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Convergence estimates of finite elements for a class
of quasilinear elliptic problems

S. Nakov∗, I. Toulopoulos†

Abstract

This paper is concerned with conforming finite element discretizations for
quasilinear elliptic problems in divergence form, of a class that generalizes the p-
Laplace equation and allows to show existence and uniqueness of the continuous
and discrete problems. We derive discretization error estimates under general
regularity assumptions for the solution and using high order polynomial spaces,
resulting in convergence rates that are then verified numerically. A key idea of
this error analysis is to consider carefully the relation between the naturalW 1,p-
seminorm and a specific quasinorm introduced in “L. Diening and M. Růžička.
Numer. Math., 107(1):107–129, 2007”. In particular, we are able to derive
interpolation estimates in this quasinorm from known interpolation estimates
in the W 1,p-seminorm. We also give a simplified proof of known near-best
approximation results inW 1,p-seminorm starting from the corresponding result
in the mentioned quasinorm.

Keywords: quasilinear elliptic equations, p-Laplace, power-law diffusion, fi-
nite element, near-best approximation results, discretization error analysis, a priori
error estimates, quasi-norm estimates.

MSC 2020: 65N30, 65J15, 65N15

1 Introduction
The study of quasilinear elliptic equations of the form [9],

−div
(
A(∇u)

)
= f in Ω ⊂ Rd, d = 2, 3, (1.1a)

u = g on ∂Ω, (1.1b)

where A, g and f are given functions (see their properties below), is of great im-
portance since these equations are used to describe many physical problems aris-
ing in the area of non-Newtonian motions, porous media, chemical engineering etc,
[28, 30, 33]. Basic examples of (1.1) are variations of the p-Laplace model where
A(∇u) = (ε+ |∇u|)p−2∇u with ε ≥ 0 and p > 1. The first analysis of finite element
∗JKU, Altenbergerstrasse 69, 4040 Linz, Austria
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(FE) methods for p-Laplace (ε = 0) was undertaken in [29] and in [11] (Chapter
5), where (sub-optimal) a priori error estimates have been shown in the W 1,p-norm.
These results were later improved in [32, 4].

In the literature there are various works discussing sufficient conditions on the
regularity of the boundary data g and the righ-hand side f which guarantee certain
regularity properties of the solutions of p-type problems. Here, by p-type problems we
refer to problems, in which the nonlinear operator A has some “p-structure” proper-
ties that guarantee solvability in the classical Sobolev space W 1,p(Ω) for some p > 1.
The nonlinear nature of these quasilinear problems usually results in the existence
of weak solutions with reduced regularity even for very smooth problem data (see,
e.g., [9, 37]). In general, the regularity of the solutions that can be inferred is only
enough to show optimal error estimates using linear finite element spaces, see, e.g.,
[36, 34, 5]. Perhaps this is the main reason for the predominant use of linear FE
spaces for the discretization of such problems. This is in contrast to linear problems,
where the higher the regularity of the input data is, the higher the regularity of the
corresponding solution is. However, applications of k and hk finite element methods
for p-Laplace problems have been recently presented, where h denotes the spatial dis-
cretization parameter and k the degree of the polynomial space, [23, 24]. We mention
that the presence of the gradient in the non-linear diffusion term leads to algebraic
systems with bad condition number, [14], which requires efficient iterative techniques,
[27, 20].
Over the last two decades, there has been an increasing interest on devising discon-
tinuous Galerkin (DG) methods in addition to the more popular continuous ones for
the numerical solution of (1.1) with basic examples to be certain p-type problems, see
[18, 8, 13]. In all these DG methods the numerical fluxes were developed by following
the p-nonlinear nature of the problem. The quasi-norm interpolation estimates pre-
sented in [21], were applied in the framework of broken spaces and optimal a priori
error estimates were shown for linear elements. The same DG methods have been
used later in [7] for solving non-Newtonian flow problems.

In this paper, we focus on problems where the function A : Rd → Rd in (1.1), has
the form

A(a) = ϕ′(|a|) a

|a|
for all a ∈ Rd \ {0}, A(0) = 0, (1.2)

where ϕ′ is the right derivative of an N-function ϕ (see Definition 2.1). We start our
investigation by introducing certain assumptions on the function ϕ, which guarantee
existence and uniqueness of the solution of the continuous problem in the framework
of Sobolev W 1,p-spaces by using classical results of the calculus of variations, e.g.,
convexity, lower semicontinuity and coercivity of the associated energy functional.
We continue with our main objective in this work, which is to present continuous FE
approximations of (1.1) and to derive a priori estimates for the error u − uh where
uh is the corresponding finite element solution. Motivated by the results in [21], we
present an analysis of higher order finite element approximations for the problem
(1.1) where A has the structure given in (1.2). It has been explained in [21, 26] that
for the study of (1.1), it is appropriate to introduce the closely related to the operator
A function F : Rd → Rd

F(a) = (ϕ′(|a|) |a|)
1
2

a

|a|
for all a ∈ Rd \ {0}, F(0) = 0. (1.3)
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We derive a priori discretization error estimates for the error u−uh measured by the
F-quantity ‖F(∇u)−F(∇uh)‖L2(Ω) which is closely related to the so-called quasinorm

‖∇u−∇uh‖(u,p) :=

∫
Ω

(ε+ |∇u|+ |∇(u− uh)|)p−2 |∇(u− uh)|2 dx

 1
2

introduced by Barrett and Liu in [35] when the nonlinear operator A has a p-structure
(see Assumption 2 below). More precisely, for operators with p-structure, the above
two quantities are equivalent (see, e.g., [6, 21]) and thus error estimates and near-
best approximation results derived in terms of one of them immediately translate
to error estimates in terms of the other. Therefore, the a priori error estimates and
convergence rates derived in this paper are also valid for the discretization error
measured by the quasinorm of Barrett and Liu. For short, we will loosely refer to the
measure generated by F, i.e. ‖F(∇u)− F(∇uh)‖L2(Ω), as F-quasinorm.

Even though showing solvability in Orlicz-Sobolev spaces is a more general ap-
proach (see, e.g., [6]), we choose to work with standard Sobolev spaces (by assuming
a p-structure of the operator A, see Assumption 2 below) so that we can relate the F-
quasinorm with the SobolevW 1,p-seminorm and use known interpolation estimates in
this seminorm (see, e.g., [31]). In particular, we utilize the near-best approximation
result from [21] with respect to the F-quasinorm and bound the approximation error
of the FE space in terms of approximation errors |u− vh|W 1,q(Ω) for some 1 ≤ q ≤ ∞
(see (4.5), (4.7), (4.10)). By taking vh to be the finite element interpolant Ihu in these
bounds, we arrive at the respective interpolation error estimates in the F-quasinorm
under regularity assumptions of the form u ∈ W l,q(Ω) for some l ≥ 2 and q ≥ 1 (see
(4.6), (4.8), (4.11), (4.12) and Theorem 4.2). Thus, from the interpolation estimates
just mentioned, we also obtain the regularity conditions that guarantee optimal (with
respect to the approximation error and polynomial degree) discretization convergence
rates.

In the current work we do not investigate conditions on the data that ensure
high regularity solutions. An analysis in this direction for homogeneous right-hand
side is presented for example in [36]. As we mentioned earlier, it is in general not
possible to guarantee higher regularity of the solutions even for very smooth data
and for this reason the h-version of the finite element method with a fixed first order
polynomial degree is the most commonly used one. However, deriving approximation
error estimates in the F-quasinorm for high order polynomial spaces can be useful, for
example, in the development of adaptive FEM (see, e.g., [17] for adaptive FEM with
polynomial degree one and error measured in the F-quasinorm). Those estimates
give a benchmark for the approximation properties of the FE space with respect to
the quasinorm in question and display the convergence order at which the adaptive
methods should be aming at.

Here, we emphasize that our regularity assumptions are posed directly on the
solution u itself, rather than on the function F(∇u). This differs from the approach
presented in [21], where the authors prove a priori error estimates in a more general
setting, but optimal only for first order polynomial FE spaces and under the regu-
larity assumption F(∇u) ∈ [W 1,2(Ω)]

d. To the best of our knowledge, approximation
estimates of this type, including higher order finite element discretizations, have not
yet been presented in the existing literature.
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The layout of the paper is as follows. In the next section we study the existence
and uniqueness of the solution of the partial differential equation. In Section 3 we
present the finite element discretization of the problem and we give a simple proof of
known near best approximation results in the W 1,p seminorm by carefully examining
the relation between the F-quasinorm and the associated Sobolev W 1,p-seminorm,
and by making use of the near-best approximation result in terms of the F-quasinorm
from [21]. In Section 4 we give interpolation error estimates with respect to the F-
quasinorm under various regularity assumptions on the solution u. We also discuss
the sufficient regularity conditions that guarantee optimal convergence rates with
respect to the polynomial degree k of the FE space. The paper closes with Section 5,
where an extensive series of numerical tests is given which confirm the theoretically
predicted convergence rates.

2 Preliminaries and problem formulation

2.1 Notations and known inequalities

We use a standard notation throughout this work. Let Ω ⊂ Rd with d ∈ {2, 3}
be a bounded Lipschitz domain. For 1 ≤ p <∞ we denote by Lp(Ω) the space of all
Lebesgue measurable functions u : Ω→ R such that

‖u‖pLp(Ω) :=

∫
Ω

|u(x)|pdx <∞.

When p = ∞, then L∞(Ω) denotes the space of all measurable essentially bounded
functions and is endowed with the norm

‖u‖L∞(Ω) := inf {C > 0 s.t. |u(x)| ≤ C for almost each x ∈ Ω}.

If f is a vector function in the Lebesgue space [Lp(Ω)]d, we use the norm

‖f‖Lp(Ω) := ‖ |f | ‖Lp(Ω) =

∫
Ω

|f |p dx

 1
p

, (2.1)

where |a| denotes the Eucledian `2 norm of a ∈ Rd.
Let l be a non-negative integer, and let α = (α1, . . . , αd) with order |α| =∑d
j=1 αj. We define the differential operator Dα = ∂α1

∂xα1
. . . ∂αd

∂xαd
and denote the stan-

dard Sobolev spaces by W l,p(Ω), which consist of the functions u : Ω → R such
that their weak derivatives Dαu with |α| ≤ l belong to Lp(Ω). The space W l,p(Ω) is
equipped with the norm

‖u‖W l,p(Ω) =
( ∑

0≤|α|≤l

‖Dαu‖pLp(Ω)

) 1
p for 1 ≤ p <∞, (2.2)

‖u‖W l,∞(Ω) = max
0≤|α|≤l

‖Dαu‖L∞(Ω) for p =∞. (2.3)
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For convenience, in the case l = 1, instead of the norm (2.2), we will be using the
equivalent norm

‖u‖W 1,p(Ω) =
(
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

) 1
p
,

where the term ‖∇u‖pLp(Ω) is computed with the norm (2.1) for the space [Lp(Ω)]d.
For a function u ∈ W 1,p(Ω) will define its seminorm by

|u|W 1,p(Ω) := ‖∇u‖Lp(Ω), (2.4)

where, again, the quantity on the right-hand side of (2.4) is computed by using the
norm in [Lp(Ω)]d given by (2.1). Furthermore, for 1 < p < ∞ we denote by γp

the trace operator γp : W 1,p(Ω) → W 1− 1
p
,p(∂Ω),with the properties (i) γp(u) = u|∂Ω

if u ∈ W 1,p(Ω) ∩ C(Ω̄), and (ii) ‖γp(u)‖
W

1− 1
p ,p(∂Ω)

≤ C‖u‖W 1,p(Ω). For a function

g ∈ W 1− 1
p
,p(∂Ω) we define the set

W 1,p
g := {u ∈ W 1,p(Ω) : γp(u) = g}. (2.5)

We refer the reader to [1, 22] for more details on Sobolev spaces. The following
inequalities are going to be used in several places in the text. For functions u ∈
W 1,p

0 (Ω) we have Poincaré’s inequality

‖u‖Lp(Ω) ≤ CP‖∇u‖Lp(Ω) (2.6a)

with a constant CP > 0, depending on p and Ω. Next, let 1 < p, q <∞ be such that
1
p

+ 1
q

= 1. Then for all u ∈ Lp(Ω) and v ∈ Lq(Ω), there holds Hölder’s inequality:∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤‖u‖Lp(Ω)‖v‖Lq(Ω) (2.6b)

Reverse Hölder’s inequality (see, e.g., Theorem 2.12 in [1]) reads: Let 0 < p < 1 and
q = p

p−1
< 0. If f ∈ Lp(Ω) and 0 <

∫
Ω
|g(x)|q dx <∞ then∫

Ω

|f(x)g(x)| dx ≥
(∫

Ω

|f(x)|p dx
) 1

p
(∫

Ω

|g(x)|q dx
) 1

q

. (2.6c)

Young’s inequality: Let 0 < p <∞ and q = p
p−1

. Then

ab ≤ δap

p
+

bq

qδ
q
p

for all a, b ≥ 0. (2.6d)

Finally, for a, b ∈ R and s > 0 we have

|a+ b|s ≤ C(s) (|a|s + |b|s) , (2.6e)

where C(s) = 1 if 0 < s < 1 and C(s) = 2s−1 if s > 1. Obviously, one can take
C(s) = 2s regardless of whether 0 < s < 1 or s > 1.

In what follows, for a, b ≥ 0 we will frequently write a ∼ b meaning that ca ≤ b ≤
Ca for some c, C > 0.
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2.2 Properties of the given functions

In (1.1) we assume that Ω ⊂ Rd, d ∈ {2, 3} is a bounded domain with Lipschitz
boundary ∂Ω, the functions g ∈ W 1− 1

p
,p(∂Ω) and f ∈ Lp

′
(Ω) with 1/p + 1/p′ = 1,

and the operator A is defined by (1.2), where ϕ is an N-function.

Definition 2.1 (see, e.g. [2, 1]). A function ϕ : [0,∞) → [0,∞) is called an N-
function if it is convex, continuous and satisfies lim

t→0

ϕ(t)
t

= 0, lim
t→∞

ϕ(t)
t

= ∞, and
ϕ(t) > 0 for t > 0.

Note that every N-function has a right derivative ϕ′, which is right continuous,
non-decreasing, and satisfies ϕ′(0) = 0, ϕ′(t) > 0 for t > 0 and lim

t→∞
ϕ′(t) = ∞ (see,

e.g., [2, 1]). Moreover, the following integral representation of ϕ holds

ϕ(t) =

t∫
0

ϕ′(s)ds. (2.7)

Equivalently, one can define an N-function ϕ through the formula (2.7) with a function
ϕ′ having the above properties (see [2, 1]). In our considerations we will be only
interested in N-functions ϕ ∈ C1[0,∞)∩C2(0,∞) with strictly increasing ϕ′. In this
case, the complementary (Fenchel conjugate) function ϕ∗ of ϕ is defined by

ϕ∗(t) :=

t∫
0

(ϕ′)
−1

(s)ds, (2.8)

where (ϕ′)−1 denotes the inverse function of ϕ′. It is clear that ϕ∗ is also an N-
function. Since an N-function ϕ is convex with ϕ(0) = 0, it is superadditive and thus
it holds 2ϕ(t) ≤ ϕ(2t). We will be interested in functions ϕ that also satisfy the
inequality ϕ(2t) ≤ Kϕ(t) with some constant K ≥ 2. Such functions ϕ are said to
satisfy the ∆2-condition. In this case the ∆2-constant of ϕ is the smallest constant K
with the above property and is denoted by ∆2(ϕ). For a family of N-functions {ϕλ}λ
we define ∆2 ({ϕλ}λ) := supλ ∆2 (ϕλ). Notice that for every N-function ϕ we have

ϕ(t) =

t∫
0

ϕ′(s)ds ≤ tϕ′(t) for any t ≥ 0.

