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Chapter 1

Introduction

An important part of the modern life of most people is affected by electronic devices
like radios, computers, smartphones and many more. Do these objects have something
in common? Yes, they do, namely they all obey special laws of electromagnetism that
can be described in a very mathematical manner which is great if someone wants to
analyze the electromagnetic properties. The bad news are, that in most cases the
solutions of the individual problems cannot be computed analytically and so improved
numerical solvers are needed.

1.1 Motivation
If one wants to describe states of electric and/or magnetic kind, the main approach for
this task will be writing down the corresponding Maxwell Equations. These equations
deal with electric and magnetic quantities and describe, how these fields and scalars are
generated and altered by each other. They are applicable in microscopic behaviors like
atomic models as well as in macroscopic cases like electric motors and transformers.
They are named after James Clerk Maxwell, who published them in the years 1861 -
1862.

The purpose of this thesis is to give an overview of the electromagnetic laws, derive
Maxwell’s equations and solve them in simplified settings, where the complexity is
reduced to a level, in which an analytic solution can be computed.

1.2 Physical Quantities
Throughout this theses there are frequently used physical quantities that are now
described for better understanding. We will make excessive use of some letters con-
sistently corresponding to them, so whenever they appear in this thesis, the physical
meaning is refered to Table 1.1.

The total electric charge Q of any region Ω and the electric charge density are
related by Q(Ω) =

∫
Ω
ρ(x) dx, similarly the total current I passing a surface S and

1
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Notation Unit Description
E = (E1, E2, E3)T [V/m] electric field intensity
D = (D1, D2, D3)T [As/m2] electric flux density (electric induction)
H = (H1, H2, H3)T [A/m] magnetic field intensity
B = (B1, B2, B3)T [V s/m2] magnetic flux density (magnetic induction)
J = (J1, J2, J3)T [A/m2] electric current density
ρ = ρ(x, t) [As/m3] electric charge density

M = (M1,M2,M3)T [V s/m2] magnetization
P = (P1, P2, P3)T [As/m2] electric polarization

Table 1.1: Table of physical quantities.

the current density are related by I(S) =
∫
S
J · n dS, where n denotes the normal

vector of S. The electric current density J can be split up into the sum of the conduct
current density Jc and the impressed current density Ji, thus J = Jc + Ji. A conduct
current only occurs in conductive media like wires (i.e., σ 6= 0 in (2.15c)) and can
be imagined as the movement of charge in a conductor. Now the difference between
these two densities is that the impressed current density does not represent an actual
current, at least not in conventional sense. Changing electric fields produce changing
magnetic fields even when no charges are present. This is the reason for introducing
this somehow unexpected type of current.

We also define the following material parameters:

• µ [V s/Am] the magnetic permeability of a special matter

• ε [As/V m] the electric permittivity of a special matter

Magnetic permeability is the degree of magnetization that a material obtains in re-
sponse to an applied magnetic field. The electric permittivity is a measure of the
resistance that is encountered when forming an electric field in a medium. In vacuum
(or air) these variables are equal to their reference values µ0 = 4π · 10−7 V s/Am and
ε0 = 8.8542 · 10−12 As/V m (permeability and permittivity of free space). In an ar-
bitrary medium, the relations µ = µrµ0 and ε = εrε0 relate the general values to the
fixed ones via µr and εr, the relative permeability and relative permittivity, respec-
tively. With c ≈ 3 · 108 m/s the speed of light, the relation ε0 µ0 c

2 = 1 holds. In
ferromagnetic materials µr is a nonlinear function that depends on H, the magnetic
field intensity. For further details determining µr see [8].

1.3 Notation
We will frequently use the well-known mathematical Operators:

Definition 1.1 (Divergence). Let U : R3 → R3 be a sufficiently smooth vector field.
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Then the divergence of the vector field U is defined as

∇ · U := div(U) :=
3∑
i=1

∂U

∂xi

Definition 1.2 (Curl). Let U : R3 → R3 be a sufficiently smooth vector field. Then
the curl of a vector field U is defined as

∇× U := curl(U) :=

∂2U3 − ∂3U2

∂3U1 − ∂1U3

∂1U2 − ∂2U1


1.4 Preliminaries and Integral Identities
Theorem 1.3 (Stokes’ Theorem). Let S be a surface in R3 parametrized by ϕ : M →
R3, where M is a subset of a sufficiently smooth set K ⊂ R3 and ϕ ∈ C2(M) with
boundary ∂S. Let f ∈ (C1(ϕ(M)))3, then it holds that∫

S

curl f · n dS =

∫
∂S

f · τ dτ, (1.1)

where n and τ denote the unit normal of S and the tangent of ∂S, respectively, in each
point.

Proof. See Theorem 8.50 in [1].

Theorem 1.4 (Gauss’s Theorem). Let V be a sufficiently smooth subset of R3 and
∂V its boundary. Let M ⊃ V be open and f ∈ (C1(M))3. Then it holds that∫

V

div f dx =

∫
∂V

f · n dS, (1.2)

where n denotes the unit normal vector of ∂V in each point.

Proof. See Theorem 8.58 and Remark 8.59 in [1].

Lemma 1.5. For a twice continuously differentable scalar field u : R3 → R and a
twice continuously differentable vector field F : R3 → R3 the following identities hold:

∆u = div(∇u) (1.3)
div(curlF ) = 0 (1.4)

curl(∇u) = 0 (1.5)
curl(curlF ) = ∇(divF )−∆F (1.6)
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Proof. By definition we obtain for (1.3)

div(∇u) = div

 ∂u
∂x1
∂u
∂x2
∂u
∂x3

 =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

= ∆u.

For the (1.4) we again plug in the definitions of div and curl and use Schwarz’s theorem:

div(curlF ) = div

∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1


= ∂1(∂2F3 − ∂3F2) + ∂2(∂3F1 − ∂1F3) + ∂3(∂1F2 − ∂2F1)

= 0.

Identity (1.5) is shown by

curl(∇u) = curl

 ∂u
∂x1
∂u
∂x2
∂u
∂x3

 =

∂2∂3u− ∂3∂2u
∂3∂1u− ∂1∂3u
∂1∂2u− ∂2∂1u

 = 0,

where we again used Schwarz’s theorem. For (1.6) we rewrite its left side as

curl(curlF ) = curl

∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1

 =

∂2(∂1F2 − ∂2F1)− ∂3(∂3F1 − ∂1F3)
∂3(∂2F3 − ∂3F2)− ∂1(∂1F2 − ∂2F1)
∂1(∂3F1 − ∂1F3)− ∂2(∂2F3 − ∂3F2)

 (1.7)

and its right hand side

∇(divF )−∆F =

∂1(∂1F1 + ∂2F2 + ∂3F3)
∂2(∂1F1 + ∂2F2 + ∂3F3)
∂3(∂1F1 + ∂2F2 + ∂3F3)

−
∂2

1F1 + ∂2
2F1 + ∂2

3F1

∂2
1F2 + ∂2

2F2 + ∂2
3F2

∂2
1F3 + ∂2

2F3 + ∂2
3F3

 , (1.8)

which proves the statement, since (1.7) equals (1.8) again by Schwarz’s theorem.

