dx.

Proof: See [16] or many other books about continuum mechanics
By using the transport theorem, integration and derivative can be
exchanged.

The following measurable spaces are assumed. If a Banach space B can
be defined on the corresponding σ-algebra A (with measure µ), then we
can introduce an Lp-space.
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Definition 1.2 Let Ω ⊂ Rd be a bounded Lipschitz domain, then a space is called
Lp-space by definition if

Lp(Ω) := {v : Ω → Rd |
∫

Ω

‖ v(x) ‖p dµ(x) < ∞}.

The α-th partial derivative Dαv is defined by

Dαv :=
∂|α|v

∂xα

where α = (α1, α2, ....αn) denotes a multiindex and | α |=
∑d

i=1 αi

Definition 1.3 For any nonnegative integer m and p ≥ 1 or p = ∞ the Sobolev
space Wm,p(Ω) is defined by

Wm,p(Ω) := {v ∈ Lp(Ω) | Dαv ∈ Lp(Ω) for any α ∈ Zd
+ where | α |≤ m}

with the norm

‖ v ‖m,p,Ω := (
∑
|α|≤m

‖ Dαv ‖p
Lp(Ω))

1
p and

‖ v ‖m,∞,Ω := max
|α|≤m

‖ Dαv ‖L∞(Ω)

for p ∈ [1,∞) and p = ∞, respectively.
From the defintion we can see easily that Wm,0(Ω) = Lp(Ω)

Remark 1.1 (Hilbert Spaces)
For p=2, the Sobolev space Wm,p(Ω) is a Hilbert space, where the scalar(inner)
product is given by

〈v, w〉m.Ω =

∫
Ω

∑
α≤m

∂|α|v

∂xα

∂|α|w

∂xα
dx.

The Hilbert space Wm,2(Ω) is sometimes denoted by Hm(Ω)

The following notations are often needed in the next chapters:

σ̇ =
∂σ

∂t
,

A : B =
n∑

i,j=1

aijbij ,

x+ =

{
x if x ≥ 0
0 if x < 0

,

δij =

{
1 if i=j
0 else .
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Definition 1.4 (Frobenius Norm)
For a matrix A = {aij}d

i,j=1 the Frobenius Norm is defined by

‖ A ‖F :=

√√√√ d∑
i,j=1

a2
i,j =

√
A : A

The deviator is defined as

σD = σ − 1

d
tr(σ)I

which expresses the deflection of the stress operator to a situation where
only pure pressure force is applied.

1.2.2 Convex Analysis

This will only be a short and not complete introduction in convex analysis.
For further details the reader is refered to [6].
First let us define the term ”convex” to get a short view, which spaces and
functionals are considered in that section.

Definition 1.5 (Convexity)
Let A be a subset of the vector space V . A is said to be convex if

∀u, v ∈ A [u, v] := {λu + (1− λ)v | 0 ≤ λ ≤ 1} ∈ V

Definition 1.6 (Convex Functions)
Let A be a convex subset of the vector space V , and F a mapping of A into R̄. F
is said be a convex function, if

∀λ ∈ [0, 1]∀u, v ∈ A F (λu + (1− λ)v) ≤ λF (u) + (1− λ)F (v).

Afterwards the space Γ(V ) is often needed. Let’s give a definition of
this space

Definition 1.7 Let V vector space and all affine continuous functions (see [6])
be of the type v > L(v)+α, where L is a continuous linear functional over V and
α ∈ R. Then the set of functions F : V → R̄ which are the pointwise supremum
of the family of continuous affine functions is denoted by Γ(V ).
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Lemma 1.1 The following properties of Γ(V ) are equivalent

• F ∈ Γ(V )

• F is a convex l.s.c. function (see [6]) from V into R̄, and if F takes the value
−∞ then F is identically equal to −∞

Lemma 1.2 (Γ-regularization)
Let F and G be two functions mapping V into R̄. The following statements are
equivalent to each other:

• G is the pointwise supremum of the continuous affine functions everywhere
less than F

• G is the largest minorant of F in Γ(V ). G is then called the Γ-regularization
of F .

Proof: See [6]
The following definitions are necessary to describe the two vector spaces
V and V ∗ and the duality between them, which occurs by the application
of the scalar product 〈., .〉

Definition 1.8 (Polar)
If F : V → R̄ and

f ∗(u∗) = sup
u∈V

{〈u, u∗〉 − F (u)}

defines a function from V ∗ into R̄, denoted by F ∗ and is called the polar (or con-
jugated) function of F .

Lemma 1.3 (Bipolar)
If F : V → R̄. Then its bipolar F ∗∗ is nothing else that its Γ-regularization. In
particular, if F ∈ Γ(V ), F ∗∗ = F .

Proof: See [6]

Theorem 1.2 (Subdifferentiability)
Let F be a function mapping V into R̄ and F ∗ its polar. Then u∗ ∈ ∂F (u) if and
only if:

F (u) + F ∗(u∗) = 〈u, u∗〉 ,
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or equivalently written

∂F (u) = {u∗ ∈ V ∗ | F ∗(u∗)− 〈u, u∗〉 ≤ −F (u)}. (1.2)

Proof: See [6]
The subdifferentialbility of functionals will be used to generate a dual for-
mulation of the problem. The set ∂F (u) is convex and closed with respect
to σ(V, V ∗) in V ∗, where σ denotes the weak topology between V and V ∗

associated by the duality.
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Chapter 2

Mathematic Models

2.1 Linear Elasticity Model

Let us start with an elastic model for a deformable body, this means that
no irreversible deformations occur. The main goal is to calculate the dis-
placement field u in the domain Ω. Φ(x, t) is the function which maps
the particle x to the actual position at time t, in the notation of Lagrange
coordinates notation. Mostly the displacement u

u(x, t) = Φ(x, t)− x

is the point of interest and not the new position. The deformation pro-
cess cannot be completly described by the displacement field. Rigid body
motions do not cause deformations. They only rotate and/or translate the
body. So it is necessary to distinguish between them, by a function for
the strain and one for the rigid body motion. The elastic strain tensor is
defined by

ε(u) =
1

2
(C(x)− I)

=
1

2
(((I +∇u(x, t)T )(I +∇u(x, t))− I)

=
1

2
(∇u(x, t)T +∇u(x, t) +∇u(x, t)T∇u(x, t))

where C(x, t) = ∇Φ(x, t)T∇Φ(x, t) is the right Cauchy tensor.
In the most practical applications the gradient of the deformations ‖ ∇u ‖
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are small. So the last term can be neglected and we end up with the lin-
earized elastic strain tensor:

ε(u) =
1

2
(∇u(x, t)T +∇u(x, t)).

Next we take a look at the physical equations, which are the well-
known background of the model.

2.1.1 Balance Equations

Equation of continuity

This balance equation explains that the mass inside a closed domain has
to be the same at every time. This can be formulated mathematically as
follows:
If ωt is the domain at time t, ρ is the density of the material, x the position
in the domain and t the time variable then the following equation holds:

∀ωt ⊂ Ωt :
d

dt

∫
ωt

ρ(x, t) dx = 0

It can be reformulated if ρ is smooth enough on the domain. While in this
thesis only domains consisting of one material are considered, it is easy to
show enough smoothness of ρ.
By using Theorem 1.1, the balance equation can be written as

dρ

dt
(x, t) + ρ(x, t)div v(x, t) = 0

Balance of momentum

Physics tells us that the change of the momentum has to be equal to the
sum of the forces, in our case the sum of surface tractions and volume
forces. Let us denote F (ωt) as the sum of the forces FS(ωt) and FV (ωt) and
remember that

∫
ωt

ρ(x, t)v(x, t) is the momentum where v(x, t) = d
dt

u(x, t)
is the velocity field. The forces are given by

FS(ωt) =

∫
∂ωt

~t(x, t, n(x, t)) ds

FV (ωt) =

∫
ωt

ρ(x, t)f(x, t) dx
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where n is the normal vector. Hence ~t(x, t, n(x, t)) is the tension in nor-
mal direction in the space point x and at time t. The value at the Dirichlet
boundary is given by ~t(x, t, n(x, t)) = g(x). The specific force density in
the equation above is denoted by f(x, t).