On the other hand, if ϕ also satisfies the ∆2-condition, we obtain

∆2(ϕ)ϕ(t) ≥ ϕ(2t) ≥
2t∫
t

ϕ′(s)ds ≥ tϕ′(t) for any t ≥ 0,

and thus, we see that ϕ(t) ∼ tϕ′(t) uniformly in t ≥ 0.

Assumption 1 (Assumption 5.1 in [21]). Let ϕ be an N-function with strictly in-
creasing ϕ′ and ∆2 ({ϕ, ϕ∗}) < ∞. Further assume that ϕ ∈ C1[0,∞) ∩ C2(0,∞)
and satisfies ϕ′(t) ∼ tϕ′′(t), i.e., for some c1, c2 > 0 it holds

c1tϕ
′′(t) ≤ ϕ′(t) ≤ c2tϕ

′′(t) (2.9)

uniformly in t ≥ 0.
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Assumption 2 (ϕ has a p-structure (see [26])). There exist p ∈ (1,∞) and ε ≥ 0
such that ϕ′′(t) ∼ (ε+ t)p−2, i.e., for some c3, c4 > 0 it holds

c3(ε+ t)p−2 ≤ ϕ′′(t) ≤ c4(ε+ t)p−2 uniformly in t ≥ 0. (2.10)

Remark 2.2. Notice that if Assumptions 1 and 2 are satisfied, then one has uniformly
in t

ϕ(t) ∼ tϕ′(t) ∼ t2ϕ′′(t) ∼ t2(ε+ t)p−2, (2.11)

and thus

ϕ(t) . t2(ε+ t)p−2 .

{
tp, 1 < p < 2,

εp−2t2 + tp, p ≥ 2.
(2.12)

Example 1. As a particular example for ϕ satisfying Assumptions 1 and 2, we will
consider

ϕ(t) =
(ε+ t)p−1t

p− 1
− (ε+ t)p

p(p− 1)
+

εp

p(p− 1)
(2.13)

for some p ∈ (1,∞) and ε ≥ 0. In this case we have

ϕ′(t) = (ε+ t)p−2t (2.14)

and

ϕ′′(t) =
ε+ (p− 1)t

(ε+ t)3−p . (2.15)

It is easy to see that for any 1 < p <∞ and for all ε ≥ 0, t ≥ 0 it holds

min {1, p− 1}(ε+ t)p−2 ≤ ϕ′′(t) ≤ p(ε+ t)p−2. (2.16)

Recalling (1.2) we see that in this case the operator A takes the form

A(a) = (ε+ |a|)p−2a. (2.17)

Notice that ε = 0 corresponds to the standard p-Laplace operator.

Note that by (2.9) and (2.10) F can be extended by continuity at a = 0, and thus
we set F(0) = 0. For the particular ϕ′ given by (2.13) we have

F(a) = (ε+ |a|)
p−2

2 a. (2.18)

Remark 2.3. By (2.9) and (2.10) we can estimate

|F(a)|2 = ϕ′(|a|) |a| ≤ c2 |a|2 ϕ′′(|a|) ≤ c2c4 |a|2 (ε+ |a|)p−2 . (2.19)

Thus, by using (2.12) we see that F(a) ∈ L2(Ω) for every a ∈ [Lp(Ω)]d and any p > 1.
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Lemma 2.4 (see [21, 19]). Let A be given by (1.2) and let F be given by (1.3), where
ϕ satisfies Assumption 1. Then the relations

(A(a)−A(b)) · (a− b) ∼ |F(a)− F(b)|2 (2.20a)

∼ |a− b|2 ϕ′′ (|a|+ |b|) , (2.20b)
|A(a)−A(b)| . ϕ′′ (|a|+ |b|) |a− b| (2.20c)

hold for all a, b ∈ Rd. More precisely, we will use the following equivalences

c5 |F(a)− F(b)|2 ≤ |a− b|2 ϕ′′ (|a|+ |b|) ≤ c6 |F(a)− F(b)|2 (2.21)

with some constants c5, c6 > 0. If ϕ′′(0) does not exist, then the expression in (2.20b)
is extended by continuity to zero when a = b = 0.

Remark 2.5. Notice that Assumption 2 with ε > 0 combined with the equivalences
(2.20) imply that F and A are Lipschitz continuous for 1 < p ≤ 2. Indeed, for F we
obtain

|F(a)− F(b)| .
√
ϕ′′(|a|+ |b|) |a− b| ≤

(
c4

(ε+ |a|+ |b|)2−p

) 1
2

|a− b|

≤
( c4

ε2−p

) 1
2 |a− b| for all a, b ∈ Rd.

(2.22)

Similarly, for A we have

|A(a)−A(b)| . ϕ′′(|a|+ |b|) |a− b| . c4

ε2−p
|a− b| for all a, b ∈ Rd. (2.23)

Now, from Corollary 3.2 in [16] it follows that if a ∈ [W 1,p̄(Ω)]
d for some 1 ≤ p̄ ≤ ∞,

then F(a) ∈ [W 1,p̄(Ω)]
d and A(a) ∈ [W 1,p̄(Ω)]

d. In particular, if u ∈ W 2,p̄(Ω)

for some 1 ≤ p̄ ≤ ∞ (and thus ∇u ∈ [W 1,p̄(Ω)]
d), then F(∇u) ∈ [W 1,p̄(Ω)]

d and
A(∇u) ∈ [W 1,p̄(Ω)]

d.

2.3 Weak formulation

Let ϕ satisfy Assumption 1 and Assumption 2, and let A be given by (1.2). The
weak formulation of (1.1) reads as follows: Find u ∈ W 1,p

g (Ω) such that∫
Ω

A(∇u) · ∇v dx =

∫
Ω

fv dx for all v ∈ W 1,p
0 (Ω). (2.24)

We will show that the problem (2.24) is equivalent to the minimization problem

Find u ∈ W 1,p
g (Ω) such that

J(u) = inf
v∈W 1,p

g (Ω)
J(v), (2.25)

where the functional J : W 1,p
g (Ω)→ R is defined by

J(v) =

∫
Ω

ϕ (|∇v|) dx−
∫

Ω

fv dx, (2.26)
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Notice that due to Remark 2.2 and the fact that ϕ is non-negative, the functional J ,
indeed, does not take the values ±∞. The procedure to show the equivalence between
(2.24) and (2.25), i.e., show that both have one and the same unique solution, is as
follows. First we show existence and uniqueness of a minimizer u of (2.25). Then we
show that u actually satisfies (2.24), which essentially means that we have to show
the Gateaux-differentiability of J at u. In this case 〈J ′(u), v〉 = 0 for all v ∈ W 1,p

0 (Ω),
where 〈·, ·〉 denotes the duality pairing in W−1,p′(Ω) × W 1,p

0 (Ω). Once we have a
solution u of the weak formulation (2.24) we only need to show that it is indeed
unique.

We start with the existence and uniqueness of a solution to the variational problem
(2.25). Since W 1,p(Ω) is a reflexive Banach space for 1 < p < ∞ (see, e.g., [1, 12]),
existence of a unique minimizer of J can be guaranteed by known theorems from the
calculus of variations. In order to apply these theorems we need certain properties
for W 1,p

g (Ω) and J which we list below.

Proposition 2.6. The following assertions hold:

(1) W 1,p
g (Ω) is convex and closed in W 1,p(Ω) (and thus, weakly closed);

(2) J is sequentially weakly lower semicontinuous1 (s.w.l.s.c.), that is

vn ⇀ v (weakly) in W 1,p(Ω) implies J(v) ≤ lim inf
n→∞

J(vn);

(3) J is coercive, that is

J(v)→∞ whenever ‖v‖W 1,p(Ω) →∞.

(4) J is strictly convex, i.e., for any v, w ∈ W 1,p
g (Ω), v 6= w, λ ∈ (0, 1) it holds

J(λv + (1− λ)w) < λJ(v) + (1− λ)J(w),

or equivalently, if J is convex and additionally for every pair v, w, the equality
J(λv + (1− λ)w) = λJ(v) + (1− λ)J(w) for some λ ∈ (0, 1) implies v = w.

Proof. For the sake of completeness we proof each of the above assertions.

(1) The convexity and closedness of W 1,p
g (Ω) follow from the linearity and continu-

ity, respectively, of the trace operator γp. The convexity and norm closedness
of W 1,p

g (Ω) imply that it is also weakly closed (see, e.g., [12, 10]).

(2) To show the second assertion, we first note that the function ϕ : Rd → R≥0

defined by ϕ(a) := ϕ(|a|) is convex. Indeed, by first using the triangle inequal-
ity in Rd together with the fact that ϕ is nondecreasing, and then using the
convexity of ϕ, for any a,b ∈ Rd and λ ∈ [0, 1], we obtain

ϕ(λa + (1− λ)b) = ϕ(|λa + (1− λ)b|) ≤ ϕ(λ |a|+ (1− λ) |b|)
≤ λϕ(|a|) + (1− λ)ϕ(|b|) = λϕ(a) + (1− λ)ϕ(b).

(2.27)

1If J is convex, then it is enough to show that J is lower semicontinuous. Then, the weak lower
semicontinuity of J is guaranteed (see, e.g., Corollary 2.2 in [10] or Corollary 3.9 in [12]).
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To show that J is s.w.l.s.c., it is enough to notice that it is the sum of two
s.w.l.s.c. functionals, v 7→

∫
Ω
ϕ (|∇v|) dx and v 7→ −

∫
Ω
fvdx. The second one

is bounded and linear over W 1,p(Ω), and thus s.w.l.s.c.. For the first one, since
ϕ is continuous, convex, and satisfies ϕ(a) ≥ 0 for all a ∈ Rd, it follows that
the functional

v ∈ W 1,p(Ω) 7→
∫
Ω

ϕ(∇v)dx

is also s.w.l.s.c. over W 1,p(Ω), see for example Corollary 3.22 in [3].

(3) Now, we show that J is coercive. First, notice that from Assumptions 1 and 2
and (2.10) it follows that

ϕ(t) & t2(ε+ t)p−2.

More precisely, we have

ϕ(t) ≥ 1

∆2(ϕ)
c1c3t

2(ε+ t)p−2. (2.28)

By using the expression (2.26) for J together with (2.28) we obtain

J(v) ≥ 1

∆2(ϕ)
c1c3

∫
Ω

|∇v|2 (ε+ |∇v|)p−2 dx−
∫
Ω

fvdx. (2.29)

First we consider the case of homogeneous Dirichlet boundary condition g = 0,
see (1.1b). In this case by using Poincaré’s inequality (2.6a) we have ‖∇v‖Lp(Ω) ∼
‖v‖W 1,p(Ω). Let p ≥ 2. By first applying Hölder’s inequality (2.6b) and then
Poincaré’s inequality (2.6a) we obtain

J(v) ≥ 1

∆2(ϕ)
c1c3

∫
Ω

|∇v|p dx− CP‖f‖Lp′ (Ω)‖∇v‖Lp(Ω) →∞ (2.30)

as ‖v‖W 1,p(Ω) →∞.
Now for 1 < p < 2, observe that |∇v|2 ∈ L p

2 (Ω) and (ε + |∇v|)p−2 ∈ L
p
p−2 (Ω)

(note
(
p
2

)′
= p

p−2
), and thus, we can apply the reverse Hölder inequality (see

(2.6c)) to the first integral in (2.29):

J(v) ≥ 1

∆2(ϕ)
c1c3

‖∇v‖2
Lp(Ω)

‖ε+ |∇v| ‖2−p
Lp(Ω)

− CP‖f‖Lp′ (Ω)‖∇v‖Lp(Ω)

≥ 1

∆2(ϕ)
c1c3

‖∇v‖2
Lp(Ω)

‖ε‖2−p
Lp(Ω) + ‖∇v‖2−p

Lp(Ω)

− CP‖f‖Lp′ (Ω)‖∇v‖Lp(Ω) →∞
(2.31)

as ‖v‖W 1,p(Ω) →∞. In (2.31) we have also used the triangle inequality in Lp(Ω)
together with the inequality (2.6e) with s = 2− p ∈ (0, 1).
Now we consider the case of inhomogeneous boundary condition g in (1.1b).
Let ug ∈ W 1,p(Ω) be such that γp(ug) = g. Then Poincaré’s inequality (2.6a)
implies

1

(Cp
P + 1)

1
p

‖v − ug‖W 1,p(Ω) ≤ ‖∇(v − ug)‖Lp(Ω) ≤ ‖v − ug‖W 1,p(Ω) (2.32)
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for all v ∈ W 1,p
g (Ω). By applying triangle inequality in (2.32) we observe that

‖v‖W 1,p(Ω) → ∞ if and only if ‖∇v‖Lp(Ω) → ∞. Hence from (2.30) and (2.31)
we can conclude that J is also coercive in W 1,p

g (Ω) for both cases p ≥ 2 and
1 < p < 2.

(4) For this we first show that ϕ is strictly convex on Rd. We note that since ϕ′ is
strictly increasing it follows that ϕ is strictly convex. Let a,b ∈ Rd, λ ∈ (0, 1)
and assume that ϕ(λa + (1−λ)b) = λϕ(a) + (1−λ)ϕ(b). This means that the
two inequality signs in (2.27) are actually equalities. From the second inequality
sign being equality, since ϕ is strictly convex, it follows that |a| = |b|. From the
first inequality sign being equality, since ϕ is strictly increasing, it follows that
|λa + (1− λ)b| = λ |a|+ (1−λ) |b|, which is true if and only if λa = α(1−λ)b
for some α ≥ 0. If |a| = |b| = 0 then we are done. Let |a| = |b| 6= 0. Now, it
is clear that α(1−λ)

λ
= 1, and consequently a = b.

To see that v 7→
∫
Ω

ϕ(∇v)dx is strictly convex, let v, w ∈ W 1,p
g (Ω) and assume

that J(λv + (1 − λ)w) = λJ(v) + (1 − λ)J(w) for some λ ∈ (0, 1). Then it
follows∫

Ω

[λϕ(∇v) + (1− λ)ϕ(∇w)− ϕ(λ∇v + (1− λ)∇w)] dx = 0. (2.33)

Since ϕ is convex, the integral in (2.33) is nonnegative and therefore it follows
that

λϕ(∇v) + (1− λ)ϕ(∇w)− ϕ(λ∇v + (1− λ)∇w) = 0 for a.e. x ∈ Ω. (2.34)

From (2.34) and the strict convexity of ϕ it follows that ∇v = ∇w for a.e.
x ∈ Ω. Since v − w ∈ W 1,p

0 (Ω) we find that v = w.