In the derivation of the vector potential formulation we will need the following two
lemmas:

Lemma 1.6. Let Ω ⊂ R3 be simply connected and B ∈ (L2(Ω))3 be a vector field
fulfilling divB = 0. Then there exists a vector field A ∈ (H1(Ω))3 such that

B = curlA

Proof. See Theorem 3.4 in [3].

One can also show the statement of Lemma 1.6 for B ∈ (C1(Ω))3 and A ∈ (C2(Ω))3.

Lemma 1.7. Let Ω ⊂ R3 be simply connected and F ∈ (C1(Ω))3 be a vector field
fulfilling curlF = 0. Then there exists a scalar field φ ∈ C2(Ω) such that

F = ∇φ

Proof. This is a direct consequence of Corollary 8.24 in [1].
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Derivation of Maxwell’s Equations

In the next four subsections Maxwell’s equations are derived. These are a system of
four equations that relates the main physical quantities which describe electromagnetic
behavior and illustrates which types of physical phenomena can give rise to electric
and magnetic fields. Two of these equations are 3 dimensional, thus in fact we obtain
a system of in total 8 partial differential equations,

∇×H = J +
∂D

∂t
(Ampère’s Law)

∇× E = −∂B
∂t

(Faraday’s Law)

∇ ·D = ρ (Gauss’s Law - electric)
∇ ·B = 0, (Gauss’s Law - magnetic)

called Maxwell’s equations.
For the rest of this thesis we assume the involved quantities to be sufficiently smooth

in the sense that the conditions of Theorem 1.4 (Gauss’s theorem) and Theorem 1.3
(Stokes’ theorem) are fulfilled. In general these assumptions on the smoothness are
satisfied in nature, i.e., no limitation on the field of observation is made.

In the following we will figure out that an electric current induces a magnetic field,
which is a directed quantity. To determine its orientation the Right-hand rule can be
used.

Remark 2.1 (Right-hand Rule). If an electric current passes through a straight wire,
let the thumb of your right hand point in the direction of the current. Then the re-
maining fingers of your right hand show the orientation of the induced magnetic field.
This rule can analogously be applied backwards, i.e., if the magnetic field is given and
one wants the know the orientation of the induced electric current.

The relation between electric forces and charges is described by Coulomb’s Law
which is an experimental postulate. It states that similarly poled charges attract each
other while oppositely poled charges repel.

5
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I

B

Figure 2.1: Wire with current and arising magnetic field

Postulate 2.2 (Coulomb’s Law). The electrostatic force K experienced by a charge Q1

at position a ∈ R3 in the vicinity of another charge Q2 at position b ∈ R3 in vacuum
is equal to

K =
Q1Q2

4ε0π ‖a− b‖3 (a− b) =
Q1Q2

4ε0πr2
er, (2.1)

where r = ‖a− b‖ and er = a−b
r
, the unit vector pointing from b to a.

It can be seen easily that if Q1, Q2 are unequally charged in (2.1), e.g. Q1 > 0 and
Q2 < 0, then

K =
Q1Q2

4ε0πr2︸ ︷︷ ︸
<0

er

is directed from a to b, i.e., the two charges attract each other. An analogous result
follows with equal charges. Observing a point charge Q, the electrostatic force K is
related to the electric field intensity E by K = EQ. Thus, the electric field in a ∈ R3

of a point charge placed in b ∈ R3 is

E(a) =
Q

4ε0π

a− b
‖a− b‖3 . (2.2)

If we have a continuous charge density q inside a volume V , (2.2) changes to

E(a) =
1

4ε0π

∫
V

q(x)
a− x
‖a− x‖3 dx. (2.3)

2.1 Ampère’s Law
If a conductor(e.g. a wire) is flooded by an electric current, in its surrounding a
magnetic field is generated in the sense of Remark 2.1 (right-hand rule). This is
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illustrated in Figure 2.1. In Ampère‘s law the integrated magnetic field around a
closed loop is related to the electric current passing through the loop by∮

∂S

H · τ ds =

∫
S

J · n dS, (2.4)

where τ is the tangential vector of the curve ∂S and n the normal vector of the surface
S. We want to transform the integral form into a differential one, so we use Theorem
1.3 (Stokes’ theorem) and get∫

S

(∇×H) · n dS =

∮
∂S

H · τ ds =

∫
S

J · n dS.

Since the surface S is arbitrary, it follows that the integrands must be equal, i.e.,

∇×H = J. (2.5)

It was Maxwell’s amendment, what made law (2.5) complete: He found out that a
magnetic field is not only induced by a conductive current but also by a so-called
displacement current. This current is proportional to the variation of the electric flux
density D, thus we have to add the term ∂D/∂t to (2.5), so we get

∇×H = J +
∂D

∂t
, (2.6)

the first of four Maxwell equations1.
Summarizing, this law states that there are two ways of generating a magnetic field:

by the presence of an electric current or by changing an electric field.

2.2 Faraday’s Law
Let us assume, that we have a conductive loop and on its ends we are able to measure
the voltage. Faraday’s law describes how a time varying magnetic field passing the
loop in normal direction induces an electric field inside the loop.

If Φ denotes the magnetic flux through the cross section S of the loop, it holds
that Φ =

∫
S
B · n dS, where B is the magnetic induction. Faraday found out that

the relation between the induced voltage ui (also called electromotive force) and the
magnetic flux is

ui = −dΦ

dt
= − d

dt

∫
S

B · n dS = −
∫
S

∂

∂t
B · n dS, (2.7)

where the last equality follows by the time independence of the surface S. A change
of the magnetic flux in time can be achieved by a time-dependent magnetic field itself
or by a motion of the conductive loop.

1In fact (2.6) represents an equation in 3 dimensions.
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Figure 2.2: Conductive loop exposed to a time-dependent magnetic field.

The electric field intensity E is a measure of how fast the voltage is changing along
a path, so the voltage u along a path Γ is equal to the line integral

∫
Γ
E · τ dΓ. With

this equality and Theorem 1.3 (Stokes’ theorem) it follows for our example of the
conductive loop that

ui =

∫
∂S

E · τ ds =

∫
S

curlE · n dS. (2.8)

Now we can use that the electromotive force ui is basically the same in (2.7) and (2.8),
i.e., ∫

S

curlE · n dS = −
∫
S

∂

∂t
B · n dS.