Balance of Momentum

d

dt

∫
ωt

ρ(x, t)v(x, t) dx =∫
∂ωt

~t(x, t, n(x, t)) ds +

∫
ωt

ρ(x, t)f(x, t) dx = F (ωt)

Also the Balance of Angular Momentum is valid

d

dt

∫
ωt

x × ρ(x, t)v(x, t) dx =∫
∂ωt

x× ~t(x, t, n(x, t)) ds +

∫
ωt

x× ρ(x, t)f(x, t) dx = F (ωt)

Definition 2.1 (Euler, Cauchy)
If the tension field vector~t(x, t, n(x, t)) exists, such that the balance of momentum
and the balance of angular momentum is fulfilled and ~t(x, t, n(x, t)) = g(x) on
the Dirichlet boundary. If t fulfil that also on every subset A of ωt, then ~t(x, t, n)
is called Cauchy tension vector.

Theorem 2.1 If ~t is a Cauchy tension vector and ~t ∈ C1 for fixed x and every n
and ~t ∈ C for fixed n and every x, then

~t(x, t, n(x, t) = σ(x, t) · n(x, t)

where σ(x, t) is the ”Cauchy tension vector” and is additionally symmetric.

Proof: See [2]

With this knowledge the theorem of Gauss can be applied to the surface
term. Using the transport theorem once more and the balance of mass for
the left hand side we can rewrite the balance of momentum as follows

ρ(x, t)
D

Dt
v(x, t)︸ ︷︷ ︸

=a(x,t)

= ρ(x, t)f(x, t) + div σ(x, t) ,
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where a(x, t) denotes the acceleration of the particels, which is in the con-
sidered applications very small, so that it can be neglected. We end up
with

FV (x, t) = −div σ(x, t) .

That state is called ”quasistatic”. By the balance of angular momentum
it can be shown that σ is symmetric.

2.1.2 Material Laws

The system we have now is still underdetermined. The missing equations
are given by material laws. Because we are in linear elasticity, we first use
a linear interrelation between stress and strain, called Hook’s Law:

σ = Cε ,

where ε is the strain, depending on u via the geometrical relations. C is
the material tensor of the elastic coefficients Ci,j,k,l. By the symmetry of σ
and the use of istotrop materials and material objectivity law the different
entries can be reduced from 81 entries to 2. These two constants are called
Lamé constants λ and µ of a material.
The representation of σ follows from Hook’s law

σ = Cε

= Cijklε ,

and, taking only isotropic and homogeneous materials, it leads to the re-
lations

σ = (λ(δijδkl + µ(δikδjl + δilδjk))ε(u) ,

σ = λtr(ε(u))I + 2µε(u) , (2.1)

where δij is the Kronecker Delta. Materials with this properties are called
St.Vernant-Kirchhoff materials.

In practise they are often expressed in terms of the elasticity module
(”Young Modulus”) and the lateral contraction (”Poisson ratio”) as they
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are frequently used in mechanics:

E :=
µ(3λ + 2µ)

λ + µ
,

ν :=
λ

2(λ + µ)
.

Imagine a rod, which is pulled in one direction: E is the ratio of the stress
in that direction to the relative change of length. ν is the negative ratio of
the relative change of the diameter of the rope to the relative change of the
length of the rope.
By this formulas it is obvious that λ, µ > 0 respectively E > 0 and 0 < ν <
1
2

have to be fulfilled.

2.1.3 Linear Quasistatic Elastisity Model

Summarizing the previous results leads to the model for linear elastistic-
ity:

Balance of Momentum −div σ = FV in Ω× [0, T ]

Balance of Angular Momentum σ = σT

Hook’s Law σ = Cε

Geometrical Relations (Linerized Strain) ε(u) =
1

2
(∇u + (∇u)T )

Boundary Conditions u = uD on ΓD and
σn = g on ΓN

2.2 Elastoplasticity Model

Now irreversible deformations are introduced, which are called plastic
deformation. This plastic deformation does not disappear if the load is
removed, because the load was high enough, that in some parts of the ma-
terial the chemical lattice structure was destroyed and shifted. The new
chemical lattice can only be shifted back under the complementary load.
Thus, some modifications of our model have to be done. The material law
is changing. Let’s plot the stress-strain relation of an elastoplastic material.
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Figure 2.1: Abstract stress-strain relations: elastic behaviour (left), perfect
plastic behaviour (middle) and plastic behaviour with hardening (right)

On the left side, we can see the behaviour of elastic materials, in the
middle, perfect plastic materials, and, on the right side, a typical section
of the strain stress relation of a material like steel. Plastic deformation can
occur at some place where some stress reaches the critical value, the yield
stress σY0 . From that point on the stress-strain relation is not linear any
more and the slope of the curve decreases. Practically this means that the
deformation increases disproportionally fast. In the elastic case loading
and unloading does not influence the stress-strain relation. In the case of
plastic materials we have to deal with the hysteresis, this means that by
unloading the elastic behaviour appears earlier and in the next loading
step more force is needed to get the same effect as in the loading step be-
fore. That effect, the need of more force in the next loading step, is called
hardening of the material. Considering the case of perfect plasticity no
hardening arsises, because the slope of the curve in the plastic behaviour
zone is 0. The hardening parameter is proportional to the slope of the
stress-strain curve in the plastic part.
This thesis only takes isotropic hardening in account, this means harden-
ing only with a scalar hardening parameter and not a tensor.
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Figure 2.2: Iterated loading and undloading

As we can see in the Figure 2.2 the strain can be splitted into two parts,
elastic and plastic. As far as we do not pay attention on the area where
elastic and plastic behaviour overlaps, the splitting is the sum of two linear
function.

ε = e + p ,

where e is the elastic part of the strain and p is the plastic one. So, Hook’s
Law can be formulated only for the elastic part, in the following way

σ = C(ε− p).

The plastic flow p is mostly defined incremental where

ṗ = 0 if


σ ∈ (−σY , σY ) ,
σ = σY and σ̇ ≤ 0 ,
σ = −σY and σ̇ ≥ 0 ,
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and

ṗ =
σ̇

H
if

{
σ = σY and σ̇ > 0 ,
σ = −σY and σ̇ < 0 ,

where H is the ”modulus of hardening”.

2.2.1 Maximum plastic work principle

In order to decide if the stress-strain relation is elastic or plastic we use
a yield function φ̄. Many different definitions have been proposed, but
the most common method is to use the von Mises yield function. The
hardening parameter is defined as α so that

φ̄(σ, α) =‖ dev σ ‖F −σY (1 + αH) if α ≥ 0.

The set of admissible stresses K can be defined by

K = {σ | φ̄(σ, α) ≤ 0} ,

or by the dissipation functional ϕ

ϕ(σ, α) =

{
0 if φ̄(σ, α) ≤ 0 ,
∞ if φ̄(σ, α) > 0 .

Proposition 2.1 Under the assumption that no hardening occurs:
Let σ be a given stress with φ̄(σ, 0) = 0, ṗ be the plastic flow and τ be a admissible
stress. Then the prinicple of maximum work holds and

σ : ṗ ≥ τ : ṗ .

Introducing a hardening parameter and and the law changes to the Prantl-
Reuss normality law. Let(τ, β) be all admissible pairs of stress and hard-
ening parameters, ϕ is the so-called dissipation functional, defined as

ϕ(p, α) =

{
σY ‖ p ‖F tr(p) = 0 and (α + HσY ) ≤ 0 .
∞ otherwise.

Then the inequality

ṗ(τ − σ)− α̇(β − α) ≤ ϕ(τ, β)− ϕ(σ, α)

holds, see also [11].
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2.2.2 Elastoplastic Model

Until now we have not mentioned the time dependence of the problem,
involved by setting initial conditions the model is complete.

u(x, 0) = u0(x) ,
σ(x, 0) = σ0(x) .