The following existence result is well known in the calculus of variations.

Proposition 2.7 (see Proposition 1.2 in [10], Theorem 7.3.7 in [15]). Let V be a
reflexive Banach space with norm ‖ · ‖ and let C be a non-empty closed convex subset
of V . Let J : C → R be a convex proper sequentially lower semi-continuous functional.
Let us assume that either C is bounded or that J is coercive over C. Then the problem

Find u ∈ C such that J(u) = inf
v∈C

J(v) (2.35)

has at least one solution. It has a unique solution if J is strictly convex.

Theorem 2.8. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 2. Let the function
ϕ : [0,∞)→ [0,∞) satisfy Assumptions 1 and 2 and let g ∈ W 1− 1

p
,p(∂Ω), f ∈ Lp′(Ω).

Then the variational problem (2.25) has a unique solution u ∈ W 1,p
g (Ω).

Proof. The existence of a unique solution to (2.25) follows directly by combining the
assertions in Proposition 2.6 with Proposition 2.7.
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Remark 2.9. Obviously, the above Theorem 2.8 also holds under weaker assumptions
on the data f . For example, f ∈ L(p∗)′(Ω) or even f ∈ W−1,p′(Ω), the dual space
of W 1,p(Ω). Here, p∗ denotes the Sobolev conjugate exponent, given by p∗ = dp

d−p if
p < d, p∗ <∞ if p = d and p∗ =∞ if p > d.

Remark 2.10. One can also show the coercivity of J by starting from the inequality

(ε+ |∇v|)2−pϕ(|∇v|) ≥ 1

∆2(ϕ)
c1c3 |∇v|2 ,

then raise both sides to the power p
2
, integrate over Ω and apply the standard Hölder

inequality to the left-hand side. This procedure is similar to the one used in [32] in
order to show the monotonicity of a mapping associated with the considered nonlinear
problem. There, the assumptions on the involved (nonlinear) diffusion coefficient are
similar to the one satisfied by the function t 7→ ϕ′(t)/t in our considerations above.

Theorem 2.11. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 2. Let the function
ϕ : [0,∞)→ [0,∞) satisfy Assumptions 1 and 2 and let g ∈ W 1− 1

p
,p(∂Ω), f ∈ Lp′(Ω).

Then problem (2.24) has a unique solution u ∈ W 1,p
g (Ω) which coincides with the

unique solution of the variational problem (2.25).

Proof. First we will show that the solution u of the variational problem (2.25) satisfies
the weak formulation (2.24). Then we will show that (2.24) has at most one solution.

By varying the functional J at the minimizer u in directions v ∈ W 1,p
0 (Ω) one

finds a necessary condition for u being a minimizer, namely 〈J ′(u), v〉 = 0 for all
v ∈ W 1,p

0 (Ω). For any λ > 0 and v ∈ W 1,p
0 (Ω) we have

J(u) ≤ J(u+ λv). (2.36)

After dividing both sides of (2.36) by λ and letting λ→ 0+ we obtain

lim
λ→0+

∫
Ω

[ϕ(|∇(u+ λv)|)− ϕ(|∇u|)] dx

λ
−
∫
Ω

fvdx ≥ 0. (2.37)

Defining

ψλ(x) :=
ϕ(|∇(u(x) + λv(x))|)− ϕ(|∇u(x)|)

λ
, (2.38)

the last inequality can be rewritten in the form

lim
λ→0+

∫
Ω

ψλ(x)dx−
∫
Ω

fvdx ≥ 0. (2.39)

Our goal is to apply the Lebesgue dominated convergence theorem (LDCT) to the
first term in (2.39). By the mean value theorem we find

ψλ(x) = ϕ′(|∇u(x) + Θ(x)λ∇v(x)|) ∇u(x) + Θ(x)λ∇v(x)

|∇u(x) + Θ(x)λ∇v(x)|
· ∇v(x), (2.40)
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where Θ(x) ∈ (0, 1), and since ϕ′ is continuous, it is clear that

ψλ(x)→ ϕ′(|∇u(x)|) ∇u(x)

|∇u(x)|
· ∇v(x) (2.41)

for almost every x ∈ Ω as λ → 0+. Moreover, for λ < 1, by first using the triangle
inequality in Rd together with the monotonicity of ϕ′ and then the Cauchy-Schwarz,
inequality we find

|ψλ(x)| ≤ ϕ′ (|∇u(x)|+ |∇v(x)|) |∇v(x)| . (2.42)

Using (2.9) and (2.10) in (2.42) we find

|ψλ(x)| ≤ c2c4 (|∇u(x)|+ |∇v(x)|)2 (ε+ |∇u(x)|+ |∇v(x)|)p−2 . (2.43)

Owing to (2.12) and the fact that |∇u(x)|+ |∇v(x)| ∈ Lp(Ω), we see that the right-
hand side of (2.43) is in L1(Ω). Now having the pointwise convergence (2.41) and
the bound (2.43), by applying the LDCT it follows that

lim
λ→0+

∫
Ω

ψλ(x)dx =

∫
Ω

ϕ′(|∇u(x)|) ∇u(x)

|∇u(x)|
· ∇v(x)dx, (2.44)

and thus ∫
Ω

ϕ′(|∇u(x)|) ∇u(x)

|∇u(x)|
· ∇v(x)dx−

∫
Ω

fvdx ≥ 0. (2.45)

Recalling the definition (1.2) of the operator A and the fact that v is an arbitrary
element from W 1,p

0 (Ω), from (2.45) we conclude that the minimizer u of J satisfies
(2.24).

It is left to show that u is indeed the only solution of (2.24). Let w ∈ W 1,p
g (Ω) is

another solution which satisfies (2.24). By subtracting the two associated equations
for the solutions u and w and and consequently setting v = u− w, we find that∫

Ω

(A(∇u)−A(∇w)) · (∇u−∇w) dx = 0. (2.46)

From (2.20a) and (2.46) it follows F(∇u) = F(∇w), which due to (1.3) means

(ϕ′(|∇u|) |∇u|)
1
2
∇u
|∇u|

= (ϕ′(|∇w|) |∇w|)
1
2
∇w
|∇w|

. (2.47)

By taking absolute values on both sides in (2.47), and using the fact that the function
t 7→ (ϕ′(t)t)

1
2 is strictly monotone increasing, we obtain |∇u| = |∇w|. Now, from

(2.47) it follows that ∇u = ∇w. Since u− w ∈ W 1,p
0 (Ω) if follows that u = w.
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3 Finite element approximation
For simplicity, we assume that Ω is a polyhedral domain. Let {Th}h>0 be a

non-degenerate (shape-regular) family of subdivisions of Ω into triangles (or tetra-
hedra), i.e, Ω = ∪E∈ThE. Every Th is charactirized by the maximum element size
h := maxE∈Th{hE}, where hE = diameter(E). We introduce the finite element space
V

(k)
h defined as

V
(k)
h :=

{
φh ∈ C(Ω) : φh|E ∈ Pk(E), ∀E ∈ Th

}
, (3.1)

where Pk(E) is the space of polynomials of degree less than or equal to k on the
element E. We introduce the following assumption which will be maintained from
now on.

Assumption 3. The boundary datum belongs to the local polynomial space, i.e.,
there exists ug,h ∈ V (k)

h such that γp(ug,h) = g.

Under this assumption, we can define the affine space

V
(k)
g,h :=

{
φh ∈ V (k)

h : φh = g on ∂Ω
}
. (3.2)

Then the finite element discretization of problem (2.24) reads

Find uh ∈ V (k)
g,h such that∫

Ω

A(∇uh) · ∇vhdx =

∫
Ω

fvhdx for all vh ∈ V (k)
0,h .

(3.3)

Here, we recall that A is given in (1.2) and that ϕ is assumed to satisfy Assumptions 1
and 2. The existence and uniqueness of the finite element solution uh of (3.3) can
be shown by considering the finite dimensional analogue of the variational problem
(2.26):

Find uh ∈ V (k)
g,h such that

J(uh) = inf
vh∈V

(k)
g,h

J(vh).
(3.4)

We note that V (k)
g,h is a closed and convex subset ofW 1,p

g (Ω) and that properties (2)-(4)
in Proposition 2.6 continue to hold on this subset. Hence, by Proposition 2.7 problem
(3.4) has a unique solution uh. Since J is Gateaux-differentiable at uh it follows that
uh is also a solution of (3.3). The uniqueness of this solution is shown in a similar
way to the one used to prove uniqueness of the continuous problem (2.24).

We cite the following interpolation error estimate, see Theorem (4.4.20) and Corol-
lary (4.4.24) in [31].

Lemma 3.1. Let u ∈ W l,p̄(Ω) with p̄ ≥ 1, k+1 ≥ l ≥ 2. Suppose that l−d/p̄ > 0 and
let Ikh be the corresponding global interpolation operator in V (k)

h . Then, there exists a
constant Cint,p̄,l,p̄ > 0 independent of h such that the following interpolation estimate
holds ∣∣u− Ikhu∣∣W 1,p̄(Ω)

≤ Cint,p̄,l,p̄h
l−1 |u|W l,p̄(Ω) . (3.5)
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If in addition l − 1− d/p̄ > 0, then there exists a constant Cint,∞,l,p̄ > 0 such that∣∣u− Ikhu∣∣W 1,∞(Ω)
≤ Cint,∞,l,p̄h

l−1−d/p̄ |u|W l,p̄(Ω) . (3.6)

Furthermore, we recall the near-best approximation result from [21] with respect
to ‖F(∇u)− F(∇uh)‖L2(Ω). Note that by Remark 2.3 this quantity is well defined.

Proposition 3.2. Let u ∈ W 1,p
g (Ω) be the solution of (2.24) and let uh ∈ V (k)

g,h be the
Galerkin approximation of u defined by (3.3). Then

‖F(∇u)− F(∇uh)‖L2(Ω) ≤ c7‖F(∇u)− F(∇vh)‖L2(Ω) for all vh ∈ V (k)
g,h . (3.7)

Furthermore, if F(∇u) ∈ [W 1,2(Ω)]
d, then

‖F(∇u)− F(∇Πk
hu)‖L2(Ω) ≤ Ch‖∇F(∇u)‖L2(Ω), (3.8)

where Πk
h : W 1,p(Ω) → V

(k)
h is for example the Scott-Zhang interpolation operator

in V (k)
h . In this case, by (3.7) and (3.8) we have

‖F(∇u)− F(∇uh)‖L2(Ω) ≤ c7‖F(∇u)− F(∇Πk
hu)‖L2(Ω) ≤ Ch‖∇F(∇u)‖L2(Ω).

(3.9)

Remark 3.3. Notice that the statements in Proposition 3.2 are valid for any fixed
1 < p <∞ and ε ≥ 0 in Assumption 2.

3.1 Near-best approximation results in the W 1,p seminorm

Let ϕ satisfy Assumption 1 and Assumption 2 for some p > 1. We distinguish
two main cases for p: p ≥ 2 and 1 < p < 2. For each case, we proceed in three
steps. In the first step we derive bounds for the W 1,p seminorm of u, which de-
pend only on the problem data. Analogous bounds are given for the corresponding
FE approximation uh. The second step consists of the estimation of the discretiza-
tion error |u− uh|W 1,p(Ω) in terms of the discretization error ‖F(∇u)−F(∇uh)‖L2(Ω)

and the approximation error ‖F(∇u)− F(∇vh)‖L2(Ω) in terms of the approximation
error |u− vh|W 1,p(Ω). Finally, in the third step, we combine the discretization and
approximation estimates from the previous steps with the near-best approximation
result (3.7).

3.1.1 The case p ≥ 2

Homogeneous Dirichlet boundary condition: Let us first consider the case
g = 0 on ∂Ω. Setting v = u in (2.24) and using (2.9) and (2.10) together with
Hölder’s inequality (2.6b) and Poincaré’s inequality (2.6), for all ε ≥ 0 we obtain

c1c3

∫
Ω

|∇u|p dx ≤ c1c3

∫
Ω

(ε+ |∇u|)p−2 |∇u|2 dx ≤ CP‖f‖Lp′ (Ω)‖∇u‖Lp(Ω), (3.10)
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where p′ := p/(p− 1) is the Hölder conjugate of p. From (3.10) it follows that

‖∇u‖Lp(Ω) ≤
(
CP
c1c3

‖f‖Lp′ (Ω)

) 1
p−1

=: M0
1 (Ω, f, p). (3.11)

Similarly, setting vh = uh in (3.3) we obtain

‖∇uh‖Lp(Ω) ≤M0
1 (Ω, f, p). (3.12)

Nonhomogeneous Dirichlet boundary condition: Now, consider the case where
g is not identically zero on ∂Ω. From Assumption 3 there is a function ug,h ∈ V (k)

g,h

such that γp(ug,h) = g. By setting v = u − ug,h ∈ W 1,p
0 (Ω) in the weak formulation

(2.24) and recalling the definition (1.2) of A we have∫
Ω

ϕ′(|∇u|) ∇u
|∇u|

· (∇u−∇ug,h)dx =

∫
Ω

f(u− ug,h)dx. (3.13)

By rearranging the terms in (3.13) and applying Hölder’s and Poincaré’s inequalities
(2.6b) and (2.6a) we obtain∫
Ω

ϕ′(|∇u|) |∇u| dx ≤ CP‖f‖Lp′ (Ω)

(
‖∇u‖Lp(Ω) + ‖∇ug,h‖Lp(Ω)

)
+

∫
Ω

ϕ′(|∇u|) |∇ug,h| dx.