Again the surface S was chosen arbitrarily, so the quantities inside the integral have
to be equal and the second of four Maxwell equations2 follows:

∇× E = −∂B
∂t

(2.9)

2.3 Gauss’s Law - electric
This law dictates how the electric field behaves around electric charges. That is, if there
exists electric charge then the divergence of the electric flux density D at that point
is non-zero, otherwise it is equal to zero. Another way of describing the connection of
charge and electric flux is the following: The amount of total charge in a volume V is
equal to the electric flux exiting its surface S = ∂V , i.e.,∫

S

D · n dS =

∫
V

ρ dx, (2.10)

2Again this is an equation in 3 dimensions.
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where ρ is the electric charge density. Applying Theorem 1.4 (Gauss’s theorem) to the
left hand side of (2.10) we get

∫
S
D ·n dS =

∫
V

divD dx. Using that V was arbitrarily
chosen, this leads to the third Maxwell equation3:

∇ ·D = ρ (2.11)

If there is a positive total charge within the volume V, the electric flux exits the surface.
Otherwise, if the total charge inside V is negative, there is an electric flux entering the
surface.

2.4 Gauss’s Law - magnetic
The electric law of Gauss states that the divergence of the electric flux density is
equal to the electric charge density. Gauss’s law in the magnetic case is the analogous
version: The divergence of the magnetic flux density is equal to the “magnetic charge“
density. Since magnetism is always caused by the presence of a positive and a negative
magnetic pole, known as the north and south pole, no magnetic charge density exists,
because that would mean, that there is a magnetic monopole generating the magnetic
charge. But no one has ever found magnetic monopoles, i.e., the divergence of the
magnetic flux density is equal to zero. Thus, the integral form of Gauss’s law in the
magnetic case is ∫

∂V

B · n dS = 0, (2.12)

i.e., the amount of magnetic field lines entering the volume V through its surface ∂V
is equal to the amount of magnetic field lines exiting V . Using Theorem 1.4 (Gauss’s
theorem), we get

∫
∂V
B · n dS =

∫
V

divB dx. Again we have chosen the volume V
arbitrarily, so the last of four Maxwell equations4 follows:

∇ ·B = 0. (2.13)

2.5 Constitutive Equations - Material Laws
A constitutive equation in physics is a relation between two physical quantities that
is specific to a material or substance. It describes the response of that material which
is exposed to external stimuli, e.g. the change of the magnetic induction subject to
the magnetic field. In our case, the magnetic and electric quantities of Table 1.1 are
involved and are related as follows:

B = µH + µ0M

D = εE + P

J = Jc + Ji = σ (E + v ×B) + Ji.

3Note that this equation is 1-dimensional.
4Note that this equation is 1-dimensional.
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Here Jc is the conduct current density, Ji is the impressed current density, σ is the
electric conductivity (only conductive matter has σ 6= 0) and v = (v1, v2, v3)T is the
velocity with which the observed region or body is moved in space. In most cases the
regions exposed to magnetic and electric influence do not move and are not deformed,
i.e., have a velocity equal to 0. So for the rest of this thesis we assume v = 0.

2.6 Summary
In the previous sections we derived 4 partial differential equations (2 of them are 3-
dimensional, so in fact 8 PDEs) and material laws. Here is a compact overview of the
derived system.

Maxwell’s equations are

∇×H = J +
∂D

∂t
(2.14a)

∇× E = −∂B
∂t

(2.14b)

∇ ·D = ρ (2.14c)
∇ ·B = 0 (2.14d)

and the corresponding constitutive equations are

B = µH + µ0M (2.15a)
D = εE + P (2.15b)
J = Jc + Ji = σE + Ji. (2.15c)



Chapter 3

Alternative Formulations

Using vector analysis one can derive other formulations of the Maxwell equations
(2.14). Based on [6] the vector potential formulation and the E-field based formulation
are discussed.

3.1 Vector Potential Formulation
First we need the following tool:

Lemma 3.1. Let φ, ψ ∈ C2(Ω) be scalar fields and A ∈ (C1(Ω))
3 a vector field. The

substitutions Ã = A +∇ψ and φ̃ = φ − ∂ψ/∂t for A and φ, respectively, lead to the
same magnetic and electric fields, i.e.,

B = curlA = curl Ã and E = −∂A
∂t
−∇φ = −∂Ã

∂t
−∇φ̃.

Proof. Due to (1.5) in Lemma 1.5 we know that curl∇F = 0 for all F ∈ C2 and it
follows that

curl Ã = curl(A+∇ψ) = curlA+ curl∇ψ = curlA = B.

Because we can swap the order of the time derivative and the gradient of ψ the second
identity follows with

−∂Ã
∂t
−∇φ̃ = −∂(A+∇ψ)

∂t
−∇

(
φ− ∂ψ

∂t

)
= −∂A

∂t
−∇φ−∂(∇ψ)

∂t
+∇∂ψ

∂t︸ ︷︷ ︸
=0

= E

11
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Gauss’s law in the magnetic case (2.14d) states that the divergence of the magnetic
flux density is zero, so Lemma 1.6 is applicable, hence we know that there exists an A
such that B = curlA. Substituting this into Faraday’s law (2.14b), we get

curlE = −∂B
∂t

= − ∂

∂t
(curlA) (3.1)

or, equivalently,

curlE +
∂

∂t
(curlA) = curl

(
E +

∂A

∂t

)
= 0.

Now, using Lemma 1.7, there is a scalar field φ such that E + ∂A
∂t

= −∇φ or, equiva-
lently,

E = −∂A
∂t
−∇φ. (3.2)

With ν = 1/µ and material law (2.15a) Ampère’s law (2.14a) can be rewritten as

curl

(
νB − µ0

µ
M

)
= curlH = J +

∂D

∂t
.

Reordering the terms and using the previous assumption B = curlA and the material
laws (2.15b), (2.15c) leads to

curl ν curlA = σE + Ji + ε
∂E

∂t
+
∂P

∂t
+ curl

µ0

µ
M. (3.3)

Substituting E in (3.3) by equality (3.2) we get

curl ν curlA+ σ
∂A

∂t
+ ε

∂2A

∂t2
= Ji + curl

µ0

µ
M +

∂P

∂t
− σ∇φ− ε ∂

∂t
∇φ. (3.4)

Lemma 3.1 allows us to subsitute A and φ by Ã = A + ∇ψ and φ̃ = φ − ∂
∂t
ψ,

respectively, without changing the electric and magnetic field. We set ψ =
∫ t

0
φ, then

φ̃ = φ − ∂
∂t

∫ t
0
φ = 0 and we obtain the following vector potential formulation from

(3.4) with vector identity (1.5):

ε
∂2Ã

∂t2
+ σ

∂Ã

∂t
+ curl ν curl Ã = Ji + curl

µ0

µ
M +

∂P

∂t
.