Now we put all the equations together to the elastoplastic model:
Let us now summarize the relations which completely describe the elasto-
plastic behaviour:

Balance of Momentum: −div σ = FV in Ω× [0, T ] (equilibrium of forces)
Balance of

of Angular Momentum: σ = σT (equilibrium of momentum)
Hook’s Law: σ = C(ε− p)

Linerized

Strain-Displacement relations: ε(u) =
1

2
(∇u + (∇u)T ) (geometrical relations)

Boundary Conditions: u = uD on ΓD and
σn = g on ΓN

Inititial Conditions: p(x, 0) = p0(x)

α(x, 0) = α0(x)

Admissibility: ϕ(σ, α) < ∞
Plastic Flow: ṗ : (τ − σ)− α̇ : (β − α) ≤ ϕ(τ, β)− ϕ(σ, α)

∀(τ, β) admissible

For the variational formulation we need the dual formulation of the
plastic flow. The reformulations are made with the theorems of the convex
analysis results of the first chapter

ṗ : (τ − σ)− α̇ : (β − α) ≤ ϕ(τ, β)− ϕ(σ, α) ,
〈(ṗ,−α̇), (τ, β)− (σ, α)〉 ≤ ϕ(τ, β)− ϕ(σ, α) ,

∀(τ, β) admissible. By using Equation 1.2 it can be rewritten with the sub-
differential

(ṗ,−α̇) ∈ ∂ϕ(σ, α)

(σ, α) ∈ ∂ϕ∗(ṗ,−α̇)

σ : (q − ṗ) + α : (γ + α̇) ≤ ϕ∗(q, γ)− ϕ∗(ṗ,−α̇) ∀(q, γ)
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2.3 Plain Stress Model

Our problem settings in the numerical experiments always take in account
geometries, which have in one dimension a very small expansion in com-
parision to the other two ones. This geometric property leads to numerical
problems by using 3D finite elements. The plain stress model provides a
method to discretize the geometry only in 2D, which reduces the com-
puting time dramatically and avoids numerical problems caused by the
volume elements. We have to take into account that all force only can be
applied in the plane of the large dimensions (like f in Figure 2.3). Hence,
in that approach all stresses that appear between the large dimensions and
the small one are set to 0, because they are much smaller in relation to the
others.

Figure 2.3: Typical geometry for a plain stress model

The simplification will only be shown for the elastic case, the priciple for
the elastoplastic case is basically the same.
Let’s consider σ and ε in its vector representation. Remember that the two
tensors are symmetric. By the use of St.Vernant-Kirchhoff materials and
the pair {E, ν} for Hook’s Law, σ = Cε = λtr(ε(u))I + 2µε transforms to:

0BBBBB@
σ11

σ22

σ33

σ12

σ13

σ23

1CCCCCA =
E

(1 + ν)(1− 2ν)

0BBBBB@
1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν

1CCCCCA

0BBBBB@
ε11
ε22
ε33
ε12
ε13
ε23

1CCCCCA
Since we mentioned before the plain stress model only considers stresses

in those two directions where the dimensions are not too small. Therefore

σ13 = σ23 = σ33 = 0

σ31 = σ32 = 0,
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the system reduces to σ11

σ22

σ12

 =
E

(1− ν2)

 1 ν 0
ν 0
0 0 1− ν

  ε11

ε22

ε12


and the relation ε33 = − ν

1−ν
(ε11 + ε22) results from the material law (2.1).

For the numerical experiments the plain stress model or alternative the
plain strain model can be implemented.
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Chapter 3

Variational Formulation and Time
Discretization

The variational or weak formulation is the starting point for the finite ele-
ment discretization. The describing equations are

−div σ = FV in Ω× [0, T ] (equilibrium equation),
σ = C(ε− p) (Hook’s law),

ε =
1

2
(∇u + (∇u)T ) (geometric relation).

The first step is always the multiplication with the test function. The space
of the test function V0 is defined as

V0 = [H1
0 (Ω)]d = {v = (vi) | vi ∈ H1

0 (Ω) ∀i ∈ {1, 2, ...d}}

where

H1
0 (Ω) = {w ∈ H1(Ω) | w = 0 on ΓD}

and d is the dimension of the domain.
To derive the variational form we take the equilibrium equation multiply
by a test function and intergrate over the domain Ω

−
∫

Ω

div σ.v dx =

∫
Ω

FV .v dx

−
∫

Ω

(div (σ.v)− σ : ∇v) dx =

∫
Ω

FV .v dx
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Using the symmetry of σ we arrive at the equation∫
Ω

σ : ε(v) dx−
∫

Ω

div (σv) dx =

∫
Ω

FV .v dx,

and by the Gauss theorem it can be rewritten as∫
Ω

σ : ε(v) dx−
∫

∂Ω

(σv).n ds =

∫
Ω

FV .v dx,∫
Ω

σ : ε(v) dx =

∫
Ω

FV .v dx +

∫
∂Ω

(σn) · v ds,∫
Ω

C(ε(u)− p) : ε(v) dx =

∫
Ω

FV .v dx +

∫
ΓN

g.v ds.

3.1 Dual Formulation

While we are dealing with a plastic problem our variational form is a vari-
ational inequality with the plastic flow condition as part of the system.
By using the dual formulation of the inequality we only have to integrate
over the domain Ω, because the test functions are all admissible pairs of
stress and hardening parameter (q, γ) ∈ W . The test space W is defined as
follows:

W = [L2(Ω)]d×d
symm × L2(Ω)

The dual formulation as calculated in Section 2.2.2 can be rewritten in form
of a variational inequality:∫

Ω

C(ε(u)− p) : (q − ṗ) + α : (γ + α̇) dx ≤
∫

Ω

ϕ∗(q, γ)− ϕ∗(ṗ,−α̇) dx

that hold for all test functions (q, v) ∈ W .

3.2 Variational Form of the Problem

Find (u, p, α) ∈ VD ×W such that∫
Ω

C(ε(u)− p) : ε(v) dx =

∫
Ω

FV (t).v dx +

∫
ΓN

g(t).v ds ∀v ∈ V0
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and ∫
Ω

C(ε(u)− p) : (q − ṗ) + α : (γ + α̇) dx ≤∫
Ω

ϕ∗(q, γ)− ϕ∗(ṗ,−α̇) dx ∀(q, γ) ∈ W

is fulfilled.

3.3 Time Discretization

We discretize in time by the backward Euler scheme, i.e., we replace the
derivative of p with respect to time by the backward difference quotient
with time step size τ . The same scheme is applied to α. This gives the
finite difference approxing terms:

ṗ ≈ pl+1 − pl

τ

and

α̇ ≈ αl+1 − αl

τ
.

The problem can be reformulated by regarding this time discretization
scheme as: Find (ul+1, pl+1, αl+1) ∈ VD ×W such that the identity

∫
Ω

C(ε(ul+1)− pl+1) : ε(v) dx =

∫
Ω

FV · ~v dx +

∫
ΓN

g · ~v ds (3.1)

is fulfilled for all v ∈ V0 and the inequality∫
Ω

C(ε(ul+1)− pl+1) : (q − pl+1 − pl

τ
) + αl+1 : (γ +

αl+1 − αl

τ
) dx ≤∫

Ω

ϕ∗(q, γ)− ϕ∗(
pl+1 − pl

τ
,−αl+1 − αl

τ
) dx

holds for all ∀(q, γ) ∈ W .
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3.4 Minimization Form

Our first goal is to rewrite the model by its energy minimization problem.
As it is shown in [1], the problem should be reformulated first in terms of
the bilinear form a, the linear term L and some functional j.
The first equation is clear, because except v no other test function influ-
ences the equation. So let’s have a look at the inequality. We can rewrite it
so that∫

Ω

C(ε(ul+1)− pl+1) : (τq − pl+1 + pl) + αl+1 : (γτ + αl+1 − αl) dx

≤ τ

∫
Ω

ϕ∗(q, γ)− ϕ∗(
pl+1 − pl

τ
,−αl+1 − αl

τ
) dx (3.2)

holds for all (q, γ) ∈ W .
Let us rewrite the Equations 3.1 and 3.2 in an abstract way.

a1(x, x− y) = L(x− y) ∀y ∈ Y (3.3)
a2(x, x− y) ≤ j(x)− j(y) ∀y ∈ Y (3.4)

On that system we can easily apply the machinery of proofing existence
and uniqueness. The crucial point is to find the right setting of the test
functions.
Since looking for (ul+1, pl+1, αl+1) ∈ VD × W the state variable x which
should be calculated as x = (x1, x2, x3) with the setting x1 = ul+1, x2 = pl+1

and x3 = αl+1. The test function y = (y1, y2, y3) consists of the components

y1 = ul+1 − v

y2 = τq + pl

y3 = −γτ + αl

The required functionals a1(x, y), a2(x, y), L(x), j(x) are defined as

a1(x, y) =

∫
Ω

C(ε(x1)− x2) : ε(y1) dx

a2(x, y) =

∫
Ω

−C(ε(x1)− x2) : y2 + x3y3 dx

L(x) =

∫
Ω

FV · x1 dx +

∫
ΓN

g · x1 ds

j(x) = τ

∫
Ω

ϕ∗(
x2 − pl

τ
,
−x3 + αl

τ
) dx
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Together with the definition of a(x, y) = a1(x, y) + a2(x, y) the summation
of 3.3 and 3.4 leads to the inequality

a(x, x− y) ≤ L(x− y) + j(x)− j(y) ∀y ∈ Y . (3.5)

Notice, that if x solves 3.5, then x solves 3.3 and 3.4 also.
As it can be shown, the solution of the inequality 3.5 is equivalent to the
minimization of an energy functional, i.e.