(3.14)

Now, we estimate appropriately the relevant terms in (3.14). From (2.9) and (2.10)
it follows that∫

Ω

ϕ′(|∇u|) |∇u| dx ≥ c1c3

∫
Ω

|∇u|2 (ε+ |∇u|)p−2 dx ≥ c1c3‖∇u‖pLp(Ω). (3.15)

Next, by applying Young’s inequality (2.6d) with δ1 > 0 we find

CP‖f‖Lp′ (Ω)‖∇u‖Lp(Ω) ≤
δ1‖∇u‖pLp(Ω)

p
+

(
CP‖f‖Lp′ (Ω)

)p′
δ
p′
p

1 p
′

. (3.16)

Finally, we estiamte the last term in (3.14) from above. By using (2.9), (2.10), and
then (2.6e) with s = p− 2 > 0 and C(s) = 2s we find for t ≥ 0

0 ≤ ϕ′(t) ≤ c2c4t(ε+ t)p−2 ≤ 2p−2c2c4tε
p−2 + 2p−2c2c4t

p−1. (3.17)

If t ≤ 1, then (3.17) implies

ϕ′(t) ≤ 2p−2c2c4ε
p−2 + 2p−2c2c4 =: m1. (3.18)

If, on the other hand, t > 1 then (3.17) implies

ϕ′(t) ≤ 2p−2c2c4

(
εp−2 + 1

)
tp−1 = m1t

p−1. (3.19)
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Together (3.18) and (3.19) imply

ϕ′(t) ≤ m1 +m1t
p−1 for all t ≥ 0. (3.20)

By sequentially applying Hölder’s inequality (2.6b), (3.20), triangle inequality in
Lp
′
(Ω), and then Young’s inequality with δ2 > 0 we estimate∫

Ω

ϕ′(|∇u|) |∇ug,h| dx ≤ ‖ϕ′(|∇u|)‖Lp′ (Ω)‖∇ug,h‖Lp(Ω)

≤
(
m1 |Ω|

1
p′ +m1‖ |∇u|p−1 ‖Lq(Ω)

)
‖∇ug,h‖Lp(Ω)

≤m1 |Ω|
1
p′ ‖∇ug,h‖Lp(Ω) +

δ2‖∇u‖pLp(Ω)

p′
+

(
m1‖∇ug,h‖Lp(Ω)

)p
δ
p
p′
2 p

,

(3.21)

where |Ω| denotes the Lebesgue measure of Ω. By combining (3.14), (3.15), (3.16),
and (3.21) we obtain for δ1 = (c1c3p)/4 and δ2 = (c1c3p

′)/4

c1c3

2
‖∇u‖pLp(Ω) ≤CP‖f‖Lp′ (Ω)‖∇ug,h‖Lp(Ω) +

4
p′
p

(
CP‖f‖Lp′ (Ω)

)p′
(c1c3p)

p′
p p′

+m1 |Ω|
1
p′ ‖∇ug,h‖Lp(Ω) +

4
p
p′
(
m1‖∇ug,h‖Lp(Ω)

)p
(c1c3p′)

p
p′ p

.

(3.22)

From (3.22) we find the estimate

‖∇u‖Lp(Ω) ≤M g
1 (Ω, f, ug,h, p, ε), (3.23)

where the constant M g
1 is given by

M g
1 (Ω, f, ug,h, p, ε) :=

(
2

c1c3

) 1
p

CP‖f‖Lp′ (Ω)‖∇ug,h‖Lp(Ω) +
4
p′
p

(
CP‖f‖Lp′ (Ω)

)p′
(c1c3p)

p′
p p′

+m1 |Ω|
1
p′ ‖∇ug,h‖Lp(Ω) +

4
p
p′
(
m1‖∇ug,h‖Lp(Ω)

)p
(c1c3p′)

p
p′ p

) 1
p

.

(3.24)

In a similar way, by testing (3.3) with vh := uh − ug,h ∈ V
(k)

0,h one can obtain the
estimate

‖∇uh‖Lp(Ω) ≤M g
1 (Ω, f, ug,h, p, ε). (3.25)

Next, we derive an estimate for the discretization error |u − uh|W 1,p(Ω) in terms
of the discretization error ‖F(∇u)− F(∇uh)‖L2(Ω). Using (2.21) and (2.10) we have
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that

|u− uh|pW 1,p(Ω) =

∫
Ω

|∇u−∇uh|p dx

=

∫
Ω

|∇u−∇uh|2 ϕ′′ (|∇u|+ |∇uh|)
|∇u−∇uh|p−2

ϕ′′ (|∇u|+ |∇uh|)
dx

≤c6

∫
Ω

|F(∇u)− F(∇uh)|2
(ε+ |∇u|+ |∇uh|)p−2

c3 (ε+ |∇u|+ |∇uh|)p−2dx

=
c6

c3

‖F(∇u)− F(∇uh)‖2
L2(Ω).

(3.26)

On the other hand, by first using (2.21) and Hölder’s inequality (2.6b) in L
p
2 (Ω)

and L( p2)
′

(Ω) = L
p
p−2 (Ω), and then (2.10) together with the triangle inequality in

Lp(Ω) and the estimate (3.10), for all vh satisfying ‖∇vh‖Lp(Ω) ≤ M̃ g
1 for some M̃ g

1 ≥
M g

1 (Ω, f, ug,h, p, ε), we estimate

‖F(∇u)− F(∇vh)‖2
L2(Ω) ≤

1

c5

∫
Ω

|∇u−∇vh|2 ϕ′′ (|∇u|+ |∇vh|) dx

≤ 1

c5

(∫
Ω

|∇u−∇vh|p dx
) 2

p
(∫

Ω

c
p
p−2

4 (ε+ |∇u|+ |∇vh|)p dx
) p−2

p

≤c4

c5

(
|Ω|

1
p ε+ ‖ |∇u| ‖Lp(Ω) + ‖ |∇vh| ‖Lp(Ω)

)p−2

|u− vh|2W 1,p(Ω)

≤c4

c5

(
|Ω|

1
p ε+M g

1 + M̃ g
1

)p−2

|u− vh|2W 1,p(Ω) .

(3.27)

Finally, by combining (3.7) with (3.26) and (3.27) we arrive at a near-best ap-
proximation result in terms of the seminorm |·|W 1,p(Ω): For all vh ∈ V

(k)
g,h satisfying

‖∇vh‖Lp(Ω) ≤ M̃ g
1 it holds

|u− uh|W 1,p(Ω) ≤
(
c6

c3

) 1
p

‖F(∇u)− F(∇uh)‖
2
p

L2(Ω)

≤
(
c6

c3

) 1
p

c
2
p

7 ‖F(∇u)− F(∇vh)‖
2
p

L2(Ω) ≤ C1 |u− vh|
2
p

W 1,p(Ω) ,

(3.28)

where

C1(Ω, f, ε, p, M̃ g
1 ) :=

(
c6

c3

) 1
p

c
2
p

7

(
c4

c5

) 1
p (
|Ω|

1
p ε+M g

1 + M̃ g
1

) p−2
p
. (3.29)

Proposition 3.4. Let ϕ satisfy Assumption 1 and Assumption 2 with p > 2. Let
u ∈ W 1,p

g (Ω) be the solution of (2.24) and let uh ∈ V (k)
g,h be the Galerkin approximation

18



of u defined by (3.3). Then if we choose M̃ g
1 = 2M g

1 + ‖∇ug,h‖Lp(Ω) it holds

|u− uh|W 1,p(Ω) ≤
(
c6

c3

) 1
p

‖F(∇u)− F(∇uh)‖
2
p

L2(Ω)

≤
(
c6

c3

) 1
p

c
2
p

7 inf
vh∈V

(k)
g,h

‖F(∇u)− F(∇vh)‖
2
p

L2(Ω)

≤ C1

(
Ω, f, ε, p, 2M g

1 + ‖∇ug,h‖Lp(Ω)

)
inf

vh∈V
(k)
g,h

|u− vh|
2
p

W 1,p(Ω) ,

(3.30)

where M g
1 (Ω, f, ug,h, p, ε) is defined in (3.24), C1 is defined in (3.29), and ug,h is a

fixed function from V
(k)
g,h (see Assumption 3).

Proof. First, observe that we can take the infimum over all functions vh ∈ V (k)
g,h in the

first two inequalities in (3.28) since those hold regardless of whether ‖∇vh‖Lp(Ω) ≤ M̃ g
1

is satisfiesd (they follow from (3.26) and (3.7)). Therefore, it is clear that

|u− uh|W 1,p(Ω) ≤
(
c6

c3

) 1
p

‖F(∇u)− F(∇uh)‖
2
p

L2(Ω)

≤
(
c6

c3

) 1
p

c
2
p

7 inf
vh∈V

(k)
g,h

‖F(∇u)− F(∇vh)‖
2
p

L2(Ω) ≤
(
c6

c3

) 1
p

c
2
p

7 inf
vh∈V

(k)
g,h

‖∇vh‖Lp(Ω)≤M̃
g
1

‖F(∇u)− F(∇vh)‖
2
p

L2(Ω)

≤C1

(
Ω, f, ε, p, 2M g

1 + ‖∇ug,h‖Lp(Ω)

)
inf

vh∈V
(k)
g,h

‖∇vh‖Lp(Ω)≤M̃
g
1

|u− vh|
2
p

W 1,p(Ω) .

(3.31)

Now, it is left to show that

inf
vh∈V

(k)
g,h

‖∇vh‖Lp(Ω)≤M̃
g
1

|u− vh|
2
p

W 1,p(Ω) = inf
vh∈V

(k)
g,h

|u− vh|
2
p

W 1,p(Ω) (3.32)

holds with the above defined M̃ g
1 . Obviously, we have the inequality

inf
vh∈V

(k)
g,h

‖∇vh‖Lp(Ω)≤M̃
g
1

|u− vh|
2
p

W 1,p(Ω) ≥ inf
vh∈V

(k)
g,h

|u− vh|
2
p

W 1,p(Ω) . (3.33)

Now, we want to show the opposite inequality to (3.33). First, observe that the
following identity holds:

inf
vh∈V

(k)
g,h

|u− vh|
2
p

W 1,p(Ω) = min

 inf
vh∈V

(k)
g,h

‖∇vh‖Lp(Ω)≤M̃
g
1

|u− vh|
2
p

W 1,p(Ω) , inf
vh∈V

(k)
g,h

‖∇vh‖Lp(Ω)>M̃
g
1

|u− vh|
2
p

W 1,p(Ω)

 .

(3.34)
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By using the triangle inequality in Lp(Ω) we obtain

‖∇(u− vh)‖
2
p

Lp(Ω) ≥
(
‖∇vh‖Lp(Ω) − ‖∇u‖Lp(Ω)

) 2
p >

(
M g

1 + ‖∇ug,h‖Lp(Ω)

) 2
p (3.35)

for all functions vh such that ‖∇vh‖Lp(Ω) > M̃ g
1 . On the other hand, again by applying

the triangle inequality in Lp(Ω) we find

inf
vh∈V

(k)
g,h

‖∇vh‖Lp(Ω)≤M̃
g
1

|u− vh|
2
p

W 1,p(Ω) ≤ |u− ug,h|
2
p

W 1,p(Ω) ≤
(
M g

1 + ‖∇ug,h‖Lp(Ω)

) 2
p (3.36)

Taking the infimum in (3.35) over all functions vh with ‖∇vh‖Lp(Ω) > M̃ g
1 and com-

bining with (3.36) we find

inf
vh∈V

(k)
g,h

‖∇vh‖Lp(Ω)≤M̃
g
1

|u− vh|
2
p

W 1,p(Ω) < inf
vh∈V

(k)
g,h

‖∇vh‖Lp(Ω)>M̃
g
1

|u− vh|
2
p

W 1,p(Ω) . (3.37)

Now, (3.37) and (3.34) imply the equality (3.32).

Remark 3.5. Note that in the proof of (3.27) are only used Assumption 1 (which
ensures that the statement in Lemma 2.4 holds) and the upper bound in (2.10) to-
gether with the bounds (3.23) and (3.25) on ‖∇u‖Lp(Ω) and ‖∇uh‖Lp(Ω), respectively.
In order to show the bounds on ‖∇u‖Lp(Ω) and ‖∇uh‖Lp(Ω) we have used also the lower
bound in (2.10). However, this can be avoided by letting the constant C1 depend on
‖∇u‖Lp(Ω) and on the constant M̃ g

1 ≥ ‖∇u‖Lp(Ω). Indeed, from the near-best approx-
imation result (3.7) and the estimate (3.27) one obtains that for all vh satisfying
‖∇vh‖Lp(Ω) ≤ M̃ g

1 for some M̃ g
1 ≥ ‖∇u‖Lp(Ω) it holds

‖F(∇u)− F(∇uh)‖L2(Ω) ≤ c7‖F(∇u)− F(∇vh)‖L2(Ω) ≤ C ′1 |u− vh|W 1,p(Ω) , (3.38)

where

C ′1 :=

(
c4

c5

) 1
2 (
|Ω|

1
p ε+ ‖∇u‖Lp(Ω) + M̃ g

1

) p−2
2
. (3.39)

Then, repeating the proof of Proposition 3.4 with M̃ g
1 = 2‖∇u‖Lp(Ω) + ‖∇ug,h‖Lp(Ω)

we see that (3.32) still holds. Therefore, we obtain the near-best approximation result

‖F(∇u)− F(∇uh)‖L2(Ω) ≤ c7 inf
vh∈V

(k)
g,h

‖F(∇u)− F(∇vh)‖L2(Ω) ≤ C ′1 inf
vh∈V

(k)
g,h

|u− vh|W 1,p(Ω) ,

(3.40)

where

C ′1 :=

(
c4

c5

) 1
2 (
|Ω|

1
p ε+ 3‖∇u‖Lp(Ω) + ‖∇ug,h‖Lp(Ω)

) p−2
2
. (3.41)
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3.1.2 The case 1 < p < 2

Homogeneous Dirichlet boundary condition: Let us first consider the case
g = 0 on ∂Ω. Setting v = u in (2.24) and using (2.9) and (2.10) together with
Hölder’s inequality (2.6b) and Poincaré’s inequality (2.6a), for all ε ≥ 0 we obtain

c1c3

∫
Ω

(ε+ |∇u|)p−2 |∇u|2 dx ≤
∫
Ω

ϕ′(|∇u|) |∇u| dx ≤ CP‖f‖Lp′ (Ω)‖∇u‖Lp(Ω).