Once Ã is determined, the magnetic and electric fields can be computed as follows:

• B = curl Ã

• E = −∂Ã
∂t
− ∇φ̃︸︷︷︸

=0

= −∂Ã
∂t

• H = νB − µ0
µ
M

• D = εE + P
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3.2 E-field based Formulation
By the law of Faraday (2.14b) and material law (2.15a) we get

curlE = −∂B
∂t

= −µ∂H
∂t
− µ0

∂M

∂t
. (3.5)

Multiplying (3.5) with ν = 1/µ and applying the curl-Operator on both sides we obtain

curl ν curlE = − ∂

∂t
curlH − µ0

µ

∂

∂t
curlM, (3.6)

where we used that the order of the time derivative and the curl can be exchanged.
Considering Ampère’s law (2.14a) and substituting the current density J and the
electric flux density D with the material laws (2.15b) and (2.15c), respectively, we
obtain

curlH = J +
∂D

∂t
= σE + Ji + ε

∂E

∂t
+
∂P

∂t
. (3.7)

If we assume that the polarization P in (3.7) can be neglected, we get

curlH = σE + Ji + ε
∂E

∂t
. (3.8)

Substituting curlH in equation (3.6) by identity (3.8), the so-called E-field based
formulation follows:

ε
∂2E

∂t2
+ σ

∂E

∂t
+ curl ν curlE = −∂Ji

∂t
− µ0

µ

∂

∂t
curlM (3.9)



Chapter 4

Special Regimes

There are many different special cases of Maxwell’s equations (2.14), for example
fields which are constant in time or only weakly time dependent. Each regime allows
simplifications of the equations and under special simplifying assumptions we are able
to solve them in an analytic way. Time independent cases are split up into electrostatic
and magnetostatic ones.

The entity of Electromagnetism is arranged like Figure 4.1 shows.

Electromagnetism

Electromagnetism

high frequency scope

TD FD

Electromagnetism

low frequency scope

Magnetism

Magnetostatics Magnetodynamics

TD FD

Electrostatics

Figure 4.1: Split-up of electromagnetism (TD = Time Domain, FD = Frequency
Domain).

In the following four subsections we will take a closer look at the highlighted
branches of Figure 4.1. See [6] for further details.

14
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4.1 The Magnetostatic Case
In this case we assume that all involved quantities are time-independent. Then the
equations for electric and magnetic fields decouple and the Maxwell equations (2.14)
reduce to ∫

∂S

H · τ ds =

∫
S

J · n dS −→ ∇×H = J (4.1)

∫
S

B · n dS = 0 −→ ∇ ·B = 0. (4.2)

The magnetic induction is solenoidal and the magnetic field intensity possesses curls
at positions where a current appears.

4.1.1 Biot-Savart Formulation

This formulation serves for calculating the magnetic field H by a given electric current
density J . For that purpose the starting point is the magnetostatic case, in which the
dependency of the magnetic quantities of time is neglected. If the electric flux density
D is constant in time, the time derivative ∂D/∂t is zero and Ampère’s law (2.14a)
reduces to

curlH = J. (4.3)

From (4.2) we know that B is solenoid. According to Lemma 1.6, for the magnetic
induction B, a vector field A can b introduced, which fulfills the conditions B = curlA
and divA = 0. The second condition is necessary for uniqueness of the chosen A and
is called Coulomb gauging. Assuming that we have a linear, homogenous and isotropic
material, i.e., the permeability µ is constant, we get from (4.3) and material law (2.15a)

curlH =
1

µ
curl (curlA) =

1

µ
(∇ divA−∆A) = J (4.4)

with the vector identity (1.6) of Lemma 1.5. By definition A fulfills divA = 0, so
∇ divA = 0 as well and it follows that

−∆A = µJ.

With the Green function of the Laplace operator ∆ we obtain

A(y) =
µ

4π

∫
R3

J(x)

|y − x|
dx. (4.5)
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Substituting (4.5) back in the relation B = curlA, the result is called the Biot-Savart
formula

B(y) = curly A(y) =
µ

4π

∫
R3

∇y ×
J(x)

|y − x|
dx

(4.7)
=

µ

4π

∫
R3

y − x
|y − x|3

× J(x) dx, (4.6)

where the index y in curly and ∇y indicates that the differential operator only acts on
the y variable. The needed equality for (4.6) follows with simple differentiation and
the obvious fact that ∇yJ(x) = 0

∇y ×
(
J(x) · 1

|y − x|

)
= J(x)×

(
∇y

1

|y − x|

)
= J(x)×

(
− 1

|y − x|2
· 1

2

1

|y − x|
· 2(y − x)

)
= −J(x)× y − x

|y − x|3

=
y − x
|y − x|3

× J(x) (4.7)

4.2 The Electrostatic Case
In this case we assume that all involved quantities are time-independent. Then the
equations for electric and magnetic fields decouple. The electric field is irrotational
and its sources are charges. The Maxwell equations (2.14) reduce to∫

∂S

E · τ ds = 0 −→ ∇× E = 0 (4.8)

∫
S

D · n dS =

∫
V

ρ dx −→ ∇ ·D = ρ. (4.9)

The electric field intensity is irrotational due to (4.8), so with Lemma 1.7 there exists
a sufficiently smooth potential field φ with E = ∇φ. This potential is very convenient
for practical applications because it is a scalar quantity. Further, by setting E = ∇φ
Faraday’s law in the electrostatic case (4.8) is automatically satisfied.

In a more physical way one could define φ as the energy that is needed to move a
point charge from S0 to S, i.e.,

φ(S) := −
S∫

S0

E · τ dτ.
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It is easy to see that the principle of superposition holds if we consider an electric field
consisting of different charges:

φ(S) = −
S∫

S0

(∑
i

Ei

)
· τ dτ = −

∑
i

S∫
S0

Ei · τ dτ =
∑
i

φi(S)

4.3 Time-harmonic Regime
In this section we assume linear material laws and time-harmonic excitation with the
frequency ω. This leads to the following ansatz for the variable U(x, t), where U stands
for any of the quantities H,B,E,D, J, ρ and < is the projection onto the real part:

U(x, t) = <
(
Û(x)eiωt

)
. (4.10)

This separation ansatz yields

∂U

∂t
= iωU (4.11)

∂2U

∂t2
= −ω2U. (4.12)

With the assumptions (4.10) - (4.12) and setting M = 0 and P = 0 one can derive a
time-harmonic variant of the Maxwell equations (2.14)

curlH(x)− (iωε+ σ)E(x) = Ji(x) (4.13a)
curlE(x) + iωµH(x) = 0 (4.13b)

div εE(x) = ρ(x) (4.13c)
div µH(x) = 0 (4.13d)

and the continuity equation

iωρ(x) + div J(x) = 0, (4.14)

where (4.14) follows by taking the divergence on both sides of (4.13a), material law
(2.15c), vector identity (1.4) and (4.13c). In the vector potential formulation we have
E = −iωA and B = curlA, so system (4.13) simplifies to

curlµ−1 curlA− (ω2ε− iωσ)A = Ji.