E(x) = min
z∈VD×W

E(z)

where E is defined as

E(z) =
1

2
a(z, z) + j(z)− L(z)

or more explicity,

E(x) =
1

2
[

∫
Ω

C(ε(x1)− x2) : ε(x1) dx

+

∫
Ω

−C(ε(x1)− x2) : x2 + x2
3 dx]

+ τ

∫
Ω

ϕ∗(
x2 − pl

τ
,
−x3 + αl

τ
) dx

−
∫

Ω

FV · x1 dx−
∫

∂Ω

g · x1 ds

Thus, the problem, in term of minimization is the following:

Find (ul+1, pl+1, αl+1) ∈ VD ×W such that

f(ul+1, pl+1, αl+1) = inf
(u,p,α)∈VD×W

f(u, p, α) ,

where

f(u, p, α) :=
1

2

∫
Ω

C(ε(u)− p) : (ε(u)− p) + α dx

+ τ

∫
Ω

ϕ∗(
p− pl

τ
,−α− αl

τ
) dx

−
∫

Ω

FV · u dx−
∫

∂Ω

g · u ds .
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is the minimization functional.

As it was mentioned above there are different hardening laws. In this
thesis isotropic hardening is considered, where the functional ϕ∗ reads

ϕ∗(p, α) =

{
σY ‖ p ‖F tr(p) = 0 and (α + HσY ) ≤ 0
∞ otherwise

Also the hardening parameter of the next time step αl+1 can be expressed
in term of the parameter in the previous time step and the slope of the
stress-strain curve. This relation can be formulated mathematical as

αl+1 = αl + σY H ‖ p ‖F

p is defined incrementally so replace p by pl+1−pl

τ
. Now ending up with the

implemented problem

Find (ul+1, pl+1) ∈ VD × [L2(Ω)]3×3
symm such that

f̂(ul+1, pl+1) = inf
(u,p)∈VD×W

f̂(u, p)

where

f̂(u, p) =
1

2

∫
Ω

C(ε(u)− p) : (ε(u)− p) (3.6)

+ (αl + σY H ‖ p− pl ‖F )2dx (3.7)

+

∫
Ω

σY ‖ p− pl ‖F dx (3.8)

−
∫

Ω

FV · u dx−
∫

∂Ω

g · u ds (3.9)

is the minimization functional.

3.5 Newton Method

As we know from optimization theory, the first derivative of an minimiza-
tion problem is 0 if the minimum of the function is reached.
We know that p is a funtional

pl+1 =
max(‖ devC(ε(ul+1)− pl) ‖F −σY (1 + αlH), 0) dev C(ε(ul+1)− pl)

(2µ + σ2
Y H2) ‖ devC(ε(ul+1)− pl) ‖F

+ pl ,
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so we can understand f as a functional only depending on u as follows:

f(ul+1) =
1

2

∫
Ω

C(ε(ul+1)− pl+1(ε(ul+1))) : (ε(ul+1)− pl+1(ε(ul+1)))

+ (αl + τσY H ‖ pl+1(ε(ul+1))− pl ‖F )2dx

+

∫
Ω

σY ‖ pl+1(ε(ul+1))− pl ‖F dx

−
∫

Ω

FV · ul+1 dx−
∫

ΓN

g · ul+1 ds .

The first (Gâuteaux) derivative of this functional f exists and is given by

Df(ul+1, v) =

∫
Ω

C(ε(ul+1)− pl+1(ε(ul+1))) : ε(v) dx (3.10)

−
∫

Ω

FV · ul+1 dx−
∫

ΓN

g · ul+1 ds . (3.11)

(3.12)

In 1965 J.J.Moreau proved, that f is Frchet differentable and thus Equation
(3.10) is the Fréchet derivative of f .
If also the second derivative of f (in some sense) exists, we can use New-
ton’s method to solve the problem. The general purpose of a Newton
method is to find the root of the functional by the iterating scheme

xn+1 = xn − F ′(xn)−1F (xn),

where xn is u and the function F is the Gâuteaux derivative of the energy
functional Df((ul+1, v) and F ′(xn) is the second derivative.
Thus, the minimization problem can be solved by a Newton-like method.
The second derivative does not exist classically, but can be replaced by a
slanting function the Fréchet derivative.

Definition 3.1 (slant differentiability pointwise)
Let U ⊂ RN be an open subset and x ∈ U . A function F : U → Y is said to be
slantly differentiable at x if there exist

1. mappings F ◦ : U → L(X, Y ) and r : X → Y with limh→0
‖r(h)‖
‖h‖ = 0 such,

that
F (x + h) = F (x) + F ◦(x + h) h + r(h)

holds for all h ∈ X satisfying (x + h) ∈ U , and
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2. constants δ > 0 and C > 0 such that for all h ∈ X with ‖ h ‖< δ there
holds

‖ F ◦(x + h) ‖:= sup
y∈X\{0}

‖ F ◦(x + h) y ‖
‖ y ‖

≤ C .

We say, that F ◦(x) is a slanting function for F at x.

D2f is a slanty derivative F ◦ and so we can modify the newton method to

xn+1 = xn − F ◦(xn)−1F (xn). (3.13)

The next theorem will guarantee us the convergence of the iteration scheme
(3.13).

Theorem 3.1 Let U ⊂ X be an open subset, and F : U → Y be a slantly
differentiable function with a slanting function F ◦ : U → Ł(X, Y ). We suppose,
that x∗ ∈ U is a solution to the nonlinear problem F (x) = 0. If F ◦(x) is non-
singular for all x ∈ U and ‖ F ◦(x)−1 : x ∈ U ‖ is bounded, then the Newton-like
iteration

xj+1 = xj − F ◦(xj)−1F (xj) (3.14)

converges super-linearly to x∗, provided that ‖ x0 − x∗ ‖ is sufficiently small.

Proof: See [4].

For more details, theory and implementation see [9].
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Chapter 4

Discretization and
Implementation

In Chapter 3 the time discretization was already done. For computing a
solution also the space discretization of the elastioplastic problem has to
be done.
In order to do the space discretization we have to decompose the given
domain Ω into a mesh of finite elements δr.
The set of triangles is given by =h = {δr : r ∈ Rh}, where h is the dis-
cretization parameter, which defines the fineness of the mesh. Rh is the
set of global element numbers {1, ..., Rh}, where Rh is the total number of
elements. The global node numbering is given by ω̄h = {1, ..., N̄h} where
N̄h = Nh + ∂Nh is the total number of the nodes, inner nodes and Dirichet
boundary nodes.

4.1 Mapping

The local node numbering is important for the mapping principle of the
FEM: Give a local definition of the basis functions via the shape functions
(= basis functions |δr), which are defined by mapping the shape functions
of the master element to the element δr ∈ =h.
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Figure 4.1: Mapping of each triangle with the basis function (see the
bottom picture) on the reference triangle.
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The affine linear mapping reads

x = xδr(ζ) = Jδr · ζ + x(i),

where Jδr = ∂x
∂ζ

denotes the Jacobian of the mapping x = xδr(ζ).
There we get

x =

(
x1

x2

)
=

(
x1j − x1i x1k − x1i

x2j − x2i x2k − x2i

)
·
(

ζ1

ζ2

)
+

(
x1i

x2i

)
.