(3.42)

Next, using the reverse Hölder’s inequality (2.6c) on the left-hand side of (3.42)
together with the triangle inequality in Lp(Ω) and the inequality (2.6e) with s =
2− p ∈ (0, 1) we find

c1c3

‖∇u‖2
Lp(Ω)

‖ε‖2−p
Lp(Ω) + ‖∇u‖2−p

Lp(Ω)

≤ CP‖f‖Lp′ (Ω)‖∇u‖Lp(Ω), (3.43)

from where it follows (if ‖∇u‖Lp(Ω) = 0, then the inequality below still holds)

‖∇u‖Lp(Ω) ≤
CP‖f‖Lp′ (Ω)

c1c3

(
‖ε‖2−p

Lp(Ω) + ‖∇u‖2−p
Lp(Ω)

)
. (3.44)

Considering the two possible cases (i) ‖∇u‖Lp(Ω) ≤ ‖ε‖Lp(Ω) or (ii) ‖∇u‖Lp(Ω) >
‖ε‖Lp(Ω), from (3.44) we can derive the energy estimate

‖∇u‖Lp(Ω) ≤ max

{
‖ε‖Lp(Ω),

(
2CP‖f‖Lp′ (Ω)

c1c3

) 1
p−1

}
=: M0

2 (Ω, f, p, ε) . (3.45)

Similarly, by taking vh = uh in (3.3) and repeating the steps above we find

‖∇uh‖Lp(Ω) ≤M0
2 (Ω, f, p, ε) . (3.46)

Nonhomogeneous Dirichlet boundary condtion: In the case where g is not
identically zero on ∂Ω, by setting v = u − ug,h ∈ W 1,p

0 (Ω) in the weak formulation
(2.24) we can obtain (3.14) in a similar way to the case p ≥ 2. We estimate appro-
priately the terms containing the solution u in (3.14). As in (3.43), we find with the
help of the reverse Hölder’s inequality (2.6c)

c1c3

‖∇u‖2
Lp(Ω)

‖ε‖2−p
Lp(Ω) + ‖∇u‖2−p

Lp(Ω)

≤
∫
Ω

ϕ′(|∇u|) |∇u| dx. (3.47)

By applying Young’s inequality (2.6d) with δ3 > 0 we find

CP‖f‖Lp′ (Ω)‖∇u‖Lp(Ω) ≤
δ3‖∇u‖pLp(Ω)

p
+

(
CP‖f‖Lp′ (Ω)

)p′
δ
p′
p

3 p
′

. (3.48)

Next, by (2.9) and (2.10) we have

ϕ′(t) ≤ c2c4t(ε+ t)p−2 ≤ c2c4t
p−1 for all t ≥ 0. (3.49)
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Therefore, for the last term in (3.14) we obtain by using Hölder’s inequality (2.6b)
and Young’s inequality (2.6d) for some δ4 > 0∫
Ω

ϕ′(|∇u|) |∇ug,h| dx ≤ ‖ϕ′(|∇u|)‖Lp′ (Ω)‖∇ug,h‖Lp(Ω) ≤ c2c4‖ |∇u|p−1 ‖Lp′ (Ω)‖∇ug,h‖Lp(Ω)

≤
δ4‖∇u‖pLp(Ω)

p′
+

(
c2c4‖∇ug,h‖Lp(Ω)

)p
δ
p
p′
4 p

. (3.50)

Now, we combine the above obtained estimates. If ‖∇u‖Lp(Ω) ≤ ‖ε‖Lp(Ω), then we
do not have to do anything more. If, on the other hand, ‖∇u‖Lp(Ω) > ‖ε‖Lp(Ω), then
from (3.47) it follows

c1c3

2
‖∇u‖pLp(Ω) ≤

∫
Ω

ϕ′(|∇u|) |∇u| dx. (3.51)

Combining (3.51), (3.14), (3.48) for δ3 = (c1c3p)/8, and (3.50) for δ4 = (c1c3p
′)/8 we

estimate

c1c3

4
‖∇u‖pLp(Ω) ≤ CP‖f‖Lp′ (Ω)‖∇ug,h‖Lp(Ω) +

(
CP‖f‖Lp′ (Ω)

)p′
δ
p′
p

3 p
′

+

(
c2c4‖∇ug,h‖Lp(Ω)

)p
δ
p
p′
4 p

.

(3.52)

From (3.52) follows that

‖∇u‖Lp(Ω) ≤M g
2 (Ω, f, ug,h, p, ε), (3.53)

where

M g
2 (Ω, f, ug,h, p, ε) :=

(
4

c1c3

) 1
p

CP‖f‖Lp′ (Ω)‖∇ug,h‖Lp(Ω) +
8
p′
p

(
CP‖f‖Lp′ (Ω)

)p′
(c1c3p)

p′
p p′

+
8
p
p′
(
c2c4‖∇ug,h‖Lp(Ω)

)p
(c1c3p′)

p
p′ p


1
p

.

(3.54)

In a similar way, by testing (3.3) with vh := uh − ug,h ∈ V
(k)

0,h one can obtain the
estimate

‖∇uh‖Lp(Ω) ≤M g
2 (Ω, f, ug,h, p, ε). (3.55)

Next we derive an upper bound for the discretization error |u− uh|W 1,p in terms
of the discretization error ‖F(∇u)−F(∇uh)‖L2(Ω). Applying sequentially (2.21) and

(2.10), Hölder’s inequality (2.6b) in L
2
p (Ω) and L( 2

p)
′

(Ω) (note that
(

2
p

)′
= 2

2−p), we
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obtain ∫
Ω

|∇u−∇uh|p dx

=

∫
Ω

|∇u−∇uh|p ϕ′′ (|∇u|+ |∇uh|)
p
2

1

ϕ′′ (|∇u|+ |∇uh|)
p
2

dx

≤
(
c6

c3

) p
2
∫

Ω

|F(∇u)− F(∇uh)|p
1

(ε+ |∇u|+ |∇uh|)
p(p−2)

2

dx

≤
(
c6

c3

) p
2

‖F(∇u)− F(∇uh)‖pL2(Ω)

∫
Ω

(ε+ |∇u|+ |∇uh|)p dx


2−p

2

≤N1‖F(∇u)− F(∇uh)‖pL2(Ω).

(3.56)

In the last step of (3.56), we have used the triangle inequality in Lp(Ω) and the
bounds (3.53) and (3.55). Thus, the constant N1 is given by

N1 (Ω, f, ug,h, p, ε) :=
(
|Ω|

1
p ε+ 2M g

2

) p(2−p)
2

(
c6

c3

) p
2

. (3.57)

From here we arrive at

|u− uh|W 1,p(Ω) ≤ N
1
p

1 ‖F(∇u)− F(∇uh)‖L2(Ω). (3.58)

By combining (3.58) with (3.7), for all vh ∈ V (k)
g,h it holds

|u− uh|W 1,p(Ω) ≤c7N
1
p

1 ‖F(∇u)− F(∇vh)‖L2(Ω). (3.59)

We now estimate the right-hand side of (3.59) in terms of |u− vh|W 1,p(Ω). Using (2.21)
and (2.10) we have

‖F(∇u)− F(∇vh)‖2
L2(Ω) ≤

1

c5

∫
Ω

|∇u−∇vh|2 ϕ′′ (|∇u|+ |∇vh|) dx

=
1

c5

∫
Ω

|∇u−∇vh|p ϕ′′ (|∇u|+ |∇vh|) |∇u−∇vh|2−p dx

≤c4

c5

∫
Ω

|∇u−∇vh|p
|∇u−∇vh|2−p

(ε+ |∇u|+ |∇vh|)2−pdx

≤c4

c5

∫
Ω

|∇u−∇vh|p
(ε+ |∇u|+ |∇vh|)2−p

(ε+ |∇u|+ |∇vh|)2−pdx =
c4

c5

|u− vh|pW 1,p(Ω) .

(3.60)

In this way, we arrive at a near-best approximation result in terms of the semi-
norm |·|W 1,p(Ω).

Proposition 3.6. Let ϕ satisfy Assumption 1 and Assumption 2 with 1 < p < 2. Let
u ∈ W 1,p

g (Ω) be the solution of (2.24) and let uh ∈ V (k)
g,h be the finite element solution
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defined by (3.3). Then the estimate

1

N
1
p

1

|u− uh|W 1,p(Ω) ≤ ‖F(∇u)− F(∇uh)‖L2(Ω) ≤ c7‖F(∇u)− F(∇vh)‖L2(Ω)

≤ c7

(
c4

c5

) 1
2

|u− vh|
p
2

W 1,p(Ω) for all vh ∈ V (k)
g,h

(3.61)

holds with N1 (Ω, f, ug,h, p, ε) defined in (3.57).

Proof. By combining (3.58), the near-best approximation result (3.7), and (3.60) we
obtain (3.61).

Remark 3.7. Note that in the proof of (3.60) only the upper bound in (2.10) is
used. Therefore, if existence and uniqueness of the solutions u and uh of (2.24) and
(3.3), respectively, are granted to us, then the last two inequalities in (3.61) hold by
requiring only Assumption 1 (which ensures that the statement in Lemma 2.4 holds)
and the upper bound in (2.10).

Remark 3.8. Notice that the near-best approximation result (3.30) was proved in
[32] under similar assumptions on the data and the nonlinear differential operator by
employing an approach from [4]. On the other hand, the analogous result in the case
p ≥ 2 that is proved in [32] is slightly weaker than (3.30). More precisely, in [32] it
is proved that

|u− uh|W 1,p(Ω) ≤ C
∣∣u− Ikhu∣∣ 2

p

W 1,p(Ω) for p ≥ 2,

where the constant C may depend on ‖∇Ikhu‖Lp(Ω).

Remark 3.9. From (3.56) and (3.60) we can deduce the following pointwise inequal-
ities which are valid for any vh ∈ V (k)

g,h :

|∇u−∇vh|p ≤
(
c6

c3

) p
2

|F(∇u)− F(∇vh)|p (ε+ |∇u|+ |∇vh|)
p(2−p)

2 for a.e. x ∈ Ω.

(3.62)

and

|F(∇u)− F(∇vh)|2 ≤
c4

c5

|∇u−∇vh|p for a.e. x ∈ Ω. (3.63)

to the W 1,p seminorm or the quantity |F(∇u)− F(∇uh)|.

Remark 3.10. All the results derived above remain valid if f ∈ W−1,p′(Ω). In
this case, all integrals of the form

∫
Ω

fwdx for f ∈ Lp′(Ω) and w ∈ W 1,p
0 (Ω) above are

replaced by the duality product 〈f, w〉W−1,p′ (Ω)×W 1,p
0 (Ω). In this case, by using Poincaré’s

inequality (2.6a) the estimates
∫
Ω

fwdx ≤ CP‖f‖Lp′ (Ω)‖w‖Lp(Ω) in the proofs above are

just replaced by the estimate

〈f, w〉W−1,p′ (Ω)×W 1,p
0 (Ω) ≤ ‖f‖W−1,p′ (Ω)‖w‖W 1,p(Ω) ≤ (1 + Cp

P )
1
p ‖f‖W−1,p′ (Ω)‖∇w‖Lp(Ω).

24



4 Convergence rates

4.1 Basic convergence rates under the assumption u ∈ W l,p(Ω)

So far in the derivation of the near-best approximation results (3.30) and (3.61)
we have only assumed that u is the weak solution of (1.1), i.e., that u ∈ W 1,p

g (Ω). Let
us further assume that u ∈ W l,p(Ω), with l ≥ 2. Then, setting vh = Ikhu in (3.30) and
(3.61) with k ≥ l− 1, and utilizing Lemma 3.1 we obtain the following (suboptimal)
error estimates:

|u− uh|W 1,p(Ω) . h
(l−1)2
p for p > 2, (4.1a)

|u− uh|W 1,p(Ω) . h
(l−1)p

2 for 1 < p ≤ 2, (4.1b)

where uh ∈ V (k)
g,h is the Galerkin approximation of u defined in (3.3).

Similarly, setting vh = Ikhu in (3.30) (or in (3.40)) and in (3.61), and utilizing again
Lemma 3.1, we obtain the bounds

‖F(∇u)− F(∇uh)‖L2(Ω) . hl−1 for p > 2, (4.2a)

‖F(∇u)− F(∇uh)‖L2(Ω) . h
(l−1)p

2 for 1 < p ≤ 2, (4.2b)

Remark 4.1. Note that the discretization convergence rates (4.1a), (4.1b), (4.2a),
(4.2b) hold for any ε ≥ 0 in Assumption 2.

4.2 Improved convergence rates for the case 1 < p ≤ 2

In this section we will only focus on the case 1 < p ≤ 2. From Section 4.1 it
becomes clear that one cannot immediately obtain optimal convergence rates (see
(4.1b) and (4.2b)) just by using the near-best approximation result (3.61), even if
u was assumed to be in W l,2(Ω). Here, by optimal rate it should be understood
the convergence rate of the finite element approximation error in the corresponding
norm. In the case of the W 1,p-seminorm, we know that the approximation error

inf
vh∈Vg,h

|u− vh|W 1,p(Ω) has a convergence rate min(k + 1, l)− 1 if u ∈ W l,p(Ω), but the

rate that can be inferred from (3.61) (see (4.1b) for k = l − 1) for the discretization
error |u− uh|W 1,p(Ω) is only (min{k + 1, l} − 1)p/2. Likewise, the rate that can be
directly inferred from (3.61) (see (4.2b) for k = l − 1) for the discretization error
‖F(∇u)−F(∇uh)‖L2(Ω) is (min{k+1, l}−1)p/2. However, in what follows, we will see
that the convergence rate of those discretization errors can be improved if u ∈ W l,p̄(Ω)
with p̄ ≥ p. In particular, we will see that if p̄ ≥ 2, then the approximation error

inf
vh∈Vg,h

‖F(∇u)−F(∇vh)‖L2(Ω) converges with a rate min(k+1, l)−1. This is done by

modifying the derivation of the approximation error estimate (3.60) in Section 3.1.2
under the assumption ε > 0. Consequently, thanks to the near-best approximation
result (3.7), the discretization error in the F-quasinorm converges with the same rate.

Assumption 4 (Additional assumption on the p-structure of ϕ). The inequality
(2.10) in Assumption 2 holds with ε > 0.
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4.2.1 Convergence rates for u ∈ W l,p̄(Ω) with p̄ ≥ p and l > d/p̄

We make the following additional assumption on the regularity of the weak solu-
tion u of (2.24):

u ∈ W l,p̄(Ω) for some p̄ ≥ p and l ≥ 2. (4.3)

Let Assumption 4 hold and let u satisfy (4.3). We distinguish two cases. First, let
2 ≥ p̄ ≥ p. Then, by using (2.21) and (2.10) we obtain

‖F(∇u)− F(∇vh)‖2
L2(Ω) ≤

1

c5

∫
Ω

|∇u−∇vh|2 ϕ′′ (|∇u|+ |∇vh|) dx

=
1

c5

∫
Ω

|∇u−∇vh|p̄ ϕ′′ (|∇u|+ |∇vh|) |∇u−∇vh|2−p̄ dx

(2.10)

≤ c4

c5

∫
Ω

|∇u−∇vh|p̄
|∇u−∇vh|2−p̄

(ε+ |∇u|+ |∇vh|)2−pdx

≤c4

c5

∫
Ω

|∇u−∇vh|p̄
(ε+ |∇u|+ |∇vh|)2−p̄

(ε+ |∇u|+ |∇vh|)2−pdx

≤c4

c5

1

εp̄−p
|u− vh|p̄W 1,p̄(Ω) for all vh ∈ V (k)

g,h ,

(4.4)

and taking the square root we directly obtain

‖F(∇u)− F(∇vh)‖L2(Ω) ≤
(
c4

c5

) 1
2
(

1

εp̄−p

) 1
2

|u− vh|
p̄
2

W 1,p̄(Ω) for all vh ∈ V (k)
g,h .

(4.5)

Suppose that l − d/p̄ > 0. In this case W l,p̄(Ω) is embedded in C0(Ω) and the inter-
polant of Ikhu is well defined (one can also make use of interpolants for low regularity
solutions, e.g., Scott-Zhang). Setting vh = Ikhu in (4.5), then using Lemma 3.1 and
combining the result with the first two inequalities in (3.61) we obtain for k ≥ l − 1

|u− uh|W 1,p(Ω) . ‖F(∇u)− F(∇uh)‖L2(Ω)

. ‖F(∇u)− F(∇Ikhu)‖L2(Ω) ≤
(
c4

c5

) 1
2
(

1

εp̄−p

) 1
2

C
p̄
2
int,p̄,l,p̄h

(l−1) p̄
2 |u|

p̄
2

W l,p̄(Ω)
.