In the E-field based formulation we get

curlµ−1 curlE − (ω2ε− iωσ)E = −iωJi.
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4.4 Quasistatic Case – Eddy Current Problem
In this regime we assume that the frequency is low, i.e., we will neglect the displacement
currents. In other words |∂D/∂t| � |J |. Further, we obtain the so-called eddy-current
approximation to the Maxwell equations (2.14)

curlH = J

divB = 0

curlE = −∂B
∂t

divD = ρ

and to the material laws

B = µH + µ0M

D = εE

J = σE + Ji.

Then, the vector potential formulation from Section 3.1 in the time domain reads as

σ
∂Ã

∂t
+ curl ν curl Ã = Ji + curl

µ0

µ
M

and in the frequency domain

iωσÃ+ curl ν curl Ã = Ji + curl
µ0

µ
M.

The E-field based formulation from Section 3.2 in the time domain is

σ
∂E

∂t
+ curl ν curlE = −∂Ji

∂t

and in the frequency domain

iωσE + curl ν curlE = −iωJi,

where we set µ0
µ

∂
∂t
M = 0 due to the assumption at the beginning that the frequency

is low.



Chapter 5

Benchmark Problems

The purpose of a benchmark is to assess the relative performance of an object. In our
case we especially look at numerical solvers for the Maxwell equations (2.14), where
we want to validate whether the solution of the numerical solver is feasible. Normally,
the numerical approach is applicable in very general situations and configurations of
the problem, whereas the exact solution can only be computed in simplified cases.
In these simplified situations both solutions can be compared and, of course, should
be equal (in some sense). Otherwise, this indicates that the numerical solver is not
working properly. In the following (sub-)sections we will derive analytic solutions of
some simple magnetostatic, electrostatic and eddy current problems. These benchmark
problems are based on exercises in [2, 4, 7].

5.1 Benchmarks in Magnetostatics

5.1.1 Straight Wire

In this benchmark we consider a straight and thin conductor (e.g. a wire) with infinite
length and a constant current. Let the material surrounding the wire be air, so the
relative permeability µr = 1 and thus µ = µ0. The wire is aligned in the x3-direction
passing the origin in the ordinary Euclidian vector space R3, see Figure 5.1. As we
already know from Ampère’s law in Section 2.1, the current in the conductor causes
a magnetic field and a magnetic induction B in the periphery. Under these special
assumptions to symmetry and simplicity of the problem, we are able to calculate the
caused induction in an arbitrary point P = (P1, P2, P3)T ∈ R3.

From the Biot-Savart formula (4.6) we get

B(P ) =
µ0

4π

∫
R3

P − x
|P − x|3

× J(x) dx, (5.1)

where

J(x) =

{
Ĵ(x3) x ∈ {(y1, y2, y3)T ∈ R3 : y1 = y2 = 0}

0 otherwise.

19
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I

B

x

x

x

3

2

1

Figure 5.1: Alignment of the straight wire problem.

This follows due to the chosen geometry of the wire. Ĵ(x3) is the given current den-
sity flowing through the cross-section in x3-direction. In our case, we can simply set
Ĵ(x3) = I with a constant current I, so that the cross product in (5.1) reduces to

P − x
|P − x|3

× J(x) =
1

|P − x|3
·

 P1

P2

P3 − x3

×
0

0
I


=

1

|P − x|3
·

 P2I
−P1I

0

 .

The vector (P2I,−P1I, 0)T is independent of x and x itself may only be integrated
over the x3-part, so (5.1) becomes

B(P ) =
µ0

4π

 P2I
−P1I

0

 ∫
{0}×{0}×R

1

|P − x|3
dx

=
µ0

4π

 P2I
−P1I

0

 ∞∫
−∞

∣∣∣∣∣∣
 P1

P2

P3 − z

∣∣∣∣∣∣
−3

dz. (5.2)
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The integral in (5.2) is computed via

∞∫
−∞

∣∣∣∣∣∣
 P1

P2

P3 − z

∣∣∣∣∣∣
−3

dz =

∞∫
−∞

(P 2
1 + P 2

2 + (P3 − z)2)−3/2 dz

=
z − P3

(P 2
1 + P 2

2 )(P 2
1 + P 2

2 + (P3 − z)2)1/2

∣∣∣∣∞
−∞

=
2

P 2
1 + P 2

2

,

where the last equality follows with C := P 2
1 + P 2

2 , l’Hôpital’s rule and

lim
z→±∞

z − P3

C(C + (P3 − z)2)1/2
= lim

z→∞
±
(

(z − P3)2

C3 + C2(P3 − z)2

)1/2

= ±
(

lim
z→∞

(z − P3)2

C3 + C2(P3 − z)2

)1/2

(l’Hôpital) = ±
(

lim
z→∞

2(z − P3)

−2C2(P3 − z)

)1/2

= ±
(

1

C2

)1/2

= ± 1

C
.

Back in (5.2) this leads to

B(

P1

P2

P3

) =
µ0

2π

I

P 2
1 + P 2

2

 P2

−P1

0

 . (5.3)

Because of symmetry, the absolute value of B is constant for a fixed radius r =√
P 2

1 + P 2
2 . So without loss of generality we can neglect P2. The graph for P2 = 0 is

shown in Figure 5.2, where (5.3) simplifies to

B(

P1

0
P3

) = −µ0

2π

I

P1

0
1
0

 ,

a hyperbola.

5.1.2 Circular Conductor Loop

In this scenario we are considering a circular loop made of a conductive material with
infinitesimally small cross-section flooded by a constant current density J and radius
r. Its center is located in the origin of the 3-dimensional Euclidian coordinate system,
see Figure 5.3 for the details. Now we are interested in the magnetic field B arising
due to the current.