Now the basis functions are defined

p(i)(x) =

{
p(r,α)(x) x ∈ δ̄r, r ∈ Bi,
0 otherwise,

with Bi = {r ∈ Rh : x(i) ∈ δ̄r} and p(r,α)(x) = p(α)(ζδr(x)) with x ∈ δ̄r,where
p(α)(ζδr(x)) is the shape function of the master element (see Figure 4.1). So
the nodal basis functions fulfil the relation

p(i)(x(j)) = δij ∀i, j ∈ ω̄h.

This choice of p is called Courant basis functions.

4.2 Extrapolation of the starting value

It is well-known that the choice of a proper starting value for Newton-
like methods is very important for the convergence. To save computing
time and guarantee fast convergence we can use the solutions from the
former time step and the next coarser mesh. After extrapolation we reach
a good starting value for the Newton method, which minimizes the energy
functional as it was described above.
The extrapolation formula reads

ul+1
t+1 = ul+1

t + I l+1
l (ul

t+1 − ul
t),

where l is the level of refinements and t is the time step. I l+1
l is the FEM-

Interpolation operator, which maps the difference of the solution on the
next coarser grid level.
In Figure 4.2 the system of calculation is shown and it is obvious to see
that only the solution at the first time step and the solution on the coarsest
mesh have to be evaluated with the classical approach as it is done in [9].
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Figure 4.2: Using the solution in the three points we get a good
approximation for a good starting value of the solution u. It is obvious
that this scheme only works if the level l ≥ 1 and the time step n > 0
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Algorithm 4.1 Extrapolation

if (t > t0 and Newton method converges in the last time step)
if (at least one refinement is done)

u=Extrapolation(u(refinement, t), u(refinement, t− 1))
else

ut = ut−1

end
else

if (at least one refinement is done)
u = ucoarser grid if node exists in coarser grid and 0 else

end
end

The basic purpose of the next algorithm is to calculate the extrapolation
formula of the solution as it is given in Algorithm 4.1. The finite element
discretization consists of triangles with Courant basis functions. We also
assume that new nodes are placed in the middle of an edge, that is why
the extrapolation of the solution can be done in the following way:

Figure 4.3: Refinement structures caused by bisecting the edges

The nodes of the coarser grid are denoted by xi and the nodes of the actual
grid by yk. yk is the new node between xi and xj . An interpolation of the
displacement u is then done by

uyk
=

1

2
(uxi

+ uxj
).
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Algorithm 4.2 Extrapolation of the solution

%extrapolate the solution from the next coarser grid
u(yk) = uxk

if the node exists in coarser grid and 1
2
(uxi

+ uxj
) else

⇒ u(l, t)
% extrapolate the solution from the previous time step

search if node exists in the former grid
if(not found) then do recursive

search for the corresponding basis nodes of the new node
check if basis nodes exist

end
reconstruct the extrapolated u ⇒ u(l, t− 1)
the solution to the coarser grid in the previous time step is extrapolated as

in the acual time step ⇒ u(l − 1, t− 1)
% extrapolation formula

u(l, t) = u(l, t− 1) + (u(l − 1, t)− u(l − 1, t− 1))

The algorithm is fast enough as the searching structure for the new nodes
is quite good. In our case the time step is small enough, so there are only
few new nodes which do not exists in the previous time step.

4.3 Extrapolating the Plastic Strain

By minimizing with respect to pl+1 and fixed ul+1 our work leads to a re-
cursive definition of p as it is shown in [1]

pl+1 =
max(‖ devA ‖F −ϑ, 0) dev A

(2µ + σ2
Y H2) ‖ devA ‖F

+ pl

where

A = C(ε(ul+1)− pl)

ϑ = σY (1 + αlH)

This is the reason why all can be expressed in terms of u: p = p(ε(ul+1)).
The formula above will be used to compute the new plastic strain in the
time step l + 1 using the plastic strain of the previous time step modified
by the suspected slope of the stress-strain curve. We have to remember
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the nested grid structure explained in the introduction chapter to keep in
mind that the coarse mesh in every time step is the same, but the refine-
ments leads to different meshes in every time step. Concerning the plastic
strain is constant on each element, p can also be concentrated in any point
inside the element. Here the center of mass is choosen. Let us denote the
individual plastic strains of each element by pi. Looking at Figure 4.3, we
can see that not every element existing in the time step l also exists in the
time step l + 1.

Figure 4.4: Nested grid structure for the extrapolation

Reference Triangle Transformation

To decide if a point is in a special triangle or not, the point as well as
the triangle {p1, p2, p3} have to be transformed to the reference configu-
ration. Afterwards, while knowing the reference triangle has the vertices
p′1 = (0, 0), p′2 = (0, 1), p′3 = (1, 0), the implemented Matlab program checks
if the point is inside the triangle or not. Mathematically expressed:

Proposition 4.1 The transformation of points from the general mesh to the mesh
of the reference triangle of a special triangle T in the general mesh is the following:
Let be J of two entries x and y. p is the point which we want to transform and p′

the corresponing point in the reference mesh of the triangle T . Then there holds
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J =


p2.x− p1.x
p3.x− p1.x
p2.y − p1.y
p3.y − p1.y

 ,

p′ = J−1(p− p1).

The point p′ is inside the triangle if the next 3 conditions hold:

• p′.x ≥ 0,

• p′.y ≥ 0,

• p′.x + p′.y ≤ 1.

So we have to do extrapolation. A fast method is to look in which el-
ement of the mesh in the former time step pi is located. The plastic strain
located in the recovered element is the new plastic strain in the new time
step modified as discussed above.

For the decision if extrapolation should be done or not we use the same
algorithm as above with one modification. At the first time step or if the
solution in the previous time step do not converges then we do nothing.
The extrapolation of the plastic strain is done in a different way, because
the plastic strain defined over one triangle as a constant. For simplification
we choose one point in the triangle and there the plastic strain values are
settled.
Since we always start with the same grid in every time step we only have
to save the history of the refining the basis triangles to get a quick extrap-
olation.

Algorithm 4.3 Extrapolation of the plastic strain

for each triangle i
B:=basistriangle of triangle i
browse through all triangles lying in B in the previous time step

check if coordinates of pi(t) lies inside the triangle ⇒ pi = pi(t− 1)
end
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In the section of the numerical results we can see that this extrapolation is
quite good and fast enough.

4.4 Analysis of the Nested Iteration Algorithm

It is important to know how good the approximation of the solution with
the nested iteration algortihm and the extrapolation is. As it is shown in
[14] for stronger assumptions the iteration number will be universal for
each mesh size h and every time step t.

Theorem 4.1 We assume u ∈ H2(Ω) at all time steps t, and the convergence of
the incremental method as the approximation Eh(u) = infvh∈Vh

‖ u − vh ‖1,Ω≤
a1,2h ‖ u ‖2,Ω holds.
The convergence rates ρe and ρp of the iteration processes with the iteration solver
operator for the elastic problem S0

q and for the plastic problem Sn
q where q is the

index of h and n ∈ 1, . . . , N − 1 where N is the number of time steps. The itera-
tion solver operator should be independent of the number level in h and the time
steps N , also of q and n the actual position of the pair (level,time step) and the
operators have to be less than 1 in the corresponding norm. The first convergence
rate is fixed as ρ1 ∈ (0, 1) and for all q the inequality hq−1 ≤ bhq holds. In the case
where only refinements, which bisect the side length of the triangle are allowed, b
is equal to 2.
Then univeral (independent), positive iteration numbers exists such that the ap-
proximations

| un
t,q − vn

t,q |V≤ α(∆t + hq)

| σt,q − τn
t,q |S + | pt,q − πn

t,q |Π≤ α(∆t + hq)

with α > 0 where u, σ, p the exact solutions and v, τ, π the approximate solutions
of the nested iteration scheme.

Proof:
Only a short view on the proof is given, the exact one is done in [14]

• Show global H2-regularity: By the so-called A-properties for our
problem with isotropic hardening it follows that only one solution
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to the problem can exist. Furthermore regularity statements for the
increment of u, σ and p hold.