(4.6)

On the other hand, when p̄ > 2 it is easy to see that

‖F(∇u)− F(∇uh)‖2
L2(Ω) . ‖F(∇u)− F(∇vh)‖2

L2(Ω)

≤ 1

c5

∫
Ω

|∇u−∇vh|2 ϕ′′ (|∇u|+ |∇vh|) dx

≤ c4

c5

1

ε2−p
|u− vh|2W 1,2(Ω) for all vh ∈ V (k)

g,h .

(4.7)
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Again, by taking vh = Ikhu in (4.7), then using Lemma 3.1 and combining the result
with the first two inequalities in (3.61) we obtain for k ≥ l − 1

|u− uh|W 1,p(Ω) . ‖F(∇u)− F(∇uh)‖L2(Ω)

. ‖F(∇u)− F(∇Ikhu)‖L2(Ω) ≤
(
c4

c5

) 1
2
(

1

ε2−p

) 1
2

Cint,2,l,2h
l−1 |u|W l,2(Ω) .

(4.8)

4.2.2 Convergence rates for u ∈ W l,p̄(Ω) with p̄ ≥ 1 and l > 1 + d/p̄

Here we make the following additional assumption on the regularity of the weak
solution u of (2.24) (for u being in ∈ W 1,p

g (Ω)):

u ∈ W l,p̄(Ω) for some p̄ ≥ 1 with l ≥ 2 and l > 1 + d/p̄. (4.9)

In this case, since l − 1− d/p̄ > 0 from the Sobolev embedding theorem (see Theorem
4.12 in [1]) we have that u ∈ W 1,∞(Ω). This means that the analysis presented below
also covers cases where p̄ < p. For example, if d = 2 and l ≥ 3 we can have any p̄ > 1
and any 1 < p ≤ 2. Next, if d = 3 and l = 3 we can have any p and p̄ such that
1.5 < p̄ < p in addition to the cases where p̄ ≥ p from Section 4.2.1 (see Example 7
in Section 5). If d = 3 and l ≥ 4, then our analysis covers all p̄ > 1 and 1 < p ≤ 2 as
well.

Let Assumption 4 hold and let u satisfy (4.9). Again, we distinguish two cases.
First, let 2 ≥ p̄ ≥ 1. Then, by using (2.10) we have

‖F(∇u)− F(∇vh)‖2
L2(Ω) ≤

1

c5

∫
Ω

|∇u−∇vh|2 ϕ′′ (|∇u|+ |∇vh|) dx

=
1

c5

∫
Ω

|∇u−∇vh|p̄ ϕ′′ (|∇u|+ |∇vh|) |∇u−∇vh|2−p̄ dx

≤ c4

c5

∫
Ω

|∇u−∇vh|p̄
|∇u−∇vh|2−p̄

(ε+ |∇u|+ |∇vh|)2−pdx

≤ c4

c5

1

ε2−p
|u− vh|p̄W 1,p̄(Ω) |u− vh|

2−p̄
W 1,∞(Ω) for all vh ∈ V (k)

g,h .

(4.10)

By setting vh = Ikhu in (4.10), then using Lemma 3.1 and combining the result with
the first two inequalities in (3.61) we obtain

|u− uh|W 1,p(Ω) . ‖F(∇u)− F(∇uh)‖L2(Ω) . ‖F(∇u)− F(∇Ikhu)‖L2(Ω)

≤
(
c4

c5

) 1
2
(

1

ε2−p

) 1
2

C
p̄
2
int,p̄,l,p̄h

(l−1)p̄
2 |u|

p̄
2

W l,p̄(Ω)
C

2−p̄
2

int,∞,l,p̄h
(l−1−d/p̄)(2−p̄)

2 |u|
2−p̄

2

W l,p̄(Ω)

=

(
c4

c5

) 1
2
(

1

ε2−p

) 1
2

C
p̄
2
int,p̄,l,p̄C

2−p̄
2

int,∞,l,p̄h
l−1+ d

2
− d
p̄ |u|W l,p̄(Ω) .

(4.11)

If p̄ ≥ 2, it is easy to see that
|u− uh|W 1,p(Ω) . ‖F(∇u)− F(∇uh)‖L2(Ω)

. ‖F(∇u)− F(∇Ikhu)‖L2(Ω)

≤
(
c4

c5

) 1
2
(

1

ε2−p

) 1
2

Cint,2,l,2h
l−1 |u|W l,2(Ω) .

(4.12)
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We can summarize the expected convergence rates from Section 4.2.1 and Sec-
tion 4.2.2 in the following theorem.

Theorem 4.2. Let ϕ satisfy Assumption 1 and Assumption 2 for some 1 < p ≤ 2.
Let us further suppose that Assumption 4 holds. Let u ∈ W 1,p

g (Ω) be the solution of
(2.24) and let uh ∈ V (k)

g,h be the Galerkin approximation of u defined by (3.3).

• If u ∈ W l,p̄(Ω) with p̄ ≥ p and l > d/p̄, then for k ≥ l − 1

|u− uh|W 1,p(Ω) .‖F(∇u)− F(∇uh)‖L2(Ω)

.‖F(∇u)− F(∇Ikhu)‖L2(Ω) ≤ C2(ε)hmin{(l−1) p̄
2
,l−1}.

(4.13)

• If u ∈ W l,p̄(Ω) with p̄ ≥ 1 and l > 1 + d/p̄, then for k ≥ l − 1

|u− uh|W 1,p(Ω) .‖F(∇u)− F(∇uh)‖L2(Ω)

.‖F(∇u)− F(∇Ikhu)‖L2(Ω) ≤ C3(ε)hl−1+min{ d2− dp̄ ,0}.
(4.14)

The constants C2(ε) and C3(ε) diverge as ε→ 0. More explicit expressions for these
constants can be found by comparing (4.13) to (4.6) and (4.8), and (4.14) to (4.11)
and (4.12).

Remark 4.3. • Note that the estimate (4.13) agrees with the estimate (3.9). Indeed,
from Theorem 4.2 it follows that if u ∈ W 2,2(Ω), then the convergence rate in (4.13)
is the optimal O(h1) for P1 finite elements. On the other hand, from Remark 2.5 it
follows that F(∇u) ∈ W 1,2(Ω) and thus (3.9) is also valid giving the optimal O(h1)
convergence rate.
• Also, notice that the estimate (3.9) given in Proposition 3.2 is valid for any

1 < p < ∞ and ε ≥ 0, whereas the estimates in Theorem 4.2 are derived under the
assumption 1 < p ≤ 2 and ε > 0. However, at the cost of the additional assumption
on ε, Theorem 4.2 also gives the convergence rates for the case of higher regularity
on u and higher order polynomial spaces. In particular, it gives optimal convergence
rates when u ∈ W l,2(Ω) with l ≥ 2 and polynomial spaces Pk with k ≥ l − 1.

Remark 4.4 (Optimal rates in the case p > 2). We should also emphasize that
according to the estimate (4.2a) in the case where p > 2, one immediately obtains
the optimal O(h1) convergence rate if u ∈ W 2,p(Ω). The estimate (4.2a) also gives
optimal convergence rates O(hl−1) in case of higher regularity on u, i.e., u ∈ W l,p(Ω)
and higher order polynomial spaces. Moreover, this estimate is valid for any p > 2
and any ε ≥ 0 in Assumption 1.

On the other hand, Assumption 2 combined with the equivalences (2.20) imply
that F is locally Lipschitz:

|F(a)− F(b)| .
√
ϕ′′(|a|+ |b|) |a− b|

≤
(
c4 (ε+ |a|+ |b|)p−2) 1

2 |a− b| for all a, b ∈ Rd.
(4.15)

Now, if d ∈ {2, 3} and u ∈ W 2,p(Ω) with p > d (i.e., ∇u ∈ [W 1,p(Ω)]
d), from

Theorem 1 in [25] applied to each component of the vector function F = (F1, . . . , Fd)

it follows that F(∇u) ∈ [W 1,p(Ω)]
d ⊂ [W 1,2(Ω)]

d. This means that for p > d our
result again agrees with the estimate (3.9) derived in [21].
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5 Numerical examples
In this section, we present a series of numerical examples which confirm the pre-

dicted convergence rates, given in Theorem 4.2. More precisely, we consider (1.1) for
ϕ′ and A as in Example 1 in Section 2.2 with a prescribed solution u = |x|γ , x =
(x1, . . . , xd) for some γ > 0. In this case, the regularity of the solution depends only
on the parameter γ. It can be checked that u ∈ W l,p̄(Ω) if and only if γ > l − d

p̄
.

For a given parameter γ and a differentiability exponent l we denote by p̄ the limit
summability of the solution u, given by p̄ = d/(l − γ).

The problem is posed on the domain Ω = (−L,L)d with L = 0.5 for d = 2 and
L = 0.4 for d = 3. Here, we note that for the above defined solution u the boundary
data is not in the local FE space on the boundary ∂Ω and thus Assumption 3 is
not satisfied. However, this does not affect the convergence rates obtained below. In
fact, to be precise and satsify Assumption 3 one can consider the function u(x) =
ψ(x)u(x) = ψ(x) |x|γ instead of u = |x|γ, where ψ is a smooth function2 in Ω with
ψ(x) = 0 on ∂Ω such that ψ is either uniformly positive or uniformly negative in
a neighborhood of 0 ∈ Rd. The problem is solved using local polynomial spaces Pk
with k = 1, k = 2 and k = 3. The nonlinear algebraic system resulting from (3.3) is
linearized by applying a simple Picard iterative method and the final derived linear
system is solved by a Jacobi preconditioned conjugate gradient method with a very
high accuracy. Every example has been solved by applying several refinement steps
on structured meshes with hs, hs+1, . . . , starting from hs=0 = a

√
d with a = 0.1 for

d = 2 and a = 0.4 for d = 3. The numerical convergence rates rFD are computed by
the formula

rFD =d
ln (es−1/es)

ln (ns/ns−1)
, with es = ‖F(∇u)− F(∇uhs)‖L2(Ω), (5.1a)

and compared with the corresponding interpolation rates rFI given by

rFI =d
ln (es−1/es)

ln (ns/ns−1)
, with es = ‖F(∇u)− F(∇Ikhsu)‖L2(Ω), (5.1b)

where ns is the number of nodes at mesh refinement level (MRL) s. The rates are
given in the respective tables below. When the calculations are not feasible because
of computational reasons related to memory, the corresponding entries in the tables
are left empty.

Remark 5.1. Notice that if p̄ is the limit summability exponent of u for some fixed
l and γ, then u does not really belong to the space W l,p̄(Ω), but rather to the space
W l,p̄−δ(Ω) for any 0 < δ ≤ p̄ − 1. Nevertheless, the predicted convergence rates in
(4.13) and (4.14) should be computed with the limit value p̄. In order to be precise, we
will write u ∈ W l,p̄−δ(Ω) for all δ such that 0 < δ ≤ p̄− 1 instead of just u ∈ W l,p̄(Ω)
in the tables below.

Because we are going to study the behavior of the convergence rates and check
the validity of the theoretical approximation estimates, we add below a proposition
which introduces a condition on γ in order F(∇u) ∈ [W 1,q(Ω)]

d
, q > 1 for u = |x|γ.

2An example of such a function for the domain Ω = (−A,A)d is for example ψ(x) =
cos( π

2Ax1) . . . cos( π
2Axd).
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Proposition 5.2. Let u = |x|γ, ε ≥ 0 and 1 < p ≤ 2. If F is given by (2.18), then
for any fixed q > 1 it holds F(∇u) ∈ [W 1,q(Ω)]

d for all γ satisfying

γ >
pq + 2q − 2d

pq
. (5.2)

Proof. We first compute the weak gradient of u by using the absolute continuity (AC)
characterization on lines for Sobolev functions (see Theorem 10.35 in [22]):

∇u = γ |x|γ−1 x

|x|
. (5.3)

We have F(∇u) := (F1(∇u), . . . , Fd(∇u)), where

Fi(∇u) = (ε+ |∇u|)
p−2

2
∂u

∂xi
=
(
ε+ γ |x|γ−1) p−2

2 γ |x|γ−2 xi, i = 1, . . . , d. (5.4)

Since p ≤ 2, we can estimate

|Fi(∇u)| . |x|γ−1+(γ−1)( p−2
2 ) . (5.5)

By using spherical coordinates, it is easy to see3 that if

γ − 1 + (γ − 1)

(
p− 2

2

)
> −d

q
, (5.6)

then Fi(∇u) ∈ Lq(Ω). The last condition is equivalent to γ > 1 − (2d)/(pq). Now,
we proceed with the weak derivatives of Fi(∇u), i = 1, . . . d, for which we also use
the AC characterization of Sobolev functions:

∂Fi(∇u)

∂xj
=

(
p− 2

2

)(
ε+ γ |x|γ−1) p−4

2 γ2(γ − 1) |x|2γ−5 xixj

+
(
ε+ γ |x|γ−1) p−2

2 γ(γ − 2) |x|γ−4 xixj

+
(
ε+ γ |x|γ−1) p−2

2 γ |x|γ−2 δi,j =: I1 + I2 + I3.

(5.7)

From (5.7) it is clear that ∂Fi(∇u)
∂xj

will be in Lq(Ω) as long as I1, I2, I3 are in Lq(Ω).
We have

|I1| . |x|2γ−3+(γ−1)( p−4
2 ) , |I2| . |x|γ−2+(γ−1)( p−2

2 ) , |I3| . |x|γ−2+(γ−1)( p−2
2 ) . (5.8)

Finally, I1, I2, and I3 will be in Lq(Ω) as long as the following conditions are satisfied

2γ − 3 + (γ − 1)

(
p− 4

2

)
> −d

q
, γ − 2 + (γ − 1)

(
p− 2

2

)
> −d

q
. (5.9)

From (5.9) we obtain

γ >
pq + 2q − 2d

pq
. (5.10)

3For any d, using spherical coordinates, we have
∫

B(0,1)

|x|α dx ∼
1∫
0

ραρd−1dρ =
1∫
0

ρα+d−1dρ <∞

if and only if α+ d− 1 > −1, i.e., if and only if α > −d.
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Example 1. d = 2, u ∈Wl,p̄−δ(Ω), l = 2, p = 1.2, and p < p̄ < 2.