We assume that P = (P1, 0, 0)T , i.e., lies on the x1-axis. Then, because of sym-
metry reasons, the x2 and x3-components of B(P ) vanish. This follows directly from
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x1

|B|

0

Figure 5.2: Magnitude of the magnetic Induction B of the straight wire problem of
points lying on the x1-x3-plane.

x

x

x

3

2

1

Figure 5.3: Alignment of the circular conductor loop with constant current I.
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the awareness that each magnetic field line in x2 direction is compensated by a corre-
sponding one pointing in −x2-direction (and analogously x3). Only the x1-component
remains and is in general not equal to 0. We will see this mathematically during the
calculation. We use the Biot-Savart formulation (4.6) to compute B as follows:

B(P ) =
µ0

4π

∫
R3

P − x
|P − x|3

× J(x) dx (5.4)

Since the current only flows in C := {(x1, x2, x3)T : x2
2 + x2

3 = r, x1 = 0} and J = Iτ
in C and 0 otherwise (τ denotes the unit tangent of C), the 3-dimensional integral
in (5.4) reduces to a line integral with x ∈ C ⇒ x = (0, r cosϕ, r sinϕ)T for some
ϕ ∈ (0, 2π), i.e.,

B(P ) =
µ0

4π

2π∫
0

∣∣∣∣∣∣
P1

0
0

− r
 0

cosϕ
sinϕ

∣∣∣∣∣∣
−3 P1

0
0

− r
 0

cosϕ
sinϕ

× I
 0

sinϕ
− cosϕ

 dϕ

=
µ0

4π
I

2π∫
0

1

(P 2
1 + r2)3/2

 r
P1 cosϕ
P1 sinϕ

 dϕ.

Integrating cosϕ and sinϕ over the whole interval (0, 2π) makes them vanish, i.e., the
second and third component of B(P ) are 0 (as forecasted above). Denoting the first
component of B(P ) with B1(P ) we get

B1(P ) =
µ0

4π
I

2π∫
0

r

(P 2
1 + r2)3/2

dϕ, (5.5)

where the integrand is a constant and the integral is equal to the circumference of the
circle with radius r

B1(P ) =
µ0

4π
I

r

(P 2
1 + r2)3/2

2rπ =
µ0Ir

2

2(P 2
1 + r2)3/2

. (5.6)

This function is plotted in Figure 5.4.

5.1.3 Helmholtz Coil

See Example 8.4 in [4] for further details. A Helmholtz coil is used to produce a
region of nearly uniform magnetic field. For this purpose two identical short coils
with radius a and distance d to the plane {(x1, x2, x3)T ∈ R3 : x3 = 0} are aligned
as shown in Figure 5.5. The magnetic flux of the first and second coil is doneted by
B1 and B2, respectively, and we again restrict our calculations to points placed on the
x3-axis. Recall that the x1 and x2-components of the magnetic field vanish for these
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x1

B1

0

µ0I
2r

Figure 5.4: Magnitude of the magnetic Induction B of the circular conductor loop for
points lying on the x1-axis.

Figure 5.5: Geometry of a Helmholtz coil built up by two identical coils to produce a
region of nearly uniform magnetic field.

points because of symmetry. We compute B1 the same way we did in Subsection 5.1.2.
There we derived formula (5.6) which we adapt to

B1(x3) =
1

2

µ0Ia
2

(a2 + (x3 − d)2)3/2
.

We get the field B2 from B1 by substituting d with −d, i.e.,

B2(x3) =
1

2

µ0Ia
2

(a2 + (x3 + d)2)3/2
.

The resulting magnetic field B is just the sum B = B1 + B2. If we assume that the
radius a is already chosen and fixed, the only adjustable parameter is d. We want to
choose d, such that the arising magnetic field is nearly homogenous in some region.
This can be achieved, if the derivatives dnB/dxn3 vanish in x3 = 0. The first derivative
is

dB

dx3

=
d(B1 +B2)

dx3

= −3

2
µ0a

2I

[
x3 − d

(a2 + (x3 − d)2)5/2
+

x3 + d

(a2 + (x3 + d)2)5/2

]
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Figure 5.6: Solenoid with special Ampèrian loop, where C = Ca ∪ Cb ∪ Cc ∪ Cd.

and vanishes in x3 = 0 independent of the choice of d. The second derivative is

d2B

dx2
3

= −3

2
µ0a

2I

[
a2 − 4(x3 − d)2

(a2 + (x3 − d)2)7/2
+

a2 − 4(x3 + d)2

(a2 + (x3 + d)2)7/2

]
and vanishes in x3 = 0, if we set a = 2d. The Taylor expansion of B(x3) around 0 is

B(x3) = B(0) + x3
dB

dx3

∣∣∣∣
x3=0

+
x2

3

2

d2B

dx2
3

∣∣∣∣
x3=0

+O(x3
3) (5.7)

and if we restrict to − a
10
≤ x3 ≤ a

10
we get an estimate for the difference

∀x3 : |x3| ≤
a

10
: |B(x3)−B(0)| ≤ 1.2 · 10−6,

which means that the magnetic field in this region is nearly homogenous and this is
exactly what we wanted to produce.

5.1.4 Solenoid

This benchmark follows Problem 4.2 in [2]. There we consider a long solenoid like
in Figure 5.6 and a corresponding so-called Ampèrian loop C. We use Ampère’s law
in integral form (2.4) to compute the magnetic field inside the solenoid. The term∫
C
B · τ ds can be split up into the four edges (denoted by Ca, Cb, Cc, Cd, as in Figure

5.6) of the Ampèrian loop, i.e.,∫
C

B · τ ds =

∫
Ca

Ba · τa ds+

∫
Cb

Bb · τb ds+

∫
Cc

Bc · τc ds+

∫
Cd

Bd · τd ds. (5.8)
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We can assume that the magnetic field inside the solenoid is oriented in x2-direction
which means B = |B |̂i, where î is the x2 unit vector. Let the distance from the solenoid
to the edge Cc be very large, then we can assume Bc = 0. Perambulating the loop
clockwise, we can take a closer look on the integrals of (5.8) which now simplify to∫

Ca

Ba · τa ds = |B| ·
∫
Ca

ds = |B| · |Ca|∫
Cb

Bb · τb ds = |B| cos
π

2

∫
Cb

ds = 0

∫
Cc

Bc · τc ds = 0 ·
∫
Cc

ds = 0

∫
Cd

Bd · τd ds = |B| cos
π

2

∫
Cd

ds = 0.

Let S denote the area spanned by C, then using Ampère’s law in integral form (2.4)
gives

|B| · |Ca| =
∫
C

B · τ ds = µ0

∫
S

J · n dS = µ0Ienc, (5.9)

where Ienc is the total electric current enclosed by the loop. Equivalently to (5.9)
|B| = µ0Ienc/a. To find the current enclosed by the Ampèrian loop, just multiply the
current in each turn of the solenoid by the number of turns within the loop. If n is
the relative number of turns per unit, then Ienc = aI · n and

|B| = µ0aIn

a
= µ0In = µ0I

N

L
, (5.10)

where n = N/L with N is the total number of turns and L is the length of the
solenoid. Summarized, the magnetic field inside the solenoid is constant and oriented
in x2-direction. With (5.10) it follows that

B = µ0I
N

L
·

0
1
0

 . (5.11)

5.1.5 Toroidal

This benchmark refers to Example 8.1 in [4]. We are looking for the magnetic field of a
tightly wound and closed toroidal like it is shown in Figure 5.8. The magnitude of the
current is I and the number of turns is N . Three different Ampèrian loops C1, C2, C3,
corresponding to the areas S1, S2, S3 in Figure 5.8, are used for the calculation. Recall
Ampère’s law in integral form (2.4):∫

∂S

H · τ ds =

∫
S

J · n dS.
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Figure 5.7: Example of a
toroidal. Figure 5.8: Geometry of a toroidal.