• Next have a look on the convergence of u and σ

• After proofing the assumptions consider un
t,q as a fix point of the iter-

ation solver operator

• Assume for n = 0 and q = 1 the approximation above holds and do

– Induction with respect to q at time n = 0

– Induction with respect to n at level q = 1

– Diagonal induction from the pair(q − 1, n− 1) to (q, n)
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Chapter 5

Numerical Results

The nested iteration algorithm with the extrapolation of u, p and α was
implemented in Matlab, version 7.2.0.294 (R2006a), under Linux. The cal-
culations were done with a laptop model ACER TravelMate 8000 with a
CPU of 1.7 GHz and 1024 MB RAM. The program was tested by three dif-
ferent examples under different loading regimes, namely linear loading
and cyclic loading.
The new method is compared with the standard approach used in [7].
For more information about the residuals of the individual time steps or
the plastic zone and the yield pictures, we enclosed a CD in the back.
Sometimes the Newton-like method does not converge (marked by - in the
tables), but if newton damping will be used or the step size be adjusted the
convergence will be reached.

5.1 L-Shape Problem

The L-shape domain is frequently used in literature for simulations. The
problem is defined on the geometry in Figure 5.1.
On the boundery we set time dependent non-homogeneous Dirichlet bound-
ery condition in polar coordinates r, θ

ur(r, θ) =
1

2µ
rα [−(α + 1) cos((α + 1) θ) + (C2 − (α + 1))C1 cos((α− 1) θ)] ,

uθ(r, θ) =
1

2µ
rα [(α + 1) sin((α + 1) θ) + (C2 + (α− 1))C1 sin((α− 1) θ)] .
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Figure 5.1: The geometry of the L-shape domain and the coarse mesh

where the deformation of the boundery is given by

u(t) = g(t) ∗ (ur ∗ cosθ − ut ∗ sinθ, ur ∗ sinθ + ut ∗ cosθ) (5.1)

The following settings are choosen for the calculation:

• material parameters: E = 1e5, ν = 0.3, H = 1, σY = 2.2

• magnification for displaying: 3e3

• direct matlab solver used

• Newton termination criterion: ε = 1e− 12

• no Newton damping factors are used

• refinement levels: 6 (all adaptive)

• time steps:

– t ∈ [0.1, 1.2] with step size 0.02 in the linear case where g(t) = t

– t ∈ [0.1, 1.5] with step size 0.02 in the cyclic case where g(t) =
sin(π ∗ t)
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Figure 5.2: Left plastic zones, right picture yield stress under a linear
loading regime

Let us take one time step in every loading case, for example 0.38 to illus-
trate the results. The program creates for every time step a pictures of the
plastic zones and of the yield stress in the considered area. The plastic area
is coloured pink while the elastic regions are green.

5.1.1 Linear loading

The count of Newton steps until reaching the termination criterion is shown
in Table 5.1.Unfortunately the program of [7] can only refine uniform if
more than one time step is required. So we take 5 uniform refinements
levels to compare the two algorithm. In principle we can that the Newton
steps are at both methods hardly the same. However, we can mentioned
that the program works for a more general case (different meshes).

5.1.2 Cyclic loading

In Table 5.2 count of Newton steps until reaching the termination criterion
on level 5 are given. For comparison the number of Newton steps which
the program of [7] takes is given in brackets.
In Table 5.3 we use a mesh generated as 6 adaptive refinements. In com-

parison to Table 5.2 the steps are hardly the same.

41



time steps time steps time steps
0.1 5 (5) 0.6 6 (6) 1.1 5 (5)

0.12 5 (5) 0.62 6 (5) 1.12 5 (5)
0.14 5 (5) 0.64 6 (6) 1.14 5 (5)
0.16 6 (6) 0.66 7 (6) 1.16 5 (6)
0.18 6 (5) 0.68 7 (6) 1.18 6 (5)
0.2 6 (5) 0.7 7 (5) 1.2 6 (5)

0.22 6 (5) 0.72 6 (5)
0.24 6 (5) 0.74 6 (6)
0.26 6 (6) 0.76 6 (5)
0.28 6 (5) 0.78 6 (5)
0.3 6 (5) 0.8 6 (5)
0.32 7 (6) 0.82 6 (5)
0.34 6 (6) 0.84 6 (6)
0.36 6 (6) 0.86 6 (5)
0.38 6 (5) 0.88 6 (5)
0.4 6 (6) 0.9 6 (5)
0.42 6 (6) 0.92 6 (5)
0.44 6 (5) 0.94 6 (4)
0.46 6 (6) 0.96 3 (2)
0.48 6 (6) 0.98 2 (2)
0.5 6 (6) 1.00 - (2)
0.52 6 (6) 1.02 2 (2)
0.54 6 (6) 1.04 2 (2)
0.56 7 (5) 1.06 5 (4)
0.58 6 (6) 1.08 5 (5)

Table 5.1: Newton steps for the problem L-shape under the linear loading
regime
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time steps time steps time steps
0.1 5 (5) 0.6 6 (6) 1.1 5 (5)

0.12 5 (5) 0.62 6 (5) 1.12 5 (5)
0.14 5 (5) 0.64 7 (6) 1.14 5 (5)
0.16 6 (6) 0.66 7 (6) 1.16 6 (6)
0.18 6 (5) 0.68 7 (6) 1.18 6 (5)
0.2 6 (5) 0.7 7 (5) 1.2 6 (5)

0.22 6 (5) 0.72 6 (5) 1.22 6 (5)
0.24 6 (5) 0.74 6 (6) 1.24 6 (5)
0.26 6 (6) 0.76 6 (5) 1.26 6 (6)
0.28 6 (5) 0.78 6 (5) 1.28 6 (5)
0.3 6 (5) 0.8 6 (5) 1.3 6 (5)

0.32 7 (6) 0.82 6 (5) 1.32 7 (6)
0.34 6 (6) 0.84 6 (6) 1.34 6 (6)
0.36 6 (6) 0.86 6 (5) 1.36 6 (6)
0.38 6 (5) 0.88 6 (5) 1.38 6 (5)
0.4 6 (6) 0.9 6 (5) 1.4 6 (6)

0.42 6 (6) 0.92 6 (5) 1.42 6 (6)
0.44 6 (5) 0.94 5 (4) 1.44 6 (5)
0.46 6 (6) 0.96 3 (2) 1.46 6 (6)
0.48 6 (6) 0.98 2 (2) 1.48 6 (6)
0.5 6 (6) 1.00 2 (2) 1.5 6 (6)

0.52 6 (6) 1.02 2 (2)
0.54 6 (6) 1.04 2 (2)
0.56 7 (5) 1.06 5 (4)
0.58 6 (6) 1.08 5 (5)

Table 5.2: Newton steps for the problem L-shape under the cyclic loading
regime
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time steps time steps time steps
0.1 6 0.6 7 1.1 5

0.12 6 0.62 6 1.12 6
0.14 6 0.64 6 1.14 6
0.16 6 0.66 7 1.16 6
0.18 6 0.68 6 1.18 6
0.2 7 0.7 7 1.2 7

0.22 6 0.72 7 1.22 6
0.24 6 0.74 7 1.24 6
0.26 6 0.76 6 1.26 6
0.28 7 0.78 6 1.28 7
0.3 6 0.8 7 1.3 6

0.32 6 0.82 6 1.32 6
0.34 7 0.84 7 1.34 7
0.36 6 0.86 6 1.36 6
0.38 6 0.88 6 1.38 6
0.4 7 0.9 6 1.4 7

0.42 7 0.92 6 1.42 7
0.44 7 0.94 6 1.44 7
0.46 7 0.96 5 1.46 7
0.48 7 0.98 3 1.48 7
0.5 7 1.00 2 1.5 7

0.52 7 1.02 2
0.54 7 1.04 5
0.56 7 1.06 5
0.58 7 1.08 5

Table 5.3: Newton steps for the problem L-shape under the cyclic loading
regime with adaptive refinements
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Figure 5.3: Left plastic zones, right picture yield stress under a cyclic
loading regime

5.2 Wrench Problem

The wrench problem simulates a wrench with a screw, which is fixed in
its position (see Figure 5.2). The applied force should models the human
force pushing the wrench. The geometry is shown in the Figure 5.2. The
boundery is a full Neumann boundery exept on the contact faces between
wrench and screw, there we assume a Dirichlet boundery part.