The first numerical example is a simple test case validating the theoretical con-
vergence rates for l = 2. Here, the parameter p in Assumption 2 is equal to 1.2.
We perform two groups of computations corresponding to γ = 0.35 and γ = 0.7,
where for the first case we get p̄ ≈ 1.212 and for the second p̄ ≈ 1.538. The expected
convergence rates in this example are given by the estimate (4.13). The values of the
rest parameters are given in the first lines in Table 1. The numerical convergence
rates rFD and rFI for several levels of mesh refinement are given in Table 1. They are
in a very good agreement and also agree with the theoretically predicted estimates
given in Theorem 4.2.

u ∈ W l,p̄−δ(Ω) with u = |x|γ, ε = 1, p = 1.2, d = 2, h0 = 0.1
√

2

h0

γ = 0.35
l = 2

p̄ ≈ 1.212

γ = 0.7
l = 2

p̄ ≈ 1.538

hs = h0

2s
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Expected rates rFD and rFI
rFD = rFI ≈ 0.606 rFD = rFI ≈ 0.769

Computed rates rFD and rFI
rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI

s = 0 - - - - - - - - - - - -
s = 1 0.554 0.618 0.606 0.597 0.621 0.632 0.792 0.792 0.847 0.847 0.844 0.853
s = 2 0.563 0.609 0.598 0.590 0.610 0.619 0.782 0.782 0.823 0.823 0.821 0.829
s = 3 0.572 0.606 0.597 0.591 0.606 0.614 0.781 0.781 0.813 0.813 0.810 0.818
s = 4 0.580 0.605 0.599 0.594 0.606 0.611 0.783 0.783 0.809 0.810 0.806 0.814
s = 5 0.586 0.605 0.601 0.598 0.606 0.610 0.787 0.787 0.809 0.809 0.805 0.812
s = 6 0.592 0.606 0.603 0.601 0.607 0.610 0.791 0.791 0.809 0.810 0.806 0.813
s = 7 0.596 0.607 0.605 0.604 0.608 0.609 0.795 0.795 0.810 0.811 0.807 0.811
s = 8 0.600 0.607 - - - - 0.798 0.798 - - - -
s = 9 0.603 0.608 - - - - - - - - - -

Table 1: Example 5: Convergence rates rFD and rFI for the errors ‖F(∇u) −
F(∇uhs)‖L2(Ω) and ‖F(∇u)− F(∇Ikhsu)‖L2(Ω).

Example 2. d = 2, u ∈Wl,p̄−δ(Ω), l ∈ {3,4}, p = 1.2, and 1 < p̄ < 2.

In the second example, we consider problem (1.1) with p = 1.2 in Assumption 2.
As a first step, we are interested in examining the behavior of the convergence rates for
prescribed solutions u with higher differentiability and a limit summability p̄ ≥ p. We
perform two groups of computations which correspond to two different values l = 3
and l = 4 for the differentiability. Thus, for the first group we chose γ ∈ {1.35, 1.7}
which gives p̄ ≈ 1.212 and p̄ ≈ 1.538, respectively, and for the second group we
set γ ∈ {2.35, 2.7} with p̄ ≈ 1.212 and p̄ ≈ 1.538, respectively. The numerical
convergence rates are computed using the estimate given in (4.14).

Since the regularity of the solution is high we perform computations using k = 2
and k = 3, satisfying k ≥ l − 1. The values of the rest parameters and the expected
convergence rates are given in Table 2. The computed convergence rates and the
related interpolation rates are shown in Table 2. We note that despite the use of high
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order polynomial spaces the convergence is suboptimal due to the regularity of the
solution. In any case, we observe that the numerical convergence rates take values
very close to the predicted rates for all mesh refinement levels, and this validates the
theoretical results.

u ∈ W l,p̄−δ(Ω) with u = |x|γ, ε = 1, p = 1.2, d = 2, h0 = 0.1
√

2

h0

γ = 1.35
l = 3

p̄ ≈ 1.212

γ = 1.7
l = 3

p̄ ≈ 1.538

γ = 2.35
l = 4

p̄ ≈ 1.212

γ = 2.7
l = 4

p̄ ≈ 1.538

hs = h0

2s
k = 2 k = 3 k = 2 k = 3 k = 3 k = 3

Expected rates rFD and rFI
rFD = rFI = 1.35 rFD = rFI = 1.7 rFD = rFI = 2.35 rFD = rFI = 2.7

Computed rates rFD and rFI
rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI

s = 0 - - - - - - - - - - - -
s = 1 1.381 1.385 1.396 1.393 1.691 1.695 1.752 1.766 2.460 2.458 2.797 2.798
s = 2 1.346 1.349 1.357 1.354 1.671 1.672 1.715 1.724 2.406 2.406 2.740 2.741
s = 3 1.332 1.334 1.340 1.337 1.666 1.668 1.701 1.706 2.379 2.379 2.714 2.714
s = 4 1.327 1.329 1.334 1.331 1.669 1.670 1.696 1.699 2.365 2.365 2.702 2.703
s = 5 1.327 1.328 1.333 1.331 1.675 1.675 1.695 1.697 2.357 2.357 2.698 2.698
s = 6 1.329 1.330 1.334 1.332 1.680 1.681 1.696 1.697 2.354 2.354 2.697 2.697
s = 7 1.332 1.333 1.336 1.335 1.685 1.685 - - - - - -
s = 8 1.335 1.335 - - 1.689 1.689 - - - - - -
s = 9 1.337 1.338 - - - - - - - - - -

Table 2: Example 2: Convergence rates rFD and rFI for the errors ‖F(∇u) −
F(∇uhs)‖L2(Ω) and ‖F(∇u)− F(∇Ikhsu)‖L2(Ω).

Next, we present computations for the case where p̄ < p and l > 1 + d/p̄ with
p = 1.2 for all computations. For these test cases, the approximation estimates are
given by (4.14). We show two tests where the values of the related parameters are
{γ = 1.2, l = 3, p̄ ≈ 1.111} and {γ = 2.2, l = 4, p̄ ≈ 1.111} respectively. For both
test cases the limit summability is p̄ ≈ 1.111 < p. The computations have been
performed using local polynomial degree k = l − 1 of the finite element spaces. The
numerical convergence rates are presented in Table 3. We observe that the rates are
determined by the reduced regularity of u and are suboptimal with respect to the
polynomial degree k. For both computations the discretization error rates are in a
very good agreement with the associated interpolation rates and are in agreement
with the theoretically predicted rates.
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u ∈W l,p̄−δ(Ω) with
u = |x|γ , ε = 1, p = 1.2, d = 2, h0 = 0.1

√
2

h0

γ = 1.2
l = 3

p̄ ≈ 1.111

γ = 2.2
l = 4

p̄ ≈ 1.111

hs = h0
2s k = 2 k = 3

Expected rates rFD and rFI

rFD = rFI = 1.2 rFD = rFI = 2.2

Computed rates rFD and rFI

rFD rFI rFD rFI
s = 0 - - - -
s = 1 1.238 1.239 2.303 2.301
s = 2 1.204 1.204 2.252 2.251
s = 3 1.188 1.188 2.227 2.226
s = 4 1.180 1.180 2.213 2.213
s = 5 1.178 1.178 2.207 2.207
s = 6 1.178 1.177 2.203 2.203
s = 7 1.179 1.178 2.201 2.201
s = 8 1.180 1.180 2.200 2.200

Table 3: Example 2: Convergence rates rFD and rFI for the errors ‖F(∇u) −
F(∇uhs)‖L2(Ω) and ‖F(∇u)− F(∇Ikhsu)‖L2(Ω).

Example 3. d = 2, u ∈Wl,p̄−δ(Ω), l ∈ {2,3,4} and p = 1.5, 1 < p̄ < 2.

In this example, we investigate the behavior of the convergence rates for high
differentiability of u and p̄ > p. We have performed three groups of computations
for l ∈ {2, 3, 4} setting γ ∈ {0.7, 1.7, 2.7} respectively. The corresponding value of
p̄ for all tests is p̄ ≈ 1.538. The discretization error is computed for p = 1.5 in
Assumption 2. The convergence rates are displayed in Table 4. We can observe that
the convergence rates rFD are in a very good agreement with the corresponding rates
rFI , and coincide with the expected convergence rates. This test also verifies the
theoretically predicted estimates in Theorem 4.2. It is worth pointing out that the
convergence rates rFD and rFI do not depend on the parameter p. This can be seen
from Theorem 4.2 and also can be observed numerically by comparing the results for
the second and third groups of computations to the computations corresponding to
γ = 1.7 and γ = 2.7 in Example 2.
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u ∈ W l,p̄−δ(Ω) with u = |x|γ, ε = 1, p = 1.5, d = 2, h0 = 0.1
√

2

h0

γ = 0.7
l = 2

p̄ ≈ 1.538

γ = 1.7
l = 3

p̄ ≈ 1.538

γ = 2.7
l = 4

p̄ ≈ 1.538

hs = h0

2s
k = 1 k = 2 k = 3 k = 2 k = 3 k = 3

Expected rates rFD and rFI
rFD = rFI ≈ 0.769 rFD = rFI = 1.7 rFD = rFI = 2.7

Computed rates rFD and rFI
rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI

s = 0 - - - - - - - - - - - -
s = 1 0.717 0.751 0.808 0.811 0.810 0.815 1.734 1.738 1.785 1.783 2.813 2.811
s = 2 0.725 0.746 0.785 0.788 0.785 0.790 1.700 1.703 1.736 1.735 2.747 2.748
s = 3 0.732 0.747 0.774 0.776 0.774 0.778 1.688 1.689 1.714 1.714 2.718 2.718
s = 4 0.739 0.750 0.769 0.772 0.770 0.773 1.685 1.686 1.705 1.704 2.705 2.705
s = 5 0.745 0.753 0.768 0.770 0.768 0.771 1.686 1.687 1.701 1.701 2.699 2.700
s = 6 0.750 0.757 0.768 0.770 0.768 0.771 1.688 1.689 1.699 1.699 2.696 2.698
s = 7 0.755 0.760 0.769 0.770 0.769 0.771 1.691 1.691 1.699 1.699 2.696 2.697
s = 8 0.758 0.762 - - - - 1.693 1.693 - - - -
s = 9 0.761 0.765 - - - - 1.695 1.695 - - - -

Table 4: Example 3 : Convergence rates rFD and rFI for the errors ‖F(∇u) −
F(∇uhs)‖L2(Ω) and ‖F(∇u)− F(∇Ikhsu)‖L2(Ω).

Example 4. d = 2, u ∈Wl,p̄−δ(Ω), l ∈ {2,3,4}, p̄ ≥ 2.

In this collection of numerical results we set γ ∈ {1.2, 2.2, 3.2} with corresponding
values for the differentiability parameter l ∈ {2, 3, 4}, and with a limit summability
p̄ = 2.5 for all test cases. The problem (1.1) is solved with the parameter p taking
values 1.2 and 1.5 in Assumption 2. For each value of the differentiability parameter
l ∈ {2, 3, 4} we solve the problem using polynomial spaces with k = l−1. The results
are presented in Table 5. The convergence rates of the discretization error rFD are
almost identical with the corresponding interpolation rates rFI , and very close to the
expected rates given by (4.13). We point out that for all groups of computations, the
convergence rates are optimal with respect to the polynomial order. This is expected
since for each case we have k = l − 1 and p̄ ≥ 2 (see (4.13)).

It is worth noting that the test corresponding to the parameter γ = 1.2 is per-
formed with the same solution u = |x|γ as the one used in the first test in Ta-
ble 3. The difference is that in Table 3 the solution has been chosen such that
u ∈ W l1,p̄1(Ω) with differentiability l1 = 3 and a limit summability p̄1 ≈ 1.111,
whereas the same solution u here is considered with the regularity W l2,p̄2(Ω) with
differentiability l2 = 2 and a limit summability p̄2 = 2.5. Notice that in both cases
we have γ = 1.2 = l1 − d/p̄1 = l2 − d/p̄2. Similarly, the solution u = |x|γ=2.2 lies in
both spaces4 W l1,p̄1(Ω) with l1 = 4, p̄1 ≈ 1.111 and inW l2,p̄2(Ω) with l2 = 3, p̄2 = 2.5.
By comparing the convergence rates in Table 3 and Table 5 (or just comparing the
rates predicted by Theorem 4.2) for γ ∈ {1.2, 2.2} and p = 1.2, it can be seen that
the increase of the polynomial degree from k ∈ {1, 2} to k ∈ {2, 3} offers only 0.2
increase to the convergence rates. Therefore, for a given regularity of the solution u

4This can also be seen by using the Sobolev embedding theorem.
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one can decide based on Theorem 4.2 which is the appropriate polynomial degree k
in order to get the highest accuracy per degree of freedom.

u ∈ W l,p̄−δ(Ω) with u = |x|γ, ε = 1, p̄ = 2.5, d = 2, h0 = 0.1
√

2

h0
γ = 1.2
l = 2

γ = 2.2
l = 3

γ = 3.2
l = 4

p = 1.2 p = 1.5 p = 1.2 p = 1.5 p = 1.2 p = 1.5
h0

2s
k = 1 k = 1 k = 2 k = 2 k = 3 k = 3

Expected rates rFD and rFI
rFD = rFI = 1 rFD = rFI = 2 rFD = rFI = 3

Computed rates rFD and rFI
rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI

s = 0 - - - - - - - - - - - -
s = 1 0.963 0.971 0.967 0.977 2.051 2.056 2.066 2.068 3.119 3.121 3.126 3.126
s = 2 0.961 0.966 0.965 0.971 2.010 2.013 2.019 2.021 3.045 3.046 3.048 3.049
s = 3 0.964 0.968 0.968 0.972 1.993 1.995 1.999 2.000 3.010 3.011 3.012 3.013
s = 4 0.969 0.972 0.972 0.975 1.988 1.988 1.991 1.992 2.995 2.996 2.997 2.997
s = 5 0.975 0.977 0.977 0.979 1.987 1.987 1.989 1.990 2.990 2.991 2.991 2.992
s = 6 0.980 0.981 0.982 0.983 1.988 1.988 1.990 1.990 2.990 2.990 2.990 2.991
s = 7 0.984 0.985 0.985 0.987 1.990 1.990 1.991 1.991 - - - -
s = 8 0.987 0.988 0.989 0.990 1.991 1.992 1.992 1.993 - - - -

Table 5: Example 4: Convergence rates rFD and rFI for the errors ‖F(∇u) −
F(∇uhs)‖L2(Ω) and ‖F(∇u)− F(∇Ikhsu)‖L2(Ω).

Example 5. d = 2, ε = 0.1, p < p̄ < 2

In this test we check the asymptotic behavior of the rates for small ε. Since the
constants C2(ε) and C3(ε) in the estimates of Theorem 4.2 blow up as ε goes to zero,
we can expect that for small ε > 0 more mesh refinement levels are necessary in order
to observe the predicted (asymptotic) convergence rates. One can also expect that
for ε = 0 the convergence rates will be strictly smaller than the corresponding ones
for positive ε.