For C1 and hence r < a it is clear that∫
C1

B · τ ds = 0 ⇒ Bϕ = 0

because there is no current flowing inside S1. For C2 and therefore a < r < b we get∫
C2

B · τ ds = µ0

∫
S2

J · n dS = −µ0NI

= Bϕ2rπ

⇒ Bϕ = −µ0NI

2rπ
, (5.12)

where we used that the orientation of the electric current and the normal of S2 are
parallel. The right-hand rule described in Remark 2.1 gives us the negative sign and
B is oriented in tangential direction in (5.12) and constant according to its magnitude
around a loop with fixed radius. For C3 and r > b it is again clear that∫

C3

B · τ ds = 0 ⇒ Bϕ = 0,

because each current entering S3 in one direction leaves it in the opposite direction,
i.e., the total current is 0. Summarized, the magnetic induction vanishes outside the
toroidal and inside its absolute value is proportional to NI.
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Figure 5.9: Geometry of a coaxial cable.

5.1.6 Coaxial Cable

This subsection is based on Example 4.4 in [4]. The geometry of a standard coaxial
cable is shown in Figure 5.9. It has an inner conductor surrounded by a tubular
insulating layer. The radius of the inner wire is a and the distance from the center
to the layer is b. Through the inner conductor an electric current flows and returns
through the layer. Now, we are interested in the magnetic flux caused by the current.
As we already know, there will be no flux outside the cable, since the total current
passing a surface containing the cross-section of the cable is zero. This follows directly
by applying Ampère’s law in its integral form (2.4) over an area S0 enclosing the whole
cross-section of the cable: ∫

∂S0

H · τ ds =

∫
S0

J · n dS = 0.

So we only calculate the inside flux.
Let S be the area of an Ampèrian loop in between the two conductors. With

Ampère’s law in its integral form (2.4) and material law (2.15a) we get∫
∂S

B · τ ds = µ0

∫
S

J · n dS = µ0I. (5.13)

On the whole loop B and τ point in the same direction, so we can pull out B from
the integral, i.e., ∫

∂S

B · τ ds = |B|
∫
∂S

ds = |B|2rπ (5.14)

and therefore, combining (5.13) and (5.14), we get

|B| = µ0I

2rπ
.
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5.2 Benchmarks in Electrostatics

5.2.1 Cylindric Charge

Figure 5.10: Infintely long cylinder with homogenous charge.

This benchmark follows Example 3.3 in [4]. We are looking for the electric field of an
infinitely long cylinder with homogenous space charge. Let r be its radius. Because of
the symmetry, E can only depend on the radial distance a to the center, so E = E(a)
and is constant for a fixed a. Particularly, E is constant on the surface of the cylinder.
In the following, we chop a new zylinder V with length ∆z out of the initial one, as
depicted in Figure 5.10. Since the electric field points radially outwards from the axis
of V , E is perpendicular to the normal vector of the bottom and the top surfaces of V ,
i.e., with Gauss’s law for electrostatics (4.9) and D = ε0E (neglecting P in material
law (2.15b) and assuming that ε = ε0 like in air) we observe∫

Sbottom

(ε0E) · n dS = 0 =

∫
Stop

(ε0E) · n dS.

E is parallel to the normal vector of the curved side S = ∂V \(Sbottom ∪ Stop) of the
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cylinder. Thus, considering V , one gets for a ≥ r:∫
∂V

D · n dS =

∫
S

D · n dS =

∫
S

(ε0E) · n dS = ε0E(a)

∫
S

dS = ε0E(a)2πa∆z

=

∫
V

ρ dx = ρr2π∆z,

since ρ is constant inside V and zero outside. Equivalently, we write

E(a) =
ρr2

2ε0a
. (5.15)

For a < r and the corresponding S we get analogously∫
S

D · n dS =

∫
S

(ε0E) · n dS = ε0E(a)

∫
S

dS = ε0E(a)2πa∆z

=

∫
V

ρ dx = ρa2π∆z.

Thus, for the electric field
E(a) =

ρa

2ε0

(5.16)

follows. Merging (5.15) and (5.16) we obtain

E(a) =


ρ

2ε0

a if a < r

ρr2

2ε0

1

a
if a ≥ r

(5.17)

Figure 5.11 shows the graph of this function. E is continuous in r because

lim
a→r−

E(a) = lim
a→r

ρ
2ε0

a = ρ
2ε0

r

= lim
a→r+

E(a) = lim
a→r

ρr2

2ε0
1
a

= ρ
2ε0

r

5.2.2 Spherical Charge

The following is based on Example 1.5 in [2]. We want to find the electric field E
at distance r to the center of a sphere with uniform volume charge density ρ and
radius a. It is reasonable to assume that we have a entirely radial field because the
charge distribution is spherically symmetric and so no preferred direction exists. Now
we consider a Gaussian surface S centered on the charged sphere, as shown in Figure
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a

E(a)

r

E(a)

Figure 5.11: Electric field intensity of the cylindric charge problem.

5.12. We denote the sphere spanned by this Gaussian surface by V . For S it is clear
that its outer normal and the electric field are parallel, so∫

S

E · n dS = |E|
∫
S

dS = |E|4r2π (5.18)

follows, where r is the radius of V . Using Gauss’s law in integral form (2.10) and
material law (2.15b) we get with (5.18)∫

S

E · ndS = |E|4r2π =
1

ε0

∫
V

ρ dx

or, equivalently,

|E| = 1

4r2πε0

∫
V

ρ dx (5.19)

which still depends on V , i.e., the choice of the Gaussian surface. Let us first consider
the field outside the charged sphere, thus r > a. In this case the integral in (5.19) is
independent of r and therefore constant:

|E| = 1

4r2πε0

∫
V

ρ dx =
1

4r2πε0

ρ
4a3π

3
=

ρa3

3ε0r2
, for r > a. (5.20)

Inside the charged sphere we have r ≤ a and the amount of enclosed charge decreases,
so the value of the integral gets smaller, in particular:

|E| = 1

4r2πε0

∫
V

ρ dx =
1

4r2πε0

ρ
4r3π

3
=

ρr

3ε0

, for r ≤ a. (5.21)

Combining (5.20) and (5.21) gives us the radial electric field

|E(r)| =


ρr

3ε0

r ≤ a

ρa3

3ε0r2
r > a
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Gaussian

Figure 5.12: Charged sphere with surrounding Gaussian surface.

that is plotted in Figure 5.13, where we recognize a linear increase of electric field
intensity inside the charged sphere. Outside E decreases faster than in the zylindric
case in Subsection 5.2.1. Continuity of E can be seen with

lim
r→a−

|E(r)| = lim
r→a

ρr
3ε0

= ρa
3ε0

= lim
r→a+

|E(r)| = lim
r→a

ρa3

3ε0r2
= ρa

3ε0
.

r

|E(r)|

a

Figure 5.13: Electric field intensity of the spherical charge problem.
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Figure 5.14: Geometry of the circular charged annulus.