The coarse mesh consists of 40 elements and 34 nodes. The following
settings are choosen for the calculation:

• material parameters: E = 2e8, ν = 0.3, H = 0.001, σY = 2e6

• magnification for displaying: 10

• direct matlab solver used

• Newton termination criterion: 1e− 12

• Newton damping factors are used
(max. 3 inner iteration with damping factor 0.2)

• refinement levels: 5 (first uniform and then 4 times adaptive)

• time steps:

– t ∈ [0.1, 1.2] with step size 0.02 in the linear case where g(t) = ḡt
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Figure 5.4: The geometry of the wrench and the applied force,
everywhere the screw attends the wrench the boundary is fixed

– t ∈ [0.1, 1.5] with step size 0.02 in the cyclic case where g(t) =
ḡ sin(φt)

Let us take one time step in every loading case, for example 0.38 to illus-
trate the results. The program creates for every time step a pictures of the
plastic zones and of the yield stress in the considered are. The plastic area
is coloured pink while the elastic regions are green.

5.2.1 Linear loading

In Table 5.4 the count of Newton steps is shown until reaching the termi-
nation criterion on level 4. For comparison the number of Newton steps
which the program of [7] takes is given in brackets.
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Figure 5.5: Left plastic zones, right picture yield stress under a linear
loading regime

Figure 5.6: Left plastic zones, right picture yield stress under a cyclic
loading regime

5.2.2 Cyclic loading

In Table 5.5 the count of Newton steps is shown until reaching the termi-
nation criterion on level 4. The numbers in brackets are the Newton steps
which the program of [7] takes to calculate the same solution.
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time steps time steps time steps
0.1 2 (2) 0.6 6 (6) 1.1 9 (6)

0.12 2 (2) 0.62 6 (6) 1.12 11(7)
0.14 2 (2) 0.64 6 (6) 1.14 11(7)
0.16 2 (2) 0.66 6 (6) 1.16 12(8)
0.18 2 (2) 0.68 6 (6) 1.18 13(8)
0.2 2 (2) 0.7 6 (6) 1.2 14(7)

0.22 2 (2) 0.72 6 (7)
0.24 2 (2) 0.74 6 (7)
0.26 2 (2) 0.76 6 (6)
0.28 2 (2) 0.78 6 (6)
0.3 2 (2) 0.8 7 (7)
0.32 2 (2) 0.82 7 (7)
0.34 5 (5) 0.84 10(6)
0.36 5 (5) 0.86 10(7)
0.38 5 (5) 0.88 9 (6)
0.4 5 (5) 0.9 8 (6)
0.42 5 (5) 0.92 8 (6)
0.44 5 (5) 0.94 8 (6)
0.46 6 (5) 0.96 8 (6)
0.48 5 (5) 0.98 8 (7)
0.5 5 (6) 1.00 8 (7)
0.52 5 (6) 1.02 8 (6)
0.54 5 (6) 1.04 10(7)
0.56 5 (6) 1.06 9 (6)
0.58 5 (6) 1.08 9 (7)

Table 5.4: Newton steps for the problem wrench under the linear loading
regime
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time steps time steps time steps
0.1 2 (2) 0.6 8 (7) 1.1 2 (2)

0.12 5 (5) 0.62 8 (6) 1.12 5 (5)
0.14 5 (5) 0.64 8 (6) 1.14 5 (5)
0.16 6 (5) 0.66 6 (6) 1.16 6 (5)
0.18 6 (6) 0.68 6 (6) 1.18 6 (6)
0.2 7 (6) 0.7 7 (6) 1.2 7 (6)

0.22 6 (6) 0.72 6 (6) 1.22 6 (6)
0.24 7 (6) 0.74 6 (6) 1.24 7 (6)
0.26 6 (6) 0.76 6 (6) 1.26 6 (6)
0.28 6 (6) 0.78 6 (6) 1.28 6 (6)
0.3 7 (6) 0.8 6 (6) 1.3 7 (6)

0.32 10(6) 0.82 5 (6) 1.32 10(6)
0.34 11(6) 0.84 6 (5) 1.34 11(6)
0.36 8 (6) 0.86 5 (5) 1.36 8 (6)
0.38 8 (6) 0.88 5 (5) 1.38 8 (6)
0.4 8 (7) 0.9 4 (2) 1.4 8 (7)

0.42 8 (6) 0.92 2 (2) 1.42 8 (6)
0.44 8 (6) 0.94 2 (2) 1.44 8 (6)
0.46 8 (7) 0.96 2 (2) 1.46 8 (7)
0.48 8 (7) 0.98 2 (2) 1.48 8 (7)
0.5 9 (7) 1.00 2 (2) 1.5 9 (7)

0.52 8 (7) 1.02 2 (2)
0.54 9 (7) 1.04 2 (2)
0.56 9 (6) 1.06 2 (2)
0.58 8 (6) 1.08 2 (2)

Table 5.5: Newton steps for the problem wrench under the cyclic loading
regime

Also in that example we can see that the iteration numbers are hardly
the same. Table 5.6 shows the Newton steps if we choose 1 uniform mesh
and 5 adaptive refinements
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time steps time steps time steps
0.1 1 0.6 12 1.1 5

0.12 6 0.62 10 1.12 6
0.14 7 0.64 11 1.14 7
0.16 7 0.66 11 1.16 7
0.18 8 0.68 12 1.18 8
0.2 8 0.7 10 1.2 8

0.22 8 0.72 10 1.22 8
0.24 9 0.74 10 1.24 9
0.26 9 0.76 9 1.26 9
0.28 10 0.78 9 1.28 10
0.3 10 0.8 11 1.3 10

0.32 10 0.82 8 1.32 10
0.34 10 0.84 8 1.34 10
0.36 10 0.86 8 1.36 10
0.38 10 0.88 6 1.38 10
0.4 10 0.9 6 1.4 10

0.42 14 0.92 5 1.42 14
0.44 13 0.94 3 1.44 13
0.46 14 0.96 2 1.46 14
0.48 14 0.98 2 1.48 14
0.5 14 1.00 3 1.5 14

0.52 14 1.02 2
0.54 14 1.04 2
0.56 13 1.06 2
0.58 14 1.08 5

Table 5.6: Newton steps for the problem wrench under the cyclic loading
regime with adaptive refinements.
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5.3 Plate with a Hole Problem

The plate with a hole problem simulates a steel plate with a hole placed at
the middle of the plate. It is clear that the hole influences the behaviour
of the material. Because of the symmetry only one quarter have to be
calculated.

Figure 5.7: The total geometry of the plate with the hole problem is
shown in the left figure. The implemented geometry with the symmetric
boundary conditions is shown in the right figure with its applied force

g(t)

The coarse mesh consists of of 132 elements and 225 nodes. The fol-
lowing settings are choosen for the calculation:

• material parameters: E = 206900, ν = 0.29, H = 0.5, σY = 450
√

2
3

• magnification for displaying: 50

• direct matlab solver used

• Newton termination criterion: 1e− 12

• no Newton damping factors are used
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• refinement levels: 4 (the first refinement is done uniform, the others
adaptive)

• time steps:

– t ∈ [0.1, 1.2] with step size 0.02 in the linear case where g(t) = ḡt

– t ∈ [0.1, 1.5] with step size 0.02 in the cyclic case where g(t) =
ḡ sin(φt)

Let us take one time step in every loading case, for example 0.38 to illus-
trate the results. The program creates for every time step a pictures of the
plastic zones and of the yield stress in the considered are. The plastic area
is coloured pink while the elastic regions are green.