We perform two groups of tests for p = 1.2. In the first group the parameters
are {γ = 0.7, l = 2, p̄ ≈ 1.538} and for the second group {γ = 1.7, l = 3, p̄ ≈
1.538}. In Table 6 the numerical convergence rates are compared with the associated
interpolation rates. We can see a good agreement between the interpolation rates
and the rates of the numerical solution. In general the computed rates in Table 6
agree with the theoreticallly predicted rates for ε > 0, see Theorem 4.2, and also
agree with the rates obtained in Example 5 and Example 2 for the same values of the
parameters.
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u ∈W l,p̄−δ(Ω) with
u = |x|γ , ε = 0.1, p = 1.2, d = 2, h0 = 0.1

√
2

h0

γ = 0.7
l = 2

p̄ ≈ 1.538

γ = 1.7
l = 3

p̄ ≈ 1.538

hs = h0
2s k = 1 k = 2 k = 3

Expected rates rFD and rFI

rFD = rFI ≈ 0.769 rFD = rFI = 1.7

Computed rates rFD and rFI

rFD rFI rFD rFI rFD rFI
s = 0 - - - - - -
s = 1 0.758 0.791 3.835 1.581 5.673 1.619
s = 2 0.771 0.788 1.563 1.563 1.715 1.595
s = 3 0.779 0.790 1.559 1.566 1.595 1.598
s = 4 0.786 0.794 1.575 1.580 1.613 1.614
s = 5 0.792 0.798 1.596 1.599 1.633 1.634
s = 6 0.798 0.802 1.617 1.618 1.652 1.652
s = 7 0.802 0.805 1.635 1.636 1.667 1.667
s = 8 0.806 0.808 1.651 1.652 1.678 1.678
s = 9 0.808 0.811 - - - -

Table 6: Example 5: ε = 0.1: Convergence rates rFD and rFI for the errors ‖F(∇u)−
F(∇uhs)‖L2(Ω) and ‖F(∇u)− F(∇Ikhsu)‖L2(Ω).

Example 6. d = 2, ε = 0, p < p̄ ≤ 2.5

Here, we present a collection of several tests with ε = 0 in Assumption 2. In this
case, we expect that the convergence rates will be no higher than those obtained for
positive ε in Theorem 4.2 because the constants C2(ε) and C3(ε) diverge as ε → 0+.
We perform five two-dimensional tests where γ takes values in {0.7, 1.7, 2.7, 1.2, 2.2}
respectively, and we use p = 1.2 in Assumption 2. In some of the previous computa-
tional tests we have used the same values of γ but with ε = 1 and so we can make a
comparison of the results. The results for ε = 0 are presented in Table 7.

Remark 5.3. Note that for ε ≥ 0 in Assumption 2, it follows from Proposition 3.2,
see (3.9), that if F(∇u) ∈ W 2,2(Ω) then we also have optimal O(h1) convergence rates
for the quantities ‖F(∇u) − F(∇uh)‖L2(Ω) and ‖F(∇u) − F(∇Π1

hu)‖L2(Ω) in case of
P1 spaces. On the other hand, for u = |x|γ we have seen in Proposition 5.2 that if
γ > 1 for d = 2 and γ > 1 − 1/p for d = 3, then it holds F(∇u) ∈ [W 1,2(Ω)]

d for
any ε ≥ 0. Thus, according to Proposition 3.2 for such γ we expect convergence rates
rFD = rFI ≥ 1 for polynomial degree k ≥ 1.

Based on Remark 5.3, we can see in Table 7 that indeed for the tests with k > 1
the corresponding rates rFD, rFI are greater than one, but are strictly smaller than the
corresponding rates obtained for the same tests for ε > 0 (see, e.g., Table 2). This
also indicates the importance of Assumption 4.
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u ∈ W l,p̄−δ(Ω) with u = |x|γ, ε = 0, p = 1.2, d = 2, h0 = 0.1
√

2

h0

γ = 0.7
l = 2

p̄ ≈ 1.538

γ = 1.7
l = 3

p̄ ≈ 1.538

γ = 2.7
l = 4

p̄ ≈ 1.538

γ = 1.2
l = 2
p̄ = 2.5

γ = 2.2
l = 3
p̄ = 2.5

hs = h0

2s
k = 1 k = 2 k = 3 k = 3 k = 1 k = 2

Expected rates rFD and rFI are between the basic convergence rates
computed by (4.2b) and the improved convergence rates for ε > 0 in Theorem 4.2

rFD = rFI
∈
[
p
2
, 0.769

] p ≤ rFD = rFI ≤ 1.7
rFD = rFI
∈
[

3
2
p, 2.7

] rFD = rFI
∈
[
p
2
, 1
] rFD = rFI

∈ [p, 2]

Computed rates rFD and rFI
rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI

s = 0 - - - - - - - - - - - -
s = 1 0.813 0.813 1.684 1.513 4.871 1.521 6.153 2.162 1.056 0.951 5.293 1.804
s = 2 0.803 0.803 1.467 1.467 3.698 1.471 3.604 2.091 0.948 0.949 2.598 1.757
s = 3 0.801 0.801 1.443 1.443 1.661 1.445 2.082 2.056 0.954 0.953 1.739 1.735
s = 4 0.802 0.802 1.431 1.432 1.436 1.432 2.038 2.038 0.959 0.958 1.719 1.724
s = 5 0.805 0.805 1.426 1.426 1.426 1.426 2.029 2.029 0.965 0.964 1.717 1.720
s = 6 0.807 0.807 1.423 1.423 1.423 1.423 2.024 2.024 0.970 0.970 1.716 1.719
s = 7 0.810 0.810 1.421 1.421 1.421 1.421 2.022 2.022 0.975 0.975 1.717 1.718
s = 8 0.812 0.812 1.420 1.420 - - - - 0.979 0.979 - -
s = 9 0.813 0.813 - - - - - - - - - -

Table 7: Example 6, ε = 0: Convergence rates rFD and rFI for the errors ‖F(∇u) −
F(∇uhs)‖L2(Ω) and ‖F(∇u)− F(∇Ikhsu)‖L2(Ω).

Example 7. d = 3, u ∈Wl,p̄−δ(Ω), l ∈ {2,3}.

In this example, we investigate the behavior of the rates for Ω ⊂ Rd=3. We perform
four groups of computations where for each group the values of the parameters are
{γ = 0.2, l = 2, p = 1.2, p̄ ≈ 1.667}, {γ = 1.2, l = 3, p = 1.2, p̄ ≈ 1.667}, {γ =
0.75, l = 3, p = 1.2, p̄ ≈ 1.333} and finally {γ = 1.1, l = 3, p = 1.8, p̄ ≈ 1.578},
see also the second row in Table 8. The expected convergence rates for γ = 1.2
and γ = 1.1, i.e., for the second and fourth group of computations, are calculated
based on the estimate (4.14). The expected rate for γ = 0.75, i.e., third group, is
given by (4.13) since in this case the inequality l > 1 + d/p̄ does not hold, but the
inequalities l > d/p̄ and p̄ ≥ p are satisfied. Note that the parameters l and p̄ for
the first group corresponding to γ = 0.2 satisfy the conditions in the estimate (4.13).
However, based on Proposition 5.2 we can easily see that for the particular solution
u = |x|γ the following implication holds: If 1 < p ≤ 2 and γ > (pq + 2q − 2d) /(pq),
then F(∇u) ∈ [W 1,q(Ω)]

d. Thus, if d = 3, q = 2, p = 1.2 we obtain that F(∇u) ∈
[W 1,2(Ω)]

d for γ > 1 − 1/p ≈ 0.1667. Now, by Proposition 3.2 it follows that the
expected convergence rate for γ = 0.2 is rFD = rFI = 1 for both polynomial degrees
k = 1 and k = 2.

The numerically obtained convergence rates for the four groups are presented
in the related columns in Table 8. They are in a very good agreement with the
theoretically predicted rates given in Theorem 4.2. The numerical rates for γ = 0.2
are also in a good agreement with the estimates given in Proposition 3.2.
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u ∈ W l,p̄−δ(Ω) with u = |x|γ, ε = 1, d = 3, h0 = 0.4
√

3

h0

p = 1.2
γ = 0.2
l = 2

p̄ ≈ 1.667

p = 1.2
γ = 1.2
l = 3

p̄ ≈ 1.667

p = 1.2
γ = 0.75
l = 3

p̄ ≈ 1.333

p = 1.8
γ = 1.1
l = 3

p̄ = 1.57895

hs = h0

2s
k = 1 k = 2 k = 2 k = 2 k = 2

Expected rates rFD and rFI
rFD = rFI = 1 rFD = rFI = 1.7 rFD = rFI ≈ 1.333 rFD = rFI = 1.6

Computed rates rFD and rFI
rFD rFI rFD rFI rFD rFI rFD rFI rFD rFI

s = 0 - - - - - - - - - -
s = 1 0.639 1.267 1.119 1.229 1.864 1.914 1.535 1.679 1.790 1.877
s = 2 0.755 1.118 1.059 1.103 1.763 1.796 1.458 1.513 1.706 1.749
s = 3 0.798 1.040 1.021 1.047 1.710 1.727 1.401 1.423 1.654 1.674
s = 4 0.827 1.000 1.002 1.024 1.682 1.690 1.366 1.376 1.623 1.633
s = 5 0.850 0.979 0.992 1.016 1.669 1.674 1.347 1.353 1.607 1.613
s = 6 0.869 0.969 0.988 1.015 1.666 1.668 1.338 1.342 1.600 1.603
s = 7 0.886 0.966 - - - - - - - -

Table 8: Example 7, d = 3: Convergence rates rFD and rFI for the errors ‖F(∇u) −
F(∇uhs)‖L2(Ω) and ‖F(∇u)− F(∇Ikhsu)‖L2(Ω).

Example 8. Convergence rates for |u− uh|W1,p(Ω), p = 1.5, p̄ ≈ 1.538.

Below, we perform several computations for investigating the convergence behav-
ior of the error |u− uh|W 1,p(Ω) and the corresponding interpolation error

∣∣u− Ikhu∣∣W 1,p(Ω)
.

The computatioanl rates are denoted by r1,p
D and r1,p

I , respectively, and are computed
using similar formulas as those in (5.1) with |u− uh|W 1,p(Ω) and

∣∣u− Ikhu∣∣W 1,p(Ω)
.

While the convergence rates given in Theorem 4.2 agree with the numerically ob-
tained ones for ‖F(∇u) − F(∇uh)‖L2(Ω) and ‖F(∇u) − F(∇Ikhu)‖L2(Ω) in all the ex-
amples above, the rates for |u− uh|W 1,p(Ω) and

∣∣u− Ikhu∣∣W 1,p(Ω)
seem to be always

higher. The theoretical justification of this observation requires further investiga-
tion. During this example we perform three groups of computations where the val-
ues of the parameters for each group are {γ = 0.7, l = 2, p = 1.5, p̄ = 1.538},
{γ = 1.7, l = 3, p = 1.5, p̄ = 1.538} and {γ = 2.7, l = 4, p = 1.5, p̄ = 1.538} corre-
spondingly. The theoretically predicted rates for these tests are given in Theorem 4.2.
For each computation the problem is solved using polynomial degree k ≥ l − 1, and
thus we expect that the related convergence rates are determined by the regularity of
the solution. The numerical results are shown in Table 9. We observe that for each
case the convergence rates r1,p

D of the solution are very close with the corresponding
interpolation rates r1,p

I , i.e., the rates for the quantity
∣∣u− Ikhsu∣∣W 1,p(Ω)

. Anyway, in
any test case we can observe that the rates are higher than the theoretically pre-
dicted rates given in Theorem 4.2. We have observed the same behavior, i.e., higher
convergence rates than those for the error measured in the F-quasinorm (given by
Theorem 4.2) for all of the presented tests above.
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u ∈ W l,p̄−δ(Ω) with u = |x|γ, ε = 1, p = 1.5, d = 2, h0 = 0.1
√

2

h0

γ = 0.7
l = 2

p̄ ≈ 1.538

γ = 1.7
l = 3

p̄ ≈ 1.538

γ = 2.7
l = 4

p̄ ≈ 1.538

hs = h0

2s
k = 1 k = 2 k = 3 k = 2 k = 3 k = 3

Computed rates r1,p
D and r1,p

I

r1,p
D r1,p

I r1,p
D r1,p

I r1,p
D r1,p

I r1,p
D r1,p

I r1,p
D r1,p

I r1,p
D r1,p

I

s = 0 - - - - - - - - - - - -
s = 1 0.840 0.901 1.090 1.099 1.105 1.107 1.974 1.971 2.187 2.165 3.020 3.006
s = 2 0.858 0.898 1.063 1.067 1.068 1.070 1.935 1.933 2.103 2.101 2.944 2.945
s = 3 0.874 0.903 1.047 1.050 1.049 1.051 1.921 1.920 2.069 2.068 2.920 2.920
s = 4 0.889 0.910 1.039 1.042 1.040 1.042 1.919 1.918 2.051 2.051 2.914 2.914
s = 5 0.901 0.918 1.035 1.037 1.036 1.037 1.922 1.922 2.042 2.042 2.915 2.916
s = 6 0.912 0.925 1.033 1.035 1.033 1.035 1.928 1.927 2.038 2.037 2.891 2.921
s = 7 0.921 0.932 1.032 1.034 1.032 1.034 1.933 1.933 2.035 2.035 2.900 2.927
s = 8 0.929 0.938 - - - - 1.939 1.939 - - - -
s = 9 0.936 0.944 - - - - 1.943 1.944 - - - -

Table 9: Example 8: Convergence rates r1,p
D and r1,p

I for the errors |u− uhs|W 1,p(Ω)

and
∣∣u− Ikhsu∣∣W 1,p(Ω)

.

6 Conclusions
In this work, existence and uniqueness results for a class of quasilinear elliptic

problems have been shown and an a priori error analysis for finite element discretiza-
tions has been derived. The error analysis utilizes the same quasinorm quantities
which are introduced in [21] and made a step forward with respect to the interpo-
lation and the discretization estimates. The technique used in our analysis relies
on approximation error estimates in standard Sobolev W 1,p-seminorms and therefore
can be applied to other finite element spaces for which such approximation results
are available. In particular, our analysis applies to continuous piecewise polynomial
spaces of higher order where the regularity assumptions are posed directly on the
solution u itself. The analysis showed that optimal approximation estimates in the
associated F-quasinorm can be also obtained for solutions u having higher regular-
ity, i.e., u ∈ W l,p̄(Ω) with l ≥ 2 and p̄ ≥ 2 in conjunction with Pk finite element
spaces satisfying k = l − 1. It is worth pointing out that these convergence rates
do not depend on the parameter p in Assumption 2, but only on the regularity of
the solution u. The theoretical error estimates have been confirmed by performing a
series of numerical tests. The numerical rates and theoretically predicted rates were
in a very good agreement. Our numerical experiments also indicate that the regu-
larity conditions on u that guarantee optimal convergence rates cannot be relaxed.
More precisely, they show that for the case 1 < p ≤ 2 (with p being the parameter
in Assumption 2) if u is not in W l,2(Ω), then the convergence rates can be strictly
less than l − 1 for polynomial spaces Pk with k = l − 1. On the other hand, the
rates for the error |u− uh|W 1,p(Ω) and

∣∣u− Ikhu∣∣W 1,p(Ω)
were found to be always higher

than the corresponding theoretically predicted and numerically validated rates for
the F-quasinorm. This is a point which needs further investigation. Also, further
work could be to investigate the relation between the F-quasinorm and other quasi-
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norms that can be inferred from functional type duality methods which have been
proposed in the literature. The derivation of a discretization error analysis for more
general quasilinear elliptic problems by following similar ideas seems to be also fea-
sible. These last subjects are going to be discussed by the authors in forthcoming
works.
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On a Semismooth* Newton Method for Solving Generalized Equations April 2019
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