5.2.3 Circular Charged Annulus

This example was adopted from “On-Axis E-Field of a Circular Charged Annulus“
in [7]. Given is a homogenous line charge arranged in shape of an annulus placed
in the x1-x2-plane with its center in the origin, see Figure 5.14. The electric field
intensity E has to be determined for all points on the x3-axis, i.e., for all points in
{(x1, x2, x3)T ∈ R3 : x1 = x2 = 0}. Consider a radius b of the ring and a line charge
density ql = Q/2πb. Let A := {(x1, x2, x3)T ∈ R3 : x2

1 + x2
2 = b2, x3 = 0} represent the

annulus.
Because of symmetry, we already know that the electric field only has a component

oriented in x3-direction. We want to determine the electric field intensity in an ar-
bitrary point (0, 0, x3)T . Recall that the electric field in a point y ∈ R3 caused by a
continuous charge density inside a volume V is given by law (2.3):

E(y) =
1

4ε0π

∫
V

q(x)
y − x
‖y − x‖3 dx. (5.22)

In this case V = A, which means that we only have to integrate over a 1-dimensional
curve. Changing to cylindrical coordinates, i.e., x1 = r cosφ, x2 = r sinφ and x3

stays unchanged, we observe that the integration over r and x3 is only a pointwise
evaluation at b and 0, respectively. Thus, the integration over φ remains, i.e., we can
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x3

E

b

Figure 5.15: Electric field intensity of the circular charged annulus.

rewrite (5.22) in the third component (the x1 and x2-components are zero) as

E(x3) =
1

4ε0π

2π∫
0

x3ql
(b2 cos2 φ+ b2 sin2 φ+ x2

3)3/2
b dφ

=
1

4ε0π

x3ql
(b2 + x2

3)3/2
b

2π∫
0

dφ

=
qlbx3

2ε0(b2 + x2
3)3/2

.

If we plug in the previous definition ql = Q/2πb we get

E(x3) =
qlbx3

2ε0(b2 + x2
3)3/2

=
Qx3

4ε0π(b2 + x2
3)3/2

. (5.23)

E(x3) given by (5.23) is plotted in Figure 5.15. Mathematically it is clear that the
maximum value of the electric field on the x3-axis only depends on the radius b of the
annulus. It is interesting that |E| reaches its maximum if x3 ≈ ±0.7b, i.e., x3 is about
70% of the radius.

5.3 A Benchmark in the Quasistatic Case
We are now looking at an eddy current problem which is based on Problem 3.7 in [2].
Here, a long solenoid is given carrying an electric current I(t) = I0 sin(ωt), i.e., a time
harmonic current with frequency ω. Our goal is to find the induced electric field E
inside and outside the solenoid as a function of r, the distance from the solenoid axis.
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Figure 5.16: Solenoid with time harmonic current.

Let R be the radius, l the length and N the number of turns of the solenoid. Faraday’s
law (2.14b) in its integral form gives∫

∂S

E · τ ds = − d

dt

∫
S

B · n dS. (5.24)

Let S be a circle with radius r ≤ R with its center on the axis of the solenoid, then
the first integral of (5.24) simplifies to∫

∂S

E · τ ds = E(r)

∫
∂S

ds = E(r)2rπ,

where we used that E and τ are parallel. Since the magnetic field B is perpendicular
to S, the right hand side of (5.24) simplifies to

− d

dt

∫
S

B · n dS = − d

dt
|B|
∫
S

dS = − d

dt

(
µ0NI(t)

l
r2π

)
,

where |B| = µ0NI(t)/l, as derived in (5.10) in Subsection 5.1.4. So equality (5.24)
reads as

E(r)2rπ = −r
2πµ0N

l

dI(t)

dt

which can be rewritten with the previous definition I(t) = I0 sin(ωt) to

E(r) = −µ0rN

2l
ωI0 cos(ωt). (5.25)

Never mind the negative sign in (5.25), it only indicates that the electric field opposes
the change in magnetic flux. For r > R the calculation is nearly the same, but B is
negligible outside the solenoid, so the right hand side of (5.24) gets

− d

dt

∫
S

B · n dS = − d

dt
|B|
∫
S

dS = − d

dt

(
µ0NI(t)

l
R2π

)
.
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r

|E|
R

ωt = 2kπ + 0
ωt = 2kπ + π/3

ωt = 2kπ + 2π/3
ωt = 2kπ + π

Figure 5.17: Electric field of a solenoid with time harmonic current I(t) = I0 sin(ωt),
where k ∈ Z.

Proceeding the way we did above, (5.25) changes to

E(r) = −µ0R
2N

2rl
ωI0 cos(ωt). (5.26)

Finally, we get

E(r) =


−µ0rN

2l
ωI0 cos(ωt) r ≤ R

−µ0R
2N

2rl
ωI0 cos(ωt) r > R

(5.27)

which is continuous in r = R. We see in Figure 5.17 that the electric field intensity
increases linearly in r inside the solenoid but ouside E decreases with 1/r.



Chapter 6

Conclusion

As we have seen, Maxwell’s equations (2.14) in the very general setting are an in-
tractable topic if one wants to solve them analytically. We have derived the full
system of equations in combination with material laws. In some special cases we were
able to compute a solution in an analytic way. It is somehow clear that we were forced
to make excessive simplifications in the geometry and symmetry, so that the compli-
cated system of equations decoupled and became more dealable. Otherwise, we have
to use more powerful tools: numerical solvers. Likewise the analytic way, numerical
solving starts from a mathematical model of the main problem, i.e., the differential
equations we are faced to, some conditions on the region and conditions depending on
time. On the one hand, the suitability of the numerical solution, of course, depends
on the correctness of this model. On the other hand, it also depends on the correct-
ness of the algorithm itself. To verify the solver’s propriety, the analytic solutions
derived in Chapter 5 can be used in the corresponding scenarios to compare them to
the numerical results.
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