5.3.1 Linear loading

Figure 5.8: Left plastic zones, right picture yield stress under a linear
loading regime

In Table 5.7 the count of Newton steps until reaching the termination
criterion on level 3 is shown. The numbers in brackets are the Newton
steps which the program of [7] takes to calculate the same solution.
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time steps time steps time steps
0.1 2 (2) 0.6 6 (5) 1.1 7 (6)

0.12 2 (2) 0.62 6 (5) 1.12 6 (5)
0.14 2 (2) 0.64 6 (5) 1.14 7 (5)
0.16 2 (2) 0.66 6 (5) 1.16 7 (6)
0.18 2 (2) 0.68 6 (5) 1.18 7 (6)
0.2 2 (2) 0.7 6 (5) 1.2 6 (5)

0.22 2 (2) 0.72 6 (5)
0.24 2 (2) 0.74 6 (5)
0.26 2 (2) 0.76 6 (5)
0.28 2 (2) 0.78 6 (5)
0.3 2 (2) 0.8 6 (5)
0.32 2 (2) 0.82 6 (5)
0.34 2 (2) 0.84 6 (6)
0.36 2 (2) 0.86 6 (5)
0.38 2 (2) 0.88 6 (5)
0.4 5 (4) 0.9 6 (5)
0.42 5 (5) 0.92 6 (6)
0.44 5 (5) 0.94 6 (5)
0.46 5 (5) 0.96 6 (6)
0.48 6 (5) 0.98 6 (6)
0.5 5 (5) 1.00 6 (5)
0.52 5 (5) 1.02 6 (5)
0.54 5 (5) 1.04 6 (5)
0.56 6 (5) 1.06 7 (6)
0.58 6 (5) 1.08 7 (6)

Table 5.7: Newton steps for the problem plate with a hole under the linear
loading regime
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5.3.2 Cyclic loading

Figure 5.9: Left plastic zones, right picture yield stress under a cyclic
loading regime

In Table 5.8 the count of Newton steps until reaching the termination
criterion on level 3 is shown. For comparison the number of Newton steps
which the program of [7] takes is given in brackets.
In Table 5.9 the results for one uniform refinement and 3 adaptive refine-

ments are shown.
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time steps time steps time steps
0.1 2 (2) 0.6 6 (5) 1.1 2 (2)

0.12 2 (2) 0.62 6 (5) 1.12 2 (2)
0.14 5 (5) 0.64 6 (5) 1.14 5 (5)
0.16 5 (5) 0.66 6 (5) 1.16 5 (5)
0.18 5 (5) 0.68 6 (5) 1.18 5 (5)
0.2 6 (5) 0.7 6 (5) 1.2 6 (5)

0.22 7 (5) 0.72 6 (5) 1.22 7 (5)
0.24 6 (5) 0.74 6 (5) 1.24 6 (5)
0.26 6 (5) 0.76 6 (5) 1.26 6 (5)
0.28 6 (5) 0.78 7 (5) 1.28 6 (5)
0.3 6 (5) 0.8 6 (5) 1.3 6 (5)

0.32 6 (5) 0.82 6 (5) 1.32 6 (5)
0.34 6 (5) 0.84 6 (5) 1.34 6 (5)
0.36 6 (5) 0.86 6 (5) 1.36 6 (5)
0.38 6 (5) 0.88 4 (2) 1.38 6 (5)
0.4 6 (5) 0.9 2 (2) 1.4 6 (5)

0.42 6 (5) 0.92 2 (2) 1.42 6 (5)
0.44 6 (5) 0.94 2 (2) 1.44 6 (5)
0.46 6 (5) 0.96 2 (2) 1.46 6 (5)
0.48 6 (6) 0.98 2 (2) 1.48 6 (6)
0.5 6 (5) 1.00 2 (2) 1.5 6 (5)

0.52 6 (6) 1.02 2 (2)
0.54 6 (5) 1.04 2 (2)
0.56 6 (5) 1.06 2 (2)
0.58 6 (5) 1.08 2 (2)

Table 5.8: Newton steps for the problem plate with a hole under the cyclic
loading regime
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time steps time steps time steps
0.1 2 0.6 6 1.1 2

0.12 2 0.62 7 1.12 2
0.14 5 0.64 6 1.14 5
0.16 6 0.66 6 1.16 6
0.18 5 0.68 6 1.18 5
0.2 6 0.7 7 1.2 6

0.22 7 0.72 7 1.22 7
0.24 7 0.74 7 1.24 7
0.26 7 0.76 7 1.26 7
0.28 7 0.78 7 1.28 7
0.3 6 0.8 6 1.3 6

0.32 6 0.82 7 1.32 6
0.34 6 0.84 6 1.34 6
0.36 6 0.86 6 1.36 6
0.38 6 0.88 4 1.38 6
0.4 6 0.9 2 1.4 6

0.42 6 0.92 2 1.42 6
0.44 6 0.94 2 1.44 6
0.46 6 0.96 2 1.46 6
0.48 6 0.98 2 1.48 6
0.5 7 1.00 2 1.5 7

0.52 6 1.02 2
0.54 6 1.04 2
0.56 6 1.06 2
0.58 7 1.08 2

Table 5.9: Newton steps for the problem plate with a hole under the cyclic
loading regime and adaptive refinements
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Chapter 6

Conclusion and Outlook

6.1 Conclusions

The main point of this thesis is that the nested iteration technique provides
a time-independent number of Newton iterations, which can be calculated
with some effort as it is described in the chapter on nested iteration tech-
nique. This technique is fast because of adaptive refinements in every step
and level. This leads to a mangeable number of unknowns.

The needed extrapolation for the nested iterations is done on the one side
on the nodes with the internode history for the displacements and on the
other side by the element history for the plastic strain. If one wants to use
different coarse mesh, only the first method can be adopted, the second
has to be modified.

Since the numerical results have shown the iteration number for Newton
in the linear loading regime is (nearly) independent of the spatial mesh
and the time step. If convergence problems occur, they can be managed
by introducing the Newton damping factor or taking a smaller time step
size. This avoids Newton methods to diverge or oscillate between two
values.
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6.2 Outlook

A further approach to predict the interface of the elastic and the plastic
region are boundary concentrated methods. Details can be looked up in
[3],[12],[15] or [17].
To do boundary concentrated methods first we should first implement
not only h-FEM but also p-FEM. With the so-called hp-FEM method the
smooth parts would not be h refined, but the basis functions get a higher
polynomial degree on each triangle. The interface, which is in our elasto-
plastic problem the point of interest, will be refined to approximate the
interface with highest possible accuracy, as in [5] is shown:

Figure 6.1: Boundary concentrated hp-FEM of the L-shape domain

For an further improvement of the method one should not only implement
the hp-FEM, but also a prediction for the next time step should be formu-
lated.
By combining the two techniques we can develop a fast and precise iden-
tifier for the interface. Think of a structure where the problem for few
elements is solved and while refining the mesh by hp-FEM and extrapo-
lating the starting values by nested iteration schemes the solution to the
problem can be calculated very fast.
This result is the starting point for the boundary concentrated method.
The predicted interface is the origin of the domain decomposition in plas-
tic and elastic zones. In the elastic part of the domain the solution can
be calculated quick because there occurs no nonlinearity from the plastic
strain. The plastic part needs some more effort to calculate, but this is
rather small for most of the applied loads and problems.
Since it is known from the analysis, the boundary concentrated method
provides a optimal complexity of O(N). The discretization error is also
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only order O(N) where N is the number of nodes on the boundary (inter-
faces). So a two-dimensional problem behaves under this conditions like
a one-dimensional problem.
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Appendix
List of Notation

d ∈ {1, 2, 3}, space dimension
Ω ⊂ Rd, open bounded Lipschitz domain
Γ = ∂Ω, domain boundary
ΓD ⊂ Γ, Dirichlet boundary (prescribed displacements)
ΓN ⊂ Γ, Neumann boundary (prescribed surface tractions)
n outer normal of Γ
σ stress tensor
ε elastic strain tensor
u displacement
p plastic strain tensor
α hardening parameter
f body or volume forces
uD prescribed displacement on ΓD

g prescribed surface tractions on ΓN

λ ∈ R+, “Lamé modulus”, Lamé constant
µ ∈ R+, “sheer modulus”, Lamé constant
E ∈ R+, “Young’s modulus”
ν ∈

[
0, 1

2

]
, “Poisson ratio”

δij “Kronecker delta”
C ∈ Rd×d

d×d with Cijkl = λδijδkl + µ(δikδjl + δilδjk), elasticity tensor
H ∈ R+, “modulus of hardening”
σY ∈ R+, yield stress
ϕ dissipation functional
φ̄ yield function
ḟ = ∂f

∂t , time derivative of a function f

∇f =
(

∂fi

∂xj

)
i,j

, gradient of a (vector) function f

∆f =
∑

i
∂2fi

∂2xi
, Laplace of a vector function f

Df Fréchet Derivative of a function f

‖ A ‖F :=
√∑

i,j a2
ij , Frobenius norm of a matrix A
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